
AN INTRODUCTION TO THE p-ADIC NUMBERS

ALEXA POMERANTZ

Abstract. This paper introduces the p-adic numbers with an emphasis on

comparison to the real numbers. It is mostly self-contained, but some basic

knowledge in number theory, analysis, topology, and geometry is assumed. We
begin by defining the p-adic metric and using this metric to construct Qp and

Zp. We then move on to sequences and series and writing p-adic expansions.

Lastly, we discuss topology and geometry in Qp.
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1. Introduction

The p-adic numbers, where p is any prime number, come from an alternate way
of defining the distance between two rational numbers. The standard distance
function, the Euclidean absolute value, gives rise to the real numbers. While the
real numbers are more natural to most of us, this paper aims to present the p-adic
numbers on an equal footing. For example, both fields are complete metric spaces.
Unlike the real numbers, the p-adic numbers are an ultrametric space, leading to a
number of fascinating but often counterintuitive results.

The p-adic numbers are useful because they provide another toolset for solving
problems, one which is sometimes easier to work with than the real numbers. They
have applications in number theory, analysis, algebra, and more. One example is
Hensel’s lemma for finding roots of a polynomial. Another is Mahler’s Theorem, a
p-adic analog of the Stone-Weierstrass Theorem. Yet another is Monsky’s Theorem,
a theorem about triangulating squares whose proof makes use of 2-adic numbers.
The reader is encouraged to read more about these in their own time, but the rest
of this paper will be focused on introducing p-adic numbers more broadly.

We start off by introducing the p-adic metric and then employing it to construct
the p-adic numbers using Cauchy sequences. We then move on to some unique
results about sequences and series that do not appear in real analysis. This leads
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into a discussion of p-adic expansions, which will help us think about p-adic numbers
in a more concrete way. Next, we discuss the topology on Qp to get a sense for p-adic
spaces. Finally, we look at how p-adic geometry differs from Euclidean geometry.

2. The p-adic Metric

We begin by defining a general notion of absolute value for an arbitrary field K.

Definition 2.1. An absolute value on K is a function |·| : K → R≥0 that satisfies
the following properties for all x, y ∈ K:

(i) |x| = 0 if and only if x = 0,
(ii) |xy| = |x||y|, and
(iii) |x+ y| ≤ |x|+ |y| (Triangle Inequality).

Moreover, an absolute value is non-Archimedean if it also satisfies the following
property:

(iv) |x+ y| ≤ max{|x|, |y|} (Strong Triangle Inequality).

An absolute value that does not satisfy property (iv) is Archimedean.

Remark 2.2. We note that any function satisfying Property (iv) necessarily satisfies
Property (iii).

Definition 2.3. A metric on K is defined by a distance function d : K×K→ R≥0.
An absolute value induces a metric defined by

d(x, y) = |x− y| for all x, y ∈ K.

A set on which a metric is defined is called a metric space. A set with a metric
induced by a non-Archimedean absolute value is called an ultrametric space.

Lemma 2.4. Let K be an ultrametric space, and let x, y ∈ K. If |x| 6= |y|, |x+y| =
max{|x|, |y|}.

Proof. Without loss of generality, we assume that |x| > |y|. Since K is an ultra-
metric space, |x+y| ≤ max{|x|, |y|} = |x| (Definition 2.1 and Definition 2.3). Also,
x = (x+ y) + (−y), so |x| ≤ max{|x+ y|, |y|}. Since |x| > |y|, |x+ y| > |y|. Thus,
we have |x+ y| ≤ |x| ≤ |x+ y|. It follows that |x+ y| = |x| = max{|x|, |y|}. �

Exercise 2.5. Check that in a field with a metric induced by an absolute value,
the following properties hold for all x, y, z ∈ K:

• d(x, y) > 0 ⇐⇒ x 6= y,
• d(x, y) = d(y, x), and
• d(x, z) ≤ d(x, y) + d(y, z).

We now begin to define the p-adic metric specifically. For the rest of the paper,
let p be a fixed prime number.

Definition 2.6. The p-adic valuation on Q is defined by a function vp : Q →
Z∪{∞}. Let x ∈ Q where x 6= 0. If x ∈ Z, let vp(x) be the unique positive integer
satisfying

x = pvp(x)x′, where p - x′.
For all nonzero x ∈ Q, we may write x =

a

b
where a, b ∈ Z. Then we define

vp(x) = vp(a)− vp(b).

Lastly, we define vp(0) = +∞.
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Remark 2.7. We can think of the p-adic valuation as describing how divisible by
p a number is. In this way, it makes sense to define vp(0) = +∞ since 0 can be
divided by p infinitely many times, yielding an integer (namely 0) each time.

Exercise 2.8. Show that the p-adic valuation does not depend on the representa-

tion of a rational number (if a
b = a′

b′ , then vp(a)− vp(b) = vp(a′)− vp(b′)).

Exercise 2.9. Prove that if x ∈ Q, x = pvp(x)
a′

b′
, where p - a′b′.

Lemma 2.10. The following properties hold for all x, y ∈ Q:

(i) vp(xy) = vp(x) + vp(y) and
(ii) vp(x+ y) ≥ min{vp(x), vp(y)}.

Proof. Let x, y ∈ Q. Then x =
a

b
and y =

c

d
, where a, b, c, d ∈ Z.

First, if x = 0 or y = 0, then vp(xy) = vp(x) + vp(y) = +∞. We therefore
consider the case that both x and y are nonzero. Then

vp(x) = vp(a)− vp(b), and vp(y) = vp(c)− vp(d) (Definition 2.6).

Moreover, since xy =
ac

bd
,

vp(xy) = vp(ac)− vp(bd).

Since a, c ∈ Z,

a = pvp(a)a′ and c = pvp(c)c′, where p - a′ and p - c′ (Definition 2.6).

Then

ac = pvp(a)a′ · pvp(c)c′ = pvp(a)+vp(c)a′c′.

Since p - a′ and p - c′, p - a′c′. Thus, by Definition 2.6, vp(ac) = vp(a) + vp(c). By
a similar argument, vp(bd) = vp(b) + vp(d). It follows that

vp(xy) = vp(ac)− vp(bd) = vp(a) + vp(c)− vp(b)− vp(d) = vp(x) + vp(y).

Hence, the p-adic valuation satisfies the first property.

Next, if x + y = 0, then vp(x + y) = +∞ ≥ min{vp(x), vp(y)} trivially. We
therefore consider the case that x + y 6= 0. Without loss of generality, we assume
that vp(x) ≤ vp(y). Then vp(x) is finite (if this were not the case, then x + y = 0
since x = y = 0). By Definition 2.6,

vp(x) = vp(a)− vp(b).

Also, if y = 0, vp(x+ y) = vp(x) = min{vp(x), vp(y)}. Thus, we assume that y 6= 0,
so

vp(y) = vp(c)− vp(d).

Since vp(x) ≤ vp(y),

vp(a)− vp(b) ≤ vp(c)− vp(d).

It follows that

vp(a) + vp(d) ≤ vp(b) + vp(c).

Equivalently, vp(ad) ≤ vp(bc) (by part (i)). Since ad ∈ Z and bc ∈ Z,

ad = pvp(ad)m and bc = pvp(bc)n, where p - m and p - n (Definition 2.6).
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Then

ad+ bc = pvp(ad)m+ pvp(bc)n.

Since vp(ad) ≤ vp(bc), pvp(ad) | pvp(bc). It follows that pvp(ad) | ad + bc. Thus,
vp(ad + bc) ≥ vp(ad). We now manipulate this inequality as follows, applying the
result from part (i) as necessary:

vp(ad+ bc) ≥ vp(ad)

=⇒ vp(ad+ bc) ≥ vp(a) + vp(d)

=⇒ vp(ad+ bc)− vp(d) ≥ vp(a)

=⇒ vp(ad+ bc)− vp(b)− vp(d) ≥ vp(a)− vp(b)

=⇒ vp(ad+ bc)− vp(bd) ≥ vp(a)− vp(b)

We recall that x+ y =
ad+ bc

bd
, so

vp(x+ y) = vp(ad+ bc)− vp(bd).

Thus, we have vp(x + y) ≥ vp(x) = min{vp(x), vp(y)}. In other words, the p-adic
valuation satisfies the second property. �

Definition 2.11. Let the p-adic absolute value function |·|p : Q→ R≥0 be defined
by

|x|p =

{
p−vp(x) if x 6= 0,

0 if x = 0.

The p-adic absolute value induces the p-adic metric, denoted by dp.

Remark 2.12. Since the p-adic valuation for nonzero rational numbers is always an
integer, the p-adic absolute value takes a discrete set of values.

Proposition 2.13. The p-adic absolute value is a non-Archimedean absolute value
on Q.

Proof. Let x, y ∈ Q. First, we suppose that x = 0. Then |x|p = 0 by Definition

2.11. Now, we suppose that x 6= 0. Then |x|p = p−vp(x) by Definition 2.11. Since
p 6= 0, |x|p 6= 0. Thus, the p-adic absolute value satisfies Definition 2.1(i).

Next, we check the second property. In the case that x = 0 or y = 0, |xy|p = |x|p|y|p
trivially. Hence, we consider the case that x 6= 0 and y 6= 0. Then by Definition
2.11, |xy|p = p−vp(xy), and |x|p|y|p = p−vp(x)p−vp(y) = p−vp(x)−vp(y). By Lemma
2.10(i), −vp(xy) = −vp(x) − vp(y). Therefore, |xy|p = |x|p|y|p, and the p-adic
absolute value satisfies Definition 2.1(ii).

Lastly, we check the third and fourth properties. in the case that x+y = 0, |x+y|p =
0 by definition. Then |x+y|p ≤ max{|x|p, |y|p} trivially. We consider the case that
x + y 6= 0. Without loss of generality, we assume that |x|p ≥ |y|p. Then |x|p 6= 0,

so x 6= 0. It follows that vp(x) ≤ vp(y). By Definition 2.11, |x + y|p = p−vp(x+y)

and |x|p = p−vp(x). By Lemma 2.10(ii), vp(x + y) ≥ min{vp(x), vp(y)} = vp(x). It

follows that p−vp(x+y) ≤ p−vp(x). Equivalently, |x + y|p ≤ |x|p = max{|x|p, |y|p}.
Thus, the p-adic absolute value satisfies Definition 2.1(iv) and consequently Defi-
nition 2.1(iii). �
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Exercise 2.14. Find

∣∣∣∣75

73

∣∣∣∣
5

,

∣∣∣∣16

81

∣∣∣∣
3

, and d11(89, 4082).

Exercise 2.15. Prove that lim
n→∞

pn = 0.

Proof. Let ε > 0. By the Archimedean Property, there exists N ∈ N such that
1

N
< ε. Since pN > N ,

1

pN
<

1

N
< ε. Let n ≥ N . Then

1

pn
≤ 1

pN
< ε. We note

that pn 6= 0 and vp(pn) = n, so |pn|p = p−n. Hence, we have |pn|p < ε. It follows
that lim

n→∞
pn = 0. �

Loosely stated, two absolute values are equivalent if they induce the same topol-
ogy. Before moving on to the construction of the p-adic numbers, we state the
following result about absolute values on Q.

Theorem 2.16. (Ostrowski’s Theorem) Every nontrivial absolute value on Q is
equivalent to either the standard absolute value or one of the p-adic absolute values.

Proof. See [3, p. 56-59]. �

Because of Ostrowski’s Theorem, the p-adic absolute value can be viewed as just
as important as the standard absolute value. Together, they comprise all possible
absolute values on Q. There are a number of results that we will prove later that
could apply to any ultrametric space, but we care about the p-adic absolute values
in particular because they are essentially the only non-Archimedean absolute values
on Q.

3. Construction of Qp and Zp

Next, in order to construct the field of p-adic numbers from the rational numbers,
we use a process similar to the construction of the real numbers using Cauchy
sequences. We will not include all of the details but aim to provide an outline for
this process by including the most relevant definitions and results.

Definition 3.1. A sequence (an) is Cauchy if for every ε > 0, there is some N ∈ N
such that for all m,n ≥ N ,

|an − am| < ε.

Definition 3.2. A metric space X is complete under a given metric if every Cauchy
sequence in X converges to a point in X.

Proposition 3.3. The field of rational numbers, Q, is not complete under the
p-adic metric.

Proof. See [3, p. 63-64]. �

Theorem 3.4. Let K be a field with an absolute value |·|. Then there exists a
complete field K′ with an absolute value |·|′ that extends K. This completion K′ is
unique up to isomorphism. Moreover, on K, |·|′ restricts to |·|. Lastly, K is dense
in K′.
Sketch of Proof. We omit this proof since it involves some abstract algebra that is
outside the scope of this paper. The reader can see [9, p. 5-6]. The general idea
is for each element of K′ to be represented by the limit of a Cauchy sequence of
elements in K (or multiple equivalent Cauchy sequences). Any Cauchy sequence
that does not have a limit in K will have a limit in K′, making K′ complete. �
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Definition 3.5. Let the field of p-adic numbers, Qp, be defined by the completion
of Q with respect to the p-adic metric. We know that such a completion exists and
is unique (up to isomorphism) due to Theorem 3.4.

Remark 3.6. We note that due to Ostrowski’s Theorem, the real numbers and the
p-adic numbers are the only completions of the rational numbers.

We have now constructed Qp analytically and can construct Zp from it. Before
defining Zp, we note that an algebraic construction also exists, in which Zp is
constructed first and then Qp is constructed as its field of fractions. We leave this
alternate construction for the reader to explore.

Definition 3.7. Let the ring of p-adic integers, Zp, be defined as follows:

Zp = {x ∈ Qp | |x|p ≤ 1}.

Remark 3.8. We note that for all x ∈ Z, vp(x) ≥ 0, so |x|p ≤ 1. Thus, Z ⊂ Zp (just
as Q ⊂ Qp).

Before moving on, we note, without proof, that Zp is also the completion of
Z with respect to the p-adic metric (see [10]). Under the standard metric, Z is
already complete, as the only Cauchy sequences in Z are constant sequences. This
is because every integer is a distance of at least one away from another integer.
However, under the p-adic metric, integers can get arbitrarily close to each other,
so there are nontrivial Cauchy sequences. We will see an example of such a sequence
in Section 4 (Example 4.4).

4. Sequences and Series in Qp

In this section, we will take a further look at sequences and series in Qp. We will
see that they are often easier to work with than sequences and series in R. Because
Qp is an ultrametric space, we can obtain some nice results that only apply partially
in R.

Theorem 4.1. Let (an) be a sequence in Qp. Then (an) is Cauchy if and only if
for every ε > 0, there is some N ∈ N such that for all n ≥ N , |an+1 − an|p < ε.

Proof. First, we assume that (an) is Cauchy. Let ε > 0. By Definition 3.1, there
is some N ∈ N such that for all m,n ≥ N , |an − am|p < ε. Let n ≥ N . Then
n+ 1 ≥ N , so |an+1 − an|p < ε.

Next, we assume that for every ε > 0, there is some N ∈ N such that for all
n ≥ N , |an+1 − an|p < ε. Let ε > 0. Then there is some N ∈ N such that

for all n ≥ N , |an+1 − an|p < ε.

Let m,n ≥ N . If n = m, |an − am|p = |0|p = 0 < ε, so we consider the case that
m 6= n. Without loss of generality, we assume that n > m. Then n = m + k for
some k ∈ N. We can rewrite |an − am|p as

|(am+k − am+k−1) + (am+k−1 − am+k−2) + . . .+ (am+1 − am)|p.

Since the p-adic absolute value is non-Archimedean,

|an − am|p ≤ max{|am+i − am+i−1|p | 1 ≤ i ≤ k} (Definition 2.1(iv)).
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For some 1 ≤ i0 ≤ k,

|am+i0 − am+i0−1|p = max{|am+i − am+i−1|p | 1 ≤ i ≤ k}.
Then |an−am|p ≤ |am+i0−am+i0−1|p. We recall that m ≥ N , so by our assumption,

|am+i0 − am+i0−1|p < ε.

Hence, |an−am|p < ε by transitivity. Therefore, (an) is Cauchy (Definition 3.1). �

Corollary 4.2. Let (an) be a sequence in Qp. Then

∞∑
n=0

an converges if and only

if lim
n→∞

an = 0.

Proof. Let (pn) be the sequence of partial sums for (an).

First, we assume that
∞∑

n=0
an converges. Then (pn) converges. It follows that

(pn) is Cauchy. Let ε > 0. By Theorem 4.1, there is some N ∈ N such that for all
n ≥ N , |pn+1 − pn|p < ε. Equivalently, |an+1|p < ε for all n ≥ N . Let N ′ = N + 1.
Then for all n ≥ N ′, |an|p < ε.

Next, we assume that lim
n→∞

an = 0. Then there is some N ∈ N such that for

all n ≥ N , |an|p < ε. Then also, |an+1|p < ε for all n ≥ N . Equivalently,
|pn+1 − pn|p < ε for all n ≥ N . By Theorem 4.1, (pn) is Cauchy and therefore

converges. Hence,
∞∑

n=0
an converges. �

Remark 4.3. We recall that Theorem 4.1 and Corollary 4.2 are only true in the
forward direction in R. In particular, the harmonic series is a well-known coun-
terexample for the other direction. The harmonic sequence’s terms get arbitrarily
close to 0, but the corresponding series diverges.

Example 4.4. The p-adic series

∞∑
n=0

pn converges, and its sum is
1

1− p
.

Proof. Let (an) be the sequence of partial sums for
∞∑

n=0
pn. Then for all n ∈ N∪{0},

an =
n−1∑
i=0

pi. We recall the algebraic fact that 1n−pn = (1−p)
n−1∑
i=0

pi. Equivalently,

an =
n−1∑
i=0

pi =
1− pn

1− p
. We note that lim

n→∞

1

1− p
=

1

1− p
and lim

n→∞
pn = 0 (Exercise

2.15). By the algebra of limits,

lim
n→∞

an = lim
n→∞

1

1− p
− lim

n→∞
pn · lim

n→∞

1

1− p
=

1

1− p
− 0 =

1

1− p
.

Therefore,
∞∑

n=0
pn =

1

1− p
. �

Remark 4.5. This result is analogous to the formula for the sum of a geometric
series in R. The result in R holds for all x ∈ R where |x| < 1. Similarly, we could
extend this result to hold for all x ∈ Qp where |x|p < 1, rather than only for x = p.
We leave this as an exercise for the reader.
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5. p-adic Expansions

Using the formula in Example 4.4, we can obtain some fairly counterintuitive
results. For example, in Q2, −1 = 1 + 2 + 4 + · · · . We aim to make sense of these
results and think about p-adic numbers more concretely by introducing the idea of
a p-adic expansion. First, we state the following proposition.

Proposition 5.1. Any series in the form

∞∑
n=n0

anp
n, with an ∈ {0, 1, · · · p−1} and

n0 ∈ Z, converges in Qp.

Proof. We recall from Example 2.15 that lim
n→∞

pn = 0. We suppose that 0 ≤ an < p

for all n ≥ n0. It follows that lim
n→∞

anp
n = 0 as well. By Corollary 4.2,

∞∑
n=n0

anp
n

converges in Qp (the starting index being n0 rather than 0 does not make a difference
to whether the series converges). �

Now that we know that any series in this form converges p-adically, we can define
the p-adic expansion.

Definition 5.2. The p-adic expansion of a number α ∈ Qp is a series in the form

α =

∞∑
n=n0

anp
n,

where n0 ∈ Z ∪ {∞}, an0 6= 0, and 0 ≤ an < p for all n ≥ n0.

We call the integers an the coefficients of the expansion.

Remark 5.3. When α ∈ N, the p-adic expansion of α is the same as the base
p representation of α (where there exists some N ∈ N such that the coefficients
an = 0 for all n ≥ N).

Proposition 5.4. Every p-adic number has a unique p-adic expansion.

Proof. See [3, p. 82-83]. �

Exercise 5.5. Let α ∈ Q, and let
∞∑

n=n0

anp
n be the p-adic expansion of α. Show

that vp(α) = n0 (we note that for elements of Qp \Q, the p-adic valuation is defined
this way).

Remark 5.6. We can write p-adic expansions in the same way that we write standard
decimal representations of numbers. However, in a p-adic expansion, there are a
finite number of negative powers of p, as opposed to a finite number of positive
powers of 10. Thus, if we write a p-adic expansion in the usual way, where the
powers of p decrease from left to right, the coefficients often extend infinitely to the
left.

Examples 5.7. Written in the form described in Remark 5.6, −1 = 12, 175 =

12005, and
194

7
= 36.57 (subscripts are used to specify the prime).
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Before moving on, we go back to our statement that in Q2, −1 = 1 + 2 + 4 + · · · .
We can make sense of this by adding 1 as follows:

1 + (−1) = 1 + 20 + 21 + 22 + · · ·
⇐⇒ 0 = 0 · 20 + 21 + 21 + 22 + · · ·

= 0 · 20 + 0 · 21 + 22 + 22 + · · ·
= 0 · 20 + 0 · 21 + 0 · 22 + · · · .

If we continue, every coefficient in the expansion would eventually become 0, mak-
ing it easier to believe that this series does in fact represent the additive inverse of 1.

Next, in order to help us compute p-adic expansions, we introduce the following
lemma.

Lemma 5.8. Let α ∈ Zp with p-adic expansion

∞∑
n=n0

anp
n, and let k ∈ N. Then

α ≡
k−1∑
n=n0

anp
n (mod pk).

Proof. We begin with α ≡
∞∑

n=n0

anp
n (mod pk). Also,

∞∑
n=k

anp
n ≡ 0 (mod pk) since

for all m ≥ k, pk | pm. Lastly, we subtract to obtain α ≡
k−1∑
n=n0

anp
n (mod pk). �

Example 5.9. Determine the 5-adic expansion of
4

3
.

Proof. Since vp

(
4

3

)
= 0,

4

3
=
∞∑

n=0
an5n, where 0 ≤ an ≤ 4 (Definition 5.2 and

Exercise 5.5). Also, since

∣∣∣∣43
∣∣∣∣
p

= 1,
4

3
is a 5-adic integer. By Lemma 5.8,

4

3
≡ a0

(mod 5). Then 4 ≡ 3a0 (mod 5). We multiply by 2 to obtain a0 ≡ 3 (mod 5).

Since 0 ≤ an ≤ 4, a0 = 3 as well. Next, by Lemma 5.8,
4

3
≡ a0 + 5a1 (mod 25).

We solve this congruence as follows:

4 ≡ 3a0 + 15a1 (mod 25)

=⇒ 4 ≡ 3 · 3 + 15a1 (mod 25)

=⇒ 20 ≡ 15a1 (mod 25)

=⇒ 3a1 ≡ 4 (mod 5).

=⇒ a1 ≡ 3 (mod 5).

As before, a1 = 3 as well. Using similar methods, we can solve
4

3
≡ a0 + 5a1 + 25a2

(mod 125) to obtain a2 = 1. After this, the pattern repeats, alternating between 3

and 1. Written in way described by Remark 5.6, the 5-adic expansion of
4

3
is 1335.
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We can check this by multiplying by 3 as follows:

4

3
= 3 · 50 + 3 · 51 + 1 · 52 + · · ·

=⇒ 4 = 9 · 50 + 9 · 51 + 3 · 52 + · · ·
= 4 · 50 + 51 + 4 · 51 + 52 + 3 · 52 + · · ·
= 4 · 50 + 0 · 51 + 52 + 52 + 3 · 52 + · · ·
= 4 · 50 + 0 · 51 + 0 · 52 + · · · .

Every non-zero power of 5 eventually vanishes, leaving only 4. Thus,
4

3
· 3 = 4, as

we would expect. �

We saw in the previous example that a rational number had an eventually pe-
riodic p-adic expansion. It turns out that this is true in general, just as it is with
decimal expansions in R.

Theorem 5.10. A p-adic number has an eventually periodic p-adic expansion if
and only if it is rational.

Proof. See [1, p. 3-5]. �

We can also define addition and multiplication for p-adic numbers using p-adic
expansions. These definitions are similar to how we add and multiply the decimal
representations of real numbers, as we add the coefficients and carry any remainders.
The reader can see [7, p. 1-3] for more rigorous definitions of these operations.
These definitions can also be used to verify that Qp is a field and that Zp is a
commutative ring.

6. The Topology on Qp

In this section, we discuss the topology induced by the p-adic metric in an
attempt to better visualize the p-adic numbers. While the real numbers can be
visualized as a line, it is not as simple with the p-adics. In particular, there is an
ordering on R but not on Qp. Moreover, R is connected, whereas Qp is totally
disconnected (this will be further explained and proven later). Before formalizing
these details, we examine the image below as one way to visualize the 3-adic integers.

Figure 1. A visualization of the 3-adic integers ([6])
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Each circle contains three main sub-circles. The integers within a subcircle of
a given circle have a particular 3-adic distance from integers in another subcircle
of that circle. For example, the orange circle has purple subcircles. The integers
within a purple subcircle are a distance of one away from the integers in a different
purple subcircle. The distance corresponding to the largest circle is one since one
is the largest possible 3-adic distance between integers. While there are no circles
larger than the orange one for Z3, the circles can get infinitely small, as we can
choose numbers that differ by larger and larger powers of 3. In this way, the p-adic
integers are not discrete even though they are disconnected. Hence, a good image
of the p-adic integers would be fractal-like, as Figure 1 is.

We now proceed to introduce and prove several results about the topology in-
duced by the p-adic metric.

Theorem 6.1. In Qp, any open ball is also a closed ball (and vice versa).

Proof. Let B(a, r) be an open ball in Qp. Then B(a, r) = {x ∈ Qp | |x− a|p < r}.
Let n be the smallest integer such that r ≤ p−n. For the reason described in Remark
2.12, there are no p-adic numbers with absolute value between p−(n+1) and p−n.
Thus, B(a, r) = {x ∈ Qp | |x − a|p < p−n} = {x ∈ Qp | |x − a|p ≤ p−(n+1)}. It
follows that B is also a closed ball. A symmetric argument would show that any
closed ball is also an open ball in Qp. �

Corollary 6.2. The ring Zp is both closed and open in Qp.

Proof. We recall from Definition 3.7 that Zp = {x ∈ Qp | |x|p ≤ 1}. Thus, it is
clear that Zp is a closed ball and is therefore closed. By Theorem 6.1, Zp is also an
open ball and is therefore open (specifically, Zp = {x ∈ Qp | |x|p < p}). It follows
that Zp is closed and open in Qp. �

Corollary 6.3. The field Qp is totally disconnected.

Proof. Let a and b be distinct points in Qp. Let δ = |a − b|p. Let A = {x ∈ Qp |
|x− a|p < δ}. Then A is an open ball in Qp, and a ∈ A. For the same reason that
Zp is both closed and open, A is both closed and open. Therefore, B := Qp \ A
is also both closed and open. Since |b − a|p = δ, b /∈ A. Thus, b ∈ B. Since
Qp = A ∪ B, where A and B are disjoint open sets with a ∈ A and b ∈ B, Qp is
totally disconnected. �

Theorem 6.4. The ring Zp is compact.

Proof. We recall that a metric space is compact if and only if it is sequentially com-
pact. Thus, we aim to show that Zp is sequentially compact using a diagonalization
argument.

Let (αn)∞n=0 be a sequence in Zp. For each n ∈ N ∪ {0}, αn =
∞∑
i=0

an,ip
i, where

0 ≤ an,i < p. This is clear from Definition 5.2. For elements of Zp, the starting
index of the p-adic expansion is greater than or equal 0, but we can obtain an
equivalent sum starting at index 0 by adding 0-terms to the beginning. By the
Pigeonhole Principle, there exists b0 ∈ N ∪ {0} such that 0 ≤ b0 ≤ p − 1 and
b0 = an,0 for infinitely many n. We construct a subsequence (α0n) of (αn), where
(α0n) consists of the elements of (αn) for which an,0 = b0. We now inductively
construct a sequence of subsequences. For each k ∈ N, we will construct a sequence
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(αkn) that is a subsequence of (α(k−1)n). Let k ∈ N. Then as before, there exists
bk ∈ N ∪ {0} such that 0 ≤ bk ≤ p − 1 and bk = an,k for infinitely many n where

αn =
∞∑
i=0

an,ip
i ∈ (α(k−1)n). We note that we have added an additional assumption

so that we are not selecting elements of (αn) that were not present in (α(k−1)n).
Now, let (αkn) be the subsequence of (α(k−1)n) that consists of every element for

which an,k = bk. Let β =
∞∑
i=0

bip
i (so β ∈ Zp). Then for each k ∈ N ∪ {0}, the

first k + 1 coefficients in the p-adic expansion of every element of (αkn) match the
first k+1 coefficients in the p-adic expansion of β. We finally consider the diagonal
subsequence (αkk). This sequence converges to β by construction. Since (αkk) is
a convergent subsequence of (αn), any sequence in Zp must contain a convergent
subsequence. Hence, Zp is sequentially compact and is therefore compact. �

Corollary 6.5. The field Qp is locally compact.

Proof. Let x ∈ Qp. Let X = {x + y | y ∈ Zp}. Since Zp is compact (by Theorem
6.4), X is compact as well. Just as Zp is a ball centered at 0, X is a ball centered
at x. Thus, X is a compact neighborhood of x, and Qp is locally compact. �

7. Geometry in Qp

We close by proving several interesting geometric results that hold in Qp.

Theorem 7.1. In Qp, all triangles are isosceles.

Proof. Let a, b, and c be distinct points in Qp. Then dp(a, b), dp(b, c), and dp(a, c)
are the lengths of the sides of the triangle determined by those points. If dp(a, b) =
dp(b, c), the triangle is isosceles. If dp(a, b) 6= dp(b, c), |a − b|p 6= |b − c|p. We note
that (a− b) + (b− c) = a− c. By Lemma 2.4, |a− c|p = max{|a− b|p, |b− c|p}. In
other words, either dp(a, c) = dp(a, b) or dp(a, c) = dp(b, c). Hence, the triangle is
isosceles. �

Remark 7.2. We note also that if a triangle in Qp is not equilateral, its shortest side
is the base of the triangle. This comes from the fact that the maximum function
was used to find the two congruent sides.

We note that we did not specify that the points of our triangle were not collinear.
We see now that this cannot occur.

Corollary 7.3. No three distinct points in Qp are collinear.

Proof. We assume, for the sake of contradiction, that there are distinct points a, b,
and c that are collinear. Without loss of generality, we assume that dp(a, c) =
dp(a, b) + dp(b, c). Then dp(a, c) > dp(a, b) and dp(a, c) > d(b, c) (since dp(a, b) > 0
and dp(b, c) > 0). Since ac is the longest segment, it follows from Theorem 7.1 and
Remark 7.2 that ac is a leg of the isosceles triangle formed by the three points.
However, that means dp(a, c) = dp(a, b) or dp(a, c) = dp(b, c). In either case, we
have reached a contradiction. Thus, there are no three distinct points in Qp that
are collinear. �
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We now introduce another corollary.

Corollary 7.4. There are no right triangles in Qp.

Proof. We assume, for the sake of contradiction, that there exist points a, b, c ∈
Qp such that 4abc is a right triangle. In other words, the side lengths of the
triangle satisfy the Pythagorean Theorem. Without loss of generality, we assume
dp(a, c)2 = dp(a, b)2 + dp(b, c)2. Then dp(a, c) > dp(a, b) and dp(a, c) > dp(b, c).
Since every triangle in Qp is isosceles by Theorem 7.1, dp(a, b) = dp(b, c). Hence,
we have a triangle in which the base is the longest side. This contradicts Remark
7.2. Therefore, there are no right triangles in Qp. �

Lastly, we introduce a final theorem.

Theorem 7.5. At most p distinct points in Qp are equidistant from each other.

Proof. We assume, for the sake of contradiction, that there exist at least p + 1
distinct points in Qp that are all equidistant from each other: a1, a2, . . . , ap+1.
Let i, j ∈ N be such that 1 ≤ i, j ≤ p + 1 and i 6= j. Since the points are
distinct, dp(ai, aj) 6= 0. It follows from Definition 2.1(i) and Definition 2.11 that

|ai − aj |p = p−vp(ai−aj). Let vp(ai − aj) = m. Since ai, aj ∈ Qp, ai and aj have

p-adic expansions. By Definition 5.2, ai =
∞∑

n=n0i

ai,np
n, where n0i ∈ Z, ai,n0i

6= 0,

and 0 ≤ ai,n < p for all n. Similarly, aj =
∞∑

n=n0j

aj,np
n, where n0j ∈ Z, aj,n0j 6= 0

and 0 ≤ aj,n < p for all n. We note that pm | (ai − aj). It follows that for any
k < m, ai,k = aj,k. Therefore, we can rewrite the difference as follows:

ai − aj =

∞∑
n=n0i

ai,np
n −

∞∑
n=n0j

aj,np
n

=

∞∑
n=m

ai,np
n −

∞∑
n=m

aj,np
n

=

∞∑
n=0

ai,n+mp
n+m −

∞∑
n=0

aj,n+mp
n+m

= pm
∞∑

n=0

ai,n+mp
n − pm

∞∑
n=0

aj,n+mp
n.

Now, let a′i =
∞∑

n=0
ai,n+mp

n, and let a′j =
∞∑

n=0
aj,n+mp

n. Then we have

ai − aj = pm(a′i − a′j).

Since vp(ai − aj) = m,

vp(pm(a′i − a′j)) = m.

By Lemma 2.10(i),

vp(pm(a′i − a′j)) = vp(pm) + vp(a′i − a′j) = m+ vp(a′i − a′j).

Therefore, vp(a′i−a′j) = 0. Since i and j were arbitrary, we can construct a′i and a′j
for all 1 ≤ i, j ≤ p+ 1 where i 6= j. In each case, vp(a′i − a′j) = 0. However, since
there are p + 1 points and only p possible values for the coefficients in the p-adic
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expansions, there exist distinct 1 ≤ i0, j0 ≤ p + 1 such that ai0,m = aj0,m (by the
Pigeonhole Principle). Then p | (a′i0 − a

′
j0

), so vp(a′i0 − a
′
j0

) 6= 0. Hence, we have
reached a contradiction, so our assumption must be false. There are no more than
p points that are all equidistant from each other. �

Remark 7.6. This theorem helps capture the notion that it is easier for points to
be equidistant p-adically. We leave verification that p points can be equidistant
from each other in Qp as an exercise to the reader. By contrast, in R, at most 3
points can all be equidistant from each other. Because the options for the distance
between points are more limited in Qp, up to p points can be equidistant (in every
case except Q2, this is more than 3).
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