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1. Basic Dynamic Optimization.

This is a summary of some basic mathematics for handling constrained optimiza-
tion problems.1 In macro, we deal with optimization over time. Sometimes the
horizons for dynamic optimization problems are …nite while sometimes they are
in…nite. Dynamic optimization problems come in two forms:

1. Discrete time (t = 0; 1; 2; :::)

2. Continuous time (t 2 R).

For discrete time problems we will often use simple Lagrangians. Consider the
following simple growth problem:

max
1X

t=0

¯tu (ct)

subject to the constraints:
k®t ¸ ct + kt+1

This can be dealt with using a standard Lagrangian:

L =
1X

t=0

¯tu (ct) +
1X

t=0

¸t [k®t ¡ ct ¡ kt+1]

1A lot of this material is adapted from Takayama, Mathematical Economics, 2nd ed., Cam-
bridge University Press, 1985. For further development of these ideas, the interested student is
encouraged to read Chapters 0 and 1 of Takayama and see the references cited there for further
explanations of these idea.
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and the …rst order conditions are:

@ct : ¯tu0 (ct) ¡ ¸t = 0

@kt+1 : ¡¸t + ¸t+1®k®¡1t+1 = 0

Alternatively we could set up the Lagrangian as a current value problem as:

L =
1X

t=0

¯t [u (ct) + ¸t (k®t ¡ ct ¡ kt+1)]

and the …rst order conditions are:

@ct : u0 (ct) ¡ ¸t = 0

@kt+1 : ¡¸t + ¯¸t+1®k®¡1t+1 = 0

These two formulations are identical – the only di¤erence is in the interpretation of
the shadow value ¸t. In the …rst set up, ¸t represents the marginal increase in the
objective function

PT
t=0 ¯

tu (ct) which would come about as a result of reducing
the constraint in period t. In the second setup, ¸t represents the marginal increase
in u (ct) from the same experiment. You are free to use either in the class.

The discrete time problem we just considered has an analogue in continuous
time.

max
Z 1

0
e¡½tu (c (t))

subject to the constraints:

_k (t) = k (t)® ¡ c (t)

Note that k cannot jump (it’s a state variable) while c can jump (it’s a control
variable). To solve these problems we usually set up the Hamiltonian function:

H = e¡½tu (c (t)) + ¸ (t) [k (t)® ¡ c (t)]

The …rst order necessary conditions for this type of problem are:

(for control variables) Hc = 0

(for state variables) Hk = ¡ _̧ (t)



and
_k (t) = k (t)® ¡ c (t)

As with the discrete time problems there is a “current value” Hamiltonian as
well:

h = u (c (t)) + µ (t) [k (t)® ¡ c (t)]
the …rst order conditions are similar:

(for control variables) hc = 0

(for state variables) hk = ½µ ¡ _µ

and of course:
_k (t) = k (t)® ¡ c (t)

What follows is a more detailed discussion of results from constrained opti-
mization. You will not be tested on this material but you may want to skim it
to get a feel for why we use the techniques we use. Of course, this discussion is
very informal and the interested reader should look to other sources for a more
complete analysis. Simon and Blume, and Takayama are good references.

2. Constrained Optimization:

A function is concave if the convex combination of the images of f lies below the
function at the convex combination.

For a problem to be a concave problem, f must be concave and the constraint
set must be convex. With Lagrangians, x is chosen to maximize L while ¸ is
chosen to minimize L. We want to get all of the binding constraints attached to
multipliers. QSP are also called foc or complementary slackness conditions.
¸’s are referred to as Lagrange multipliers (shadow prices, shadow values of

the constraints).

2.1. Basic Constrained Optimization:

Consider the following problem (P ):

max f(x)

subject to:
gi(x) ¸ 0 for i = 1; :::m



where f and the gi’s are real valued (typically di¤erentiable) functions de…ned on
x 2 RN :

Without the constraints (the g’s) we would simply take derivatives of f and
…nd the critical values at which fx = 0: The presence of the constraints compli-
cates matters a bit. The main simplifying result is the following theorem usually
attributed to Kuhn and Tucker (see Takayama p. 75):

Theorem (Kuhn-Tucker) Let f , g1; g2:::gm be real valued concave functions
de…ned on X µ RN , X convex. Assume that there exists x 2 X s.t. gi(x) >
0 for i = 1; :::m then x¤ achieves a maximum of f(x) subject to gi(x) ¸ 0
for i = 1; :::m if and only if there exists a vector ¸¤ = [¸¤1; ¸

¤
2; :::¸

¤
m] with

¸¤i ¸ 0 such that
L (x; ¸¤) · L (x¤; ¸¤) · L (x¤; ¸) (SP )

(i.e. (x¤; ¸¤) is a saddle point) for all x 2 X and all ¸ ¸ 0 where L is the
function:

L (x; ¸) = f(x) +
mX

i=1

¸igi(x)

Remarks: Note that the theorem works “both ways” so if there is a maximum
(M) then it satis…es the saddle point condition (condition SP ) while at
the same time if you …nd a point that satis…es the saddle point condition
then you have the solution to the maximization problem P . The ¸’s are
referred to as “Lagrange multipliers” (shadow prices, shadow values of the
constraints).

Also the constraints will satisfy :

1. gi(x) ¸ 0

2.
P
i ¸igi(x) = 0

3. because all of the gi and ¸i must be non-negative this implies that if
a constraint holds with an inequality (i.e. > rather than ¸) then the
Lagrange multiplier associated with that constraint must be zero.

4. The condition that there exists an x with gi(x) > 0 for i = 1; :::m is
known as Slater’s condition.

So if the functions are concave then SP ()M , Importantly, SP =)M with-
out any conditions on concavity and without Slater’s condition. If the functions



are di¤erentiable then we have the ability to take derivatives and use calculus to
solve the problem (we assume that X is open so that di¤erentiation is unambigu-
ous).

The quasi-saddle point conditions (often called …rst order conditions, or com-
plementary slackness conditions) are:

(QSP) (Quasi-Saddle-Point Conditions): The QSP conditions are:

1. (recall that x 2 RN)

@f
@xj

+
mX

i=1

¸i
@gi
@xj

= 0 , for j = 1:::N

2.
gi(x) ¸ 0

3.
¸igi(x) = 0

Theorem: If f; gi 8i are di¤erentiable then SP =) QSP and if f; gi 8i are all
concave then QSP =) SP:

These two theorems are what underlies the practice of “setting up Lagrangians”.
Kuhn and Tucker have additional quali…cations that can extend the results to al-
low for non-concave functions f , g. Usually some form of concave objectives or
convex constraint sets are required. Their main results concern showing that the
solution is a saddle point and showing that the QSP conditions are useful in
…nding the maximum. (again see Takayama for a detailed discussion).

2.1.1. Variations of the Lagrangians...

Sometimes you will see Lagrangians written di¤erently or variations on the QSP
conditions. For instance, sometimes the Lagrangian is written in terms of gi’s that
are given as 0 ¸ gi(x). Authors that do this write the Lagrangian with negative
signs on the multipliers:

L (x; ¸) = f(x) ¡
mX

i=1

¸igi(x)



Obviously this amounts to the same thing.
If a problem has non-negativity constraints on x then we would add these

constraints to the g’s and set up a Lagrangian like:

L (x; ¸) = f(x) +
mX

i=1

¸igi(x) +
NX

j=1

¹jxj

(j goes from 1 to N because x 2 RN). Then the QSP conditions would include:

@f
@xj

+
mX

i=1

¸i
@gi
@xj

+ ¹j = 0

and
¹jxj = 0

for all of the xj’s. Often you will see an alternative set of conditions:

1.
@f
@xj

+
mX

i=1

¸i
@gi
@xj

· 0 , for j = 1:::N

2.

xj

"
@f
@xj

+
mX

i=1

¸i
@gi
@xj

= 0

#
, for j = 1:::N

3.
gi(x) ¸ 0

4.
¸igi(x) = 0

This amounts to the same thing however as you can see. If xj > 0 then ¹j = 0
and @f

@xj
+

Pm
i=1 ¸i

@gi
@xj

= 0. Condition (2) above asserts that this is true here as
well.



Example: Consider the problem of maximizing the quadratic

max
x

½
¡1
2
(x¡ ¹x)2

¾

subject to the constraint
Á ¸ x

where Á is some number.
Clearly the solution is to set x = ¹x or x = Á depending on whether Á is greater

than or less than ¹x. Let’s suppose that Á < ¹x:
The Lagrangian is:

L = ¡1
2
(x¡ ¹x)2 + ¸ [Á¡ x]

the QSP conditions are:

¡ (x¡ ¹x) ¡ ¸ = 0
Á¡ x ¸ 0

¸ [Á¡ x] = 0

Either the constraint binds or it doesn’t. Suppose that it doesn’t, then ¸ = 0 (by
the last equation). Then, by the …rst condition we have x = ¹x but this violates
the second condition since by assumption Á < ¹x: As a result the constraint must
bind ¸ > 0 and x = Á. What is ¸¤? Apparently ¸¤ = ¹x¡ x > 0 and increasing as
Á gets lower and lower.

2.2. Discrete Time Lagrangians:

Often in macro, the problems we will tackle have the following form:

max
TX

t=0

¯tu (ct; kt)

subject to:
f (kt) ¸ ct + kt+1

with k0 given and T 2 [1; 2; :::1] (note we allow for in…nite time horizons).



The set up for this problem is exactly what you would expect given the Kuhn-
Tucker results:

L =
TX

t=0

¯tu (ct; kt) +
TX

t=0

¸t [f (kt) ¡ ct ¡ kt+1]

with one ¸t for each constraint. Note that among the …rst order conditions is:

¯tu0 = ¸t

which says that the shadow price of the constraint ¸t is ¯t @u@c .
Sometimes you will see this set up as a “current value” Lagrangian:

L =
TX

t=0

¯t [u (ct; kt) + ¸t (f (kt) ¡ ct ¡ kt+1)]

(so that the ¯t operates on both the function to be maximized as well as on the
Lagrange multiplier). This isn’t the way that a normal Lagrangian would be set
up but it is just as good - since you are simply multiplying the ¸t’s by a …xed set
of positive numbers, we can choose the transformed ¸’s so that ¯t¸ is equal to the
original shadow values. That said, the new ¸’s have a new interpretation. Now
the …rst order condition is:

u0 = ¸t
You can see why this is called a “current value” Lagrangian. It’s because the
shadow prices of consumption are stated in terms of current utility rather than
utility discounted to the …rst period.

2.3. Continuous Time

Consider the problem:

max
u(t);x(t)

Z 1

0
e¡½tf(x(t); u(t))dt

subject to the constraints:
_x (t) = g(x(t); u(t))

Here x is a vector of “state variables” and u is a vector of “control variables”.
State variables cannot change at time t while the controls can jump (for example,
capital cannot jump while investment can).



How would we solve this “normally”? We would form a Lagrangian:

L =
Z 1

0
e¡½tf(x(t); u(t))dt+

Z 1

0
¸(t) [g(x(t); u(t)) ¡ _x (t)] dt

and proceed.
We will not do this directly, rather we will de…ne an auxiliary function H:

H (x(t); ¸(t); t) = max
u(t)

©
e¡½tf(x(t); u(t)) + ¸(t)g(x(t); u(t))

ª

If we di¤erentiate this with respect to the control variable then:

e¡½t
@f
@u

+ ¸(t)
@g
@u

= 0

This would give us a corresponding u¤(¸; x; t) (note that this requires knowledge
of the functions ¸ (t) ; and x (t)). The Lagrangian can then be rewritten as:

L =
Z 1

0
[H (x(t); ¸(t); t) ¡ ¸(t) _x(t)] dt

(we don’t have a time path for x or for the shadow value of ¸ ... if we knew these
we could simply …nd u¤). Next we will use a useful result from the calculus of
variations:

Consider choosing x (t) to maximize the sum (here x could be a vector):
Z
M(x; _x; t)dt

The calculus of variations says that the optimal x(t) must satisfy:2

@M
@x (t)

¡ d
£@M
@ _x

¤

dt
= 0

For our problem
M (x; _x; t) = H (x(t); ¸(t); t) ¡ ¸(t) _x(t)

and the optimality condition says that for the variable x:

Hx +
d [¸(t)]
dt

= Hx + _̧ (t) = 0
2The origins for this result are shown below in the section on the Calculus of Variations.



and the same with ¸(t):

H¸ ¡ _x¡ d [0]
dt

= H¸ ¡ _x = 0

What is H¸? Recall:

H (x(t); ¸(t); t) = max
u(t)

©
e¡½tf(x(t); u(t)) + ¸(t)g(x(t); u(t))

ª

= e¡½tf(x; u¤ (¸; x; t)) + ¸g(x; u¤ (¸; x; t))

where I have now dropped the time subscripts. Di¤erentiate this with respect to
¸ and use the envelope theorem to get:

H¸ = g(x; u¤ (¸; x; t))

Thus we have:

H¸ = _x
H¸ = g(x; u¤ (¸; x; t)) = _x

Which really just says that the constraint will bind.

2.3.1. Summary So Far:

We began with the Lagrangian:

L =
Z 1

0
e¡½tf(x(t); u(t))dt+

Z 1

0
¸(t) [g(x(t); u(t)) ¡ _x (t)] dt

de…ned the auxiliary function H:

H (x(t); ¸(t); t) = max
u(t)

©
e¡½tf(x(t); u(t)) + ¸(t)g(x(t); u(t))

ª

and saw that the solution satis…es:

1.
@ fe¡½tf(x(t); u(t)) + ¸(t)g(x(t); u(t))g

@u
= 0

or:
e¡½t
@f(t)
@u

+ ¸(t)
@g(t)
@u

= 0



2.
¡Hx = _̧ (t)

3.
_x = g(x; u¤ (¸; x; t))

(we also have the boundary condition - a transversality condition):

4.
lim
t!1
¸ (t) x(t) = 0

2.3.2. Recipe

A convenient way to proceed is to take the problem as given:

max
u(t);x(t)

Z 1

0
e¡½tf(x(t); u(t))dt

subject to the constraints:
_x (t) = g(x(t); u(t))

and immediately de…ne the Hamiltonian:

H = e¡½tf(x(t); u(t)) + ¸(t)g((x(t); u(t))

now the solution will satisfy:
Hu = 0

¡Hx = _̧

and
_x (t) = g(x(t); u(t))

2.3.3. Current Value vs. Present Value:

As with the Lagrangians, it is often useful to convert this into a “current value”
Hamiltonian by re-normalizing the Lagrange multipliers. Let :

µ(t) = e½t¸ (t)

then with H de…ned as:

H = e¡½tf(x(t); u(t)) + e¡½tµ(t)g((x(t); u(t))



The solution satis…ed:
Hu = 0

¡Hx = _̧

and
_x (t) = g(x(t); u(t))

which here requires only a change for _̧ :

¸ = e¡½tµ
_̧ = ¡½e¡½tµ + e¡½t _µ

so that Hx = ¡½e¡½tµ + e¡½t _µ.
Then we could alternatively use the current value Hamiltonian:

h = f(x(t); u(t)) + µ(t)g((x(t); u(t))

which requires the …rst order conditions:

1.
hu = 0

2.
_x (t) = g(x(t); u(t))

3.
hx = ½µ ¡ _µ

2.4. Calculus of Variations

The basic calculus of variations problem is to choose a function x (t) to maximize
a sum:

J =
Z b

a
f(x(t); _x(t); t)dt

we assume that f is continuously di¤erentiable. Let X be the set of all real-valued
continuously di¤erentiable functions on [a; b] :We are looking for a particular x 2
X. Suppose we have found the right function x¤ and now consider a displacement
function h 2 X with h (a) = h (b) = 0 and de…ne a new function

x"(t) = x¤(t) + "h(t)



under the assumption that x¤ is optimal, J is maximized when " is zero. This
implies that

@ [J"]
@"

= 0

when " = 0.
Notice that

@ [J"]
@"

=
@

hR b
a f(x

¤(t) + "h(t); _x¤(t) + " _h(t); t)dt
i

@"
and:

@ [J"]
@"

=
Z b

a

µ
@f(x¤)
@x

h
¶
dt+

Z b

a

µ
@f(x¤)
@ _x

_h
¶
dt

evaluated at the optimal x¤.
Integrate the second sum by parts (

R
u dv = vu ¡

R
v du). u = f _x(t) so

du = @f _x
@t dt; dv = _hdt so v = h:

Z b

a

µ
@f(x¤)
@ _x

_h
¶
dt = h(t)f _x(t)jba ¡

Z b

a
h(t)
@f _x
@t
dt

The …rst is zero because h(a) = h(b) = 0. Thus:

@ [J"]
@"

=
Z b

a

µ
@f(x¤)
@x

h(t)
¶
dt¡

Z b

a
h(t)
@f _x
@t
dt

this must be zero so:
Z b

a

·
@f(x¤)
@x

¡ @f _x
@t

¸
h(t)dt = 0

This must be true for any displacement h(t): Thus,

@f(x¤)
@x

¡ @f _x
@t

= 0

Formally, this is called an Euler equation.3
These variational problems are similar to the “one shot deviations” principles

considered in economics.
3Note f _x(x¤) = f _x (x¤(t); _x¤(t); t) so @f(x¤)

@x ¡ @f _x
@t = 0 implies that:

fx ¡ @f _x

@x
@x
@t

¡ @f _x

@ _x
@ _x
@t

¡ @f _x

@t
= 0

which is a 2nd order di¤erential equation with two boundary conditions.



Example: Minimum Distance Problem

J =
Z b

a

p
1 + _x(t)2dt

Here f =
p

1 + _x(t)2, the associated Euler equation is:

@f(x¤)
@x

¡ @f _x
@t

= 0

there is no x(t) term so @f(x
¤)

@x = 0. Note also that

f _x =
_x

(1 + _x2)
1
2

The euler equation then implies that

d
dt

"
_x

(1 + _x2)
1
2

#
= 0

so that
·

_x
(1+ _x2)

1
2

¸
is a constant. This implies that _x is constant (a straight line).



3. Dynamic Programming

3.1. Basic Problem:

The basic class of problems we want to attack are recursive problems of the form:

max
1X

t=0

¯tu (ct; st)

subject to the transition equation

st+1 = g (st; ct)

We saw in class that this problem obeyed a functional equation called “Bellman’s
Equation”:

V (s) = max
c

fu (c; s) + ¯V (g [c; s])g
This equation is a functional equation meaning that it maps functions into other
functions. If you start with a function f0 you can get a new function f1 via:

f1 (s) = max
c

fu (c; s) + ¯f0 (g [c; s])g

I claimed in class that this functional mapping was a contraction mapping and
that therefore there is a unique …xed point that solves it. In other words, there
is only one function V that maps into itself. Furthermore, if we begin with an
arbitrary function that is not V and then iterate on the Bellman equation (i.e.
start with f0 6= V and get f1 as above, then put in f1 and get f2 etc...) then
the resulting equations will converge to the true value function (i.e. fn ! V ). In
addition, typically V will be concave and di¤erentiable in the interior of the state
space.

The solution to a Dynamic Programming problem is a “policy function” which
tells the agent what he or she should do if they …nd themselves in state s. Denote
this policy function as h(s); h : S ! C where S is the state space and C is the
control space. If you are in state s 2 S then h(s) = c 2 C is the choice of the
control you should make (this is the “right move” to make in this situation).

Because h is the optimal rule, V will satisfy:

V (s) = u (h (s) ; s) + ¯V (g [h (s) ; s])

(note that the max operator is gone since h is already taking care of the maxi-
mization).



3.2. Euler Equations in a Dynamic Programming Context

Many problems can be set up with either Lagrangians or with Dynamic Program-
ming. For these problems the Euler equations that you get from the Lagrangians
will also pop up from the Dynamic Programming setup.

Let’s see how this is done.
Note that because V is optimal then (provided that we are not constrained in

our choice of c) we must have:

@u
@c

+ ¯
@V
@s

(s0)
@g
@c

= 0 (1)

The policy function must satisfy this …rst order condition.
But what is @V@s ? Because V was unknown, it seems unlikely that we will know

@V
@s and this makes the interpretation of this …rst order condition di¢cult. Luckily
we can often …nd @V@s .

Because h (s) is the (unknown) optimal policy function, then, as above:

V (s) = u (h (s) ; s) + ¯V (g [h (s) ; s])

If we di¤erentiate this with respect to s we get:

@V
@s

(s) =
@u
@s

+
@u
@c
@h
@s

+ ¯
@V
@s

(s0)
·
@g
@s

+
@g
@c
@h
@s

¸

Now group the terms with the @h@s on them.

@V
@s

(s) =
@u
@s

+ ¯
@V
@s

(s0)
@g
@s

+
½
¯
@V
@s

(s0) +
@u
@c

¾
@h
@s

The term in the brackets must be zero (see equation (1) – the …rst order condition
from the choice of c). So,

@V
@s

(s) =
@u
@s

+ ¯
@V
@s

(s0)
@g
@s

Well this tells me a little bit more but it looks like if I want to know @V
@s (s) I

will need to know @V
@s (s

0) so I’m still stuck – unless I was lucky enough to have
@g
@s = 0.

In class I said we could set up the problem so that @g@s dropped out. This
essentially requires writing the Bellman Equation so that we choose s0 rather than
c.



More formally, the transition function is:

s0 = g (c; s)

If this can be inverted, then we could write c as a function of s and s0:

c = ½ (s; s0)

Then we could write the Bellman equation as:

V (s) = max
s0

fu (½ (s; s0) ; s) + ¯V (s0)g

where we are now choosing next period’s state variable rather than today’s control
variable.

Let’s take our …rst order condition again (now with respect to s0 instead of c):

@u
@c
@½
@s0

+ ¯
@V
@s

(s0) = 0

Again, I need to know @V
@s . Let’s try the same procedure as before. Let h be the

policy function so that:

V (s) = u (½ (s; h (s)) ; s) + ¯V (h (s))

Di¤erentiating and using the …rst order condition to get rid of the terms with @h@s
(i.e. the envelope theorem) gives me:

@V
@s

(s) =
@u
@s

+
@u
@c
@½
@s

This implies that the …rst order condition can be written as:

@u
@c
@½
@s0

+ ¯
·
@u
@s

(s0; c0) +
@u
@c

(s0; c0)
@½
@s

¸
= 0

so that there is no reference to the unknown functions V or h.

3.3. Examples

To clarify things, let’s look at a couple of examples.



3.3.1. Example 1: The Growth Model:

The growth model requires the consumer to maximize

1X

t=0

¯tu (ct)

subject to:
kt+1 = kt (1 ¡ ±) + k®t ¡ ct

This gives rise to the Bellman equation:

V (k) = max
c

fu (c) + ¯V (k (1 ¡ ±) + k® ¡ c)g

Instead, let’s set it up so they choose next period’s state variable k0:

V (k) = max
k0

fu (k (1 ¡ ±) + k® ¡ k0) + ¯V (k0)g

The …rst order condition (for the choice of k0) is:

¡u0 (c) + ¯@V
@k

(k0) = 0

and the derivative of the value function is:

@V
@k

(k) = u0 (c) [(1 ¡ ±) + ®k®]

(I can ignore the e¤ects of the policy function – i.e. the terms that involve @k
0
@k –

because of the envelope theorem). Plugging this into the …rst order condition (to
get rid of the terms with the “V ’s” on them) gives me:

u0 (c) = ¯u0 (c0)
£
(1 ¡ ±) + ® (k0)®

¤

which is the standard Euler equation for the growth model.

3.3.2. Example 2: Consumption Under Uncertainty:

Now consider the uncertainty case in which a consumer get’s stochastic income:

wt = ¹w + "t



where "t » i:i:d:. The consumer’s utility is:

E0

" 1X

t=0

¯tu (ct)

#

subject to:
ct + bt = wt + bt¡1 (1 + r)

The state is bt¡1 and wt (i.e. the assets and income you enter the period with,
respectively).

Let’s rede…ne existing assets as:

A = bt¡1 (1 + r)

so that saving today is bt = A0
1+r : Then the Bellman equation is:

V (A;w) = max
A0

½
u

µ
A+ wt ¡

A0

1 + r

¶
+ ¯E [V (A0; w0)]

¾

(note that I am again picking tomorrows state).4
The …rst order condition is:

@A0 : ¡u0 (c) 1
1 + r

+ ¯E
·
@V
@A

(A0; w0)
¸
= 0

and the derivative of V with respect to A is simply:

@V
@A

(A;w) = u0 (c)

(again note that I am using the envelope theorem to write this). Plugging in to
get rid of the terms with the V ’s gives :

u0 (c)
1

1 + r
= ¯E [u0 (c0)]

which is our standard stochastic Euler equation (see your class notes from the 2nd

or 3rd class).
4Note that this expectation is taken with respect to the distribution of ".

V (A;w) = max
A0

½
u

µ
A + wt ¡ A0

1 + r

¶
+ ¯

Z
[V (A0; ¹w + ") f (") d"]

¾

(assuming that " has a density).



3.4. Attack Strategy:

For value functions where the choices are “smooth” – i.e. the controls are not
constrained, or if they are, the constraints never bind and don’t in‡uence the
problem, the following approach is often rewarding.

1. Look at the problem. Decide which variables are “state” variables and which
ones are “control” variables.

2. Write down the Bellman Equation (it is probably good to write it so that
you are choosing next period’s state rather than today’s control – see the
discussion above).

3. Take the derivative w.r.t. the choice variable (either the control or next
period’s state depending on how you set it up) and set it equal to zero.

4. Take a derivative of V with respect to the state and plug in to get rid of the
term’s with the V ’s on them.

At the end of this you should have a well de…ned Euler equation which is
subject to standard interpretation.

3.5. One last technical note:

YOU CAN IGNORE THIS LAST SECTION IF YOU WANT

The principle of optimality says that if V (s) is the maximum utility I can
expect given that I am in state s then it the function V (s) must satisfy:

V (s) = max
c

fu (c; s) + ¯V (g [c; s])g

A moment ago, I considered a case with uncertainty in which the Bellman
equation took a form similar to:

V (s; ") = max
c

fu (c; s; ") + ¯E [V (g (c; s; ") ; "0)]g

and the de…nition of an expected value implies that:

V (s; ") = max
c

½
u (c; s; ") + ¯

Z
V (g (c; s; ") ; "0) f ("0) d"0

¾



This looked harmless enough at the time but there is one slight problem.
Suppose that the function V (s) (the true value function) is not measurable.

In this case the integral
R
V (g (c; s; ") ; "0) f ("0) d"0 will not be well de…ned and

the value function will not satisfy the Bellman equation.
In cases like this we are basically screwed. We can safely ignore them since they

are “pathological” in the sense that they almost never arise in economic problems.
See Stokey, Lucas and Prescott [1989] if you are a glutton for punishment.



4. Vector Autoregressions (VARs)

Often we will …nd solutions to linear models given in the following form:

Yt = AYt¡1 +B"t

where "t is a vector of exogenous shocks with a know variance/covariance matrix
E ["2t ] = ­. We want to be able to …nd several features of the moments of Y
without simulation.

4.1. Unconditional Variance

The …rst question that arises in this context concerns the unconditional variance
of Y itself. That is, what is the long run variance of each of the components of Y
without any knowledge of past Y ’s.

Recall that the variance of a vector is found as:

V [y] = E
h¡
y ¡ ¹y

¢ ¡
y ¡ ¹y

¢0i

(not to be confused with y0y which is the sum of squares)5

If we assume that the mean of Y is zero (which is also quite common), then
the variance of our process is given by E [YtY 0t ]. This leads to the following rela-
tionship:

E [YtY 0t ] = E
£
(AYt¡1 +B"t) (AYt¡1 +B"t)

0¤

= E
£
(AYt¡1 +B"t)

¡
Y 0t¡1A

0 + "0tB
0¢¤

= E
£¡
AYt¡1Y 0t¡1A

0 +B"t"0tB
0 +B"tY 0t¡1A

0 +AYt¡1"0tB
0¢¤

5 ... i.e., let:

y =
µ

y1
y2

¶

then:
yy0 =

µ
y1
y2

¶
(y1 y2) =

µ
y2
1 y1y2

y2y1 y2
2

¶

which when expectations are taken gives us variances (on the diagonal) and covariances (o¤ the
diagonal). On the other hand,

y0y = (y1 y2)
µ

y1
y2

¶
= y2

1 + y2
2

which is the sum of squares (sum of variances)).



since E ["t] = 0 we have6:

E [YtY 0t ] = AE
£
Yt¡1Y 0t¡1

¤
A0 +BE ["t"0t]B

0

Denote the variance of Y as V . Then:

V = AV A0 +B­B0

the V that solves this equation is the unconditional variance of Y .
To solve for this matrix use the following vectorization trick:

vec(ABC) = [C 0 ­ A] vec(B)

Now, letting ­B = B­B0 we have:

V = AV A0 +­B

using the vec() operator:

vec(V ) = [A­ A] vec(V ) + vec(­B)

and
vec(V ) fI ¡ [A­ A]g = vec(­B)

vec(V ) = vec
¡
­B

¢
[I ¡ (A­ A)]¡1

(a simple “devec” program can be used to reform V ).

4.1.1. Practical Problems

Notice that the solution involves inverting the matrix I ¡ (A­A) : Often this is
…ne but there may be cases in which the matrix is very large. For instance, if
there are 20 variables in Y then the matrix I ¡ (A­A) will be 400£400. This is
a lot for any computer – there are 160,000 elements in the matrix.

It is sometimes better to use an approximation that avoids this large matrix.
Recall that for a univariate case,

yt = ½yt¡1 + "t
6Note that E ["tYt¡1] = 0 – past Y ’s are not correlated with current shocks – although current

shocks are correlated with future Y ’s so E ["tYt¡1] 6= 0 in general.



we would have:
¾2y = ½

2¾2y + ¾
2
"

and we could …nd:
¾2y =

¾2e
1 ¡ ½2

Alternatively we could use the following:

¾2y = ¾2" + ½
2¾2y = ¾

2
" + ½

2 ¡
¾2" + ½

2¾2y
¢

= ¾2" + ½
2¾2" + ½

4 ¡
¾2" + ½

2¾2y
¢

etc. to get:

¾2y =
1X

j=0

¡
½2

¢j ¾2"

which again adds up to ¾2e
1¡½2 .

In the vector case, it turns out that addition of matrices is easier than inverting
very large matrices. Thus we will form:

V = ­B +AV A0 = ­B +A
¡
­B +AV A0

¢
A0 = :::

= ­B +A­BA0 +AA­BA0A0

On the computer, it is easier to form the variance as follows: de…ne V1 = ­B.
Then de…ne Vj+1 = AVjA0. Do a loop with 100 or so iterations and the variance
you end up with will be very close to the correct V .

4.2. Autocorrelations

The jth autocorrelation of Y is de…ned to be:

¡j = E
£
(Yt ¡ ¹) (Yt¡j ¡ ¹)0

¤

Finding these autocorrelation matrices is relatively easy. Note that ¡0 is just V .
Furthermore notice that ¡1 is given by

¡1 = E
£
YtY 0t¡1

¤
= E

£
(AYt¡1 +B"t)Y 0t¡1

¤

= E
£
AYt¡1Y 0t¡1 +B"tY

0
t¡1

¤

Taking expectations gives:

¡1 = AE
£
YtY 0t¡1

¤
= AV



Furthermore, note that ¡j = A¡j¡1 :

¡j = E
£
YtY 0t¡j

¤
= E

£
(AYt¡1 +B"t)Y 0t¡j

¤

= E
£
AYt¡1Y 0t¡j +B"tY

0
t¡j

¤

= E
£
AYt¡1Y 0t¡j

¤

which is just A¡t¡j. Thus,
¡j = AjV

Note that the autocorrelation matrices are not symmetric (i.e. ¡j 6= ¡¡j). To
see this note that ¡¡1 is given by:

¡¡1 = E
£
YtY 0t+1

¤

we can’t use the trick we used before since E [Yt+1"t] 6= 0. Instead, we can go in
“reverse”:

¡¡1 = E
£
YtY 0t+1

¤
= E

£
Yt (AYt +B"t+1)

0¤

taking expectations gives us:
¡¡1 = V A0

and in general:
¡¡j = V (A0)j

If I take the transpose of this (and recall that V is symmetric) then I have:

¡0¡j = A
jV = ¡j



5. Solving Linear Rational Expectations Models.

Many models can be written in the following form:

Et
·µ
Ct+1

Kt+1

¶¸
=M

µ
Ct
Kt

¶

where Ct is an n £ 1 vector of free variables at time t and Kt is an m£ 1 vector
of exogenous or state variables at date t. The free variables consist of anything
that can be changed at date t depending on the particular state Kt the economy
is in. Here, expectations are conditional on information available at date t.

Since
µ
Ct
Kt

¶
is (m+n)£1, the matrixM , must be (m+n)£(m+n) square.

Alternatively, we could write:
µ
Ct+1

Kt+1

¶
=M

µ
Ct
Kt

¶
+ ­t+1

where ­t+1 is a vector including expectational errors (like Ct+1 ¡ Et [Ct+1]) plus
any shocks to the state (e.g. if At+1 were the technology parameter we would have
the technology shock "At+1 in ­t+1).

5.1. Example Part I.

Consider a simple RBC model:

maxE0

1X

t=0

¯t ln ct

subject to
ct + kt+1 = Atk®t + (1 ¡ ±)kt
At+1 = (1 ¡ ½) + ½At + "At+1

The state here is the 2 £ 1 vector:
·
kt
At

¸
and the free variable is: [ct].

The …rst order condition for the choice of ct is:

1
ct

= ¯Et
½

1
ct+1

£
®At+1k®¡1t+1 + (1 ¡ ±)

¤¾



The (nonstochastic) steady state of the model is given by:

r =
1
¯

¡ (1 ¡ ±) = ®Ak®¡1

k =
µ
®A
r

¶ 1
1¡®

=
³®
r

´ 1
1¡®

y = k®

c = y ¡ ±k

Thus the solution to the model will satisfy the following three equations:

1 :
1
ct

= ¯Et
·

1
ct+1

©
(1 ¡ ±) + ®At+1k®¡1t+1

ª¸

2 : kt+1 = kt(1 ¡ ±) +Atk®t ¡ ct
3 : At+1 = (1 ¡ ½) + ½At + "t+1

“Log linearize” every equation (t+ 1 on the right):

1 : Et
h
¡~ct+1 + ¯r

³
~At+1 + (®¡ 1)~kt+1

´i
= ¡~ct

2 : ~kt+1 =
1
¯
~kt ¡

c
k
ct + k®¡1 ~At

3 : ~At+1 = ½ ~At + ~"t+1

where the last one also implies that:

Et
h
~At+1

i
= ½ ~At

This gives us the following system:
2
4

¡1 ¯r (®¡ 1) ¯r
0 1 0
0 0 1

3
5

2
4
0
@

~ct+1
~kt+1
~At+1

1
A

3
5 =

2
4

¡1 0 0
¡ ck ¯¡1 k®¡1
0 0 ½

3
5

0
@

~ct
~kt
~At

1
A+

0
@
Et [ct+1] ¡ ct+1

Et [kt+1] ¡ kt+1

"At+1

1
A

or since the expected values of the expectational discrepancies and the technology
shock are zero,

2
4

¡1 ¯r (®¡ 1) ¯r
0 1 0
0 0 1

3
5Et

2
4
0
@

~ct+1
~kt+1
~At+1

1
A

3
5 =

2
4

¡1 0 0
¡ ck ¯¡1 k®¡1
0 0 ½

3
5

0
@

~ct
~kt
~At

1
A



which is

B1Et

2
4
0
@

~ct+1
~kt+1
~At+1

1
A

3
5 = B2

0
@

~ct
~kt
~At

1
A

We can invert B1 to get:

Et

2
4
0
@

~ct+1
~kt+1
~At+1

1
A

3
5 = B¡11 B2

0
@

~ct
~kt
~At

1
A =M

0
@

~ct
~kt
~At

1
A

which is in “standard” form.

5.2. Diagonalization and the “Policy Function”

We are given the system:

Et
·µ
Ct+1

Kt+1

¶¸
=M

µ
Ct
Kt

¶

We might be tempted to announce victory right away since we could plot out

a realization of the variables from any starting position
µ
Ct
Kt

¶
. This is wrong

though since we can’t know a priori any such starting position. We can only
know a beginning state Kt. The free/ choice variables Ct will depend on the state
Ct = C(Kt). It is this policy function that we search for know.

step 1 Since M is square, we can break it up as follows:

M = ¡¤¡¡1

where ¡ is a matrix of eigenvectors (columns) and ¤ is the associated diagonal
matrix of eigenvalues. In other words:

¤ =

0
BB@

¸1 0 0 0
0 ¸2 0 0
0 0 ::: 0
0 0 0 ¸m+n

1
CCA and ¡ = (v1; v2; :::vm+n)

where each vi is the column eigenvector ((m+n)£1) associated with eigenvalue ¸i.
A useful fact is that you can freely rearrange the eigenvalues and the eigenvectors



while leaving ¡¤¡¡1 unchanged. That is if ¡¤¡¡1 as above, then the matrices:

¤2 =

0
BB@

¸i 0 0 0
0 ¸j 0 0
0 0 ::: 0
0 0 0 ¸k

1
CCA and ¡2 = (vi; vj; :::vk)

will also solve ¡2¤2¡¡12 = ¡¤¡¡1 = M . To see this, recall the de…nition of an
eigenvector. An eigenvector of the matrix B is a column vector v that satis…es:

Bv = ¸v

where ¸ is a scalar (called the eigenvalue). Typically, if B is n£ n, there will be
n distinct eigenvectors (with associated eigenvalues). Notice that since each will
satisfy this equation:

Bv1 = ¸1v1; Bv2 = ¸2v2; ... Bvn = ¸nvn

Let ¡1 = [v1; v2; :::vn] for an arbitrary (exhaustive) ordering of the vectors vi.
Then, no matter how the eigenvalues / vectors are ordered, the following statement
must hold with equality:

B¡1 = ¡1

2
64
¸1

. . .
¸n

3
75

As a result,
B = ¡1¤¡¡11

for any ordering.
With this in mind let’s assume thatM = ¡¤¡¡1 where ¤ is a diagonal matrix

of eigenvalues ordered by their absolute value. That is let ¤ be given by:

¤ =

0
@
J1
i£i

0

0 J2
j£j

1
A

where J1 contains eigenvalues that are less than or equal to 1 in absolute value7

and J2 contains the eigenvalues that are greater than one in absolute value. Here
7If the eigenvalue is complex then we would require it to be inside the unit circle.



there are i stable eigenvalues and j = m + n ¡ i unstable ones. ¡ is a matrix of
column eigenvectors arranged in the same order as the eigenvalues of ¤.

Consider the matrix ¡¡1 as:

¡¡1 =

0
@
G11
i£n

G12
i£m

G21
j£n

G22
j£m

1
A

We now have:
Et

·µ
Ct+1

Kt+1

¶¸
= ¡¤¡¡1

µ
Ct
Kt

¶
(2)

5.2.1. Solution Part I.

Premultiply the system (2) by ¡¡1. This gives us:

Et
·
¡¡1

µ
Ct+1

Kt+1

¶¸
= ¤¡¡1

µ
Ct
Kt

¶

De…ne the matrices Z1t and Z2t as follows:
µ
Z1t
Z2t

¶
´ ¡¡1

µ
Ct
Kt

¶
=

µ
G11Ct +G12Kt
G21Ct +G22Kt

¶

We now have the system:

Et
·µ
Z1t+1

Z2t+1

¶¸
=

0
@
J1
i£i

0

0 J2
j£j

1
A

µ
Z1t
Z2t

¶

Notice that the evolution of the transformed variables Z1t and Z2t are governed
only by J1 and J2 respectively. We can iterate the system forward to see that:

Et [Z1t+T ] = (J1)
T Z1t

and
Et [Z2t+T ] = (J2)

T Z2t

Notice that we can solve for the path of Z1 independently of the path of Z2: This
is because of the diagonalization. Also, the expected values of the Z1 series will



converge to zero (since J1 << 1) while the expected value of Z2 will diverge to
§1 for non zero Z2 (since J2 >> 1).8

No solution will allow such a divergence. Consequently, we must have Z2t = 0
8t: What this means is that

Z2t = G21Ct +G22Kt = 0

in every period (otherwise the system blows up). This equivalently means that:

G21Ct = ¡G22Kt

If G21 is square then we can (generically) …nd:

Ct = ¡ [G21]
¡1G22Kt

This tells us how the free variables (Ct) must be set according to the values of the
predetermined (state) variables (Kt):

What does it mean for G21 to be square? It means that j = n or that the num-
ber of unstable roots in ¤ is exactly equal to the number of “non-predetermined”
variables (C). For every unstable root, I have a “non-predetermined” variable that
I can use to “zero” it. This property of a dynamic system corresponds exactly to
the “saddle path” property of growth models.9

The resulting system is stable.

5.2.2. Solution Part II.

Now, armed with the linear policy rule ¡ [G21]
¡1G22 (which is n £ m) we can

solve the system.
We would like the system in a VAR form:

Yt = AYt¡1 +B±t

(withYt =
µ
Ct
Kt

¶
and a shock vector ± = n+m£ 1).

8This is not quite correct since we do allow for the presence of a unit root in J1. In such a
case, some of the elements of Z1 will not converge to zero in expected value.

9In the Ramsey model there is one predetermined variable (Kt) and one “choice” variable
(Ct). The system is a saddle path – this implies that there is a unique value for C that is picked
for each value of K.



Recall that the system will satisfy:

Et
·µ
Ct+1

Kt+1

¶¸
=M

µ
Ct
Kt

¶

We already know that if we knowKt, we can …gure out Ct fromCt = ¡ [G21]
¡1G22Kt.

Let’s rewrite M ( n+m£ n+m) as follows:

M =

0
@
H11
n£n

H12
n£m

H21
m£n

H22
m£m

1
A

In expectation Kt satis…es:

E [Kt] = H21Ct¡1 +H22Kt¡1

and furthermore, the actual value of Kt will satisfy:

Kt = H21Ct¡1 +H22Kt¡1 + "t

where "t are any shocks to the state vector (technology shocks, government spend-
ing shocks, taste shocks, depreciation shocks, etc.). SinceCt¡1 = ¡ [G21]

¡1G22Kt¡1
we can write:

Kt =
£
¡H21 [G21]

¡1G22 +H22
¤
Kt¡1 + "t

As a result, the “lower right part” of A is given by:
£
¡H21 [G21]

¡1G22 +H22
¤
.

(In fact, we could simply leave A asM on the bottom “row”). The bottom “row”
of B is given by the identity matrix.

To get Ct we need to know Kt (which we do now). Speci…cally

Ct = ¡ [G21]
¡1G22 [H21Ct¡1 +H22Kt¡1] ¡ [G21]

¡1G22"t:

In expectation Ct also satis…es:

Et¡1 [Ct] = H11Ct¡1 +H12Kt¡1

so that we can write A =M and B =
·
0 ¡ [G21]

¡1G22

0 I

¸
:

Problem: While the VAR form:

Yt =MYt¡1 +
·
0 ¡ [G21]

¡1G22

0 I

¸
"t



is mathematically correct, it is numerically prone to problems. The reason for
this is that the policy function P = ¡G¡121 G22 is not going to be exact. Thus
the unstable elements in Z2 will not all be numerically zero. One immediate
consequence of this is the fact that Ct and thus Kt+1 will both be wrong to a very
small degree. Unfortunately, the system cannot tolerate errors in C. Since the
roots that operate on Z2 will explode for any deviation from zero the system will
eventually blow up.

To correct for this we change the VAR form to:

Yt = AYt¡1 +B"t

with B as before but with A given as:

A =
·
0 ¡ [G21]

¡1G22
£
¡H21 [G21]

¡1G22 +H22
¤

0
£
¡H21 [G21]

¡1G22 +H22
¤

¸

Again Ct and Kt+1 will have errors because of the small numerical errors in the
policy function. BUT importantly, the errors will not build up as they did before.
The reason for this is that the errors are “transmitted” to the future by being
embedded entirely in an error to Kt+1. Luckily the system is stable for any value
of K so these errors will not accumulate.

Note that since the system solves :

Et¡1 [Yt] = AYt¡1

and Yt actually obeys:
Yt = AYt¡1 +B"t

It must be the case that B"t is the vector of expectational errors and exogenous
shocks to the system.

5.3. Summary:

1. count free (n) and state (m)

2. type in M

3. MATLAB eig(M)

4. count stable, unstable

5. form Gij and then get policy function [G21]
¡1G22

6. form VAR representation.



5.4. “Redundant” Variables.

That’s great. We have a solution for the basic RBC model. But suppose that we
wanted to do some simple modi…cations to the model. For instance, suppose that
we wanted to look at plots (impulse responses) of wages or output. These weren’t
in our original model but we might want to add them so we could look at there
behavior.

Additionally, we might want to augment the model with variable labor (an
important feature of business cycles).

Both of these modi…cations present a special problem because they typically
introduce equations that are not intrinsically forward looking. That is, these
new equations will have zeros in the corresponding row of B1 (in our program).
This will imply that B¡11 does not exist and we will have di¢culty expressing the
solution in “standard” form:

Et [Yt+1] =MYt

Consider the vector of variables Y (the variables we care about) as being made
up of two pieces:

Yt =
µ
yt
xt

¶

where y is a vector containing all of the forward looking variables (the states – like
K;Z;G;... etc., and the co-states – like Ct; (in sticky price models P ¤t )...etc.) and
x contains all of the redundant variables. These could be derived from knowledge
of the equilibrium behavior of y BUT solving for the equilibrium behavior of y
may involve some of the x’s (e.g. labor supply is not forward looking but it will
alter the choices / dynamics in the model).

5.4.1. System Reduction

Let’s write down the system (all of the equations) as:

AEt [Yt+1] = BYt

Clearly A will have a lot of zeros in it since many of the elements of Yt are not
forward looking. We can decompose A and B as follows:

µ
a11 a12
0 0

¶
Et

·
yt+1

xt+1

¸
=

µ
b11 b12
b21 b22

¶·
yt
xt

¸



Note that since the bottom “row” of Yt+1 is zero we know that:

0 = b21yt + b22xt

Since b22 is square, this implies that:

xt = Fyt

where F = ¡(b22)¡1b21. Let’s now rewrite the remaining parts of the system:

AEt [Yt+1] = BYt
µ
a11 a12
0 0

¶
Et

·
yt+1

Fyt+1

¸
=

µ
b11 b12
b21 b22

¶·
yt
Fyt

¸

implies that:
[a11 + a12F ]E [yt+1] = [b11 + b12F ] yt

Since a11 + a12F 6= 0 we can invert to get:

E [yt+1] =Myt

where M = [a11 + a12F ]
¡1 [b11 + b12F ]. Now that we have reduced the system to

only forward looking variables we can solve the system for a VAR form as before:

yt = Ayt¡1 +B0"t

How do we get the full VAR though?

5.4.2. VAR form:

We need to rebuild the system in Yt. This is not that hard since we have the
equilibrium law of motion for the states and the co-states yt and we know that
the static variables solve x = Fy. Thus:

·
yt
xt

¸
=

·
A0 0
FA0 0

¸ ·
yt¡1
xt¡1

¸
+

·
B0 0
FB0 0

¸ ·
"t
0

¸

which is a VAR:
Yt = A1Yt¡1 +B1´t

Note that we have to separate the states from the costates when we order the
subvector y and we have to separate the static variables x.



6. “Proof” of the Hayashi Theorem10

In general marginal q and average q (or Tobin’s q) will be di¤erent just like the
average product of labor is di¤erent from the marginal product of labor.

Hayashi (1982) showed that if both the production function and the adjustment
cost function were homogeneous of degree 1, then the two q’s would be equal.
(average q = marginal q).

Think about an optimal path of K;N; I and the current value of V . If we had
twice the capital now then the new optimal path would involve doubling the N
and I at every point in time (this follows from the CRS assumptions). If we do
this though, we will inevitably double the value of the …rm (twice the revenue,
twice the costs ... twice the pro…ts). As a result, the current value of the …rm is
proportional to current K.

PV (K) = ³K

where ³ is a number.
This tells us that @V@K = ³ and that VK = ³ which is by de…nition Tobin’s average

q:
To prove Hayashi’s theorem more formally, di¤erentiate q (t)K (t) with respect

to time:
@ [q (t)K (t)]

@t
= K (t) _q (t) + q (t) _K (t)

Recall that the dynamic equation governing _q is given by:

_q = (r + ±) q ¡ FK + Á
µ
I
K

¶
+
I
K
Á0

µ
I
K

¶

where we are using our “specialized” adjustment cost function:

C (I;K) = KÁ
µ
I
K

¶

with Á an arbitrary convex function (so that dC=dK is Á (I=K) ¡ KÁ (I=K) IK2

as above). Plug this into the equation above to get:

@ [q (t)K (t)]
@t

= K (t)
·
(r + ±) q ¡ FK + Á

µ
I
K

¶
¡ I
K
Á0

µ
I
K

¶¸
+ q (t) _K (t)

10This is addapted from the construction in Barro and Sala-i-Martin. See also Basu’s notes
from last year and of course Hayashi [1982].



Use
_K = I ¡ ±K

and
q = 1 + Á0

µ
I
K

¶

to get:

@ [q (t)K (t)]
@t

= K (t)
·
(r + ±) q ¡ FK + Á

µ
I
K

¶
¡ I
K
Á0

µ
I
K

¶¸
+

·
1 + Á0

µ
I
K

¶¸
[I ¡ ±K]

= K (r + ±) q ¡KFK +KÁ
µ
I
K

¶
¡ IÁ0

µ
I
K

¶
+ I + IÁ0

µ
I
K

¶
¡ ±K ¡ ±KÁ0

µ
I
K

= K (r + ±) q ¡KFK +KÁ
µ
I
K

¶
+ I ¡ ±K ¡ ±KÁ0

µ
I
K

¶

because F is CRS in K and N we have:

F (K;N) = FNN + FKK

so that:
FKK = F (K;N) ¡ wN

where I have used the fact that FN = w by pro…t maximization. Now we have:

@ [q (t)K (t)]
@t

= K (r + ±) q¡F (K;N)¡wN +KÁ
µ
I
K

¶
+ I ¡ ±K¡ ±KÁ0

µ
I
K

¶

Recall that the …rst order condition for I implies that q = 1 + Á0
¡
I
K

¢
so that the

terms with ±K drop out. This gives us:

@ [q (t)K (t)]
@t

= Krq ¡ F (K;N) ¡ wN +KÁ
µ
I
K

¶
+ I

multiply through by e¡rt to get:

e¡rt
½
@ [q (t)K (t)]

@t
¡ rqK

¾
= e¡rt

·
¡F (K;N) ¡ wN +KÁ

µ
I
K

¶
+ I

¸
dt

Notice that the derivative of q (t)K (t) e¡rt w.r.t. t is e¡rt @[q(t)K(t)]
@t ¡ e¡rtrqK

which is the left hand side. Now integrate with respect to time to get:
Z 1

0
e¡rt

½
@ [q (t)K (t)]

@t
¡ rqK

¾
dt =

Z 1

0
e¡rt

·
¡F (K;N) ¡ wN +KÁ

µ
I
K

¶
+ I

¸
dt



the right hand side is simply ¡PV (0). Thus:

q (t)K (t) e¡rtj10 = ¡PV (0)

or:
lim
T!1

e¡rT q (T )K (T ) ¡ q (0)K (0) = ¡PV (0)

using the transversality condition we have:

q (0)K (0) = PV (0)

(and in general q (t)K (t) = PV (t)) so that:

q (t) =
PV (t)
K (t)

= QTobin
t



7. Nominal Rigidity and Real Rigidity

7.1. Mankiw (1985)

Firm pro…t function ¦(p). The …rm’s opportunity cost of not adjusting to their
optimal price p¤ from current price p is:

L(p) = ¦(p¤) ¡ ¦(p)

The …rm will adjust prices if L(p) > z (z is the “menu cost”). Approximating
this in the neighborhood of p¤ gives:

L(p) ¼ ¡1
2
¦00(p¤)(p¡ p¤)2

This implies that the …rm is willing to tolerate a discrepancy x = (p¡ p¤) of:

x =
r

2z
¡¦00

without adjusting. (note ¦00 < 0).
Notice that the …rm is willing to tolerate a …rst-order di¤erence in its price

even if the menu cost is only 2nd order in magnitude.

7.2. Ball and Romer (1990)

Many …rms each with pro…t functions ¦
¡
M
P ;
pi
P

¢
(here P is the aggregate price,

M is the total money supply, and pi is …rm i0s nominal price). By assumption
¦1 > 0;¦22 < 0; and ¦12 > 0.

The optimal choice of pi requires that ¦2 = 0. Let ½
¡
M
P

¢
be a function giving

the optimal piP for any level of aggregate demand M
P . Ball and Romer say that

the …rm faces real rigidity if the derivative ½0 = @
¡pi
P

¢
=@

¡
M
P

¢
is small. That is,

if changes in aggregate demand do not cause you to change your desired price
by too much then there is real rigidity. Di¤erentiating the …rst order condition
¦2 = 0 with respect to MP it is easy to show that:

½0 =
¦12

¡¦22
> 0

If this is small then there is real rigidity in this system.



Assume that ¦(1; 1) is an equilibrium (i.e. the optimal choice of pi is 1 if
M = 1 and P = 1). Suppose that all …rms set P = 1 because they expect M = 1
but that in fact M turns out to di¤er from one by a small amount.

We look for symmetric Nash equilibria. If no one else adjusts, the opportunity
cost to …rm i of not adjusting is:

L(M) = ¦
µ
M;
p¤i
P

¶
¡ ¦(M; 1)

= ¦(m;½(m)) ¡ ¦(m; 1)

(here p
¤
i
P is the optimal choice of p¤i if …rm i chose to adjust). Taking a second

order approximation around the steady state gives:

L(M) ¼ [¦1(m; ½(m)) + ¦2(m; ½(m))½0 ¡ ¦1(m)] (M ¡ 1)

+
1
2

h
¦11 +¦12½0 +¦21½0 +¦22 (½0)

2 +¦2½00 ¡ ¦11

i
(M ¡ 1)2

=
1
2

h
2¦12½0 +¦22 (½0)

2
i
(M ¡ 1)2

Let x =M ¡ 1 then, this …rm would adjust (even if no one else adjusted) if:
·
¦12½0 +

1
2
¦22 (½0)

2
¸
x2 ¼ L(M) > z

Recall that ½0 = ¦12
¡¦22

this implies that the critical value for x satis…es:
"
¡(¦12)

2

¦22
+

1
2
(¦12)

2

¦22

#
x2 = ¡1

2
(¦12)

2

¦22
x2 = ¡1

2
½0¦12x2 = z

so that:

x¤ =
r

2z
¦12½0

As ½0 gets smaller and smaller, the range of inaction equilibria grows.
What about if everyone else has chosen to adjust? When would …rm i go along

with the group and adjust? Here the opportunity cost to not adjusting is:

L = ¦(1; 1) ¡ ¦
µ
1;

1
P

¶



and since the new P =M we have:

L = ¦(1; 1) ¡ ¦
µ
1;

1
M

¶

What is the range of inaction here? Again taking a second order approximation
gives:

L ¼ ¦2(M ¡ 1) ¡ 1
2
¦22(M ¡ 1)2 =

1
2
¦22(M ¡ 1)2

If everyone else adjusts, then it is optimal for i to adjust if L(M) > z. Again
letting x = (M ¡ 1) we have the critical value for the adjustment equilibrium
given as:

x¤¤ =
r

2z
¡¦22

This is the same condition as in Mankiw. There since you are the only …rm, you
are “everyone”. Note that

x¤¤

x¤
=

q
2z

¡¦22q
2z

¦12½0

=
r

¦12½0

¡¦22
= ½0

If ½0 < 1 (lots of real rigidity) then x¤¤ < x¤ and there is the possibility for multiple
equilibria. Note that high values of ¦22 implies high real rigidity (½0 small –> x¤
big) but also implies that there is low nominal rigidity (x¤¤ small) (a trade-o¤).



8. Basic Dynamic Sticky Price Models

8.1. A Model with Capital

This treatment closely follows Gilchrist [1999] and Gertler and Gilchrist [1999].
Here we augment the model we gave in class to allow for capital and investment.
The introduction of capital has the (undesirable) implication that the real interest
rate rises during economic expansions. There are a couple of reasons for this: (1)
the close tie between the marginal product of capital and the real interest rate
(i.e. without adjustment costs to capital rt =MPKt+1 + (1 ¡ ±)), (2) the marginal
product of capital rises when employment rises so to the extent thatN stays above
trend for several periods theMPK and consequently the real interest rate, will be
high; and …nally (3) the anticipated in‡ation e¤ect – the nominal interest rate is
the real interest rate plus expected in‡ation :(1 + it) = (1 + rt) pt

pt+1
. All three of

these factors together imply that (typically) both real and nominal interest rates
rise following a monetary expansion.

The households in the model are standard. Consumers maximize:
1X

t=0

¯t

2
4C

1¡ 1
¾

t

1 ¡ 1
¾

¡ ÁN
1+ 1
´

t

1 + 1
´

3
5

subject to the nominal budget constraint:

PtCt + PtIt +Mt =WtNt +RtKt +Mt¡1 + Tt +¦t

and the capital accumulation equation:

Kt+1 = Kt(1 ¡ ±) + It
Tt are transfers from the government (helicopter drops of money) and ¦t are
pro…ts returned to the consumer lump sum from …rms.

The …rst order conditions can be reduced to an Euler equation and a labor
supply curve. The Euler equation is:

1
¯

µ
Ct+1

Ct

¶ 1
¾

=
µ
Rt+1

Pt+1
+ (1 ¡ ±)

¶

note that the nominal rate of interest is:

1 + it =
1
¯

µ
Ct+1

Ct

¶ 1
¾ Pt+1

Pt
=

1
¯
MU(Ct)
MU(Ct+1)

Pt+1

Pt
= (1 + rt)(1 + ¼t)



Labor supply is standard:

Án
1
´
t c

1
¾
t =

Wt
P ct

I assume that money demand is given by a simple quantity equation:

Mv = PtYt

To get a more standard “LM” relationship we would have:

Mv(1 + it) + PY

with v0 > 0 and v
³

1
¯

´
= 1.

Production of …nal goods is competitive while the production of intermediate
goods is monopolistically competitive.

8.2. Final Goods

The Final investment goods follow:

Yt =
·Z 1

0
yt(z)

"¡1
" dz

¸ "
"¡1

The demand for intermediate goods is:

yt(z) =
·
pt(z)
Pt

¸¡"
Yt

This implies the price index:

Pt =
·Z 1

0
pt(z)1¡"dz

¸ 1
1¡"

8.3. Intermediate Goods

Intermediate investment goods are each produced according to:

yt(z) = A [kt(z)]
® [nt(z)]

1¡®

and each wants to minimize nominal costs subject to producing a certain amount:

J = ¡Wtnt(z) ¡Rtkt(z) +MCt
£
A [kt(z)]

® [nt(z)]
1¡® ¡ ¹y

¤



which gives rise to the following …rst order conditions:

¡Wt +MCt(1 ¡ ®)kt(z)®nt(z)¡® = 0
¡Rt +MCt®kt(z)®¡1nt(z)1¡® = 0

The …rst equation implies that:

MCt = Wt
1

1 ¡ ®

µ
kt(z)
nt(z)

¶¡®

(which says that the marginal cost is related to the marginal product of labor and
the wage.) while the second implies:

kct (z)
nct(z)

=
µ
Rt
®MCt

¶ 1
®¡1

which gives marginal cost as:

MCt =W 1¡®
t R®t

µ
1

1 ¡ ®

¶1¡®µ
1
®

¶®

Note that if these …rms could set prices in every period then they would simply
pick the price that maximizes pro…ts:

(p¤t (z) ¡MCt)
Ã·
p¤t (z)
Pt

¸¡"
Yt

!
=
Yt
P¡"t

(p¤t (z) ¡MCt) [p¤t (z)]¡"

This has the …rst order condition:

(1 ¡ ")p¤(z)¡" + "MCtp¤t (z)¡"¡1 = 0
(1 ¡ ") + "MCtp¤t (z)¡1 = 0

which implies that:
p¤(z) =

"
"¡ 1

MC = ¹MC

Here ¹ > 1 is the markup (Basu and Fernald estimate ¹ roughly at 1:1 (a 10%
markup)).



8.4. Price Setting

If …rms only reset prices infrequently then they must take into account the future
rami…cations of their actions now.

What do …rms want to maximize? If they return an extra dollar of dividends
at time t+ j the consumer values this according to:

¯tMU(Ct+j)
1
Pt+j

This implies that the …rm should choose p¤t (z) to maximize its expected pro…ts:

max
p¤t (z)

( 1X

j=0

µjEt

"
¯j
MU(Ct+j)
Pt+j

(p¤t (z) ¡MCt+j)
Ã·
p¤t (z)
Pt+j

¸¡"
Yt+j

!#)
(3)

Note that since 1 + it = 1
¯
MU(Ct)
MU(Ct+1)

Pt+1
Pt

we have:

»t;t+j =
t+j¡1Y

s=t

(1 + is) =
µ
1
¯

¶j MU(Ct)
MU(Ct+j)

Pt+j
Pt

so that maximization of (3) is equivalent to maximizing the present discounted
value of dividends:

MU(Ct)
Pt

1X

j=0

µjEt

"
¯j
MU(Ct+j)
MU(Ct)

Pt
Pt+j

(p¤t (z) ¡MCt+j)
Ã·
p¤t (z)
Pt+j

¸¡"
Yt+j

!#

=
MU(Ct)
Pt

1X

j=0

µjEt

"
(p¤t (z) ¡MCt+j)

»t;t+j

Ã·
p¤t (z)
Pt+j

¸¡"
Yt+j

!#

Let’s rewrite the objective function as revenue minus costs:

¦et = [p¤t (z)]
1¡"

1X

j=0

µj¯jEt

"
MU(Ct+j)
P 1¡"
t+j

Yt+j

#
¡[p¤t (z)]

¡"
1X

j=0

µj¯jEt

"
MU(Ct+j)
P 1¡"
t+j

MCt+jYt+j

#

The …rst order condition for p¤t (z) is:

(1 ¡ ") [p¤t (z)]¡"
1X

j=0

µj¯jEt

"
MU(Ct+j)
P 1¡"
t+j

Yt+j

#
+" [p¤t (z)]

¡"¡1
1X

j=0

µj¯jEt

"
MU(Ct+j)
P 1¡"
t+j

MCt+jYt+j

#
=



solving for p¤t (z) gives:

p¤t (z) =
µ
"
"¡ 1

¶ P1
j=0 µ

j¯jEt
£
MU(Ct+j)P "¡1t+j MCt+jYt+j

¤
P1
j=0 µ

j¯jEt
£
MU(Ct+j)P "¡1t+j Yt+j

¤

as the optimal choice for prices in the current period. Note that sinceMC;P;MU; Y
are all the same for every z they will all choose the same p¤.

What is the linearization of this:

p¤t =
At
Bt

with

At = ¹
1X

j=0

µj¯jEt
£
MU(Ct+j)P "¡1t+j MCt+jYt+j

¤

and

Bt =
1X

j=0

µj¯jEt
£
MU(Ct+j)P "¡1t+j Yt+j

¤

Then, ~p¤t = ~At ¡ ~Bt.

At = ¹MU(Ct)P "¡1t MCtYt + µ¯Et [At+1]

so that:

~At =
¹MU(C)P "¡1 (MC)Y

A

n
~̧t + ("¡ 1) ~Pt + gMCt + ~Yt

o
+ µ¯Et

h
~At+1

i

Similarly,

~Bt =
MU(C)P "¡1Y

B

n
~̧t + ("¡ 1) ~Pt + ~Yt

o
+ µ¯Et

h
~Bt+1

i

In steady state A = ¹MU(C)P "¡1 (MC)Y 1
1¡µ¯ and B = MU(C)P "¡1Y 1

1¡µ¯ so
that these equations become:

~At = [1 ¡ µ¯]
n
~̧
t + ("¡ 1) ~Pt + gMCt + ~Yt

o
+ µ¯Et

h
~At+1

i

~Bt = [1 ¡ µ¯]
n
~̧t + ("¡ 1) ~Pt + ~Yt

o
+ µ¯Et

h
~Bt+1

i



and:
~p¤t = [1 ¡ µ¯] gMCt + µ¯Et

£
~p¤t+1

¤

If we denote real marginal cost as mct then:

~p¤t = (1 ¡ µ¯)
h
fmct + ~Pt

i
+ µ¯p¤t+1

The price index is

Pt =
·Z 1

0
Pt(z)1¡"dz

¸ 1
1¡"

;

and since (1 ¡ µ) agents change prices and switch to the same price p¤t the price
index evolves according to:

Pt =
£
µP 1¡"
t¡1 + (1 ¡ µ) (P ¤t )1¡"

¤ 1
1¡"

the linear version of this is:

~Pt = µ ~Pt¡1 + (1 ¡ µ)~p¤t
note that:

p¤t =
Pt ¡ µPt¡1

1 ¡ µ
then the price setting equation becomes:

Pt ¡ µPt¡1
1 ¡ µ = (1 ¡ µ¯)

h
fmct + ~Pt

i
+ µ¯

·
Pt+1 ¡ µPt

1 ¡ µ

¸

De…ne in‡ation in period t as ~¼t = ~Pt ¡ ~Pt¡1 so that:

Pt ¡ µPt¡1 = (1 ¡ µ) (1 ¡ µ¯)
h
fmct + ~Pt

i
+ µ¯ [Pt+1 ¡ µPt]

(1 ¡ µ)Pt + µPt ¡ µPt¡1 = (1 ¡ µ) (1 ¡ µ¯)
h
fmct + ~Pt

i
+ µ¯ [Pt+1 ¡ Pt + (1 ¡ µ)Pt]

(1 ¡ µ)Pt + µ~¼t = (1 ¡ µ) (1 ¡ µ¯)
h
fmct + ~Pt

i
+ µ¯ [~¼t+1 + (1 ¡ µ)Pt]

gives us a dynamic Phillips Curve:

~¼t = °fmct + ¯Et [~¼t+1]



This is basically a short run AS relationship. Suppose ~¼t > 0 (in‡ation is
above trend). By assumption, ~¼ will return to its steady state value of zero so at
some point ~¼t+1 < ~¼t. When this occurs (and in fact prior to this) we will have to
have fmc > 0. This is the same as saying that the markup is falling. As a result,
output (and employment) must also expand.

Note that there is no long run trade-o¤ for the monetary authority. Any steady
state ¼ is consistent with fmc = 0 in the long run (and thus a constant level of
employment).

8.5. Other Topics:

8.5.1. Sticky Consumption Prices vs. Flexible Investment Prices

(This is based on Barsky, House, and Kimball [2002]). If non-durable consumption
goods have sticky prices while durable goods (capital) have ‡exible prices then
money will be approximately neutral with respect to output and employment
regardless of how sticky or how large the non-durable consumption goods sector
is.

To see this result consider the labor supply decision of the agent. This can be
written as:

v0(Nt) = [P ct u
0(ct)]Wt

The term in brackets is the marginal utility of an additional dollar of income.
Alternatively the additional income could be spent on some new investment. This
would imply:

v0(Nt) =MU(Kt)
Wt
P it

where MU(Kt) is the marginal utility from getting an additional unit of the
investment good.

I claim that this shadow value (MU(Kt)) will stay very close to its steady
state level. The intuition for this is that MU(Kt) is the present discounted value
of all of the future payo¤s to this piece of capital.

MU(Kt) =
Rt+1

(1 + it)
u0(ct+1)
Pt+1

+
(1 ¡ ±)Rt+2

(1 + it) (1 + it+1)
u0(ct+2)
Pt+2

+ :::

¸t(i) =
1X

j=1

u0(ct+j)
Pt+j

Rt+j(1 ¡ ±)j¡1
(j¡1Y

s=t

(1 + is)

)



The steady state value of this is:

¸(i) =
R

(1 + i)
u0(c)
P

+
(1 ¡ ±)R
(1 + i)2

u0(c)
P

+ :::

=
1X

j=1

"
j¡1Y

s=t

(1 + is)j¡1
#¡1
R(1 ¡ ±)j¡1

=
R
P

u0(c)¯
1 ¡ ¯(1 ¡ ±)

If the shock is resolved quickly (what Miles calls the “fast price adjustment ap-
proximation”) then this expansion will be dominated by the future terms and will
be close to the steady state value. Thus, if ~K is roughly constant (if capital does
not change much) and MU(K) is roughly constant we have:

v0(Nt) =MU(K)
Wt
P it

Note also that since the investment sector is fully ‡exible P It = ¹MCt = ¹Wt 1
MPN;t

so that:
v0(Nt) =MU(K)

MPN;t
¹

The marginal product of labor is just (1 ¡ ®)
³
Kt
Nt

´®
and since ~K is roughly zero

we have:
v0(Nt) =MU(K)

MPN;t(Nt)
¹

The important thing about this is that this condition only depends on Nt. As
a result, the change in Nt from its steady state value will only result from large
changes in K or large swings in MU(K). If both of these are small then ~Nt will
be small and ~Y = ® ~Kt + (1 ¡ ®) ~Nt ¼ 0.

8.5.2. Sticky Wages

This treatment follows a standard setup used by Christiano and Eichenbaum (who
adapt from some other guy whose name I forget).

The consumer’s problem is the same as above. Labor for the …rms is an
aggregate of labor “types”. Assume that for any amount of labor the …rm needs



many types of workers. Speci…cally, if Lt is e¤ective labor at time t we have:

Lt =
·Z 1

0
l
Ã¡1
Ã
it di

¸ Ã
Ã¡1

This means that if the …rm wants labor force Lt; the demand for type i is given
by:

lit = Lt
µ
wit
Wt

¶¡Ã

Wages for each type of labor are set by a monopolist in that type (similar to a
union). We assume that the aggregate wage is:

Wt =
·Z 1

0
w1¡Ã
it di

¸ 1
1¡Ã

The probability of adjusting a wage is 1¡µw and the probability of not adjust-
ing (being stuck) is µw. An extra dollar in period t+ j is worth ¯j MU(Ct+j)Pt+j

while
working more in period t + j costs the consumer the marginal utility of leisure
¯jMU(Nt+j) thus the monopolists will try to maximize:

max
w¤it

(
Et

" 1X

j=0

(¯µ)j
µ
MU(Ct+j)
Pt+j

w¤it ¡MU(Nt+j)
¶
Lt+j

µ
wit
Wt+j

¶¡Ã#)

Note that the labor market clearing condition implies that ~Nt+j ¼ ~Lt+j.
In a perfectly ‡exible wage setting environment the monopolist would maxi-

mize: µ
MU(Ct)
Pt

w¤it +MU(Nt)
¶
Lt

µ
wit
Wt

¶¡Ã

or more simply:
MU(Ct)
Pt

(w¤it)
1¡Ã +MU(Nt)w¡Ãit

which gives the …rst order condition:

(Ã ¡ 1)
MU(Ct)
Pt

= ÃMU(Nt)w¡1it

or
w¤ =

Ã
(Ã ¡ 1)

¡MU(Nt)
MU(Ct)
Pt



which says that the real wage for this supplier is the competitive wage ¡MU(N)
MU(C)

plus a markup. Assuming the utility structure given above, the optimal choice of
w¤ will solve the following:

~w¤t = (1 ¡ µw¯)
·
~Pt +

1
´
~Nt +

1
¾
~Ct

¸
+ µw¯E

£
~w¤t+1

¤

As before, the aggregate wage will evolve according to:

Wt =
h
µwW 1¡Ã

t¡1 + (1 ¡ µ) (w¤t )1¡Ã
i 1
1¡Ã

which is linearized as:
~Wt = µw ~Wt¡1 + (1 ¡ µw) ~w¤t

note that:

~w¤ =
~Wt ¡ µw ~Wt¡1

1 ¡ µw
De…ning wage in‡ation as ~¼wt = ~Wt ¡ ~Wt¡1 gives us a “Phillips Curve” for wage
growth:

~¼wt = °w

·
~Pt +

1
´
~Nt +

1
¾
~Ct ¡ ~Wt

¸
+ ¯E

£
~¼wt+1

¤

with °w = (1¡µw)(1¡µw¯)
µw

.

8.6. Kimball (1995)

Kimball’s [1995] model is like the DNK model with a general output aggregator
and with general cost curves. As before, the model satis…es a quantity equation:

Mv = PY

in every period.

8.6.1. Price Setting:

Kimball distinguishes between “desired price” and “reset price”. The desired
price (p#) is the price a …rm would charge if it were able to costlessly set its price
without concern for in‡exibilities.

The aggregate price level evolves according to the Calvo aggregator:

~Pt = µ ~Pt¡1 + (1 ¡ µ) ~P ¤t



and the …rms seek to maximize:

max
p¤t (z)

( 1X

j=0

µjEt
·
¯jMU(Ct+j)¦

µ
p¤(z)
Pt+j

; :::
¶¸)

where ¦ is the real pro…t at date t + j. The …rst order condition for this maxi-
mization problem is:

1X

j=0

µjEt
·
¯jMU(Ct+j)¦0

µ
p¤(z)
Pt+j

; :::
¶

1
Pt+j

¸
= 0

The desired price p#t+j satis…es ¦0
µ
p#t+j
Pt+j
; :::

¶
= 0 this is approximately:

0 = ¦0
Ã
p#t+j
Pt+j
; :::

!
¼ ¦0(1; :) + ¦00(1; :)

"
p#t+j
Pt+j

¡ 1

#

Note that the derivative at the reset price is close to this ...

¦0
µ
p¤(z)
Pt+j

; :::
¶

¼ ¦0(1; :) + ¦00(1; :)
·
p¤(z)
Pt+j

¡ 1
¸

so that

¦0
µ
p¤(z)
Pt+j

; :::
¶

= ¦00(1; :)

"
p¤(z) ¡ p#t+j
Pt+j

#

and the …rst order condition is:
1X

j=0

µjEt

"
¯jMU(Ct+j)

1
Pt+j

¦00(1; :)

Ã
p¤(z) ¡ p#t+j
Pt+j

!#
= 0

which implies that:

p¤t (z) = p
¤
t =
Et

·P1
j=0 (µ¯)

jMU(Ct+j)¦00(1; :)
p#t+j
P 2t+j

¸

Et
hP1

j=0 (µ¯)
jMU(Ct+j)¦00(1; :) 1

P 2t+j

i

This says that the optimal reset price is an (appropriately chosen) average of the
desired prices p#t+j : We linearize as before to get:

~p¤t = [1 ¡ µ¯] ~p#t + µ¯Et
£
~p¤t+1

¤



8.6.2. Demand and Cost Functions.

Kimball (1995) allows for a variable elasticity of demand and for a more general
marginal cost function. In particular, the desired markup is no longer simply "

"¡1
rather it solves:

¹

Ã
y#t (z)
Yt

!
=
"
³
y#t (z)=Yt

´

"(y#t (z)=Yt) ¡ 1

so that by assumption it depends on the market share of the ith …rm. Locally, (in
the neighborhood of the steady state) we still have the demand curve:

yt(z) = Yt
µ
pt(z)
Pt

¶¡"¤

where "¤ is the elasticity of demand at the steady state.
Marginal cost is also more general. Speci…cally, real marginal cost is given by

the function:
mct(z) = ©(yt(z); Yt; :::)

so that marginal cost depends on the …rms individual output as well as aggregate
output. Note that we assume that marginal cost rises with a balanced expansion
of all …rms. Note that:

fmct(z) =
y©y
©

~yt(z) +
Y©Y
©

~Yt

and if ~yt(z) = ~Yt we want marginal cost to rise. Thus we require:

­ =
y©y + Y©Y

©
> 0

Note that the desired price p#t (z)=Pt will solve:
³
p#t (z)=Pt

´
= ¹

³
y#t (z)=Yt

´
©(y#t (z); Yt; :::)

and at full employment (the ‡exible price level of output Y f) we will have:

1 = ¹(1)©(Y f ; Y f)

Dividing these two equations gives us:

³
p#t (z)=Pt

´
=
¹

³
y#t (z)=Yt

´
©(y#t (z); Yt; :::)

¹(1)©(Y f ; Y f)
= f(y#t (z); Yt; Y

f
t ; :::)



and linearizing this around the steady state gives:

p#t (z) ¡ Pt =
·
¹0

¹
+
y©y
©

¸
y#t +

·
Y©Y
©

¡ ¹
0

¹

¸
~Yt ¡

·
y©y + Y©Y

©

¸
~Y ft

p#t (z) ¡ Pt =
·
¹0

¹
+
y©y
©

¸ ³
y#t (z) ¡ ~Yt

´
+­

³
~Yt ¡ ~Y ft

´

Since the demand curve solves:

y#t (z) = Yt

Ã
p#t (z)
Pt

!¡"

y#t (z) ¡ Yt = ¡"¤
³
p#t (z) ¡ Pt

´

so that:

¡ 1
"¤

³
y#t (z) ¡ Yt

´
=

·
¹0

¹
+
y©y
©

¸ ³
y#t (z) ¡ ~Yt

´
+­

³
~Yt ¡ ~Y ft

´

0 = !
³
y#t (z) ¡ ~Yt

´
+­

³
~Yt ¡ ~Y ft

´

where ! =
h
¹0
¹ + y©y

© + 1
"¤

i
(note in Kimball he writes !(y=Y ) so that

! (y=Y ) =
(y=Y )¹0(y=Y )
¹ (y=Y )

+
y©y
©

+
1

" (y=Y )

solving for desired output as a function of actual output gives:

y#t (z) ¡ ~Yt = ¡­
!

³
~Yt ¡ ~Y ft

´

This with the …rms demand curve gives:
³
p#t (z) ¡ Pt

´
=

­
"¤!

³
~Yt ¡ ~Y ft

´

Using Kimball’s terminology, the “in‡ationary price gap” p#t ¡ Pt is equal to
­
"¤! times the “in‡ationary output gap ~Yt ¡ ~Y ft .



8.6.3. New Phillips Curve:

Recall that the optimal reset price is:

~p¤t = [1 ¡ µ¯] ~p#t + µ¯Et
£
~p¤t+1

¤

and substitute in for p# to get:

~p¤t = [1 ¡ µ¯]
µ
Pt +

­
"¤!

h
~Yt ¡ ~Y ft

i¶
+ µ¯Et

£
~p¤t+1

¤

As a result, the forward looking Phillips Curve is:

~¼t = °
­
"¤!

h
~Yt ¡ ~Y ft

i
+ ¯Et [~¼t+1]

The output gap will “cause” in‡ation. Note that as ­
"¤! becomes smaller

and smaller, in‡ation responds less and less to output (alternatively: even small
amounts of in‡ation will necessitate very large changes in GDP). The term ­

"¤! is
exactly the “real rigidity” concept used in Ball and Romer.

Low values of ­ or high values of ! will generate low ­
"¤! and thus high degrees

of real rigidity. ­ is the change in marginal costs due to a balanced expansion
in output. If wages, or the real rental price of capital rise sharply then ­ will be
large and there won’t be much real rigidity. If wages don’t rise much, or if there
are productive (or trading) externalities in aggregate output then ­ will be lower
and there will be real rigidity.
! is given by : ·

¹0

¹
+
y©y
©

+
1
"¤

¸

Near the steady state, the slope of the demand curve is 1
" (i.e., in logs we would

have ln pt = 1
" lnYt ¡ 1

" ln yt + lnPt). The slope of the marginal revenue curve is
steeper and is given by ¹

0

¹ + 1
"¤ . Thus if ¹

0

¹ + 1
"¤ is large, MR falls very fast. At the

…rm level marginal costs rise at the rate y©y© . So if MC rises sharply and MR falls
quickly, the individual …rm will not have incentive to change its price (output).

So ‡at aggregate MC, steep individual MC and steep individual MR will all
contribute to real rigidity. (A good environment for price rigidity: productivity
spillovers & e¢ciency wages contribute to ‡at aggregate MC (low ­); convex /
kinked demand curves cause MR to drop fast; Kimball suggests having workers
tied to …rms (e.g. due to …rm speci…c skills) will cause …rms to have sharp MC
curves).



8.7. Appendix:

8.7.1. Output.

Note that output, in the basic New Keynesian model, is given by:

Yt =
·Z 1

0
yt(z)

"¡1
" dz

¸ "
"¡1

since some of the y(z)’s are di¤erent Yt will not simply be Cobb-Douglas. To see
this note:

Yt =
·Z 1

0

©
At [kt(z)]

® [nt(z)]
1¡®ª "¡1" dz

¸ "
"¡1

since the …rms all minimize costs they all have the same capital-labor ratio:

Yt = At
·
Kt
Nt

¸® ·Z 1

0
nt(z)

"¡1
" dz

¸ "
"¡1

6= At
·
Kt
Nt

¸®
Nt

since
hR 1

0 nt(z)
"¡1
" dz

i "
"¡1 6=

R 1
0 nt(z)dz = Nt. The demand for intermediate z is

given by:

At [kt(z)]
® [nt(z)]

1¡® = y(z) = Yt
µ
pt(z)
Pt

¶¡"

Since the capital / labor ratios are constant across producers we can write this as:

At
·
Kt
Nt

¸®
nt(z) = y(z) = Yt

µ
pt(z)
Pt

¶¡"

Integrating with respect to z gives:

At
·
Kt
Nt

¸® Z 1

0
nt(z)dz = YtP "t

Z 1

0
pt(z)¡"dz

AtK®t N
1¡®
t = YtP "t

Z 1

0
pt(z)¡"dz

or:
Yt = AtK®t N

1¡®
t Xt

where Xt is given by:

Xt =
P¡"t
Zt

=
P¡"tR 1

0 pt(j)
¡"d(j)



~Xt = ¡" ~Pt ¡ ~Zt
The de…nition of the optimal price p¤ and the linearizations of P and Z are given
by:

~p¤t = (1 ¡ ¯µ) [MCt] + Et
£
¯µp¤t+1

¤

~Pt = µ ~Pt¡1 + (1 ¡ µ)~p¤t
~Zt = µ ~Zt¡1 ¡ "(1 ¡ µ)~p¤t

These terms drop:

~Xt = ¡" ~Pt ¡ ~Zt = ¡"
h
µ ~Pt¡1 + (1 ¡ µ)~p¤t

i
¡

h
µ ~Zt¡1 ¡ "(1 ¡ µ)~p¤t

i

= ¡"µ ~Pt¡1 ¡ "(1 ¡ µ)~p¤t ¡ µ ~Zt¡1 + "(1 ¡ µ)~p¤t
= ¡"µ ~Pt¡1 ¡ µ ~Zt¡1 = µ ~Xt¡1

Thus X is (dynamically) independent of the other equations in the system. This
implies that ~Xt = 0 in the system. Thus production can be approximated by a
Cobb-Douglas relationship,

Yt = ~At + ® ~Kt + (1 ¡ ®) ~Nt

8.7.2. The relation between L and N?

A similar problem applies to the sticky wage model. In that model, total labor is
given by:

Lt =
·Z 1

0
l
Ã¡1
Ã
it di

¸ Ã
Ã¡1

while Nt is simply the sum of the individual labor supplies:

Nt =
Z 1

0
litdi

Note: consider the demand function for one type of labor:

lit = Lt
µ
wit
Wt

¶¡Ã

and integrate with respect to i: This gives:

Nt = LtWÃt

Z 1

0
w¡Ãit di



so that

Lt = Nt
W¡Ã
tR 1

0 w
¡Ã
it di

= NtXt

As before with output, the …rst order changes inXt are negligible so we can simply
write:

~Lt = ~Nt

To see this note:
~Xt = ¡Ã ~Wt ¡ ~Zt

where Zt =
R 1
0 w

¡Ã
it di. Alternatively we can write:

Zt =
h
µwZt¡1 + (1 ¡ µw) (w¤t )¡Ã

i

The de…nition of the optimal reset wage ~w¤t and the linearizations of W and Z
are given by:

~w¤t = (1 ¡ µw¯)
·
~Pt +

1
´
~Nt +

1
¾
~Ct

¸
+ µw¯E

£
~w¤t+1

¤

~Wt = µw ~Wt¡1 + (1 ¡ µw) ~w¤t
~Zt = µw ~Zt¡1 ¡ Ã(1 ¡ µw) ~w¤t

Then, as with output, terms other than X will drop. So again, X is dynamically
independent of the other equations in the system. Consequently we can write
~Lt = ~Nt:

As with the mixing problem with the intermediate goods, because the “Calvo
mechanism” draws agents at random, the ine¢ciency caused by having a “wrong
mix” of labor types is to a …rst order approximation negligible.


