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Abstract

The goal of many single-cell studies on eukaryotic cells is to gain insight into the biochemical

reactions that control cell fate and state. In this paper we introduce the concept of Effective

Stoichiometric Spaces (ESS) to guide the reconstruction of biochemical networks from mul-

tiplexed, fixed time-point, single-cell data. In contrast to methods based solely on statistical

models of data, the ESS method leverages the power of the geometric theory of toric varie-

ties to begin unraveling the structure of chemical reaction networks (CRN). This application

of toric theory enables a data-driven mapping of covariance relationships in single-cell

measurements into stoichiometric information, one in which each cell subpopulation has its

associated ESS interpreted in terms of CRN theory. In the development of ESS we reframe

certain aspects of the theory of CRN to better match data analysis. As an application of our

approach we process cytomery- and image-based single-cell datasets and identify differ-

ences in cells treated with kinase inhibitors. Our approach is directly applicable to data

acquired using readily accessible experimental methods such as Fluorescence Activated

Cell Sorting (FACS) and multiplex immunofluorescence.

Author summary

We introduce a new notion, which we call the effective stoichiometric space (ESS),

that elucidates network structure from the covariances of single-cell multiplex data. The

ESS approach differs from methods that are based on purely statistical models of data:

it allows a completely new and data-driven translation of the theory of toric varieties in

geometry and specifically their role in chemical reaction networks (CRN). In the process,

we reframe certain aspects of the theory of CRN. As illustrations of our approach, we find

stoichiometry in different single-cell datasets, and pinpoint dose-dependence of network

perturbations in drug-treated cells.
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This is a PLOS Computational Biology Methods paper.

Introduction

Single-cell, multiplex datasets have become prevalent [1, 2], and span a range of data types

including transcript levels measured by sc-RNAseq [3], protein levels measured by flow cytom-

etry [4], and cell morphology and protein localization measured by multiplex imaging [5–8].

An obvious advantage of such data is that it makes possible the detection and quantification of

differences among cells in a population, including those arising from cyclic processes such as

cell division, asynchronous differentiation programs [9, 10], and the effects of neighboring cells.

A more subtle advantage of single-cell data is that they report on relationships among measured

features, the phosphorylation states of receptors and nuclear localization of transcription factors

for example. Because such features are subject to natural stochastic fluctuation across a popula-

tion of cells [11], measuring the extent of correlation among otherwise independently fluctuat-

ing features makes it possible to infer the topologies of biological networks [12, 13].

A wide variety of tools have been developed for visualization of single-cell data, including t-

SNE [14] and MAPPER [15], and for generating networks from such data using Bayesian Net-

works [16] and machine learning [17]. In many cases, the goal of such tools is to produce sta-

tistical models. In this paper we describe an alternative analytical framework founded on

reaction theory. We make the assumption that proteins in a compartment react with each

other in a manner that is well approximated by the continuum assumptions of Mass-Action

Kinetics (MAK) [18], the foundation of familiar biochemical treatments of reactions such as

Michaelis-Menten kinetics and Hill functions [19–21]. Compartments in this formalism can

be different macromolecule assemblies or different locations in a cell. Cellular biochemistry is

complicated, involving thousands of proteins and an unknown number of reaction compart-

ments. Constructing dynamical systems of cellular processes based on MAK is computation-

ally challenging, despite its theoretical appeal and analytical tractability. High-dimensional

whole-cell dynamical models also suffer from a sparsity of data able to constrain such a model

(although valuable insights have been obtained by this approach [22, 23]).

Unexpectedly, we have been able to sidestep some of the challenges posed by MAK in a cel-

lular context by leveraging geometric aspects of dynamical systems and thereby obtaining ana-

lytical results from single-cell data. Chemical Reaction Network Theory (CRNT) is a branch of

dynamical systems analysis that focuses primarily on topological features of a reaction network

[24–26]. In this paper we frame results from CRNT in the context of single-cell, multiplex

data. We demonstrate that unexpected insights into the topologies of reaction networks can

be derived from such data based on familiar and simple MAK principles. Specifically, from

multiplexed flow cytometry (FACS) and multiplexed immunofluorescence (CyCIF) data, we

observe integer stoichiometry of reactions, and show that four anti-mitogenic drugs perturb a

cell’s reaction network in a mostly dose-independent manner.

To illustrate this approach, we briefly review some basic definitions. For n chemicals Ci
involved in a reaction:

a1C1 þ a2C2 þ � � � þ anCn �������! b1C1 þ b2C2 þ � � � þ bnCn

with reactants and products on the left and right respectively, and stoichiometric coefficients

{ai} and {bi}, we define a reaction vector~v 2 Rn as:

~v ¼ ðb1 � a1; b2 � a2; � � � ; bn � anÞ:
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Provided the reverse reaction exists, the steady state concentrations of the reactions obey

the familiar equation:

Qn
j¼1
½Cj�

bj

Qn
i¼1
½Ci�

ai ¼ Keq

for some equilibrium constant Keq. This equality can be rewritten in terms of~v, for the chemi-

cal concentrations~c ¼ ð½C1�; ½C2�; � � � ; ½Cn�Þ:

~v � logð~cÞ ¼ logðKeqÞ; ð1Þ

where the logarithm of the vector is defined as the element-wise logarithm. (Logarithms are

taken in any fixed basis, for example decimal). Observe that this is a linear equation on the

reaction vectors, if one knows the (logarithms of) concentrations.

Given a network G composed of such reactions, the overall dynamics are described by a sys-

tem of differential equations, in which the rate of change of any chemical species’ concentra-

tion is given by the sum of reaction rates in which it is a product, minus the sum of reaction

rates in which it is a reactant [18]. As a simple example, consider a system of reactions:

X þ Y
k� 1

 ��!
k1

Z

d½X�
dt
¼
d½Y�
dt
¼ �

d½Z�
dt
¼ k� 1½Z� � k1½X�½Y�:

We will focus on two objects associated with such systems: 1) the steady state set E, defined

as the set of concentrations for which all the time derivatives vanish, and 2) the stoichiometric
subspace S, defined as the linear span of all the reaction vectors [27], which is a simple calcula-

tion for any given network. In the example described above, the steady state set is a nonlinear

surface, shown in Fig 1a for k1 = k−1 = 1, and its one-dimensional stoichiometric subspace is

represented by a yellow line. The surface characterizes the network well, since any initial con-

centration ([X], [Y], [Z]) (denoted by red dots) approaches the steady state set. In our studies,

E will be determined from experimental data, and we will be interested in reconstructing S,

parts of S, or other subspaces of a similar stoichiometric nature. Which of these can be recon-

structed depends on the class of network that is assumed to generate the data.

More specifically, among MAK dynamical systems, the subset known as “complex-bal-

anced” reaction networks (which includes the familiar case of “detailed-balanced networks”

[28]), has steady state sets that are easily expressed in terms of the stoichiometric subspaces

[24]. Complex balancing means that each “complex” (a node of the reaction network, such as

“X + Y” and “Z” in our example) is balanced with respect to inflow and outflow, analogous to

a Kirchhoff current law (in-flux = out-flux, at each node). It is a nontrivial fact that, for every

~vi 2 S, the steady state set E is precisely the set of all those vectors~c that satisfy the following

equalities:

~vi � logð~cÞ ¼ logðKiÞ; i ¼ 1; 2; . . . : ð2Þ

This is analogous to the case of a single reaction in Eq 1, except that Ki is not the equilib-

rium constant of the isolated reaction, but is instead a constant that accounts for kinetic

constants from the entire network. The satisfaction of these equalities implies that, in log-con-

centration space, the transformed steady state set, log(E)� V, is an affine (linear with shift)

subspace whose orthogonal complement coincides with S. Our earlier example was complex-

balanced, so after taking the logarithm, its steady state surface becomes a plane in Fig 1b,

whose orthogonal complement, in orange, is parallel to the yellow line, shown in Fig 1a. As
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another example of a complex-balanced reaction network, consider a network with reversible

and irreversible reactions:

ð3Þ

that has a steady state set satisfying (see S1 Appendix):

½A�
½B�
¼
k1ðk� 2 þ k3Þ

k2k3

;
½B�
½C�
¼

k2

k� 2 þ k3

;
½C�
½A�
¼
k3

k1

;

which are log-linear relations in the form of Eq 2. Although the above two examples are always

Fig 1. MAK dynamical systems and covariance in single-cell-data. (a) Several simulated trajectories of the reaction

network X + Y ��! �� Z are shown, for k1 = k−1 = 1. The steady state set is shown in cyan/magenta, along with some of its

level sets for fixed values of [Z]. A particular parallel translate of the stoichiometric subspace (coset) is shown as a

yellow line. (b) Steady state set in logarithmic coordinates. The orthogonal complement of this subspace (orange) is

parallel to the stoichiometric subspace. (c) In log-concentration space, the covariance matrix of the chemical

trajectories will have a decreasing eigenvalue for t!1, as evaluated by PCA, and the corresponding eigenvector will

converge to the orthogonal complement, which is parallel to the stoichiometric subspace spanned by (-1,-1,1).

https://doi.org/10.1371/journal.pcbi.1007311.g001

Toric reaction networks and toric geometry in single-cell, multiplex data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007311 December 6, 2019 4 / 25

https://doi.org/10.1371/journal.pcbi.1007311.g001
https://doi.org/10.1371/journal.pcbi.1007311


complex-balanced, any network of any size can be complex-balanced if the kinetic constants ki
are additionally constrained [25].

More generally, the subset of reaction networks that obey log-linearity are called toric in the

algebraic-geometric CRNT literature [25, 29]. This log-linearity greatly simplifies the analysis

of a nonlinear problem, which is the key appeal of our making a MAK assumption. The cur-

rent work is concerned with such toric systems, of which complex-balanced reaction networks

are the best-known example.

Results

Overview of the approach

We represent a single cell by a vector that includes as components the concentrations~ciðtÞ
of relevant chemical species. We assume that all cells in the population being studied are gov-

erned by a common, complex-balanced, MAK reaction network G with reaction constants

{kG}. The localization of a reactant into different cellular compartments (e.g. nucleus and

cytoplasm) or different macro-molecular assemblies is managed using the conventional com-

partmentalized formalism and simply adds elements to~ciðtÞ. As we will see, the fact that G is

incredibly complicated does not limit our theoretical analysis.

We reframe the equations described in the introduction in terms of the distribution of

chemical trajectories from a population of cells, pGðlogð~cÞ; tÞ, making it possible to approxi-

mate the stoichiometric subspace S of G from a fixed-time sample distribution pGðlogð~cÞ; tfixedÞ,
where tfixed is large in an appropriate sense. Typically, it is only possible to observe a subset of

the species in a cellular reaction network. We find that when only a subset of the chemical spe-

cies are observed,~cobs, the covariance of pGðlogð~cobsÞ; tfixedÞ still makes it possible to determine a

subset of S.

Exploring non-complex-balanced networks by simulation and examples, we find that our

analysis method still recovers subspaces tied to reaction network topology, analogous to how S
is tied to reaction vectors. We call these data-derived subspaces Effective Stoichiometric Spaces

(ESS), with the precise definition given below. The key extension to the complex-balanced case

is that certain reaction networks that are non-complex-balanced can still have steady state

sets contained in toric manifolds (either exactly or approximately), whose orthogonal comple-

ments in log-concentration space are related to reaction network topology (i.e. independent of

kinetic parameters) [29–31].

With this theoretical background, we show that single-cell, multiplex data (sc-data) that can

feasibly be obtained from mammalian cells using multiplexed flow cytometry (FACS) or multi-

plexed immunofluorescence (using CyCIF [5] and other similar methods) can be effectively

analyzed within our framework, just using MAK assumptions. In particular, we find that (i)

Principal Components Analysis (PCA) of single-cell data generates principal components

(PCs) that lie on near-integer subspaces, which our framework interprets as the stoichiometric

constants in the underlying reaction, and (ii) for cells exposed to different small molecule

inhibitors of regulatory proteins (primarily protein kinase inhibitors), the covariance structure

is conserved over a range of concentrations for any inhibitor, which our framework explains

as the conservation of reaction network topology.

Single-cell covariance from complex-balanced reaction networks

Suppose that a population of N chemical trajectories~ciðtÞ is governed by a complex-balanced,

MAK reaction network G, with stoichiometric subspace S and steady state set E. As t!1,

Toric reaction networks and toric geometry in single-cell, multiplex data
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pGðlogð~cÞ; tÞ approaches a distribution supported on V � logðEÞ, whose sample covariance

matrix S is a singular matrix with singular eigenspace equal to S (see Methods).

Applied to the example in Fig 1, the trajectories of X, Y, and Z concentrations at any time t
constitute a dataset whose sample covariance matrix has one eigenvalue approaching zero as

t!1 (Fig 1c). This eigenvalue’s corresponding eigenvector approaches (−1, −1, 1), whose

span is the stoichiometric subspace represented earlier by the orange line in Fig 1b.

In general, if we identify each cell in a population with a vector for the concentrations of all

its relevant biochemical species~ciðtÞ, the hypotheses above allow us to extract the stoichiometric

subspace S of the underlying reaction network by eigendecomposition of the sc-data covari-

ance. This computation is commonly performed by PCA [32]. Whereas most applications of

PCA focus on PCs that explain the greatest variance (e.g. PC1-3), we are interested in the singu-

lar eigenspace S, which is spanned approximately by the principal components that explain the

least variance. To identify S with real data we look for a gap in the eigenvalue spectrum: the

eigenvalues converging to 0 will be small and similar in magnitude, forming a cluster, while the

remaining, larger eigenvalues will appear separate from that cluster. When such eigenvalues are

arranged in ascending order, a gap appears right after the last eigenvalue of the small cluster.

Such a gap is unexpected under the null hypothesis that the data is drawn from a random, mul-

tivariate normal distribution with equal variance in all directions [33]. Finding a gap in real

data is nontrivial, and we discuss this subtlety in later sections when we analyze FACS data.

Timescale separation

For finite but sufficiently long times t, information about timescales can be found in sc-data.

The eigenvalue spectrum of S, under the hypotheses described above, has at least one “gap”—a

region of nonuniform spacing between neighboring eigenvalues—which separates the eigen-

values into “small” and “large” values. The small eigenspace approaches S as t increases. Addi-

tional gaps may indicate embedded subspaces Si� S, spanned by the reactions that occur on

faster timescales, so that we have S1� S2� . . .� S corresponding to different cutoffs for “fast”

and “slow” (see Methods).

Following our earlier example of X + Y �! � Z in Fig 1, we add a reaction X �! � Y with for-

ward and reverse reaction constants kf = 0.2, kr = 0.1, much slower than the original reaction.

The trajectories now converge first to the earlier surface, since it is the steady state of the fast

reaction. With enough time, those trajectories eventually converge to the steady state of both

reactions (see Fig 2a), which is now a curve embedded in the surface. This separation of time-

scales is studied formally using singular perturbation theory [34] for dynamical systems, in

which the first surface is the slow manifold, because trajectories converge quickly to its neigh-

borhood, before undergoing slow dynamics constrained to that neighborhood.

For detailed-balanced reaction networks, slow manifolds are approximately the steady state

sets of fast networks defined by ignoring slow reactions [35], and one might expect this to be

true more generally. If so, then just as a single gap would appear when trajectories converge to

the full network’s steady state manifold, a gap appears as trajectories converge to the fast net-

work’s steady state manifold. The larger the timescale separation, the larger the gap. Since

there can be many separated timescales in a network, we expect correspondingly many gaps.

Of note, these gaps separate all the PCs into timescales, with the largest PCs’ span representing

the infinitely slow timescale.

Accounting for unobservables: Net reactions

MAK assumes well-mixed, elementary reactions involving the collision of molecules, but single-

cell experiments never provide data on all, or even most, of the chemical species participating in

Toric reaction networks and toric geometry in single-cell, multiplex data
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elementary reactions for any given biological process. However, assuming that MAK adequately

describes the elementary reactions, our conclusions change minimally after accounting for these

unobserved species, thanks to log-linearity. More specifically, given a complex-balanced MAK

network G that describes the dynamics of N chemical species inRN , with stoichiometric sub-

space S and steady state set E, suppose that only a subset n of the species in N is observable. The

observed set Eobs is then the orthogonal projection of E ontoRn
� 0 � RN

, and is still a log-lin-

ear set. The orthogonal complement Sobs of Vobs � logðEobsÞ is precisely:

Sobs � 0 ¼ S \ ðRn � 0Þ: ð4Þ

That is, Sobs is the intersection of the stoichiometric subspace and the observable space (see

Methods).

As an example in Fig 2b, suppose N = 3 chemicals X, Y, Z obey MAK, but we only observe

n = 2 of them, X and Y. If the steady state set E is a one-dimensional, log-linear curve, in blue,

then S is a two-dimensional plane. Thus, in the observed R2
, we see the projection of E, Eobs, in

orange, whose orthogonal complement in log-concentration space, Sobs shown in black, is the

intersection between the plane S and the observed plane R2 � 0.

The fact that the observed orthogonal complement Sobs is a subset of S is important. It

implies that any~v 2 Sobs is a linear combination of the reaction vectors that span S. Intuitively,

a linear combination of elementary reactions is a net reaction, just as glucose metabolism is

often summarized by

Glucoseþ 6O2 � ! 6H2Oþ 6CO2;

representing a sum of all the elementary reactions that occur during glycolysis and electron

transport. As a further example, consider the earlier reaction in (3) and suppose that we only

observe A and B. The steady state set E is a line through the origin inR3
, which is still a line

Fig 2. Timescale separation and hidden variables. (a) Simulated trajectories are shown for the reaction network with

the additional, slow reaction X ��! �� Y with kf = 0.2, kr = 0.1. Trajectories first converge toward the steady state set of

the fast reactions alone, the slow manifold, before slowly converging to the complete steady state (black). (b) An

example of a log-linear steady state set (blue, parameterized as (t, t2, t3)) and its stoichiometric subspace (yellow) are

depicted. Supposing we observe X and Y, but Z remains hidden, we see the projected steady state set (orange), which is

still log-linear. The orthogonal complement we would observe in log-concentration space is the intersection (black) of

the original stoichiometric subspace and the observable plane.

https://doi.org/10.1371/journal.pcbi.1007311.g002

Toric reaction networks and toric geometry in single-cell, multiplex data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007311 December 6, 2019 7 / 25

https://doi.org/10.1371/journal.pcbi.1007311.g002
https://doi.org/10.1371/journal.pcbi.1007311


after projecting into the observed R2
. The log-transform of any line through the origin in R2

becomes a shifted line spanned by (1, 1), whose orthogonal complement is spanned by (1, −1)

(see S1 Appendix). Thus, by observing the projected line, and assuming complex-balancing,

we can conclude that A �! � B is a net reaction in the full system, which indeed it is: the one

direction is given by A � ! B, while the reverse direction is given by B � ! C � ! A.

In summary, not only is Sobs composed of net reaction vectors, the equality in Eq 4 of Sobs

with the intersection implies that Sobs contains every net reaction that can be written in terms

of the observed chemical species. In this sense, it is maximal.

Networks other than those with complex balance may still have toric

geometry: The Effective Stoichiometric Space (ESS)

Whereas complex-balanced networks provide a sufficient condition for the previous results

to hold, similar results hold for a larger class of MAK networks, relying on the log-linearity of

steady states.

For example, take a simplified kinase(E)-phosphatase(F)-substrate(S) system:

Eþ S � !
kf

Eþ P

F þ P � !
kr F þ S

where the product P has steady-state:

0 ¼
d½P�
dt
¼ kf ½E�½S� � kr½F�½P� : ð5Þ

The complexes E + S and F + P are both reactant complexes, and they appear with opposite

sign in the total rate of change of the species P. We therefore expect that the orthogonal com-

plement should contain a vector denoting the difference between these complexes. By rear-

rangement, we see that:

kr½F�½P�
kf ½E�½S�

¼ 1

logðkr=kf Þ þ logð½F�½P�=½E�½S�Þ ¼ 0

logðkr=kf Þ ¼ logðEÞ þ logðSÞ � logðFÞ � logðPÞ :

The orthogonal complement contains (1, 1, −1, −1), which would be seen in data, informing

us that E + S and F + P are reactant complexes that balance each other. The result is unchanged

if we include the usual Michaelis-Menten enzyme-substrate complex, which is implicit in [29].

Thus, applying our method to data generated by a reaction network that has log-linear, or

“toric”, steady states, the singular eigenspace still informs us about reaction topology.

Pérez-Millán et al. provide a sufficient condition for a reaction network to have “toric

steady states” [29]. This broader class of networks even allows for multistability, which is

strictly prohibited for complex-balanced networks. As in the example, the orthogonal comple-

ment V? of steady states in log coordinates need not coincide with the stoichiometric sub-

space, although V? still relates to network topology.

Furthermore, the steady state set need only be a subset of a log-linear set in order to extract

the same information, although the set of reactions we recover is no longer maximal. Taking

the previous example, add the reactions

2X � !
kx E Y � !

ky
E E � !d 0;

Toric reaction networks and toric geometry in single-cell, multiplex data
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which imposes an additional, non-log-linear constraint on steady states, to the one in Eq 5:

0 ¼
d½E�
dt
¼ kx½X�

2
þ ky½Y� � d½E�:

Despite this, the previous log-linear constraint in Eq 5 still ensures that at steady state, a

sample of trajectories will have zero variance along (1, 1, −1, −1) in the log-coordinates, as in

the previous example.

Although some classes of non-complex-balanced have been treated analytically [31, 36–38],

we relied on simulation to study non-toric reaction networks in the context of sc-data. As a

reference, we first simulated complex-balanced reaction networks with 20 chemical species,

including random single and binary reactions. Timescale differences were included by draw-

ing the kinetic constants from two separate distributions (See Methods Table 1). At different

timepoints, the distribution of chemical trajectories was subjected to PCA (see Fig 3a). The

eigenvalue spectra were found to exhibit gaps that grew larger with time. To confirm that the

singular eigenspace spanned the defined stoichiometric subspace, we used Principal Angle

Decomposition (PAD) to measure the difference in angles between the two subspaces [39].

We found that the angles converged to zero over time. The slower reactions led to distinctly

larger eigenvalues, whose corresponding eigenvectors converged later. Such an example is

shown in Fig 3a, where the randomly generated network has a stoichiometric subspace of

dimension 11, and the 11 PCs’ span converges to the subspace, as evaluated by principal

angles. Some reactions were slower, leading to slower convergence along 2 dimensions, visible

in the inset. This is accompanied by 2 of the 11 eigenvalues being distinctly larger than the

rest, as expected from our previous discussion of how timescale separation manifests as differ-

ences in variance.

Having confirmed our conclusions about single-cell data covariance on a complex-balanced

simulation, we turned to a non-complex-balanced model. We simulated a Gene Regulatory

Network (GRN) with n genes Gi, n corresponding protein products Pi, and�70% (chosen ran-

domly) of the possible n2 protein-bound genes Gj
i (i’th gene bound by the j’th protein) corre-

sponding to proteins that function as transcription activators and repressors (See Methods

Table 1). The reactions in the network consisted of irreversible processes that resulted in pro-

tein production/degradation, and reversible binding of regulatory proteins to genes:

Gi � !
ki Gi þ Pi

Gi þ Pj rij
 ����!
fij

Gj
i � !

kji Gj
i þ Pi

Pi � !
d

0:

Table 1. Simulation parameter distributions for randomized Complex-Balanced Networks (CB) and Gene Regula-

tory Networks (GRN).

Parameter Log-Mean Log-Variance

Concentration @t = 0 (CB) 4 4

Kinetic Constants (CB) 2.5, 3 0.05

Concentration @t = 0 (GRN) 5 8

Unbound Production Constants (GRN) 1 1

Bound Production Constants (GRN) 3 3

Protein Binding-Unbinding Constants (GRN) 3 1

Protein Degradation Rate (GRN) 3 none

https://doi.org/10.1371/journal.pcbi.1007311.t001
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Transcription/translation was lumped into a single, protein production step for sake of sim-

plicity. The interpretation of this assumption is that mRNA turnover is faster than protein

turnover, which is not biologically unreasonable [40]. Analysis demonstrated that networks of

this type are indeed non-complex-balanced (see Methods).

When the distribution of trajectories at the end of the simulations was analyzed by PCA,

the eigenvalues of the covariance matrix for all simulations exhibited gaps visible in Fig 3b,

indicating log-linear constraints. One gap always occurred after d eigenvalues, corresponding

to the stoichiometric subspace’s dimension as computed symbolically. To evaluate the gap

after d − n eigenvalues, we performed PAD on the first d − n eigenvectors and the stoichiomet-

ric subspace for the subnetwork of reversible binding reactions, finding that all principal angles

were near 0. However, the remaining n eigenvectors converged to a subspace tilted π/6� π/3

away from the stoichiometric subspace.

Fig 3. Reaction network simulations and deriving stoichiometric subspaces. (a) Example complex-balanced

simulation, analyzed by PCA, shows 11 small eigenvalues, as expected from the simulated network’s structure, leading

to a gap (red line) that grows larger with time. PAD shows that the span of these 11 eigenvectors converges to the true

stoichiometric subspace. The 10th and 11th eigenvalues decrease slower than the others, due to slow reactions in the

simulation. (b) An example GRN simulation for n = 7 is shown. From PCA, a gap in eigenvalues occurs at the expected

dimension of the stoichiometric subspace (red line), as well as after the 35th eigenvalue. From PAD, the first 35

eigenvectors span the same subspace as the reversible binding reactions. The remaining 7 eigenvectors before the gap,

whose eigenvalues are not as small, span a log-linear space tilted away from the stoichiometric subspace by angles

between π/6� π/3. Simulation parameters and networks for both examples are provided in S1 Data.

https://doi.org/10.1371/journal.pcbi.1007311.g003
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To understand the convergence of the reversible reactions and the n-dimensional tilt, con-

sider a simple example of 2 genes’ concentrations, gA, gB, that of their protein products pA, pB,

and one protein-bound gene, gBA. In this case the steady state equalities include:

dgA
dt
¼ �

dgBA
dt
¼ rgBA � fgApB ¼ 0

from which we retrieve the reaction vector for the reversible binding of protein B to gene A.

Now, setting the rate of change of protein B to zero, by substitution we have:

dpB
dt
¼ kBgB � dpB þ rgBA � fgApB ¼ kBgB � dpB þ ð0Þ ¼ 0;

giving an orthogonal vector that connects gB and pB in a 1 and −1 ratio, even though this is not

a reaction vector. Finally, we have

dpA
dt
¼ kAgA þ kBAg

B
A � dpA ¼ 0;

which does not give a log-linear relation. However, in various limiting cases, it is still possible

to recover an asymptotically log-linear relation. For example, consider the common scenario

in which protein B is an activator for gene A, so that kBA � kA:

logðkBAg
B
A þ kAgAÞ ¼ logðdpAÞ

logðkBAg
B
AÞ þ logð1þ

kAgA
kBAgBA
Þ ¼ logðdpAÞ;

and for small � ¼ kAgA=kBAg
B
A, we recover a log-linear relation by a Taylor expansion of the mid-

dle term to zero’th order:

logðkBAg
B
AÞ þ

kAgA
kBAgBA

� logðdpAÞ

logðgBAÞ � logðpAÞ � logðd=kBAÞ � �:

This possibly explains the origin of the n eigenvectors that we observe to be tilted relative to

the stoichiometric subspace: there are n such
dpi
dt terms in the simulation, each giving an orthog-

onal vector� (1, −1) (the first coordinate being the ith protein species and the second being

the most active bound-state of the ith gene), which is tilted π/4 from the ith protein’s reaction

vector (1, 0). In our simulation, multiple protein-bound variants existed for any gene, which

adds � error terms that may skew the angles further.

From this one small example, we see that log-linear constraints arise from complex-bal-

anced reactions, from a balance between production and degradation, and from a biological,

asymptotic case. We expect log-linear constraints to be mechanistically informative, even with-

out complex-balancing, and thus our framework may be useful with further development in

the analysis of general biological systems.

In the remainder of this paper we refer to the orthogonal complement of the minimal, lin-

ear set containing the log steady state as the Effective Stoichiometric Space (ESS). The previous

examples demonstrate the potential value of the ESS for mechanistic analysis of biological sys-

tems, which may often be considered non-complex-balanced. At the very least, if one wants to

constrain an asymptotically stable reaction network model using single-cell, multiplex data, a

data-derived ESS identifies log-linear relations that must appear in the model’s dynamical
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equations; this is a fairly precise constraint, since generic polynomial equations are seldom

log-linear.

Single-cell data obtained by FACS has sparse covariance with integer

structure

We analyzed a previously published multi-parameter Fluorescence-Activated Cell Sorting

(FACS) dataset in which the levels of 11 phospho-proteins in the ERK/Akt signaling pathway

were measured in naive primary human CD4+ T-cells [16]. Measurements were made in the

presence of 14 different inhibiting or activating perturbations of the pathway. One of the per-

turbing conditions contained no signal for some phosphorylated species (most likely for tech-

nical reasons), so we did not include that condition in our analysis.

FACS data from each condition were fit with a two-component Gaussian Mixture Model

(GMM) to distinguish two empirical subpopulations, and the larger component was analyzed

further. For each condition, the covariance matrix was eigendecomposed. Each eigenvalue

spectrum showed at least one gap, denoted by an orange arrow in Fig 4a; in some cases an

additional gap was visible, attributable to timescale separation.

Gaps in eigenvalue spectra were identified by visual inspection, based on the presence of

abrupt discontinuities, but the approach is not rigorous. Principled methods do exist to iden-

tify which gaps are significant [33], but these methods apply only in the asymptotic limit when

the number of dimensions d!1, with assumptions on the noise distribution. Thus multiple

heuristic methods have been developed, such as looking for spikes in the slope of the spectrum,

to choose component numbers in PCA; an overview and comparison of some methods is

given in [41, 42]. In the current work we used a heuristic approach to gap identification; our

results could potentially be improved with future research into more automated and principled

approaches to analyzing eigenvalue spectra.

Each ESS was defined by choosing the gap farthest right. The corresponding eigenvectors

were then interpreted by linearly recombining them by row reducing their transpose with

complete pivoting [43]. This made it possible to represent the same linear subspace with

sparser vectors whose entries are normalized to an arbitrarily selected chemical species. The

resulting vectors for a particular condition, are shown in Fig 4c, with a red entry with value

1 denoting the algorithm’s chosen normalizing species in each column. Each column can be

interpreted as an effective, net reaction, in the broader sense. These data-derived ESS, for

each condition, partitioned the 11 markers into groups, implying that steady-state values of

chemical species stoichiometrically constrain each other only within these groups (see S1

Fig). The grouping from one condition was identical to that originally generated by Bayes-

ian Causal Network Inference in Sachs et al. (unfortunately, the specific condition is not

identified in the manuscript, see [16] Supplement). While the method in [16] pooled the

14 perturbations to infer causal directions, our framework regards each perturbation as a

change in the equilibrium constants and topology of the network, without imposing causal

structure.

Additionally, the recombined eigenvectors’ entries (excluding the 1s and 0s necessarily pro-

duced by row reduction) had a distinct distribution (see Fig 4b). First, most entries were near

zero (i.e. distributed between -0.2 and 0.2) which suggests a nontrivial sparseness in the span

of the selected principal components. The asymmetry of the distribution is also unexpected

(see Methods), but is a consequence of our framework: most reaction vectors involve both pro-

duction and consumption, whose entries necessarily have opposite signs, so after eliminating

the positive values of 1 generated by the row reduction algorithm, the remaining nonzero

entries of those vectors should always include negative entries. This left 83 entries smaller than
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−0.2 that in our framework are expected to correspond to small-integer-ratios, since reactions

typically have small-integer stoichiometries. We notice that the entries bias towards -1/3, -2/3,

and -1. These features are significantly different from the null expectation of a random and

sparse structure underlying the data, even when accounting for how we heuristically chose the

gaps (See S2 Appendix).

Fig 4. Peculiar properties of single-cell high-dimensional datasets (FACS). (a) Eigenvalue spectra from PCA of the

larger CD4+ subpopulations are shown for 4 of the 13 conditions (shifted to avoid overlap). Apparent gaps denoted by

orange arrows. (b) The small eigenvectors were linearly recombined by row reduction on their transpose, with complete

pivoting, for ease of interpretation. The distribution of the linearly recombined entries from all 13 conditions are shown

in a histogram (not including the 0s and 1s that are necessarily produced by row reduction), as well as with a Gaussian

smoothing kernel of bandwidth 0.04. Peaks seem to appear at -1/3, -2/3, and -1. The null distribution for random, sparse,

constraints is also shown for comparison. (c) As an example, the recombined vectors for Condition A are shown, with

bootstrapped 95% confidence intervals. Other conditions are similar in appearance.

https://doi.org/10.1371/journal.pcbi.1007311.g004
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CyCIF data covariance is also sparse and integer-like

We also analyzed a Cyclic Immunofluorescence (CyCIF) dataset that comprises measurement

of the levels and modification states of 26 antigens with a focus on phospho-states of proteins

involved in apoptosis, Akt/Erk signaling, cell cycle progression, and cytoskeletal structure. The

dataset is found in the Library of Integrated Network-based Cellular Signatures (http://lincs.

hms.harvard.edu/db/datasets/20267/). Nontransformed MCF10A mammary epithelial cells

were exposed to four different kinase inhibitors at six doses each, totaling 24 distinct condi-

tions. Data from each condition were fitted by a GMM with 1� 4 components, where one

component was always substantially larger than the rest; we refer to this component as domi-
nant, and focused our analysis on it.

The eigenvalue spectra for each of the conditions also exhibited gaps, as denoted

by orange arrows in Fig 5a. Defining each ESS using the gaps around the 10th-14th

eigenvalues, row reduction of the selected eigenvectors once again generated the

sparse, asymmetric distribution of vector entries observed for FACS data, with a bias to

integer-ratios of −1, and possibly −1/2 (see Fig 5b), although less clear than in the FACS

case. For each condition, the row reduced vectors suggest net reactions that sensibly related

the proteins involved. For example, in one condition shown in 5c, total amount of S6 pro-

tein was linked with that of mTor, and phosphorylated S6 at site S235 was linked to phos-

pho-S6 at site S240, which matches the canonical picture that these proteins influence one

another in the mTor-S6 signaling cascade [44]. However, E-Cadherin’s contribution to the

vector linking S6 with mTor, and the vector linking gamma-H2AX with PCNA, are less

expected. The former may reflect the effect of mTor on the Epithelial-mesenchymal transi-

tion (EMT) [45], and the latter may reflect the involvement of S phase (as scored by PCNA)

and gamma-H2AX in DNA repair. These biological details will require further analysis but

the key point is that single-cell microscopy (CyCIF) data resembles FACs data with respect

to sparsity, integer-ratio entries, and the appearance of sensible connections between sets of

proteins.

Data from drug-treated cells conserve covariance structure over large dose

ranges

For the CyCIF data, we analyzed the dose and drug dependence of the ESS associated with the

dominant fluorescent signal in each channel. To compare the subspaces from any two condi-

tions, we first performed PAD between all pairs of conditions, and then summarized the prin-

cipal angles θi with the metric

d ¼
X

i

y
2

i

 !1
2

that appeared in [46]. To interpret this metric, the subspaces being compared must have the

same dimension. Thus, we could not use our previously chosen gaps in the eigenvalue spec-

trum to define ESS for comparison between two conditions; instead, we chose the first 10

eigenvectors in each condition to span a rough ESS for inter-condition comparisons.

Between conditions that did and did not involve exposure to drug (DMSO-only control

samples), the ESS changed substantially, as shown in Fig 6a. This is expected, since the addi-

tion of a kinase inhibitor alters the set of reactions in the network, potentially altering the ESS.

As a toy example, consider the kinase-phosphatase-reaction system described earlier, but with

Toric reaction networks and toric geometry in single-cell, multiplex data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007311 December 6, 2019 14 / 25

http://lincs.hms.harvard.edu/db/datasets/20267/
http://lincs.hms.harvard.edu/db/datasets/20267/
https://doi.org/10.1371/journal.pcbi.1007311


two distinct enzymes E1 and E2 having the same substrate S and product P:

E1 þ S � !
k1 E1 þ P E2 þ S � !

k2 E2 þ P

F þ P � !
kr F þ S:

The steady state set is constrained by the non-log-linear relation:

d½S�
dt
¼ � k1½E1�½S� � k2½E2�½S� þ kr½F�½P�;

Fig 5. Peculiar properties of single-cell high-dimensional datasets (CyCIF). (a) The dominant subpopulations of the

MCF10A cells were analyzed by PCA and the eigenvalue spectra are shown for 3 of the 24 conditions (shifted to avoid

overlap). Some, but not all, apparent gaps denoted by orange arrows. (b) Singular eigenvectors were linearly

recombined by row reduction on their transpose, with complete pivoting. The distribution of entries is displayed,

along with a null. (c) Condition A’s dominant subpopulation’s recombined, singular eigenvectors are shown. Net

reactions link the various proteins, such as S6 with mTor, or the two phosphoforms of S6 (235 and 240). Other

conditions show similar sparseness.

https://doi.org/10.1371/journal.pcbi.1007311.g005
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Fig 6. Comparison of reaction networks between drug conditions. (a) Analyses of the ESS between conditions, as

quantified by an angle-based metric for a common cutoff of a 10-dimensional ESS. Average metric between a drug

condition and the four DMSO replicates (top) are plotted, as well as between any pair of non-zero doses of drug

(bottom), arranged by increasing dose. The cumulative distribution of the metric is shown for the pairs between

DMSO null replicates, the pairs that used the same drug, and the pairs that used different drugs. (b) Analyses of the

LDA separation between the high-dimensional marker distributions, with analogous comparisons as above.

https://doi.org/10.1371/journal.pcbi.1007311.g006
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but in the limit k1[E1]� k2[E2], i.e. one kinase being much more active than the other, we

would observe the approximate log-linear relation k1[E1][S] = kr[F][P] as the ESS. However, by

adding a drug D that decreases the active form of E1, such as by inhibition of an upstream acti-

vator or E1 itself, we can reach the other limit k1[E1]� k2[E2] at high enough doses. Then, the

observed ESS would change to k2[E2][S] = kr[F][P].

Between different doses of the same drug, the data shows the ESS remaining independent

of dose almost 50% of the time with a precision comparable to experimental error (based on

comparisons between the DMSO-only control samples), as shown in the cumulative distribu-

tion of Fig 6a. Between drugs, the ESS differed substantially:� 95% of comparisons showed a

larger difference than the null. This is consistent with the following hypotheses: 1) changes in

the dose of a drug that inhibits a protein kinase will modify kinetic constants (the rates of sub-

strate phosphorylation) or protein abundances, which is only expected to change the ESS in

asymptotic limits, and 2) different drugs interact with different enzymes of the network, result-

ing in different ESS. The dissimilarities of ESS that do occur between the same drug, do so

between dose regimes as opposed to randomly, which is consistent with dose-dependent

asymptotics. In the case of Torkinib, this may correspond to its reported polypharmacology

[47]. Meanwhile, low-dose Lapatinib and low-dose Torkinib show similar ESS, as do high-

dose Lapatinib and high-dose Selumetinib. This implies that in these corresponding dose-

regimes, the drugs have similar effects on the 26 observed biochemical species’ pathways,

which is plausible given that Torkinib’s target (mTOR) and Selumetinib’s target (MEK) are in

two pathways downstream of EGFR, which is one of the targets of Lapatinib. These biological

interpretations of the data remain preliminary, but the ESS does appear to pinpoint topological

changes in reaction network stoichiometry, independent of parameter changes.

As a more conventional analysis of differences between distributions, we also compared

conditions using the Linear Discriminant Analysis (LDA) [48] separation between the domi-

nant Gaussian components of any pair of conditions. The results are shown in Fig 6b, using

the same format as the ESS angle-metric comparisons. Almost no pairs have a separation of

comparable magnitude to experimental noise, and the magnitude of difference within the

same drug is comparable to that between different drugs. Thus, it does not appear that LDA

can discern the topologies of reactions perturbed by drugs in the same way as ESS. However,

the LDA results do tell us that between drug conditions, the mean marker expression of the

dominant populations change substantially. Changes in the mean correspond to changes in

the equilibrium constants Ki from Eq 2. Thus, the LDA result showing dose-dependent shifts,

combined with the result of dose-independent ESS, allows for a rigorous interpretation: chang-

ing drug dose induces parallel shifts of the high-dimensional distribution of cells in marker-

space, and changing the drug induces tilts of the distribution.

Discussion

Single-cell, multiplex imaging and flow cytometry (or mass cytometry [7]) are increasingly

used to identify cell states and study regulatory mechanisms. A range of computational meth-

ods have been developed to analyze the resulting high-dimensional data but most approaches

are statistical. In this paper we explore the possibility of using insights from algebraic-geometry

developed for Chemical Reaction Network Theory (CRNT) in the analysis of single-cell data.

We find that an effective stoichiometric space (ESS) can be generated from such data to guide

reconstruction of biochemical networks. In an initial test of our approach, interpretable net-

work features were obtained from both synthetic and real experimental data. The advantage

of using CRNT in this setting is that it provides a principled way to incorporate fundamental

knowledge about how biomolecules interact through time and space.
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A characteristic of sc-data is that a subset of measured features (typically the levels, localiza-

tion and modification states of genes and proteins) are observed to co-vary in individuals cells.

In the face of random fluctuation, patterns of covariance potentially contain information on

interactions between biochemical species. A key question is how this covariance information

should be analyzed to obtain insight into the underlying biochemical pathways. We find that

eigendecomposition of covariance matrices from sc-data can be interpreted in terms of net-

work stoichiometry and timescales, without model simulation, independent of kinetic parame-

ters, and unhindered by unobserved species; the latter point is critical because most single-cell

data is sparse with respect to the number of reactants than can be measured. These features of

the ESS approach are a direct consequence of toric (log-linear) manifolds that arise from an

assumption of mass-action kinetics applicable—at least approximately—to a broad class of net-

works, and hold even under the looser requirement that a steady state is a subset of an approxi-

mately toric manifold. If the steady state set fulfills this requirement, the ESS also requires that

the steady states be asymptotically stable, and that single cells have reached the exponentially

stable neighborhood of these steady states at the time of observation. This is looser than requir-

ing that cells be at steady state or quasi-steady state, further expanding the situations in which

the ESS framework is informative and applicable.

We tested our approach using synthetic data derived from various simplified reaction sys-

tems and also showed that it can be applied to FACS and multiplex imaging datasets. We

extract features from the data that are consistent with an interpretation in a reaction network

framework: integer-like stoichiometries for interacting species, and independence of network

topology on the dose of a single drug used to perturbed the network. Other kinds of sc-data,

such as mass cytometry or sc-RNAseq, can potentially be analyzed using the same approach.

Because this paper focuses on the theoretical aspects of toric geometries as applied to sc-data,

we have not yet tested any of the biological conclusions derived from the analysis of experi-

mental data. However, the interactions we infer are consistent with current understanding of

well-studied human signal transduction networks and with previous publications [16]. More

extensive single-cell experiments will be required to fully test the potential for ESS analysis to

generate new biological insight.

Simulation of synthetic complex-balanced networks and GRNs suggests ways to tailor reaction

network ODEs to better match sc-data. Assuming that the primary goal in fitting a network to

data is to match the mean μ and covariance S of key analytes, our results show that it is possible

to predict a partitioning of the eigenspace of Swithout actually simulating the ODE network,

under the assumption of toric geometry. To accomplish this fitting, it is necessary to account for

initial conditions to predict μ and the exact eigendecomposition ofS, but this may still be possible

in the absence of simulation. Such an approach would not only take advantage of information

unique to single cells, but may also make it possible to parameterize models too complex for con-

ventional fitting (this is important because fitting conventionally involves many rounds of simula-

tion and is computation-intensive). Because it has explicit connections to CRNT, such a method

could be used in conjunction with other recently developed applications of CRNT for data-con-

strained, ODE model selection [49–53]. This provides a principled way to choose among models

with different components and topologies, a common goal of systems biology modeling projects.

One limitation of the network analysis approach described here is that identifying gaps in

the eigenvalue spectrum is a heuristic procedure. Unfortunately, this is true of most other

applications in which it is necessary to identify cutoffs in eigenvalue spectra. The relatively low

dimensionality of FACS and CyCIF datasets further limits the applicability of those principled

approaches that are available, including methods in random matrix theory. However, for

larger datasets it will potentially be possible to apply principled methods for identifying gaps

that are statistically significant.
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Cell regulatory networks are characterized by multistability and limit cycles. The relation-

ship between our analysis and such network structures remains unclear and will require fur-

ther theoretical work. Multistable, toric steady state sets exist, with many biologically relevant

ones studied recently in the class of toric MESSI systems [31], but there are many circum-

stances in which multistable states are not toric. Perhaps such non-toric sets can be approxi-

mated as toric in various limiting regimes, but even then, certain parts of the steady state set

must necessarily be unstable to support multistability. For limit cycles, the expected geometry

is not necessarily algebraic, although one might hope that the limit cycle is contained in an

almost-toric manifold, so that our approach is still informative. Exploring these and other

issues requires further development of the connection between the sc-data and CRNT.

The promise of the ESS approach is that it provides a potentially powerful but as-yet unex-

plored, geometric framework for linking features in sc-data to reaction networks. This is a par-

allel to recent geometrical analysis of CRNT, in which toric varieties have played a key role.

Toric varieties have aided in characterizing the central CRNT concept of complex-balancing

[25] and they have also enabled systematic determination of kinetic parameters that give rise

to multistability for large classes of networks [54], including biologically relevant networks

such as the MAPK pathway [30]. In the context of sc-data, we leverage toric geometry to study

the reactions underlying cellular phenotypes without having to perform simulations, which

can be difficult with sparse and complicated data. Despite the fact that some network steady

states do not necessarily conform to toric geometries, the CRNT framework as accessed

through ESS is a closer approximation to the reality of biological networks than the statistical

and dimensionality reduction approaches (clustering, tSNE etc.) that currently dominate data

analysis. With further development of the ESS approach, it should be possible to use CRNT to

formulate mechanistic hypotheses from data in the absence of simulation and then subject the

hypotheses to empirical tests.

Methods

Sc-covariance matrix from complex-balanced reaction networks

For any complex-balanced reaction network G, the steady state set E is log-linear, so as t!1,

each logð~ciðtÞÞ approaches a linear subset V ¼ logðEÞ. Therefore, in the limit, the sample

covariance matrix is singular, and its singular eigenspace S � V?, the orthogonal complement

of V. Complex-balancing implies that V? = S, the stoichiometric subspace of G [25], so S � S.

The equality S ¼ S arises when the distribution of~v �~ciðtÞ, where i indexes over all cells, at

t = 0 has non-zero variance svðtÞ � Varð~v �~ciðtÞÞ for all~v 2 V. Splitting the chemical concen-

tration space into vector-additive cosets of the stoichiometric subspace S, all trajectories of a

complex-balanced system remain within the coset, by forward-invariance of these cosets. By

orthogonality of V to S, σv(t) is time-independent. If σv is non-zero for all v, then the variance

in log-concentration space of~v, given by~v � logð~ciðtÞÞ cannot be zero. Therefore,~v =2 S, so

S � V?. Together with the previous inclusion, S ¼ V? ¼ S, as t!1.

There is a unique steady state point ce in each coset of a complex-balanced reaction network

[24], which has an exponentially stable neighborhood. The Global Attractor Conjecture, for

which a proof was announced [55] but has not yet been peer reviewed, suggests that all com-

plex-balanced reaction networks are globally asymptotically stable (relative to a stoichiometric

coset), so for sufficiently long T, any finite collection of trajectories uniformly enter their expo-

nentially stable neighborhoods. After this time T, any two trajectories c1(t) and c2(t) on the

same coset obey

kc1ðtÞ � cek � akc1ðTÞ � ceke� bðt� TÞ; kc2ðtÞ � cek � akc2ðTÞ � ceke� bðt� TÞ
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and so by the triangle inequality,

kc1ðtÞ � c2ðtÞk � kc1ðtÞ � cek þ kc2ðtÞ � cek � aðkc1ðTÞ � cek þ kc2ðTÞ � cekÞe� bðt� TÞ;

which gives a monotonically decreasing, upper bound on the distance between any pair of tra-

jectories in a coset. As distance between these trajectories decreases, their variance decreases.

As long as the steady state set has no boundary states (nontrivial equilibria with zero concen-

tration for some chemical species), the logarithm of concentrations will also have a uniform

upper-bound which decreases with time, after some time T0.
While the variance along the orthogonal complement of V decreases to 0, the variance

along V remains non-zero, so the eigenvalues of the covariance matrix separate into those that

are non-zero (large) and those approaching zero (small). Assuming no further network struc-

ture, at sufficiently large times, we consider the distribution of trajectories as a spiked popula-

tion model in which the small eigenvalues follow a Marchenko-Pastur density with rescaled

support [33], while the large eigenvalues lie outside its support. This forms a gap.

Furthermore, if the reaction network has a subnetwork with separably faster rates of con-

vergence than the entire network, additional gaps may occur. In the case of detailed-balance

reaction networks, this follows from a singular perturbation approach: Giovangigli et al.

showed that for separably fast and slow reactions in such networks, the critical steady-state

manifold is equivalent to the steady-state manifold of a network containing only the fast reac-

tions [35]. Therefore, trajectories first converge to Vfast� V, leading to a gap between the fast,

small eigenvalues and the slow, larger eigenvalues.

Log-linearity despite unobservables

Given a D-dimensional log-linear set in RN
, parameterize it by a D-dimensional vector of

parameters~p and D corresponding column vectors f~vig � R
N that span the set s.t.:

logð~cÞ ¼ ½~v1 . . .~vD�~p þ logð~c�Þ

for some point~c� in the set that determines the translation of the affine set. For A � ½~v1 . . . ~vD �,
the orthogonal complement SN is the null space of AT.

Split the matrix A horizontally into two matrices, Aobs, and Aunobs, corresponding to n
observed chemical species and N − n unobserved species. The vector whose coordinates are

the observed species,~cobs, are parameterized by

logð~cobsÞ ¼ ½Aobs�~p þ logð~c�obsÞ

A ¼
Aobs

Aunobs

" #

where the chemical species are rearranged for convenience, without loss of generality. There-

fore, provided n> D, the data still lies in a nontrivial, log-linear set.

Now we show that the orthogonal complement of Aobs, Sn � NullðAT
obsÞ, is a meaningful

subspace:

Sn � 0N� n ¼ SN \ ðR
n � 0N� nÞ

where 0N−n is the zero-vector in the (N − n)-dimensional unobserved space.
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Proof: For the forward inclusion, observe that Sn � R
n, and simultaneously that Sn� 0N−n

� SN, because for all~v 2 Sn,

½AT�ð~v � 0N� nÞ ¼ ½AT
obs j A

T
unobs�ð~v � 0N� nÞ ¼ ½0þ 0� ¼ 0;

since by definition of~v, ½AT
obs�~v ¼ 0.

For the reverse inclusion, a vector in ðRn
� 0N� nÞ takes the form ~w � 0N� n, and being in SN

indicates that

0 ¼ ½AT�ð~w � 0N� nÞ ¼ ½AT
obs j A

T
unobs�ð~w � 0N� nÞ ) ½AT

obs�~w ¼ 0

and therefore ~w � 0N� n 2 Sn � 0N� n.

Simulation of random networks

ODE simulations of each reaction network were performed with the ode15s function in

MATLAB. For each network, 300 initial conditions were chosen from a log-normal distribu-

tion with equal log-variance for all chemicals. Specific sampling distribution parameters are in

Table 1.

Complex-balanced networks. All complex-balanced networks were chosen to have

n = 20 chemical species. Complex-balancing is defined via the digraph with nodes representing

complexes, such as A + B, and edges representing reactions between complexes. A sufficient

condition for complex-balancing is for a network to have deficiency equal to 0, and be weakly
reversible. Deficiency δ is defined as

d ¼ n � l � s

where n is the number of complexes, l is the number of weakly connected components, termed

linkage classes, and s is the dimension of the stoichiometric subspace. Weak reversibility

amounts to all nodes belonging to a strongly connected component.

Each random network was generated with all the nodes representing complexes containing

either a single species, or any pair of species. Then,� 0.03% of the possible edges were stochas-

tically chosen. The graph was then symmetrized by adding all the reverse edges, to ensure

reversibility. Rate constants were randomly assigned from a log-normal distribution (see

Table 1). Many such networks were generated, and only the ones with deficiency zero were

simulated.

Gene regulatory networks. For the GRNs, for n genes,� 70% of the possible protein-

bound genes Gj
i were chosen stochastically. Kinetic constants for each type of reaction were

chosen from log-normal distributions whose log-mean and log-variance are shown in Table 1.

The GRN simulations were not complex-balanced, both because the particular arrangement

of irreversible reactions violate weak reversibility, and because the deficiency of the networks

were large, indicating a measure zero probability of being complex-balanced.

Linear fluorescence assumption

The framework calls for analyzing chemical concentrations~c. Both FACS and CyCIF data con-

tain fluorescence intensity signals instead of the actual concentrations, but our method still

applies if the ith chemical species’ signal Ii = ki � ci for some constant ki for the cells in one sub-

population. Assuming an excess of antibodies for both the experimental setup of the FACS

and CyCIF data, this is simply the requirement that detection is in the linear regime.
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The method still works because the ki’s would only result in a shift of the affine subspace V.

For any log-linear constraint on the~c

logðKÞ ¼~r � logð~cÞ;

the observed constraint in terms of~I is

logðKÞ þ~r � logð~kÞ ¼~r � logð~IÞ:

Gaussian mixture modeling

Both FACS and CyCIF data were fit with Gaussian mixture models (GMM) to match visible

clusters. Cells from any single condition were fit with k components, with k chosen based on

abrupt decreases in the incremental likelihood gain for additional components, while also pre-

venting the splitting of visible clusters in the data.

GMMs were fit using the fitgmdist function in MATLAB 2016b, allowing the Expectation

Maximization algorithm to run to convergence for at least 20k different initializations chosen

by the k-means++ algorithm.

Null distribution of row reduced vector entries

Assuming sparse, random, linear constraints on a distribution, the covariance matrix would

have singular eigenvectors whose span can be given by sparse vectors with random orienta-

tions. For either the FACS or CyCIF data, the null was given by row reducing s vectors whose

entries were chosen uniformly between −0.5 and 0.5, and subsequently made sparse at random

entries. The dimension of the constraints, s, was chosen to be similar to that selected for each

datasets’ stoichiometric subspace, and sparsity was set equal to the percentage of the zero-cen-

tered peak of the data’s entry-distribution in a window between −0.2 and 0.2. Gaussian noise

was added to the final row-reduced vector entries, with variance matching that of the zero-cen-

tered window. Both null distributions were generated by Gaussian kernel smoothing of 1000

such sets of s row reduced vectors’ entries.

Confidence intervals for row-reduced vector entries

The 95% confidence intervals for the row-reduced vector entries in Fig 4 were calculated by

bootstrapping for 1000 replicates. Each time, the original data was resampled with replace-

ment, before fitting a GMM with the same number of components as for the original data.

Then, the stoichiometric subspace was chosen with the same dimension. Finally, row reduc-

tion was performed with the same column and row rearrangements as was done in the original

data, instead of using the complete pivoting algorithm, to keep entries consistent between

replicates.
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S1 Appendix. Steady state analysis of network (3) with unobservables.
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S2 Appendix. Probability of manual gap choice producing observed vector entry distribu-

tion.
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S1 Fig. Interaction network from FACS. Given recombined, singular vectors for the condi-

tion of activation with anti-CD3, anti-CD8 and inhibition of Protein Kinase C with G06976,
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we drew an edge between biomarkers if any vector entries had magnitude larger than 0.2.
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S1 Data. Simulation parameters and reaction networks for Fig 3.

(ZIP)

Author Contributions

Conceptualization: Shu Wang, Eduardo D. Sontag, Peter K. Sorger.

Data curation: Jia-Ren Lin.

Formal analysis: Shu Wang, Jia-Ren Lin, Eduardo D. Sontag.

Funding acquisition: Eduardo D. Sontag, Peter K. Sorger.

Investigation: Shu Wang, Jia-Ren Lin, Eduardo D. Sontag.

Methodology: Shu Wang.

Supervision: Jia-Ren Lin, Eduardo D. Sontag, Peter K. Sorger.

Visualization: Shu Wang.

Writing – original draft: Shu Wang.

Writing – review & editing: Shu Wang, Eduardo D. Sontag, Peter K. Sorger.

References
1. Bendall SC, Nolan GP. From single cells to deep phenotypes in cancer. Nature Biotechnology. 2012; 30

(7):639–647. https://doi.org/10.1038/nbt.2283 PMID: 22781693
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S1 Appendix. Steady state analysis of network (3) with unobservables.
This network is deficiency zero, and weakly reversible, so it is complex-balanced.

Additionally, there is one connected component of the reaction network, so [1] tells us
that at steady state, for every pair of nodes x, y, the ratio of their values is

x

y
=

Ky

Kx
,

where Kx,Ky are defined based on the adjacency matrix of the network. Specifically,
given the n× n weighted adjacency matrix A for the n nodes, where the kinetic
constants ki are the weights, we construct the Laplacian Ak of A, by subtracting the
sum of each row from the corresponding entry of the diagonal. Then to determine Kx,
we remove the x’th column and row from Ak, denote it Ak\x, and calculate its
determinant up to a sign. Rephrased as a formula:

Kx = (−1)n+1 det(Ak\x) .

In our example, KB would be calculated as:

A =

 0 k1 0
0 0 k2
k3 k−2 0

 Ak =

 −k1 k1 0
0 −k2 k2
k3 k−2 −k3 − k−2


KB = (−1)3+1 det

([
−k1 0
k3 −k3 − k−2

])
= k1(k3 + k−2).

The quantities KA,KC can be calculated similarly, and their ratios are the constants
in the steady state constraints describing (3).

Geometrically, the steady state set E specified by

KB/KA ≡ K1 = [A]/[B] KC/KA ≡ K2 = [A]/[C]

can be parameterized by t as a line:

([A], [B], [C]) = (t,K1t,K2t).

Supposing we only observe A and B, we are left with the line

([A], [B]) = (t,K1t)

which, after taking the logarithms of each coordinate, becomes

(log([A]), log([B]) = (log(t), log(K1) + log(t)),

or in a different form, taking T = log(t):

(log([A]), log([B]) = (0, log(K1)) + T (1, 1).

The orthogonal complement is spanned by (1,−1), since (1,−1) · (1, 1) = 0. This
signifies the existence of a net balancing reaction between A and B in the full,
unobserved network.
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S2 Appendix. Probability of manual gap choice producing observed vector
entry distribution

In the FACS dataset, choosing a gap after k eigenvalues gives k eigenvectors each
with d = 11 entries. Some of these dk entries will be forced to 1 or 0 after row reduction,
and so only (d− k)k entries are independent. In our data, we typically chose k = 7,
leading to 28 independent entries. In the worst case, we could choose k = d− 1, leading
to 10 free entries. Consider the observation that the distribution of entries was almost
entirely negative or 0. For one condition, the probability of a given gap choice
producing that asymmetry for a random set of vectors is at most ∼ ( 12 )

10, and the
chance that at least one of the 10 gap choices gives the asymmetry is ∼ 2× 10−3.

However, suppose that we include sparseness of the vectors in our null to match the
observed vectors’ sparseness, leading to a gap that includes k eigenvalues to specify ∼ k
nonzero, independent entries that are equally likely to be positive or negative. Most of
our gaps had at least k > 5. The probability of k entries all being negative is ∼ ( 12 )

k, so
that for a random dataset with sparse structure, the chance of any such gap existing is∑10

k=6(
1
2 )

k ∼ 0.03. Pessimistically assuming that all 13 samples had identical structure,
0.03 is the probability that a random, sparse structure would even admit a gap choice
that produces the observed asymmetry. This probability decreases further if we had
lower sparsity, or if we account for the 13 samples having at least partially different
structure due to the difference in perturbation conditions between them.

Additionally, our entry distribution showed peaks. The probability of the observed
peaks’ prominence, ppeak, is independent of the probability of asymmetry, although
harder to estimate. Therefore, the probability that a dataset would even admit gap
choices that produce the key features of our entry distribution is < (0.03)ppeak.




