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Foreword

In Europe and North America the competence in softwarc engmeenng research has differ-

. ent profiles. While in North America there is a lot of know how in the practical, technical,

and organisational aspects of software engineering, in Europe the work concentrates more
on foundations and formal modelling of software engineering issues. Both approaches have
different strengths and weaknesses. Solely practice driven research in software engineering
is in the danger of developing into a shallow field and could fail to find a solid scientific
basis and contribute substantxally to the progress in software engineering. Work concen-
trated on formal aspects only is in the danger of becoming too theoretical and isolated
from practice such that any transfer into practical application will fail. :

Substantial progress in software engineering can be achieved by bringing together
pragmatic and foundational work in software engineering research. This can provide a
step towards ‘a more common scientific basis for software engineering that allows us to
integrate the various results of research and workshops, leading to fruitful synergetic
effects. It will also help to identify critical research paths and developmg an adequate
paradigm for the scientific discipline of software engineering.

It was the goal of this workshop to bnng together experts from scxence and pra.ctxce
in software and systems engineering from North America and Europe.

. Insoftware and systems engineering it is necessary to d:stmgmsh the enormous dxﬂer— .
ence between the dynamics in development we refer to and the limited scope assumed by

many of today’s software managers that still use outdated techmques Many of the un-
solved problems associated with the old techniques are symptoms of la.ck of formahzatlon'
and lack of automation support.

The intended focus of the workshop was on unified sets of formal models and assocxated
methods suitable for automation for many aspects of software development in particular
those that address change and those that apply on a large scale Some of the intended
aspects of software evolution are

. modiﬁable software architectures,

e resource changes,

o context changes,

e requirements changes,

e changes to decomposition structures, and

» changes in plans.

These issues are related to- formal representations of the version history, and formal
representations of the activities that produced ex1st1ng versions or have been proposed to
produce future versions.



The essence of the problem is to establish and maintain consistency among various
kinds of software artefacts throughout the development and evolution process, including
consistency between requirements, architectures, and programs. Automation support
is needed to determine dependencies and to use this dependency information to provide
decision aid for software synthesis, analysis, and évolution. Many versions of each artefact
are produced as the software evolves, and changes to the dependency structure must be
recognised and reacted to. The challenge is to better formalise the problems in this area,
and to develop some of the badly needed technical solutions.

If we as a community can succeed in this, the results will provide convincing evi-
dence that formal methods can have strong practical value, and help reverse the trend of
weakening support for the subject from both industry and governments. It seems that
previous work on formal methods can be applied to problems related to these topics, but
it may require non-traditional approaches. The challenge helped to trigger new ideas at
the workshop, and perhaps opened new opportunities for progress.

Tt is well recognised in the meanwhile that software and systems engineering as an
important issue in technical systems still lack a proper scientific basis. The many -efforts
in academia, especially under the heading formal methods, towards such a scientific basis
have produced many valuable and interesting scientific results; however, most of the work
of integrating this with the practice of software engineering is still missing. Nevertheless,
we can observe a starting trend to bring together practical considerations and approaches
with scientific results. A good example is the Unified Modelling Language that recently
was designed and still will evolve. The fact that a proper semantic basis is needed for a
proper methodological support is much more recognised than in its predecessors. Nev-

_ertheless, more efforts are necessary to give the scientific research more focus w.r.t. “the
questions that are important for practice and to stimulate a transfer between academia
and application. It was the goal of the workshop to contribute to this task.

The workshop took place in early October 1997 in Bernried in Germany. It fulﬁlled
the expectations formulated above. It is our pleasure to thank Sascha Molterer for his
excellent help in organising the workshop and the Army Research Office and in particular
Dave Hislop for the generous financial support. ‘

March 1998 v Manfred Broy, Bernhard Rumpe
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A Discipline for Handling Feature Interaction
Egidio Astesiano -~ Gianna Reggio ;
; ‘ DIST . .

Dipartimento di Informatica e Scienze dell’Informazione
~ Universita di Genova ' '

" Via Dodecaneso, 35 - Genova 16146 - Italy
{ astes,reggio }@ disi.unige.it
http:ﬁww.disi.unige@it ‘

1 Introduction

‘Evolution in software development has many facets. One which emerged in the last
five years, especially in the area of telecommunications and networking, is the ‘continual
expansion of services. Recognizing that objected-oriented incrementality is not adequate
to cope with this new problem in full generality, the concept of “feature” as uhit of update
has been introduced, see e.g., [10], and taken as a pivotal unit for even new paradigms,
like feature-oriented programming, feature-oriented specification and so on 17 '

In spite of the considerable effort (see some pointers to recent work at the end), still
many issues deserve further attention and investigation, as it is admitted by the special-
ists of the subject, also taking into account the growing complexity of the applications
conceried. ‘Amorng the issues, feature composition and interaction is ‘definitely the one
attracting most attention. This is also witnessed by the success of an International Work-
shop on Feature Interaction, now reaching in ‘98 its fifth edition. In particular 2 Tot
of work is reported on the so-called feature interaction detéction, possibly done’ auto-
matically. According to this viewpoint, feature interaction is synonym with unexpected/
unwanted results. © P ' : S 8
* * We are among those sharing the view that the problem of feature-interaction should be
tackled within a wider methodological approach. This view is best expressed by Pamela
Zave in {10], who calls for “an approach based on modular specifications and separation
of concerns .. .(aimed) to organize the specification so that it is easy to add without de-
stroying its structure or desiderable properties”. This is indeed the underlying challenging
problém; again in P. Zave’s words “the goal of extendible specifications is as difficult to
achieve as it is easy to state”. For example, in the realm of reactive and concurrent sys-

- tems, the-classical approach to incremeéntality has been based on the notion of process/
agent as unit of change; feature-driven incrementality deals instéad with incrementality
within a process and refers/affects the behaviour of the pre-existing processes. '

In this paper we want to outline a specification framework supporting a feature-driven
software development method with rigorous semantics, offering conceptual tools for ex-
pressing requirements on unwanted interactions. The framework intends to be adaptablée

1
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_to a variety of different application fields, like telecommunications, information systems;

clearly, depending on the application, sensible domain specific methods should be derived.

The specification framework we present is built over a general specification formalism

for reactive and concurrent systems (labelled transition logic [1]), already supporting

~ componentwise riodularity. Its adaptation to feature-driven modularity is based on the

key principle of supporting the séparation of concerns by factorizing the specifications.
Indeed we basically provide various levels of control oninteractions:

- with every feature some interaction requirements are associated, intended to provide
constraints on the outcome of 1ts composxtxon with other features;

o for the composition, a flexible concept of compatxblhty is introduced, factorized
in turn w.r.t. the different components of feature specifications; thus a choice i is
possible between different compatxblhty cnterxa, ~

e then composxtlon is allowed only for compat1ble pairs and follows a general schema.

The developer is guided to analyse the outcome of the composition by looking at
different possible kinds of interactions, whose goodness or “badness” may depend on
the application. ~

‘Let us now outline from a more detailed techmcal vxewpomt the main features and
perhaps noveltxes of our proposal .

A system is modelled by a labelled transition system (Sect. 2. 1), whose states are sets
of attribute values (as in many O-O approaches); the transitions denote action capabilities,
with the labels indicating the exchanges with the external environment; transitions can
be grouped under action names, essentially 1nd1catmg the kind of event to whxch the
transition refers, for the purpose of feature composition. -

In this paper we restrict ourselves to consider simple systems, i.e. we dlsregard the fact
that a system may be composed by other subsystems; this is not a restriction from-the
methodological point of view, but the introduction of oomponent modularity poses further .
interesting technical problems, which are the subject of some still ongoing investigation.

We address the specifications at the design level, namely for characterizing essentially
one system; this is achieved by associating a labelled transition system with a specifica-
tion. A feature specification is basically the specification of a labelled transition system
with some interaction requirements, i.e. formulae constraining the result of adding other-
features. S

Together with a bastc semantics (the associated labelled transition system), we in-
troduce the novel concept of complete semantics, which consists of all the specification
models satisfying the interaction requirements, under a kind of anti-frame assumption:
an attribute value may be changed unless its invariance is explicitly stated. The concept
of complete semantics plays a major role in composing features and understanding their
interaction. In order to reason about complete semantics (which usually admits infinitely -
many models), we propose 2 kind of canonical labelled transition system representation
(an abstract interpretation), which allows to reason concretely about systems mcludmg
other features.

Both concepts, basxc and complete sema.ntlcs apply in turn to the result of feature
composition, which is again a feature. The analysis of feature interaction is done against

RTSE'97, p.8



the original features at the basis of the result of their composition; this comparison can
be done w.r.t. different interaction criteria, some of which refer to a comparison of the
overall behaviour, provided by a notion of feature simulation, reminiscent, but different
from the classical (bi-)simulation of CCS and process algebras.

In this paper we try to illustrate the concepts by examples, mtroducmg formalmes
only when required. Necessarily we' discuss toy-examples, but an extended specification
case study around the well- l\nown telephone systems has been specified and analysed with
our technique.

2 Feature Spec1ﬁcat10ns and Thelr Semantics

2 1 Slmple Reactive Systems

We distinguish réactive systems in simple and structured or concurrent; the latter are those
having cooperating components, which are in turn reactive systems (simple or ‘structured).
To model reactive systems we use labelled transition systems (see [6])
A labelled transition system (shortly Its) is a triple

(STATE, LABEL, )

where STATE and LABEL are two sets, the states and the labels of the system, and
~» € STATE x LABEL x STATE is the transition relatwn A triple (s,1,s') €~ is said

a transition and is usually written s e

A reactive system R is thus modelled by an lts LTS (STATE LABEL, —)) and

an initial state sp € STATE; the states reachable from s, represent the intermediate
(mterestmg) situations of the life of R and the arcs between them the possibilities of R of
pa.ssmg from a state to another one. It is important to note that’ here an arc (a transition)

s s has the following meaning: R in the state s has the capabzhty of passing ‘into
the state s’ by performmg a transition, where label ! represents the interaction with the

external (to R) world during such move; thus { contains information on the conditions
on the external world for the capability to become effective, and on the transformation
of such world induced by the execution of the action; so transitions correspond to ection
capabilities. Later on we will see the use of labels, which, as in CCS ([6]), allows to
represent open systems and their composition to build concurrent systems.

Here we assume that the states of simple systems are modelled by heterogeneous
tuples with named components (records); accordingly to an O-O terminology they are
determined by a set of attributes. Furthermore the labels are described by “constructors”
‘possibly parameterized corresponding to the various kinds of interaction with the external
world of the system. We do not give the precise syntax of our specxﬁcatxons, but Just
present an example o

Example 2. 1 Slmple system specxﬁcatlon Asan example, consider the speclﬁcatxon
of a simple counter whose value may be mcremented decremented and reset to 0.

RTSE'S7, p.9
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simple system COU \ITER_S[c]
data . NAT
attrs VAL: nat
interface INC, DEC, RESET()
activity i:c e, VAL + 1/ VAL
if VAL > 0 then D:c -2£%, (VAL - 1/ VAI]

R:c —EET, o/ VAL

- NAT is a specification of natural values with a sort nat given elsewhere. This system
has just one attribute VAL of type nat and three label constructors INC, DEC,
RESET, in this case they are not parameterized, corresponding to receive the three
corresponding commands. We use the keyword interface for the specification part '
introducing the labels, because in our setting labels are really the interface of the
specified reactive system. The signature of NAT, the list of the attributes with
their types and of the label constructors with the types of their arguments give the
“signature” of the specification.

— ¢ is the generic name for a state of the system.

- The activity of the system (labelled transitions) is specified by the conditional rules
in the activity part: the system has a transition iff such transition is obtained by
instantiating a rule in a way that the premises hold. In any state 'COUNTER.S may
perform a transition labelled by INC incrementing by 1 the value of the attribute
VAL and can be reset putting VAL to 0; while it may perform a transition labelled
by DEC only if the value of VAL is bigger than 0 and in such cases VAL will be
decreinented by 1. _[_/.] as usual denotes the update operation.

.1, D and R denote the “actions” to which the traasntxons belong; their role wxll be
explamed in Sect. 3.1. :

The semantics of COUNTER.S is essentially (because it includes also the used data
structures, just a many-sotted first-order structure) given by the lts graphically depxcted
below In this paper for simplicity we call Its also these richer structures.

. RESET
l RESET

gl o mc L WC

= #- > ) >
3= Te——3
> bpec = .DEC B

The form of the given specification is a friendly, but rigorous, notation in an 0-O
style; it can be expanded, in a canonical way, into the following 1** order many-sorted
specification with positive conditional axioms (Horn clauses), then the associated lts is the
one obtained by logical deduction (this is what is called “initial” model in the algebrau:
community); see [9].

RTSE’97, p.10



COUNTERS =

use NAT .
sorts state, label, act
opns 1,D,R: > act
opns {-): nat — state

VAL: state — nat
./ VAL]: state nat — state
INC, DEC, RESET: — label
axioms VAL({(n)) ==
(n)n'/ VAL} = (n')
n= VAL +1 D ke <% on/VAL]
VAL(c) >0 A n= VAL(c) -1 D D:¢ -—) c[n/ VAL]

n=0>R: c——lﬁE—Z—)c[n/VAL]

End example

2.2 Feature Specifications

Intuitively a feature specification for simple reactive systems is a partial description of
a simple system, intended as a description of only some “parts” of that system; in our
setting these parts may be some basic data, part of the states (some attributes), part of
the interface (some label constructors) and part of the activity (some action capability’
descriptions or partial descriptions of some action capabilities).

Technically this partial description may be just a simple system specxﬁcatlon as mtro—
duced in Sect. 2.1. But, in our approach, a specification of a feature has another strongly
relevant component, na.mely the interaction requirements, a descrxptxon (specxﬁcatxon) of
'the a.llowed mtera.ctlons with other features. : ‘ :

Example 2.2 Counter as a Feature We specxfy a feature for simple systems,‘
COUNTER, corresponding to have a counter with somie commands for modifying it, just
by adding to the system specification COUNTEILS of Ex. 2.1 an interaction requirerient
part, oonsxstmg of:

if azc =5 ¢ and VAL # VAL then (I = INC or ! = DEC or I = RESET).
Here and in the following we shorten VAL(¢) to VAL'. The above axiom requires that

4

any added feature cannot modify the attribute VAL as a result of a transition with labels .

different from INC, DEC or RESET. Thus other features may, ¢.5., add new attributes
and extend transitions labelled with INC or DEC or RESET to act on them, while 1t is-
not possible to add transitions modifying VAL with new labels.

Below we give an example of a simple system incorporating this feature, i.e. obtamed
by adding another feature to COUNTER and satisfying the interaction reqmrements
This provides an exa.mple of 2 “good” interaction with COUNTER

sxmple system COUNTER TIME[c]
data  NAT
attrs VAL, TIME: nat

interface INC, DEC, RESET, TICK ()

activity ke —C, c[VAL+ 1/VAL][TIME+ 1/ TIME]

5,
- RTSE'97, p.11.



if VAL > 0 then D:c 25 (VAL — 1/ VAL)|TIME + 1/ TIME]

R:c —RESET, ol0/ VAL TIME + 1/ TIME)

T:c XK, (TIME + 1/ TIME]

Its semantics is essentially the lts graphically depicted below.

RESET RESET l;lacs'xﬂ
TICK TICK
VAL =0 - =
VAL=0 TICK =1 yaL=0

VAL =1

VAL =2
TICK=0 TICK =1

As an exami)le of “bad” interaction let us consider the system whose semantics is
depicted below. In this case the attribute VAL is changed by transitions with a new label
(INC2). : :

_ RESET

. _ RESET
RESET
& A INC 8 N
E 4 INC I ] [}
3 2 3 3
’i DEC >l DEC 7 DEC >1
| .
_INCZ Y] . 1

. S INC2
End example

An interaction requirement for a feature F is a formula of an appropriate logic express-
ing some property of a generic system obtained by adding other features to F. There are
many choices for the logic to use, e.g., first-order, temporal-logic, but also non-standard
logics for expressing conditions on the added attributes and label constructors. Here
we prefer to allow only interaction requirements having a very precise form, both for
methodological (only sensible properties are expressed) and for technical reasons (the for-
mal setting is simple enough but has interesting characteristics). Experiment with more
realistic examples will help to find out a good choice.

Here the general form of an interaction requirement is

if a:s -+ & then cond C
where ‘@, s, 1, s' are variables of the appropriate types, cond is a first-order formula on
a, 5, | and ¢, built using only the signature of the basic data structures, the operations
extracting the value of the attributes from the states and the label constructors.

The following example presents further interaction requirements and shows a case
when “action names” differ from labels.

RTSE'97, p.12



Exémple 2.3 The possibility of failing‘a's a feature

feature FAIL[c] =
data BOOL
attrs FAILED: bool

interface INC, DEC, RESET()

activity Fl:¢ e, ¢[True/ FAILED]

 FD:c —2£%, o[ True/ FAILED)

if FAILED = False then ke - %, ¢

- if FAILED = False then D:¢ 25, ¢
" if FAILED = False then R:c —2E5ET, o

interaction requirements i
if a:c 4 ¢ and FAILED = True then FAILED' = True
if a:c -5 ¢ and {a=tora=Dora=R)then FAILED = FAILED'

Notice how the last three rules, which seem of scarce relevance, define the relations between
the actions |, D R and the attribute FAILED, by imposing that they can be performed
only when FAILED is false. The interaction requirements mean that once the attribute
FAILED is true, it cannot become again false and that actions I, D, R do not modify
FAILED. In this case actions | and Fl correspond respectively to the correct and failed
execution of the increment command; similarly for D and FD. End example - ’

We give below another example of feature which wdl be used in the followmg to nge
examples of interactions. - : :

Example 2.4 A sensor controlling the ’counter The counter lei}els over 99 are’
considered dangerous, and so a warning must be issued in such cases; the attribute IN-
FORMED is used to be sure that the warning is issued only once. Transitions with label
NORMAL put the system back to a normal situation setting the attribute VAL to a glven
value (NORMAL is a label constructor pa.rametenzed by a natural value). : :

feature WARNING|[d] =

data BOOL, NAT

attrs VAL: nat
INFORMED: bool

interface WARNING, RESET()
NORMAL(nat)

activity if VAL > 100 and INFORMED = False then Wi ¢ —M’ﬂ’l‘;—; ¢[True/ INFORMED)]

if » < 100 and INFORMED = True and VAL > 100 then -

BN: ¢ ORMAMN , o False/ INFORMED)n/ VAL]

R:c —2ESET, of False/ INFORMED)

interaction requirements
“INFORMED is private”
“WARNING is private”
“NORMAL is private”

“INFORMED is private” is a shortcut requiring that the attribute INFORMED is loéﬂ
and can only be modified as expressed by the rules. The corresponding expanded version
is C o

RTSE'97, p.13




if a:e -+ ¢ and INFORMED # INFORMED' then )

(I = WARNING and VAL > 100 and INFORMED = False and INFORMED' = True) or
(exists n s.t. | = NORMAL(n) and n < 100 and VAL > 100 and - :
VAL = n and INFORMED = True and INFORMED' = False) or

(I = RESET and INFORMED' = False) o :
Analogously “WARNING is private” and “NORMAL is private” correspond to

if a:c —WARNING . ot then VAL > 100 and INFORMED = False and INFORMED' = True

if aze -—]—VM)—) ¢ then ‘

VAL > 100 and n < 100 and INFORMED = True and INFORMED' = False and VAL =
n ‘ .

The most common interaction requirements have the above forms, just requiring that
an action name/an attribute/a label constructor is private. End example

2.3 Semantics

. Recall that a feature is essentially the description of “parts” of ‘a simple reactive system
plus some requirements on other “parts” which can be added to get a complete system.
Usually it is designed by first giving the parts and afterwards the requirements. Thus we
first provide a semantics, the basic semantics, taking into account only the given parts;

" afterwards, in order to consider the interactions with other features, we provide a second
one, the complete semantics. ‘

Basic Semantics In our setting, the parts provided by a feature specification result
to be a specification of a simple system, and the basic semantics of a feature F, denoted
by [F]s, is just the semantics of the associated simple system specification, Syst(F),
determined by the data structutes, attributes, label constructors and rules of F. - .

Example 2.5 The basic semantics of COUNTER is just the semantics of the system
specification COUNTER.S reported in Ex. 2.1; while the one of FAIL is graphically
depicted below. e L
INC, DEC INC, DEC, RESET '
FAILED = FAILED =

S e e ratee 1"

By looking at the above lts, we can already detect some trouble in FAIL; precisely
that the failed system may go on receiving increment and decrement commands. If we
intend to give a feature without that behaviour, then we may replace the first two rules
with

if VAL = False then Fl:c -2 o[True/ FAILED),

if VAL = False then FD:c ~<22% o[True/FAILED);

" the new basic semantics is then
INC, DEC, RESET

FAILED = FAILED =::|
B e .
True DEC. INC False

The basic operational semantics of WARNING is graphically depicted below.

RTSE'97, p.14



INFORMED = False _ INFORMED = True
 RESET o

I: VAL=0 VAL=0
RESET \ ' o :
’ = : RESET : : VAL=]

RESET

E VAL = J0O . - : ‘ VAL =100
WARNING ' c

RESET
End example

Semantics The (complete} semantics should associate thh a feature F a precise (for—
mal) meaning takmg into account all its components, thus also the interaction Tequire-
ments. For us it is the class of all simple systems (lts’s modelling them) having at least
all parts specified by F and satisfying all its interaction requirements. These systems may
have more data, attributes, label constructors and actions than Syst(F), and clearly also
' more transitions (i.e. more activity); technically, their s:gnature is an eztenszon of the
sngna.ture of F.

A most important remark is that we have to allow these systems to loosely sattsfy the
ongmal transition rules of F, in the sense that whenever a rule does not explicitly state
that an attribute remain unchanged, then such change may be allowed in the system. All
this amounts to adopt a kind of anti-frame assumption. We can provxde the followmg
deta.lled definition. : :

Def. 2 6 (Complete semantics) :
Let F be a feature specification over a sxgnature EF Then the complete semant:cs of
“F, denoted by fF}, is the class of all M s.t.

" — M is an lts over some extension T of Tp; -

- M sa.tisﬁes all interaction requirements of F;
— M loosely satisfies all rule;s'of F :
(formally, M loosely satisfies if cond then a:s —» sl fAd] . .z fAR] i

for all variable evaluations V,
if M,V |= cond, then

there exists 5 state of M s.t. V(a): V{(s) 29, sand forj=1,...,k A,(E) = V(z;). ‘
o | A _ o
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Since the complete semantics usually consists of infinitely many models, in the fol-
lowing section we will illustrate a possible canonical representation (a kind of abstract
interpretation) for reasoning about.

2.4 Representing Possible Interactions

Let F be a generic feature specification. We want to analyse F trying to understand its
characteristics w.r.t. the interaction with other features; that means to examine [F] from
a behavioural point of view. We do that by singling out a special system in [F], MAX(F),
whose behaviour may help to understand the possible interactions; more precisely the one
corresponding to the maximum of interactions with other features.

Other features may add to F whatever new attributes and labels and so MAX(F)
should have infinitely many attributes and label constructors; but, since we are interested
only in the behaviour, the attributes (the actual form of the state) are irrelevant and so
MAX(F) has the same attributes of F; while MAX(F) will have just an extra label L
abstractly representing all labels different from those of F.

Example 2.7 As an example below we present MAX{(COUNTER).
INC, DEC, RESET

INC, DEC, RESET INC, DEC, RESET

.
>

v
VAL =0 -

]
3
S INC DEC, RESET

oy

VAL = 2wt

INC, DEC, RESET

INC, DEC, RESET, L
INC, DEC, RESET, L
INC, DEC, RESET, L

We can see that imposed interaction requirements are weak, since new transitions with
label in {DEC, INC, RESET} may freely modify VAL. Notice how we can immediately
~ see that transitions with new labels cannot modify VAL, but recall that does not mean
they cannot modify at all the state, in the above representation we are abstracting from
possible new attributes. ' o
Consider instead the feature COUNTER’ differing from COUNTER only for the in-
teraction requirement part, which becomes “INC, DEC and RESET are private”, corre-
. sponding to the axioms
if arc —FESET, o then VAL =0
if azc 2%, ¢ then VAL = VAL+1
if a:c 222, ¢ then VAL > 0 and VAL = VAL-1.

COUNTER seems more sensible as it is shown by the behaviour of MAX (COUNTER').
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I RESET, L I
! INC, L NG, L o )
4 i < S e : End example
s RESET, DEC, L, pECL Ej -
-

[
VAL =1

RESET, L.

We can now proi)ose‘ the following definition of MAX (F).
Def. 2.8 Let F be a feature specification. k

e SigH(F) is the feature signature defined by adding to Szg(F) a constant label con-
- structor L.

o X is the set of all Sig*(F)-lts’s M s. t.

— the data structure part of M comcxdes with that of F;

— the states of M are those of [F]p; -

— the labels of M are those of [Fle plus a special one L;

~ the action names of M are those of {F]g plus a specnal one A;

— the transition relation of M (denoted by -->M ) iss.t. M B ¢ for all interaction
requxrements ¢of F.

o MAX(F) is the element of X' s.t. »MAX(F)- UMex M, I:l

Notice that the existence of MAX (F) is permitted by the particular form of the interaction

requirements (see Sect. 2.2), which express in some sense only safety properties on smgle

transxtlons For example an interaction requxrement hke .
as———)slﬁ'notas——)s

would prevent the existence of the maximum element intended as above. :

Also notice that, if F is consistent, then MAX(F) € [F], since any rule P compatnble
with the interaction requirements is loosely satisfied by MAX {F).

The methodological role of MAX (F) for reasoning about mteractlon is cla.rlﬁed by an
appropriate notion of behavioural simulation: MAX(F) abstractly simulates all possible
behaviours of the systems in the complete semantics of F. In a sense this explain why
MAX(F) can be seen as an abstract interpretation of the specification of F.

The intuitive idea of abstract simulation is the following.

M € [F] is abstractly simulated by MAX(F) iff for any state s of M there e)nsts a
~ state ms of MAX(F) s.t. s is abstractly simulated by ms; where
s is abstractly simulated by ms iff

¢ the value of the attributes of F are the same in s and ms;

oif s ——-) s’ with ! built by a label constructor of F, then there ex1sts ms' s.t.
ms -1 ms’ and ¢ is abstractly simulated by ms';

11
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e if s -1 s' with ! built by‘a label constructor not of F, then there exists ms’ s.t.
ms —=» ms’ and s is abstractly simulated by ms'.

The intuition, graphically presented below, can be refined to a completely rigorous defi-
nition, as for the classical bisimulation semantics [6]. '

F1, F2: label constructors of F; NI, N2: new label constructors ~ (L.oovemseemses same values of F aitributes -

Example 2.9 We present below in a graphic way MAX(WARNING) and MAX (FAIL).
INFORMED = False : INFORMED = True

L

VAL=0 -

RESET, L

RESET, L.

WARNING L

12
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= =

[«N [~]

8 8

o

: |8

e FAILED = FaLED=_ | T
True il False

INC, DEC, RESET, L
End example

3 Features and Interactions

3.1 . Compatibility and Composition

A careful scrutmy of concrete examples shows that feature composition is not ‘at all an
absoliite notion, in the sense that it depends very much on the application and on the
way features are represented. Thus our approach is essentially methodologxca] though
instantiated on our particular feature description formalism.

We factorize the problem in two ways: first we support a notlon of compatxbnhty,
preliminary to the definition of feature composition; second we ‘deal with compatibility
and composition componentwise w.r.t. the structure of the feature specifications. The
method we advocate is to build feature specifications, perhaps by means of some forth
and back process, in a way that composition be possible and“achieve the intended goals
(requirements). In the following section we will examine from a behavioural viewpoint
the composition of features, in order to introduce another criterion for reasoning about
feature composition and checking whether it corresponds to the intended goals.

Let us assume to have the feature specifications F; and ¥, with components DATA,,
ATTRS,, LABS,, RULE,, IR, and DATA,, ATTRS,, LABS,, RULE,, IR, respectively.

We will use @ to denote the composition opera.tlon for features and also the those for
. the subcomponents : i

Data The data parts are compatlble iff DATA, and DATAg have dnspmt s:gnatures or
share the common part a sub data—stmcture

Attributes The attribute components are compatible iff all attributes with the same
name in both features have the same result type. ‘
ATTRS; @ ATTRS, = ATTRS, U ATTRS,

Label constructors The interface components are compatible iff all label constructors
with the same name in both features have the same number of arguments, of the same
type and in the same order.

LABS, @ LABS, = LABS, U LABS,

Rules Since rules correspond to partial descriptions of action capabilities we need in the
feature specifications a mechanism for deciding which rules r; € RULE, and r; € RULE,

13
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describe parts of the same action capability, and thus have to be composed. Several
criteria are possible, as

1. no pair (i.e., rules correspond to complete action capability description);
9. those having the same label constructor;
3. those belonging to the same action.

To compose rules with the same action name is the most general case; indeed the other
cases may be recovered by appropriately choosing the action names {case 1) corresponds
to have all action names of F; different from' those of Fg; and case 2) to use the label |
constructors as action names).
Moreover, we need to define when two rules (partial action descriptions) are compati-
ble. Then the rule parts are compatible iff each pair of rules to be composed is compatible.
In the following we assume that the rules of the two features:

- use only variables to denote the new values of updated attributes (in the update

parts) and the arguments of the label constructors, eg., a:s -—L—(3—+—zi)—> [4 * B/E]}

could be equivalently wrltten '
ifyy=3+zand y, =0and e=4+B thena:s -M)—) s[e/E];

- use both the same variables to denote the new values of shared attributes and the
arguments of the shared label constructors;

"~ do not share free variables except those denoting the new values of shared attributes
and the arguments of the shared label constructors.?

Let '

Ly(9} vy )

ri = if cond, then ACT;:s s[z}/AL).. . [=1 /AL

and
r = if condy then ACT; ¥ M s[z?fA?].. [:t,/A ]
be two rules;

Single rule compatlblllty r and r; are compatible iff ACTI =ACT,and L, = Ly (thus
a.lso yl: ryml - y!’ vymz):

Single rule composition If r; and r; are compatible, then ry @, =
if cond; and cond, then

ACTy:s s[el/ A2 /AL (2 AZ) .. B3/ AL ]

Note that r; ® r» may be 2 null rule (i.e. a rule which does not generate any tran- -
sition, since its premises cannot be satisfied). For example the composition of two
rules updating both the same attribute with different values is a null rule, since
cond, and cond, contains z = ¢, and z = ¢, with ¢; and #, ground terms repre-
senting different elements of the data structure.

2 (V} v"-t!lvlnl )
———}

IThis restriction may be overcome by using action names with parameters (and so a mechamsm for
deciding whether two such vatiables refer to the same quantity)

14
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Rules compétibility RULE, and RULE, are compatibleviﬂ' for all r, € RULE, and
ry € RULE; about the same action, r; and r; are compatible. .

Rules composition If RULE, and RULE, are compatzble then we define
RULE, ® RULE, =
{r1 € RULE, | Br; € RULE, about the same action } U
{r. € RULE; |Br, € RULE, about the same ax:tibn ju
' {ri®r:|r € RULE,,r; € RULE, about ﬂic same action 1.

Interaction requirements If the components of F; and of F; related to the system
specification are compatible as defined above, then we compose them just by compos-
ing data, attributes, labels and rules, getting a simple system specxﬁcatxon denoted by
Syst(F,) & Syst(F,). .

IR, and IR; are compatible iff the composition of the system specnﬁca,tlon parts, E

Syst(Fy) @ Syst(Fa2), - : :
satisfies IR; and IR, i.e.:

Syst(Fl) D Syst(Fz) '= IR; U IRz o

IR, ® IR, = IR, U IR,.

Clearly if IR; U IR, is inconsistent, then the two features are e not compatlble

Feature compatibility - F, and F; are compatible iff all their components are so.

Feature composition If F, and F; are compatible, then F; @ F; is thé featuregspec-
ification whose components are the compositions of the correspondmg ones of Fy and of
Fa.

Prop. 3.1 Properties of ® : :
. Given two compatible feature specifications for simple systems F1 a.nd Fz, we ha.ve '
that : .

L [Fie Fzﬂ C [F.] n [Fs];
2. @ is commutative and associative. [J

Instea.d @ is not ldempotent C : S
Let us illustrate the concepts introduced so far by means of two examples, the second
also illustrate the kind of backward adjustment we have in mind.

Example 3.2 Composing COUNTER and FAIL (defined in Ex 2.2 and 2.3) The
data, the attributes and the inteffaces of the two features are trivially compatible; for the
actions R, 1, D there are rules in both features, but they are compatible, and so we can
compose the two features at the system level.

simple system Syst(COUNTER) e Syst(FAIL)[c] =
data BOOL,NAT
attrs VAL: nat

FAILED: bool

15
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interface INC, DEC, RESETY)
activity if FAILED = False then l:c %% [VAL + 1/ VAL]

if VAL > 0 and FAILED = False then D:¢ PEC, VAL - 1/ VAIL]

if FAILED = Fulse then R:c ~25%£L; cjo/ VAL]

Fl:c X<, o[True/ FAILED)

FD:c ~2£S o[ True/ FAILED)

Such system, whose béhaviour is graphically presented below, verifies the interaction
requirements of both F, and F;, and so the two features may be composed.

Notice the role played by the action names in this composition, the failed executions
of the increment/decrement commands do not change the attribute VAL. '

__ RESET
— ‘L RESET
m "l "
3 ‘c“’n INC ;g we_ o o -
ettt o e .
dgxi g;%(.___—% e+
A DEC Sk DEC =
v Q O
(5] (5]
2 Q 8 End example
Y g Y
3 =3 ES
o Qg - u Vu
" > 8
S E g~ *8, g[" i3,
a 3%2 Q =2 Q S=E
o SReE o ] oy SKe
e H g |

Example 3.3 Composing COUNTER and WARNING (defined in Ex. 2.2 and 2.4)
They are compatible at system level, and the composition of their system parts is

simple system Syst(COUNTER) @ Syst(WARNING)[c] =
data BOOL, NAT
attrs VAL: nat
INFORMED: bool
interface INC, DEC, RESET, WARNING()

NORMAL(nat)
activity I:c 23 [ VAL + 1/ VAL)

if VAL > 0 then D:c 255 ([VAL - 1/VAL]
R:c ~RESET, {0/ VAL)[False/ INFORMED)

if VAL > 100 and INFORMED = False then W: ¢ —WARNING ,

if n < 100 and INFORMED = True and VAL > 100 then
 BN:c —NORMALR) o False/ INFORMED)[n/ VAL]

o[ True/ INFORMED)

whose behaviour is graphically represented by
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INFORMED = False : ) INFORMED = Frue

RESET

VAL=0 . RESET ' VAL=0
b
51 e | fore e | oec
(-3

VaL=1

RESET

WARNING l 't

V,AL= 100 i -. - VAL = 100

) However tlus system does not satisfy the interaction requ:rements of COUNTER;
 indeed transitions with labels NORMAL(n) may change the attnbute VAL; mstead the
interaction requirements of WARNING are satisfied. ‘
Consider now another feature WARNING’ obtained by WARN ING by ma.kmg N ORMAL
a label without parameters and changing the corresponding rule ifito ’
f INFORMED = True and VAL > 100 then BN: ¢ —2RMAL, c[FaIse/INFORMED],
WARNING’ and COUNTER are compatible, and the operatxonal semantics of their com-

position is - .
INFORMED = False 7 . FoRMED= Toue
RESET : ‘
ViL=0 - RESEY e VALZO "
INCl TDEC INC \L TDEC
~ VAL=1 VAL=] .

End example

RESET .

'H WARNING H |

VAL = 100 . VAL =100

[

Example 3.4 Composing FAIL and WARNING’ The two features are compatible
at the system level, resulting in ‘
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simple system Syst(FAIL) & Syst(WARNING')[c] =
data BOOL, NAT :
attrs FAILED, INFORMED: bool

VAL: nat ;
interface INC, DEC, RESET, WARNING, NORMAL()

activity Fl:c 2% o[True/ FAILED)

FD:c 252, ([ True/FAILED)

if FAILED = False then I:¢ -2, ¢

if FAILED = False then D:c -2, .

if FAILED = False then R:c 2251, o[ Folse/INFORMED)

if VAL > 100 and INFORMED = False and VAL > 100 then
W:e HARNING | ot vie/ INFORMED)

if INFORMED = True and VAL > 100 then BN: c —X22MAL, oy poye 1 INFORMED)

and this system satisfies the interaction requirement of both, and so they are compatible.
End example ‘

3.2 Feature Interaction

As already suggested, when organizing a system by features, it is of paramount importance .
to have a clear picture of the variations which may occur when adding features. Here we
try to single out some basic criteria for reasoning about feature interactions. v

Together with many others (but not all) by “interaction of feature F; on Fy” (or “F,
interacts with F1”) we mean that the “part of F; @ F; due to F, is not as specified by
F,”. Here we try to provide a rigorous background for this meaning of interaction. In the
following we try to propose the main concepts, illustrated by examples; but we do not
pretend to propose a theory, for the moment. . -

First of all we need to define what is the part due to F, in [F: @ Fy]s. We assume -
that it is the “projection of [Fy @ F,Jg on the signature Sig(F,)", i.e. the lts having only
the actions, attributes and labels in Sig(F,) and whose transitions are obtained by those
of [F) @ F2]p dropping those whose labels or actions are not in Sig(F;) and projecting

' the states on the Sig(F;) attributes of the others. We may have different concepts of

interaction between features depending on how we compare the activity of [Fi]s w.r.t.
that of [F; & Fs]p projected on Fy; here we consider: '

a) atomic(-level) interaction, if we look at the single transitions (corresponding to atomic
activities); o

b) behaviour(-level) interaction, if we consider whether [Fy]p abstractly simulates all be-
haviours of [F; @ F,]p projected on F, and vice versa, where “abstract simulition”
has been introduced in Sect. 2.4, and here we abstract w.r.t. the attributes and
labels not of Fy. :

If there are no interactions following b), then there are no interactions following a) too.

18
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Atomic Interaction A feature F, atomically interacts with F; whenever the transitions
of [Fy]p are different from those of [F; & F,}p projected onto the attributes and the labels
of Fy. There are various reasons for such transitions to be different, as:

— the premises of a rule of F; become more restrictive when it is composed with a rule
of F2;

~ a rule of F, when it is composed with one of F, may update attributes of F, previ-
ously not modified; :

- new rules about new action names but with F; labels and modifying the F, attributes
are added by F,. :

Let F; and F, be two compatible feature specifications. We say that F2 atomically-
interacts with Fy; iff »F1ls is different from the set of transitions 5 —-» & s.t.

R ) c—fFi6fale
- Lis built by a label constructor of Fl and
~ 3,5 are the projections of s, s onfo the attributes of F,.

* Fy and F; are atomically-independent iff Fy does not atomlca.lly-lnteracts with F; a.nd
F, doeés not atomically-interact with ;. =~ -

It is not true that any case of interaction intended in this way is negatwe and must be
prohibited; for example, think of a feature for a telephone system which offers a discount
whenever some particular green numbers are called (tra.nsxtlons whlch do not change the
‘ debt of a > user, now decrease 1t) » '

Example 3 5 COUNTER and FAIL are not atomlca.lly~mdependent indeed by looklng
. "at Ex. 2.1 and Ex. 3.2 we can see that FAIL has added transitions with Iabels INC and
. DEC which do not modify the attribute VAL. »

. Instead by looking also at Ex. 3.3 we can see that COUNTER and WARNING’ are
atomlcally—mdependent End example : ’

- This view of interaction has very nice propertles

- Indeed, it is possible to give extremely general and almost syntactic sufficient condmon
for ensuring that two features are atomically mdependent {wheré “extremely general”
means that if F; and F; are atomlcally independent, then we can modify F; and F; to

- get two new feature specifications Fy' and F;' so that their composition i is the same of F,

and of F; and ¥’ and F,’ satisfy the sufficient conditions: “almost syntactlc means that
the conditions are syntactic, except for what concerns the data elements). Thus’ it should
be possible to develop tools for automa.tlcally checking atomic independence.
Furthermore atomic interaction may be disciplined by interaction reqmrements made
by the subset of the safety formulae as presented in Sect. 2. ”
if a:s ~1» s’ then cond
where a does not occur int ‘cond. Indeed, for each pair of compatlble features F; and F,
s.t. F atomically interacts with F,, there exists 4 formula ¢ of the above type s.t. added
to the interaction requirements of F; makes F, and F; not compatible.
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Behavioural Interaction A feature F, behaviourally interacts with F; whenever ei-
ther [Fi]s is not abstractly simulated by [F; ® Faflg or vice versa, where in this case
“abstractly” means to forget the attributes and the label constructors not of F.

F, and F, are behaviourally-independent iff F, does not behavnour—mteract wnth F.
and F; does not behaviour-interact with F;.

It is not true that any case of interactions intended in this way are negative and must
be prohibited; for example a feature stating that all calls made on Sunday are free results
in a case of behavioural interaction; indeed the handling of the free Sunday call is an
added piece of behavnour, while handlmg of the paid Sunday calls has been removed.

Example 3.6 The feature WARNING’ behaviourally interacts thh COUNTER; mdeed
by looking at Ex. 3.3 we see in [COUNTER @ WARNING'] the behaviour

' . s 3 oy 2 I
3 5 £ 5 8§ § 3 ¥3§ %
o [ [ .-t =& L1 S o
= ] = noox [ L "3 ]
£~y -~ -~ -~ = -~ =~
] " " L) L] L] L)
a9 58 38 A9 439 Ny a8
S= =3 == s= 5= 5z ==z

which cannot be abstractly simulated by any behaviour of [COUNTER]p (see Ex. 2. 1),
since when VAL is equal to 100 any transition of [COUNTER]B modifies its content.
End example . .

Unfortunately it is not so easy to find sufficient condition for two features being be- .
haviourally independent general enough, and we have to find which are the formulae to
be used as interaction requirements to be able to discipline this kind of interaction, i.e. as
for atomic interaction, which are the formulae that added to the interaction requirements
part may make two compatible behaviourally interacting features incompatible.

4 Conclusion and Related Work

We have illustrated a rather general framework for feature-oriented development. Some-
what differently than in other approaches, our aim is to provide a flexible discipline for -
handling features, more than just checking the interactions. The flexibility is provided
by factorizing the specification development: first, by means of the representation of the
complete semantics we can check wether our feature specification which includes interac-
tion requirements, corresponds to our intuitive understanding; second, when adding some
new feature we may adjust its specification, by checkmg its capabilities and reasoning
about the resulting composition.
In our opinion the general framework should be adapted to the pa.rtncular domam
specific application, as it is supported by the work of P. Zave on telephone systems [11}.
It is worthwhile mentioning that the useful graphical representations are really possible
_ not only for the toy examples considered in the paper; indeed there is a way of presentmg
graphically design specifications for reactive and concurrent sytems (see {8]), which is -
adjustable to the case of features, as we plan to do in some further work.
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As for the automatic generatlon of the graphical representatnons, it does not sem out
of the state-of-the-art, though not yet explored by us.

Together with improving the graphical representation, our ongoing work aims at deal-
ing with features for structured systems, i.e. systems made of subsystems; in other words
we want to have at hand both component and feature modularity. ‘

Recently some papers trying to study features and their interactions on a fotmal
ground have started to appear, but none of them presents something of similar to our

“interaction requirements”. Among them we recall [2], presenting feature specifications
based on logical formulae conceptually similar to our rules, but their idea of “feature com-
position” and of “interaction” is really less flexible than our (e.g., using our terminology
transitions are composed only when have the sanie label, and interaction is just atomic
interaction). In e.g., [3] Bredereke, trying to give a formal view of features and inter-
actions, considers the importance of the behavioural aspects. Also [4] presents a formal
based treatment of features for telecommunication systems, but at ‘a more concrete level -
(i.e. more oriented towards the implementation) and so it is difficult it to fully relate to
our work.

Prehofer. considers both methodological aspects as in {7] and formal a.spects, as in {5},
where he presents an approach based on transition systems (diagrams); but differently
from our work, for him to add a feature to a system means to refine graphically a part
of the diagram specifying it. It is mterestmg to note that our framework may offer a
formal counterpart to part of his work in {7] including the “lifters”, i. e. feature modifiers
for helping to resolve feature interactions.
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Abstract

- We propose a model of software changes anda method for combmmg changes to a
software specification. This work was motivated by the desire to provide automated
decision support for the evolution of software prototypes. We define a behavioral
refinement ordering on software specifications and indicate how this structure can be
used to antomatically combine several changes to a specification. Aset of examples
illustrates the ideas. :

1 Introductlon

. Changing softwa.re w1thout damaging it is difficult and acoounts for the bulk of software— :
. related costs. This issue is particularly prominent in the context of software prototyp-
ing, where requirements, specifications, and designs are undergomg radical and repeated
change, under constraints of low cost and rapid response. In this context teams often ex-
. plore changes to different aspects of a system concurrently, and may develop prototypes
of several competing formulations simultaneously, to obtain user guidance about the ben-
efits and drawbacks of different alternatives. When the preferred alternatives are clear,
we must consistently combine the changes to the system specification cortespondmg to
- the preferred alternative for each aspect of the system that has been explored.
This paper presents a formal model and a method for addressing this problem in
" the context of black-box specifications for systems. We address specifications expressed
in logic, using a notation for system specification that has been designed to support
development of large and complex systems [5]. We explore the problem in the context of
prototyping because it is a promising way to address the main source of system faults,
namely requirements errors 23]. Evolutionary prototyping provxdes an eﬂicxent approach
to formulating accurate software requirements [20]. ° C .
The focus of the current work is the evolution of proposed spec1ﬁca.tlons and prototype
designs. Much of the previous' work on changes to software has focused on meaning-
preserving transformations [2, 15, 17, 27]. However, it has been recognized that in realistic

*This research was supported in part by the National Science Foundation under grant number CCR~
9058453, by the Army Research Office under grant number 30989-MA and by the Army Al Center under
grant number 6GNPG00072.
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contexts, many changes do not presérve the observable behavior of the system [28]. Most
of the work on the area of meaning-changing transformations has been concerned with
classifying the types of semantic modifications that are used in practice {13, 12, 16]. We
investigate the relationships between different versions of the specifications and propose -
an abstract model of the design history to provide a more formal model for understanding
the details of this subject.

Modeling the design history can enhance the prototyping process by capturing the
conceptual dependencies in a design. A properly ‘structured derivation of a specification
can highlight the structure of the design decisions leading to the proposed system, which
can be used to record and guide systematic exploration of the design space. Such a rep-
resentation is necessary if we are to develop software tools for managing this process and
extracting useful information from the design history. These tools should help coordinate
the efforts of analysts and designers faced with a changing set of requirements, to avoid
repeated effort and inconsistent parallel refinements, and to aid the designers in combining
design choices from different branches of a parallel exploration of the design space.

In larger prototyping efforts, several explorations of the requirements that are focused
on distinct aspects of the system may proceed in parallel. In such cases, the lessons
learned from different branches of the effort must be combined and integrated. This is a
specification-level instance of the software change-merging problem [8]. Solutions to this
problem can also be used to propagate improvements to all affected versions. "

_ The rest of the paper is organized as follows. Section 2 defines a model of soft-
ware changes and a behavioral refinement ordering for software specifications. Section
3 discusses change merging for specifications and indicates how merged versions can be
constructed. Section 4 presents some examples. Section 5 contains conclusions. -

2 Software Changes

To formalize changes to black-box descriptions of systems, we must consider what are the
externally observable attributes of a system and how the attributes of different versions
are related. : =

2.1 Attributes of System Behavior

We characterize changes to a system specification in terms of three orthogonal attributes
of a system: its vocabulary, its behavior, and its granularity [22]. These concepts are
reviewed below. : :

o The vocabulary of a system is the set of all external stimuli recognized by the system. -
o The granularity of a system is the set of all internal stimuli recognized by the system.

o The behavior of a system is the set of all possible traces for the system relative to a
given vocabulary and granularity. .

Each of these three attributes is a set, and is subject to an ordering induced by the
subset relation. The resulting partially ordered set becomes a Boolean algebra under the
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set union, set intersection, and set complement operations. ‘As explained in Section 3,
this structure can support a formal model of software change merging.

If we restrict primitive changes to be monotonic and to affect just one of the three
attributes listed above, we get the class1ﬁcat10n of prxmltxve changes shown in Flgure 1,
which is repeated from [22].

The symbol Ag represents the attnbute Aof the orlgmal system S and Ag represents
the attribute A of the modified system S". .

» Effect of Change
Attribute A | AsC As¢ | As D As
Vocabulary || extending | contracting
Granularity || refining | abstracting
Behavior relaxing | constraining

" Figure 1: Types of Changes

A decomposition of the chronological evolution history into primitive substeps con-
forming to these restrictions enables the rearrangement of a sequential derivation con-
taining meaning-modifying changes into a tree-like rooted dirécted acyclic graph whose
paths consist solely of meaning-preserving changes that add information via compatible
vocabulary extensions, granularity refinements, or behavior constraints [11). We propose
this mechanism as a concrete means to document software as if it had been developed us-
ing a rational process [24], and conjecture that such structures will be useful for choosing
‘demonstration scenarios, guiding requitements rev1ews, and summarxzmg past history for
.analysts formulating the next version.

A conceptual derivation history is a slmphﬁed version of the chronologlcal history

o fof an evolving system that includes only the decisions that were not undone in later

steps. We model conceptual derivation histories as graphs whose nodes represent versions
and whose arcs represent monotonic changes that add new capabilities or constraints.
An idealized prototype evolution process should steadily strengthen the requirements in
. .this sense, until they become acceptable to the users. In practice the path is often less

. direct. However, a reconstructed direct path in which each step strictly strengthens the

requirements should provide a useful summary of the relevant parts of the evolution of
the requirements. An example can be found in [11}.

2.2 ' The Behavioral Refinement Ordering

Change merging depends on an ordering with a specialized algebraic structure, usually
either a Boolean or Brouwerian algebra [8].- We propose a behavioral refinement ordering
L on software specifications, defined as follows:

PE ¢ & wvocabulary(p) C vocabulary(q)&
granularity(p) C granularity(q)& .
behavior(p) 2 projection(behavior(q), vocabulary(p) U granularity(p))
The vocabulary, granularity, and behavior of a specification are defined in Section 2. The’
projection is needed to ensure that we are comparmg just the corresponding parts of
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the two behaviors; it removes all events in traces of q that are outside the vocabulary
and granularity of p. The ordering p C ¢ means that ¢ satisfies the specification of p.
From the point of view of a user ¢ is just as good as p, and it may be strictly better
if it provides some services that p does not. Enhancements can occur if ¢ responds to
additional external stimuli, its behavior is specified at a more detailed level of abstraction,
-or its behavior is subject to stricter constraints.

We would like to separate the effects of changes to orthogonal attributes of the system
as much as possible, so that these independent changes can be automatically re-combined
in different combinations. The problem of automatically combining different versions of
programs has been formally studied in several different contexts [9, 10, 7, 8, 6, 25, 3], and
has been informally discussed in terms of the development of requirements in [14], where
the independence of elaborations was assessed manually. However, the problem has not
yet been solved completely, particularly for requirements.

We make a step towards automating the detection of independent elaborations by
proposing a formal model for refinement structures. There is potential for parallel elabo-
ration whenever the refinement ordering can be decomposed in a cross product structure,
because different components of the cross product can be refined independently. For ex-
ample, this is often the case for changes to different messages in a system. Interactions
between messages can occur via invariants associated with state models of machines or
instance models of types. . :

Previous methods for software change merging have assumed that the vocabulary is
fixed and common to all versions to be merged. The model proposed here is a possible
basis for extending some previous work on merging (7, 3] to cases where the vocabulary
changes. Such an extension adopts an open and extensible view of the vocabulary: the
behavior of a system whose vocabulary does not contain a given stimulus is considered
equivalent to the behavior of a modified system that extends its vocabulary with the extra
stimulus and leaves its response to that stimulus undefined and unconstrained. This is -
appropriate for requirements exploration and prototyping, although it is not consistent
with the closed-world view typically adopted in software products, where requests outside
the vocabulary are expected to produce error messages and have no other effect. Section
3 sketches some of the main ideas for this extension.

3 Combining Changes

" The Boolean algebra structure of the vocabulary, granularity, and behavior of a specifi-
cation identified in Section 2 implies that the usual formulation of the change merging
operation can be applied in the context of changes to software specifications. If A, B,
and C are specifications, the result of combining the change from B to A with the chang
from B to C is denoted by A[{B]C, which is defined as follows. -

A[BIC = (A- B)U(ANC)U(C - B)

. Here U denotes the least upper bound and I denotes the greatest lower bound with respect
to the ordering defined in Section 2.2. The difference is defined by

A-B=AnNB
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where the bar denotes the complement operation. This operation is well defined for any
Boolean algebra; in the special case of sets ordered by C, it is the set difference operation.

The interpretations of the above Boolean operations for different aspects of software
specifications are summarized in Figure 2. Since it is common to represent sets of be-
haviors by logical assertions representmg postconditions, we include the postcondition
representation as well. . ~

, Operation
Aspect ~ || XEY | XUY ] XNY
Vocabulary XCY | XuY | Xny
Granularity XCYlXuY|XnY
Behavior X2Y | XnY | XUY} Y- X
[ Postcondition | X « Y | XAY | XVY [XV-Y

X
|
<X <

Figure 2: Concrete Intérpretaﬁons of Abstract Operations

The set inclusions in the definition of the specification refinement ordering (see section
2 2) go in the opposite direction for the system behavior than for the vocabulary and the
granularity. This is reflected in the interpretations of the Boolean operations for those
aspects. Since the specification refinement ordering is derived from the orderings of the
three different aspects according to the usual ordering construction for a cross product
domain, all of the operations extend componentwise. This implies that we can com-
pute change merges for the three aspects mdependently, according to the interpretations -
summarized in Figure 2.

4 Examples of Combmlng Changes to Spec1ﬁcatlons

Some examples illustrate the effects of the definitions presented in the previous section.
Suppose we represent vocabulariés as sets of messages. Then the combination of the
‘change that removes the message m, from the starting vocabulaty {m,,m;} and the
"changes that adds m; to the same starting vocabulary is ca.lculated as follows

{m1}[{m1,m2}l{m1,7nz, ma} :
({m1} = {m1,m}) U({m1} N {ml,m2,m3}) u ({mhmmmsl {mx,mzl)
{mh ms}

~ The corresponding calculatxons on postcondltlons repr&sentmg behaviors may be bit
less intuitive. If P, @, and R are assertions representing postconditions, we can apply the
general definition and simplify to give the following rule:

PIQIR = (PV-Q)A(PVR)A(RV-Q) = (PVR)A(Q= P)A(Q= R)

I

We illustrate the consequences of this rule for some common change patterns Suppose
that a, b, and c are three assertions representing postconditions in the specxﬁcatlon of the
behavmr of a system in response to a given stimulus. »

The combination of two different constraining changes to a behavior mcludes both
- constramts

(aAB)BI(BAC) = (aAbAc) T
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The first changes adds the constraint a to the postcondition b of the base version and the
second change adds a different constraint ¢. The original constraint and both of the new
ones are present in the combination.

The combination of two relaxing changes loosens both of the affected constramts

alanblb=aVvb

Note that the combination of removing each of two constraints separately does not result in
a vacuous requirement: either of the two relaxed versions of the requirements is accepta,ble,
but the system must satisfy at least one of them.

‘The combination of a relaxing change and a constraining change selectlvely loosens
and also tightens the requirements:

HaAB(aAbAS) =bA(a=c)

The constraint b is common to all three versions, and it appears in the combination as -
well. The first change drops the constraint a, while the second change adds the constraint
¢. In the combination, the new constraint ¢ must hold only in the cases where the original
constraint a is satisfied. This moderation of the constraining change is due to the presence
of the relaxing change; if we do not remove the constraint a then the new constraint cis -
added unconditionally: '

(anbanbl(aAbAc)=aAbAc

FUNCTION spell.i :
MESSAGE spell(report: sequence{vord} ) REPLY(errors: sequence{word})

WHERE ALL(w: word :: w IN errors <=> w IN report & “(v IN dlctlonary)) [

CONCEPT dictionary: set{word}
-~ The words in the Oxford Emglish Dictionary.
END

INSTANCE word IMPORT Subtype FROM type
WHERE Subtype(word, string), . S
ALL(c: character, w: word :: ¢ INw=>c IN ({fa .. 2z} U {A .. 2Z}))
END ' :

Figure 3: Specification of Initial Spelling Checker

To illustrate the effects of these rules in a more realistic context, consider the specifi-
cation of a simple spelling checker whose base version is shown in Figure 3. We focus on
the spell command. Figure 4 shows two changes to the behavior of this command, -and
the result of combining the changes using the method outlined in section 3.

All of the change merges in the examples follow directly from the deﬁmtlon, after
simplification using the laws of ordinary propositional logic. These simplifications were
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-- base version:
MESSAGE spell(report: sequence{word} ) REPLY(errors: sequence{word})
WHERE ALL(w: word :: w IN errors <=>
L IN report & “(w IN dictionmary) )

—- flrst modification:
MESSAGE spell(report: sequence{word} ) REPLY(errors: sequence{word})
WHERE ALL(w: word :: w IN errors <=>
w IN report & “(w IN dictionary) & ~acronym(w) )

~=~ gecond modlflcauon
MESSAGE spell(report: sequence{word} ) REPLY(errors sequence{word})'
WHERE ALL(w: word :: w IN errors <=> . '
v IN report & ~(w IN dictionary) ) )
sorted{less or.equal@word} (errors) '

-- result of change merging:
MESSAGE spell(report: sequence{word} ) REPLY(errors sequence{word})
HHERE ALL(w: word :: w IN errors <=>
v IN report & ~(w IN dlctlonary) & acronym(w) )
sorted{less_or_equal@word}(errors) | v :
ALL(w: word :: w IN report & (w IN d1ct10nary) & acronym(w) &
“{w IN errors)) o _

: Figure'4: Merging Changes to the Spelling Checker’

'performed manua.lly and then checked vxa an automatlc sxmphﬁer for propos:tnonal logic
that is implemented using term rewriting with respect to a canonical set of rewrite rules.
.~ The base version has only the most basic requirements: there is only one dictionary,
- -and there are no constraints on the order of the words in the output. The first enhance-
ment introduces the modified requiremént that acronyms (which contain only capital
letters) are never reported as spelling errors. The second enhancement adds a require-
ment for sorting the output. The result of merging the two changes includes the : acronym
modxﬁcatxon, but requires sorting only in the cases where the acronym modification did
not take effect. This is a consequence of the minimal change principle [§] implicit in the
_change merging formula. In this case, a review by an analyst concludes that the case
where the sorting requirement is suspended is impossible: the dictionary (a constant in
the specification) cannot be empty in any acceptable version of a spell checking system,
_as would be required by the second condition in the last quantifier of Figure 4. In general,
application of the change merging rules can highlight cases where requirements changes
interact. These cases can then be reviewed by people to check whether a subtle interaction
was missed or misjudged. :
The lmplementatlon of the change mergmg definitions for specifications is straight-
forward, just as is the implementation of weakest preconditions for loop-free code. The
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difficulty of automatic application lies in the simplification step in both cases: since most
logics that are useful for specification are not decidable, it is in general impossible to do
a perfect job of simplification. For these logics, there is no computable canonical form
in which all tautologies reduce to the logical constant “true” and all contradictory state-
ments reduce to the logical constant “false”. In the above examples, simplification using
only the propositional structure of the formulas was sufficient to get useful results, even
though human judgement was needed to recognize constraints that hold in the problem
domain, but are not universally true in the logical sense. However, even for decidable
systems such as propositional logic, the existence of a canonical form does not solve the
problem completely, because the result produced by the simplifier does not resemble the
original formulas and is typically hard to read. Manual simplification was needed in the
above examples to make the results readable by people. Heuristic methods that try to
match the original structures as far as possible would be useful for practical decision
support. This is an area for further research. .

5 Conclusions

We have presented a method for merging changes to a black box software specification,
particularly those expressed using logic. Since logic has a natural Boolean algebra struc-
ture, the application of standard change merging models was straightforward once the
refinement oredering for the larger scale aspects of system specifications were determined.
Although the definition of the Boolean difference operation for logical assertions is a di-
rect consequence of this algebraic structure, it is an unfamiliar operation and its behavior
is somewhat counter-intuitive. We found that the effects of the change merging formu-
las were hard to predict without performing the detailed calculations prescnbed by our
method. :

The main issues remaining for practical application are verifying the conformance of

these models to the actual intent of designers who wish to combine their changes, and pro-
_ viding effective automation support for assertion simplification that can put synthesmed
assertions into a form readily understood by people. »

Our previous research has explored formal models of the chronological evolutlon hxs- '

tory [21]. This model has been applied to automate configuration management and a -
’ vanety of project management functions [1]. The ideas presented in this paper are a -
promising basis for improving these capabilitiés, particularly in the area of computer aid
for extracting useful design rationale information from a record of the evolution of the
system.

Challenges facmg future research on meaning-altering changes are to span the software -
design space using a set of manageable changes with precise and expressive representa-
"tions, to provide automatic procedures for suggesting applicable changes, and to con-
struct automatic or computer-aided procedures for decomposing manual design changes
into sequences of primitive changes. Successful research in' this direction and its future
applications will support software design automation with great scientific and economic
1mpact
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Domains as a Prerequisite for Requirements and Software

Domain Perspectives & Facets,
Requlrements Aspects and Software Views

- Dines Bj¢rner

vBernried, 12 October 1997 — Lyngby 5 March 1998

Abstract

We take software [systems] engmcenng to coisist of three major phases domain engi-
neering, requirements engineering and software [systems] design engineering. ‘We outline
these and emphasise domain perspectwes andfacets, requu'ements aspects and software
architecture and program organisation views.

This paper is the direct result of a US Office of Army Research October 12-14, 1997
workshop on Requirements Targeting Softivare and Systems Engineering held at Bernried
am Staarnberger See, Bavaria, Germany. In consonance with the aims & objectives of that
workshop we conclude some subsections with a set of meta—reqmrements (i.c. requirements
to software engineering, its research, education and practice).

" The paper is discursive and informal: we identify a aumber of methodological prin-

" ciples, techniques and tools. Not all such (hence discursive) and not all necessarily for-

. malisable (hence informal). Wrt. the latter: ‘one cannot formalise the principles that are

- needed in a systematic, well-guided process of selecting and applying techniques and tools

in the analysis and synthesis of specifications — whether of domain, requirements or soft-

. ware. Instead we are left to conjecture the usefulness of certain such principles, techniques

_and tools. Sometimes such comectures are refuted when better pnnc:ples, techmques and
“tools are proposed. .

Some sociological issues of ‘formal methods' are simmarised (in section 4.5).

Since this paper will appear in a workshop proceedings with a number of other papers
from that workshop, the paper will not repeat the relevant points made by other workshop
participants and supposedly published in their contributions. I refer, amongst several,
to contributions made at the workshop by Carl Gunther, Anthony Finkelstein, Michae!
Jackson, Tom Maibaum and others.

On issues of requirements, I have, in partxculax, benefited much from [100, 99, 142]
The handy book [99] is sunply a pearl: dehghtful and thought provoking! .
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1 Introduetxon _‘ v . o : .‘ . . ‘ 2
. 1.1 'The State of Affairs wee e se s et e e e 2
- 1.2 The Thesis — and the Contnbuhons e i e e P
1.3 The“Iriptych’ ... ... ...cciuciunn.. e e e 3

1.4 FxrstJustlﬁcahons..‘ ......... e e .4

" RTSE'97, p.39




2 Domain Engineering

5
2.1 Example Domains — Infrastructures . . ... ... e e e e e 5
2.2 First Aimsof Domain Engineering . . . . ..« ottt o it vinmen e, . 6
2.3 Domain Models ~— An Example: Railway Systems . .. .......... PP
2.3.1 Synopsis, Narrative & Terminology . . . . .« v e o v v v vt on i 6
2.3.2 FormalSpecification .. . ... .o vii vttt e ]
2.4 Domain Perspectives . .. .. .. .. ... e e e e e e s et ey .1
25 DomainFacets ... ... ...ttt ttee et itieneaeoeenn i e e s 12
2.6 Domain Elicitation & Validation ... .. ... ... it iimveinrenneens 19. -
27 FAQ:Domains ... .........ccoeruereannn F N 19
2.8 Domain Research, Education and Development Issues . ............ ve .. 22
3 Requirements . . . ‘ v 28
3.1 Requirements Models. « v o et e et e .23
3.2 Requirements Aspects . ................. e i P
3.3 Requirements Elicitation & Validation . ... .......... e e e L 26
34 FAQ:Requirements. . ... .... ...t e e e e e W27
3.5 Requirements: Research, Education and Development Issues. . .. .. ... ..... P14
4 Software/Systems Design Engineering . e o280 s
© 41 Software Architecture ... ... ... ... e I
4.2 Program Organisation (Software Structure) . . ... . e e e S29
4.3 Refinement ..... e e e e e s e et e w28
44 Software Views . .. ... .. ovuivivecanen Gt et 30
4.5 FAQ: Formal Software Deslgn e et e reas e Ve eea.e 30
4.6 Software Design: Research, Education and Development Issues ......00000... 31
5 Conclusion _ ' ' . RN+ SR
APPENDICES - ' Co e N e B@h
A Software Engineering Termmology :
A.1 Special Terminology . .. .. Creee e C e e e
A2 General Terminology » « « « « o ¢ v e oo v a s vo s s inennnnnass e
B Bibliographical Notes RN 2 S

Index . . . ... 58

1 Introduction

We present an interpretation of the state of affairs, i.e. level of profaslonahsm, in ‘software
engineering, the thesis of this paper, and a first justification of the thesis. e

‘1.1 The State of Affairs

In the US more than US $ 180 billion was spent in 1996 on software development projects that -
were curtailed, given up and abandoned, because management did not believe they could
conclude these projects. Most often cited reasons for this failure were: The requirements -
‘were insufficient, elusive or changed, and the domains were not properly understood. This is
" according to the article: Formal Methods: Promises and Problems, IEEE Software, Vol. 14,
"No. 1, Jan. 1997, pp. 73-85. US $180 billion is a sizable amount.

. 2
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To this we can add that even if and when developers get the domains and requirements
- right, they often get the implementation wrong — but this aspects apparently does not bother -
people who willingly buy MicroSoft software even when it is known that it definitely conta.ms
thousands upon thousands of (even known) bugs.
A survey, in Europe, by the industry “Think Tank’ ESI, the European Software lnstltute in
Bilbao, Spain, records that most software industry managers express that their must urgent
. problems have to do with grossly insufficient methods, techniques and especially tools for
coping with requirements definitions — and they are basically unaware of the pre-cursor to
requirements develeopment, namely domain modeling!

1.2 The Thesis — and the Contributions

The thesis of this paper is that the kind of domain, teqmrements, software atchxtecture
and program organisation principles and techniques expounded in this paper seems to offer
workable solutions to the problems. At least they address the issues “head-on” and in a
systematic manner not yet reported this extensively. Besides the ‘tnptych’ decomposmon
of development into domain, requirements, software architecture and program organisation
organsiation, we also would offer the identification of domam perspectives and facets the
: reqmrements aspects and the redefinition of software views as'a contnbutxon

"1.3 The “Ixiptych’ :
Softﬁa.re (systems) engineering, to us:
@ “Starts”! with domain engineering. Result: A formal theory D.
e “Goes on” with requxrements engineering. Result A formal theory R.
o “Concludes” with software (systems) daxgn eugmeenng B.uult' A fotmal theory s :
We expect the followmg kind of relatlonshlp to hold between D R, S
‘. D,S ES
A classical example is comﬁiler development: .
¢ ‘Domain: - ) - . g
We define the concrete (BNF) and eBstraEt syntaxes the abe’tractnmetl{ematlc»él sema;-' -

tics of the source and target languages (programmmg, resp. (e. g ) machine), and a proof
system for the source language. . ’

. Reqmrements.

-We define the specific compiler and run-time reqmrements fast compllatlon, or fast
" execution, or extensive compilation diagnostics, or extensive nm-txme execution dxag—
nostics, or some combination of these (+ many other facets). :

*We often put double quotes around words when their m ng is only approxi iate. The actual seq'uellice
from ‘start’ to ‘conclusion’ is usually iterative and “xpiml"' Coe
?See Carl Gunther [81).
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+ Design:

We develop the compiler and run-time systems: possibly a single or a multi-pass com-
piler while using such design tools as lexical scanner generators, (possibly syntax error
correcting) parser generators, {possibly a variety of) attribute grammar evaluators, etc.

We define:

e A method is a set of princibles, techniques and tools for analysing problems and for
selecting and applying techniques and tools in order efficiently to construct an efficient
artifact — hére software (a systew).

« Methodology is the study and knowledge of methods.

Jackson {100, 99] has proposed a decomposition of the unending variety of problems for which
software engineers are expected to develop software solutions, into a possibly in[delfinite
set of problem frames. Our compiler development example above thus is archetypical of a -
‘‘¢ranslation problem frame’. Each frame is characterised by its distinct cluster of development
principles, techniques and tools. Therefore we speak not of one method but of poss:bly an
in[de]finite collection of methods.

Common to these, we argue [36], is that they all evolve along domain, reqmrements and
design engineering axes.

1.4 Pirst Justifications

Software offers functions. Usually the client expresses expectations about the software to
be delivered: that is, requirements that include characterisations of externally observable
properties of these functions.

So before we develop software we ought know very precisely the externally observable, e

that is: the user expectations about the concepts & facilities to be offered by the software. -
These requirements usually deal with components, actions and behaviours of the client
domain, the application domain. And usually the requirements are expressed in terms of
terms (nouns and verbs) that ‘reside’ in — are special, professional terms of — the domain. -
So before we develop the requirements definition it seems a good idea to recognise, discover .
and capture the domain and to make precise the structure and meaning of all the specnal :
professional domain terms otherwise used in informally expressing requirements. -
The situation is not new. In other engineering branches we encounter the need for securing
the domain understanding — and usually also formally — before requirements are expressed.
In control engineering for aerospace the domain is typically that of Kepler’s and Newton’s
laws. So there was Johannes and Isaac working on their laws only to get an understanding of
celestial mechanics, or to prove the existence {or non-existence) of God, or at least to be able
to calculate (predict) planetary movements. There was, in those days, little expectation of
the laws being generally applicable, and certainly not to for example automotive engineering
or satellite orbit determination. Usually a problem in these areas starts with the control
engineer specialising the normative theories of Kepler and Newton to the specifics of the
problem at hand. Requirements are then usually expressed as constraints on the mechanical
behaviours specified (typically) by the differential equations that describe the instantiated
problem domain (i.e. instantiated theory). Control design then finds controllers {(S) and show
that they satisfy the reqmrements (R) under theassumption of the domain modet (D). One
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would never dream of hiring a person to develop control for flight systems unless they were
well-educated and professionally specialised in the appropna.te control respectively aerospace
engineering disciplines.

Similarly for electrical and communications engineers, etcetera. They, or you, may not
think of the laws of electronics (Ohm’s, Kirschoff’s, etc.), or Maxwell's equations, constitute
domain models; but that is what they do! And so it goes. One would never dream of
hiring a person to develop sensor electronics or space communications for flight systems
unless they were well-educated and professionally specialised in the appropnate electronics
and communications engineering disciplines.

It is high time that software engineers become as smart and mature productive and
responsible, professional and specialised as other engineers. On one hand most practising
software engineers today are unaware of the advances wrt., and the broad applicability of

" formal techniques — available for many years now. On the other hand: how can they believe
that they can develop software for banking, railway or manufactunng industry applications
without having studied — or themselves developed — appropnate domam theories for these
application areas. - :

2 Domain Engineering

The aim of domain enginering is to develop, together with stake-holders of, or in, the se-
lected domain, a precise set of concordant descriptions of the domam a set that the parties,
- developers and stake-holders, can agree upon.

Thus we foresee some set of loose contractual obligations bmdmg the two partxes

From a formal point of view, domain engineering establishes the theory D.

2.1 E;cample Domains — Infrastructures

. Examples of domains, limited to infrastructire systems, are:”

¢ Transport Systems: R ‘ - [119]
- Railways : ' (16, 37, 47, 62, 22, 23]
- Air: Trafic and Lines o o f [19, 12]
~ Metropolitan Transport (bus, tra.m, taxi, ec.) o - [140, 59)
- Shipping : o A

e Manufacturing Industry: - [74, 75, 6, 102, 7, 101, 103)

Infrastructures ‘connecting’ software packages(across each of the individual (intra: (i)),
respectively between these (inter: (ii)) spectra: (i) marketing, design, order procéss-
ing, shop floor production, wharehousing, sales, serv1ce, etc., and (ii) supphers and
consuniers, producers and traders ete. .

e Financial Servxce Industry.

With individual models, and with models that span across the entire industry:

~ Banking: Demand/deposit, savings & loan, ihvesy_t.ment,etc. " 20, 107, 21 -

5 B
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- Insurance Companies: Health, life, accident, theft, risk, etc.
. — Securities: Exchanges, brokers, traders, etc.

- Etcetera credit card and bank cheque clearing; poﬂ.foho management etc.
s o Ministry of Finance: : ' BN Y4

. e Health Care Systems

e Decision Sﬁpport Systems for Sustainable Development: o » [85, 17
e Resource Management: ) ' - {18, 123]

o fc:

2.2 First Aims of Domain Engineering

An aim of domain engineering is to provide partial and sufficient answers to questions like:
What is a railway company?, a transport industry?, a bank?, a financial service industry?,
a manufacturing enterprise?, respectively: What is a manufacturing industry? The question
is expected answered without any reference to possible requirements to potential software, -
and (certainly) without any reference to implementations of such software — as the domain -
in question already exists, existed (or still exists) without any software for a long time. We
expect the domain description to be both informal, but in the professional language of the
domain (including its dagrammatic and other linguistic devices), and formal, in the form
of a formal specification of the crucial terms (viz.: nouns and verbs) of the professional -
" domain language(s). We will not in this paper analyse any perceived problem of extractmg
or communicating this domain knowledge. .
A domain description is a model of the domain, that is: necessarily an abstraction. To
conquer possible complexities of the domain we may focus on various perspectives of the
domain — i.e. understandings as held by various groups of domain stake-holders.

2.3 Domain Models — An Example: Railwayv Systems

Let us try give an example. The problem of giving an example of 2 domain model of a sizable
domain is that the example need be kept within limits, but the domam is usually percewed :
by the reader, as being inordinately complex and “large”. -

First we give an informal description — which ideally consists of a tnple a synopsis, a
narrative and a terminology. Then we present a formal spec1ﬁcatlon (in the RAISE [77}
Specification l.anguage RSL [76]). .

2.3.1 Synopsis, Narratlve & Terminology
e Synopsis:? ’

A synopsis is a terse informal text which -— by mentioning, in a reasonably structured
and “softly” enumerative way, the names of a number of components, actions and
behaviours — may lead the reader onto ‘what the whole thing is all about’.

3The synopsis shown may be claimed to be sufficient.
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The domain (and hence its descriptioni) is normative,® and is that of railway systems:
Common to these we find that railway systems can be characterised in terms of the
railway net with lines and stations, of timetables, of traffic (in terms of the movement
.of trains), of passenger and freight ticket and space reservation, ticketing, loading and
_unloading, of the shunting and marshalling of trains, of various concerns about rolling
stock, .of the management and human operation of the system, and of repan‘, mainte-
nance and deve)opment of all of these resources.

e Narrative:®> A narrative is a careful descnptmn of all the relevant notions of the
described “thing”:

- Railway Nets: A net consists of lines and stations. A line connects two distinct
stations. . L :
Stations consists of tracks and other combinations of rail units. Lines and tracks
consists of sequences of linear units.® Lines can be seen as a sequence of blocks
which are then sequences of Iinear units. .

* Units have connectors. A linear unit is a unit with exactly two connectors. A
switch (unit) has three connectors. A cross-over (um’t) has four connectors. Etc.”
Connectors have identity. At most two units can sbare at most two connectors and
do so if they have identical identity.

With a unit we can associate the set of its patential states. A state of a unit is the
set of open paths through a unit. A path of a unit is a direction through the unit
in which traffic (train movement) is possible. Over time a unit can undergo state
changes.? : :

~ Timetables:

<. Several notions of tnnetables may (co-)exist:
A timetable may be very basic and show, for example for eacb train number, the
route of the train, that is: the sequence of station visits together with the train
arrival and departure times at those stations. Or a timetable may additionally
be train-dispatch oriented and may furthermore show train clearance and station
routing information as well as approximately when (at which times) the train
should be at which blocks along the lines. Or a timetable may be passenger-
oriented and also show quantity and quality of seats and sIeepers Etcetera.
Stations have unique names.

— Traffic: .

*By a normative description we mean a description of a c!m, rather than a parhcular member of the class.
5The narrative shown here is much too simplified — but the example shows what is meant by a narrative.
SPragmatically: Example tracks are: passenger and freight train through tracks, passenger train platform
tracks freight train sidelines, load/unloading tracks and shunting and marshalling yard tracks.
tically: C tors seem to be an artificial “device” needed in order to easily define nets. Units

are mmllarly pragmatically ch tomic quantities. -

'Pragmatxcally the two units are connected at the “join” of those two identically identified connectors.

°Pragmatics: The state of a unit may be effected by the setting of switches and signals ~— but so far
we abstract that. The state of a unit serves to route trains properly. Trains are intended to only pass in
the direction of an open unit: from one connector towards another. Whether trains obey the state setting
is a matt ide the domai In the domain we must also model k errors, technology failures and
catastrophes. ) . .
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Traffic is the continuous movement — interspearsed by temporary stops — of trains
along the net. Trains have both train numbers and unique train identifiers.!®

By movement we mean that if at two relatively close times (say separated by a
few seconds, t,t") a train is moving snd is at, i.e. occupy, two distinct sequences
of units, i.e. at positions (p,p"), then at any time (') in-between, the train is at
monotonic positions (p') in-between p and p".M! ' '

Traffic can be observed, and ideally, as the above ‘continuous’ function, or traffic
can be scheduled (planned). Scheduled traffic may be in the form of a discretised
prescription, as in the train-dispatch oriented timetable. :

- &c.
o Terminology:}? A terminology is an alphabetically sorted list of concise, informal
definitions. - ‘
We only examplify a few terms.’

Capitalised terms used in definitions refer to separate entries. Defined terms are listed
alphabetically. :

— Connector: A Connector has an Identity and is further undefined. At most two
Units may share at most equal identity Connectors.
~ Hump: A Hump is a Unit and is a notion of Marshalling.'3

— Incoming (Marshalfing) Tracks: ‘A set of one or more Tracks form an Incoming
(Marshalling) Track configuration if the Tracks at one end are ‘fanned-in’ (merged)
into a Hump.'*

— Line: A Line is a non-empty sequence of Linear Units. A Line ‘connects’ two
Stations. . .

— Marshalfing: Marshalling are the actions of decomposing a (potentially unending) ...
- series of sequences of freight cars, passenger waggons, etc., into a potentially un- - :

ending series of set of (parallel) sequences of freight cars, passenger waggons, etc.

— Marshalling Yard: A Marshalling Yard consists of three main parts: a small set of =
one or more Incoming Tracks (otherwise connected, at an incoming end, to (other)
units of a Station), a usually large set of Outgoing Tracks (otherwise connected,
at an outgoing end, to (other) units of a Station), and a Hump. Usually routes

- through the Marshalling Yard are only possible from the Incoming to the Outgoing
Tracks. : o i

19p agmatics: Two or more trains on the net may have identifical train numbers — since their journey may
last longer than the time interval by means of which a timetable may be defined. In'this case we may wish to
use train identities in order to bé able to distinguish any ‘two trains. o o
1'By monotonic movement we mean that the direction of the train does not change in the closed interval

1 . ) i A R

J o . L

12 4 nother term could be: *Dictionary’. This one is very “sparse”, but we hope sufficient for the Yeader to
get the idea. ) i R L :

13Pragmatics: A Hump * ts’ Incoming and Outgoing Tracks and permit the orderly seléction of cars, -
waggons, etc. from Incoming Tracks and their distribution te appropriate Outgoing Tracks. ’

"4 Pragmatics: A series of incoming sequences of cars and waggons may be routed onto the other end so that
individual cars or waggons may be routed onto the Hump from either Incoming Track. o

8
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— Net: A Net consists of a set of one or more (known) Lines and a set of two or more
(known) Stations. All known Lines must connect known Stations. Each known
Station must be connected to at least one known Line.

- Outgoing (Marshalling) Tracks: A set of one or more Tracks form an Outgoing
{Marshalling) Track configuration if from a Hump there is a ‘fan-out’ to the Tracks
at one end which at the the other end are connected to other Station Units.1®

.~ Open Path: An Open Path is 2 Path which is in the current Traffic State of a Unit.

- Open Route: An Open Route is a Route all of whose Paths are in the current.
Traffic State of the Net.

— Path: A Path is a way through (a direction along) a Unit.

— Route: A Route is an orderly connected sequence of Paths.

— Station: A Station consists of a set of one or more Tracks and a set of Units.1®

~ Traffic State of a Net: The totality of the Traffic States of the Units of a Net makes
up the Traffic State of a Net.

— Traffic State of a Unit: A Unit can, at various ttmes, ‘occupy” one or another
Traffic State.!?

~ Track: A Track is a linear sequence of one or more Linear Units.1®

— Unit: A Unit is — for the purposes of this description — a smallest ‘unit’ of rail.
Units serve to compose Nets. Nets can be decomposed into Units. There are Linear
Units, Switch Units, Crossover Umts, Turntable Units, 'ﬁ‘ack End Units, etc.'®

2.3.2 Formal Speclﬂcatnon
o Nets:

type
Net, Lin, Sta, Trk, Uni, Con
value
obs Lins: Net — Lin-set
- obs_Stas: Net — Sta-set )
obs_Unis: (Net|Sta|Lin) — Uni-set
obs—Cons: Uni-set :
LinStas: Lin ~— Sta x Sta
axiom

'*Pragmatics: It may be better to say that a Hump is the root of a fan—out to a number of tracks, where
the fan-out is a configuration of mainly switch umts whose “leaves” are connected to one end of the Outgoing
Tracks.

“Pragmatws The Tracks serve a main purpose of a Station: to Load and Unload Passcngers and Freight,
to temporarily ‘park’ trains, to Marshal a set of Trains inte another set, and to let Through 'I‘rams pass the
Station. The (othcr) Station Units serve to Route Trains between Lines and Tracks.®

Y Pragmatics: A Traffic State of a Unit indicates a number of Paths through that Unit as bemg open for
Traffic.

'* Pragmatics: Tracks can be classified to belong to one or more of cither: Platform Tracks, Through Tracks,
Shunting/Sideline Tracks, Freight Load/Unloading Tracks, Ji ing and Outgoing Marshalting Tracks, ctc.

*Pragmatics: You may wish to think of a hncar Unit as a pair of rails, a large set of sleepers, each sleeper
fastened to the rails by "nmls etc.
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Y n:Net »
let stas = obs_Stas(n),
lins = obs.Lins{n) in
¥ s,s’ in stas s#s’ = Jlinlins + LmStas(l) = (ss)
end

Timetable:

type
TT, T, Sn, Tn
TimeTable = Tn = (Sn = (T X T))
value
obs.Sn: § — Sn
axiom
/+ observed station visits are linearly ordered: trains +/
/# arrive at stations before they leave, and arrival times +/
/* at “later, subsequent’ stations follow departure %/
/# times from “earlier, previous’ stations. */

The times shown in one way (TimeTable) of observing (i.e. projecting) an abstract
timetable (TT) are modulo some reasonable interval, say working days, week-ends,
holidays. ‘

o Traffic: k

type
TF, Tid, Rou :
rTraffic = T = (Tid # Rou)
sTraffic = T # (Tid w» Uni)
value )
obs_Tn: Tid — Tn
obs_UniRou: Rou — Uni*
obs_Traffic: TF — rTraffic

Managed Nets and Traffic:

type ’
MN, MTF
MgdNet = T — Net
MgdTraffic = T — (Net x ((Tid w Rou)x(Tld w Um)))
axiom
/* Routes and Units of train positions must be thos of the +/
/+ net. Unit positions of scheduled traffic must have */
/+ appropriately open paths. Etcetera. %/
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.-A managed net reflects the time changing set of unites and states of units. A managed
traffic reflects the managed net, the real and the scheduled traffic.

2.4 Domain Perspectives

The concept of perspective is a pragmatic one. It serves to decompose an otherwise large
domain description into a more manageable, structured set of related descriptions — each
corresponding, as closely as possible, to a stake-holder perspective. The pragmatics, at the
domain level of perspectives is that each perspective, i.e. each sub-description covers a distin-
guishable set of closely related components, propertxes actions and behavnours of the domain
bemg descnbed . :

‘. Domam Perspective:

We can (formally) define a perspectwe as a partial specxﬂcatlon of a domain, consxstmg
of a type space and a set of functions.

We continue the railway systems exaimple from above.

¢ Base Perspectives:-
It seems that railway nets and timetables form the main two base perspectives.
As a minimum any stake-holder seems to agree that the railway net in terms just of

lines and stations and a simple observation of timetables suffice to characterise many
“aspects of railway systems. -

The timetable and the net are related by stations and — xmphcxtly —_ by lines.

o Signalling Perspectives: . .
‘By signalling, at the intrinsic level (see domain facets, section 2.5) of domain descrip-
tions, we mean just the state of the net (including its units). Slgnallmg is a control
perspective.

For trains to actually joﬁmey across the net through stations and along lines signalling
must be in effect: paths and routes must be opened and closed in order to ensure safe
and speedy traffic.

So we need to further detail the net into units and their states, open and closed Man-
aged nets and traffic may be a way to describe signalling.

¢ Passenger Perspectives:

Passengers, in addition to the basic net and timetable descriptions, as well as railway
system staff with whom they interact, have a perspective of the railway systems as
somehow embodying ticket reservation, cancellation, etc. Passenger perspectives are
user perspectives. ’ .

type
B, Date, Tn )
Occ = Tid = ({Sn % Sn) 7 (Free x Bound))
- value
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ide: Date x Tn 5 Tid
res: Date x Tn x (Sn x Sn) x B 5 (B x Ticket)
can: Ticket x B5 B
axiom
/+ Can only reserve if free seats. Accepted reservationx/
/# leads to less free sests, more booked ones +/
/# Cancellation only if ticket is validly reserved. +/
/* Etcetera. */

. We should have stressed before, and will here stress, that domain descriptions of com-
ponents, like B, and actions, like reservations and cancellations, and constraints, like
the axioms stated, are abstractions of “real world”?® phenomena which may not (or
may already) be machine supported. That is: our descriptions are assumptions about
the “real world”, with or without computing support for what is being described. In
other words, B, may or may not become the basis for a computerisation, etc.

There are many other (rail net and rail service development (i.e. plant) statistics, timetable
planning (i.e. management), etc.) perspectives. It is not the purpose of this paper to enu-
merate as many as possible, nor to further analyse the concept of perspectives. .

2.5 Domain Facets

The ‘domam perspective’ concept was apphcatxon-onented Each perspective portrayed a
snitably and pragmatically chosen part of the domain.

The ‘domain facet’ concept is a somewhat technical one, but still is basically determined -
on pragmatic grounds.

Any domain has some intrinsic parts. These are parts which reflect ‘stable’ propert:es of .
the domain, that is: properties which remain properties also when the “hard” technologies
that ‘support’ the domain change, or wher the rules & regulations that ‘govern’ stake-holder
domain actions and behaviours change, eétc. .

e Domain Facet:

We can (formally) define a facet as a partial specification of a domain, consxstmg ofa -
type space and a set of functions.

In the following we will illustrate ‘clusters’ of these facets in the context of the railways
example: C

o Intrinsic Facets:

By an intrinsics of a domain we loosely (pragmatically) mean those facets which remain
invariant under changing support technologies, changing enterprise system or infras-
tructure rules & regulations, changing stake-holder behaviours, etc. That is: We define
intrinsics as a core and relative to (modulo) other facets.

Therefore an improved characterisation of intrinsics should emerge as we next deal with
supposedly non-intrinsic facets.

29 No-one knows what ‘real traffic is. Therefore we put double (tongue-in-cheek) quotes around that concept.
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e Support Technology Facets:

Much of the technology that reside in the railway domain is changmg regularly while
its intrinsics remain stable.

— Switch Technology .
"One example is the switch technology In tbe early years ‘of rallways switches
were thrown manually, by railway staff, one per switch! Later mechanical gad-
gets, including momentum amplifiers, were connected ‘by thick wires'to a central
cabin house which predominantly featured a row of ‘throwers’. Now we find that
combinations of switches are activated electronically and eIectncaHy tbrough so-
-called solid-state switches. The same underlying, intrinsic concept, a switch, has
its internal functioning determined by varieties of support technologies.
- Signal Technology:
Another example is, or was, the visible, mechanical signals consisting of a tall mast
* (or pole) to which are affixed, at the top, for example one or two ‘Aags’. These are
hoisted or lowered through cabin-located ‘throwers’. Later some such mechanical
signals were replaced by signals consisting of not so tall poles on which are fixed
red/yellow/green or just red/green lamps. In future we can foresee that all such
signals are replaced by radio messages sent to each individual train informing it of -
whether to make a stop or not, mcludmg actuaIIy performmg tbat control the
meaning of a s:gnal

— Sensor Technology:

Yet a third example is the following. It is based in how we observe traffic. In the
intrinsics we claim that traffic is a continuous function from time {(at least within

_a suitably chosen interval) to train positions. In “physical reality” we know that
at whichever time we choose to observe the traflic there will indeed be trains. In
the “observable reality” we cannot observe all the time all the positions. Instead
we place observers at suitably chosen points (units). That is, wrt. space, we
choose to sample, and this spatial sampling discretises our observations. Also: we
do not observe all the time, but chooses to let the observers inform us only of
changes: now there is a train starting to pass by in that direction, now the trains
ends passing by. That is: rather than being subject to continuous evaluation we
discretise in the form of observable events. The observers form a kind of ‘support
technology’. In the “old days” the observers were railway staff that might have
used some form of telegraphic or telephonic equipment to inform a more-or-less
central gathering of observations. Today optical sensors (optical gates) may be
used as observers (and perhaps with extended functionality). Tbe point is: the
support technology changes

-—8::

(The point is also that) Support technology may fail. In the intrinsics observations,
switch setting, unit openings and closing were “ideal”. In the presence of possibly and
probabilistically failing technology switches may fail to change state, signals may “get
stuck”, and sensors may register a ‘train-passing-by’ event when in “real reality” there
is no such train, or vice-versa: may fail to register a passing train.

13 -
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— Modeling:

_The intrinsics descriptions (models, whether informal or formal) must therefore be
extended (enriched) to include the components, actions and behaviours of support
technology.

_ Typically the models must incorporate real-time, safety criticality, (failure) prob-
abilistic, etc. properties.

" Formal specification languages that are able to cope with some of these facets are
the Duration Calculi of Zhou Chaochen {45, 50, 49, 43, 44, 92, 48, 93].

. » Rules & Regulations Facets:

Written procedural guidelines exists in most man-made domains. They are intended
to regulate the actions and behaviours of staff in operating, i.e. interacting with the

domain.

— Railways:

" Examples, again relating to the railways, are:

B

*

Trains at Stations:

In China, probably due to some pretty disastrous train crashes at stations,
there is a rule, concerning acceptance of incoming trains and dispatch of de-
parting trains at stations. This rule states that in any n minute interval (where
n = 5) there must at most be one train arriving or departing a station — even
though some stations may have ample tracks and disjoint routes from and to
lines: sufficient to actually receive or send several trains simultaneously.?! But

a rule is a rule!

Trains along Lines: :

Lines may be decomposed into blocks, with blocks delineated by for example
signals. The purpose of blocks is usually to ensure that there is at most one
train in each block, or that there is at least one block between any two trains
on the same line.” Again blocking may be introduced in order to make it
simpler to monitor and “control”?? traffic along lines in order to ensure safety
(no crashes). Thus some support technology {e.g. signals) may be a means to

" ensure a rule.

* -

*

" Dispatch & Rescheduling Rules:

Rules giverning the dispatch and rescheduling priorities among train types
{international vs. local passenger trains vs. similar grades of freight trains vs.
military trains) abound.?

He.

21This kind of rule is similar to air traffic at airports: Pairwise adjacent landings on any given runway must
be separated by, say, at least 2 minutes. Similar for take offs. And any adjacent pair of a landing and a
take-off, or a take-off and a landing must be separated by, say, 5 minutes? -

72 What exactly is meant by ‘control® is left undefined. )

B pspecially these rules are changing rapidly these years in the light of the “ownership” decomposition of
of railway systems: base net & signalling infrastructure in terms of one operator vs. commercial passenger
and freight traffic in terms of possibly several, competing operators. They are changing in order to further

competition.
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— Banks: .
Customer deposit monies into savings accounts, for example as ‘exchanged’ with a
bank teller, involve ‘interpretation’, by the teller, of rules & regulations for posting
such deposits. Depending on the customer account contract (in which the rules

_ & regulations concerning all transaction are ‘defined’), the clerk performs one or
another set of actions (a ‘script’) “against” the account (i.e. banking) system. The

" account contract (generally set up when the account is first established) ‘binds’ -
concepts (i.e. concept identifiers) such as for fees, interest rates, loan limits, etc. to
actual values. (This binding is reminiscent of environments ENV when modelling
block-structured programming languages.) The domain model of deposit and other
transactions are therefore modelled as 2 Bank Programming Language script. A
script has two formal parameter lists, a transaction arument list and a contract
identifier list. When performing a transaction, i.e. when invoking the script, trans-
action parameter values are bound to identifiers of the transaction argument list,
while the (latest) contract environment is used to find the values of the contract
parameter list.

Model:

type : : R

Pid, Cid, Cmd
~ Bank = {accounts} m» (C w Acc)
ENV = Cid w» VAL
Script = (Pid* x Cid*) x Cmd .
Sn = { ,deposit,withdraw,saveborrow,..}
Acc =...
U {palance} # VAL
U {3imit} » VAL
U {interest} VAL
U {fee} = VAL
U {yield} = VAL
U {overdraw} = VAL

U‘{.;cripts} w (Sn w Script)
U {E‘c.ontr‘act} w Text
U {env} = (ENV x T)

Trans = Sn x VAL*

value
int Rou: C x Trans — Bank — Bank
int_Rou(c,sn,vall)(b) =
let a = (b(accounts))(c) in
let ({pl,cl),emd) = (a(c))(sn),
env = (a(c))(env) in
[* assert: x/ len vall = len pl /+ end assert +/

15 .
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let p = [pli] > vall[i] | i:Nat »i € inds]
U [clfi] =~ env(cl{i])} in
int Cmd(cmd)p end end end

Comments: Many other domains have rules & regulations that must be interpreted -
by humans, and the same rule & regulation may have to be interpreted according to
some ‘context’. ‘

More generally on modelling we can say:

— General Comments on Modeling: :
The intrinsics and technology support descriptions (models, whether informal or
formal) must therefore be extended (enriched) to include the components, actions
and behaviours of rules & regulations.
Procedural (human ¢ domain} matters tend to express logical properties for which
also “exotic” logics like [auto]epistemic, belief, defeasible, deontic, and modal logics
in general, may well serve as a basis for formalisation [66, 65, 67, 68].
In general rules & regulations seem to be best modeled in terms of a special script
language of commands. The command language is “tailored” to be able to access
the domain state components. So: on one hand we do define major aspects of the
intrinsics {basis), support technology, rules & regulations, human (stake-holder)
behaviour, etc., using one (or another) specification language. But when it comes
to typically the rules & regulations facet we defer further modelling to scripts
written in a further defined domain specific (rules & regulations) script language.
Now each such rule & regulation is then, in the domain model, associated with
some script. Which script some rule & regulation is ‘paired’ with we do not model!
But we should give example of sample interpretations of rules & regulations in -
terms of such rules! i
‘We refer to the item on Ground Staff Sub—facets page 17, in particular the con-
tinued bank example (page 17), for further on how humans may interpret rules &
regulations.

o Stake-holder Facets:

An important facet of the domain is the stake-holder concept: the staff of the system
of interest within the domain (owners, managers, workers), the clients and customers,
politicians, otherwise affected citizens, etc. Each have their own ‘agenda’ vis-a-vis the
system, the domain in which it is embedded and more loosely connected issues which
we may otherwise think of as “outside the domain”.

They express opinions, they have goals and objectives (not to be confused with re-
quirements [to computing]), they manage other staff and other resources of the system
(i.e. the enterprise, viz. a specific railway system operator), they operate its resources,
they use the services or acquire the products of the enterprise, and they are otherwise
“interested” in the well-being of the domain and its surroundings.

Again some examples may serve to illustrate the points being made here:

16
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— Owner Sub-—facets
Owners of a system — an enterprise — residing within the system or domain
may think of that system (or enterprise) in terms of goals and objectives that
do not (later) easily translate into software requirements. Their facet is that of
profitability, of growth, and of market share. Further subsidiary goals may then
have to do with customer and staff satisfaction, with environmental {bio-sphere)
concerns, etc. A model facet may try to cover this — but formalisation is probably
difficult. It is impossible if there is no other formalisation of the domain, that
is: formalisation of owner sub-facets may be enhanced in the presense of formal
models of the domain. The system (state) ‘variables’ or ‘indicators’ in terms of
which their sub-facets are to be formulated need be rather directly rela.table to the
domain model notion of state (and other) components.
— Manager Sub—facets:
Managers acquire and dispose (i), allocate and schedule (ii), and deploy (iii) re-
sources in order to meet goals and objectives at various levels: strategic (i), tactical
(ii) and operational (iii) — respectively. At the higher, the strategic to tactical
levels, one may be able to identify the kinds of components — including clients
— involved and the kind (i.e. the type) of predicates that express satisfaction of
goals and objectives — where the type of components are the type of the various
resources being managed: time, people, equipment, monies, etc. Similar the de-
cisions taken by management can be characterised, if neither algorithmically nor
logically, then at least through their (algebraic) signatures.  Report [18] shows
that one can formally capture the domain sub-facets of the strategu:, tactical and
operational management of resources.
© ~ Staff Sub-facets: -
The staff are the persons, “on the ground” being managed and meost dn-ectly
. exposed to the daily operations of the domain. They are the ones who directly
handle the actual, tangible (manifest) mechanical and other like resources — as
well as customers. In the case of the railways this staff is comprised from train
" stafl: engineers, sleeper attendants, etc., station staff: train dispatchers, shunting
-staff, etc., passenger service staff: seat reservation and ticketing staff, etc. As'do
the managers, the ground staff must carry out actions according also to Rules &
Regulations. And they may fail or succeed, more-or-less ‘punctually & precisely’.
Also this may be describable, informally, and perhaps also formally. Expenments
and experience will show!
To illustrate an issue we take up the thread from the bank exa.mple above.

# The Bank Example — Continued:

A clerk may perform the transaction correctly {and many dxfferent sequences
of actions may be involved and applicable), or the clerk may make a mistake, or
the clerk — or some already installed software support — maliciously diverts
sums to “other” accounts! The contract therefore, in the domain, denotes a set
of named rule & regulation designations. Each such named rule & regulation,
since it may be potentially interpreted in any number of ways, is now modeled
as a set of scripts. Transaction processing, say be a human clerk, then involves
a non-deterministic chonce among the possibly infinite ways of interpreting a
client request. o

17
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type
Ace = ...

U {scripts} w (Sn = Script-infset)

value
int Script: C x Trans — Bank — Bank
int_Script(c,sn,vall)(b) =
Jet a = (b(accounts))(c) in
" let {(plcl),emd) = select((a(c))(sn))
env = (a(c))(env) in
/* assert: +/ len vall = len pl /+ end assert +/
let p = [pl[i] — valli} ] i:Nat + i € inds]
u [e)]i] > env(cl[i])]in
int_Cmd(emd)p end end end

select: Script-infset —5 Script
select(ss) ass post s € ss

- User Sub—facets
Users (clients) interact with ground staﬁ' and with equipments (products) and
service offerings of the domain system. They may interact according to expecta-
tions, or they may fail. They may be satisfied, or disgruntled. They may be loyal
customers, or they may search for other ‘vendors’ of services and products in a
~ competitive manner.

- &e.

Our list of facets have “moved” from the seemingly more easily formalisable, the “hard”
“facets, to “softer” facets that are increasingly more difficult to formalise. ' :

— Modeling: .
The intrinsics, support technology and rules & regulations descriptions (models,
whether informal or formal) must therefore be extended (ennched) to include the
components, actions and behaviours of humans. .
" To model, informally and formally, stake-holder facets may be dlfﬁcult — but that
is no reason for not trying. It seems that more research is needed, especially in
" the area of formalisation and in the concordance of informal and formal descrip-
" tions. That research may result in altogether dlfferent syntactical (visual) forms
of descriptions.

There are many other (customer, economics, etc.) facets. It is not the purpose of this paper
to enumerate as many as possible, nor to further analyse the concept of facets.

“The list of facets given above is illustrative. The developers may be guided by this list,
or may have to analyse the problem domain in drder to determine for themselves the nature
of other, not exemplified, facets.

. 18
RTSE'97, p.56



‘2.6 ~D6main Elicitation & Validation

_The terms elicitation and acquisition are used interchangeably. }

There is an emerging, “rich” literature on techniques and tools that might help domain
developers in extracting domain knowledge from stake-holders of the domain. .

We would have liked, at this place, to give a reasonably thorough survey of contnbutxons
made by researchers and practitioners in the area. The problem is, however, that there are
very few —if, in reality, any — relevant contributions. “Classical” software engineering tends
to have focused on requirements elicitation and to have bundled occasional domain elicita-
tion with requirements elicitation. An examination of the “schools of domain knowledge
engineering seems more relevant for our purposes.

Instead, therefore, of a satnsfactory account we shall Just mentxon a few possxbly relevant
papers:

. Formél Ontology: S o .‘ , e . - [52],
. Ep‘istemology{ . T . [125]
¢ The knowledge-level reinterpreted: modelbingv socio~tecfln%cal s&stem# - o 151]
" » The frame problem in the situation calculus: . B g o © [126)

A simple solution (sometimes) and a completeness result for goal regression:
¢ Formal Ontology, Conceptu;l Analysis and Knowledge Representatioﬁ, and: B (4]
‘Some Organising Principles for a Unified Top-level Ontology: [80}
. Moaelling and Methodologies for Enterprise Integration: [13]

. ® The Logic of Enter;ﬁrise Modelling: {78]

e An Algebraic Logic for Concept Structures ’ ] [120]
. A Categorica! View on Concept Structures : ] : 122
and Object Logic for Conceptual Modelling: s S f121)

— with a Medical Domain as Case Study

‘We hope sometime to be able to relate this work to that of ours.

2.7 FAQ: Domains

¢ Can stake[-holders understand the domain descriptions?

Appropriate stake-holders should understand corresponding perspectives of the informal
descriptions. In fact it is desirable — in future, after computing scientists have identified
* basic methods — that they be able to write informal domain descriptions.
* Whether these stake-holders also can read thé formal descriptions is another matter.

We do not think that it is — at the moment — necessary that all classes of stake-holders
meet this criterion.
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For certain developments the client may make use of independent software engineering
consultants {who can indeed both read and write formal descriptions) to inspect the
developers documents — much like Norwegian Veritas and Lloyd’s Register of thppmg
act oh behalf of future ship-owners when the ship is built.

o What should be the languages of informal descriptions?

We believe they should be the languages spoken by the staff and users (customers) of

the domain. )

In the example of railways this means that a variety of informal, yet sufﬁcxently precise,

professional languages should be used in 2 “cleaned-up” manner. The clean-up should
_ only affect the non-professional, usualy, national and natural language parts and consists

in improving the narrative and terminological precision.

The informal, professional languages often deploy various diagrammatic parts (pictures,
* figures, tables) as well as sometimes even mathematical formulas. Such parts should be
_‘*ported’ to the narratives, etc.

o What should be the languages of formal descriptions? _
In this paper we show only the formal specification language of RSL [76], the RAISE {77
Specification Language. RSL is not the only possibility: we could probably as well have
used VDM-SL, Z, or some other sufficiently endowed language. We do find, however,
that RSL’s concurrency constructs (not found in VDM-SL and 2Z) as well as its clear
and simple methodology [77], bias us in the direction of RAISE. ~
Where the domain exhibit temporal notions then RSL, VDM-SL and Z cannot be used
— for those, temporal parts. Instead we might decide on using a suitable Duration
Calculus. :

Many formal specification languages exists:

-B ' : [5, 3, 91, 4],

- Duration Calculi ’ [46, 50, 49, 43, 44, 92, 48, 93],
- Larch : (82, 83],
- RAISE/RSL S S {76, 77]
~ STeP /React . f114, 115),
- VDM ’ "[24, 25, 104, 55, 109, 58, 108, 64],
-z [86, 139, 129, 135, 117, 132, 131, 136, 137, 138, 56, 40, 130, 133],
- etc.

o When have we specified enough — minimum/maximum?

Recall that domain description aims not primarily, but only also to serve as a basis for
requiréments description. That is: if we were only to describe the instantiated domain
that very explicitly relates to requirements — we may call this kind of domain descrip-
tion ‘minimal’, then it is not so difficult to know when we have specifiéd enough: We -
have specified a minimal domain when all the professional domain (system) terms that
- “pop-up” -in requirements have been defined in the domain. But usually that “mini-
mum?” is insufficient for a number of reasons. ‘Minimum’ terms may need clarifications

. 20
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which refer to undefined domain terms. Any one domain may give rise to several re-
quirements, each covering (supporting) more-or-less “disjoint” areas of domain activity.
Eventually emerging (i.e. resulting) software packages that implement theése different
requirements are desired to share facilities and concepts, i.e. to exchange data and ‘call’
each other! Any “gap” between the software packages usually is a reflection on some
similar gap in their counterpart “minimal” domain descriptions. ‘Domain-describing’
these gaps — perhaps already before the software package interactions might have been
conceived — amount to “non-minimal” domain descriptions. The process of securmg a
suitably comprehensive doma.m descnptlon is an uncertain one.

We take the position wrt. to the above “minimality/ max:mahty” prob]em that xt is an
issue of normative versus instantiated domain descriptions: minimal when instantiated,
maximal when normative!

e Normative and/or Instantiated Domain Descriptions?

-~ Normative Domain Descriptions:

A normative domain description is a description which is intended to describe
a class of usually two or preferably more “closely resembling domains™. A nor-

mative railway domain description should thus cover for example the railways of =

Denmark, Norway, Sweden, perhaps even Russia and China — in fact: should de-
sirably describe any national or private railway system' Whether such a normatwe
description is possible is another matter! :

So a normative description may ideally cover the class of all domams especnally
domain systems and their environments, but will probably do so in a way that
..makes their use for any particular, any specifically mstatxated domain a less than
trivial, but not an altogether unreasonable task. - :

"Research into and the development of such normative domain descriptionis may
typically not be a concern of any one particularly instantiable domain (system):
why should they develop more than they think they need? . Why, in competive
* situations, should they develop something that might as well benefit competition?
Etcetera. So we may conclude that if it is reasonable to develop normative domain
dmnptxons, then the needed precursor research as well as the development ought
take place in peer—rev:ewed contexts, in an open fashion, that is: typically at a
public research center or at a umversnty

One can therefore imagine a potentnally many year umversxty project, w1th mtema-
" tionally collaboratoring “schools” — with varying participation over the years. To
* develop a reasonably comprehensive, normative model of a typical infrastructure
domain may take 10-20 years. As in nuclear physics, the domain model emerges
through partial contributions, slowly, but steadily. :
We suggest such a possxbxhty for a number of domains: rallwa.ys (resxdmg in trans-
port depaftments or institutes at technical universities), financial service industry
{residing at schools of economics, finance and business management), etc. There
is already loose collaboration between individuals of such schools but perhaps
~ *human genome’-like ‘domain projects’ could be justified.

- Instanha_ted Domain Descriptions:
-2
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Since there can be little if any doubt that any specific domain (or system within
such) needs domain descriptions that are particularly “geared” to its “peculiar-
ities”, there can also be little doubt. that it would be nice if there were already
available a normative, and appropriate domain description from which a rewrite,
editing or parameterisation into an instantiated domain description was a reason-
ably straightforward development step. :

We foresee a day when the description methods, techniques and tools of computing
science and software engineering have matured to such a degree and relative to a num-
ber of domains such that continued methdology research and tool development takes
place, niot in computing science and software engineering departments, but in the more
domain specific institutes. -This predicated situation is akin to that of numerics, in
fact of classical mathematics: many branches of natural sciences and engineering are
today themselves capable of conducting necessary and sufficient mathematical work on
modeling their own domains.

o Why Domain Engineering by Computmg Scientists & Software Engineers?

If we examine the basic development jssue across the spectrum of domain, requirements
and software design engineering (especially for man-made domain systems, in particular
infrastructure systems), then we find that the overwhelmingly largest construction tasks
all have to do with structuring very large descriptions: securing proper syntax, semantics
and pragmatics. These descriptions shall primarily satisfy laws of mathematics, in
particular of mathematical logic.

No other engineering focuses so intensely on textual structures. No other engineering
discipline speaks of syntax, semantics and pragmatics. In all other engineering branches
there is sooner or later a quantum jump: from some diagrammatic, computable descrip-
tion to the (assembly line or refractory tower or other) construction of tangible, mamfest :
products satisfying laws of nature. :

A major contribution of computing science and software engineering is exactly that of
devxsmg precise techniques and tools for handling large descriptions.

That is the reason why computing science must study and software engineering must
practice domain engineering — for years to come.

‘2.8 Domain Research, Education and Development Issues

The Bernried workshop, sponsored by the US Department .of Defense (DoD) Office of Naval

Research (ONR), had as a main objective of the ONR to evaluate, on the background of ~ -

workshop presentations and discussions, which were and are the research, education and
development issues. In this section, and in sections 3.5 (page 27) and 4.6 (page 31), we
therefore relate put own contribution to that of needed research, education and development.

o Domain Research Issues:

We need do more research on the linguistic and formal domain recdgnition and capture
issues that may govern both informal and formal descriptions of domains [98].

Specialisation in software engineering is one way of achieving the level of other engineer-
ing disciplines’ professionalism and methodology. We may most likely be well-adviced
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in moving firmly in tha.t direction by following Jackson’s notion of Problem Frames
{98, 99, 36]. .

_To do this research we envisage a number of desirably parallel executed expenmental

“research projects. The number and kind of these should preferably be chosen so as to
'span a suitable spectrum of problem frames, and within the specifically chosen (problem
frame specific) examples also span a suitable variety of perspectives and facets.

We need sharper, more methodology—onented perhaps formally founded and explored
ways of characterising the perspective and facet concepts, as well as -individual such
perspectives and facets. For a beginning we may follow the software view notion of
Daniel Jackson {95]. -

Domain Education IsSues'

There are currently no appropriate text books and monographs in the area of domain
knowledge engineering, but there is are papers on knowledge engmeermg, ontology and
enterprise modelling.

The current author is issuing a series of reports covering the spectrixm from domain
engineering via requirements enginering to software design. These are intended to also
be part of a monograph on formal aspects of soﬁ:ware engmeermg

. Domam Development Issues:

Much experimental and exploratory development is needed in order t6 ensure that the
researched and evolving domain modeling techniques and the concepts of perspectives
and facets are appropriate. Over the years 1994-19897 we explored domain models for
railways [26, 37, 47, 62, 35, manufacturing industry [74, 75, 6, 102, 7, 101, 103), ministry

of finance [57], etc. while we established, built up and directed UNU/IIST, the UN -

University’s International Institute for Software Technology. We are currently, 1997-
1998, at our current address, with colleagues and students, further exploring domain
methodologies in the areas of railways, metropolitan transports, bankmg, full scale
finance accounting [28, 107, 21], etc. :

3 Requirements

The aim of requirements enginering is to develop, together with stake-holders of the selected
domain, a precise set of concordant descriptions of the requirements, a set that the parties,
developers and stake-holders, can agree upon.

We will not give a detailed account, such as in the revious secl:lon on dornain engmeenng,
but only touch upon some issues.

Thus we expect a set of precise contractual obhgatxons bmdmg the two partles

From a formal point of view, reqmrements engmeermg estabhshes the theory R.

3.1 Requirements Moedels

Without further ado we — perhaps somewhat dogrnati'cally‘—~ state that a requirements
specification, i.e. a requirements model, basxcally builds upon the domain model, possibly a
subset. Requirements reside in the domam as Zave & Jackson says [143].
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. 3.2 Requirements Aspects

* Requirements Aspect:

We can (formally) define an aspect as a partial specification of a requirements, con-
sisting of a type space and a set of functions.

A number of aspects seems to govern the composition of requirements:
e Domain Aspects — ‘Functional’ Requirements:

o Domain Projections:
Some of the domain type (i.e. state) space is usually projected onto the require-
ments.
From the domain model we have:

type
rTraffic = T 3 (Tid » Rou)
oTraffic = T w (Tid w» Uni)

That is: “real traﬂic” is a partial function (total over a closed time mterval) from .
time to the discrete routes of the railway net occupied by identified trains. Ob-
_servable traffic discretises (through ‘sampling’) the partial function.
. This was in the domain. Now, if the requirements have to do with monitoring the
air traffic, then we must decide upon (i) what, more precisely, of the air traffic is -

being observed, (ii) how often (i.e. more precnsely about the ‘sampling’), and (iii) - .

by whom (i.e. how).
From an underlying reality of support technology of sensors one could imagine that
- what we are observmg is more hke

.type '
Interval =T x T
Sensing = Interval # (Uni w» Tid)

_hence
" valie
Convert: Sensing ~ oTraffic
The requirements have to deal thh domam component (here state) projection

issues related to this.
Sxmxlarly with the funct:ons that may need be computed by the software:

value
TooClose: oTraffic = (Tid s Uni)
 Crashes: _oTraffic 5 (Tld w Um)

2
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o Domain ‘Dichotomies’:

Here we take a dxchotomy as a potential conflict between what is expressed in
one part of the domain model and what is expressed in another part of that do-
main model. Dichotomies only need be resolved by a requirements if the general
requirements otherwise relate to the concerned parts of the domain model.

_ An example is that of “ghost trains”. If the requirements is about monitoring (and

* ‘controlling’) traffic, then the Law of N ‘Ghost’ Trains of the intrinsics somehow
conflicts with the possibility of failing support technology to create the illusion,

_through misleading samplings, that there are indeed ‘ghost’ trains. On one hand
we know that the intrinsics espresses that there can not be ‘ghost’ trams, while on
‘the other hand we might indeed register such! ‘ -

A requirements to a traffic monitoring system may be to resolve such conflicts
through re-sampling, and — if such fails — to correct the ﬂlusmn for example by
stoppmg appropriate trains.

o Domain ‘Extensions’: . . o
Functional requirements usually focus on some domain concepts_and facilities and
direct the support of some of these. Once the whole apparatus of for example
‘extensive and expensive, net-wide train sensing is being demanded, it may be little
extra to demand that a number of traffic prediction and rescheduling functions also
be required: functions that were not in the domain because they were xxnpractxcal
or inordinately expensive to realise without computing.

In other words: the software + hardware machme, once inserted into the domain, =
becomes a part of it, and its concepts and facllmes becomes a part of the domam
for the next round of development.

Machine Aspects:

. Among so-called “non-fiinctional”? requirements we have those that Télate to the ma-

chine itself, where by the machine we mean the computing systems made up by the

‘reqmred software and its execution platform, both soft and hard. Aspetcs mclude

S Executxon Platforms.
Reqmrements may dictate the use of specific hardware as well as run—tlme system
software such as operating system, database management system, data (network)
communication software etc. Among “ete.” we include OMG packages (CORBA),
-ete. . L ) Co ‘ : 3
o Dependablllty & Performance Issues: .

For the specific combination: (i) provision of functional’ aspects (concepts and
facilities), and (ii) computing platform, the clxent usually expects a certain qua.hty
of dependability & performance:

+ Availability: minimum down-time
% Reliability: mean time between and to next failures, etc.,

* Safety: machine response in case of equipment failures,

"The functional requirements are those (formalisable) ones that denve directly from (i.e. ‘reside’ m) the
* domain.’
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+ Security: hierarchies of authorised access to the use of facilities,
and: '

+ Performance: execution times needed in order to provide timely computations
of certain functions; and: response times expected wrt. domain interactions.

Some of these aspects may be formalisable, others not (yet).

o Maintenance Issues:
Perfective, corrective and adaptive maintenance is unavoidable. Requirements (ac-
tually they are a kind of meta-linguistc requirements) may make statements as to
the “ease” with which such maintenance can be performed. )
Perfective maintenance aims at improving performance. Corrective maintenance -
aims at removing bugs. Adaptive maintenance aims at fitting existing software to
new hardware and/or new software extensions to previously required software.
As in our response to user-friendliness requirements below, we argue now that
carefully developed and sufficiently broad domain models help us to “anticipate
software sockets” for next generation software packages within the domain. And - .
thus to help 1mprove adaptability. : :

e Domam + Machine Interface Aspects:

Among further, so-called “non-functional” requirements we have those that relate specif-
ically to the man/machine interface. :

o Graphlcal & other User Interfaces
Our view is here: Visualising clear, well-described domain concepts determine basic
concepts of graphical interfaces.,

o Dialogue Monitoring & Control L ey

Again our view is: clear, well- described domain concepts, mcludmg events and .
behaviour, determine basic concepts of dialogue management. :

o User Friendliness: Psychology, Physiology, etc. of Interface:
Often a broad sweeping statement is made: “the soﬁware, wheri the basis of exe-
cutions, should lead to a user-friendly system”.
As in our response to adaptability requirements above, we repeat the argument
that carefully developed and sufficiently broad domain models where the eventually
developed software is expected (required) to primarily reflect only the concepts
and facilities of the domain, in some isomorphic or homomorphic manner?s, is an
indispensable basis for securing user friendliness.

3.3 Reguirements Elicitation & Validation

The terms elicitation and acquisition are used interchangeably.
1 have little to say on this subject — and, although I have indeed followed the literature
on requirements [134, 60, 63, 105, 53, 124, 116, 15, 127, 113, 111, 88, 54, 141, 94, 87, 106, 61]

A step of development from one, abstract step to a concrete ste;; can be said to be homomoi’pl;ic if
individual concepts of the abstract step are likewise individually identifiable in the concrete step.
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I have much to do as I find that most of the literature need be re-coniceptualised, re-worked
and re-worded substantmlly to refate meamngfnlly in a formal and domain-based setting.
Fine insight need be rather substantially revised when requirements, as here suggested
ai'e separated but derived from domains. .
Immediate, fine candidates, in my rather personal view, are: [73 118 14, 97, 116, 39, 143,
112}

3.4 'FAQ: Reqixirements
o Where do requirements come from?

From the domain, and basically only from the domam The functional requirements are
- expressed by stake-holders in the domain and in terms of their professional language.

.® What about platform and interface requirements? . .

~ Well they are usually domain-independent. An example are software correctness. If

" computers etc. already exist in the domam, platform requlrements and mterface usually
relate to these. : :

, Should clxents read formal reqmrements documenﬁ

. The answer is along the same line as given abOVe — FAQ Domams -— ﬁtst item.

) Reqmrements always change, so wby formalxse7

Well requirements do change, but the domam from which they emerge change much less -
rapldly “Therefore it is additionally useful {i) to try “complete” a domain specification; -
(ii) to formulate requirements using terms only from the domain, and (iif) to base a’

. software architecture on the core concepts of the domain, and hénce the iequirements.”
For “situations wheré the application problem “occupies” but a tiny fraction of ‘the

“ in"the requirements and in the software architectire, “back” to the larger concepts -

-.-domain, and that the software design ‘homomorphlcally reflects the requirements, some -
. considerable robustness is achieved — -and one can calmly await and handle reqmrements
cha.nges s

3. 5 Requirements- Research, Education a'md‘Developme‘nt Issues

For the issues listed below answers in line with those of section 2 8 (page 22) can be given
here.

"' Requirements Research Issues:

i We need better understand the relations between domams and reqmrements and ‘be-
tween requirements and software architecture. The issues of projection, of the input,

" ‘vetting and update of domain (data value) projections need also be studied. Finally
the issue of relations between functional and non-functional requirements need skeptic
clarification. In particular we need to better understand whether non-functional re- .
quirements can be formalised. To this end one may need to mvestlgate entlrely new
(formal) specification paradigms.
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¢ Requirements Education Issues

Current textbooks in requirements engineering are full of many very good, mostly j:rag—
matic observations, but I believe that we need textbooks on requirements engineering
(etc.) that use formal specification and design calculation techniques [144, 128].

¢ Requirements Development Issues:

We refer to the domain item on this issue page 23.

4 Software/Systems DeSign Engineering

An aim of design engineering is to develop, for the client, a software package or system (ie - -

. a set of “connected” packages) that satisfies the requirements.

Usually, given a requirements specification we can normally design both the hardware
configuration and the software system — so we may take the term ‘systems engmeenng to
include both hardware and software (sub-)system design.

A legally binding contract between the developer and the client describes mutua.] obhga~
tions wrt. delivery of (“more-or-less”) correct software.

From a formal point of view, design engineering establishes the software design theory S

4.1 SoﬂWafe Architecture

By a software architecture we understand a specification which primarily specifies the ex-
ternal interface behaviour of the software (to be, or already designed).” In contrast to
(the) ‘program organisation’, the software architecture, typically, implements the functional

* requirements whereas, typically, implements the non-functional requirements. S
The important aspect of software architectures that we need to focus on here is that they

are basically derived from the requirements. i
Indeed, it can sometimes be a bit difficult to see any deeper difference between a require-
“ments specification and a software architecture specification. We have found, however, that

the followmg characterises the step from requirements to software architecture: :

#David Garlan et al. [8, 71, 1, 72, 9, 2, 69, 10, 70]) define the concept of Software Architecture much more
broadly than we do. We do not mind, but find it a little disturbing. In the 1960s computer (e. hardware)
architecture was agreed, and was defined, seminally, by Amdahl, Blaauw and Brooks {11}, to be the interface
as seen by progr s: the puter data structures (byte, halfword, word, double word and variable length
character strings), the addresing forms, the instruction repertoire, the channel commands, etc. That is: All
things that were visible at the assembler code level. In 1964 the one IBM/360 architecture gave rise to a
variety of machine organisations: from the IBM 360 Model 20, via Models 30, 40, 44, 50, 60, 65 and 70; that
is: from byte via halfword, and word to double word machine data busses, from strictly sequential machines
to highly overlapped (pipelined) flows. So: when it came to hardware there was a clear distinction between
the architecture and the organsiation — just as we have seen with the Intel {ctc.) series from eight bit byte
organsiations (8086) via halfword, and word to double word machine data busses. But with basically the same
architecture. We also refer to Hennesey and Pattersons two tomes: [90, 89] :

Instead it seems that Garlan et al. defines an architecture to be anything you would like to say acbout the
structure of either soft— or hardware and such that you say this diagrammatically.

We do not mind their definition, only — in relation to our software related definitions — theirs mean: any
form of software architecture, program organisation or more réfined structure.
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. Requirements as a Set of Partial Speciﬁcations:

— in corntrast to a software architecture speciﬁcation which collects ‘all the “bits and
pieces” of the vanous aspect—onented partlal specxﬁca.txons

The software arch:tecture spec:ﬁcatxon therefore formulates a consistent and complete
whole. .
. Reqmrements as a Under-specxﬁed Speclﬁcatmn.

~— in contrast to a software architecture specification which completes the requrrements
fills in “wholes” that were deliberately left under-specified.

"It is often useful to let some reqmrements facet specxﬁcatlons be completed dlmng
software design.
. Functional vs. Non-funcional Requirements:

Functional requirements usually can be rather explicitly carrled” mto software archi-
. tectures — as they were usually also formally specificed.

Non-functional requirements are usually not (yet} formalisable. A software architecture
— or, at the “latest”, a program organisation — proposal therefore has to come up with
initial answers as how to satisfy these non-fnnctxonal requxrements (such as performance,
security, user-friendliness, maintainability, etc. ).

4.2 Program Organisation (Software Structure)

By 2 program organisation (or [internal] software structure) we understand a spécification

which, in addition to the externally observable interface behaviour also specifies the internal . .

'+ ‘structuring of the software (to be, or already designed). A determining factor in- choosing
one organistation design over another is whether non-functlonal requirements can thereby be
satisfied.
] A program organisation thus settles many issues that might have been left ‘abstract’ even
by the software architecture. Examples are: A software architecture may specify a data type
abstractly. A concretisation of this seemingly ‘monolithic’ abstraét data type may be in the
. form of a set of data types. The program organisation specification further cominits each -
member of the set to be implemented as a state variable (i.e. as an assignable variable) —
and these may then be [geographically] distributed. :
:And a program organisation, in line with the above, mtroduces and specifies internal
" processes, committed {concrete) data structures — including the use of for example database
management system support, data commumcatlon system support — etc.

' 43 Reﬁnement

. Although an element of software development we need not treat this methodology concept in
-this paper — since we primarily wishes to relate domains to reqmrements requirements to
software, and since we also primarily wish to enunciate the concepts of domain perspectxves
domain facets, requirements aspects and software views.
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3.4 So

ftware Views

[95] defines a:

o Software View:

as a partial Speciﬁcation of a program, consisting of a state space and a set of operations.

We have

perspectives and facets and requirements aspects.

Since
refer toh

“re-used” this definition, slightly paraphrased, in our characterisations of domain
27

Daniel Jackson has basically set the agenda for the study of software views we shall
is paper [95]. :

4.5 FAQ: Formal Software Design

Instead of listing frequently asked questions wrt. software design we list a number of kmyths

and commandments more generally related to the larger concept of “formal methods’:

“en ['84]‘”A'nthorrlvj ‘Hall lists and dispels the foliowing seven “Myths":

eIn

W W N O R W o~

[T S
@ N O

. Formal Methods can Guarantee that Software is Perfect

. Formal Methods are all about Program Proving

. Formal Methods are only Useful for Safety-Critical Systems
. Formal Methods Require highly trained Mathematicians

. Formal Methods Increase the Cost of Development

. Formal Methods are Unacceptable to Users

. .Formal Methods are Not Used on Real, Large-Scale Software

41} Jonathan P. Bowen and Michael G. Hinchey continue dispelling myths:

. Formal Methods Delay the Development Process

. Formal Methods are Not Supported by Tools

. Formal Methods mean Forsaking Traditional Engineering Desigh Methods
. Formal Methods only Apply to Software

. Formal Methods are Not Required

. Formal Methods are Not Supported

14.

Formal Methods People always use Formal Methods

e And in [42] Jonathan P. Bowen and Michael G. Hinchey suggests ten rules of software
engineering conduct: :

I. Thou shalt choose an appropritae notation

1L

Thou shalt formalise but not over-formalise

III. Thou shalt estimate costs
IV. Thou shalt shall have a formal methods guru on call

”Pages 11, 12 and 24 respectivey.

30

RTSE'97, p.68



V. Thou shalt h&t abandon thy traditional development methods
VI. Thou shalt document's‘uﬂiyciently »
VIL. Thou shalt not compromise thji quality standards
» .. VIIL Thou shalt not be dogmatic
IX.‘ Thou shalt test, test, and igst again
E X. Thou shalt reuse - :

v4.6 Software Design: Research, Educaﬁon and Development Issues
The: ' ' '
. Sobftvbvare Design Research
‘ e Software Design Education

" o Software Design Development . .
" issues 'seem reasonably well taken care of in at least Europe. The European, so--
called ‘formal methods’ awareness “movement” (as exemplified through the more than
. adecade-long efforts of first VDM Europe, later Formal Methods Europe (FME)) These
propagation efforts are based primarily on European research. - B
The US attitude is basically that formal methods are anchored in, yes some (John
Rushby) even state: only have to do ‘with tools. The European attitude, in contrast, take
formal methods are mostly specification (i.e. formal specification and design calculi).
It will be inte;eéting to see how these two schools may.eventualljf merge. -
. The US school on ‘software architecture’, notably that part which we call: ‘program -
. organisation’, is very strong [8, 71, 1, 72, 9, 2, 69, 10, 70]. We should like to see a'

: clearer separation between what we define as separate concepfs: softwate architecture =~ -

.and program organisation. Some research is needed to clarify this issue and to develop
- principles and techniques for the ‘derivation’ of (families of) architectures from require-
ments specifications and of (families of ) program organisations from these architectures.

- 5 Conclusion

A proposal for a triptych decompostion of software engineering has been presented. Some of -
the subsidiary, methodology principle concepts has been likewise presénted: domain principles
and facets, requirements aspects and software design views. A development methodology
assumption is that all descriptions being presented (both informally and formally), and that
relations betweern triptych phase doecuments and between stages and steps within these, be

"also formally characterised. , : : L R

" The paper has suggested a number of software engineering practices be currently dispensed .
by software engineers rather than domain professions. We argue so since the disciplines of
computing science and software engineering has carefully developed and honed attendant
description principles, techniques and tools. The paper has likewise suggested that a number
of subsidiary areas be subject either to research, and/or to support by more or less mechanised

" tools, and/or to more specialised education: teaching and training. oo
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What has been described is essentially the authors current research, university education
and technology transfer interests. With colleagues we are trying out ideas of this paper in
student project work, in exploratory & experimental demo & prototyping work — some with
one or another of the kind of infrastructure enterprises or industries mentioned in section 2.1
— and hence also in more or less applied research. It is therefore to be expected that future
publications will report on this as well as on more foundational work.

A Software Engineeri‘ng Terminology

Al S;iecial Terminology

" The wording of many of the definitions of this report may sound dogmatic. Prudent reflection
will soon reveal that it is merely a set of reasonable and useful delineations.

1. Software Development:

To us software development consists of three major components: domain engineering,
requirements engineering and software design. Together they form software engineering.

Discussion: This is a somewhat “bureaucratic” characterisation. Namely
one given in terms of its “way of being handled” — who does it, rather than
what it does!

Therefore Software Development aims at constructing software — or as we shall later
enlarge” it: machines. It does it by also constructing models of the domain in which the

software will reside, the requirements that the software must satisfy, etc. The present

report will deal with the processes of software development. ‘ .

" 2. Systems vs. Software Engineering:

Perhaps the term ‘software engineering’ is too restrictive. Since any implementation of
especially a larger software system entails procurement also of hardware, development
will also include configuration and acquisition of hardware components. That larger

concept: the development, procurement, installation, performance tuning, operation . -

and disposal of computing systems (hardware @ software) is therefore what we mean -
by systems engineering. Thus software engineering is part of systems engineering.

Discussion: As eloquently pointed out by Michael Jackson [98] the term

_ software engineering is probably much too broad a term, or it should be
understood as a class term. As such it covers a set of specialised software
engineer(ing specialtie)s. Mechanical engineering stands for rather separate -
groups of for example automotive, heat/water/ventilation, hydrological, nau-
tical, aero-nautical, and many other engineering specialities. Software engi-
.neering is still far from having identified suitably specialised such groups ~—
except perhaps for compiler designers. We refer to item 12 (page 41} for hmts -
at what such groups might be. e

3. Linguistic Notions:
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(a) Descriptions & Documents: ,
All stages of software development results in descriptions and documents. The
two terms are almost synonymous: description refer to the semantic content of the
syntactic document. We describe and document domains, requirements, software
architectures, program organisations, etc. We sometimes also, again syrionymously,
refer to these descriptions as Definitions (as f.ex. for a domain model or 2 require-
ments model), sometimes as Specifications (as feex. for a software architecture
model), yes even as Desigris (as f.ex. for a program organisation model)
software engineering management takes the syntactic, document view of develop-
ment; whereas programming takes the semantlc descnptxon view.
(b) Concordant Documents: e :
A set of documents, spannmg the spectrum of descnptlons of domams require-
ments, software architectures, program orgamsatlons etc., form a set of concordant
descriptions, and within each of these we may also need alternative, complemernitary
descriptions — which form another set of concordant descnptlons
“Two or more documents ‘are said to'be concordant wrt. each other 1f they all
purport to present descriptions of basxcally the same thmg but each emphaslsmg
different, but related aspects. . .
We shall later introduce pr agmatu: notxons of perspect.wes facets aspects and
views. These represent equivalence classes of concordant documents.
(c) The Informal Languages of Indications, Options and Actions::- :
. As pointed out by Jackson [99] the informal language of domain descnptxons is
indicative: “what there is”, that of requirements descriptions is optative: “what
there should be”, and that of software design descriptions is imperative: “do this,
do that — how to do it!”.
" (d) Descriptive and Prescnptwe Theories: e -
. Wecould also use the terms descnptxve and prescnptwe theones in heu of indicative °
_ and optative descriptions. :
(e) The Formal Languages of descnptcons
. In contrast, the languages of formal descriptions aré mathematlcal and in mathe-
matics we cannot distinguish between indicative, optative and imperative moods.
Such distinctions are meta-linguistic, but necessary. Sumlarly with the various -
: -equwalence classes of concordant documentS' perspectxves facets, aspects and
views. o .
(f) Descnptlon Techniques: :
We refer to Jackson {98, 99]: “Phenomenology —_ recogmsmg and capturing the
significant elementary phenomena of the subject of interest (domain, requirements,
software) and their relationships. Say as much as is necessary, with perfect clarity,

but no more. ... Choose and express abstractions and generalisations formally in -

order necessanly to bring an informal reality under mtellectual control
Constituent techniques [99] are those of: '

e Designations: : : )
That is: system 1dent1ﬂcatlon Estabhshmg the informal te!atlonshlp between
real world phenomena and their description identifiers.’
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e Definitions:

The definition of concepts based on real world phenomena.
e Refutable Assertions:

The usually axiomatic expression of real world properties. -

4. Machine:

The aim of software development is to create software. That software is to function on
some hardware. Together we call the executing software & hardware for the machine.
The machine is, in future, to serve in the (future) domain as part of the (future) system.

Since domain engineering and requirements engineering aim at descriptions that may
eventually lead to procurement of both software and hardware we shall refer to software -
development leading to a2 machine. :

5. Domain Concepts:

Two approaches seem current in today’s ‘domain engineering”: one which takes its
departure point in model-oriented, Mathematical Semantics specification work (and -
which again basically represents the ‘Algorithmic’ school), and one which takes its
departure point in knowledge engineering — an outgrowth from AI and Expert Systems.
-The latter speaks of Ontologies. For now we focus on the former approach.

(a) Domain = System @ Environment @ Stake-holders:
. By domain we roughly understand an area of human or other activity. We “divide”
the fomain into system, environment and stakeholder. All are part of a perceived -
world.

Discussion: Examples of domains are: railways, air traffic, road trans-
port, or shipping of a region; a manufacturing industry with its consumers,
suppliers, producers and traders; a ministry of finance’s taxation, budget
and treasury divisions as manifested through government, state, provin-
cial and city offices and their functions; the financial service industry, or
Jjust one enterprise in such an industry (a bank, an insurance company, a
securities broker, or a combination of these); etcetera.

Since we are developing software packages that serve in these domams itis
important that the software developers are presented with, or themselves
help develop precise descriptions (models, see Iater) of these domains.
Our argument here parallels that given for compiler development: we must
first know the syntax and semantics of the (source, target ancl unplemen—
tation) languages mvolved

(b) System: .
By system we understand a part of the domam The system is typxcally an enter-

prise. Once the machine has been installed in the system then it becomes a part
of a new domain wrt. future software development. :

Discussion: A railway System consists of the railway net (lines, stations,
signalling, etc.), the rolling stock (locos, passenger waggons, freight cars,
etc.) and trains, the time tables and train journey plans, etc. A description
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of the railway domain must make precise the structure and components’
of the railway systems as well as all the behaviours it may exhibit.
Identification of the system is an art. : :
Please note that when we speak ofa system wedo not refer toa computmg
system. -
{c) Eavironment: -
By environment we understand that pa.rt of the percexved world which interacts
with the system. Thus the system complement wrt. “the perceived world”, i.e. the
envn'onment together with the system and stakeholder makes up the domain of
mter%t ,

Discussion: ’I‘be Environment of an air traffic system includes the weather
(the meteorology) and the topology of the geograp}ucal areas flown over.
Identification of the Environment is an’ art. :

. Since the Environment interacts with the System (and hence potent:ally
with the Machine to be built} it is indispensable that we describe (incl.
formally model) that part of the Envn'onment wluch interacts.

* (d) Stakeholder = Clients @ Customers'® Staff:
By stakeholder we mean any of the ma.ny kinds of people that have some form of
" “interest” in the (delivered) machine: enterprise owners, ma.nagers, operators and
customers of the enterprisé: within the system or in the environrnent.

Discussion: Stakeholders of a miinistry of ﬁnance mclude govemment
ministers, ministry staff and tax payers,
Identifying all relevant stakeholders is an art. :

Since also they interact with the System (and hence potentially with the
Machine to be built) it is indispensable that we describe (incl. formally
model) possxble stakeholdet mtetactwns wzth the System

(e) Chent . . .
By client we understand the lega.l entnty whxch procures’ the machme to be de-

veloped The client is one of the stakeholders, and must be cons1dered a main
 representative of the system.

-Discussion: A financial enterpnse Client is usuaHy the appropnate IeveI
executive who specifically contracts some soﬂ:ware to serve in the enter-
prise. :
{f) Staff: - :
By staff we understand people who are employed in, or by, the system who works
* for it, manages, operates and services the system. staﬁ' are a major category of
stakeholders. : :
(g) Customer: :
By customer we understand the legal entities (people, compames) thhm the sys-
‘tem, who enter into economic contracts with the the client: buys products and Jor
_services from the client, etc. customers form another main category of stakeholders:
- "outside the system but withinthe domain.

Discussion: We have identified important components of a domam Tbe
software engineers — in collaboration with domain stakeholders — face
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“the further tasks of specifically identifying the exact comiponents to be
considered for a given Domain.
That ‘identification’ is still an art: requires expenence and cannot be
settled before preliminary modelling experiments have been concluded.
{h) Domain Engineering o
= Recognition
+ Capture
+ Model
+ Analysis
¢ Theory:
Domain Engineering, through the processes of domain acquisition and domain
‘modelling, establishes models of the fomain. A domain model is — in principle
— void of any reference to the machine, and strives to describe (i.e. explain) the
fomain as it is. domain analysis investigates the domain model with a view towards
establishing a domain theory. The aim of a domain theory is.to express laws of
the fomain. v . ‘ :
Discussion: The Domain Engineer could be a special version of a Soft-
ware Engineer — one who could be specially trained both as a Software
- Engineer, in general, and as a “Domain Expert”, in particular. -
(i) Domain Recogpnition: . .
System identification is an art! To recognise which are the important phenomena
in the domain, and which phenomena are not (important) is not a mechanistic
“thlng”
(J) Domain Capture .
-+ -, = Acquisition
 Modelling:

Discussion: We make a distinction between the “soft” processes of do-
main acquisition: linguistic and other interaction with stakeholders, and
domain modelling: the “hard” processes of writing down, in both informal
and formal notations, the domain model.
The domain capture process, when actually carried out, often becomes
confused with the subsequent requirements capture process. It is often
difficult for some stakeholders and for some developers, to make the dis-
tinction. It is an aim of this report to advocate that there is a crucial
distinction and that much can be gained from keeping the two activities
separate. They need not be kept apart in time. They may indeed be
pursued concurrently, but their concerns, techniques and documentatxon
need be kept strictly separate.
(k) Ontology:

What we call domain models some researchers call ontology — almost!

In the ‘Enterprise Integration and in the ‘Information Systems communities on-

tology means: “formal description of entities and their properties”. Ontological

analysis is applied to modelling the domain of (manufacturing) enterprises and

such systems (typically management systems) whose |mplementatxon is typically

database oriented.
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(1) Domain Model:
By a Domain Model we understand an abstraction of the Démain.

Discussion: Usually we expect a Domain Model, i.e. a Description of
the Domain to be presented both informally and formally.
The informal Description typically consists of a Synopsis which sum-
marises the Model, a Terminology which for every professional term of
the Domain defines that term, and a Narrative which = in a readable
style — describes how the terms otherwise relate. The formal Model is
then expressed in some formal specification language and can be subject
to Calculations using a Design Calculi of that notation. The model thus
presents the syntax, semantics and, possibly also, the pragmatics of terms -
- of the Domain. Not the syntax and semantics of the professional language
spoken by Staff of the Domain System ‘but Just the crumal terms.

(m) Domain Modelling Techniques

it

Domain modelling usually proceéds by constructmg a partial specification (type
space, functions and axioms) for each of a number of domain perspectlves and
similarly one for each domain facet.
(n) Description Technology: .
-.Crucial concepts in domain modelling include: |,

‘e system identification,
¢ i.e. enumeration of designations [99],
s formulation of definitions and
. expressmn of possxbly refutable assertxons
The latter typxca.lly in the form of constramts on types and functlons.
* (6) Domain Perspective: ‘ '
‘Domiain perspectives reflect the concephon of the domam busmess as seen by
various stake—holders
(p) ‘Domain Facet: . -
‘Domain facets reﬂect some more ‘techmcal pragmatlc decomposmon of the do-
‘main together with a ‘separation of concerns’. Specification typically proceeds
from intrinsic facets, via support technology fa.cets and rules & regulatlons facets
‘to staﬂ‘ facets, etc. .
{g) Domain Model Analysis:

By Domain Analysis we hndemtand mforma.] and formal analyses of the Domain
and of the resulting Model — whether informal or formal.

Discussion: The purposes of the analyses can be fo ascertain whether
a component and/or its behaviour qualifies as 4 component (etc.) of the
Domain, and for such included components analyses may reveal Model
_properties not immediately recognised as properties of the Domain. Note
- the distinction being made here: the Domain as it exists “out there”, and
.the Model as an abstraction thereof and which “exists” on the (electronic)
. “paper” upon which the Model is represented. i :
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(r) Domain Theory:
The purpose of Domain Analysis is to also establish a Theory of the Domain, or
rather: of the Models purported to represent the Domain!

Discussion: Examples of theorems in a theory of railways could be: (1)
(Kirschhoffs law for trains:}) “Over a suitably chosen time interval (say
24 hours) the number of trains arriving at any station, minus the number
of trains taken out of service at that station, plus the number of trains
put into service at that station, equals the number of trains leaving that
station”; (2) (God doesn’t play dice:) “Two trains moving down a line
cannot suddenly change place”; (3} (No Ghost Trains) “If at two times
‘close to each other’ (say seconds apart) a train has been observed on the
railway net, then that train is on the railway net somewhere between the
two original observation positions at any time between the two original
observation times”. Etc.

Failure to record essential theorems may result in disastrously erroneous
‘software.

Ability to identify and establish appropriate theorems is an art and takes
years!
(s) Domain Model Validation
An informal process whereby informal and formal specification parts are related

and where these again are related to the “real world” domain (system identifica-
tion)

6. Requirements Concepts:

Requirements, as we have seen, form a bridge between the larger Domain and the -
“narrower” software which is to serve in the Domain. e

(a.) Requirements = System @ Interface @ Machine: .
Requirements issues are either such which concern (i) machine support of the B

system, (i) human (and other) interfaces between the system and the machine, or - -

(iif) the machine itself.
Requirements describes the system as the stakeholders would hke to see it.

(b) Functional & Non-Functional Requirements:
Functional requirements include the concepts and facxlmes to be offered by the
desired software.Non-functional requirements emphasise such less tangible issues
as performance, user dialogue interface, dependability, etc.

(c) Requirements Engineering

= Capture

+ Model .

+» Analysis

> Theory:
Requirements Engineering, through the process of requu'ements capture, estab- -
lishes models of the requirements. The “conversion” from requirements information
obtained through requirements elicitation, via requirements modelling to require-
ments models is called requirements capture. Réquirements Models are formally
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derived from and extends domain models. Requirements Engineerihg also analyses

- requirements models, in order to derive further properties of the requirements.
Discussion: We hope the reader observes the "‘sinlilari'iy” in the compo-
“nents of domain engineering vs. those of requiremients engineering.

(d) Requirements Capture ' o
© = Elicitation
. + Modelling:" g ; » )
" Remarks similar to thosé under Domain Capture — item 5j (page 36) apply.

(e

—

Requirements Model: . ) _ .
A specification of the requirements. Usually in the form of a set of partial specifi-
cations, one for each requirements aspect. ‘ ' ‘
(f) Requirements Modelling Techniques: . L ‘
Requirements “reside in the domain”, and are hence primarily projections of their
type space and functions. Functional techniques. deal with projections, resolv-
ing domain/requirements dichotomies and extending domains. - Non-functional
"techniques deal with machine notions: computing platform, system dependability
and maintainability, and with computer human interface issues: user-friendliness,
graphic user interfaces, dialogtie m'ana'gement! etc. . ‘
(8) Requirements Model Analysis: ; o .
By Requirements Analysis we understand informal and formal analyses of the
Requirements and of the resulting Model — whether informal of formial.
Discussion: The purposes of the ahal_yses can be to aséeriaiin ljvhethet a
. component and/or its behaviour qualifies as a component (etc.) of the Re-
quiféments, and for such included components analyses may reveal Model
Pproperties not immediately recognised as properties of the Requirements.
" Note the distinction "being made here: the Requirements as it exists “out
* there” — among Stake-holders, and the Model as an abstraction thereof
', and which “exists” on the (electronic) “paper” upon which the Model is
" represented. ’ ) .
(h) Requirements Theory: . o R
" The purpose of Requirements Analysis is to also establish a Theory of the Domain,
or rather: of the Models purported to represent the Domain! '

7. Software Concepts:

(a) Software Design : o

= Software Architecture Specification .
. > Program Organisation Specification

++ Refinements o
+ Coding;: ] ] v
Software Design, through the process of design ingenuity, proceeds from establish-
ing a software architecture, to deriving a program organisation, and from that, in
further steps of design reification, also called design refinement, cohstructing‘the

+ “executable code”. o
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(b) Software Architecture:

A software architecture description specifies the concepts and facilities offered the

user of the software — i.e. the external interfaces.

Usually'fuhctional requirements “translate” into software architecture properties.

Program Organisation: '

A program organisation description specifies internal interfaces between program

modules (processes, platform components, etc.).

Usually non-functional requirements “translate” into program organisation design

decisions. .

(d) Refinement:

‘ Design Refinement covers the denvatxon from the reqmrements model of the soft-
ware architecture, of the program organisation from the software architecture, and
of further steps of concretisations into program code.

-—
o -
—

8. Creation — Acquisition, Elicitation’ and Invention:
All stages and steps of the software development process involves creation: domain
" acquisition & domain ‘modelling, requirements elicitation & requirements modelling, -
- and design ingenuity.  This human process of invention leads to the construction of
informal as well as formal descriptions.

9. Systematnc Rigorous and Formal Development:
The software development may be characterised as proceedmg in either a systematic, a
rigorous or even, in parts, a formal manner — all depending on the extent to which the
underlymg formal notation is exploited in reasoning about properties of the evolvmg
descriptions. C

(a) Formal Notation: .
By a formal notation we understand a language with a precise syntax, a precise
semantics (meamng) and a proof system. By “a precise ...” we usually mean “a -
mathematical ..

(b) Systematic Use of Formal Notation:

By a systematic use of formal notation we understand a use of the notation in - : -

which we follow the precise syntax and the precise semantics.

(¢) Rigorous Use of Formal Notation:
By a rigorous use of formal notation we understand a systematic use in which we
additionally exploit some of the ‘formality’ by expressmg theorems of properties of
what has been written down in the notation. .

(d) Formal Use of Formal Notation:

" By a formal use of formal notation we understand a rigorous use in which we fully
exploit the ‘formality’ by actually proving properties.

(e) Formal Method = Formal Specification @ Calculation:
We refer to item 3 (page 43) for a definition of ‘method’.

The methods claimed today to be formal methods may be forma.l but are not
methods in. the sense we define that term! Since we do not believe that a method
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for developing software: from domains via requirements, can be formal, but only
that use of the notations deployed may be, we {now) prefer the terms: formal
specification and calculation. . s o

(f) Design Calculi — or Formal Systems: o . o
‘By a design calculus we understand a formal system consisting of a formal notation
and a set of precise rules for converting expressions of the formal notation into other
such, semantically ‘equivalent’ expressions. ' S ‘

10. ‘Satisfaction = Validation & Verification:
- The domain acquisition and requirements elicitation processes altérnate with domain

modelling and requirements modelling, respectively, and these again with securing sat- -
. isfaction. ) SR : .

(a) Validation: ‘ v Ca : :

- In this report we are not interested in the crucial process of interactions between
software developers {i.e. software engineess, which we see as domain engineers,
requirements engineers and software designers) and the stakeholders. validation is
thus the act of securing, through discussion, etc., with the stakeholders that the
‘domain model correctly reflects their understanding of the domain. -

(b) Verification: ‘ » N .
Let D, R and S stand for the theories of the fomain, requirements and software.
Then verification: . ‘ R o

CDSER
‘shall mean that we can verify that the designed software satisfies the jrequir‘ex'nents a

‘in the presence of kniowledge (i.e. a theory) abdu_t the fomain.
SRR Y Software.Engineering: : » v »
""" Software Engineering is the combination of domain engineering, requirements engineer- -
. ing and software design, and is seen as the process of going between science and technol-
" ‘ogy. That is, of developing descriptions on theé basis of scientific results using mathemat-

“ics =~ as in other engineering branches — and of understanding (the ¢onstructed fomain
of) existing (software) technologies by subjecting them to rigofous domain analysis.

12. Frame Specialisation:

" Discussion: In item 2 (page 32) we discussed the problem of software engi-
neering being seemingly as a too wide feld. And we hinted that specialisation
might be a natural way of achieving a level of professionalism achieved in tra-
ditional engineering fields. In this item we WiH briefly introduce the concept
of problem frames and give example of distinct such frames.

A problem frame is well-delineated part of all the problems to which computing might
be applied — such that this frame offers a precise set of principles, techniques and tools
- for software development, and such that this ‘method’ fits the frame “hand in glove™.
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e Principal Parts and Solution Task

Following Jackson [98, 99] we think of a (problem) frame as consisting of its principal
parts and a solution task. The principal parts are (1.) the domain — which exists
a-priori — and (2.} the requirements. The solution task is that of developing the
software — something relatively new! Tackling an application problem consists initially
of analysing it into a frame, including a multi-frame with clearly identified part-frames. -

We explain a few frames and otherwise refer to [98, 99, 27):

(2) Translation Frame:

The principal parts are: (i) two formalised languages (syntax and semantics),
source and target; (ii) the concrete form of the syntactic representations of either:
the source usually in the form of a BNF grammar for textual input, the target
usnally in the form of an internal (“electronic”) data structure; (iii) user requests
for compilation from source to target; {iv) the compiler; and (v) the translation
function. (i-if) form the domain, (iii-iv-v) the requirements.

The solution task now involves developing the compiler using a well-defined set of
techniques and tools: lexical scanner generators, possibly error-correcting parser
generators, attribute grammar interpreters, etc.

(b) Reactive Systems Frame:

The principal parts are (i) the dynamic (temporal, real-time) “real world”; (ii) its
observable variables [output], (iii) its controllable variables [input]; (iv) user (or
other system) requests for the monitoring and/or control of the “real world”; (v)
the monitoring & control (software etc.) system; and (vi) the specific monitoring
& control functions (optimisation, safety, dependability, etc.). Items (1-11-m) form
the domain, (iv-vi) the requirements. )
The solution task now involves control theoretic and real-time, safety critical soft- - -
ware design principles, techniques and tools.

It seems that Jackson refers to the reactive systems frame as the envtronment—eﬁ'ect
frame [98].

(¢) Information Systems Frame:

The principal parts are almost as for reactive systems (i-ii) except that there is no
desire for control, and the issues of safety criticality, real-time and dependability
are replaced by {vi) (observable) information security and the need for usually
“massive” information storage (for statistical and other purposes); (iv) the requests
are concerned with the visualisation of observed information and computations over
these; (v) the system is thus more of an information (monitoring) system; and (vi)
the functions include specifics about the visualisation and other processing.

* The solution task can perhaps best be characterised in termﬁ_of the principles,
techniques and tools for example offered by Jackson’s JSD method [96, 98].

(d) Connection Frame: See [98, 99, 27] for details.

(e) Workpiece Frame: See {98, 99, 27] for details.

(f) Transaction Frame: See [98, 99, 27 for details.
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(g) Multi-frame: See [98, 99, 27] for details.
Usually a problem is not reducible to a single of the frames mentioned above (and
some of these, due to requirements, often “overlap”). In such cases we have a
multi-frame, a frame being best characterised in terms of hopefully reasonable
well-delineated (sub-) frames.

(h) &c.

A.2 General Terminology

Many more terms are used in the subject field of this report: in its science and in its engineer-
ing. Sometimes with unclear meanings, and not always with the same meaning from paper
to paper. We shall therefore try delmeate also lmportant general cconcepts.

Some dogmas: : :

1. Computer Science:

Computer Science, to us, is the study and knowledge of the foundatlons of the artifacts
that might exist inside computers: the kinds of mformatxon functions and processes (i.e.
type theory), models of computability and concurrency; bases for: ‘denotational, alge:
braic and operational semantics; specification and programming language proof theories;
automata theory; theory of formal languages; complexity theory; etc.

2. Computing Science:

Computmg Scxence to us, is the study and knowledge of how to construct the artlfacts -
that are to exist inside computers. Successful computing science results in a useful
programming methodology. - :

The present report “falls” , subject-wise, somewhere between computmg science and
software engineering. . IRRETSE LRI, S
' 3. Method:

Bya method we understand a set of pnncxplw of ana]ys:s and for selectmg a.nd applymg
techmques and tools in order eﬂiczently to construct eﬂic:ent artxfacts — here software.

4. Methodology: = :
By methodology we understand the study and knowledge abotit methods. Since we can

assume that no one software development method will suffice for a.ny entire constructlon
process we need be concerned with methodology.
5. Software:

By software we understand all the documentatlon that is necessary to install, operate,

run, maintain and understand the executable code; as well as that code itself and the

tools that are needed in any of the above (i.e. including the orlgmal development tools). -
6. Software Technology: ' ’

By software technology we uriderstand sets of software tied to sets of specific piatforms
(By a platform we mean “another” machine!)
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7. Programming:
Programming is a subset of activities within software engineering which focus on the
systematic, via rigorous to formal creation of descriptions using various design calculi.
.8. Engineering: ) ‘
Engineering is the act of constructing technology based on scientifically established
results and of understanding existing technologies scientifically.
9. Engineer:
Engineers perform engineering and use, as a tool, mathematics. It is used in order to
model, analyse, predict, construct, ete. software engineers reason about the artifacts
they construct, be they (fomain, requirements, software architecture, program organi-
sation, etc.) model descriptions (i.e. definitions or specifications) or program code.
10. Technician: ‘
Technicians use technologies: they compose, use and “destroy” them — without neces-
sarily using mathematics.
11. Technologist: :

Technologists are téchnicians who manage technologies: perceive, demand, produce,
procure, market and deploy technologies. ’

This report views software engineering as hinted above: As the act of going between science
and technology, using mathematics — wherever useful.
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- Abstract

Software development is no longer an enterprise where the traditional waterfall method of
system construction is acceptable. Information technology is changing at a pace that requires
complete System development and fielding in less than 18 months. This is due in part to faster
‘technology insertion, and in part by increased user expectations. Both reasons provide o
justification for changing the way software is built and fielded. Increased user expectations
require that we involve the user more in the requirements engineering process, and deliver the
software to the user much more quickly. Faster technology insertion requires that we incorporate
new technology into existing products much faster and with less rework.

A new software evolution paradigm is needed to accomplish these goals, along with the
automated tools to realize the benefits.. Computer-Aided prototyping is one such method that
incorporates the goals and opinions of the user from the beginning of the software evolution )
process, throughout the lifecycle, and into retirement. Automated tools, like the Computer-Aided
" Prototyping System {1}, assist the software developer in building executable prototypes of a
software system very quickly, involving the user in an iterative build, execute, modify loop until
the user is satisfied with the demonstration of the prototype. The prototype is then used to build -
the final version of the software through the use of the architecture included in the prototype, as
well as the validated set of requirements constructed during the prototyping process. This final
version is delivered very quickly, hopefully before the user’s requirements have an opportunity to
change. : N

In the event that the user’s requirements do change, new requirements can be incorporated into a
next version of the system by using the same iterative process where the ficlded version of the ]
system provides the base version of the process. This incrémentat evolution process can proceed
throughout the life of the system.

What is needed in the paradigm is a method for automating the parts of the process that are not
already automated by CAPS. These include computer-aided construction of the prototype
through intelligent interpretation of requirements into design, and better mechanisms for finding
and retrieving reusable components from a repository. Current capability in CAPS provides for
the ability to retrieve reusable components from a stand-alone repository built for the purpose, but
to be useful in general, a methodology that uses some commercial standard, such as CORBA, for
storing the components is needed to allow distributed access to mutltiple repositories.
Additionally, an integrated automated testing capability is needed to provide for more robust
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prototypes to be delivered to customers as increments of the final system. Current prototypes are
not industrial strength, and therefore cannot be expected to perform in a safe manner in the user’s
environment.

This idea of a new paradigm to build software is not new. Many have tried to develop new
ways 1o do the same things. I do not propose a revolutionary new way o do software
development, but merely propose a new way to use some existing technology to satisfy a growing
need, quicker delivery of software products that can be maintained more easily, and updated more
rapidly. o

1. Lugi and Ketabchi, M., "A Computer-Aided Prototyping System” JEEE Software, March 1988.

RTSE’97, p.104



Combining and distributing hierarchical systems
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Abstract. It is possible with RAISE to specify and do most refinement in an
applicative framework, and then transform the concrete applicative specification V

_into an imperative sequential or concurrent one. This transformation changes from -
a style more appropriate to proof of réfinement to a style more appropriate to
implementation. : B ' o
The resulting imperative specification is typically hierarchical, with upper levels
~calling the functions of lower ones. This paper presents a further stage of develop- - -
ment in which the hierarchical structure is transformed into a distributed one, and
components communicate asynchronously. This also allows “horizontal” communi-
cation between components of previously separate hierarchies. == - S
A major design aim is to reuse the hierarchical specification, as far as possible ex-
tending the existing modules by standard, generic components. The method should
achieve correctness by construction, and be amenable to; quality control; it is is
an example of an engineering approach using standard components and standard
assembly techniques. ) L o S o
The method is illustrated by collaborative work done between UNU/IIST and the
Vietnamese Ministry of Finance in developing a specification of a national financial

" information system. o o T
Keywords Formal specification, developmen’t,‘reﬁnement,‘ reuse, restructuring, dis-

_ tributed systems, software engineering -

T

1 Introduction

We take it that engineering, as opposed to science, creates artifacts as far as possible

through combining existing components. Speed ‘and cost are minimised and reliability

maximised through having to invent from fresh as little as possible. In this process the
" engineer exploits the known properties of the components, and the known laws of the

combining activity which allows the engineer to compute the properties of the combina-

tions. : S . o
. In this paper we describe the development of a distributed sjstem, a financial infor-
mation system, by developing first an applicative (or functional) specification and then
transforming this, first into an imperative concurrent but still hierarchical system, and
then into a distributed system. The first of these transformations follows the existing
ideas of the RAISE method [1). The second transformation is new and is based on a
* small number of standard components. Hence it exemplifies an essentially engineering
approach. ) : ~ : o .

. In section 2 we describe the problem we tackled, the development of a specification of
a national financial information system for Vietham. In section 3 we describe the RAISE
method in outline and show how it was applied to the problem. In section 4 we describe
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how the transformation to a distributed system was achieved. Section 5 is a concludmg
discussion.

2 A Financial Information System

During 19967 United Nations University International Institute for Software Technology
(UNU/IIST) in Macau and the Vietnam Ministry of Finance (MoF) undertook a joint
project called MoFIT (Ministry of Finance Information Technology) aimed at doing the
domain analysis and specification for a national financial information system for Vietnam.
The aim was to specify the major components of such a system and to specify the main
activities and information flows. A second aim was to train software engineers from-
Vietnam in the relevant techniques. As well as the first author from UNU/IIST, the
project involved seven mainly young software engineers from Vietnam: four from the
MoF, one from the Institute of Information Technology in Hanoi and one from Hanoi
University. During the 16 months of the project these people each spent between 6 and
12 months working at UNU/IIST. As well as the main work described here studies were
also made of other aspects like system security and the possible effects of changes in
taxation policy. The results are described in two UNU/IIST technical reports (2, 3] which
in turn reference a number of more detailed project reports.

Vietnam is divided into 61 provinces, provinces are divided into districts, and districts
into communes. The major government ministries reflect this structure, with offices at the
national, province, district and in some cases commune levels. So much of the collection or
dissemination of information follows this hierarchical structure. In collecting information
about taxes, for example, districts will supply information to their provincial offices,
which will merge and perhaps summarise it and send it to the national office for the final
merge into national information. Changes in taxation policy, or requests for information,
flow down the hierarchy in the obvious manner.

The main organisation concerned with generating revenue is the taxation system

" which is part of the MoF. In the first phase of the project all the engineers had experience

of developing software for this system, mainly packages for particular tasks for province - -

and district taxation offices. So in thxs phase we concentta.ted on analysing and spec1fymg
the taxation system.

In the second phase we considered other components. The treasury system is con-
cerned with the actual collection and disbursement of money, with offices at national,
provincial and district levels. The budget system is concerned with collecting budgetary
estimates at the commune, district, province and national levels and, after government
decision on the final figures, distributing actual annual budgets at the various levels and
then monitoring these budgets. We also looked at two systems which exist only at the
national level: the external loans and external aid systems.

2.1 The Taxation System

Taxation in Vietnam is currently primarily on enterprises. There are various categories of E
tax, such as profit taxes and sales taxes that may be levied. Provincial tax departments
are responsible for larger enterprises as well as their district offices; district offices are
concerned with smaller enterprises. '
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- them.

Province and district taxation offices therefore share the task of demanding, c011ectmg
and accountmg for taxes. They need to maintain for each taxpayer

—a roll of comparatively static information about the taxpayer, including basic details
like name and address as well as information about the kind of business the taxpayer
is in, from which the applicable categories of tax can be determined

— bases or figures collected from taxpayers about actual turnover, profits, etc.

— accounts recording taxes demanded, paid and owmg for each category of tax for each
taxpayer in each period.

They also need the current national taxation rules, called the regime, for tax calculation.
National and provincial taxation offices share the tasks of collecting, merging and
summarising reports from their constituent offices at the immediately lower level.
It is apparent that there are several functional or organisational components of the
taxation system that one would like the design to reflect:

|

accounting for each category and period for each taxpayer

registration of taxpayers

recording base information for taxpayers

— making, merging and summarising reports

structurally relating districts to provinces, provinces to the national office

Making the structure of the specification reflect the main conceptual components aids
in the comprehension of the overall system. Making the components separate with the
standard properties of internal coherence and minimal linkage makes them easier to
develop independently and robust against changes to other components.

One would also like to speclfy only once shared data structures and functions over

2.2 The taxatlon system specxﬁcatlon

The ta.xatlon system specification does meet these structura.l reqmrements There are
-separate components for a regime, for registration, for a roll, for a base and the tax
calculation from it, for a collection of bases, for an account and a collection of accounts.

These combine as illustrated in figure 1 into a group, which provides all the functions for
dealing with a collection of taxpayers. It also shares some other specifications that will

" be used globally an abstract descnptlon of a report format with a functions to merge

and summarise reports with common formats, and an abstract summatlon function that
can be applied to the range of a mapping.

In figure 1 nested boxes indicate extension (mhentance) continnous lines indicate’
module dependency where the lower box is used to make an object in the upper one, and
broken lines indicate dependency onshared modules through parameterisation. =

The main structure of the specification then follows the hierarchical structure of the

" taxation system. Each district and province has a group; a province has a number of
districts and the national or general taxation department (GTD) has a collection of
provinces. See figure 2. For example, the type Office at the provincial (PTD) level is
defined as a record containing its group and its district oﬂices reptesented asa mappmg
from their identifiers to their offices: ‘
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Fig. 1. Modules involved in specifying a taxation group

type ‘ .
Office =: “(1)
taxpayers : GR.Group SRR
ofices : T.DTDid w» DTD.Office

The prefixes in the type names indicate that the types are defined in other modules.

There is a function mk_report that specifies that a provincial report with a particular -
format is the result of collecting the district reports, merging these, creating the report -
from its own group, and merging this and the merged report from the districts. Thus the
basic requirement that a provincial report combines these elements is clearly specified. - -

The specification at this point consists of about 1000 lines of RSL in 22 modules.
The specification is applicative (functional). We wanted to develop it further towards
a possible implementation. We had taken some account of a possible implementation
strategy in that the main component of the Group module was a database (specified
abstractly as a standard generic module) instantiated with a structure of information to
be recorded about each taxpayer. So we separated the storage and retrieval of information
about taxpayers from its processing, and provided a basis for a database implementation.
Further design work would suggest possible detailed database schemas or relations that
could be used for implementation. But such an implementation would be imperative, not
applicative. Additionally, the actual system runs asynchronously, with different offices
separated geographically and within one office probably several concurrent users. Finally,
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Fig. 2. Taxation system hierarchy

as we shall see, the taxation system communicates with other systems like the treasury
and budget systems. SRR S

To see how we developed the specification to reflect these issues we first describe the
RAISE method in more general terms. i e

3 The RAISE Development Method

The RAISE specification language (RSL) [4] allows specification in both applicative
and ‘imperative styles, and of both sequential and concurrent systems. The applica-
. tive/imperative and sequential /concurrent distinctions are orthogonal, giving four possi-
ble styles, but the applicative concurrent style is rarely used. So ‘we use’applicative, im- -
~ perative and concurrent as abbreviations for applicative sequential, imperative sequential

"~ and imperative concurrent respectively.

RSL supports the specification of data types in the standard algebraic style, by defin-
ing abstract types (sorts) and axioms over their generators and observers. o
A design goal of RSL was uniformity, and 3o it is also possible to specify imperative .
programs using axioms, and also to specify concurrent systems in the same way. This
-allows equational reasoning about all styles of specification. E '
When one speaks about an abstract data type, one is being abstract about the struc- -
.ture of the type. The imperative counterpart is to be abstract about the variable(s)
involved (in the programming language sense of a variable as an assignable entity whose
contents can later be retrieved). One can see the collection of variables {with their types)’
of an imperative specification as corresponding to the “type of interest” [5] of an applica-
_ tive specification. : ‘ ‘ A ' ~
The concurrent part of RSL is based on process algebra (similar to CSP {6] and
CCS [7]) with communication of values along channels. One ‘can abstract away from
the channels involved (and hence aiso about the possible internal communications with
sub-processes). o : ; ' :
Consider a simple example of an abstract data type with a generator empty and an
observer is_empty. Here are the appropriate axioms in the three styles:
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{applicative]
is.empty(empty) = true

[imperative]
empty() ; is.empty() = empty() ; true

[concurrent ]
¥ test : Bool = Unit « :
(main() § empty(}) } test{is.empty()} = (main() § empty(}) }| test(true)

The strong equivalence “=" between expressions compares not only results but also ef-
fects, i.e. changes to variables and communications on channels. (In the applicative case
it could be replaced by “=", as there are no effects.} The applicative generator empty

becomes in the imperative case a function of the same name that will change some vari- -
ables so that the current state is “empty”. The applicative observer is.empty becomes
an imperative function that can read some or all of these variables. Thus the impera-
tive axiom says that performing empty followed by performing is.empty is in every way -
equivalent to performing empty and returning true. -
In the concurrent case we need a main or server process that controls the imperative
state. The functions empty and is_empty become “interface processes” that interact with
the server to change or interrogate its internal state. (In object oriented terminology these
would be called “methods”.) The interlock operator “}{” is like the parallel operator but
allows its constituent processes to communicate only with each other until one of them
terminates. The test process is just a technique necessitated by interlock requiring its
arguments to be of type Unit. So we can read the concurrent axiom as saying that if
we force the server main to communicate with empty, and the resulting process with

is.empty, the result will be in every way equivalent to forcing the communication w1th'- ‘

empty and obtaining true.

It should be clear that all these axioms say essentially the same thing. If you make.- e

it empty, and then ask if it is, it will be. But the effort and machinery to make this

simple assertion becomes progressively more difficult as we proceed to imperative and . .-

then concurrent styles. This was certainly the experience of early users of RSL. " .

The difference does not only apply to specification, but also to reasoning about spec-- - -

ifications. Whether this is done manually or with a proof tool, our experience is that
proving the “same” property in the different styles for the “same” specification involves
effort and difficulty on a ratio of something like 1:2:5 for the three styles. These figures
are only impressions — we have made no measurements. We only want to make the point
that things get much more difficult. A proof tool with better strategies could undoubtedly
alleviate the problems, but we doubt the disparity can be removed.

So we conclude that (abstract) applicative specifications are easiest to construct and
to reason about, but imperative or concurrent systems are what we typically need to -
implement. There does seem to be a notion of them being the “same” thing in some
sense — or at least there being imperative and concurrent counterparts to applicative
specifications. So perhaps we can transform the latter into the former. If we can supply
a notion of correctness, i.e. define prec1sely what we mean by “same”, then we have a
possible development method.
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This was described in the book on the RAISE method [1]. We can follow the devel-
opment route illustrated in figure 3. We start with a more or less abstract applicative
specification. Making this concrete essentially involves making its types concrete and
defining the required functions over these concrete types. Showing refinement involves
showing that these functions satisfy the axioms of the more abstract specifications. The
concrete types typically are records or products of other types which sometimes merit
being made the “types of interest” of subsidiary modules. This process naturally produces
a hierarchy of modules (with some complications when we use parameterisation to make
modules generic or to allow them to be “shared”)

Applicative | Imperative | Concurrent

Abstract I

Concrete .--- --.-;,v---- _-_;.v

‘L Refinement === Transformation

Fig. 3. Development route

When we have a concrete applicative specification we can transform it into a concrete
imperative one, using a standard set of transformation rules. This transformation operates
on a module by module basis, and preserves the structure of the specification. We arrive at
a similarly hierarchic specxﬁcatxon where the “leaf”. modules have variables and functions

to change or report on their state. “Branch” modules normally have no varla.blw, their
functions call the functions of the leaf modules below them. o

Finally there may be some small refinement steps that are best done in an 1mperatxve
context, like replacing recursion with iteration, or to make the specification translat-
able into a programming language, like introducing iteration to reﬁne existentially or
universally quantified expressions.

The syntax of the transformation is stralghtforward but what about its semantlcs?
What is the semantic relation between the apphcatlve specification and the 1mperat1ve

- one generated from it? ' -

The imperative specification cannot be a refinement of the applicative one, because
the signatures of the functions have changed: parameters corresponding to state variables
have disappeared. The refinement relation in RSL is required to allow substitution in a
system of a component by a refinement of it. So certainly such changes in signature are
precluded. But there is a meta-theorem (figure 4) that says

— there is an abstract imperative specification 10 (i.e. one with no expllcntly deﬁned
variables) that refines the concrete imperative one 11
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— a conservative extension I0 + D of this abstract imperative specification reﬁnes the
original abstract imperative one AO

Al 0+D

—> Refinement
--~-= Transformation
Al - mmmmmmemm > 11

Fig. 4. Transformation theorem

This construction was originally described in [8]. ,

The point is that there is no need to write the abstract imperative specification
I0 or the extension D: we know they exist and we know that the concrete imperative
specification constructed by transformation is “correct” with respect to the applicative
one.

Another way to see this notion of correctness is to consider again the three axioms
(1) of section 2.2. The transformation ensures that if the applicative specification has
a property, such as that relating empty and is_empty, then the imperative specification
will have the corresponding imperative property, where “corresponding” is defined by the
transformation.

Another point to note is that the method need not even start w:th an abstract ap-

plicative specification. It is possible to start with a concrete one, which is for most people . -
the easiest starting point, and there is a simple abstraction method that will create an " -

abstract applicative one from it. In the MoFIT project we did almost no refinement; most -
of the applicative modules have concrete types and explicit algorithms. R
A further transformation, first described in [1}, will produce a concrete concurrent
specification from the concrete imperative one. This again applies module by module and
maintains the overall structure of the specxﬁcatxon Leaf modules contain the 1mperat1ve
state components embedded in “server” processes. e
As an example to illustrate these ideas we consider the buffer that we will use later
both for the message system and the in-tray of our distributed system. We start with a
. parameter scheme BUFF_PARM which postulates a type Elem, a particular null va]ue
of this type, and a test is_null:

scheme BUFF_PARM =
class
type Elem
value
null : Elem » isnull(null),
is.null : Elem — Bool
end
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The applicative specification A BUFFER given here is concrete in that its type of interest
Buffer is concrete: it is a list of Elem values. The function put is explicitly specified:
it returns a new buffer with the extra value appended. The get function is specified
implicitly. It takes a predicate as a parameter allowing it to be used either as a function
to get the first element in'the buffer (by making the predicate “A x:X.Elem « true”) or
for extracting an element with some particular property. We will need this featute for the
in-tray later, when we need to be able to extract a message with a particular number.
Failure, because the buffer is empty or there is no element with the required property, is
1nd1cated by returning the null element. .

scheme A.BUFFER(X BUFF_PARM)
class
type Buffer = X.Elem*®
value
put : X.Elem x Buﬂ'er - Buffer
_put(e b)=b "~ (e),

get : (X.Elem — Bool) x Buffer — X.Elem x Buffer
get(f, b) as (e, b') post :
Vx: XElem-xE elemsb¢~f(x)) /\e—XnulI/\b'-b
v . .
3 bl b2 : Buffer «
b=bl"{e) ~ b2 A
b’ = bl ~ b2 A fle) A
{Vx: X.Elem » x € elems bl = ~ f(x)))
end ', '

“.One way to transform the applicative A_BUFFER to a concurrent C.BUFFER is to use
*. the former in the definition of the latter:

scheme C.BUFFER(X : BUFF.PARM) =
" -hide A, buﬂ' put_ch, get_ch, get.res.ch in "
class ,
- -object A : A.BUFFER(X)
" - variable buff : ABuffer := () :
“ channel put_ch, get.res_ch : X Elem get.ch X.Elem — Bool
value :
main : Unit — in put_ch get_ch out get.res.ch wrlte buff Unit
main() =
while true do .
buff := A.put(put_ch?, buff)

let (e, b) = A.get(get.ch?, buff) in -
buff ;= b'; get.res_ch’e
end
- end,
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_.get : (X.Elem — Bool) — in get_res_ch out get_ch X.Elem
get(f) = get_ch!f ; get_res_ch?,

put : X.Elem — out put_ch Unit
put(e) = put.chle
end

Here we have a server process main that runs for ever, mostly waiting for interactions
with the “interface processes” put and get. The imperative state is held in a variable
buff, and three channels are used for communication. The variable and channels are
hidden, so the only possible interactions are via the interface processes. For example,
when get is called with actual parameter a predicate £, it will communicate with main by
outputting f on the channel get_ch. main uses the functions defined earlier in A_ BUFFER
to comipute the result from the predicate fand the current value of the variable buff. Then
the new buffer value is assigned to buffand the result element output back to get on the
get._res_ch channel. get then terminates, returning the element value it received. It should
be intuitively clear that the concurrent buffer “behaves like” the applicative one, and this
can be formalised in terms of transforming applicative properties into concurrent ones.

When the types of interest of sequential modules are functions or mappings over finite
types, the concurrent system has an extra level through there being RSL “object arrays”. .
Thus the mapping in the provincial tax department of district tax department identifiers
to district tax department offices results in an array of objects modelling district tax
offices.

We can see the effect of this transformation for our provincial tax office. The type :
definition (1) of section 2.2 becomes

- object
GR : GROUP,
DTDS[id : T.DTDid] : DTD

We have an object for the province’s group of taxpayers and an array of objects repre-

senting its constituent district tax departments. »
The semantic relation, and hence the notion of correctness of the concurrent system,

is similar to the imperative case. There will exist an abstraction from the concrete con- -

current specification to an abstract concurrent one, a conservative extension of which can - -

be shown to implement the original abstract applicative one. We can guarantee that if the -
applicative specification has a property, the concurrent one will have the correspondmg
transformed property.

The concurrent architecture has some convenient features In partlcular

— It is guaranteed to be deadlock free.

— The states of the imperative components are independent, since all communication is
between leaf and branch nodes. This means in turn that it is possible for branch mod-
ules to call the interface processes of their leaf nodes in parallel instead of sequentlally,
with the same results; there is no interference.

It seems possible in practice to further develop this calling structure, in particular to deal
with “shared” nodes, so that leaves can call the interface processes of other leaves. This
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requires care in the proper sequencing of calls in branch modules, and also requires that
the dependencies between modules are acyclic.

It is not suggested that all concurrent systems can be designed in this particular
way. But it does seem to apply quite conveniently to many systems and to give a very
satisfactory architecture. : '

4 From Concurrent to Distributed

The construction described in the previous section was applied to the taxation specifica-
tion. In the meantime we had worked on the treasury and budget systems. These exhibit
essentially the same kind of hierarchic structure based on provinces, districts (and, for
the budget system, communes). The three specifications needed to be combined into a
single specification, since in practice the three systems communicate, and they do so at
the local level. For example, when someone pays tax they actually pay it at the local
treasury office. This sends a notification to the corresponding tax office. It also reports
amounts collected to the local budget office, since this monitors budget performance. We
had modelled for each system the receipt of such information but not (since we had three
separate specifications) the transmission of it. e

We also wanted to include the two other specifications we had done, of the external
loans and external aid systems. These do not exhibit the same problems since they only
have national offices. -~ o D

The structure of the hierarchic specifications seemed wrong for introducing “horizon-
tal” communication between local offices of different ‘systems. The provincial offices are
modelled by an array of objects “inside” the national one, and the district offices are
similarly “inside” the provincial ones. This is really just a conceptual issue; there is no
reason why a treasury office in district D of province P should not call a function named
Tax.P.D.pay to report a tax payment, but to some members of the team it seemed wrong
to apparently pass the call through the national office. o

‘More real is the problem that communication in the hierarchic systems is synchronous,

kS ",‘ﬁvhilfe‘.(:ommimiéation in the actual systems will be asynchronous. The means of commu-

nication between offices vary, and at present very few are electronic. Asynchrony applies
vertically as well as horizontally — and often the delays are longest in this direction. Dis-
trict freasury and taxation offices may be co-located, but some way from their provincial
. offices. , : A ) .

* So'we wanted to move from the situation illustrated in figure 5 to that illustrated in_
. figure 6. : ‘ , E

4.1 Construction

. There are two issues: how to construct the combined and distributed systém, and its
~ semantics: how to relate its properties to those of the separate hierarchical ones. The
first we describe in this section 4.1, the second in section 4.2. ‘ . :

The aim was to achieve this restructuring of the specification while reusing as much
as possible of the work done already. It was clear that the restructuring would need
. some additional components — the message system for a start. We wanted to make these
" components as far as possible generic and hence reusable between the systems we had

and also for similar problems in the future. ’
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Fig. 5. Separate hierarchical systems

The Message System The message system clearly needs a universal set of addresses for
offices in different systems. This is easy enough to specify. A district address, for example,
has the form System.Province.District which makes it easy for a district treasury office,
- for example, to address a message to its corresponding tax office, or to its treasury
provincial office.

We also apparently need a universal message type. We did not want to enforce such
a type across the component systems, so instead we specified a message type for each
system plus a global one, together with encode and decode functions within each system
between its type and the global one. There are axioms for each system

V m : System_message * decode(encode(m)) = m

to guarantee correct message passing within the system. This leaves open the design of
suitable functions to deal with the encoding and decoding of particular kinds of messages -
that pass between systems without it necessarily following that the tax system, say, can
read all messages intended to stay within the treasury system.

The message system is specified as an array of the concurrent buffers we specxﬁed
earlier, one buffer for each address. The get function for the array takes an address as
argument and gets the next message in the buffer with that address. It does not use the
feature we included in the buffer for extracting an element satisfying a predicate: we used
that for the “in-tray” component described later in section 4.1.

We decided to enforce a rule that all messages are numbered (by defining a module
to store and increment a number and instantiating it in each office, so that address and
number together can uniquely identify a message), and include the sender’s address, and
a protocol that all messages are answered by at least an acknowledgement. The reply
carries the same message number as the message it is answering or acknowledging. This,
as we shall see, enables the automation of report collection and, if required, of other
activities.

A “null” message may be the result of faulty communication, or merely the result of
seekmg a reply that has not yet arrived.
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Fig. 6. Distributed and combined systems

An In-tray Each office has an m-tray for receiving mcommg messages This is an
instantiation of the same buffer used to make the message system, but now we shall also
use the facility for extracting a message by number, to allow for replies to messages to
be extracted.
It is interesting to note that the functxon to extract a reply from an m-tray is a loop
— it keeps trying until a non-null message is extracted. This breaks the norma.l design
rule that only servers must potentially loop for ever: this is an mterface process intended
-to interact with server processes, and must be guaranteed, assuming it finishes waiting
‘to interact with a server, to terminate. In practice such a process will need an overall -
time-out or repetition limit to prevent it looping for ever, and also some delay between
- iterations to prevent “race” conditions. We could have specified this but it did not seem .
. worth it — it is a problem easily solved at the ﬁnal 1mplementatxon stage — so we
indicated the problem merely by a comment. : o

A Secretary Messa.ges sent to the message system are placed i in the appropnate desti-
nation buffer. They need to be transferred from there to the destination’s in-tray. This is
a traditional role for a secretary — to open the mail. The name of this module is quite

" intentional — in many tax, treasury, etc. “offices in Vietnam this is currently a manual
process and likely to be so for some time. In specifying this system we are not assum-
ing that all of it will be implemented in software. Some instances of some components
will be manual, and our specification then represents our assumptions about what will
be done. In fact any specification component of a larger system has a dual role. To the
other components that use it it describes what assumptions they may make about that
component; to its implementor it describes what services must be provided. '

We wrote two versions of the secretary module. An “unskilled”™ one merely transfers
messages from the message system to the in-tray. ‘A “skilled” one is supplied with a
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function that decides if a particular (decoded) message can be “handled” by the secretary,
in which case the appropriate function is applied and the reply encoded and dispatched
to the sender of the original message. So, for example, the collection of reports within
the tax system can be handled by the secretary modules since the tax “generate report”
functions already exist. If desired, the recording of tax payments notified by messages
from the treasury system can be done because the “pay” function in the taxation system
already exists, and an acknowledgement can be sent. All that is required is to write the
“handle” functions that call the appropriate existing functions according to the data in
the message. This needs to be written for each office (or each class of office perhaps) but
is a straightforward task.

Secretaries never handle replies to messages sent from their offices: they Just place
them in the in-tray. There are other components, like the stubs described in the next
section, that will be waiting for them.

Stub modules Each provincial office, for example, contains in the hierarchical version
an array of objects representing its district offices. These will no longer appear inside it,
but need to be replaced by simple stub modules. For each function in the hierarchical
system called in a lower object from a higher, the stub module will apparently provide
the same function, returning the same result. But in fact it will send an appropriate
message to the office for which it is a stub, and wait for a reply (recognised by message -
number) to appear in its office’s in-tray. It then returns the content of the reply and thus
(assuming no communication faults) appears, modulo some delay, to act exactly like the
function it replaced. ~

Changes to existing modules It should be apparent that the only modules that need
to be changed in forming the distributed system are those for each system defining the

office at the national, provincial, district and possibly commune levels Each needs to be S

supplied thh

~ an object deﬁmng its own system message type, used to instantiate the m—tray, sec-
retary and stub modules

— objects for the message number counter, in-tray, and secretary, which are just mstan—
tiations of generic modules "

— a constant specifying its own address

— stub modules to replace the lower level modules ‘

~ can_handle and handle functions for the (skilled) secretary module to use

Only the last two of these require more than a very few lines of specification, and are
easy to write and to check because they follow a very regular pattern.

This is'a very small change to the specification. For the taxation system, for example
only three modules of the 22 needed any change, and the changes only affected a very
small part of these three.

4.2 Semantics

The construction of the distributed system is comparatively simple. But its semantics
seem much more of a problem. In “opening up” the hierarchies and apparently allow-
ing arbitrary asynchronous communication we are immediately faced with the notorious
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problem of interference which prevents us making reliable conclusions about concurrent
systems based on the properties of their components. :

But in fact our distributed system retains some important structural properties. Al-
though the message system is capable of allowing communication between arbitrary
nodes, it is only used in very partlcular ways

- The communication thhm, say, the tax system is still hierarchical. That is, we did
not introduce any new commaunication paths between tax offices. The only possible

' communications between tax offices are those between an office and its xmmedxate
-superior or inferiors in the hierarchy.

~ We only introduce “horizontal” communication paths for partlcular purposes such as
allowing a treasury office to report a tax payment to a tax office. If we can ‘keep the
number of these paths low we can deal with them individually.

~ We have adopted the protocol that all messages are replied to. This means that we
can rely on either obtaining an answer to a query or deciding, after some smtable
wait, that it is “null”. : . Co

“We consxder a number of requirements and see how we can validate the dlstnbuted system
~ against them: .

1. Taxes for taxpayers are calculated according to the current regime on the basis of
their bases and roll information. :

2. Reports collected by an office will correctly reﬂect the current mformatxon from its
group of taxpayers and/or its subsidiary offices :

3. Tax paid by a taxpayer at a treasury office will be correctly credzted at the corre-
sponding tax oﬂice -

. ‘The first requirement is mostly about the calculations that are carried out within the

“Group” specification. The group is still part of a provincial or district tax office and
is unaffected by the distribution. If this property was true m the’ ongmal apphcatwe :

" specification it will, appropriately transformed, still be true.

There are some additional questions about the current” regime, the ldentlﬁcatlon of
the taxpayer's roll and base information, but it is comparatively easy to check that there
is a function to transmit a regime down the tax hierarchy (and to check its receipt) and
that the one transmitted is the one used until a new one is received. Sxmllarly we can -
check that roll and base information is properly installed.

The second requirement is another example of a function within the tax system Inthe
original, applicative specification it was stated explicitly. Hence we know its concurrent
counterpart holds in the hierarchical specification. The problem comes now from two
sources: interference from other activities, either within the tax system (e.g.-a taxpayer
declares their profits and changes their base) or from another system (e.g. the treasury
reports payment of some tax by a taxpayer).

Information systems like this are typically not mea.nt to deal in very precise ways with
this kind of problem. It is not in general required, say, that an office “lock” its database
against all other accesses while a report is compiled, only that its compilation does not
affect those other activities. It is accepted that figures may vary according to other events
occurring, by chance, just before or just after the report is compiled. The problem, in
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this case, is one of finding a specification of the “current information” that is sufficiently
loose!

A possible approach to this problem is to use partial orders on events as indicating
causality [9], and to specify that the event of asking for a report from each district precedes
the arrival of the request there, which precedes the teport being sent back, which in turn
precedes its receipt and merging with others. The “current information” is that existing
at some point between the request arriving and the report’s dispatch, and hence between
the superior office’s request and merge. But we can check informally that the requirement
is met if we check that each superior office sénds the appropriate message to each of its
subordinate ones, that such messages are properly delivered, that the subordinate offices
“handle” and correctly reply with the information requested, and that the responses are
correctly merged. Much of this (the production of the report in the district office, the
merging of reports at the province office) is already specified in the hierarchical system
and reused (unchanged) in the distributed system.

"“The third requirement is an example of communication between systems, so it is a
requirement that the separate hierarchical systems could not have been specified to meet.
But we can decompose it into

1. Payment of tax at a treasury office will be correctly reported to the appropnate tax
office.
2. (Report of) payment of tax to a tax office will be correctly credited

The second of these is already a property of the “Group” and is unchanged by the
distribution. So we need to check: '

— Each treasury office can receive tax payments.
— The correct information (amount, tax category, taxpayer) is sent to the correct tax
. office.
— The message system dehvers messages to the correct recipient. :
— Such messages can be correctly “handled” by tax offices, with the appropriate group W
fanctions called, and the appropriate acknowledgement sent. TR

(These need to be extended to allow for possible non-communication with checks for
non—acknowledgement resending of information, and recognition of duplicate inputs.)

We conclude that it is not feasible to have a general theory of such a distribution, . .
but that if we have sufficient restrictions on possible communication paths, and suitable -
message protocols, then we can argue informally that requirements are met provided
particular properties of the extra components we added for distribution are true. These
are properties like

. — The message system sends messages to their addressees
— Messages are correctly encoded/decoded
—~ Received messages are correctly “handled”, i.e. the appropriate existing function is
called with the correct parameters
— Messages are replied to with the correct response, or acknowledged

The poiht to notice about these properties are that they are easily stated requirements of,
for example, the message system or the encode/decode functions, and hence can be part
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of their specification, or they are easily checked by looking at a few lines of specification.
The only possible exception to this is the “there is always a reply or acknowledgement”
since its generation may conceivably be some way textually frém the handlmg of the
message it should be a response to, but in practice one can structure the’ specification
so that it is clear. Hence these properties can be checked “by mspectlon” rather than by
proof; they are amenable to quality control. .

Or, of course, one can take a particularly critical property like “all messages are replied
to or acknowledged” and perform the proof. In general we want to restrict proofs at this
stage to critical properties, because of the problems of proof about coricurrent systems
that we remarked on earlier, and do as much as possible by quality control.

5 Conclusions

We ac}neved a number of aims. We were able to sepa.rate clearly the functlonal aspects
of particular parts of the system (like tax accounting and report ‘merging) from more
organisational aspects. We were able to do this partly through adopting a “bottom-
up” approach that allowed us to tackle one problem at a time. This also had a pedagogic
. purpose — it is particularly hard to do things top-down with people with little experience
in formal specification. Much of what is done top-down in making things abstract and
generic, and in dealing with many modules, is hard to motivate to such people, and makes
their initial specifications hard to conceptualise. But as long as one has the confidence
‘that things can be put together later the bottom-up approach has much to recommend
it in keeping things simple for as long as possible, and in allowmg separate parts to be
worked on independently. Ir general, even with experienced people, it is often a good idea
to look first at new, difficult problems regardless .of wherée they wﬂl eventual]y appear in
the specification structure. .
We stated at the start of this paper that engmeermg 1nvolved composmg entxties thh
""known properties in combinations with acconmpanying rules that allowed the properties
of the combinations to be computed. This we have done for the applicativé to imperative,’
sequential to concurrent transformations. We know exactly how to relate the properties of-
the result to the properties of the starting point. The method involves working mmallyi
with applicative specifications, perhaps refining these to more concrete versions, and -
perbaps even proving these refinements, or at least some important properties. Then
'there is a transformation step which is simple enough to be amenable to quality control. -
It might be automated, though in practice there are vatious optlons that can be chosen
as to how exactly to structure the variables or channels being introduced.

The further step introduced in this paper from separate hierarchical systems to a
combined and distributed system uses a number of standard generic modules. The cha.nges
to the existing system are very small and, again, open to quality control.

The introduction of asynchrony, and the opening of hierarchies for independent com-
munications between their components, makes the system semantics more complicated,
and much more difficult to relate to those of the synchronous, hierarchical system. But
it seems that, given sufficient architectural constraints on the possible communication
paths, and reasonable protocols that enable non-reception of messages to be decided, we
can still relate asynchronous properties to synchronous ones in a reasonable manner, and
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the required checks are again amenable to quality control. There is more work to be done
to generalise and properly formalise these ideas.

The attempt to separate concerns and put things together later is not always so
successful. We also looked, for example, at how the security aspects of the tax system
could be specified, starting with the current policy. This uses a quite conventional system
of groups of users with levels of functional access to the user-level functions and access
rights for various functions and parts of the taxation database in each office.

We hoped at one point to be able to put a “shell” around the system so that user
access could be controlled at the outer level without changing the specification within it.
But this proved very difficult, mainly because at the abstract level it is difficult to say
exactly what data is being accessed. It seemed inevitable that we would need to pass the
user identities associated with top level transactions down to the level of the database

_ accesses in order to validate them there. This is probably good practice anyway, as there
is less of the system to validate against security leaks. But it involves a simple but rather
tedious addition of an extra parameter to many functions.
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Abstract

The Internet is becoming the infrastructure upon which an mcreasmg number of new
applications is being developed. These new applications” allow new services to be provided
and even new business areas to be opened. The growth of Internet-based applications has been
one of the most striking technological achievements of the past few years. In this paper we
discuss some risks inherent in this growth. Rapid development and reduced time to market has
probably been “the highest priority concern for application developers. Use of ‘unstable

technology is also typical of such developments So far, applications development was less

concerned with the quality of the resulting products, such as reliability or modifiability. And
developments seem to proceed without following a disciplined approach. We argue that these
systems will become the legacy systems of the near future, when people will discover that
their quality needs to be improved but, at the same time, modifications will be hard to make
in ‘an economical and reliable way. In this paper we discuss the needs for a software

engineering approach to the development of network applications. In particular, we discuss a-

possible research agenda for software engineering research by lookmg at two specxﬁc areas:
the Web and applications based on moblle code.

Keywords and phrases Internet, World Wide Web mobile computmg, dxstnbuted systems
software engmeermg, software quality, software development process -
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2. Introduction

Since the beginning of the 1990’s, use of the Internet and the World Wide Web (WWW) have
exploded, fostered by cheaper and higher performance hardware and commaunication media.
Today, there are more than 50 million users from about 200 countries; the yearly growth rate
has been more than 50%, and the number of forecasted users by the year 2000 is about 380
million {Kambil, Doing Business in the Wired World, IEEE Computer 30, 5, pp. 56-61, May
1977.}).

In recent years, there has been a shift in the way the Intemet is being used and in the way its
potential is perceived both by technology developers and by users. It is not seen merely as the
communication infrastructure that allows people to communicate in a fast, cheap, and reliable
way. It is increasingly seen as the infrastructure upon which new services, new applications,
and even new and previously unforeseen types of social processes are becoming possible. For
example, electronic commerce will probably support new kinds of business and will change
the way business is done. As another example, interactive distance learning and tutoring will
probably change the way knowledge is transferred and will support new kinds of learning
processes.

A new field is therefore emerging: network computing. By this, we mean computing where
the computational infrastructure is a large set of autonomous and geographically distributed

- computers connected by the Internet. Although such infrastructure is a distributed system, and .
therefore the methods and techniques developed so far by the research community dealing
with distributed computing can be viewed as foundational background for network computing,
many new issues arise that make network computing different from distributed computing.
This issue is discussed further in Section 2. ‘ ‘

In this paper we discuss the current stage of network computing in a critical way, in'order to .
understand the risks that are currently inherent in his growth. Rapid development and reduced -
time to market seem to be the major concerns that drive the developments of network "
applications. Furthermore, such applications are developed using either unstable " or
inappropriate technology. Applications are developed in an ad-hoc manner, without following
disciplined design approaches, and often with little concern on their qualities, such as
reliability or modifiability. We argue that these systems are likely to become the legacy
systems of the near future, when people will discover that they will be difficult to maintain‘in -
an economical and reliable way. We see a similarity between the current situation and the one -
that existed in the sixties (see [E.W. Dijkstra, GOTO Statement Considered Harmful] and
much of the work that was then spurred on by this paper), when the risks due to the lack of
appropriate mathematical foundations, methods, and tools were recognized, and a suitable
research agenda was set for software engineering to tame those risks.

In this paper, we dig into two specific important areas of the network computing domain: the

Web and applications based on mobile code. For these two areas we discuss where the main

risks are and outline a possible research agenda. This is not meant to be an exhaustive account

of what is needed, but rather reflects a subjectivé viewpoint that is based on our work and
. some initial results that have been achieved by our research group. : ‘

3. Network computing
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Network computing was defined as computing where the computational infrastructure is a
network of geographically distributed computers connected by a telecommunication network.
Such a network is composed of heterogeneous technologies: from those used to connect
computers in a LAN, to those used to interconnect LANs geographically, to those used to
connect mobile computing devices. The different technologies used to provide connectivity,
spanning from fiber optics to different kinds of wireless connections, provide different levels
of quality of services, e.g., in terms of performance and reliability.

Network interconnection is becoming a commodity. It is available anywhere and anytime,
independent of the user’s physical location. Wireless technology allows computational nodes
to move, still being connected to the net. This supports mobile users, who may be using
laptops or personal digital assistants (PDAs). As we will discuss in Section 4, the network
infrastructure allows not only computing devices to move, but also software components to
migrate over the network. Such components can be viewed as ,software agents”, which can
have some levels of autonomy in achlevmg their specific goals mcludmg the abxhty to move
to different computing nodes , I :

The potential of this pervasxve and ublqultous mfrastructure is enormous, and it is quxte
difficult to anticipate the way it will evolve and how far it will g0. New applxcatxons and new
services are announced almost every day. Although in many cases they promise more than
they actually deliver, the speed and complexity of the evolution are indeed so high that they
are difficult to dominate. It is therefore quite important to build a coherent framework of
principles, abstractions, methods, and tools that would allow network computing to-.be
understood and practiced in a systematic fashion [A. Fuggetta; G.P. Picco, and G. Vigna,
Understanding Code Mobility, Politecnico di Milano Technical Report, June 1997, Accepted
Jor publication on IEEE Transactions on Software Engineering.}. We clalm that these are the’
challenges that software engineering must face in this context. : : :

At the foundational level we need to 1dent1fy the theones that are needed to descnbe reason
- . about, analyze network computations, where the topology and structure of the computing layer

can change dynamically, users can move, and computations can move.'We need to identify
- security models to protect the sites from possible attacks of incoming agents; and, conversely,

to protect agents from malicious sites. From a methodology viewpoint, we need to identify
* process models that are suitable to describing and managing applications developments for the -
new computing infrastructure, where applications grow in a largely independent way, no
precise pre-planmng is possible, and evolution/reconfiguration are the norm.- '

How can we deal with inherently chaotic, partly se]f—regulatmg systems? From the technology
viewpoint, what languages can be provided to program applications? What tools can support
interoperability? What tools can be defined to support service deployment, by allowing
changes of evolving apphcanons to be easxly distributed to thenr users?

Thxs wide spectrum of problems provides a real challenge for software engineering research.
- A number of efforts are already in place, but much more focused work is needed. The efforts
we describe in this paper are only a small sample of what could be done in this area. . '

4. Software Engineering for WWW applications
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From its first introduction in 1990 [T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk
Nielsen and A. Secret, The World Wide Web, Communications of the ACM, vol. 37, num. 8,
August 1994.], the World Wide Web (WWW) is evolving at a fast pace. The number of
WWW sites is increasing as Internet users realize the benefits that stem from a globally
interconnected hypermedia system. Each site, in fact, provides structured information as an
intertwined net of hypertext resources; links can point both to local resources and to nonlocal
résources belonging to other Web sites, thus providing a way to navigate from local to
geographically distributed information sources. Companies, organizations, and academic
institutions exploit the WWW infrastructure to provide customers and users with information
and services. The expectations of both providers and consumers are driving R&D efforts
aimed at improving the WWW technology. Examples are represented by the introduction of
active contents in static hypertext pages by means of languages like Java {J. Gosling and H.
McGilton, The Java Language Environment: a White Paper, Technical Report, Sun
Microsystems, October 1995.] and JavaScript [D. Flanagan, JavaScript — The Definitive
Guide, 2nd Edition, O'Reilly & Ass., January 1997] and by the use of the Servlet technology
[Sun Microsystems, The Java Serviet API White Paper, 1997.

22. Taligent Inc.,Building Object-Oriented Frameworks, A Taligent White Paper, 1994,

23. G. Vigna, Paradigms and Technologies for Distributed Applications Development Based
on Mobile Code, PhD Thesis, Politecnico di Milano, 1998.

] to customize the behavior of Web servers. This technological evolution has promoted a shift
in the intended use of the WWW, The Web infrastructure is going beyond the ‘mere
distribution of information and services; it is becoming a platform for generic, distributed
applications in a2 worldwide setting. «

This promising scenario is endangered by the lack of quality of most existing WWW-based
applications. Although there is no well-defined and widely accepted notion of Web quality
(and indeed, this would be a valuable research objective in its own), our claim is based on the
following common observations that can be made as WWW users:

1. we know that a required piece of information is there in a certain WWW site, but we keep
navigating through a number of pages without finding it;

2. we get lost in our navigation, i.e., we do not understand where we are in our search

3. we keep encountering broken links; :

4. the data we find are outdated (for example, we find the announcement of a ,,future* event -
that has already occurred),

5. duplicated information is inconsistent (for example, in a university Web provndmg pages .
in two language versions, say English and Italian, the same instructor has different office
hours); ‘

6. the navigation style is not uniform (for example the ,,next page in the list” link is in the .
bottom right corner for some pages, and in the top left corner for others).

Thns is only a sample list. Items 3 to 5 of the list can be defined as Web ﬂaws they affect
,correctness* of the Web. The others are more related to style issues, and affect usability.
Furthermore, even if we start from a Web that does not exhibit these weaknesses, these are
likely to occur as soon as the Web undergoes modifications. Thus maintenance of legacy
Webs becomes more and more difficult, and Web quality becomes lower and lower. If we try
to understand what the causes of these inconveniences are, we realize that they all boil down
to the lack of application of systematic design principles and the use of inadequate (low-level)
tools during development.
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Most current WWW site designs are not guided by systematic design methodologies and do
not follow well-defined development processés. Rather, they proceed in'a very unstructured,
ad-hoc ‘manner. Developers focus very early, and predominantly, on low-level mechanisms
that enable, for example, particular visual effects, without focusing on who the expected users
are, what the conceptual contents of the information is, and how should the information be
structured. In particular, they rarely focus on the underlying conceptual model of the
information that should be made available through the Web. The lack of such conceptual
model becomes evident to the users, who find it difficult to search the Web to retrieve the data
they are interested in. In addition, even if design starts at a high level, from a conceptual
model of the information to be made available, no design guidance nor adequate abstractions
are available to help Web designers move down systematically towards an implementation,”
possibly being supported by suitable tools. ’ ‘ o

This situation reminds the childhood of software development when applications were
developed without methodological support, without the right tools, simply on the basis of
good common sense and individual skills. WWW site developrment suffers from a similar -
problem. Most WWW developers delve directly into the implementation phase;, paying little:
or no attention to such aspects as requirements acquisition, specification, and design. Too
often, implementation is performed by using a low-level technology, such as the Hypertext
Markup Language (HTML) [Sun Microsystems, The Java Serviet APl White Paper, 1997.
22. Taligent Inc.,Building Object-Oriented Frameworks, A Taligent White Paper; 1994.
23.G. Vigna, Paradigms and Technologies for Distributed Applications Development Based
on Mobile Code, PhD Thesis, Politecnico di Milano, 1998, .~ - . . .
}. Using the analogy with conventional software development, this approach coresponds to
implementing applications through direct mapping of very informal designs (if any) into an
assembly-level language. Furthermore, the lack of suitable abstractions makes it difficult to-
‘reuse previously developed artifacts, or. to develop frameworks that capture the common
structure of classes of applications and allow fast development by customization. Finally, the
management of the resulting Web site is difficult and error prone, because change tracking
- and structural evolution must be performed directly at the implementation level. This problem
is particularly critical since WWW systems, by their very nature, are subject to frequent
" updates and even redesigns. o L )

 Software research has provided methods for requirements acquisition, languages and methods
for specification, ‘design’ paradigns, technologies (such as object-oriented programming
languages), and tools (e.g., integrated development environments) that provide systematic
support to the software development process. In principle, their availability ‘should allow
software developers to deliver quality products in a timely and cost-effective’ manner. A
similar approach has to be followed in order to bring WWW development out of its -
- immaturity. The next two subsections discuss a possible approach to these problems.

3.1 A WWW Software process

The benefits of a well-defined and supported software process are well known {C. Ghezzi, M

_ Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering, Prentice Hall, 1991.]. As
« for conventional software, the development of a Web site should be decomposed into a

number of phases: requirements analysis and specification, design, implementation. After the

site has been implemented and delivered, its structure and contents ‘are maintained and
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evolved. By identifying these phases of the development process we do not imply any specific
development process structure. Different process models (waterfall, spiral, prototype based)
can be accommodated in the framework. Actually, the continuous and rapid changes in
. business, which will be reflected by the evolution of the corresponding WWW sites, is likely
to favor flexible process lifecycles, based on rapid prototyping and continuous refinement. In
the sequel, we briefly and informally outline the possible objectives of the different phases of
WWW development, based on our own experience.

Requirements an_alysis and speclficatlon

During requirements analysis, the developer collects the needs of the stakeholders, in terms of
contents, structuring, access, and layout. Contents requirements define the domain-specific
information that must be made available through the Web site. Structuring requirements -
specify how contents must be organized. This includes the definition of relationships and
views. Relationships highlight semantic connections among contents. For example,
relationships could mode!l generalization (is-a), composition (is-composed-of), or domain-
dependent relationships. Views are perspectives on information structures that ,,customize®
contents and 'relationships according to different use situations. Different views of the same
contents could be provided to different classes of user (e.g., an abstract of a document can be
made accessible to ,external” users, while the complete document can be made accessible to
Hinternal® users). Access requirements define the style of information access that must be
provided by the Web site. This includes priorities on information presentation, indexing of
contents, query facilities, and support for guided tours over sets of related information. Layout
 requirements define the general appearance properties of the Web site, such as emphasns on
graphic effects vs. text-based layout.
We argue that existing tools supporting requirements spec1ﬁcanon and traceabxhty of
requxrements through all development artifacts can be used in this context too. Further
research is needed both to extend the above framework and to identify the additional speclﬁc
features that a tool supporting requirements for Web based applications should exhibit. :

Design

Based on the requirements, the design phase defines the overall structure of a WWW site,
describing how information can be organized and how users can navigate across it. A careful
design activity should highlight the fundamental constituents of a site; it should abstract away
from low-level implementation details, and should allow the designer to identify recurring -
structures and navigation patterns to be reused [F. Garzotto, L. Mainetti, and P. Paolini,

" Information Reuse in Hypermedia Applications, Proceedings of ACM Hypertext 96,
Washington DC, ACM Press, March 1996.]. As such, a good design can survive the frequent -
changes in the implementation, fostered by —say-- the appearance of new technologies.

Being largely implementation-independent, the design activity can be carried out using
notations and methodologies that are not primarily Web-oriented. Any design methodology
for hypermedia applications could be used; e.g., HDM {F. Garzotto, L. Mainetti, and P.
Paolini, Hypermedia Design, Analysis, and Evaluation Issues, Communications of the ACM,
Vol. 38, No. 8, August 1995.], RMDM [V. Balasubramanian, T. Isakowitz, and E. A. Stohr;
RMM: A Methodology for Structured Hypermedia Design, Communications of the ACM, " -
38(8), August 1995.], or OOHDM [Schwabe and G. Rossi, From Domain -‘Models to-
Hypermedia Applications: An Object-Oriented Approach, Proceedings of the International
Workshop on Methodologies for Designing and]. Our experience is based on the adoption of
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the HDM (Hypertext Design Model) notation [F. Garzotto, L. Mainetti, and P. Paolini,
Hypermedia Design, Analysis, and Evaluation Issues, Communications of the ACM, Vol. 38,
No. 8, August 1995.]. ) : : o

In designing a hypermedia application, HDM distinguishies between the hyperbase layer and

the access layer. The hyperbase layer is the backbone of the application and imodels the

information structures that represent the domain, while the access layer provides entry points
to access the hyperbase constituents. o o

The hyperbase consists of entities connected by application’ links. Entities are structured

pieces of information. They are used to répresent conceptual or physical objects of the

application domain. An example of entity in a Jiterature application is ,,Writer*, Application

links are used to describe domain-specific, non-structural relationships among different

entities (e.g., an application link from a ,writer* to the ,novels* he wrote). Entities are

structured into components, i.e., clusters of information that are perceived by the user as

conceptual units (for example, -a writer’s ,biography™). Complex -components can be

structured recursively in terms of other components. Information contained in components is
modelled by means of nodes. Usually, components contain just one node, but more than one

node can be used to give different or alternative views (perspectives, in HDM) of the

component information (e.g., to describe a piece of contents in different languages, or to

present it in a ,.short* vs. an ,.extended" version). Navigation paths inside an entity are defined
. by means of structural links, which represent structural relationships among components.

Structural links may, for example, define a tree structure that allows the user to move from a

root component (for example, the data-sheet for a novel) to any other component of the same

entity (e.g., credits, summary, reviews, etc.)

Once entities and components are specified, as well as their internal and external
relationships, the access layer defines a set of collections that provide users with the structures
to access the hyperbase. A collection groups a mimber of ,,members*, in order to make them'
accessible. Members can be either hyperbase elements or other collections (nested
~ collections). Each collection owns a special component called collection center that represents
the starting point of the collection. Examples of collections are guided tours, which support
linear navigation across members (through next/previous, first/last links), or indexes, where '
" the navigation pattern is from the center to the members and viceversa. For example, a guided
tour can be defined to navigate across all horror novels, another one can represent a survey of
14 century European writers. o : .

Implementation

The implementation phase creates an actual Web site from the site design. As a first step; the
elements and relationships highlighted during design are mapped onto the constructs provided
by the chosen implementation technology. As a second step, the site is populated. The actual
information is inserted by instantiating the structures defined in the previous step and the
cross-references representing structural and application links among the elements. Collections
are then created to provide structured access to the hyperbase contents. The third step is
delivery. The site implementation must be made accessible using standard WWW
technologies, namely Web browser like Netscape's Navigator or Microsoft's Internet Explorer
that interact with servers using the Hypertext Transfer Protocol (HTTP). This can be achieved
by translating the site implementation into a set of files and directories that are served by a
number of ,standard* WWW servers (also called http daemons in the UNIX jargon).
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The standard tools available today to implement the Web are rather low-level and
semantically poor. The basic abstractions available to Web developers are: ’
o HTML pages, ie., text files formatted using a low-level markup language;
s directories, i.e., containers of pages; and C
s references, ie., strings of text embedded in HTML tags that denote a resource (e.g., an
HTML page) using a common naming scheme.
There are no systematic methods nor linguistic constructs to define the mapping of the types
that define the semantics of the application domain (entities) onto implementation-level types
(pages). There are no constructs to define complex information structures, like sets of pages
with particular navigational patterns, such as lists of pages or indexes. Such structured sets of
information must be realized manually by composing the existing constructs and primitives. In
- addition, there is no way to create document templates and mechanisms to extend existing
structures by customization. The development of a set of documents exhibiting the same
structure is carried out in an ad hoc manner by customizing manually sample prototypes.
There are no constructs or mechanisms to specify different views of the same information and
to present such views depending on the access context. This hampers effective reuse of
information. The only form of reuse is by copy. Some authoring tools like Microsoft’s
FrontPage [Microsoft Corp., FrontPage Home Page, Fehler! Textmarke nicht definiert.]
and NetObject’s Fusion [NetObjects Inc., Fusion Home Page, Fehler! Textmarke nicht
definiert.] try to overcome some of these limitations by providing a site-level view on the
information hyperbase. Nonetheless, these tools are strictly based on the low-level concepts of
HTML pages and directories. As a consequence, the developer is faced with a gap between the
high level concepts defined during design and the low-level constructs available for
implementation. ’

The situation gets worse in the maintenance phase. Web sites have an inherently dynamic
nature. Contents and their corresponding structural organization may be changed
continuously. Therefore, maintenance is a crucial phase, even more than in the case of
conventional software applications. As for conventional software, we can classify
maintenance into three categories: corrective, adaptive, and perfective maintenance [C.
Ghezzi, M Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering, Prentice Hall,
1991.}. Corrective maintenance is the process of correcting errors that exist in the Web site
implementation. Examples are represented by internal dangling references, errors in the
indexing of resources, or access to outdated information (as in the case of published data with
an expiration date). Adaptive maintenance involves adjusting the Web site to changes in the
- outside environment. A notable example is represented by verification of the references to
documents and resources located at different sites. Outbound links become dangling as a
consequence of events over which the site developer has no control. Thus, maintenance is a
continuous process. Perfective maintenance involves changing the Web site in order to
improve the way contents are structured or presented to the end user. Changes may be fostered
by the introduction of new information or the availability of new technologies. Perfective
maintenance should reflect updates to the requirements and design documents. Maintenance in
general, and perfective maintenance in particular, is by far the activity that takes most of the
development effort. ’

Presently, Web site maintenance is carried out using tools like link verifiers or syntax -
checkers that operate directly on the low-level Web site implementation. This approach may
be suitable for some cases of corrective and adaptive maintenance, but does not provide
effective support for tasks that involve knowledge of the high-level structure of the Web site.

For example, since reuse is achieved by copy, modifying a reused component, like a recurrin,
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introduction paragraph for 2 number of documents, involves the identification of every use of
the component and its consistent update. In a similar way, modification of the structure or
style of a set of similar documents requires updates in all instances. For example, if we decide
‘that the background color of the summary page of all ,horror novels must be changed to
purple, this requires consistent change of all files representing such -summaries. More -
generally, since perfective maintenance may require ‘a2 modification of the structure and
organization of information, it should be supported by a structural view of the site and of the
relationships  between design elements and their -implementation constructs. These
relationships are of paramount importance because they allow the developer to reflect design
changes onto the implementation and viceversa. Standard' Web technologies do not provide
any means to represent these relationships and the high level organization of information.
Another problem concemns mainténance of hypertext references. In the standard WWW
technology, references are just strings embedded inside the HTML code of pages; they do not
have the status of first-class objects. Therefore, their management and update is an error prone .

- activity.

3.2 The WOOM approach

An example of what could be done to support Web design is given by a project we are
-currently carrying out in our group. In this project, we developed a- WWW ‘object-oriented
modeling framework, called WOOM - Web Object Oriented Model. WOOM provides
concepts, abstractions, and tools that help in the mapping from high-level design of a Web site
{e.g., in HDM) into an implementation that uses , standard* WWW technology..: : v i

In WOOM, a site is first modeled by introducing a number of entities and relationships, using”
an object-oriented notation. Entities can be organized in an inheritance hierarchy. In addition, -
WOOM predefines the basic implementation types that can be used to implenient WWW -
sites. This includes hyperpages, containers (which can contain hyperpages), and elements (the
constituents of a page)'. An entity implementation is described by inheriting from the entity -
and from an implementation type (e.g.; a'page). A WWW instance is described as a DAG -
whose node types are implementation types (or subtypes thereof). The DAG allows ‘an
information item (e.g., a page or a container) to be shared by different contexts. For example,
one can describe that the page representing a novelist (say, Patricia Highsmith) belongs both ~
to the container which groups the American contemporary writers and the container grouping
crime-story writers. The process of publication of the DAG, which generates the target Web
site in HTML, takes care of generating two different instances of Patricia Highsmith’s page: In
the context of American contemporary writers, its ,,next writer button* might, say, refer to
Saul Bellow’ page. In the context of crime-story writers, such a button might refer to, say,
-George Simenon’s page. Since this done automatically by the publication tool, consistency is
automatically preserved (only one instance of the writer’s data is kept), and maintenance is
greatly facilitated. In addition, to improve currency of the published data, the prototype
version of WOOM that is being developed allows such data to be kept in a database, and the -
values to be extracted from it at publication time. Moreover, the publication process is quite
sophisticated. Basically, it consists of a recursive traversal of the DAG. In such traversal it
" propagates attributes that allow for powerful customization of the information to be published
in the different contexts, based on the attributes of the object encountered during traversal. For

} This is a simplified and incomplete list of the implementation types provided by WOOM. Basically, these types
" define the components that can be defined using HTML. -
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example, we might wish to specify that the background color of horror story pages should be -
yellow, while the background of American contemporary writers should depict the American
flag. This can be specified by two different actions setting the background, performed by the
publishing algorithm as the relevant pages are encountered during the recursive traversal. As
another example, one attribute might be the expiration date of a page. During traversal, the
page with an expired validity date would not be published in target web page. In general, it is .
possible to define events, whose occurrence would trigger the publication process to be
performed as changes occurred whxch would reqmre modification of the target site.

An. lmponam result of this approach is that it clearly separates the description of the data from
the way the data are presented through the Web interface. The same data can be presented
differently in different contexts. This separation not only helps in des:gmng the’ apphcauon'
but also provides support to changes and Web site evolunon ,

5. Mobile computing

As we mentioned, a new class of network applications is emerging, which assumes that users
can move and software components can also migrate over the net. Thxs area ‘of computmg is
often informally denoted as ,,mobile computing*. -

The idea that software can migrate is not new. In particular, it has been exploited by several

distributed systems in order to support load balancing. Mobile computing, however, differs -

from distributed computing in many respects [A. Fuggetta, G.P. Picco, and G. Vigna,

Understanding Code Mobility, Politecnico di Milano Technical Report, June 1997, Accepted

for publication on IEEE Transactions on Saftware Engineering.}. First, traditional distributed *
" computing systems deal with a set of machines connected by a local network, whereas in

mobile computing mobility is exploited at a much larger scale (the Internet scale); hosts ‘are -

heterogeneous, they are managed by different authorities, they are connected by heterogeneous
links. Secondly, mobility is seldom supported in distributed systems. In the particular cases .
where it is supported, it is not provided as a feature given to the programmer to be exploited in
achieving particular tasks. Rather, it is used to allow components to be automatically relocated
by the system to achieve load balancing. This, however, is not visible to the applications’
programmer, since a software layer is often provided on top of the network operating system -
to hide the concept of physical locality of software components. On the other hand, in mobile -
_ computing programming is location aware and mobility is under the programmer’s control.
Components can be moved to achieve specific goa]s such as accessing specnﬁc resources.

There are many expectanons from mobxle computmg, we fear, however, that they are a bit -
premature, and probably unjustified by the current level of maturity’ of the field. The -
technology to support mobility is still in its infancy, there are no methods to follow in
designing applications based on mobility, and it still unclear which are the apphcatxons that
can really benefit from mobnlny

' Concerning the available technology, let us consider programming languages supporting

-mobility. The concepts and terminology are confused, and often it is hard to compare precisely’
what different languages provide to support mobility. For example, some languages provide
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facilities to simply move the code; others allow the code and (part of) the state to be moved®.
The latter case is what one would expect 1o have to implement agents that move on the
network to perform autonomous tasks. Unfortunately, however, the best known and most
widely available example of network programming language (Java) does not support this kind
of mobility, and therefore it is hard to implement network agents. - :

An important aspect of mobile languages is the way they support secure computations. Most
current language proposals do not deal explicitly with this issue, which is often left as ,.future
work®. Instead, our viewpoint is that security should be one of the cornerstones of a language
design. There are two facets of the secarity problem. First, it is necessary that the site which
hosts execution of an incoming component protects itself from malicious attacks. ‘This -is
_ traditionally recognized as a problem from researchers, and is rather well studied. Second, its
is necessary to protect the incoming component from attacks from malicious hosts. For -
example, imagine the case where the component is an agent that migrates over the network to -
perform some critical business operation for a user, such as finding the best options’ for
investment. A malicious site might change the data accumulated in the agént’s state to make
the options provided by the site look better than what was found by visiting other sites. A first
attempt to deal with security issues in the design of a mobile language is provided in [G.
Vigna, Paradigms and Technologies for Distributed Appltcatzons Develapment Based on -
Mobile Code, PhD Thesns, Politecnico di Milano, 1998.].

Concemmg design of mobile applications, one would like to be able to be provided with a

number of design paradigms among which to choose to structure an application. Here too

* traditional distributed systems and mobile computing systems differ from one another. In

traditional distributed computing, applications are mainly designed by using the client-server

paradigm, using lmguxstnc facilities like remote procedure call. Code mobility. supports a -

wider range of paradigms, among which we can consider the following sample:

* remote evaluation, where code is uploaded remotely to perform its task, and the results’
are sent back to the originator site; . :

* code-on-demand, where code is downloaded from a remote site;

& autonomous agent, where a software component moves along with its state.

In principle, it would be helpful to be able to analyze the tradeoffs among the different
solutions based on different paradigms at the design level, before proceeding to an
implementation. For example, [A. Carzaniga, G. P. Picco, and G. Vigna, Designing

* Distributed  Applications with Mobile Code Paradigms, in Proceedings of the 19th
International Conference on Software ‘Enginéering, Boston, 1997.] discusses a set of
paradigmis and evaluates their tradeoffs in an example of a distributed information retrieval
application. The tradeoffs are evaluated in terms of a simple quantitative quality measure:
network traffic. The case study shows that, in general, there is no definite winner among the
different paradigms, but rather the choice depends on a number of parameters that
characterize the specnﬁc problem instance.

These are just some initial steps in the direction of guiding design of mobile code apphcauons
bya systematic development process. More experiments are needed before we can identify a

2Fora comprehensive survey and assessment of curremly available mobile computing languages, the reader can
refer to {G. Cugola, C. Ghezzi, G.P. Picco, G. Vigna, ,Analyzing Mobile Code Languages®, in
Mobile Object Systems: Towards the Programmable Internet, Jan Vitek and Christian

Tschudin, eds., Lecture Notes on Comiputer Science, Springer Verlag, April 1997éE’97 133
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set of generally useful methods and techniques, and provide tools to support them. Besides

distributed information retrieval, the areas in which mobility might be explored include:

- active documents, i.e., documents that include the capability of executing programs;

- advanced telecommunications services; _ ,

- remote configuration, control and maintenance of devices;

- support to distributed cooperation and coordination (e.g., distributed workflow);

- active networks, ie., the ability of ,programming the network according to the
application’s needs. : : P

6. Conclus:ons

Network computmg is a rapxdly evolving field, which is raising much interests, both in
industry and in research institutions. It is a very promising field but, at this stage of maturity, it
is perhaps raising too many unjustified expectations. Growth is both chaotic and exciting. We
see many interesting things being done in practice which are not backed up by adequate

methods and tools. A challenge exists for software engineering research to evaluate critically

- how things are done today in order to identify a possible comprehensive approach to the . -
development of network applications. The ,just do it* approach that seems to be behind the .
current efforts are simply inadequate to reach the desired levels of quality staridards of the
 resulting applications, for example in terms of reliability and ease of change. We must, of
course, keep into account what makes network applications different from most traditional
applications. In particular, their intrinsic levels of flexibility, autonomy, decentralization, and
continuous change that cannot be pre-planned centrally. These properties must eventually be
combined with the necessary discipline that allows the desired level of rehabxhty to be
reached in a measurable and econormcal way. .
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Abstract. We present two concepts that help software engineers to perform different software
development activities systematically. The concept of an agenda serves to represent technical process
knowledge. An agenda consists of a list of steps to be performed when developing a software artifact.
Each activity may have associated a schematic expression of the language in which the artifact is
expressed and validation conditions that help detect errors. Agendas provide imethodological support
to their users, make development kmowledge explicit and thus comprehensible, and they contribute
to a standardization of software development activities and products. S
The concept of a strategy is a formalization of das. Strategies model the development of a
software ‘artifact as a problem solving process. They form the basis for machine-supported devel-
. opment processes. They come with a generic system architecture that serves as a template for the
' implementation of support tools for strategy-based problem solving.” " - ’

Keywords: Software engineering methodology, process modeling, forlilal_';xlétleo.niSf Ny
1 ' Introduction

Software engineering aims at producing software systems in a systematic and cost-effective
~way. Two different aspects are of importance here: first, the process that is followed
when producing a piece of software, and secdn'_d, the various intermediate products that
are developed during that process, e.g., requirements documents, formal specifications,
program code, or test cases. - o S :
To date, research on the process aspects of software éngineering concentrates on the
management of large software projects, whereas research on the product aspects of soft-
-ware engineering concentrates on developing appropriate languages to express the various -
software artifacts, e.g., object-oriented modeling languages, architectural description lan- -
guages, specification or programming languages. , S .
The work presented in this paper is intended to fill a gap in current software engineering
technology: it introduces concepts to perform the technical parts of software processes in a
systematic way. By ensuring that the developed products fulfill certain pre-defined quality
criteria, our concepts also establish an explicit link between processes and products. ’
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Fig. 1. Relation b gendas and strategies

We wish to systematically exoloit existing software development knowledge, i.e., the
problem-related fine-grained knowledge acquired by experxenced software engineers that
enables them to successfully produce the different software engineering artifacts. To date,

such expert knowledge is rarely made explicit. As a consequence, it cannot be re-used to ...

support software processes and cannot be employed to educate novices. Makmg develop—
ment knowledge explicit, on the other hand, would :

" — support re-use of this knowledge,

— improve and speed up the education of novice software engineers,

lead to better structured and more comprehensible software processes, ' -
make the developed artifacts more comprehensible for persons who have not developed
them, - v S

— allow for more powerful machine support of development processes.

¥

Agendas and strategies help achieve these goals. An agenda gives guidance on how to
perform a specific software development activity. It informally describes the different steps
to be performed. Agendas can be used to structure quite different activities in different
contexts.

Strategies ate a formalization of agendas. They aim at machine supported development
processes. The basic idea is to model software development tasks as problem solving
processes. Strategies can be implemented and supplied with a generic architecture for
systems supporting strategy-based problem solving. -

Figure 1 shows the relation between agendas and strategies. First, the development
knowledge used by experienced software engineers must be made explicit. Expressed as -

RTSE’97, p.138



an 'agenda, it can be employed to develop software artifacts independently of machine
support. If specialized machiné support is sought for, the agenda can be formalized as a
strategy. Such a formalization can be performed systematically, following a meta-agenda.
Implemented strategies provide machine support for the application of the formalized
knowledge to generate software artifacts. In general, the steps of an agenda correspond
to subproblems of a strategy. o .

Agendas and strategies are especially suvitable to support the application of formal
techniques in software engineering. Formal techniques have the advantage that one can
positively guarantee that the product of a development step enjoys certain semantic prop-
erties. In this respect, formal techniques can lead to an improvement in software quality
‘that cannot be achieved by traditional techniques alone.

In the following two sections, we present agéndas and strategies in more detail. Related
--work is discussed in Section 4, and conclusions are drawn in Section 5.

2 Agendas -

" An agenda is a list of steps to be performed when carrying out some task in the context

of software engineering. The result of the task will be a document expressed in a certain

- language. Agendas contain informal descriptions of the steps. With each step, schematic
expressions of the language in which the result of the activity is expressed can be associ- -

 ated. The schematic expressions are instantiated when the step is performed. The steps

- listed in an agenda may depend on each other: Usually, they will have to be repeated to

achieve the goal. : B , R : o
Agendas are not only a means to guide software development activities. They also’

- support quality assurance because the steps of an agenda may have validation conditions
" associated with them. These validation conditions state necessary semantic conditions
' that the artifact must fulfill in order to serve its ‘purpose properly. When formal tech- -
*'niques are applied, the validation conditions caii be expressed and proven formally. Since
"~ the 'validation conditions that can be stated in an agerida are necessarily application in-

* " dependent, the developed artifact should be further validated with respect to application

- dependent needs.

2.1 An Agenda for Formally Specifying Safety-Critical Software
To illustrate the agenda concept, we present a concrete agenda that supports the for-
mal specification of software for safety-critical applications. Because we want to give the
readers a realistic impression of agendas, we present the agenda unabridged and give a
brief explanation of the important aspects of software system safety and the language and
methodology we use to specify safety-critical sofiware. ' R
The systems we consider in the following consist of a technical process that is controlled
by dedicated system components being at least partially realized by software. Such a
system consists of four parts: the technical process, the control component, sensors to
communicate information about the current state of the technical process to the control
component, and actyators that can be used by the control component to influence the
behavior of the technical process. ~
Two aspects are important for the specification of software for safety-critical systems.
First, it must be possible to specify behavior, i.e. how the system reacts to incoming
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Fig. 2. Software Control Component for Passive Sensors Architecture

events. Second, the structure of the system’s data state and the operations that ‘change
this state must be specified. We use a combination of the process algebra real-time CSP
[Dav93] and the model-based speciﬁcation language Z [Spi92] to specify these different
aspects.

In [Hei97,HS96] we have described the followmg prxncnples of the combmatxon of both
languages in detail: For each system operation Op specified in the Z part of 2 specification,
the CSP part is able to refer to the events OpInvocation and OpTermination. For each

input or output of a system operation defined in Z, there is a communication channel

within the CSP part onto which an input value is written or an output value is read
from. The dynamic behavior of a software component may depend on the current internal -
system state. To take this requirement into account, a process of the CSP part is able to
refer to the current internal system state via predicates which are specified in the Z part
by schemas. .

There are several ways to design safety-critical systems, according to the manner in

" which activities of the control component take place, and the manner in which system

components trigger these activities. These different approaches to the design of safety-
critical systems are expressed as reference architectures. .

We present an agenda for a reference architecture where all sensors are passive, i.e.,
they cannot trigger activities of the control component, and their measurements are per-
manently available. This architecture is often used for monitoring systems, i.e., for systems
whose primary function is to guarantee safety. Examples are the control component of a

steamn boiler whose purpose it is to ensure that the water level in the steam boiler never
leaves certain safety limits, or an inert gas release system, whose purpose is to detect and
extinguish fire. -

Figure 2 shows the structure of a software control component assocxated w1th the
passive sensors architecture. Such a control component contains a single control operation,
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which is specified in Z, and which is executed at equidistant points of time. The sensor

values » coming from the erivironment are read by the CSP control process and passed

on to the Z control operation as inputs. The Z contro!l operation is then invoked by the -

CSP process, and after it has terminated, the CSP control process reads the outputs of

the Z control operation, which forin the commands ¢ to the actuators. Finally, the CSP

control process passes the commands on to the actuators. .
Agendas are pr&sented as tables with the fo]lowmg entries for each step:

- a numbering for ea.sy reference,

~ an informal description of the purpose of the step, '

— a schematic expression that proposes how to express the result of the step in the
- language used to express the document, |

~ possibly some informal or formal valldatlon conditions that help detect errors.

The agenda for the passive sensors architecture is presented in Tables 1 and 2, where in-
formal validation conditions are marked “o”, ;md formal validation conditions are marked
“+". The dependencies between the steps are shown in Figire 3.

Fig. 3. Dependencies of steps of agerida for 'passive serisors architeetufe .

) The agenda. gives 1nstruct10ns on how to proceed in the specxﬁcatxon of a software—based

* control component according to the chosen reference architecture. Usually, different phases

: "can be identified for processes expressed as an agenda. The first phase is characterized
by thé fact that high-level decisions have to ‘be taken. For these decisions, no validation .

conditions can be stated. In our example, these ate the Steps 1 and 2. In the second phase,

' 'k"ythe language templates that can be proposed are ‘fairly general (for example, we cannot

_.say much more than that schemas should be used to define the internal system states and
_‘the initial states), but it is possible to state a number of formal and informal validation
condxtxons In our example, the second phase consists of Steps 3 and 4.

" In the third and last phase of an agenda, the parts of the document developed in the
earlier phases are assembled. This can be done in a routine or even completely automatic
way. Consequently, no validation conditions are necessary for this phase. In our example,
the third phase consists of Steps 5 and 6. Step 7 allows specifiers to add specxﬁcatxon text
if this is necessary for the particular a.pphcatnon The example shows that

~ the agenda is fairly detailed and provndes non-trivial methodologxcal support,

— the structure of the specification need not be developed by the specifier but is deter—
mined by the agenda,

— the schematic expressions proposed are quite detalled

the validation conditions that help avoid common errors are tailored for the reference

. architecture and the structure of its corresponding specification. '
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[No.[Step Schematic Expressions
5 [Define the Z con-[_— Control
trol operation. {| AlnternalSystemState
Sensors; Actuators

mode = Model = OpModel
ALA
mode = ModeK = OpModeK

6 |Specify the con-
trol process in real- .
time CSP. ControlCompagapy = pX's . :

: {(sensor1?valueS1— inllvalueS1 — Skip || .. /||
sensorN ?valueSN - inNlvalueSN - Skip);
ControlInvocation — ControlTermination —

" (out1?valueAl - actuatorltvalucAl — Skip || ... ||
outM?valueAM — actuatorM!valueAM =+ Skip)
It Wait INTERVAL), X TR

ControlComponent = SystemnitEzec ControlCompreapy

7 lSpecify further re-
quirements if nec-

Table 2. Agenda for the passive sensors architecture, part 2

2.2 Agenda-Based Development

: L R T I L
In general, working with agendas proceeds as follows: first, the software engineer selects .
an appropriate agenda for the task at hand. Usually, several agendas will be available
for the same development activity, which capture different approaches to perform the
activity. This first step requires a deep understanding of the problem to be solved. Once
the appropriate agenda is selected, the further procedure is fixed to a large extent. Ea)ch
step of the agenda must be performed, in an order that res;igcts the dgpgndelicies of steps.
The informal description of the step informs the software engineer about the purpose of
the step. The schematic language expressions associated with the step provide the software
engineer with templates that can just be filled in or modified according to ‘the needs of
the application at hand. The result of each step is a concrete expression of the language
that is used to express the artifact. If validation conditions are associated with a step,
these should be checked immediately to avoid unnecessary dead ends in the development.
When all steps of the agenda have been performed, a product has been developed that
can be guaranteed to fulfill certain application-independent quality criteria. .

Agenda-based development of software artifacts has a number of characteristics:

— Agendas make software processes explicit, comprehensible, and assessable.
Giving concrete steps to perform an activity and defining the dependencies between the
steps make processes explicit. The process becomes comprehensible for third parties
because the purpose of the various steps is described informally in the agenda.

~ Agendas standardize processes and products of software development.
The development of an artifact following an agenda always proceeds in a way consistent
with the steps of the agenda and their dependencies. Thus, processes supported by
agendas are standardized. The same holds for the products: since applying an agenda
results in instantiating the schematic expressions given in the agenda, all products

- developed with an agenda have the same structure. ' ‘ ‘
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— Agendas support maintenance and evolution of the developed artifacts.
Understanding a document developed by anothei person is much less difficult when
‘the document was developed following an agenda than without such information. Each
part of the document can be traced back to a step in the agenda, which reveals its
purpose. To change the document, the agenda can be “replayed”. The agenda helps
focus attention on the parts that actually are subject to change. In this way, changing
documents is greatly simplified, and it can be expected that maintenance and evolution
are less error-prone when agendas are used.

~ Agendas are a promising starting point for sophlstxcated ‘machine support
First, agendas can be formalized and implemented as strategies, see Section 3. But
even if a formal representation of development knowledge is not desired, agendas can
form the basis of a process-centered software engineering environment (PSEE) [GJ96].
Such a tool would lead its users through the process described by the agenda. It
would determine the set of steps to be possibly performed next and could contain a
specialized editor that offers the user the schematic language expressions contained
in the agenda. The user would only have to fill in the undefined parts. Furthermore,
an agenda:based PSEE could automatically derive the validation obligations arising
during a development, and theorem provers could be used to discharge them (if they
are expressed formally). ,

We have defined and used agendas for a variety of software engineering activities that we
supported using different formal techniques. These activities include (for more details on
the various agendas, the reader is referred to [Hei97]):

- Requnrements engineering
We have defined two different agendas for this purpose. The first supports require-
ments elicitation by collecting possible events, classifying these events, and expressing
requirements as constraints on the traces of events that may occur. Such a require-
ments description can subsequently be transformed into a formal specification. The .

second agenda places requirements engineering in a broader context, taking also main-:~.. ... .+

tenance considerations into account. This agenda can be adapted to maintain and
evolve legacy systems. :

— Specification acquisition in general '
There exist several agendas that support the development of formal specnﬁca,tlons -
without referring to a specific application area (such as safety-critical systems). The
agendas are organized according to specification styles that are language-mdependent
to a large extent. ‘

~ Specification of safety-critical software .
Besides the agenda presented in Section 2.1, more agendas for this purpose can be
found in [HS97, GHD98] .

~ Software design using architectural styles
In [HLY7), a characterization of three architectural styles usmg the formal descrlp-
tion language LOTOS is presented. For each of these styles, agendas are defined that
support the design of software systems conforming to the style. .

~ Object-oriented analysis and design
An agenda for the object-oriented Fusion method {CAB+94] makes the dependencies
between the various models set up in the analysis and design phases explicit and states
several consistency conditions between them.
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- Program synthesis I ~

" We have defined agendas supporting the development of provably correct programs
from first-order specifications. Imperative programs can be synthesized using Gries’
approach {Gri81}, and functional programs can be synthesized using the KIDS ap-
proach [Smi90].

3 The Str>atbegy Framework

In the previous section, we have introduced the agenda concept and have illustrated what
kind of technical knowledge can be represented as agendas. Agendas are an informal
concept whose application does not depend on machine support. They form the first layer
of support for systematic software development. , » R -

We now go one step further and provide a second layer with the strategy framework. In
this layer, we represent development knowledge formally. When development knowledge
is represented formally, we can reason about this knowledge and prove properties of it.

- The second aim of the strategy framework is to support the application of development
knowledge by machine in such a way that semantic properties of the developed product -
can be guaranteed. o Cod P ’ .

In the strategy framework, a development activity is conceived as the process of con-

“structing a solution for a given problem. A strategy specifies how to reduce a given problem

~ to a-number of subproblems, and how to assemble the solution of the original problem
from the solution to the subproblems. The solution to be constructed must be acceptable
for the problem. Acceptability captures the semantic requirements concerning the product
of the development process. In this respect, strategies can achieve stronger quality criteria
-than is intended, e.g., by CASE. The notion of a strategy is generic in the definition of

_ problems; solutions and acceptability. o T .
 How strong a notion of acceptability can be chosen depends on the degree of formality

“of problems and solutions. For program synthesis, both problems and solutions can be

- formal objects: ‘problems can be formal specifications, solpti,o'ns‘ can be programs, and

acceptability can be the total or partial correctness of the program with respect to the
specification. For specification acquisition, on the other hand, we might wish to start from
" informal requirements. Then problems consist of a combination of informal requirements
and pieces of a formal specification. Solutions are formal specifications, and a solution is

- . acceptable with respect to a problem if the combination of the pieces of formal specification

contained in the problem with the solution is a semantically valid specification. This
notion of acceptability is necessarily weaker than’the one for program synthesis, because
. the adequacy of a formal specification with respect to informal requirements cannot be
captured formally. Only if the requirements are also expressed formally, a stronger notion -
of acceptability is possible for specification acquisition. ) o :
.The strategy framework is defined in several stages, leading from simple mathematical
- notions to an elaborated architecture for systems supporting strategy-based problem solv-
ing. In the first stages, strategies are defined as a purely declarative knowledge representa-
tion mechanism. Experience has shown that formal knowledge representation mechanisms
are (i) easier to handle and (ii) have a simpler semantics when they are declarative than
when they are procedural. As for strategies, (i) agendas can be transformed into strategies -
in a routine way (see Section 1), and (ii) the relational semantics of strategies supports
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reasoriing about and combination of strategies. Further stages gradually transform declar-
atively represented knowledge into executable constructs that are provided with control
structures to guide an actual problem solving process. Figure 4 shows the different stages.

relations
constituting relations
declarative
knowledge strategies ———— strategicals
representation
implementable
concepts

modular representation’
abstract problem solving algorithm

support-system architecture

" Fig. 4. Stages of definitions

‘The basic stage consists in defining a suitable notion of relation, because, formally,
strategies establish a relation between a problem and the subproblems needed so solve .
it, and between the solutions of the subproblems and the final solution. Relations ‘are
then specialized to problem solving, which leads to the definition of constituting relations.
Strategies are defined as sets of constituting relations that fulfill certain requirements.-
In particular, they may relate problems only to acceptable solutions. Strategicals are
functions combining strategies; they make it possible to define more powerful strategles
from existing ones. -

To make strategies implementable, they are represented as strategy modules, whxch rely L

on constructs available in programming languages. In particular, relations are transformed
into functions. The next step toward machine support consists in defining an. abstract
problem solving algorithm. This algorithm describes the manner in which strategy-based -
problem solving proceeds and can be shown to lead to acceptable solutions. The generic
system architecture provides a uniform implementation concept for practical support sys-
tems.

In the following, we sketch the definitions of the strategy framework (for detalls, see
[Hei97}). Subsequently, we discuss its characteristics. Strategies, strategicals, and strategy -
modules are formally defined in the language Z [Spi92]. This does not only provide precise
definitions of these notions but also makes reasoning about strategies possible.’ '

3.1 Relations

In the context of strategies, it is convenient to refer to the subproblems and their solutions
by names. Hence, our definition of strategies is based on the the notion of relation as used
in the theory of relational databases [Kan90], instead of the usual mathematical notion
of relation. In this setting, relations are sets of tuples. A tuple is a mapping from a set of
attributes to domains of these attributes. In this way, each component of a tuple can be
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referred to by its attribute name. In order not to confuse these domiains with the domain
' _ of a relation as it is frequently used in Z, we introduce the type Value as the domain’
for all attributes and define tuples as finite partial functions from attributes to values:
tuple : P(Attribute «» Value). Relations are sets of tuples that all have the same domain.
This domain is called the scheme of the relation. Lo o

| relation : P(IP tﬁple)
Vr: relation e Vi, : r e dom t; = dom i,

3.2 Constituting Relations

Constituting relations specialize relations for problem solving. Attributes can either be
ProblemAttributes or SdlutionAttributes, whose values must be Problenis or Solutions,
respectively. The types Problem and Solution are generic parameters. -

const_rel : P relation

Ver: const_rel eVt :er; a: schemecr e ,
scheme cr C (ProblemAttribute U SolutionAtiribute) A .. -
(a € ProblemAitribute = t a € Problem) A .
(@ € SolutionAtiribute = t a € Solution)

" Acceptability, the third generic parameter, is a relation between problems and solutions:
—acceptable_for_ : Solution &+ Problem. By default, we use the distinguished attributes
P_init and S_final to refer to the initial problem and its final solution. . .

* The schemes of constituting relations are divided into input attributes IA and output

- -attributes OA. The constituting relations restrict the values of the output attributes, given
-the values of the input attributes. Thus, they determine an order on the subproblems that - .

_ must be respected in the problem solving process. Based on the partitioning of schemes,

L itis possible to define a dependency relation on constituting relations. A constituting

relation cr; directly depends on another such relation ery (ery Cq e7p) if one of its input
" attributes is an output attribute of the other'relation: OAenNIA ery #(. Eo_'rlany given
" set ers of constituting relations, a dependency relation =, is defined t6 be ’thc transitive
“closure of the direct dependency relation it determines. » T ‘
A set of constituting relations defining a strategy must conform to our intuitions about
- problem solving. Among others, the following conditions must be satisfied:

+ The original problem to'be solved must be known, i.e: P_init must always be an input
- attribute. ' v ;

— The solution to the original problem must be the last item to be determined; i.e.
S_final must always be an output attribute. ’ I
—. Each attribute value except that of P_init must be determined in the problem solving

process, i.e., each attribute except P_init must occur as an output attribute of some
~constituting relation. - I S -
~ The dependency relation on the constituting relations must not be cyclic.

- Finite sets of constituting relations fulﬁlling these and other requiréments‘ are called ad-
missible. For a complete definition of admissibility, see [Hei97]. ’ - :
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Frample. For transforming the agenda presented in Section 2.1 into a strategy, we must
first define suitable notions of problems, solutions, and acceptability. A problem pr :
SafProblem consists of three parts: the part pr.reg contains an informal requirements de- -
scription, the part pr.contezt contains the specification fragments developed so far, and
the part pr.io_develop contains a schematic Z-CSP expression that can be instantiated
with a concrete one. This schematic expression specifies the syntactic class of the specifi-
cation fragment to be developed, as well as how the fragment is embedded in its context. -
Solutions are syntactically correct Z-CSP expressions, and a solution sol : SafSolution is
acceptable for a problem pr if and only if it belongs to the syntactic class of pr.to_develop,
and the combination of pr.contezt with the instantiated schematic expression yields a se-
mantically valid Z-CSP specification.

3.3 Strategies

We define strategies as admissible sets of constituting relations that fulfill certain condi- -
tions. Let strat = {cro,- .-, CTmez} and scheme, strat = scheme cro U ... U scheme ¢rmgs: -
The set strat is a strategy if it is admissible and -

— the set scheme, strat, contains the attributes P_init and S_final, )

~ for each problem attribute a of scheme, strat, a corresponding solution attribute, called
sol e, is a member of the scheme, and vice versa,

- if a member of the relation ra strat! contains acceptable solutions for all problems
except P_init, then it also contains an accéptable solution for P_init. Thus, if all
subproblems are solved correctly, then the original problem must be solved correctly
as well : :

strategy : P(F const_rel)

V strat : strategy o
_ admissible strat A
{P_.zmt S_final} C scheme, strat A
(Va ProblemAtiribute ® a € scheme, strat & sol a € scheme, strat) A
(V res :ta strat o ‘
(Y a : subprs, strat e (res (sol a)) acceptable_for (ves a))
" = (res S_final) acceptable_for (res P_init))

The last coridition guarantees that a problem that is solved exclusively by application of "

strategies is solved correctly. This condition requires that strategies solving the problem
directly must produce only acceptable solutions. Figure 5 illustrates the definition of
strategies, where arrows denote the propagation of attribute values.

Ezample. Whe’hAtransforming an agenda into a strategy;_we must decide which of the steps
of the agenda will become subproblems of the strategy. If the result of a step consists in -
a simple decision or can be assembled from already existing partial solutions, then no

! A join M combines two relations. The scheme of the joined relation is the union of the scheme of the given
relati On ! ts of the sch the values of the attributes must coincide. The operation t<
denotes the join of a finite sets of relations. -
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passive_sensors S_sens/act

P_init | 5.final

Fig.5. Strategy for passive sensors

subproblem corresponding to the step is necessary. Consxdermg the agenda of Section 2. 1,
we decxde that Steps 2, 5, and 6 need not become subproblems. Hence, we can deﬁne

passive_sensors = {step_l steps_2/3 step. 4, steps_5/6/7 pass_sol}

anure 5 shows how attribute values are propagated The constntutmg relat:on stepy,
for example, has as P_init as its only input attribute, and P_sens/act and S_sens/act
as its output attributes. The requirements P_sens/act.req consist of the requirements
P_init.req with the addition “Model the sensor values and actuator commands as members
of Z types.” (see Table 1). The context P_sensfact.contezt is the same as for P_init, and
P_sens/act.to_develop consists of the single metavariable type_defs : Z-az_def , which
indicates that axiomatic Z definitions have to be developed. For the solution S_sens/act of
problem P.sens/act, the only requirement is that it be acceptable. The other constituting
relations are deﬁned a.nalogously The complete strategy deﬁmtmn can be found in [He197] i

3.4 Strateglcals

Strateglca.ls are functions that take strategles as thelr arguments and yxeld strategxes as
their result. They are useful to define higher-level strategies by combining lower-level
ones or to restrict the set of applicable strategles, thus contrlbutmg to a larger degree of :
automation of the development process.

- Three strategicals are defined [Hei97] that are useful in dnfferent coritexts. The THEN -
strategical composes two strategies. Applications of this strategical can be found in pro-
gram synthesis. The REPEAT strategical allows stepwxse repetition of a strategy. Such a
strategical is useful in the context of specification acquisition, where often several items of
the same kind need to be developed. To increase applicability of the REPEAT stra.teglcal
we also define a LIFT strategical that transforms a strategy for developmg one item into
a strategy for developmg several items of the same kmd

3.5 Modular Representatlon of Strategxes

To make strategies implementable, we must find a smta,ble representation for them that
is closer to the constructs provided by programming languages than relations of database
theory. The implementation of a strategy should be a module wnth a clearly defined
interface to other strategies and the rest of the system.
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Because strategies are defined as relations, it is possible for a combination of values
for the input attributes of a constituting relation to be related to several combinations of
values for the output attributes. A type EztInfo is used to select one of these combinations,
thus transforming relations into functions. Such external information can be derived from
user input or can be computed automatically. A strategy module consists of the following
items:

~ the set subp : P ProblemAttribute of subproblems it produces,

~ a dependency relation _depends_on_: ProblemAttribute +» ProblemAttribute on these
subproblems, R

~ for each subproblem, a procedure sefup : tuple X EztInfo -» Problem that defines
it, using the information in the initial problem and the subproblems and solutions it
depends on, and possibly external information, ' co

— for each solution to a subproblem, a predicate Iocal_accept tuple «» Solution that
checks whether or not the solution conforms to the requirements stated in the consti- -
tuting relation of which it is an output attrxbute,

— a procedure assemble : tuple x EztInfo -+ Solution descnbmg how to assemble the
final solution, and :

~ a test accept- : P tuple of a.cceptability for the assembled solution.

Optlonally, an ezplain component may be added that explams why a solution is accepta.ble
for a problem eg., expressed as a correctness proof :

3.6 An Abstract Problem Solving Algorithm

The abstract problem solving algorithm consists of three functions, called solve, apply,
and solve_subprs. The function solve has a problem pr as its input. To solve this problem, s
a strategy strat must be selected from the available strategies. The function epply is-called - -
that tries to solve the problem pr with strategy strat. If this is successful, then the value

of the attribute S_final obtained from the tuple yielded by apply is the result of the solve .. .- -
function. Otherwise, another trial is made, using a different strategy. Cew B
The function apply first calls another function solve_subprs to solve the subproblems .

generated by the strategy strat. It then sets up the final solution and checks it for ac- -
ceptability. If the acceptability test fails, apply yields a distinguished failure element. *
Otherwise, it yields a tuple that lies in &< strat (see Section 3.3). ;

The function solve_subprs has as its arguments the tuple consisting of the attnbute

values determined so far, and a set of subproblems still to be solved. It apphes solve -

recursively to all subproblems contained in its second argument.

Problem solving with strategies usually tequlres user interaction. For the functions
solve, apply, and solve_subprs, user interaction is simulated by providing them with an
additional argument of type seq UserInput, where the type UserInput comprises all pos- -
sible user input. User input must be converted into external information, as required by
the strategy modules. To achieve this, we use heuristic functions. Heuristic functions are
those parts of a strategy implementation that can be implemented with varying degrees
of automation. It is also possible to automate them gradually by replacing, over time,
interactive parts with semi- or fully automatic ones. .
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It can be proven that the functions solve, apply and solve_subprs model strategy-hased
problem solving in an appropriate way: Whenever solve yields a solution to a problem,
then this solution is acceptable. :

3.7 Support-System Architecture ‘

We now define a system architecture that describes how to implement support systems for
strategy-based problem solving. Figure 6 gives a general view of the architecture which is
(described in more detail in [HSZ95]. This architecture is a sophisticated implementation
of the functions given in the last section. We introduce data structures that represent the
state of the development of an artifact. This ensures that the development process is more
flexible than would be possible with a naive implementation of these functions in which
all intermediate results would be buried on the run-time stack. It is not necessary to first
solve a given subproblem completely before starting to solve another one, .. : .

- Two global data structures represent the state of development: the development iree
and the control tree. The development tree represents the entire development that has
taken place so far. Nodes contain problems, information about the strategies ‘applied
to them, and solutions to the problems as insofar as they have been determined. Links
between siblings represent dependencies on other problems or solutions. . ’

initial external ) [ :
prol’ﬂem information o . . strategy. Iselection
“~
assemble * T8-7 7>
S
. Strategy base
\. N . J
. y

Fig. 6. General view of the system architecture

The data in the control tree are concerned only with the future development. Its nodes
represent uncompleted tasks and point to nodes in the development tree that do nct yet
contain solutions. The degrees of freedom in choosing the next problem to work on are
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also represented in the control tree. The third major component of the architecture is the
strategy base. It represents knowledge used in strategy-based problem solvmg via strategy
modules.

A development roughly proceeds as follows: the initial problem is the input to the
system. It becomes the root node of the development tree. The root of the control tree
is set up to point to this problem. Then a loop of strategy applications is entered until a
solution for the initial problem has been constructed.

To apply a strategy, first the problem to be reduced is selected from the leaves of
" the control tree. Secondly, a strategy is selected from the strategy base. Applying the -
strategy to the problem entails extending the development tree with nodes for the new
subproblems, installing the functions of the strategy module in these nodes, and setting
up dependency links between them. The control tree must also be extended. ‘

If a strategy immediately produces a solution and does not generate any subproblems,
or if solutions to all subproblems of a node in the development tree have been found
and tested for local acceptability, then the functions to assemble and accept a solution

* are called; if the assembling and accepting functions are successful, then the solution is

recorded in the respective node of the development tree. Because the control tree contains
. only references to unsolved problems, it shrinks whenever a solution to a problem is
produced, and the problem-solving process terminates when the control tree vanishes. The -
result of the process is not simply the developed solution - instead, it is a development
tree where all nodes contain acceptable solutions. This data structure provides valuable
documentation of the development process, which produced it, and can be kept for later
reference.

A research prototype that was built to validate the concept of strategy and the system
architecture developed for their machine-supported application. The program synthesis -

system 10SS (Integrated Open Synthesis System) {HSZ95] supports the development of e

provably correct imperative programs.

3.8 Discussion of Strategies

The most important properties of the strategy framework are:

~ Uniformity. The strategy framework provides a uniform way of representing devel-
opment knowledge. It is independent of the development activity that is performed. -
and the language that is used. It provides a uniform mathematical model of problem‘
solving in the context of software engineering.

- Machine Support. The uniform modular representation of strategies makes them

implementable. The system architecture derived from the formal strategy framework . -

gives guidelines for the implementation of support systems for strategy-based devel-
opment. Representing the state of development by the data structure of development’
trees is essential for the practical applicability of the strategy approach. The practi-
cality of the developed concepts is confirmed by the implemented system 10SS. .
—~ Documentation. The development tree does not only support the development pro-

cess. Is also useful when the development is finished, because it provides a documen-

- tation of how the solution was developed and can be used as a starting point for later
changes.
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- Semantic Properties. To guarantee acceptability of a solution developed with an
implemented system, the functions local_accept and aceept are the only components
" that have to be verfied. Hence, also support systems that are not verified compeletly
can be trustworthy. . . . : S e T -
~ Stepwise Automation. Introducing the concept of heuristic function’and using these
 functions in distinguished places in the development process, we have achieved a sep-
‘aration of concerns: the essence ‘of the strategy, i.e. its semantic content, is carefully
isolated from questions of replacing user interaction by semi or fully automatic proce-
dures. Hence, gradually automating development processes amounts to local changes
. of heuristic functions. . - : :
— Scalability. Using strategicals, more and more elaborate strategies can be defined. In
this way, strategies can gradually approximate the size and kind of development steps
as they are performed by software engineers. L '

4 Related Work

Recently, efforts have been made to support re-use of special kinds of software development
knowledge: Design patterns [GHIV95] have had much success in object-oriented software
construction. They represent frequently used ways to combine classes ‘or associate objects
to achieve a certain purpose. Furthermore, in the field of software architecture {SG9s],
-architectural styles have been defined that capture frequently used design principles for
software systems. Apart from the fact that these concepts are more specialized in their
application than agendas, the main difference is that design patterns and architectural
styles do not describe processes but products. o

Agendas have much in common with approaches to software process modeling [Huf96].
The difference is that software process modeling techniques cover a wider range of activ--
ities, e.g., management activities, whereas with agendas we always develop a document,
and we do not take roles.of developers etc. info account. Agendas concentraté more on
technical activities in software engineering. On the other hand, software process modeling
does not place so much emphasis on validation issues as agendas do. R

- Chernack [Che96] uses a concept called checklist to support inspection processes. In
contrast to agendas, checklists presuppose the existence of a software artifact and aim at
detecting defects in this artifact. ' o o T
" Related to our aim to provide methodological support for applying formal techniques
is the work of Souquiéres and Lévy [SL93]. They support specification acquisition ‘with
development operators that reduce tasks to subtasks. However, their approach is limited to
specification acquisition, and the development operators do not provide means to validate
the developed specification. v B Lo

Astesiano and Reggio [AR97] also emphasize the importance of method when using
* formal techniques. In the “method pattern” they set up for formal specification, agendas

correspond to guidelines. S . Co o :

A prominent example of knowledge-based software engineering, whose aims closely
resemble our own, is the Programmer’s Apprentice project [RW88]. There, programming
knowledge is represented by clickés, which are prototypical examples of the artifacts
in question. The programming task is performed by “inspection™ i.e., by choosing an
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appropriate cliché and customizing it. In comparison to clichés, agendas are more process-
oriented. .

Wile’s [Wil83] development language Paddle provides a means of describing proce-
dures for transforming specifications into programs. Since carrying out a process specified
in Paddle involves executing the corresponding program, one disadvantage of this procedu-
ral representation of process knowledge is that it enforces a strict depth-first left-to-right -
processing of the goal structure. This restriction also applies to other, more recent ap- -
proaches to represent software development processes by process programming languages
[Ost87,55W92].

In the German project KORSO [BJ95], the product of a development is described by
a development graph. Its nodes are specification or program modules whose static compo-
sition and refinement relations are expressed by two kinds of vertices. There is no explicit
distinction between “problem nodes” and “solution nodes”. The KORSO development
graph does not reflect single development steps, and dependencies between subproblems
cannot be represented.

Thie strategy framework uses ideas similar to tactical theorem proving, which has first
been employed in Edinburgh LCF [Mil72]. Tactics are programs that implement “back-
ward” application of logical rules. The goal-directed, top-down approach to problem solv-
ing is common to tactics and strategies. However, tactics set up all subgoals at once when
they are invoked. Dependencies between subgoals can only be expressed schematically by -
the use of metavariables. Since tactics only perform goal reduction, there is no equlvalent

to the assemble and accept functions of strategies. ‘

5 Conclusions

We have shown that the concept of an agenda bears a strong potential to

structure processes performed in software engineering,

~ make development knowledge explicit and comprehensible,

— support re-use and dissemination of such knowledge,

— guarantee certain quality criteria of the developed products,

— facilitate understanding and evolution of these products,

'~ contribute to a standardization of products and processes in software engmeermg that
is already taken for granted in other engineering disciplines, .

— lay the basis for powerful machine support.

Agendas lead software engineers through different stages of a development and propose
validations of the developed product. Following an agenda, software development tasks
can be performed in a fairly routine way. When software engineers are relieved from the
task to find new ways of structuring and validating the developed artifacts for each new
application, they can better concentrate on the peculiarities of the application itself.

We have validated the concept of an agenda by defining and applying a number of
agendas for a wide variety of software engineering activities. Currently, agendas are ap-
plied in industrial case studies of safety-critical embedded systems in the German ponect
ESPRESS [GHD98].

Furthermore, we have demonstrated that strategies are a suitable concept for the for-
mal representation of development knowledge. The generic nature of strategies makes it
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possible to support different development activities. Strategicals contribute to the scala-

bility of the approach. The uniform representation as strategy modules makes strategies
implementable and isolates those parts that are responsible for acceptability and the ones
that can be subject to automation. . . . :

The generic system architecture that complements the formal strategy framework gives
guidelines for the implementation of support systems for strategy-based development. The
representation of the state of development by the data structure of development trees
contributes essentially to the practical applicability of the strategy approach.

In the future, we will investigate to what extent agendas are independent of the lan-
guage which is used to express the developed artifact, and we will define agendas for other
activities such as testing and specific contexts, e.g., object-oriented software development.
Furthermore, we will investigate how different instances of the system architecture can
be combined. This would provide integrated tool support for larger parts of the software
lifecycle.
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Abstract

Relat!onslnps among different modeling perspectlv&s have been systematxcally -
investigated focusing either on given notations (e.g. OMT) or on domain reference
models {e.g. SAP). In contrast, many stccessful informal methods for business
analysis and requirements engineering (e.g. JAD) emphasize team negotiation, goal
orientation and flexibility of modeling notations. This paper addresses the question
how much formal and computerized support can be provided in such settmgs without
destroymg their creative tenor. Our solution comprises four components:

(1) A 'modular conceptual modeling formalism organizes individual perspectxm '
‘and their interrelationships. (2) Perspective schemata are linked to a conceptual -

" meta meta model of shared domain terms, thus giving the architecture a semantic -
. meaning and enabling adaptability and extensibility of the network of perspectives.
(3) Inconsistency management across perspectives is handled in a goal-oriented man-
ner, by defining the analysis goals as meta rules which are automatically adapted
to perspective schemata. (4) Continuous incremental maintenance of inconsistency
information is provided by exploiting recent view maintenance techmques ﬁom de-
- ductive databases.

The approach has been fully implemented as an extension to the ConceptBase
meta database management system and is currently experimentally apphed in the
context of business analysis and data warehouse design.
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1 Introduction

As observed in {Poh94], modeling processes proceed along three dimensions: represen-
tational transformation, domain knowledge acquisition, and stakeholder agreement. Ex-
isting methodologies tend to emphasize one of these dimensions over the others: the
 modeling notations, the available knowledge within a specific domain, or the people in-
volved in the analysis project. All three method types have a long hlstory, with little
interaction between them. .

The management of inconsistent partial models is an inevitable part of requirements
engineering (RE) [Bal91, FF91, Eas96]. Multiple stakeholders with conflicting opinions,
contradicting requirements and alternative perspectives cause these inconsistencies. -

All methodologies support multiple partial models to represent the set of requirements.
They differ substantially in the preferred coupling of the partial models. This requires
cross-model analysis to guarantee consistency between the partial models. The extent,
justification and customizability of the performed analysis constitute a main difference
between the reviewed methodologies and illustrate the specific problems with the team-
and goal-oriented methods. :

Notation-oriented methods manifest their assistance in the set of modeling nota-
tions they offer. Their philosophy can be characterized by the slogan In the language lies
the power. Examples of notation-oriented methods are structured analysis approaches, as,
e.g., Modern Structured Analysis [You89), and object-oriented techniques, as, e.g., UML
{FS97]. They attach great importance to the consistency of the developed models. Con-
flicts between stakeholders, inconsistencies induced by a different terminology or simple
name clashes have to be resolved ’outside’ the model. The analysis goals are defined di-
rectly on the constructs of the notations, i.e. on the contents of the correspondmg (maybe
* hypothetical) meta models. .

Since the mid-80s, researchers have attempted to formalize seml-formal notations viaa - °~

transformation to well-understood specification formalisms like logic [Gre84], graph gram-
mars and algebraic specifications. They specify a fixed semantics the user must accept

and cannot modify. A recent and very comprehensive example is a formal semantics for -

SSADM (Structured Systems Analysis and Design Method) [DCC92] based on algebralc
specification [BFG*93] by [Hus94].

A different strategy is employed by the domain-oriented analysis methods Fora
specific application domain, e.g., public administration or furniture industry, they offer a

predefined set of reference models. Reference models describe typical data, processes and - - - -

functions, together with a set of consistency tests which evaluate relationships between the
models. Reference models represent the knowledge collected in multiple analysis projects
within a particular domain: In the knowledge lies the power. The reuse of reference models
can considerably reduce the analysis effort. However, it can be inflexible since the user
can tailor the notations, the constraints or contents only to the degree foreseen by the
developers of the reference models.

The SAP Business Blueprints are reference models from the business domain [SAP97].
The Aris Toolset {IDS96] offers a platform for working with reference models. It offers
hard-coded constraint checks within and across the models. Analysis goals exist only
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implicitly. They are reflected by the implementation of the reference models, i.e. by the
contents and the structure of the models. :

Goal- and team-oriented approaches specifically address the objective to capture
requirements from different information sources and to make arising conflicts productive:
In the people lies the power. Prominent examples include IBM’s JAD (Joint Applica-
tion Design) [Aug91], SSM (Soft Systems Methodology) [Che89], and PFR (Analysis of
Presence and Future Requirements) [Abe85] focus on the early and direct participation
of all stakeholders, the rapid generation of joint results, the folerance of conflicting per-
spectives, a goal-oriented process, and informal, graphical notations. Experiences in the
application of JAD give evidence for a 20% to 60% increased productivity compared with
semi-formal and formal methods [GJ87, Cra94]. It is typical for these methods that the
execution is supported by highly skilled group facilitators which animate the participants,
guide the analysis process and keep an eye on the compliance with the specified analysis
goals. Conflicts and inconsistencies are tolerated for the benefit of a fast and creative ac-
quisition process. Moreover conflicts are employed as a tool for the analysis process. For
each topic in the domain they collect perspectives from different stakeholders to provoke
conflicts and use them to guide further discussions and interviews. '

Teamwork remains very informal to enhance creativity. Neither notatlons nor analysis
goals are predefined by the methods but specified by the participants according to the
actual problem to be solved. To accomodate the change of goals during project execution,
the customization of analysis goals and notations is possible even during a running project.

" At present, no supporting tools are available beyond simple groupware tools. The ‘main

reasons for this dilemma are the high degree of customizability the tools must offer and :
the lack of formalizations available.

In the next section we give a detailed overview of our approach. In sectlons 3 and

" "4 we then present the main contributions. The axiomatization of a modular conceptual

" modeling language ylelds a formally precise way of how to define perspectives and control
the information exchangé betwéen them. On top of this basic formalism, we develop tech-
niques for the definition, compilation, and distribution of analysis goals in a customizable
miodeling environment (i.e. one without a fixed sét of notations or domain models). A
" distributed execution environment enables efficient incremental maintenance of instafce-
level information about violations of analysis goals. The paper ends with a companson'
' to related work in sectlon 5and a summary and outlook in sectlon 6. '

2 Overview of the Approéch

The 1nformal team-based mformatlon acquisition is not subject to any formahzatlon

(though it could at least be recorded in multimedia). The potential for formalization

and computer-based tools lies in the other part of the methods: the cross-perspective
_ analysis which is performed by moderators and analysts to extract knowledge and fur-
ther questions from the collected information. The team produces many perspectives in
a very short time containing lots of conflicts and inconsistencies. The situation for the
analysts becomes even harder since the notations and the analysis goals can change from
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Figure 1: Overview of the Approach

one project to another. The manual comparison of perspectives becomes a big problem
and is both time-consuming and error-prone.

2.1' Corhponents

The basis of our formalization are the analysis goals and the notations as specified by the
stakeholders at the beginning of method execution. We forge links to the notation- and
the domain-oriented methods by formally transforming the domain-oriented analysis goals -
into integrity constraints over notational meta models. The result is a set of syntactic
and domain-oriented inter-relationships between the notations, just as it is the case in the
notation- and the domain-oriented methods. But in our approach they are automatically
generated from user-defined declarative, notation-independent specifications of analysxs
goals. Figure 1 presents the components of our approach.

(1): Separation of Multiple Perspectives. The conceptual models represent in-
dividual perspectives of stakeholders. The figure shows three perspectives (A1,A2,A3)
expressed in Notation A and two perspectives (B1,B2) expressed in Notation B. Our
separation mechanism offers independent modeling contexts (modules) and enables the
representation of inconsistent conceptual models. :

(2): Extensible Meta Modeling. The notations used to express "the perspectives
are defiried on the second level, the meta level. The example compnses two notations,
Notation A and Notation B. Since the notations are subject to modlﬁcatlon the mod-
eling formalism must support the creation and modification of meta models These meta
models also reside in separate modules. ’
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(3): Specifying Common Domain Terms and Analysis Goals. - A shared meta
meta model inter-relates all perspective notations. It specifies the domain structure and
the analysis goals. This model is created by teamwork at the beginning of the analysis
project and documents the common language of all participating stakeholders. The per-
spective notations are views on this model ie a notatlon covers a specific fragment of
the common domain terms. : :

This assignment of notations to domain’ fra.gments gives the archltecture a semantic
meaning. The semantics of the domain structure is defined by the analysis goals - formulas
which formalize the correct or intended behaviour as well as expected problems of the
domain components. These goals define the scope of the cross-perspectlve check performed
on the bottom level between concrete conceptual models. .

(4): Transformation of Analysis Goals. To close the- gap between the domain-
-oriented analysis goals and the perspectives expressed in notations and to enable a dis-
tributed modeling activity and consistency check, the analysis goals ‘'of the meta meta
model are automatically transformed to integrity constraints on the notation meta mod-
els. The relationships between different notations reside in so-called resolution modules
which are connécted to the corresponding notation modules via coordinates links. In
the figure we have a resolution module for the two notations mentioned before.

'(5): Continuous Inconsxstency Documentation. To avoid mtermptmg the creative
modeling activity in the presence of inter-perspective inconsistencies, the cross-perspective
analysis takes place in separate resolution modules. The figure presents a resolution
module (the shaded module on the bottom level) to check the perspectives A1,A3 and B1.
"This is also the place where the conflicts are documented and continuously monitored..

2.2 Industrial Application: s'up’p'ortihg' the PFR Aoslysis Meéthod
Tn [NJJ"QG] we reported the apphcatxon ‘of our approach to the PFR analysxs method

l - 'We use this apphcatlon a$ a running éxample.

. PFRismainly employed in the early phases of pmJects developmg mformatlon systems
'supportmg business processes The ‘method has three steps:

. sIna two-day workshop, stakeholders agree on the scope of the analys1s pr03ect the
_current problems which should be solved and in correspondence to this, the domain
structure and the analysis goals. "The group also makes a rough analysis of the
current business processes in terms of information exchange among orgamzatlonal
units, identifies weak spots and drafts a rede51gned businéss process.

e The perspectives identified as critical to success are then captured in detail by in-
terviews, workflow and document analysis. The acquxsmon process'is accompanied
by a ‘cross-perspective ‘analysis of the captured information for consistency, com-
pleteness, and local stakeholder agreement.” The results of the comparisons gu1de
subsequent interviews to clarify conflicts and complete the models. ‘

e In a second workshop the goal is to draw together individual perspectives to achieve

" global stakeholder agreement. The step is accompanied and followed by the de-
velopment of a comprehensxve requirements document of typically several hundred
pages.
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The first workshop leads to a problem-oriented meta meta model defining shared
domain terms and analysis goals. Figure 2 presents a model that is used as a default in
PFR analysis projects. It is modified to fit to the actual problems and analysis goals if
necessary. The current status of the processes is analysed from three perspectives: the
information-ezchange within the first workshop, the activity-sequence and the document-
structure within the detailed acquisition process in the second step.

The meta meta model in figure 2 explains the basic concepts of these perspectives and
their interrelationships. The information-exchange perspective is represented by an Agent
who supplies other agents with a Medium, the activity-sequence by the Activity that -
is performed_by an Agent and produces Data as input or output and the document—
structure by a Medium that contains Data. SRS

The meta meta model contains a precise description of the terms that are employed
during a PFR analysis. Its structure focuses on the expected problems in the'specific .
domain. The distinction between Medium and Data, for example, is essential to talk -
about the unnecessary exchange of documents, i.e. documents w}uch contain data that is .
not used by any activity. SEet e

Figure 3 presents a part of.the PFR envu'onment as an example of the two top levels
of our architecture. The top level module contains the PFR meta meta mode! together -
with an analysis goal stating that ”Every exchanged Medium must contain Data”. This
goal formalizes the basic requirement that an efficient business process should not include
exchange of documents that do not contain useful data. The formal definition of this goal
will be given'in section 4. :

Below the PFR meta meta model reside the notation meta models to formulate the
information-exchange and the document-structure perspectives. The resolution module
connected to both notation modules contains the transformed version of the above analysis -
goal. It specifies an integrity constraint on both perspective notations. ‘The exact formal
definition of this integrity constraint will also be given in section 4. ' :
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3 M-Telos: Separatlon of Multlple Perspectlves

‘ ‘The conceptual modelmg language Telos [MBJKQO] was designed for managmg (imeta)

information about information systems. It integrates aspects from database design, knowl-
edge représentation and conceptual modeling. The object-oriented Telos data model’ sup-

ports the abstraction principles’ classification/instantiation, spec1ahzatxon/generahzatxon

and aggregation. A basic concept of Telos is the representation of every single piece of

information as an object with its own identity: ‘The unlimited instantiation hierarchy

enables classes to be themselves instances of other classes, so-called meta class% Meta -

- “classes may again be instances of meéta meta classes, and so on.

+A'version of Telos called O-Telos was formahsed in [Jeu92] and implemented in Con-

e ceptBase {JGJ*95], a deductive object manager for meta databases. This axiomatization

enables the interpretation of an Telos object base as a special case of a deductlve database -
with stratified negation and perfect model semantics [Min87]. :

M-Telos extends.O-Telos by introducing so-called modules as a separation mecha-

nism. A module provides an independent modelmg context ‘where users can cieate an -
individual analysis perspective in the form of a'conceptual model. The intended applica-

tion scenario of modules in concurrent conceptual modelmg processes induces the need for

communication between modules [NKF94]. The module concept supports cooperatlon .

among group members by the possibility to define local modules.

‘It is often the case that one modeling task depends on another one and reuses a part
of its results. To support this situation, two modules can’ communicate by setting up
an import-relationship.’ The importing module obtains access to the contents of the

imported module. To protect a specific part of the module contents, the concept allows =

the division of the accessible contents of a module mto a private and a public part.

We need not only a modeling context but also a conitext for the resolution of multiple
perspectives. We use dedicated modules for this monitoring task, the so-called resolution
modules {cf. section- 4) As our experiences indicate [NJJ*96), such resqutxon modules
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need a special way to access the monitored modules. Therefore the module concept offers
a coordination relationship between modules which enable a resolution module to
access all accessible objects of the monitored modules.

3.1 Formal Definition of M-Telos

The semantics of a M-Telos object base is given by a mapping to a deductive database con-
taining predefined objects, integrity constraints and deductive rules. This set of objects,
constraints and rules constitute the axiomatization of M-Telos.

The basic data structure of M-Telos is very simple. It represents all information using
labeled nodes and arcs with object identity.

Definition 3.1 (Extensxonal‘ Object Base)
Let ID be a set of object identifiers, LAB be a set of labels. An extensmnal object
base OB is defined as a finite set of ob_]ects

OB C {P(os,1,d)|o,s,deID, 1 LAB}.

Every object is represented in form of a tuple P(o,s,!,d) with object identifier o,
start object s, destination object d and label I. The above object o can be read as:
"The object s has a relationship called-! to the object @”. We distinguish four different
categories of objects: Objects of the form P(0,0,1,0) are called individuals. They
represent self-standing entities. Objects containing the special label in like P(o, s, in,d)
describe instantiation relationships. Objects containing the label isa like P(o, ¢, isa, d)
represent specialization relationships. All other objects denote just attributes:

Five predefined objects document the above mentioned four object categories: Object - -

contains all objects of an extensional object base as instances; Individual, I nstanceOf, .-
IsA, and attribute contain the individuals, instantiation, specialization and attribute
relatlonshlps as instances (cf. axioms A-1 to A-5). =

M-Telos introduces an additional predefined object called Module which contains
all modules as instances. It offers four attributes: contains links to the objects which -
are defined within the specific module; exports declares accessible objects to be public;-
imports_from refers to another module and indicates an import relationship; coordinates
indicates a coordination relationship to another module (cf. axioms A-6 to A-10). A spe-
cial predefined module called System contains all predefined ob_]ects including itself (cf.
axioms A-11.1 to A-11.26).

Figure 4 visualizes the predefined objects as a semantic network. The attributes spec-
ifying the contents of System are omitted for readability. Individual objects are denoted
as nodes of the graph, instantiation, specialization and attribute relationships as dotted,
shaded and labelled directed arcs between their source and destination components.

Due to space limitations, we concentrate on the axioms that define the properties of
the module concept. The complete list of axioms can be found in appendix A [Nis96].

M-Telos requires that the names of individual objects must be unique among al! in-
- dividuals defined within the same module {(A-16). Note that names need not be unique
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Figure 4: Predefined objects in M-Telos °

among all objects that are accessible in a module. Within a single module two individ-
uals with the same name but different object identifiers and different defining modules
may exist. Especially for the representation of multiple conceptual models which may be
developed by different people observing the same domain this is an essential feature.

The intention behind the module concept is that the access to obje'c'ts is only possible
through modules, i.e. every object should belong to exactly one module.: Axiom A-18 -
- requires a defining module for every object of an extensional object base. In addition

axiom A-19 requires that every object is contained in only one module.

Until now there was no possibility to talk about the set of accessible .objects within'a
module (as opposed to defined). The new literal PMoA(M 0, 5,1, d) describes the objects
P(o,s,1,d) which are accessible in module M. The set of accessible objects for a module

_ M comprises A ‘ : o

o all objects defined within M (axiom A-22),

e all imported objects (axiom A-23), L

o all accessible objects of cbordinated modules (axiom A-24), and
~ » all objects that are accessible in the containing module (axiom A-25). .

The closed world assumption (CWA) [Min87] guarantees that exactly the literals
PMod(M, 0,z,1,y) that can be deduced using these rules hold and no others. . .~ ;

The exported objects of a module must form a subset of all the accessible objects: °
of that module. Axiom A-48 formulates this as an integrity constraint. The export
part describes a subpart of the conceptual model formed by all accessible objects. This
subpart is exported to be reused and extended in another module. ‘To be able to reuse
the exported subpart all referenced objects must also be included. This requirement of
referential integrity particularly for the export pari is formalised in axiom A-49.

For the perspective resolution we shall need the coordinates relationship between two
modules. The coordination relation is {ransitive, i.e. if module M1 coordinates module
. M2 and M2 coordinates module M3 then M1 also coordintés (indirectly) the module
M3. This fact is expressed in axiom A-50. Since a cyclic coordination relationship leads
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to enormous problems in the handling of perspective inter-relationships (see section 4),
we explicitly forbid this with axiom A-51.

On basis of the axioms presented so far, other properties of M-Telos are defined which
are not directly related to the module concept We mention in the following only the
important ones.

o Instantiation axiom (A-44): An instance of a class is allowed to instantiate the
class’s attributes.

o Specialization aziom (A-43): The destination (called superclass) of a specialization
relationship inherits all instances of the source (called subclass).

In combination with the instantiation axiom this defines the attribute inheritance
from superclass to subclass: instances of the subclass can instantiate attributes of
the superclass.

o Multiple generalization/instantiation aziom (A-45, A-4 7) M-Telos supports multi-
classification and multi-generalization under some restrictions.

o System classes azioms (A-29 to A-39): For every object the instantiation relation-
ships to the predefined objects Object, Individual, InstanceOf,IsA and atiribute
are deduced and may not be contained in the extensional object base. Also, every

. instance of the objects Individual, InstanceOf, IsA and ettribute must have the

" specific structure introduced at the beginning of this section.

3.2 Properties of the Axiomatization

A main goal of the axiomatization of M-Telos was to preserve the simplicity of the O-
Telos formalization given in [Jeu92]. We formulated 76 axioms, of which 32 were slightly-
modified axioms from the O-Telos formalization. 31 of the new axioms are new predefined
objects. This number results from the definition of the module System. Otherwxse we
only defined seven new rules and six new constraints. :

Now we are able to formally define a consistent M-Telos object base. It forms a special
deductive database. A deductive database is a triple (EDB,IDB,IC) where EDB,
the estensional database is a set of facts in the form of relations, IDB, the intensional
database, is a set of deductive rules defining intensional relations, and IC is a set of closed
formulas stating integrity constraints. For a M-Telos object base, EDB becomes the
* extensional object base containing only facts of the P-relation, /DB is exactly the set of
axioms forming deductive rules, and IC is exactly the set of the axioms interpreted as
mtegnty constraints.

Definition 3.2 (M-Telos Object Base) :
Let AXop be all axioms describing predefined objects, AXgr be all axioms whnch are
deductive rules and AX;c be all axioms which are constraints.

Then the triple (OB AXp,AX 1c) is a M-Telos object base if AXop C OB holds

(OB, AXp, AXc) is called a consistent M-Telos object base if the perfect model
of (OB, AXp) satisfies all integrity constraints of AX;c.
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An important property of an object base is the refefential integrity within each module.
This property guarantees that for every accessible object in a module also the destina-
tion and the source components are accessible objects in that ‘module.” The following
‘proposition proves this property for consistent M-Telos object bases. - ' :

Proposition 3.3 (Referential Integrity [Nis96]) - S
Let (OB, R, IC) be a consistent M-Telos object base. Then for every object P{o,s,l,d) ¢
OB and every module M with PH#M, #M,M,#M) € OB and In(#M, #Module)
deducible from OB holds: If the object o is accessible in M, ie. PMUHEM, 0,5,1,d) is
deducible from OB using the rules from R, then also the objects with the identifiers s
“and d are accessible in M. S S

" The following propositions formalizes the architecture of a modular icnbwledgé base.
The modules always form a tree such that the contents of the Systéem' module will be
accessible in every single module. ' .

'Proposition 3.4 (contains Relation Forms a Uniqixe Tree [Nis_9,6])4 o _
Let (OB, R, IC) be a consistent M-Telos object base. Then (a) all modules are directly
or indirectly contained in System and (b) the contains relation forms a tree. '

A distinctive feature of O-Telos is the possibility for unlimited metamodeling. It allows
the user to build meta models, meta meta models and so ori. This property is presér'yeg
in M-Telos. Meta modeling is still possible without any restrictions within a module. In

. addition the modules'can be arranged according to their degree of abstraction. ‘A module
. then contains only conceptual models of one abstraction level, the more concrete level
- and the more abstract level reside then in different modules. Of course, any combination

. of these approaches is also possible. ‘ P
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4 Goal-orlented and Customlzable Inconsistency
- Management

The goal- and team-oriented methods are designed to produce the maximum of conflicts
possible. They employ highly overlapping perspectives and acquire almost all information
from different stakeholders (cf. section 1}). Due to this redundancy, a large number™
of relationships exist between perspectivés. The cross-perspective analysis checks these
relationships. It follows the goals specified in the problem-oriented meta meta model.

The analysis goals are formulated as so called meta formulas: They make statements
about objects that reside two abstraction levels below the formula. This is necessary since
the perspectives we actually want to analyse reside two levels below the meta meta model

(cf. figure 1).

In more techmcal words: A formula <p is called a-meta formula if ¢ contains a literal
(a) In(z,c) where c is a variable, or (b) A(z,m,y) where z is not range restricted by a
literal In(z,c) wherecis a constant In such a case we call these literals meta literals.

Example 4.1 (Meta Formula)

The following meta formula is the formalization of the a.nalysxs goal given in figure 3
in natural language. It contains several meta literals as, e.g., In(med, m'), In(supp,s'),
In(with,w'). The variables med, supp, with denote objects two levels below the meta
meta model. They are not bound to any ‘concrete object on the meta level; m', ¢/, w' are
again variables.

In(m', #Medium) A I n(d’ #Data) A In(s', # Agent!supplies)A
In(¢, #Medium!contains) A In(w', #Agent!suppliestwith) A In{med, m")A
In{supp, 8') A In(with,w') A From(with, supp) A To(with, med)
= J.data, cont In{data,d’) A In{cont,¢')

AFrom(cont, med) A To(cont, data)

a

Analysis goals for the PFR method exist for a single perspective, for dependencies
between multiple perspectives, and to test the desirability of the modeled business pro-
cesses. Although it is possible to use the analysis goals as they are we will transform them
to integrity constraints on the notations’s meta models. At this point we have to make
clear our terminology in the following subsections: an analysis goal is a formula that is
specified within the fneta meta model and is thus a meta formula. An integrity consiraint
is a formula that is not a meta formula.

The analysis goals represent the agreement among the stakeholders about the goals,
or more specific, the questions and problems, the analysis project is dedicated to. Ac-
cordingly, our architecture manages the analysis goals within the central module. But
the analysis and modeling process does not run in a centralizes way, it is distributed and
involves many agents. A central control instance will then be a system bottleneck. On the
other hand, a complete distribution without any central control instance like in [NKF94]
would not cover the global relationships. To be efficient in such a setting and at the -
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same time be able to manage the global connection we follow the approach of [ACM95]
which is a compromise of the two extremes mentioned before: The environments for the
perspective development are distributed and work autonomously but there still exists a
central instance which has knowledge about their possible inter-relationships. Applied to
our case: from the global meta meta model wé generate integrity constraints which can
be evaluated locally within the modules of the mieta level. The global module needs not
© be accessed during inconsistency monitoring time. o

We explain the mechanism in two steps: First we describe the technique of partial
evaluation which is used to transform an analysis goal into integrity constraints. Since
not all analysis goals need to be transformed to all modules we guide the partial evaluation
by generating a transformation plan, i.e. the assignment of analysis goals to modules. The
algorithms to compute these plans are subject of the second step.

The last subsection gives then a short overview of the continuous inconsistency man-
agement on the instance level. More details on this part are given in [NJ97].

4.1 Partial Evaluation of Analysis Goals

We employ the technique of partial evaluation to transform a meta formula ifito an in-
tegrity constraint. In [Jeu92] the application of this technique to the O-Telos object model
is presented. We can directly adapt the results to M-Telos. We will therefore only sketch
the technique of partial evaluation. s : B R

A meta formula contains (meta) literals In(z,c) where ¢ is not a constant but a
variable. In our specific case this variable is used to denote an object of the meta model
of a notation. The typical situation is thus to have two such literals - In(z,y) and
In(y, c) - within one formula where ¢ is an object of the meta meta model and z and'§
are variables. The meta formula then makes statements about the behaviour of z which
“denotes an object of a conceptual model. The goal of partial evaluation is to find a solution
for y by evaluating the literal In(y, ¢) within a specific module of the object base. Each
occurence of y within the meta formula is then replaced by the computed object. In our
case this object comes from the meta level and denotes an object of the meta model of a
notation. Since we then already know that the literal In(y, ¢) evaluates to true with the
computed object we can omit the literal and simplify the formula. For every solution of
that literal we get a new, partially evaluated version of the original meta formula. -

This process has to be repeated for every meta literal until all meta literals have been
. evaluated. Since we evaluate a meta formula always within a specific module we do it on
basis of a notations meta model or ‘a resolution module. The resulting formulas contain
no more objects of the meta meta model but only objects of the meta model of a notation.
It is therefore only valid for that notation. If not all meta literals of a meta formula can
" be evaluated in a module then this meta formula is not partially evaluable within this
" specific module. L ~ -
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Example 4.2 (Transformed Meta Formula)

The following formula is the transformed version of the meta formula presented in ex-

ample 4.1. The meta variables are replaced by concrete objects of the two notations

for information-exchange and document-structure perspectives (cf. figure 3). The lit-
eral In(med, m') of the meta formula is replaced by In(med,#Package). In addition

.all the literals connecting these variables to objects of the meta meta model as, e.g.,
In(m', # Medium), are eliminated.

In(med # Package) A In(supp, #0rgUnitlsends) A In(with, #0rgU mt'sends'a)
: From(with, supp) A To(with, med)
= 3 data, cont In(data, #Item) A In(cont, #Fo'rm'mcludes)
‘AFrom(cont, med) A To(cont, data)

4.2 Computation of Transformation Plans

Unnecessary partial evaluations of analysis goals may arise if modules are connected via
coordinates relationships: If there exists a coordinates link from module A to module B
then everything accessible in B is also accessible in A. Any analysis goal that could be
transformed for B therefore can also be transformed for A. Since the transformed con-

straint becomes accessible in A anyway, a separate transformation for A is not necessary.
To avoid such inefficiency we compute for every analysis goal the minimal set of modules
it must be transformed to.

Algorithm 4.1 (Computatlon of Destmamon Modules) _
The algorlthm first computes the followmg sets and functions: -

e the set M of all modules of the meta level
‘ ‘M={M1,...:,M,.}, '

o the set C of all specified coordinates relationships: o FoL
C = {(My1, M12), ..., (M, M2)}, where (M;y, M;2) denotes a coordinates re--
lationship from M;, to M;,. o Lo
The set C denotes a directed, acyclic graph

e the set AG of all analysis goals specified within the rlxeta meta model:
AG = {p1,...,0}, 4

o the function applicable which computes for each analysis goal ¢ € AG the set of

modules for which a partial evaluzition is possible: -
applicable : AG — p(M)
Whether M € applicable() holds or not is computed by a comparison of the’
quantxﬁcatlons in ¢ with the instantiation relationships of M to the meta meta
model. Only if for every quantification in ¢ an instantiation in M exists all meta
literals in ¢ can be evaluated.
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For every analysis goal ¢ € AG
, compute P¥ = applicable(yp), the set of potential destination modules
compute the set C¥ with S .
C¥ = {(Mi1, Mi2) : (M1, Mip) € C,M;, € P°, M, € P¥}
let E¥ = P¥ - '
- for each (M;,, M;,) € C*
do
delete M;; from E¥
od ’ » o

The resulting set E¥ denotes all the modules of the meta level for which a trans-
formation of ¢ is necessary. The set E¥ is independent from the selections out of C¥
and is always uniquely determined. For E¥ we can prove ¢orrectness and completeness
concerning the accessibility of transformed integrity constraints as well as its minimality.

Proposition 4.3 (Correctness and Completeness ) ;
The computed set E¥ for an analysis goal ¢ is : o
{a) correct, i.e. E¥ contains only such modules for which a partial evaluation of @is
allowed. : 4 : R _
(b) complete, i.e. the transformation of ¢ with respect to all modules in E¥ results in
the accessibility within all potential destination modules. :

Proposition 4.4 (Minimality) ‘ o
For every analysis goal ¢ the algorithm 4.1 computes in E¥ the minimal set of destination
modules such that its accessibility in all potential destination modules is guaranteed. -

The above proved completeness is defined with respect to the given module structure

' on the meta level. But there exists a second view on completeness with respect to the

~ analysis goals of the meta meta model: The transformation is complete if all analysis
* goals of the meta meta model have been transformed.

This kind of completeness does not always hold. If there is no notation for a specific
fragment of the meta meta model then the analysis goals specified for this fragment could
" not be transformed to integrity constraints. The result is that some formal statements
represented within the meta meta model could not be tested during the analysis process. -
In some cases this kind of incompleteness is not a problem or even desired. But in all
cases it is useful for the users to get information about analysis goals that can not be
transformed. - RE S '

An automatic completion of the module structure on the meta level is not always
possible. A tool could constitute additional resolution modules but cannot automatically
establish new notations if a fragment of the meta meta model is not covered yet. We
developed an algorithm computing additional resolution modules such that an analysis
goal becomes transformable (see [NJ97] for details). The result is in general not minimal.
One minimal set can be computed by an algorithm which follows the computation of a
minimal set of functional dependencies in relational database schema design [EN94]: A~
module is eliminated if its relationships are covered by the reminding modules in the set. -
We present such an algorithm in [NJ97]. S ’
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4.3 Continuous Inconsistency Management

Inconsistencies detected by goal-oriented inconsistency management are often not repaired
immediately. Analysts must continue their current work without the need to check their
model for syntactic correctness or to resolve conflicts with other usérs. The process of
the goal- and team-oriented methods offer special meetings and interviews where the list
of detected inconsistencies are discussed among the users. Due to space limitations we -
only sketch our inconsistency management approach. The detaxled presentatlon is ngen
in [NJ97].

We employ view maintenance technology [Sta96] for the continuous inconsistency man-
agement. We rewrite integrity constraints as deductive view definitions such that the view
contents represents constraint violations. Inconsistency monitoring is then achieved by
monitoring such inconsistency views. We capture the reasons behind integrity violations
by recomputmg the derivation trees using a meta interpreter. In the continuous version -
we declare objects of the current transaction which participate in the derivation tree as -
the reasons for the violation. In traditional databases these objects will be rejected. In
our approach we store them as provisioal obJects ie. as inconsistent objects which w111
be repaired in the near future.

Each violation is documented within the knowledge base by a special object which"
references the reasons for the violation. The derivation tree is stored as the justification
for the documentation. A simple truth maintenance system manages this justification
network. The system do not only check for primary inconsistencies, i.e. constraint viola-
tions, but also for secondary inconsistencies, i.e. the satisfaction of an integrity constraint
only because of existing provisional objects. This enables us to talk about consequences
of the tolerance of inconsistent information within the knowledge base. ‘

5 Related Work

We first compare our approach to work which covers either the modularization of con-"
ceptual models or the perspective resolution. In the end we discuss an approach covermg”‘ ‘
both the separation and the resolution of multiple perspectives. . e

Separation mechanisms have been developed for different purposes in requirements -
engineering and for modeling environments. The Reguirements Apprentice [RW91] uses a -
context mechanism called Cliché to represent predefined domain descriptions. Since dif-
ferent domain descriptions may be inconsistent to each other, this separation is necessary. -
They are organised in a specialization hierarchy and can be used as a starting point in re-
quirements engineering. ARIES [JH91] employs a similar concept called Folder. A Folder
captures partial domain information and is used for the development of a requirements
specification. The engineer creates a new Folder and maybe a relationship to one of the
predefined domain descriptions. He then extends this description according to the actual
problem domain.

The modularization presented in this paper is compatlble with module concepts de- °
veloped for software architecture languages (as, e.g., [Nag90]). A module is a collection -
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of information (conceptual models and program statements, resp.) -and provides infor-
mation hiding by encapsulating its content. The communication is supported by import
relationships between modules which extend the set of accessible information or resources.”
“To ‘control the communication the contents is divided intc a public and a private part.
To handle a large number of modules they provide the local definition of modules as a
-structuring principle. We adapted this for M-Telos and exactly formalized the prmmples '
of usability specified for software module hierarchies for deductive databases.

The Cyc Project at MCC is concerned with the development of a knowledge base
containing conceptual descriptions of most if not all areas of the real world. To separate
the huge amount of information they use a mechanism called context [Guh90]. They offer
similar properties to the module concept we developed with M-Telos. They can be organ-
ised in a specialization hierarchy which makes the whole contents of the general context
accessible in the more specific context. This is comparable to our inclusion hierarchy of
modules. A most general context called BaseKB contains all other contexts as special-
izations. In contrast to our module concept, there exists a most specific context called
BrowsingCntzt where all informations of the knowledge base are accessible. It is used to -
* inspect the contents of the knowledge base and is a special case of our resolution module.-

Existing perspective resolution approaches are limited to a fixed set of analysis goals’
and in many cases concentrate on syntactical relationships. Leite and Freeman employ
in [LF91] a purely syntatctic perspective comparison. The contents of perspectives are
represented by a set of production rules. They compare the rule bases of two perspectives-
by identifying the most probable rule pairs as well as the rules with no pairs. On basis
* of the evaluated mapping they detect wrong, missing and inconsistent information. They
do not take information about the domain into account. The analysis rules are predeﬁned
in the Static Analyzer and cannot be customized by the user.

) The viewpoint analysis of Kotonya and Sommerville [KS96] compnses two stages: the
correctness and completeness of the viewpoint documentation and the conflict analysis.

The completeness of a viewpoint documentation is checked according to the predefined

viewpoint structure. This structure defines the required components and attributes of a

viewpoint. A problem-oriented definition of the structure by the user is not supported. = -

The conflict analysis is performed by the reqmrements engmeer with the help of the
’ prov1ded toolset. . ‘

The ViewPoint approach [NKF94] is a framework for distributed software engmeermg,
in which multiple perspectives are maintained separately as distributable objects called -
ViewPoints. The necessity to include communication features similar to our module con-
cept is mentioned in [NKF94] and comprises model transfer between ViewPoints and
‘information hiding using interfaces. The integration of ViewPoints is defined by so-called
‘inter-ViewPoint rules. The rules are defined by a‘method engineer for ViewPoint tem-
plates, i.e. for ViewPoint types in which only the notation and the work plan have been
defined. The relationships therefore perform always only an integration with respect to

the notations; an integration based on the domain that is analysed is not supported.

- All rules are bilateral, i.e. they formulate a relationship between a source VieWPoir';f
and a destination ViewPoint. A relationship between multiple ViewPoints must be broken
down to bilateral rules. A rule can only be invoked from the source ViewPoint. To allow
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both ViewPoints to invoke their relationship it has to be duplicated and refomulated for

the destination ViewPoint. The analysis goals used in our approach do not make any

assumptions about the perpspectives where they have to be checked. When defining an

analysis goal! the participants do not need to think about the involved notations and

in which direction it should be evaluated. In addition they are not limited to bilateral

relationships. At definition time the participants define the goals or questions of the

current analysis project and don’t have to care how the domain is covered by different :
notations.

6 Conclusions and Further Work

For some years software specification and design methods have been formalized by a
transformation to well-understood formalisms like logic, graph grammars or algebraic
specifications to enable a computer-based analysis. It is characteristic of these approaches
to assign the methods a fixed semantics the user must accept when using such a system.
Beyond that it is assumed that the various partial conceptual models form views on'a’
consistent entire model. : ;

- In some other parts of practice just the opposite trend can be observed. Informal '
teamwork methods leave the details of notations to a great extent to the user and con- '
sciously employ conflicts and inconsistencies as an analysis tool, instead of avoiding them.
These methods (exaniples are JAD, SSM and PFR) enjoy increasing popularity exactly
because they give negotiation and mutual learning priority over a fixed axiomatization or
restriction by reference models. To enhance analysis quality and efficiency formalization
and computer support is also desireable for these methods, but they must offer features R
different to the approaches mentioned above. » R

In this paper we elaborated these requirements by (i) presenting a comparison of -
different analysis support methodologies and (ii} by presenting industrial case studies in-"
" the business analysis area. On this basis we developed a comprehensive solution for a: -

computer-based support of team- and goal-oriented analysis methods. We extended the
formal conceptual modeling language Telos by a separation mechanism called modules, ;-
which enables the representation of multiple, conflicting perspectives. We showed that-

a simple axiomatization of the extended language M-Telos exists, which allows for B e

- realization by well-understood deductive database technology.

We developed the model-based perspective resolution where the knowledge about the "
structure of the domain and the analysis goals are specified in a meta meta model. The
use of M-Telos as representation formalism keeps even the meta meta model customizable.’
By declaring the notations as partial views on this model we define a connection between
the semantic domain description and the syntactic perspective schemata. We used this
connection for goal-oriented inconsistency management by the transformation of domain-
oriented analysis goals into notation-based integrity constraints. Since in many cases
the simple evaluation of cross-perspective relationships is not enough we developed a
technique for continuous maintenance of inconsistency information based on deductwe‘
database technology. - :
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Our approach is completely implemented in ConceptBase [JG ]*95] a deduchve objecét
base manager which uses M-Telos as object model. In cooperation with the German
consulting house and software firm USU we applied our approach in several case studies
'to business process engineering with the PFR analysis method [NZ95]. ‘The indirect
support of the formalization and the computer-based support increased the efficiency of
the cross-perspective analysis and the quality of analysis results. The system is currently
m use by USU in industrial requirements engineering pmJects

The four components of our approach can also be used in stand-alone mode together
with existing modeling environments or viewpoint mechamsms ‘The simple axiomatiza-
tion of the module concept enables its adaption to existing, even non-Telos repositories
(as, e.g., the Microsoft Repository [BHS*97]) to represent multiple development per-
spectives. The combination of the goal-oriented inconsistency management concept with
notation-centered CASE tools lead to a more guided modeling process with customizable,
domain-oriented integrity constraints. This also works for distributed environments like
the ViewPoints approach. Since the constraints are checked locally as before, the central
goal deﬁmtlon implies no decrease of system performance

Data warehousmg [fnm96] is concerned with the extraction, integration, aggregation
and customization of distributed, heterogenuous operational data. Building, using and
managing a data warehouse requires the features we developed in this paper. Data come

- from multiple sources and may be inconsistent with each other, thus a separation mecha-
nism is needed. To be able to interpret the data right, the exxstence of conﬁlcts must be
monitored and the infected data must be marked.
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‘A Complete List of M-Telos Axioms

(A-1)
(A-2)
(A-3)
(A-4)
(A-5)

(A-6) .
(A-7)
(A-8)
(A-9)
~(A-10)

(A-1L1)
(A-11.2)
(A-10.3)
(A-11.4)
(A-11.5)
(A-11.8)
(A-11.7)
(A-11.8)
(A-11.9)
(A-11.10)
(A-11.11)
(A-11.12)
(A-11.13)
(A-11.14)
(A-11.15)
(A-11.16)
(A-11.17)
(A-11.18)
(A-11.19)
(A-11.20)
(A-11.21)
(A-11.22)
(A-11.23)
(A-11.24)

 (A-11.25)

(A-11.26)
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Predefined objects:
P(#0bj, #0bj, Object, #0bj)
P(#Indiv, #Indiv, Individual, #Indiv)
P(tattr, #0bj, attribute, #0bj)
P(#tInst, #0bj, InstanceOf, #0bj)
P(#1Isa, #0bj, IsA, #0bj) _
Specification of object Module :
P(#Mod, #Mod, Module, #Mod)
P(#cont, #Mod; contains, #0bj)
P(#ezxp, #Mod, ezports, #0bj)
P(#imp, #Mod, imports_from, #Mod)
P(#coord, #Mod, coordinates, #Mod)
The contents of module System :
P(#Sys, #Sys, System, #85ys)
P(#8ysin, #Sys,in, #Mod)
P(#8ysC1,#Sys, cl, #0b3)
'P(#SysIl, #SysC1,in, #cont)
P(#8ysC2, #8ys, c2, #Indiv) »
P(#SysI2,#SysC2,in, #cont)
P(#SysC3, #Sys, c3, #atir)
P(#SysI3, #SysC3,in, #cont)

 P(#SysC4, #Sys, c4, #Inst)

P(#SysI4,#SysC4,in, #cont)
P(#SysC5,#Sys, c5, #1sa)
P(#SysI5, #85ysC5, in, #cont)
P(#8ysC6, #5ys, 6, #Mod)
P(#8SysI6,#SysC6,in, #cont)
-P(#SysC7,4Sys, c7, #cont)
P(#SysI't, #8ysC1,in, #cont)
P(#SysC8,#Sys, 8, #exp)
P(#SysI8,#SysC8,in, #cont)
P(#S5ysC9, #Sys, c9, #imp)
P(#SysI9,#S5ysC9,in, #cont)
P(#SysC10, #Sys, c10, #coord)
P(#SysI10, #SysC10, in, #cont)
P(#8SysC11,#Sys,cll, #Sys)
P(#SysI1l, #SysC11,in, #cont)
P(#SysC12,#Sys, c12, #Sysin)
P(#SysI2, #SysC12,in, #cont)



Object identity:
(A-12)  Plo,21,1,31) A P(o,22,02,32) = (31 = 22) A (b = b) A (31 = o)
Drived literals: ' '
(A-13) P(o,i,in,c) = In(i,c)
(A-l4) P(o,z,1,y) A P(p,e,m,d) A In{o,p) = A{z,m, y)
Uniqueness of module names:
(A-15) P(01,01,m,01) A P(0z,02,m,02) A In(ol,#Mod) /\In(oz #Mod) = (ol 02)
Uniqueness of individual names:
(A-16) In(M,#Mod) A P(ol,ol,l 01) A P(az 02, ,02) A A(M wntams al) A
_A(M, contains, 03) =5 (0; = 03) ) '
Uniqueness of attribute names:
(A-17) P{oy,s,l,d1} A P(o3,s,1,dp) A In(M, #Mod) A A(M, contains, 01) A
A(M,contains,00) = (o1 =) V(I =in) V(= zsa) k
) Objects belong to exactly one module:
(A-18) Plo,z,l,y) = IM In(M, #Mod) AA(M, contams, 0) i
(A-19) In(M,4#Mod) A In(N, #Mod) A Po, z, ,y) A A(M ctmta'ms o) A
A(N, contains, o) => (M = N) ’
) Derived contains relatiohs for a modules attributes:
(A-20) In(M,#Mod) A P(o,M,1,y) A (In(o, #cont) V In{o, #imp) v
- In{o,#texp) V In(o, #coord)) => A(M, contains,0) . .
(A21) In(M,#Mod) A P(o,M,L,y) A (P(z,0, in, fcont) V P(z,0,in, fimp) V
e P(z, o,in, #ea:p) VP(a; o,in, #coord)) = A(M contams,a:) -
) Definition of predicate PMod. . : :
(A-22) In(M,#Mod) A P(o,x,1,3) A A(M contains, o) = PM“‘(M o,z,1,y)
“(A-23) " In(M, #Mod) A InMo(M, N, #Mod) APM(N,0,z,Ly) A
AM"“'(M M, imports_from, N) A AMYN, N, éxports, o) = PM""(M 0,z,1, y)
(A-24) In(M,#Mod) A InMoY(M, N, #Mod) A PMN, 0, z, ,y) A
AMoY (M. M, coordinates, N } = PM(M, 0,z, Ly)
(A-25) InMoUN, M, 4 Mod) A In(N, #Mod) A AMP(N, N, contains, M) A
P(N,o0,z,l,y) = PM(M, 0,z,1,y)
Definition of predicates InM®, [sqMod, AMod ;
(A-26) PM""(M 0,i,in,¢) = InM*(M, i c) »
(A-27) PM4(M, 0,z,1,y) A PM4(M,p,c,m,d) AInM"d(M o p) = AM""(M z,m, y)
(A-28) PMo4(N,0,¢,isa,d) = IsaM4(M,c, d)
Membershlp to the builtin classes:
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(A-29)
(A-30)
(A-31)
(A-32)
(A-33)
(A-34)
(A-35)
(A-36)
(A-37)
(A-38) T

(A-39) I

(A-40)
(A-41)
(A-42)

(A-43)

(A-44)
(A-45)
(A-46) I

(A-47) T

(A-48)

PMod(M o 5,1,d) = InM4M, 0, #0bj)
InMo4(M, 0, #0bj) = 3 5,1,d PM*4(M, 0,3,1,d)
PMA(M 6, 0,1,0) = InM*Y(M, 0, #Indiv)
InM¥(M, o, #Indiv) = 31 PMY(M, 0,0,1,0)
PMA(M oi in,c) = InMo(M, 0, #Inst)
InMod(M o, #Inst) = 3i,c PM*(M, 0,i,in,c)
PM(M, 0,¢,ise,d) = InM°(M,o,#Spec)
‘ InMo4(M, 0, #Spec) = e, d PMoA(M o, ¢ isa,d) - .
PMo(M,0,5,1,d) Ao # s) Alo# d) A (L #in) A (L #isa) = InM(M,0, #Attr)
InMod(M, o, Attr) = 33,1,d PM(M,0,5,L,d) A(o# s)A(o# d) A
(1 #£in) A(l # isa)
Any object falls into one of the four categones ‘
InMo4(M, 0,40b5) = InM°Y(M, o, #Indiv) vV InM°4(M, o, #Inst) \Y%
InM(M, 0, #Spec) V InM(M, o, #Attr)
The isa relation is a partial order:
InMod(M, ¢, #0bj) = IsaM*(M, ¢, ¢)
saMo4(M, ¢, d) A IsaM*(M,d,e) = IsaM*3(M, c,e)
saM9(M, c,d) A IsaM*(M,d,c) = (c = d) '
Inheritance of class membership:
InMo(0,i,6) A PM4(M, 0,¢,is0,d) = InM(M,i,d)
Attributes are typed by the atribute classes:
PMod(pf 6. 5.1,d) A InM®(M, 0,p) = T c,m, k PMUM,p,e,m k) A
InMod(M, s ¢) A InMo%(M, d, k)
Consistency of a specialization relationship:
saM*(M, 01,00) A PM°(M, 01,6, 11, €) A PM(M, 05,d, 13, f)
= IsaM"d(M ¢, d) A IsaM"d(M,e, F I
Attribute refinement:
IsaMo(M, ¢, d) A PMo4(M, o.,c,z €) APM"d(M,oz,d I f)
= IsaMo4 (M, e, f) A IsaM%(M, 01,05)
Multiple classification: .
InMo(M,i,¢) A InMoY(M, 1, d)PMO(M, 01,¢,1, f) APM“‘(M,oQ,d L,g)
= e, h,03 InM%(M,i,e) A PM(M, 03,¢,0,h) A
IsaM*(M,e,c) A Isa™*Y (M, e,d)
The export part satisfies referentlal integrity:
In(M,#Mod) A Plo,z,1,y) A AMYM, M, exports, o) = PM""(M o,z 1,y)
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(A-49) In(M,#Mod) A AMHM, M, ezports,o) A PMU(M, 0,z,1,y)
= AMYM M, exports, ) A AMoA(pr M, ezports,y)
Constraints of the coordinates relationshipﬁ »
(A-50)  In(M, #Mod) A In(N, #Mod) A In(P,#Mod) A A(M, coordinates, N A
‘ A(N, coordinates, P) = A(M, coordinates, P)
(A-51) In(M,#Mod) A In(N,#Mod) A A(M, coordinates, N} A
A(N, coordinates, M) = (M = N)
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Formal Models and Prototyping*

‘Luqgi »
~ Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Abstract

- Rapid prototyping is a promising approach for formulating accurate software re-
‘quirements, particularly for complex systems with hard real-tinic constraints. Com-
puter aid is needed for realizing the potential benefits of this approach in practice,
because the problems associated with software evolution are greatly amplified in the
context of iterative prototyping and exploratory design. ‘ B
Our computer-aided prototyping system CAPS provides automated support for
many aspccts of requirements analysis and software prototyping, including:" (1)
“maintaining logical dependencies between assumptions about nceds of different
groups, software requirements, and design decisions, (2) managing design-history, al-
ternatives and dependencies, (3) planning, assigning and scheduling job assignments
for teams of designers in the presence of uncertainty, (4) checking and propagating
_ design constraints, (5) maintaining consistency between graphical and text views of
* a design, (6) constructing real-time schedules, (7) generating coitrol code, and (8)
retrieving and instantiating reusable software components. - .
. The principles and methods that make this possible and the practical application
of the system are explained via examples. A '

1 Intrdduct_ion '

The software industry remains far short of the mature engineering disciple needed to

meet the demands of our information age society. Symptoms of the problem are large

sums spent on cancelled software projects [38], costly delays [19], and software reliability

problems [13]. ' R e ;

Lack of formalization of rapidly emerging application areas makes software engineer-

" ing more difficult than other engineering disciplines. Requireéments for complex systems

. ‘are nearly always problematic initially and evolve throughout the life of the systems.

". Requirements and specification problems have been found to be the dominant cause of
faults in the Voyager/Galileo software [34], and we believe this applies to most large and

- ~_complex systems.

**This research was supported in part by the National Science Foundation under grant iumber CCR-
9058433 and by the Army Research Office under grant number 30989-\1.3.
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Evolutionary prototyping can alleviate this problem by providing an efficient approach
to formulating accurate software requirements [27]. Simple models reflecting the main
issues associated with the proposed system are constructed and demonstrated, and then
reformuiated to better match eustomer concerns, based on specific criticisms and the issues
they elicit. This process aids understaiiding becanse independent. issnes are separated and
treated in isolation as much as possible, via communication based on the simplest models
possible. The models are refinéd only as needed to resolve open issues, and the issues
arising at one level of detail are resolved ‘as much as possible before considering the next
level of detail, or the next aspect of the system. This helps to focus the attention of the
customers, designers, and analysts bécause only a few selected aspects of the system are
changing at any point in the process. o

Autoiation is necessary to enable the rapid, economical and effective change needed
for evolutionary prototyping. Our hypothesis has been that increasing the degree of
automation for system development and evolutionary prototyping should improve the
quality of the systems produced. A sound basis for the engineering automation is necded
to realize evolutionary prototyping for large and complex systems, which typically have
real-time constraints. We have explored formal models of various aspects of software
development and evolution to achieve reliable and quantifiable automation of subtasks.
Formal modcls have enabled analysis and assessment of the accuracy and cfficiency of
proposed algorithms and heuristics. : v .

It has.been necessary to interleave this theoretical work with experimental validation -
and adjustment of the models to better fit practical reality. This has been necessary be-
cause software development and evolution are extremely complex problem domains, and
enginecring automation systems have correspondingly complex requirements that strongly
manifest all of the difficultics identificd above. Thus we have applied the evolutionary
prototyping approach to the development of techniques and software for supporting the
evolutionary prototyping approach itself. ' We have found this strategy successful for devel-

oping accurate models; cffective automation and decision support methods for evolution of - .-

software and system requirements. This paper summarizes our expericnces and presents
some of our recent progress on carrying out the plan outlined above. P
The rest of the paper is organized as follows. Section 2 describes our strategies for
achieving automation support for evolutionary prototyping and summarizes progress to
date. Section 3 discusses a formal model of software evolution and explores some auto- - .
mated processes that can be supported by the model. Section 4 illustrates our ideas with .
an example. Section 5 contains conclusions. - R

2 Strategy for Automation Support BN

The main components of our strategy are developing languages and methods based on
formal models of selected aspects of the problem. In each case we sought the simplest
models adequate for achieving our purposes, and based the languages and methods on
these models. We started with the simplest possible models and refined them only as
needed, based on experimental application of the models to assess their adequacy. Our
guiding principle was to avoid model features unless we has a convincing practical scenario
that required those features. Consequently we were always searching for simplifications
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and reformulated models whenever we found a way to eliminate a model concept. This
was done becanse we wanted the resalting methods and tools to be easy to use and learn.
We expected simpler models to speed up the processes of analysis and design by reducing
the number of mandatory choices.- This is particularly appropriate in’ the context of

" prototyping, where it is important to get the major decisions correct rapidly, without
spending effort on fine-tuning. Our experience has confirmed this hypothesis. We have
“also found that:removing concepts from the models and the attention of the designer
can introduce stringent requirements for design automation capabilitics. Removed design

~ attributes must be derived automatically, accutatcl}, and in a way that provides good
désigns.

The first area to be modeled was the behavior of real-time Sy stems because the pro-
totyping approach requires the ability to demonstrate proposed system behavior. The
simplest formulation we could find was a refinement of data flow models that incorporates
declarative control and timing constraints. The prototype system description langnage
PSDL [25] was developed based on this model. The model was éxtended to include dis-
tributed computation [30] and a formal semantics of the language was developed (22].
‘The model and language have been found to be adequate for representing a variety of
complex systems, including a generic C3I station [29] and a wireless acoustic monitor for
preventing sudden infant death syndrome [36].

Real-time scheduling and software integration are other kC) issues for rapid realization
of complex systems. We developed related modcls in these two arcas, l)as(-d on'the mod(‘l

- of system bchavior. :

Real-time scheduling depends on models of the timing requircments and on modch of
the capabilities of the target hardware. The behavioral model underlying PSDL contains
a model of real-time requirements, which we extracted for this purpose [26]. This model
was used to develop our initial scheduling methods, and it proved adequate. The'initial
hardware model was empty, which was adequate for scheduling with respect to fixed,
single processor architectures.” We realized that scheduling depended on hardware models
when we started addressing scheduling methods for more general hardware conﬁguranom
We developed a series of more sophisticated hardware models [30], and found that these
together with the original model of real-time requirements were adequate for supporting
scheduling methods for multi-processor and distributed target hardware configurations [7.
32]. Ongoing work is exploring models and methods that can schedule larger distributed
real-time computations within practical resource limits.

Software integration is the process of ensuring that all the parts of a software system
work together to achieve their intended purpose. Software mteﬂratlon depends on models
of interactions between subsystems and control constraints, including those derived from
timing requirements and the schedules used to realize them. We addressed software inte-
gration by developing software architectures and methods for architecture-based program
generation. Automated program generation is necessary in our context because we had
to support rapid, low cost change, and small changes to timing requirements can affect
large portions of the code.

. The software architecture for prototypes embodies a general structure for’ realizing
interactions and real-time schedules for systems that have 2 mix of time-critical and
non time-critical computations. The structure used to automatically realize connections
between subsystems was derived from the system interaction part of the behavioral mode!
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underlying PSDL. The structure that realizes the schedules uses a high-priority thread
for computations with hard deadlines and a low-priority thread for computations without
deadlines.

The software arclntoctun‘ was 1mpllntly defined by a program generator (lrl\vn by
a description of desired system behavior expressed in PSDL and a real-tinte schedule
constructed by a scheduling algorithm. This program generator was itself generated nsing
an attribute grammar processor. This approach works but is not particularly elegant or

easy to adapt to other problems.

.Our -initial capability for generating executable prototypes from simple and quickly
constructible models of the problem domain enabled experimental validation of the con-
jecture that prototyping and demonstrations of systems behavior were valuable aids to
requirements determination. The initial experiments supported the validity of this con-
jecture, which motivated us to put more effort into software reuse and evolution.

Software reuse is a critical part of prototyping for real-time systems hecause cfficiency
is of the essence in the time-critical parts of these systems. The highest levels of efficiency
can only be achieved by intensive engineering and refinement of sophisticated algorithns
and data structures, which usually takes large amounts of time and effort, and produces

_designs that depend on intricate chains-of reasoning. The easiest way to take advantage
of such components in a process that must be cheap and rapid is to use a prev iously
_ constructed library of standard and well-optimized components. Thus we explored formal
. models of how such libraries could be organized and searched to quickly find the most
appropriate components for each particular context [24]. Search methods must trade
off precision (retrieving only relevant components) against recall (finding components
if they are relevant). We have developed a software component search method that
can simultaneously achieve high levels of precision and recall, based on algebraic queries
representing symbolic test cases. RIRTR

Software evolution is a critical aspect of prototyping [27]. In the carly stages of
requirements formulation the purposes of the proposed system are highly uncertain and

. major changes are expected. Planning, version control, team coordination, and . project -
management are key issues in this context. Another important issue is how to repeatedly
and rapidly change a design without having it degenerate into an unstructured maze that
cannot be quickly understood and modified. The next section summarizes our progress
on software evolution. :

3 Software Evolution

Our initial step towards formalizing software evolution in the large was a graph model of
the evolution history [28]. This work led to the insights that the essence of project history
lies in dependencies among versions of project documents and the activities that produce
them, that the formal structures of project history and project plans are essentially the

- same, and that integrated modeling and support for software configuration management .
and project management enables higher automation levels for both [1] More recent work
suggested that hypergraphs may be useful’ [33), and that integration with personnel models
‘and rationale models enables decision support for the problemanc early stages of critique
analysis and change plannmg {8].
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‘To achicve simplicity, we seck to model the products and v])n)r:«",s:‘;r-s:inmlvml in software
evolution using a minimal set of general ol)j(;(t types,-and introduce specialized subelasses
‘only when necessary for accurate modeling. The current version nf the model has onlv
three main types: component, step, and person. :

' The type component represents any kind of vcrsxoncd software-related object, includ-
ing critiques, issues, requircments, designs, programs, manuals, test cases, plans, ete,
These are the information products produced by software evolution processes.

The type step represents instances of any kind of scheduled software evolution activity,
such as analysis, design, implementation, testing, inspection, demonstration, ctc. Steps
* are activities that are usually carried out by people, and may be partially or completely
automated. When viewed in the context of evolution history, steps represent dependencies
among components. Steps that are not yet completed represent plans. Steps are a subclass
of component because they can ha\e versions, t.o prov:de a record of how the plOJcct p]ans

evolved.
' The type person represents the people involved in the soft\\arc evolution activity,
including the stakeholders of the software system, software analysts, designers, project
managers, testers, software librarians, system administrators, etc. We nced to represent
the people involved to be able to trace requirements back to the original raw data, and
to link it to the roles the authors of critiques play in the organizational structure. This
is a part of the rationale of the system that helps to identify view points and analyze
tradeoffs between conflicting rcquu'ements The people in the development team must
be modeled because of concerns related to project scheduling and authorization to access
project information. Person is also a subclass of component, and thereforé versioned, to
provide a record of how the roles and qualifications of the people involved in the project
change with time.
: We have recently developed: an lmproved model of system -evolution that better ac-
- counts for hierarchical structures of components and steps. The associated refinement

concept is usefu! for helping developers and planners to cope \\1th the complc\lty of larg(-
. projects. This model is summarized as follows:

An evolution record is a labeled acychc dlrected hypcrgraph [\ E I, O C, S] W hcu‘

1. Nisasetof nodes representmg unique 1dentlﬁers for components
2. Ei ls a set of'edges, representing unique 'identifiers for’ steps.

3.1I: E -2V isa funétion gi\'int; the set of inpﬁts of each ‘edge,
4.

O : E — 2V is a function glvmg the set of outputs of each edue such ‘that
Ole)n O(e') # 0 lmphes e=¢,

5. C:N - component isa functlon g\vmg the component assocnated w1th each
node, and

6. S:E - step is a funcf.ion giving the ystep associated with eaéh edge.

The hypergraph must be acyclic because its edges represent mput/output dependen- '
cies for the processes that create components. These dependencies induce precedence
" constraints for the project schedule. because an activity cannot start until all of its input
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components are available. The restriction on the outputs says that each component is
produced by a unique step. This establishes (I(-.u lines of wsponsxlnln\ and produces a
record of authorship when cmch step completes. :
" Let H denote the sct of evolution records.
A hierarchical evolution record is an acvclic directed graph [n, (] with l.\lwl nmps
h,r and dccomposmmn maps d,, d, where

1. n is a set of nodes representing uniqgue identifiers for evolution records.
2. e is a set. of edges representing unique identifiers for evolution record refinements,

3. h:n — H is a function giving the evolution record associated with each node,
such that (ny,ny) € e implies k(n;) is a subhypergraph of h{n,). This means that
h(n).N C h{n,).N, h(n)).E C h(n2).E, h(nl) I € h{ny).1. h(n;).0 C h(nz)O

’ h(nl) C C h(ng) C and h(n]) S C h(n2

4. r: e = step is a function giving the step that is refined by each edge,

5 d,: N— 2" is a function giving the set of subcomponent nodes of each com-
ponent node appearing in the evolution record h(n;) for any node n; €n, where
N =Un,en h(n,) N. .

6. d,: E — 2% is a function gmug th(‘ sct of substep edges of cach step edge ap-
_ pearing in the evolution record h(n;) for any node n; € n, where E = Uy, en h(n;).E.

1. The graph has a single root (a node with no incoming edg(‘s) and a suwlc leaf (.1
node with no outgoing edges).

8. Any two paths p; and p; from the root node with the same step label set {1 (c)|(’
m} = {r(e)le € p2} end in the same node. :

9. If (nl,ng) € e, then there is an E', € h(n)).E with S(E|) = r(c), 0 # do(Eq) C . .

h(n,).E, and for-each E; € de(E1), I{E2) € Unere,)dalM1) C h(ng) N.and °
O(E2) € Un,eo(ky) 4n(N1) € h(nz).N.

Each node of a hierarchical evolution record represents a view of the evolution history. - .

The root node is the most abstract view, containing only the top level steps and the top
level components those steps produce. The leaf node is the most detailed view; which
contains the top level steps and components together with all direct and indirect substeps
and subcomponents.

A step is refined by adding all of its substeps to the e\olunon record, along thh the
input and output components of the substeps. The last condition in the definition says
that the step associated with the link between two views must be decomposed into at
least one substep in the detailed view, that the inputs and outputs of the substeps must

* be subcomponents of the inputs and outputs of the superstep, and that the mput and
output components of the substeps must appear in the detailed view.

The hierarchical evolution record has a large number of nodes, which are not mtendc(l
to be stored explicitly in an implementation. The model is intended as a framework
for navigation through the possible views of the evolution record at different levels of
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abstraction. Practical implementations will materialize only those view nodes that are
visited. .
This model can be used to automatically schedule steps, antomatically locate and
“deliver the proper versions of the input components to the developer assigned to Carry
out the step, and to automatically check in the new components produced when the step
is completed. It can also be used to gencrate default plans, to maintain the consistency
of plans, and to help managers and developers navigate through the plan and document
structures of an evolutionary prototyping or development cffort.

-4 Example

Figure 1 shows an example of a top level evolution record. In this example, the first
version of the requirement (R1) is used to derive the first version of the prototype (P1),
which is demonstrated to system stakeholders and elicits the criticism (C1). When a
step to derive the second version of the requirement (R2) from the c_ijiticism is proposed,
the system automatically proposes a step to create the second version of the prototype
(P2), because the prototype depends on the requirement and the requirement will be
updated. The proposed steps will be scheduled automatically when they are approved by
the project management. -

- Figure 1: ‘Top Level Evolution Record

Figure 2 shows the refinement of step S1 of the top level evolution record shown in
Figure 1. Both S1 and its substeps S1.1 and S1.2 are present in the refined evolution
‘record. The top level steps are shown with thicker lines. The component Rl is decom-
posed into the subcomponents Ral and Rb1 because these components are inputs to the

- substeps, and P1 is decomposed into Pcl and Pdl because these are the outputs of the

- substeps. . e » o : k . :
*Figure 3 shows a further refinement of the evolution record shown in Figure 2 that

expands all of the top-level steps. \Ve have left out the top level steps to avoid cluttering

the diagram. Note that the subrequirement Rb1 is shared by both versions of the require-

ment R, because it is not affected by the elicited criticism, and that the subsystem Pdl

of the prototype that depends only on this subrequirement is also shared by both versions
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Figure 2: Refinement of Step S1

of the prototype P. Our goal is to provide tools based on this model that will make it
easier to discover and manage large scale structures of this varicty. ‘

The decomposition mappings for the subcomponents are denoted by geometrical con- -
tainmet in the figures. The decomposition relations for the steps are indicated only via
the structure of the step names. Note that the graphical display would get crowded if the
decomposition relations were explicitly displayed as hyper-edges, even for this very small
example. In realistic situations, there can be many more nodes in the evolution records.
Ve are currently exploring automatic mecharisms for determining and displaying small
neighborhoods of these structures that are relevant to particular planning and analysis :
tasks and are small enough to be understood. Some initial results along these lines can
be found in {23]. -

5 Conclusions
Our previous research has explored formal models of the chronological evolution history
-[28]. This model has been applied to automate configuration management and a variety
of project management functions {1). The ideas presented in this paper provide a basis for
improving thése capabilities, particularly in the area of computer aid for understanding
the record of the evolution of the system to extract useful information from it. Some
recent work on improving the project scheduling algorithms based on these models has
. enabled scheduling 100,000 tasks in less than a minute [14]. These results suggest that
the project scheduling support will scale up to projects of formidable size.

We are currently working on models and notations that support explicit definitions of
software architectures for solving given classes of problems independently from the rules
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‘that determmc a particular instance of the ardutcctme for sol\ ing a gncn mstdnco ol' the
. class of problems. This should make it easier for software architectures and associated
program generation capabilities to evolve.

Architecture evolution provides a practical path for quxckl\ obtammg automatlou ca-
pabilities for new problem domains, and to gradually i improve those capablhtxcs by adding
solution techniques that expand the problem domain and mcorpomtmg optmumtlons for
specialized subproblems that i .improve performance.

Formalizing these aspects of software architectures and de\ elopmv the correspondmv

... engineering automation methods will eventually enable us to certify that all programs

_possibly generated from a mature architecture are free from given classes of faults or that

y they work correctly for all possible inputs. These steps will bring us closer to the point

where product-quality software can be economically produced using the same engiicering
- automation technology that enables evolutionary prototyping and helps analysts home
* in on good requirements models. Qur vision is to eliminate the current conflict between
rapid development and high software quality.

Our ultimate research goal is to create conceptual models and software tools that allo“
automatic generation of variations on a software system with human consideration of only
the highest-level decisions that must change between one version and the next. Realization
of this goal will lead to more flexible software systems and should make prototypmg and
exploratory design more effective. :
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1 Introduction

Reactive systems have an ongoing interaction with their environment. Many systems can be
seen as reactive systems, including computer hardware, concurrent programs, network proto-
cols, and embedded systems. Temporal logic [Pnu77] is a convenient language for expressing
properties of reactive systems. A temporal verification methodology provides procedures for
proving that a given reactive system satisfies its temporal specification [MP95].
The two main approaches to the verification of temporal properties of reactive systems

are deductive verification (theorem-proving) and algorithmic verification (model checking).
In deductive verification, the validity of a temporal property over a given system is reduced

" to the general validity of first-order verification conditions. ‘In algorithmic verification, a

temporal property is established by an exhaustive search of the system’s state space, lookmg
_ for a counterexample computation.

" Model checking procedures are usually automatic, while deductive venﬁcatxon often rehes
on user interaction to identify suitable lemmas and auxiliary assertions. However, model
_ checking is usually applicable only to systems with a finite, fixed number of states, while the
deductive approach can verify infinite-state systems and parameterized systems, where an
unbounded number of similar components are composed.

*This research was supported in part by the National Scienice Foundation under grant CCR-95- 27927 the
Defense Advanced Research Projects Agency under NASA grant NAG2-892, ARO under grant DAAH04-95-
1-0317, ARO under MURI grant DAAH04-96-1-0341, and by Army contract DABT63-96-C-0096 (DARPA).
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Figure 1: An outline of the STeP system

2 The STeP System

The Stanford Temporal Prover (STeP} supports the computer-aided formal verification of
reactive, real time and hybrid systems based on their temporal specifications, expressed in
linear-time temporal logic (LTL). STeP integrates model checking and deductive methods to
allow the verification of a broad class of systems, including parameterized (N-component)
circuit designs, parameterized (N-process) programs, and programs with infinite data do-
mains. '

Figure 1 presents an outline of the STeP system. The main inputs are a reactive system
(which can be a hardware or software description, with real-time and hybrid components) and
a property to be proven about the system, expressed as a temporal logic formula. Verification
can be performed by model checking or deductive means, or a combination of the two.

The deductive methods of STeP verify temporal properties of systems by means of ver-
ification rules and verification diagrams. Verification rules are used to reduce temporal
properties of systems to first-order verification conditions [MP95]. Verification diagrams
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[MP94] provide a visual language for guiding, organizing, and displaying proofs, automati-

cally generating the appropriate verification conditions as well. - I

B On the algorithmic side, STeP features automatic explicit-state and BDD-based sym-
* bolic model checking for LTL. While the symbolic model checker is limited io finite-state
systems, the explicit-state model checker can sometimes handle infinite-state ones, but is not
guaranteed to terminate. el ) ;

. STeP also includes deductive model checking [SUM98], for the interactive model checking
of infinite-state systems. Deductive model checking proceeds by transforming a diagram
that abstracts the product of the system’s state-space and the tableau (automaton) for the
temporal property being verified. T

STeP implements techniques for the eutomatic generation of invarients (and intermediate
assertions) [BBM97]. STeP also provides an integrated suite of simplification and decision
- procedures for automatically checking the validity of a large class of first-order formulas (see-
Section 3.1). : ~ i :

Verification diagrams can be used to organize proofs that require user guidance. In all

- . cases, the automatic prover is responsible for generating and proving the required verification
- conditions. An interactive Gentzen-style theorem prover is available to establish verification

conditions that are not proved automatically. Tactics are available to automate parts of the
high-level proof search by encoding long or repetitive sequences of proof commands. -
Figure 2 describes the scope of STeP. Note that deductive methods allow the verification
of real-time and hybrid systems whose discrete component is infinite-state {e.g.- described by
software, rather than a finite automaton). They are described by clocked transition systems
(CTS) and phase transition systems (PTS), which generalize fair transition systems (see
Section 3.2). . . S R

3 Recent Developments

3.1 Decision Procedures

~ The verification conditions generated in deductive verification refer to particular theories,
reflecting the domain of computation of the system being verified. Rather than treat them
- as uninterpreted first-order formulas, decision procedures for the specific theories of interest
can greatly increase the power, efficiency and ease of use of deductive verification systems.

STeP includes decision procedures for a number of theories common in formal verifica-
tion: linear arithmetic, datatypes and finite domains occur in most systems to be verified;
rationals and reals appear in the analysis of real-time and hybrid systems. As in most other
verification tools with support for ground theory reasoning (e.g. [BDL96, ORR*96]), we
have found congruence closure [NO80] to be an essential component of the decision proce-
dures.” Shostak’s combination of decision procedures closure [Sho84, CLS96] improves the
basic equality reasoning of corigruence closure by efficiently integrating solvable theories such
as inductive datatypes and linear arithmetic. ) o :

Decision procedures for bit-vectors [BP98] are particularly useful in the hardware domain.
These are now part of STeP, together with a Verilog hardware description front-end.
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Figure 2: Scope of STeP

Quantifiers appear in the axiomatization of theories for which there is no specialized

support. They are also present in verification conditions when verifying parameterized and .

(infinite-state) software, real-time and hybrid systems. Thus, the ground-level reasoning
provided by most efficient decision procedures is no longer sufficient. ‘To address this problem,
'STeP now includes methods for combining first-order reasoning and decision procedures
[BSU97], in the form of a validity checker that performs partial quantifier instantiation
based on rigid unification procedures.

3.2 Real-Time and Hybrid Systems

STeP supports the verification of safety properties of real-time and hybrid systems, based on
the computational model of clocked and phase transition systems [MP96]. Systems described
by timed transition systems, timed automata or hybrid automata can be readily translated
into these formalisms. . R

In clocked transition systems, the untimed linear-time temporal logic is extended with
a global clock measuring the overall progress of time. The transition system consists of
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" “standard instantaneous transitions that can reset auxiliary clocks, and a transition that
advanceés time, constrained by conditions on the global and auxiliary clocks. Phase transition
systems contain other continuous variables, whose evelution is described by activities, usually
in the form of differential equations. A progress condition limits the time that the system

" can stay in a particular discrete state. IR . oo

The transition system model is retained by modeling the advance of time as a discrete
transition parameterized by the duration of the time-step, and constrained by the progress
condition. This representation allows STeP to reuse existing verification rules for untimed
temporal logic. STeP has been applied to real-time benchmarks such as Fisher's mutual
exclusion protocol and an N-process railroad crossing gate controller [HL94], as reported
in [BMSU97]. Verification of hybrid systems with STeP is described in [MS98), including

~ invariant generation methods and test cases. ’

- 8.3  Visual Verification

The interface for the latest version of STeP (2.0) is developed in Java, to allow the imple-
mentation of a wide class of visual verification formalisms. This includes deductive model
checking [SUM98] and the generalized and hierarchical verification diagrams presented in
[BMS95] and [BMS96]. These diagram-based verification formalisms share the following
features [dAMSU97}: ~ : .

¢ Diagrams are formal proof objects, which succinctly represent a number of verification
conditions that replaces a set of textual verification rules.

_ j,‘ ‘The verification gqhditibns are local to the diagram; failed verification conditions point
... to missing edges or nodes, weak assertions, or possible bugs in the system. The neces-
sary global properties of diagrams can be proved algorithmically.

¢ The construction of a diagram can be incremental, starting from a high-level outline

' and then filling in details as necessary. The diagrams for a given program can serve -
as documentation. They can also be re-used for similar proofs over refined or similar

_programs.” ' : o S

3.4 Modularity

"8TeP includes facilities for compositional specification and verification [FMS98]. Systems
are described by a set of modules, which may be composed synchronously or asynchronously.
Each module has an interface that determines the observability of modiile variables and
‘transitions. Modular properties can be established by thé same methods as global properties, -
‘accounting for environment transitions. Property inheritance then allows such properties to
be used as lemmas in proofs over composite modules. - Lo

k Tn {BMS96] we present hierarchical verification diagrams, which allow a proof by verifica-
tion diagram to consist of multiple diagrams at different levels. In such diagrams, auxiliary
temporal properties may be abstracted away and proved by lower-level diagrams. :
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To obtain STeP, send email to step-request@cs.stanford.edu. A new release, ver-
sion 2.0, featuring most of the new interface and developments described above, will be
made available by April 1998. A technical report describing the basic design of STeP is

[MAB*94).

Recent test cases are reported in [BLM97] and [BMSU97}, and a tutorial is

presented in {BMSU98]. Information on the system can be also found on the web-—see
http://theory.stanford.edu/ zm.
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Reference Architectures
- and Conformance'

Sigurd Meldal
. .. Computer Science Department Computer Systems Laboratory
‘ CalPoly Stanford University

_ Email: smeldal @calpoly.edu

Abstract . . -

We discuss the definition and modeling of reference architectures, and the notion of confor-
mance. NSA’s MISST (Multilevel Information System Security Initiative) security reference’
architecture is used as an illustrative example. ‘ o o
We demonstrate that an ADL should have not only the capability to specify interfaces, con-
nections and operational constraints, but also to specify how it is related (or conforms) with
other architectures or to implementations. v e
A reference architecture such as MISSI is defined in Rapide [10] as a set of hierarchical inter- -
face connection architectures [9]. Each Rapide interface connection architecture serves as a
reference architecture — an abstract architecture that allows a number of different implemen-
tations, but which enforces common structure and communication rules. The hierarchical ref-
erence architecture defines the MISSI policies at different levels — at the level of enclaves
communicating through a network, at the level of each enclave being a local area network
with firewalls and workstations and at the level of the individual workstations. The reference
architecture identifies standard components, communication patterns and policies common to
. MISSI compliant networks of computer systems. - -

Key Words and Phrases: Software architectures, conformance, security, reference ar-
_ chitecture, software engineering, specification, testing. i o

1. Introduction - -

Everybody knows what an architecture is ~ it is a set of components and connections between =
them. However, that is as far as agreement goes. What the proper methods of defining these
entities are, what conformance means, what the distinctions are between an architecture, and
architecture style and a referencé architecture, these are issues that are unresolved (and pre-
sumably unresolvable, as they are questions closely related to world-views, methods and con-
sequently often come down to pseudo-religious beliefs). : . -

" Architectures are used in different situations, and for distinét reasons. The most concrete
use is in designing software systems, 16 make an initial sketch of it in terms of its module de-
" composition architecture in the top-down tradition of design, focusing on the high-level com-
ponents and their means of interaction [24]. Architectures are also used to define references
against which implementations can be checked for compliance. Such reference architectures
define the functional components of the architecture and how the components may interact,
but need not require that distinct components in the architecture necessarily be distinct also in
the implementation. The use of reference architectures allows a separation of concerns in the
system specification — distinct reference architectures address distinct aspects of the system
(e.g., there might be one reference architecture stating fault-tolerance requirements, another

t This project was funded by TRW under'contract 23679HYL6M, DARPA under F30602-95-C=0277
" (subcontract C-Q0097), and by NFR under contract 100426/410. - -
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(such as the MISSI reference) stating security requirements, another (such as the 1SO OSI ref-
erence stack) addressing communication protocols, etc.).

The presence of a component or connection between components in a reference architec-
ture may signify different requirements, depending on which aspect of the system the refer-
ence addresses. E.g., does the lack of a connection between two modules indicate a prohibi-
tion against their direct interaction (i.e., is the interaction graph as given by the architecture
supposed to be complete)? Does a connection between two components indicate that they will
communicate (i.e. a connection represents not only a potential for interaction, it is also a re-
quirement that such an interaction shall occur)? And in all cases, what is the concept of inter-
action anyway? Does an architecture imply what protocol an interaction shall adhere 107 E.g.
RPC vs. buffered pipes vs. passive, reactive systems vs. event broadcasting, etc.

In the end, what distinguishes one kind of architecture from another is the conformance
requirements imposed by the architecture.

This article discusses how one can capture a security reference architecture in a manner
amenable to analysis and automatic conformance checking. We shall start by pointing out in
section 2 that the notion of abstraction changes when we move from prescriptive to descrip-
tive specifications. This works well with the notion of conformance w.r.t. multtple perspec-
_ tives (or reference architectures), which we touch upon in section 3. Then, after giving a brief

overview of the Aapide ADL in section 4, we present in section 6 the process of architecting
using the Rapide ADL, giving examples from the MISSI reference architecture. In section 7
we go through all the top level requn'ements of the MISSI reference architecture one by one,
showing how they are captured in the Rapide ADL. In section 8 we shall briefly look at how
_the reference architecture can be put to use for (semi-) automatic checkmg, visualization and
analysis of 1mplementauon system conformance.

2. Abstract activity ‘

.Modern programming languages contain constructs for defining abstract objects. One of the
consequences of “information hiding” is that an abstract object may accept many different
implementations which are consistent with its abstract definition. Implememanons may dlffer
on the structures representing values, or the algorithms for the operations. -

Similarly, the activity of a program, or system, may also be defined abstractly. On the one
hand there is the operational abstraction embodied in the procedure and function concepts of -
most Janguages. There is also an abstraction mechanism inherent in the definition of events
and actors of interest in a concurrent system. By identifying the classes of actors and activity
we want to consider in describing the behavior of a system we establish a granularity of ob-
servation, 1gnormg details of implementation and the potentially composite nature of a smgle

“event” or “actor.”

In moving from procedural (imperative and state oriented) abstraction to behavioral
(observatxonal and event oriented) abstraction, a problem arises. A refinement of a procedural
abstraction is accomplished by deﬁmng the abstraction in terms of other, more detailed proce-

dural elements. This works well, since a pro-
Highlovel cedural abstraction is invoked - low level
(procedure invocation) activities are initiated by a higher level, the
Program start: ——————————# ...| program invocation itself being the most ab-
stract (Figure 1).
\ , Furthermore, the 1denmy of the invoker
~ Lowlevel . . | does not change as the program is refined,
(procedure body) e.g. a high level procedure of a module and
its invocation are retained in the fmal fully
detailed program. :

, Figure 1:
Mapping from abstract to concrete activity
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Concrete events

Program start:

Figure 2: .
Mapping from sets of concrete events to

abstract events

lift may be particolar patterns of events at a lev

The analogous observation does not riec-
essarily hold true for an event based model.
A process or event at some level of abstrac-
tion may not exist at a lower level. In speci-
fying a lift system for instance, the concept
of “lift” is natural, and a specification is
readily given in terms of activities of such
lifis. However, when implementing a lift
system, there may be no distinct syntactical
(or physical) entity corresponding to a par-
ticular lift of the abstract architecture (a lift
being much more than simply the box itself -
multiple lifts ' may share motors, sensor sys-
tems, etc.). The implementation of a lift may

-be in terms of motors, door sensors, arrays of

buttons; etc., possibly shared among the ab-

- stract lifts. Events abstractly generated by a

el of increased detail. - The abstract event of a

lift moving from one floor to the next may correspond to the sequence of events “sense doors

closed, signal controller, controller starts motor, sen

controlier stops motor™ in the implementation,
The result is a Copernican revolution: The

and actors giving rise to more abstract ones (Figure 2).

3. Multiple Perspectives on a system

se reached next floor, signal controller,

causal relationship is one of concrete events

Consider a description of a hotel. In describing such an entity one might want to partition it in

- a number of different ways. One way could be

according to domains - there is a domain of

publicly accessible facilities, another

Hotel
Public facilities
PR

.

-
A
N

Service facilitie:
7 *
rl A}
-~

s
’ .
Y

Kitchen ...

.
’
.

”,

o .

Restaurants ... Guest lifts

Service lifts

of behind-the-scénes service facili-
.| ties, etc. (Figure 3). -
' These domains may then be
further subdivided, ‘e.g; the public
facilities one into restaurants, -inter-
-nal transportation (public lifts), etc.,
and the service facilities into kit-
chens, - internal- transportation

Figure 3: Conceptual detompositioﬁ

In describing the functionality of the h.otel, anoth

propriate, for instance a partitionin
electrical components, plumbing, etc. (Figure
through layers of less and less abstraction to the

“(service lifts), etc.; into the final,
- solid structure which is the imple-
mented hotel. - :

er decomposition may be more ap-

g of the hotel into domains of technical responsibility, e.g.

4). This decomposition may also be refined
details of the finally implemented hotel.

Thinking procedurally, one has to choose one or the other of these views, the choice be-

ing determined primarily by expected ease
system as perceived by the specifiers.

- Having chosen a particular abstract descri
breakdown for construction purposes if (/) the

of construction, i.e. by criteria not intrinsic to the

ption, it may function well as a component
specification language is prescriptive and (2)

the flow of control in the system is initiated by imperatives at the highest level of abstraction.
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Le. detailed activity occurs as a resuit
of abstract activity being initiated, e.g.
as in a procedure call (abstract) results
in execution of the procedure body

(detailed).

However, there is not always a
single decomposition which is pre-
eminent for a particular system. Fur-
thermore, descriptive, event oriented
concurrent languages appropriate for
abstraction in concurrent systems do

not sausfy ‘the two criteria above, since an event at 'one abstraction level does not cause its
.component events at a more detailed level.

Moving from concrete architectures (such as the hotel above) to software archxtecmree
the discontinuity between architectures levels and between architectures and their implemen-
tation as a running system may become even more problematic, in terms of what conformance
entails. Soni et al. [25] distinguishes between four architectural perspectives on a given sys-
tem: The conceptual architecture, the module interconnection architecture, the execution ar-

“chitecture and the code architecture, and the transition from one to another may result in dif-
ferent identification of modules, connections etc., requiring a non-trivial definition of when
(say) the module interconnection architecture conforms to a given conceptual architecture.

. We seem to be caught on the horns of a dilemma. On the one hand, we need to be able to
describe system behavior under different, often competing, perspectives. On the other hand,
an architecture may also be used to prescribe behavior, indicating in some detail how the
system shall generate the behavior the descriptions require.

4. An Architecture Definition Language

In reading an architecture description, the question of what the description actually means

_needs to be resolved unambiguously in the readers’ and designers’ mind in order to evaluate
and then implement a given architecture. Without a clear understanding of the semantics of a
notation (be it graphical — boxes and arrows — or textual) one cannot be sure that whatever is
extracted from it (be it implementation strategies, modeling results, etc.) is implied by the de--
scription given, and understood by other readers of the architectural description.

An interface connection architecture [9] is defined by identifying :
e Components: the primary elements of the architecture, and their means of interaction thh :

- other components. Components are considered black boxes constrained only by the deﬁ-
nitions of their interfaces. :
e Connections: the lines of interaction between components.
e Conformance: identifying minimum requirements of how an implementation may satlsfy
the architecture. _ ‘

The Rapide model of architectures is event based ~ a basic notion being that architecture
components are defined by the kinds of events they may generate or react to. An interface also
identifies the semantics of a conforming component by giving event based constraints, speci-
fying whether particular protocols are to be adhered to, identifying causal relationships be-
tween events, etc. Such constraints form the basis for analysis and testing tools, such as run-
time checking for conformance violations [6, 17].

A successful ADL requires a high degree of flexibility in how an architecture can be re-
fined. Naturally one wants to be able to refine interface definitions, making use of subtype
substitutivity when extending an interface with new capabilities or by adding further con-
straints. In addition to this basic capability, an ADL should enable the definition of hierar-

Sensors Motors

Figure 4: Functional decomposition
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chies of architectures, where one architecture can be interpreted guite flexibly as an imple-

mentation (or refinement) of another. The Rapide map construct gives the designer the tool to

explicitly define how complex patterns of events in one architecture correspond to more ab--
stract events of another, thereby enabling a powerful and checkable notion of conformance:

The literature presents a number of distinct ways of distinguishing kinds of architectures

(e.g., Soni et al. [25] makes a distinction between object and function decomposition archi-
tectures, among others, Shaw and Garlan [24] identifies patterns of object decomposition ar-
chitectures). We prefer the notion that “an architecture description conveys a set of views,
- each of which depicts the system by describing domain concerns.” [5] The distinction be-
- -tween different architectures descriptions then becomes one of a difference of conformance
requirements. In moving from (say) a module decomposition architecture to an implementa-
tion, conformance would require disjoint sets of modules implementing distinct components
of the architecture. In contrast, in checking whether a reference architecture is satisfied by a
particular implementation one would make the weaker conformance requirement that there be
amapping of components and events at the implementation level to components and events of
the reference architecture. . :

This perspective on what an architecture is allows a clean separation of concerns. One can
specify multiple architectures for any given implementation, each focusing on a particular as-
pect of the system, each with an appropriate set of conformance requirements. For instance,
when specifying a distributed object system it is reasonable to separate security concerns from
Jfault tolerance concerns. Part of the security architecture for the system would state the con-
. formance requirement that information should flow orly along connections defined in the ar-

chitecture; the architecture identifies the maximal connectivity of an information flow graph.
In contrast, part of the fault tolerance architecture for the system would be to state the con-
formance requirement that information should be able to flow independently along all con-
- nections defined in the architecture, making no restrictions on the presence of extra connec-
tions; the architecture identifies the minimal connectivity of an information flow graph. In
claiming that a particular implementation satisfies both perspectives the implementor woild
- explicitly give the two maps, from the implementation to each of the reference architectures,
showing the conformance argument. T ' ] ‘ :
. The vocabulary of the Aapide ADL [10] incorporates and extends the basic vocabulary of
interface connection architectures: _ : : B
" Events: Representing that something happened. What that something is may vary from archi-
tecture to architecture, and with varying degrees of abstraction. o :
Causality: In Rapide one can specify whether particular (patterns of) events should be inde-
pendent or causally related. This allows a very precise description of information flow.
Patterns: Descriptions of how events may be related by causality, time or other relations.
- Patterns are described using an extension of regular expressions with placeholders to de-
scribe partial orders of events. S o L v
‘Constraints: Predicates, usually in the form of prescribed or proscribed patterns of behavior,
indicating the intended functionality of a component. .. "
Maps: Relating architectures to one another (and specifically, implementations to one or more
architectures), indicating how conformance is obtained. , S
Rapide’s object-oriented type- and module definition sublanguage provides features for
code refinement and reuse (through inheritance and polymorphism) and specification refine-
ment and reuse (through subtyping and polymorphism). - : o .
The semantic model of Rapide emphasizes causal and temporal relationships between
events of a system, and thus provides the capability to be quite specific about how compo-
nents of an architecture may (or may not) interact. Causal relations can often identify whether
assumptions about the degrees of independence among an architecture’s components are war-
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ranted or not. E.g., the focus on causal relationships allows the Rapide user to state in very
general terms assumptions about the presence of covert channels, and to identify possible
means of covert interaction in an architecture through the analysis of causal relationships dis-
played by test executions.

Furthermore, it allows tools to mvesugate the causal relations between events, distin-
gulshmg between temporal relationships that are causally significant and those that are not.

The Rapide pattern and constraint languages supports the definition of operational policies
and specific protocols, which can take into account causal- as well as tzme-relauonshxps be-
tween events.

The Rapide map construct supports exphcxt statements of conformance — the implementor
of an architecture can state exactly how the implementation conforms: it defines which (sets
of) components of the implementation play the role of particular components of the architec-
ture, how patterns of events in the implementation correspond to more abstract events used in
the architecture, etc. Since maps are given explicitly, they allow tools to check for confor-
mance automatically, adding an extra degree of confidence that any conformance vxolauons
will be caught, offering a valuable supplement (or alternative) to formal reasomng

The map construct is also a valuable tool whenever an architecture is given a hierarchical
structure. E.g., if one level of structure is defined in terms of federations of enclaves con-
nected via wide area networks, and another level as network-connected workstations, certifi-
cate servers, etc., then maps are the means whereby the distinct levels can be related in the
architecture definition. For instance, through the definition of appropriate maps the designer

can identify how the set of networks, workstahons and servers aggregate into enclaves and
WANS. :

5. Secure architectures

There are a number of perspectives one may apply when dlscussmg the security aspects of a
software architecture. In particular, in this document we shall address two aspects of the
MISSI reference architecture: :

Structures: That the secure architecture has a certain structure [24], requiring the existence of

certain components (such as “certificate authorities,” or “enclaves” [7]). The structures -

‘may be defined at different levels of abstraction, with different conformance requnre—
ments. We shall deal with '
1. a global level, focusing on the main components and the overall constraints on thelr

interaction. At this level general policies about information flow and the like may be . -

stated, without regard to how these policy constraints are ensured by particular pro- R
tocols, functional units, etc. ’
2. a concept of operations (“conops”) level, focusing on the functional decomposition
of the architecture, identifying the events of interest, the main functional components -
and their potential for interaction. :
" 3. .an execution level, describing the dynamic, modular decomposmon structure of the
system.
The architectures at each of these levels are related to one another and i 1mpose different
conformance requirements on the implementation. Both the relationships and the confor-
mance requirements must be defined.

Information flow integrity: That certain policies and procedures regarding the authorization
and acceptability of information are adhered to as it is being generated and propagated.
Such policies may be in terms of any of the three levels listed above and could also in-
volve references to cryptographic and encoding requirements, as well.
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6. The Architecting Process

The MISSI reference architecture is defined in a series of prose documents, some with ﬁrsl
order predlcate logic definitions of MISSI policies. In this exposition we shall stay with the
overview document, given in full in [7]. The overview is an executive summary ‘of the refer-
ence architecture, but contains enough detail to evaluate the utility of Raptde to $pecify the
architecture.

We find the process of constraints caplure in itself very useful. This process can be quite
enlightening — interpreting the prose and giving it an unambiguous meaning often identifies
potential contradictions or holes in the original definitions of the reference architecture. Even
in the case where the final reference document is given in prose, we find that the exercise of
formalizing the prose as it is being developed may help the development team by enhancmg’
their understanding of the interplay of their own statements.

Reference documents are also subject to mishaps, resulting from typographxca] mistakes
through incomplete version-control to out-right conceptual misunderstandings. The sheer size
of most such documents make them hard to check for consistency and correctness unless such
checks are assisted by (semi-)automatic tools. Consequently, the presence of supporting tools
should be almost mandatory in the definitions of standards. Tools require the existence of
(parts of) the standard in a machme-mampulatable form, i.e., in the form of a formahzed set of
definitions. :

6.1 Prose and Constraints Capture

_The process leading up to a formal capture of an architecture has three main steps (l) identi-
fying the components, (2) identifying how they are connected, and (3) identifying how the
connections are used. The three steps are accompanied by a fourth, stating the conformance
requirements, when relating the architecture to an implementation (or model, or a more de-
tailed version). We’ll go through the process of capturing the MISSI reference overv:ew
giving examples of each of these steps.

Capturing the interface connection architectures defined in the MISSI specxﬁcatlon we'
first identify the levels of the reference architecture. In this article we shall deal with two lev- -
-els, the global and the concept of operations levels (see section 5 above). :

For each'level we proceed to identify and define the components of the level by deﬁmng
their interfaces (sections 6.2, 6.5.1), and then going on to define the connections among them
(sections 6.3, 6.5.3) and how they are used (sections 6.4, 6.5. 3)

As appropriate, we then go on to define how the components and activities ‘of one level
conform to those of another. ‘

6.2 What are the components”

For each kind of component (such asan enclave at the global Jevel) we define a ‘Rapide type,
whose interface is developed as the architecture is being refined. Part of this definition may
identify how one type is a refinement or subtype of another [15]. Of course the interface defi-
nitions themselves rely on other types (such as secunty classific catzons and secumy tokens)
already having been defined.
A very first approximation of an enclave type is given in F:gure 5.
It identifies two key characteristics of an enclave:
1. The provides declaration of s_class makes it possible to refer to the | secunty “attributes
(here exempllﬁed by it having a security classification) of every enclave.
2. The service declaration of wan_conn states that every enclave interface contains a Flow
entity which (as we shall see) defines the minimum commuriication capabﬂmes of en-
claves.
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ENCLAVE

type Enclave is interface . - R
provides : ‘ s_class

s_class : SecurityClassification;
service L » I
wan_conn : Flow; o
end Enclave; wan_conn [ Flow

Figure 5: A definition of an enclave type

Architecture component interfaces can be highly structured. It may be helpful to think in
terms of plugs and sockets [9]: a component’s interface offers a set of distinguishable means
of connecting it to its environment, similarly to what one expects in the hardware world. Such
a means of connecting come in dual forms (as in plugs and sockets being duals in hardware),
and may have further substructures (as in a single plug carrying pins/sockets for a number of
wires).

It is natural to depict the Flow service type graphically (Figure 6), similarly to how we
depict the Enclave interface definition in Figure 5. We can see that the wan_conn attribute
has a structure; the declaration of its type, Flow, shows that wan_conn consists of two action
declarations. An out action declaration indicates that the component may generate events
which its environment may observe, an in action declaration indicates that the component may
react to events generated by the environment. The wan_conn declaration is therefore in fact a
bi-directional communication interface offering both a means of sending messages to the en-

type Flow is interface
action
out Release(data : Data; destination : Address)
in  Accept (data: Data; destmanon Address);
end Flow;

;yg:; EualFlow is mterface Fiow NSl of Flow
in Release(data : Data; destinatlon Address) S
out Accept (data: Data: destination : Address): v

end Flow; . ‘

Figure 6: Plugs and sockets

vironment (intended to be a WAN) as well as of accepting such messages from the environ- = - ..

ment.

In Raplde such structured communication interfaces are called services. The dual of the:
wan_conn service will be part of the interface of the wide area network component of the ar-
chitecture, and is naturally depicted as the inverse of the Flow type (i.e., it forms a plug to the
Flows socket). Where the type Flow has an out action there will be a corresponding in action
of the dual, and vice versa. One niéeed not declare dual types explicitly, but can instead use the
keyword dual. We have given the dual of Flow explicitly in Figure 6.

“Though plausible as a first approximation in the global view of a distributed system, we
may want to add some instrumentation points to the definition of an enclave. Consequently, in
Figure 7 we create a subtype of the Enclave type. Some of the other actions and functions will
be used later. For each, the comment succeeding the declaration identifies where it is used.)
We introduce a new out action called internal to be able to speak about things going on
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' MISSENCLAVE
s_class
type MISSI_Enclave is
" include Enclave; - - Create a subtype of the wan_connBC0Ept
Enclave type T fetease”
interface
provides , e e
" function release_reviewers 0 ’ “ - .
(See rule 1{j, k) inteimal
- return set(release_reviewer_type); : .
action . . {
out internal (a : Activity); ~ - (See Figure 10) releasable .
out releasable (d: Data); ~ - (See Figure 17) ) o [—J
out MISSI_releasable (d : Data); - (See Figure 23) MISS!_relcasable ’____I
end MISSI_Enclave; ; -
;eygase;mvf'gweis'

Figure 7: Extending the definition of an enclave

within the enclave (leaving the notion of “Activity” uninterpreted for now). As we shall see
later, this turns out to allow an interesting architectural constraint about the existence of cov-
ert channels. o i S - ‘ ' ) B

Having identified the fypes of components that make up the architecture, we define their
number (if known), their structure (if any) and whether new components can be created while
the system evolves, and whether existing components can terminate and remove themselves
- before the architecture terminates. - ; o e

In the case of the MISSI reference architecture there is not much structure at the global
level, and the architecture does not address the issue of dynamic component creation or re-
moval. In its purest form, we may simply state that the components of the architecture are a
set of enclaves, a single WAN (a simple routing model) and directory service agent and a set
of unclassified (i.e., non-DoD) sites, as in Figure 8. : -

This is deceptively simple, but then the architecture is rather simple, at this level. The
complexity arises primarily at the lower level architecture, where we see a wide variety of ar-
chitecture components and policies. - . : e .

6.3 How are components connected? Adding structural constraints

Hé\iing identified the types and numbsers of the components of the architecture, we proceed to
define how they may interact. At this level of abstraction, the interaction is quite simple: The
enclaves and sites are all connected to the WAN through their respective wan_conn services

architecture MISSI( ) is
internet  : WAN;
DN : DirectoryServiceAgent;
enclaves : set(MISSI_Enclave); :
sites > set(Site);

end MISS|

Figure 8: The components of the MISSI reference architecture
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connect
for e: Enclave in enclaves.enum() generate
internet.socket to e.wan_conn;
end; .

. Figure 9: Connecting architecture components

(Figure 9). ) )

. The role of the connection definitions are domain specific. In secure systems architec-
tures, the interpretation of the set of connections would be that they identify all possible
means of interaction among the architecture components. There is an implied frame axiom for
the architecture specification that information shall flow only along those lines and in those
forms explicitly defined by the connection definitions for the architecture (see Figure 10).

We notice that since all the enclaves are given a bi-directional connection to the internet,
we have that the enclaves are all indirectly connected to each other. This is a common pattern
~ that components of an architecture communicate via intermediaries that allow for communi-
cation transformation, filtering, routing, etc. Such intermediaries are called connectors.

6.4 How are connections used? Adding operational constraints

After we have specified the structural properties of the global architecture, we go on to spec-
ify some operational requirements that implementations have to obey. Operational require-
ments define protocols and possibly other restrictions on the behavior of components of the

[ wreanaL |

[_iﬁsﬁmt.

observe (%el, ?e2: MISSI_Enclave) .
7el.internal = any()— ?e2.internal where ?el = ?e2
match
?el.internal —» any() - ?el.wan_conn.to_net
— any() »
7e2.wan_conn.to_node - 7e2.internal;
end;

Figure 10: A security constraint

RTSE'97, p.212



architecture. Where a connection between two components indicates a poiential for interac-
" tion, the operational specifications will indicate precisely under what circumstances such in-
teraction actually can {or must) take place, as well as indicating when interaction shall not oc-
cur.

In the constraint sublanguage of the Rapide ADL one can specify simple protocols for in-
teraction (such as handshaking, etc.), as well as more sophisticated requirements regarding
information flow, causal relationships, etc. At the global level the most powerful security con-
straint would be that - :

No information should flow from one enclave 10 another without going through offi-
cial network connections. ‘ : .

‘There are a number of different ways to make such a statement precise, and the Rapide
formalization of the architecture specification atlows us to clearly identify and thus discuss
the alternatives. The strictest interpretation is probably that

There shall be no internal activity in two distinct enclaves such that they are cais-
ally related without intervening wan_conn events. '

Stated in Rapide (see Figure 10), the semantics may be more immediately apparent:
whenever we see a causal chain of events from an internal activity of one ‘enclave toan inter-
nal activity of another enclave, then there must be two wan_conn events within that chain,
one sending (from the originating enclave), and one receiving (at the other end). The variables
Zel, ?e2 are free, indicating that the constraint holds for allenclaves. -

This is a significantly stronger (and to-the-point) constraint than what we would obtain by
- stating the requirement in terms of time. If we interpreted “a —> b” as “a happened before b in

time” then the above constraint would be satisfied if two enclaves were (legitimately) inter-
acting with high frequency while information were to flow covertly from the one to the other’
at a lower frequency. The fact that there would be legitimate wan_conn events interspersed
between the sending and the receipt of covert information would legitimize the communica-
tion of the covert information. On the other hand, the interpretation of “—* as representing
causal dependency correctly precludes such a scenario from being acceptable. ‘ ’
The Aapide pattern language has much in common with regular expressions extended with
variables'and the ability to evaluate Boolean expressions, and extended to deal with partial
“orders as well as the sequences of more traditional regular expressions. The key difference is
that the Rapide pattern language encourages specifications of causal depéndency relationships.
.The Rapide “a—>b* relationship between two events requires that they occur in a particular
- order; a before b, and also that there be an established dependency between a and b, e. g. that
a represents writing of data and b represents reading of that data, or a represents the sending
of a message and b its receipt. For a full exposition of the Rapide pattern and constraint lan-
guages, see [11, 18, 19, 20] . . - -

6.5 Repeat as needed ... the concept of operations leve!

* The next level of architecture is a concept of operations (“conops”) architecture. The conops
architecture specifies the structure of enclaves, and how the operations within an enclave are
carried out by its various components (including human beings). ) o

As with the global architecture, the definition of the conops architecture identifies (1) the
components of an enclave, (2) their connections and (3) how these connections may (or may

not) be used.’ ’

6.5.1 What are the components? :

The components are such entities as users and workstations, confidentiality and authentication
servers as well as other servers such as firewalls. We shall not enumerate all the component
types of the conops architecture. However, the MISSI document [7] does give us an example
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module certificate_authority
(certificate_generator : Certificate_generator_type; ... )
~ return Certificate_authority_type is

end;
‘Figure 11 An lmphcn architecture dependency

of a nontrivial decision we face when formahzmg the definitions of the component types It
says:
2(a}“An authortzed releaser for a pamcular enclave must be a MISSI certificate holder

and reside within the enclave.”

‘ This paragraph introduces the component type “authorized releaser,” and can be inter-

preted in two different ways, depending on our interpretation of the word “must.” If an
authorized releaser by definition is a MISSI certificate holder, then one makes the type re-
leaser a subtype of the type certificate_holder. A consequence of such a choice would be
that one cannot entertain (or formally specify) situations where a releaser is not a certificate
holder, just as one cannot entertain the notion that an even number not be an integer.

Another tack would be to identify the relationship between an enclave and its set of re- -
leasers, each of which is of the generic MISSI_user_type. In which case we are obliged to de-
fine a function from such user components to their set of certificates (in order to state that all
releasers hold certificates) as well as a residency relation between enclaves and its residents: '
(in order to state that the residency requirements should hold). Such functions and relations
can be defined as being part of a component (i.e., an attribute of it), or as a function or predx-
cate external to the component. We chose the latter approach. )

We are faced with a similar decision in paragraph 1(b):

1(b) “All legitimate MISSI users must have a valid certificate for some classification :
level they are cleared to read. " i

" Is this a definition of what a “legitimate MISSI user” is (in which case we define the type = -

legitimate_MISS}_user and add the requirement that the attribute certificate_set be non- "
empty)? Or is it a definition of when a MISSI-user is “legmmate (in which case we define -~ -
the type MISSI_user with the attribute legitimate, which is true if and only if the atmbute RN
certificate_set is non-empty)? We settled for the latter interpretation. : £

6.5.2 How are components connected? R
At the enclave level we also see a number of requirements regardmg access and connecnvuy, -
such as: :

1(a) “Authorized certificate authorities (and no others) must be provided with access to
certificate generation functions.”

As with many of the MISSI requirements this one has both a prescriptive as well as a restric-
- tive aspect: There shall be access for one class of components, and such access by any other
comporient is prohibited. The former is reasonably interpreted as a structural requirement, the
latter may either be structural (that there 31mply be no physical accessibility), or one of proto-
col (that there shall be no attempts at exercising the certificate generation functions without
proper authorization.) :
The prescriptive part of the requirement is easily modeled with in Rapide using 1nterface type
definitions (see Figure 12). The presence of a requires clause in the definition lists all the -
entities a Certificate_authority_type module expects to be able to use without further ado — -
it is up to the architecture implementation to supply it with a suitable module to satisfy this
requirement. The requires section of a type specification indicates what the environment -
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type Certificate_authority_type is : o ]“‘*m—m
include Authority ;
interface . i
provides _ i aincizes |
function authorized () return Boolean: i i
requires b
certificate_generator : Certificate_generator_type; ! asticate. generator i
end; '

Figure 12: An enclave component identifying its requirements

the architecture — has to make available to objects of type Certificate_generator_type. This
mechanism differs from the usual object-oriented approach of employing parameterization of
the type or the object constructors of the type. If one were to employ the alternative of sup-
plying the server references as parameters to object constructors ‘as in Figure 11 then we
would bury a key implicit element of the prose requirements; that the assignment of a server

'to a user is an architectural one, which may change over time as the system evolves and the

user acquires or relinquishes certificates. ]
Rapide allows us to make the style distinction between parameterized definitional depend-

+ encies (which are identified by the parameter lists of type definitions), parameterized imple-

mentation dependencies (which are identified by the parameter lists of module constructors)
and (dynamic) architectural dependencies (which are identified by requires sections in inter-
face definitions). f T o A

- The restrictive part of the requirement (“...and no others...”) can be addressed explicitly -
or implicitly. By using the frame axiom for security architecture conformance (i.e., in the ab-

‘sence of any connections, no information flow shall take place) we can deduce this restriction

from the absence of any explicit connections between modules that are not authorized certifi-
cate authorities and certificate generators. Such a structure-oriented representation of the re--
quirement would be using conditional connections in the architecture itself to set up the con-
nections for all the authorized certificate authorities (see Figure 13). Here the architectire
specification makes clear that access to the new_token function will be given only to those

‘connect . < - : : )
: (2 : Certificate_authority_type)
7c.new_token where ?c.authorized
to _ certificate_generator.new_token;

Figure 13: A conditional connection

 certificate_authority_type components that have the authorized attribute set to trie.

However, a requirements document that relies on the absence of certain statements thight
be asking for too much of the reader. o .

If one instead wishes to make this requirement explicit in the formal version of the refer-
ence architecture then it is naturally rephrased as a protocol requirement; that all modules a-
tempting to make use of the certificate generators are duly authorized. Since this is a usage
restriction relevant to certificate generators, it is reasonable to locate it within the definition of
the Certificate_generator interface (see Figure 14). - :

“““When it states “Authorized certificate authorities (and no others)...” the constraint inter-
prets the “(and no others)” as meaning not only all non-authorized certificate authorities, but
also all other entities of other categories. The mechanism is through observing all calls to the
new_token function, and then requiring that all these calls be made by components of the
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type Certificate is interface ... end;

type Certificate_generator_type is interface
function new. token( .} return Certificate;

constraint
observe (7p : root) new_token’call(performer is ?p)
match (2c : Certificate_ authority_type)
gew token" call{performer is ?c) where ?c. authonzed
en

end certificate_generator_type;

Figure 14: A restrictive protocol definition

Certmcate authonty_type where that componem also has the authonzed attribute set to
true.

A number of the requnrcments - l(c d,e) — as well as the later l(e g h, i, k), are on the
same form: .

“All MISSI certificate holders must be provided with access to appropriate.
<keyword> functions for each classification level they are cleared to rea

(Where the <keyword> identifies the distinct functions, such as conﬁdemmhty, mtegnty, and -

certificate validation.) :
There are two elements to each of these requirements as well: P

1. . There is a reference to what a confidentiality (and similarly integrity-, certificate vahda-

.. -tion-, etc.) function is. That aspect deals with definitions of functions and abstract data
types, and are best dealt with using an ADT- or object specification formalism. Rapide in-
corporates the data typ‘e specification capabilities of ANNA [8], but since the specifica-

‘tion of datatypes impinges minimally on our discussion of archntectures we shall not pur- -

sue this aspect.

2. Thatfor a pamcular functionality the actual function supplied may differ dependmg upon
- which access level is being exercised by the certificate holder. Consequently, access to
~ server functions may change over time, as certificates are acquired or relinquished. Fur-:-

thermore, there is no réquirement that the appropriate function for a given access level be

fixed for the duration of the system — consequently, the formalization should allow fora
conforming system to supply different functions at different times for a given access level
and user.

To state or allow for the latter is a challenge to ADLSs and specification formahsms based
on (first order) logics, which do not address the issue of time. In Rapide time is implicitly pré-- "
sent throughout a specification, and can be made explicit as necessary through references to
clocks or events. v

We shall assume (see 1 above) that we can define precisely what is expected of a set of

confidentiality functions (and similarly for the other functionalities). .

Given such definitions of the server functions, we specify the access requirements exphc- '
itly (Figure 15). Each MISSI_user_type object will assume the (external) existence of a func-
tion returning a reference to a confidentiality server (assuming that the types Key_type,
Wrap_info_type, and Wrapped type are defined elsewhere), an integrity server and a vali-
dation server.

This requirement is formalized using the requires clause of Rapide. In so domg we sng-
nal that a MISSI_user_type object may call the function confidentiality_server with the éx-
pectation that the architecture (i.e., the environment) will supply a binding for it. The archi-
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type Cohfidentiality_ref is ] -
Confidentiality_server(Key_type, Wrap_info_type, Wrapped_type);
- —and similarly for the other servers ) _

type MISSI_user_type is interface
provides .
classification : set(Classification_type);

requires

function confidentiality_server (c: Classification_type)
return Confidentialy_ref ) :
constraint (classification.element(c)); :

function integrity_server (c: Classification_type)
return Integrity_ref o
constraint (classification.element(c)): .

function validation_server (c: Classification_type)
return Validation_ref )
constraint (classification.element(c));

end MISSI_user_type;

Figure 15: Capturing access requirements

tecture may change this binding during the execution of the system. By adding the
“constraint (classification.element(c))” to the function declaration we identify that the
function is only required and accessible for a particular classification level if the MISSI_user
actually is cleared at that level. ' ‘ o v .

The “(and no others)” part of requirements 1(j, k) are dynamic prohibitions and are for-
malized in the same way we made ‘precise the similar injunction in 1(a), i.e., as a check that
whenever there is a call for a confidentiality_server it is from a component with thé proper
clearance. S i ' .

6.5.3 How are connections used? ) . - R
Finally, there are the policy requirements, stating preconditions for information flow within
* ‘the enclave or from the enclave to the outside. An example is e : .
2(c) “All data transferred outside of a secret-high enclave and addressed to a MISSI
certificate holder must be protected by a confidentiality service, a proof of origin
non-repudiation service and a recipient authentication service.* . s

This can be modeled either as the data having certain properties (essentially having
stamps of approval from the respective sérvers), or as'a precondition on the history leading up -
to a release of data outside a secret-high enclave. We récommend the latter ‘approach, in
"which case we make use of the Rapide pattern language to identify the protocol that defines a
data release: it fits the pattern of Figure 16, i.e., that for any piece of data, if it is released to
the outside then that release has to be preceded by the three services checking it off.

pattern outside_release_ok(?d : data) is - e
(conf_service(?d) ~ origin_service(?d) ~ recip_service(?d)) — data_release(?d)

end;

Figure 16: Abstracting patterns
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m::p abstract_enclaves from e: enclave_architecture to MISSi_enclave is
rule
rule_1:
(?e : event) 7e@
lI> internal(Ze);

rule_2:
(?d : Data, ?a : Address) @firewall.wan_conn.to net(7d ?a)
lI> wan_conn.release(?d,?a);

rule:3: C
{ Q@ws : COTSWorkstation; ?content : Data)
ws.net_cann.to_node(Certificate_Validation, ?content)

~

2ws.net_conn.to_node(integrity, ?content)

ws.net_conn.to_node(Encryption,?content))

>
releasable(?content);;

end;

Figure 17: Three abstraction maps

6.6 Defining relationships between architectures

At this point in our piocess we have a definition of the global level of the reference architec-
ture, whose principal components are MISSI_enclaves and WANS, and the conops level,
whose principal components are workstations, firewalls, LANs, and servers. .
Part of the definition of a reference architecture with multiple levels of abstraction 1denn-
fies precisely how the levels are related. There are clear relationships between these two lev-
els - e.g., the enclave architectures of the lower level are modeling the MISSI_enclaves at the
top level, the activities of the firewalls at one level represent release and accept events at the
higher level, the simple wan_conn of the abstract enclave definition corresponds to the fire-
wall_type objects-of the conops architecture. But in the conops level definition there is no-ac-
tion “internal” which may play such a crucial role in the constraints of the global level archi-

tecture - the reference architecture must define what conops-level events correspond to the e

internal events of the global level.

Tt would not be a good idea to merge the definitions from the two levels into one un-
structured definition of the notion of “enclave.” Instead we use Rapide maps to relate compo-
nents and activities of the conops architecture to their corresponding components and activi- -
ties in the global architecture. .

Figure 17 gives an example of such an abstraction map. It consists of three rules, each of
which defines how occurrences of patterns of events at the conops level correspond to more
abstract events at the global level. :

The first rule indicates that any event in the conops enclave (“(?e : event) 7e@”) will be
mapped up to (“|}>“) the abstract internal event, indicating that something happened (but
where we abstract away from the particulars of what happened). The second rule maps each
transmission of data from the firewall to the WAN (“@firewall.wan_conn.to_net”) to the
abstract event release, representing the flow of information out of the enclave, abstracting
away the particulars of how the information became public. The iast rule is an example of
how a more complex pattern of events may represent a single abstract event: Whenever a
piece of information (represented by the placeholder ?content) has been approved by the
validation, integrity, and encryption servers then the information becomes releasable ab-
stracting away from the actual protocol required for attaining this status.
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INTERNAL

INTERNAL

{ INTERNAL

RELEASABLE

‘Global tevel
Conops level

FIREWALL.TO_NET

Figure 18: Events at two levels of architectural abstraction

Figure 18 shows an excerpt from a computation, indicating the two levels of abstraction
and the relationship between a set of events at the lower level with a single abstract event at -
the higher. i _ s S o

" As we see, there is no prohibition against a single concrete event participating in more
than one abstract event (as each of the server events are both represented as abstract internal
- events as well as being part of the releasable event). T e T

If one of the steps in the protocol is missing (for instance, if the Validation never took
place), we would not get the required Releasable global event. The result would be as in
Figure 19, and would result in a violation of a global level constraint. . e

7. Formalizing the MISSI requirements summary - : S
In this section we go through all the requirements of the MISSI overview, showing how we
_would capture them in Rapide. _ L e :
~ We have already dealt with the very first requiremient (section 6.5.2): .
H(a) “Authorized certificate authorities (and no others) must be provided with access to
" certificate generation functions.” ’ o o '

INTERNAL

quba! level

‘Conops level

INTEGRITY FIREWALLTQ_NET1

ENCRYPTION

Figure 19: Missing conops event ~» missing global event
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| type MISSI_user_type is interface

provides
function classification () return set(Classification_type);
function certificates () return set(Certificate_type);
function legitimate ( return Boolean;

function residency ¢ return Enclave;

constraint
legitimate() = not certificates(.empty;
legitimate() implies
not map(certificate_type,classification_type,certificates(),security_level).
intersect(classification()). empty'

end MISSI_user_type,; -

Figure 20 An invariant constraint

We have also touched upon the next requirement earlier (section 6.2):

1(b) “All legitimate MISSI users must have a valid certificate for some classification
level they are cleared to read. Entities with valid certificates must be legmmate
MISSI users.”

If this is a definition of when a MISSI-user is “legitimate” we define the type MISSI_user
with the attribute legitimate, which is true 1f and only if the attribute “cemflcate set” is :
non-empty.!

The last constraint implies the first, of course, but in the interest of clarity of intention we
state both explicitly, since redundancy adds rather than detracts from the confidence we have
in the specification.

An alternative representation would define two types; MISSI_user_type and le-
git_MISSI_user_type <: MISSI_user_type. The latter would be constrained always to have in
hand appropriate certificates, the former would allow its transformation mto a le-.
git_MISSI_user_type object after performing the appropriate checks. .

The next three requirements — 1(c, d,e) as well as the later 1(e, g, h, i, k), all contam a -
requirement on the same form: e

“All MISSI certificate holders must be provided with access to appropnate
<keyword> functions for each classification level they are cleared to read.”

(Where the <keyword> identifies the distinct functions, such as confidentiality, integrity,
and certificate validation.) They have been discussed extensively earlier, in section 6.5.3. . :

Requirements 1(j, k) strengthens the access requirements by addmg that accessed func-
tionality be .

“...for the enclave in which they reside. (All <entities> are MISSI certzf cate hold-
ers and reside in the enclaves in which they perform their task.)” :

) The polymorphic function Map takes two types S and T (the source and target type), an object M of type
5et(S) and a function F with signature S—T, and returns an object of type S€t(T), each of whose elements is
the result of applying F 1o some clement of M. The function SeCu rity_level is assumed to map certificates to
security levels.

2 Each shaded area represents a releasable event justifying the corresponding release event. There is an
example of a single releasable justifying muluple releases, as well as a single release being )uenﬁed by
multiple releasable events.
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~ observe

from releasable, release .
where (security_classification() =
} secret_high) :

» match (?content : Data)

. [* rel union] (releasable(?content}

| RELEASABLE .

- . .
‘release(?content)) union
-[* rel ~] releasable; -

- end;

Figure 21: Satisfying the releasability requirement?

These are simply invariants over the relationships between components and enclaves, and
could be stated in those terms, e.g., in the subtype release_reviewer_type of the
MISS!_user_type there is the invariant that: o :

not certificates().empty; .
residency().release_reviewers().element(self);

Sections 2 and 3 of the requirement set identify the circumstances under which informaQ
tion may be released from or accepted into an enclave. s Co
2(a) “An authorized releaser for a particular enclave must be a MISSI certificate holder
and reside within the enclave.” - _ e T L TN N
2(a) is similar to the requirements of 1, and is dealt with in the same way. :
2(b) “All data transferred outside of a secret-high enclave must have been sent by an .
- authorized releaser in the originating enclave, must be protected by an integrity - -
server, and must pass a releasability check in the originating enclave.” SR

2(b) establishes protocol precursors for the event representing the rélease of data from an .-
enclave. Assuming that data is being released by means of the firewall communicating to the
network, the notion of data being releasable was captured earlier. Given that, 2(b) becomes a
constraint of the abstract enclave definition. Observing release and. releasability events

(Figure 21), every communication to the net of a piece of data has to be preceded by a re-
leasability event (but not the other way around — releasable data is not required to actually be
released): . : :

Notc)a that there must be a causal chain from establishing releasability t6 the actual release.

The use of the union relation over the set of pairs of releasable and release events al-
lows a single releasable event to justify multiple actual releases (as in Figure 21). * - = - -

If the requirement specified that all releasable data actually be released then we would °
omit the second component of the union collecting all the dangling releasable events. '

observe

from MISSi_releasable, wan_conn.release

where (security_classification() = secret_high)
match (?content : Data) :
: [* rel union] (MISSI_releasable(?content) .
. - wan_conn.release(?content)) - R
p union [* rel ~] MISSI_refeasable;

end;

Figure 22: MISSI releasability restriction

RTSE'97. p.221



rul(g’ws COTSWorkstation; 7content Data)
(?ws.net_conn.to_node ((_:or;f;dennality, ?content)
B ?ws.net_conn_.tq_hode (Non,-.repudiatidn, ?content)
- ?ws.net_conn.to_node (Recipient_validation, ?content)
> Mlsél_releasable(?content);;

Figure 23: A variant on the releasability definition

observe
(Zcontent : Data; 7rec:pient recelpt authentication_enclave; ?address : Address)
wan_conn. release(”content ?address)
where (secunty_classlflcanon() = secret_high
and ?recipient = 2address.enclave),
- ({[* rel ~] receipt_ acknowledgePcontent ack))
‘| not match
wan_conn.release;
end;

Flgure 24:A negatwe form of constraint 2(d)

2(c) “All data transferred outside of a secret-high enclave and addressed to a MISSI
certificate holder must be protected by a confidentiality servxce a proof of origin
non- repudtatzon service, and a recipient authentication service."

2c)is sxmllarly structured to 2(b), the main difference being that we limit our interest to data
addressed to MISSI certificate holders. By implication, this requires a global (specification)

~ function mapping addresses to attributes of the addressee’. Figure 22 gives a variant on the
2(b) requirement. The global event MISSi_releasable is defined in Figure 23, and is similar to
the definition of releasable (see Figure 17), as a mapping from a protocol pattern at the
conops level to a single event at the global level. We assume that the function Recipient :
Data—Root gives us the idéntity of the intended recipient of the data, and then use subtypmg
to limit the applicability of the mapping to those messages that have MISSI_users as recipi-
ents.

2(d) “If a recipient is capable of providing authentic receipts and the originator of the
data requests a receipt, all data transferred outside of a secret-htgh enclave must be
protected by a proof of receipt non-repudiation service." : :

" This requirement mixes references to capabxlmes of enclaves (offermg an authentication
servxce) and events (the data being transferred with a return receipt request). To be “receipt
confirmation capable” is modeled by adding a'node Receipt.authentication_enclave to the
type structure, introducing a subtype of the Enclave type. Stated in protocol terms, a receipt
acknowledgment must be generated whenever data leaves a secret-high enclave addressed to a.
receipt confirmation capable component. There are a number of ways one can phrase this. As
a negative, one can write that for each release event and all its (causally) subsequent ac-
knowledgments for the receipt of the release, the set of acknowledgments cannot be empty
(Figure 24). .

3 This mapping seems methodologically dubious, but it does not offer any problems for the transformation of the
prose into precisely formalized requirements.
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observe - - -
- (?content : Data; Zrecipient : Receipt_authentication_enclave; ?address -

Address). . - o .

wan_conn.release(?content, ?address)

where (security_classification() = secret_high
and ?recipient = 2address.enclave), .
© St rel ~] receipt_acknowledge(?content.ack))
match : .
x(\;van_conn.release - ([+ rel ~] receipt_acknowledge);
.end; LT ) : ) : .

Figh‘re 25: A positive form of constraint 2(d)

Or one can write it in positive terms - for each release event and all its*(causally) subse-
quent acknowledgments for the receipt of the release, the set of acknowledgments has to con-
tain at least one acknowledgment (Figure 25). ’ o : :

In both cases, the Rapide form is one of (1) filtering the set of even(s to extract those sub-
sets (possibly overlapping) that are of interest (in this case to each single release and its
(possibly empty) set of responding acknowledgments), and then (2) specifying the pattern
these events have to comply with (in this case that the set of acknowledgments be non-empty).

3(a) “An authorized receiver for an enclave must be a MISSI certificate holders arid re-:

side within the enclave in question.”
3(a) is similar to 2(a), and is dealt with in the same way.

3(b) “Any data admitted to a secret-high ericlave from the outside must be protected by
' an integrity service, must pass an admissibility check for the enclave, and must have -
. a designated recipient within the enclave who is authorized to receive external
data.” -~ .o . . : ; R
'3(b) is similar to 2(b), and is dealt with in the same way. R o
4(a) “All sensitive administrative data must be protected by an integrity service while in
transit or in storage.” L ) :
As with 2(b) and (c) there are two, quite distinct, perspective on this kind of constraint.
One can either view the requirements as related to state, ‘i, every piece of
. (administrative) data has some state attribute indicating whether it is in storage, in transit or in
(possibly) other modes. In which case the natural mode of expression is one of first order
logic (as in [7]), but at the cost of reduced checkability and increased complexity of expres-
sion — data and other basic types would acquire an ever-growing set of more or less obvious
* attributes, an attribute collection which may become intractable as the abstract notion of data -
‘becomes refined. : Lo I ) .
- Or one can view it more dynamically, and focus on the action of storing or putting into
* transit a piece of data, in which case the assertion of being protected by an integrity service is
tied to the transitional event itself. This is the path taken in the formalization of 2(b) and (c),
and would be repeated for 4(a), here. : K i

8. Putting a Rapide reference architecture to use , .
Given a Rapide formalization of the reference model we cdn put it to a number of different
uses. The most obvious is as a precise definition of the model itself — being expressed in a

formal language it allows us to draw unambiguous conclusions from the formalization based
on testable arguments within a formal framework (in the case of Rapide constraints the

framework is a simple one of sets and partial orders).
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Since Rapide is supported by a growing
1 .toolkit of visualization and testing modulés [21,
22], the reference architecture can be the target
for conformance testing by implementations
‘purporting to satisfy the architecture’s require-
ments. Such automatic conformance tesung re-
quires two things:
Figure 26: Some componentsofan . *  An instrumentation of the rmplememed
intermediate level model architecture ‘system which supplies the tools with the
information required to compare the im-
plementation to the reference architecture. Such an instrumentation can in many cases be
automatically generated by a modified set of compilers,* generating the code necessary to
c¢reate events and maintain the dependency graph.

e  An abstraction map essentially defining how the patterns of events generated by the in-
strumentation correspond to the types of events and components referred to in the archi-
tecture.’

Such a map makes the conformance argument precise, and adds documemauon

as to how the implementor thought her system relates to the reference architecture.

‘Given such instrumentation and the argument how conformance is obtained, the system
conformance test becomes automatic, and can become a standard part of any regression test
one might wish to subject the system to as its implementation evolves.

Furthermore, the instrumentation together with its conformance map can become an em-
bedded, permanent part of the production system. The result is another layer of security
checking, where the different perspective on the system offered by the conformance argument
may detect architecture violations that mrght otherwise go unnoticed.

A variant of the conformance testing is the use of the tools for scenario testing and pres-
entations. The Rapide toolkit has been applied to such diverse models as the SPARC V9 refer-
ence hardware architecture and a stock market model, as well as a simple scenano for security
protocols based on elements of the MISSI reference architecture.

In the security model scenario we constructed a model vertically partmoned into three

" layers.

At the bottom layer we defined an executable conops model of users, workstatzons pro- ‘
tocol servers, firewalls, and networks. ~

The topology was one of a set of LANs, each with its workstations, ﬁrewalls and servers,
and each workstation with its users. The LANs were connected by means of a WAN through
their respective firewall modules. :

All the networks were broadcast networks.

This bottom layer corresponds to an actual system, a flat, relatively unorgamzed set of
components communication hither and thither — possibly in conformance with the require-
ments of the reference architecture. Or possibly not — that is what the toolkit checks.

The second level is an intermediate one. Each architecture is an enclave, each of which is
accompanied by a set of the enclave-related requrrements (such as 2(b), about releasability).
Each enclave in the intermediate architecture is the target for a Rapide map, which transforms
patterns of conops model behaviors into activities defined for enclaves (e.g., as in the defini-
tion of the releasability map, see Figure 17). Some components of an enclave is shown in

4 Such an instrumented compiler-set exists for Java, Verilog and CORBA IDL besides for-Rapide itself.
5 We have already made use of such maps in deﬁnmg how the abstract releasable event occurs as an abstrac-
tion from a pattern of lower-level events.
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Figure 26 (from an animation of the conformance
" check), an enclave with two users, two workstations,
a LAN and a firewall (besides the local servers, not

shown in this figure). ‘ ' ‘
The third level is that of the global architecture,

an abbreviated view, from an animation of the refer-
ence architecture conformance ‘test of a model with
four enclaves.) At this level we check the constraints
relating to multi-eaclave concerns, such as the global
requirement prohibiting covert channels. The archi-
tecture level can be obtained by maps directly from
Figure 27: A global level ..  the conops model, or in two stages: by the maps from
architecture the conops model to the intermediate level, and then
. maps from the intermediate level on to the global
level. Which of these one chooses is a question of
. whether the intermediate models contain all the information required for the global architec-
ture model (e.g., the notion of general internal activity) or not. : - o
A model (or a system in testing or production) typically generates a'large number of
events. When investigating data for possible non-conformance it is critical that the number of
data elements — events of possible interest ~ be reduced as early as possible. The Rapide
toolkit offers two means to achieve this end. The first is the use of architecture maps in struc-
: turing the instrumentation. Each map construct results in the
automatic construction of a trensformational filter (or sieve),
which passes on only those events that are considered significant
in the abstraction, possibly transformed SO as to aggregate event
patterns into single events or simpler event patterns. E -
‘The second is the visualization toolset of Rapide. This part of
the toolset allows the user to apply various patterns of events to a
given execution, displaying only those events fitting patterns of
_interest. Combined with the Raptor [22] animator this makes it
possible to waich an animation of a running system at a choser
level of abstraction. Then, if interesting events (such as protocol
violations) are detected, the user can move to the POV (posef
visualizer) [21] and use it to investigate the causal patterns lead- =
ing up to the events that piqued her interest, In particular, the
] POV allows the efficient removal of extraneous information, to
: Figure 28: case the identification of interesting events among the clutter of
Detecting a protocol ) the events of the system. ..~ - . - 0 T o0
violation As an example, consider the events of Figure 28. These were
_ culled from the execution of a network model, after the occur-
rence of an inconsistent event was observed at the global level. (An inconsistent event signals
the system’s detection of a constraint violation, in this case the global releasability constraint
of Figure 22). By moving from the global architecture to the conops architecture, using the
POV, and then following the causal links past-wards from the inconsistent event, we identify
its cause: the absence of the Integrity and Encryption stéps of the protocol making a piece of
information releasable. As the user only engaged the Confidentiality server, once the infor-
mation was transmitted from the firewall to the WAN, she was in violation of the reference
architecture constraints. o i : .

9. Conclusion

We have indicated how one may use the event based language of Rapide 10 capture elements
of a reference architecture. Both the structural and the operational requirements of the archi-
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tecture can be stated precisely in Rapide, and the resulting specification may become the basis
for (1) analysis, (2) model checking, (3) implementation conformance testing and (4) produc—
tion code conformance surveillance.

A key element in the successful application of an architecture description language to the
design of reference or other software architectures is the degree to which it allows one to state
all aspects of the architecture, and the flexibility of the abstraction mechanisms that may be
applied when the conformance requirements are stated (as part of the architectural design).
Distinct architectural perspectives require distinct abstraction mappings, and it is important
that the designer be able to separate such perspectives from each other — giving separate refer-
ence architectures for each perspective, as appropriate. '

Furthermore, an ADL is only as good as the tools that support it — in the absence of tool
support, design capture and conformance reasoning easily devolves into vague hand-waving.
The tool support should help automate conformance testing and other aspects of architecture
design analysis, as well as allowing the designer to construct test scenarios and visualize the
behavior of architecture conforming systems.

We have found that the Aapide ADL with its supporting toolset offers an interesting ap-
proach to the design of distributed architectures. In particular, the event orientation of the
system, coupled with its sophisticated ability to identify causal chains and patterns of behav-
iors where causal relationships may play an mtegral role are quite enticing.

10. References

1. - Allen, R,, Garlan, D.: Formahzmg architectural connection. In Proceedmgs of the
Sixteenth Intematxonal Conference on Software Engineering. IEEE Computer Society
Press, May 1994. ‘

2. Boehm, B. W.: Software Process Archltectures In Proceedings of the First Interna-
tional Workshop on Architectures for Software Systems. Seattle, WA, 1995. Published
as CMU-CS-TR-95-151.

3 Garlan, D.: Research directions in software architectures. ACM Computing Surveys,

. 27(2): 257-261. 1995. R

T4 Garlan, D., Shaw, M.: An Introduction to Software Architecture. VolumeI World

.. Scientific Pubhshmg Company, 1993.
N Ellis, W.J. et al.: Toward a Recommended Practice for Architectural Descnpnon In
Proceedings 2nd IEEE International Conference on Engineering of Complex Com-
puter Systems, Montreal, Canada, 1996.
6. jGennart B. A., Luckham, D. C.: Validating Discrete Event Simulations Using Pattern
Mappings. In Proceedmgs of the 29th Design Automation Conference (DAC), IEEE
- Computer Society Press, June 1992, pp. 414-419.
7. - Johnson, D. R., Saydjari, F. F., Van Tassel, J. P.: MISSI security Policy: A Formal
" - Approach. R2SPO Technical Report R2SPO-TRO01-95, NSA/Central Security Serv-
T ice, July 1995.
8. "Luckham, D. C.: Programmmg with Specifications: An Introduction to ANNA, A Lan-
guage for Specifying Ada Programs, Sprmger-Verlag, Texts and Monographs in Com-
puter Science, October, 1990.
9. Luckham, D. C., Vera, J., Meldal, S.: Key Concepts in Architecture Definition Lan-
guages. Submlttcd to the CACM Also published as technical report CSL- TR-95 674,
- Stanford University, 1996.
10.  Luckham, D.C., Vera, J.: An event- based architecture definition language. IEEE
Transactions on Software Engineering, 21(3):253-265, June 1993.

RTSE'97, p.226



1.

: lZ».

17.
18.
- 19,

20.
21

22.
23.
- 24.

25.

* Princeton Univeérsity, July 1996.

_ Luckham, D.C.: Rapide: A Language and Toolset for Simulation of Distributed Sys-

tems by Partial Orderings of Events, DIMACS Partial Order Methods Workshop IV,

Meldal, S.: Supporting architecture mappings in concurrent systems design. In Pro-

“ceedings of the Australian Software Engineering Conference. IREE Australia, May

1990. : :

Meszaros, G.: Software Architecture in BNR. In Proceedings of the First International
Workshop on Architectures for Software Systems. Seattle, WA. 1995. Published as
CMU-CS-TR-95-151. .
Moriconi, M., Qian, X.: Correctness and composition of software architectures. In
Proceedings of ACM SIGSOFT'94: Symposium on Foundations of Software Engi- -
neering. New Orleans, LA. December 1994, .
Mitchell, J.C., Meldal, 8., Madhav, N.: An Extension of Standard ML Modules with
Subtyping and Inheritance. In Proceedings of the 18th ACM Symp. on the Principles of
Programming Languages, ACM, ACM Press. 1991, pp. 270-278. Also published as
Technical Report CSL-TR-91-472, Computer Systems Laboratory, Stanford Univer-
sity. : ;

PAVG: The Rapide Architecture Description Language Reference Manual.
<http://poset.stanford.edu/rapide/lrms/architectures.ps> o

PAVG: Rapide toolset information. <http://poset.stanford.edu/rapide/tools.html>
PAVG: Rapide Examples. In preparation. '

PAVG: The Rapide Pattern Language Reference Manual.
<http://poset.stanford.edu/rapide/lrms/patterns.ps> . ‘

PAVG: The Rapide Constraint Language Reference Manual. In preparation. _

PAVG: POV-a partial order browser. :
<http://poset.stanford.edu/rapide/tools-release. html>

PAVG: Raptor-animating architecture models.
<http://poset.stanford.edu/rapide/tools-release.html>

Santoro, A., Park, W.: SPARC-V9 architecture specification with Rapide. Technical
report CSL, Stanford University (to appear). : . .
Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, 1996. : .
Soni, D., Nord, R.L., Hofmeister, C.: Software Architecture in Industrial Applications.
In Proceedings of the 17th International Conference in Software Engineering. ACM,
April 1995.

RTSE'97, p.227



RISE'97, p.228



Fine-grained and Structure-oriented
Document Integration Tools
are needed for Development Processes
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Abstract: Development processes of various engineering disciplines are usually rather complex. They consist of
many interacting subprocesses, which are carried out by different developers. Each subprocess delivers its own
documents, which are part of the overall result. All involved doc and their mutual, fine-grained dependen- -
cies are subject to permanent changes during the life-time of their development process. Keeping these documents -
in a consistent state is one of the most important prerequisites for the success of any engineering project. As com-
pletely automatic change control between documents is often impossible, interactive consistency monitoring and
(re-)establishing tools are necessary, which we call integration tools. This paper reports about experiences in build-
ing integration tools for software engineering environments and about ongoing efforts to build similar integration
tools for chemical process engineering. Furthermore, the paper presents an object-oriented and graph-grammar-
based formal method for specifying integration tools and sketches how their implementations are derived from
their high-level specifications. : C i - :

‘Key words: development processes, product integration, toot specificaﬁoﬁ, :
¢ fine-grained interdocument refations, coupled graph grammars

1: Development Processes and their Results

Development Processes (DP) in areas such as software development, computer integrated
manufacturing, or chemical process contro} usually involve different developers. Each developer
produces a certain set of documents, which is part of the overall DP result. His documents have ‘
to be kept in a consistent state with documents produced by other developers. Between docu-
ments, directed and mutual consistency dependencies have to be taken into account. A'software’
design specification; which depends on a requirement specification, is an example of a directed

dependency. The different perspectives of a requirement specification —such as a daa-oriented -

view and a function-oriented view-— are an example for mutual document dependencies. Simu}- -

taneous engineering /BW 96/ aims at accelerating DPs by starting dependent subprocesses'as *

early as possible with preliminary results (prereleases) of preceding subprocesses. Concurrent -
engineering /Re 93/, on the other hand, allows to develop different perspectives of the same prod-
uct part in parallel. ‘ N - S St
1.1 Development Subprocesses and their Results- o ‘ D

A key pfoblem in the development of any engineering product is change control, especially in
the case of simultaneous or concurrent engineering. Changes are carried out due to detected er-
rors, due to changed design decisions but also, in the extreme case, due to changed requirements
in an ongoing project. In the course of a usual development process many errors are made and
the construction of required results is often not straightforward. Therefore, we can state that both

development and maintenance of engineering products have to deal with permanent changes of
intermediate or final DP results. ' : - , C -

) 'Slipe‘ndiat dér Deutschion For’sc'hungsgemein#chaft im Graduiertenkolleg fiir Informatik und Technik -
“'der Rheinisch-Westtalischen Technischen Hochschule Aachen o :
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In any application area mentioned above complex document configurations are built up and
maintained. They do not only consist of the final configuration (e.g. the source code of a software
system) but also of many further subconfigurations responsible for describing the requirements,
the architectural plan, documenting the developed ideas and met decisions, assuring quality, or
managing the whole development process. Such an overall configuration consists of many docu-
ments which, in turn, may have a complex inner structure.

Produced documents often have many fine-grained dependencies betweer their constitu-
ents. For the quality of the whole product and the efficienicy of the total process these dependen-
cies are of minor importance. A single developer is usually responsible for the internal consis-
tency of a document. He should be able to keep all local consistency requirements in mind and,
in many cases, he is supported by suitable document processing tools such as a syntax-directed
diagram editor or a CASE analysis tool. The fine-grained dependencies between documents cor-
respond to the interfaces between the work of different developers. As we shall see in section 2,
no suitable’ support is available for keeping these interdocument dependencies in a consistent
state. Therefore, we concentrate on this problem in the following. We use the relations between
a requirement specification and the design of a software system as a running example.

For coordinating a team of developers, anagement information (administration configura-
tion) about a project has to be built up and maintained. We distinguish between process, product
(configuration and version), resources, and department or company information, and we regard
their mutual relations in order to coordinate the labour of a team of developers. Management in
this sense has to be supported by suitable tools. There, interesting problems arise as the adminis-
tration configuration is changed in its structural form, when a development process is carried out
/Kra 98/. However, in this paper we concentrate on the support of technical developers and the
interfaces of their results.

Many DP documents, which are the results of technical development subprocesses, have
a semiformal contents. Some documents are completely informal, as the nonfunctional require-

ments specification, where we find plain text possibly presented in a standardized (sub-)chapter
form. Very few documents are formal, as e.g. a specification in a logic-based language such as
Z. A standard case is that we find documents in diagrammatic, tabular, pictorial, or textual form
which altogether possess an underlying structure and a more or less well-defined syntax. Exam-
ples of this kind are OO-analysis diagrams, module descriptions in a software design descnpuon’ ‘
_ language, and so on. So, “semiformal” either means that formalization of a certain DP result is
not carried out completely or, even more, that the underlying document description language is
only formalized to a certain extent.

Having most documents in a semiformal form, the fine-grained relations between docu-
ments are semiformal, too. Often, we can state that a certain increment (subpart) of one document
may be related to an increment of another document if both increments are instances of corre-
sponding types, have compatible properties, and appear in a certain context within their docu-
ments. A technical documentation may, for instance, contain a section for each module of a re-
lated software design document, and a secuon may contain a subsection for each exported
resource of the related module.

1.2 Preserving Consistency of Dependent Documents

Language correspondences have to be elaborated, which define legal mterdocument relations,
before supporting tools can be built /Jan 92/. This is usually called method integration /Kro 93/.
In some cases method integration rules require that instances of some type Ta in a document A
are always related to instances of type some Tg in a document B, as it was the case with modules
and sections in software design and technical documentation documents, respectively. This is
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called a bijective (1:1) correspondence between increment types of documents. In many cases,
we have (m:n) correspondences on the type level such that further information is needed in order
to decide whether an increment of type T, of document A may-be related to an increment of type
TB in document B. Such a decision may depend on .
+ ‘local properties of inspected increments,
i/ their contexts in the regarded pair of documents,
"+ and manual design decisions of an involved developer.

Usually, consistency establishing subprocesses of a development process cannot be auto-
mated. The development of some document B;, which is the result of one subprocess, ofien de-
pends on the result of another subprocess, some master document A, in a rather imprecisely de-
fined way. Exceptions are generating an NC program from a CAD document, generating module
frames from a software design document etc. In these cases, the contents of involved documents
are closely related to each other and a complete formal deﬁmtxon of the correspondmg interdocu-
ment dependencies is feasible.

The standard case is that subprocesses are creative in the sense that a developer is not able
to come up with a precise and complete formal definition of a procedure (method, plan) how
changes of a master document A have to be translated into corresponding changes of dependent
documents B; (cf. figure 1). As an example, regard the development of a coarse-grained software
design for a given requirements specification. The design may be one of the "structured” world,
an object-based or an object-oriented one /Nag 90/, and it is influenced by many factors such as
the underlying middleware or the decision to (re-)use certain libraries or frameworks. As a conse-
quence, there is no chance to aitomate the transition from requirements engineering to software
design completely. However, the transition can be simplified by tools, which perform trivial sub-
tasks on their own and keep track of once established relations between the requnrements for and
the design of a software system (see below) -

development
subprocess for By

documcni B;

documenl A
/—\ $
O interdocument E] o o
document  relation increment relation dcggndcncy subprocess

Flg 1: Dependent documents and their development subpmcesses

Changes within a master documcnt A require changes ina dependent document B, which
then require further changes in dependent documents of B;. There are many different possibilities
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how to translate an update of a master document into updates of its dependent documents. Fur-
thermore, rather different strategies may be used to propagate necessary changes along chains
of dependent documents. One possibility is called batch-oriented. It reestablishes first complete
consisténcy between a document A and all its directly dependent documents B; w.r.t. a sequence
of updates on A, before proceeding with the dependent documents of B;. Another possibility is
called trace-oriented. It propagates one performed update on a document A to all directly or indi-
rectly affected dependent documents after the other. Both strategies have their specific advan-
tages and disadvantages and should be supported by integration tools.

The following sections discuss the specification and realization of various types of integra-
tion tools, which are responsible for monitoring and (re-)establishing consistency of dependent
documients. These tools have to regard the semiformal structure of corresponding documents.
They have to give substantial support for fine-grained integration by regarding the current form
of documents and offering different possibilities how to propagate changes, which are selected
based on creative design decisions. Furthermore, they must not enforce certain orders of process
steps as quite different consistency reestablishing strategies are possible. Finally, it should be pos-
sible to work thh existing and a posteriori mtegrated tools, when manipulating the correspond-
ing documents

2. Available‘Su'pport for Interdocument Consistency Control

The available support for monitoring and maintaining consistency of related documents on a fi-

ne-grained technical level is usually on a considerably lower level than the kind of tight integra-
tion sketched in the previous section. The standard procedure is that developers exchange docu-
ments in some low-level standard format (Postscript, SGML, HTML etc.). In any case, the
developer of a dependent document has to find out which changes have taken place on a master
document A and then to perform the right changes on the dependent documents B;. -

Another wide-spread approach, especially in the software engineering community ISB93/,
is to write batch-oriented and avitomatically working converters after the corresponding method
integration has taker place. So, neither incremiental changes of some master document A can be
handled, nor do they regard that its dependent documents B; are already elaborated to a certain
state, nor can creative design decisions of developers be taken into account. Furthermore, such
transformers are often hand-coded. As many documents in different languages as well as differ-
ent method integration approaches exist, hand-coding of integration tools has to be replaced by
generating them from high-level specxﬁcatxons

A similar problem occurs with document exchange standards such as STEP with its data
modeling language EXPRESS /ISO/ or CDIF /CDIF 94/. They define huge class diagrams (data
models) for certain types of engineering documents, but disregard consistency relations between
different types of documents to a great extent. The data modeling language EXPRESS allows,
for instance, to define the data model of each type of documents as a separate module and to im-

_port the data model of one module into another one. Furthermore, EXPRESS offers rules for de-
fining static integrity constraints across document boundaries. But it is very difficult to derive
consistency establishing operations from these static integrity constraints. As a consequernce,
STEP/EXPRESS data models are not a suitable source of input for generating integration tools.

Also hypertext systems, as introduced in /Co 87/, do not offer an appropriate solution for
preserving the consistency of a set of related documents. They have no knowledge about the se-
mantics of links and just offer basic mechanisms to insert unspecific links and to browse along
them. Consistency control is on a low level; namely detection of dangling links. Finally, all links
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have to be established manually by the user. He has no profit if he is forced to insert them manu-

-ally and then only gets warnings that a part of them are dangling. IR :

More refined concepts can be found in (meta) software development environments, where

“documents are internally represented as attributed syntax trees. Support is given for propagating

changed attribute values up and down the syntax tree. This allows to specify and generate analysis
tools, which check interdocument consistency constraints /KKM 87/ if all regarded documents
are modeled as subtrees of a common syntax tree. Other systems offer better support for the re-
quired nesting of documents. Gate nodes and door attributes of a distributed syntax tree model
the transition from one document’s language to another one /Bo 88/ : .

. All syntax tree based systems mentioned above have problems with the specification of ac-
tive transformation tools (in contrast to passive consistency checking tools). Attribate coupled
grammars and variants thereof /GG 84, RT 88/, tree pattern matchers /AGT 89/, and context-sen-
sitive tree transformation tools /CC 93/ are promising attempts to overcome thiese problems. They
are useful for purposes like concrete syntax generation (unparsing) or compiler back-end genera-
tion. The still remaining problem with these approaches is that generated transformation tools
are unidirectional, batch-oriented, and not interactive. - ‘ :

Federated database systems ISL 90/ represent another form of data integration. They offer
acommon global schema for different local database systems, which usually is used for retrieval
of databut not for updates (update problem). Active database systems /[DHW 95/ offer event-trig-
ger mechanisms to keep databases consistent. Event-trigger mechanisms play jLib(')ut the same role
for the data-oriented integration paradigm as messages do for the control-oriented integration
paradigm of broadcast message servers fRei 90, Fro 90, Fra 91/. Event-trigger mechanisms and
broadcasted messages are still rather low level means to'simplify the implementation of integra- -
tion tools and to propagate updates between related documents or document processing t60ls.

For the sake of completeness we should mention the existence of tools, which coordinate -

development subprocesses and their results on a coarse-grained level., i.e. without taking the in-

ternal structure of documents and the fine-grained interdocument relations between them into ac-
count. There, we find CAD frameworks /HN 90/ or EDM systeins /Mcl 95/ for managing project
databases. Workflow systems /GHS 95/ coordinate development subprocesses. Furthermore, we
find configuration and version control tools on coarse- as well as fine-grained level. However,

the latter are usually unspecific w.r.t. the structure of their documents /NW 98/.

3. Experiences in Building Integration Tools

Our experiences in building integration tools date back to 1988, when the implementation of our

first integrated CASE tool prototype was finished /Lew 88/. Its most important integration tool
has the task to keep a program’s design in a consistent state with its technical documentation. This
tool can be used in two different modes. Its free format mode allows to create arbitrary links be-
tween increments of the design document and sections or paragraphs of the accompanying techni-
cal documentation. In this case, the tool supports browsing along hyperlinks and issues warnings
that once created hyperlinks are now dangling or that sources or targets of hypertext links are mo-

+ dified. The integration tool’s more sophisticated Jfixed format mode enforces a structure of the

technical documentation, which is. closely related to the structure of its software design docu-
ment. Any module of the design document corresponds to a section of the technical documenta-
tion, any exported module resource to a paragraph of the enclosing section. Section headlines are
automatically derived from module names. R L
The (software design, technical documentation) integration tool realizes therefore a com-
bination of a hyperlink browser, a consistency checker, and a consistency reestablishing trans-
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formation tool (as any other integration tool presented here). Updates of the design document are

immediately-propagated as change messages to the dependent technical documentation. These
messages are then asynchronously processed and—partly automatically, partly manually—trans-
lated into appropriate updates of the technical ‘documentation. The integration tool was manually
implemented without any kind of reuse of basic components and without a formal specification
of its expected behavior. Needed hyperlinks were stored as pairs of unidirectional pointers in re-
lated documents.

Some years later an incrementally and automatically working (software design, Modula 2)
integration tool was built using a more elaborate specification and implementation approach
fWes91/. First of all, the EBNF syntax definitions of both involved types of documents were re-
Jated to each other and then manually translated into a programmed graph rewriting specification
‘of the integration tool’s functional behavior. Based on the graph rewriting specification, an in-
tegration tool was handcrafted, which keeps a software system’s design and the correspondmo
conﬁguratxon of Modula-2 1mp]ememat|on documents in a consistent state. The main progress
of this integration tool-—compared with the (software design, technical documentation) integra-
tor—is that hyperlinks are now stored in a separate integration document. This allows the integra-
tion of already implemented types of documents more easily, simplifies multi-user access to re-
Jated documents, and offers the appropriate database for storing information about an ongoing
mtegrauon process.

The needs to build an integration tool, which keeps requirements engineering documents
and software design documents in a consistent state, forced us to generalize the integration tool
specification and imp]ementation approach /Jan 92/. The most challenging feature of the (re-
quirements engineering, software design) integration tool was the required interaction between

" the computation of applicable transformations rules and the manual selection of actually applied
rules. This is due to the fact that consistency relations between Structured Analysis (SA) dia-
‘grams and Entity Relationship (ER) diagrams on one hand and design documents on the other
hand are rather vague and context-dependent. An SA data flow diagram (DFD) may be translated -
mto a module or a procedure of a design document depending on the number of applied occur-
rences of the DFD in its SA document, the way how related SA increments were already trans-
lated into software desngn increments, and creative design decisions of the involved mtegranon
tool user. :

Figure 2 shows one example of an SA document and a graphlcal as well as a textual view
of its related design document. The top left DFD SellProduct contains the three processes Accept-
Choice, CtieckPayment, and CalcutatePrice as well as the two data stores CoinCharacteristics and Pri-
ceTable. The latter two provide needed input data for CheckPayment and CalcutatePrice, respec-
tively. The DFD in the left bottom comner of figure 2 represents the refinement of the process -
CheckPayment. All involved DFDs—except CheckPayment—are translated into so-called F(unc-
tion) modules, all data stores into so-called O(bject) modules, and the occurrence of a certain pro-
‘cess or data store Y in a DFD X corresponds to an import between the related modules X and Y.
The data flows between processes as well as the input and output ports of DFD SellProduct (the
small rectangles labeled Input and Message on its left-hand side) are disregarded on this level of
granularity. They may be useful later on for determining formal parameter lists of generated pro-

~ cedures.The missing module CheckPayment together with all its dependent components is just
under construction. The black background color of DFD CheckPayment in the SA document
informs the integration tool’s user that this SA increment has not yet any counterpart in the corre-

_sponding program design. It is up to the user to decide whether it is worthwhile to build a separate
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module for CheckPayment, too, or whether the functionality of CheckPayment may be im-
plemented as a single local function of module SellProduct. :

fpuece:
poteesy

< tnter faciutversd}
(Forntens f cCompanent s>}

Sumctaom seuaent SellPredect

B L
mathods EellProdnct {<DeforredClonve:) Solln

N
depact feaf CaloulatePrice i (< InpertCompoment o

F? «
L5al CornCharacteristics + {<Impocttompd
Zxouf PriceTeble @ ((InpartCompasente>)

(odutune Bizatiotsy

faceacistrce
93)

. é 0
I vrlc-r-b;:I

m;{..a,.r.ﬁ.,li}c.

- Fig. 2: Requirements 'ehgineéﬁng and pragram'désign integrhtion tool.

The syntax of the regarded requirements engineering and software desi gn documents with
their diagrammatic notations was no longer defined in the form of EBNFs, but in the form of (ex-
tended) ER diagrams. As a consequence, a iew meta modeling approach had to be invented to
identify corresponding entity types of ER diagrams instead of corresponding nonterminal classes
of previously used EBNFs. This approach to relate entity types of different (data base) schemas
by deriving them from the same meta class has been adopted by the database community for solv-
ing data base migration problems /JJ 95/. ' : EEE

* Unfortunately, it is often not possible to derive consistency checking or document trans-
formation code directly from constructed meta models. The problem is that entity type correspon-
dences, such as DFD is either related to module or to procedure, are not precise enough to define
the wanted behavior of integration tools. Therefore, we returned to the idea presented in /Wes91/
to describe the syntax of documents by means of grammars and to specify dependencies between
documents by coupling these grammars. The main difference between the old proceeding in
{Wes91/ and the new proceeding in /Lef 95/ is that the formier one uses context-free string gram-
mars (EBNFs) for this purpose, whereas the latter one is based on context-sensitive graph gram-
mars, as already suggested in /Pra 71/, ' ’ ‘

Following this approach, the specification and realization of document integration tool pro-
ceeds now as follows: o
1. The internal structures of dependent documents are modeled as directed graphs, which con-
tain different classes (types) of attributed nodes and edges for different kinds of increments
and intradocument refations. : ) BRI
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2. UML! class diagrams are then constructed todefine the relevant components of regarded doc-
ument graphs from a static point of view. ,

3. Next, correspondences between UML class diagrams are established in accordance with the
meta modeling approach of /Jan 92/. They identify possibly related increment classes (node
types) of dependent documents.

4. Afterwards, object diagrams are used to define corresponding substmctures (subgraphs) of
related document graphs more precisely on the instance level.

5. These object diagrams are translated into graph grammars that generate those subsets of
schema consistent document graphs, which consist of previously defined object diagrams only
(thereby excluding intermediate inconsisterit or incomplete document editing results as valid
integration tool inputs).

6. Finally, the constructed graph grammars are coupled such that each production of a master
document graph is related to a set of productions of a dependent document graph.

‘ All needed kinds of integration tools may be derived from a single coupled graph grammar
:specification of the corresponding interdocument consistency relations. This includes aforward
‘transformation tool, which propagates updates from a master document to the dependent docu-
ment, a reverse transformation tool, which propagates updates from a dependent document back
to its master document, or a pure analysis tool, which checks (traces) consistency of dependent
documents without changing their contents.

Up to now, all integration tools are manually derived from a given coupled graph grammar
specification, based on a reusable framework for the construction of integration tools /Nag 96/.
The reusable framework offers, for instance, various forms of document traversing and compar-
ing strategies as well as a standard implementation of integration documents. These integration
documents, which were first introduced in /Wes 91/, are now used for storing all hyperlinks be-
tween two dependent documents together with all design decisions of users how to translate up-
dates of master documents into updates of dependent documents.

Itis the subject of ongoing research activities to translate coupled graph grammar specifica-
tions, which define interdocument consistency relations in a purely declarative manner, automnat-
ically into programmed graph rewriting specifications, which define the functional behavior of
specific integration tools in the form of complex document graph transformations /JSZ 96/,
. /Gru97/. These graph rewriting specifications may be translated into equivalent C or Modula-2
code, using the compiler of the PROGRES graph grammar development environment /SWZ 95/.

- The presented integration tool development process is explained in more detail in the fol-
lowing section 4. It was already successfully used for realizing another version of the (reqmre—
ments engineering, software design) integration tool of figure 2 as well as for reahzmg new in-
tegration tools between software designs and Eiffel programs or between SA and ER diagrams
/Lef 95/. Furthermore, related graph grammar based approaches were used for translating rela-
tional DBMS schemas into object-oriented DMBS schemas /JSZ 96/ and for integrating commer-
cial SA editors with a research prototype for high-level timed Petri nets /BOP 97/. Last but not
least a refined version of the presented integration approach is currently used for mtegratmg
chemical process engineering tools /NM 97/, .

1. » UML, the Unified Modeling Language, is the new standard notation for object—oriented analysis and design. it was
developed by Rational Rose and is now an accepled standard of the Object Management Group OMG /FS 97/.
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4. Specifjing‘lnterdocument Consistency Preserving
Integration Tools -

The previous section presented a number of graph grammar based integration tools and sketched
‘their development. It is the purpose of this section to explain the graph grammar based develop-
ment of integration tools in more detail, using the running example of the (requirements engineer-
ing, software design) integration tool. As already mentioned, the development of such a tool starts
‘with modeling all involved types of documents as directed graphs. Different types of incre-
ments—such as DFD or Process—correspond to different types (classes) of nodes, different -
types of intradocument relations—such as DFD contains Process or DFD defines Proces-
S—are introduced as different types of directed edges (associations). Furthermore, node attrib-
utes are needed to represent local properties of increments, such as the Name of a DFD ora Pro-
cess. . ; - R

4.1 UML Class and Objéct Di&;grams define Intérdbcument Relations:

The needed components of document graphs and their relations are introduced as so-called graph
schemas. It is a matter of taste whether an ER-diagram-like notation or an UML-class-diagram
notation is used for this purpose. Within this paper, we prefer the upcoming standard OO notation
UML, which allows to draw class diagrams as well object diagrams /FS 97/. Furthermore, UML
offers the concept of packages, which allows to encapsulate document graph schemas and to dis-
tinguish between local and externally visible document graph components. - , :

SA-SD-Package l

SA::Object J# =~ « c e St e o SD::Object
SA:Process[® © =~ T <= - == -~ ghmron
SA=DFD "s':i"nlm L
; M = = - - m vt e ew e ,
SA-Package l : : - SD-Package
L] L] -
+ : ' . Object
g -~ - - S [ Npa—N
<<import>s <ccimpors> | Name:string -
» . -
OFD__ | oeinet P = hroeess . Module J-setver_» e
contains : - client

Fig. 3: Corresponding SA and SD document graph schema definitions.

“ Figure 3 shows a cut-out of the graph schema definitions for Structured Analysis (SA) and
software design (SD) documents. Its packages SA and SD display only those definitions of
classes and associations which are needed for the translation of a DFD and a Process into a Mod-
ule and an Import, respectively. Both packages introduce a superclass Object to declare a Name
attribute for DFD and Process on one side and for Module and Import on the other side. Please
note that the Impoit relation is modeled as part of its client Module (source) and possesses the
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Name of its server Module (target) as its own Name. This reflects the way how import relations
(clauses) are defined in the textual software design document representation of figure 2.

The additional SA—-SD package imports all externally visible classes of its dependent pack-
ages SA and SD and introduces the required class correspondences between the two (abstract)
Object superclasses and between their subclasses DFD and Module as well as between their sub-
classes Process and Impont. Many classes and class correspondences have been omitted in fig-
ure 4 due to lack of space, as e.g. the SD class Procedure and its correspondence to the SA class
DFD. :

Some constraints have been developed concerning legal and illegal combinations of gener-
alization relationships with graph schema crossing correspondence relationships. These
constraints, defined in /Gru 97/, prohibit e.g. the definition of a correspondence relationship be-
tween the classes SA::DFD and SD::Object in the presence of a correspondence relationship be-
tween the classes SA::Object and SD::Module. This is considered as a contradiction between
the requirement that any SA::Object is mapped onto a SD::Module and the fact that a SA::DFD,
a special kind of SA::Object, may be mapped onto any SD::Object.

SA:DFD : -SD:-Module
Nm:x TR memees e ) Name=X
L oea . client
contains
Name=Y ’q------------.-».-> Name=Y
defines ' ‘ server
‘Name=Y e ce e nceaaas ot Name=Y

' Fig. 4: Object diagram Heﬁnitiz;n of corresponding SA and SD subgraphs.

, Based on graph schema correspondences, which define a superset of all possible relations
between SA increments and SD increments, it is now necessary to identify existing interdocu-
ment consistency relations more precisely. Experiences showed that object diagrams are the most
appropriate notation for this purpose. They allow one to define pairs of subgraphs (subpatterns,
substructures) on the instance level, which relate certain configurations of SA increments to cor-
responding configurations of SD increments and vice-versa. Figure 4 presents one example of
this kind. It states that a DFD X, which contains a Process Y with its own DFD definition, may
be related to 2a Module X, which contains an Import clause for Module Y. Furthermore, it re-
quires that the DFD instances X and Y correspond to Module instances X and Y, and that the Pro-

. cess instance of Y in DFD X corresponds to the Import clause for Module Y in Module X.

Many object diagrams of this kind are necessary to define the set of all relevant interdocu-
ment relations between SA and SD document graphs. Unfortunately, it is not possible to establish
useful consistency or completeness criteria for the resulting set of object diagrams in the general
case. This is due to the fact that subgraphs of different object diagrams may overlap and that cer-
tain document subgraphs on one side may not have corresponding document subgraphs on the
other side. Our running example requires e.g. the construction of another object diagram, which
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relates the same SA subgraph as in figure 4 to a Module X, which contains‘a Procedure Y, As
aconsequence, it is not possible to interpret the constructed set of object diagrams as the consis-
tent definition of a deterministic function, which translates SA documents into SD documents.
The completeness criteria is violated by the fact that there may be some SA documents without
corresponding SD documents. There is perhaps no rule how to translate a DFD X, which contains
a Process X as a forbidden self-reference, into a corresponding SD docurnent substructure.

4.2 From Class and Object Diagrams to Coupled Graph Grammars

The UML class diagrams and object diagrams of the previous subsection aré the appiopr’iate
means to discuss the functionality of an integration tools with its future users. These users have
the needed knowledge about the regarded application domain for building the appropriate set of
class and object diagrams as well as for checking consistency and completeness of these dia-
grams, The following step of the integration tool building process is on a more technical level
and may be performed without any assistance of application domain ‘€xperts. It concerns the
translation of a set of object diagrams into a coupled graph grammar specification. Each object
diagram is translated into one or more coupled graph grammar productions. Each coupled graph
grammar production is a pair of two regular graph grammar productions plus the definition of
a correspondence relationship between the nodes on the left- and right-hand sides of the com-
bined productions. _ : : S

roduction Create-DFD&Modul

i

coupled production Craate-Process&import =

A S A ——

Fig. 5: Two coupléd gréph grammar prqducti'ans derived from figure 4.

Figure 5 shows two examples of coupled graph grammar productions, which were pro-
duced by taking the object diagram of figure 4 as input. The main problem of the transition from
object diagrams to coupled graph grammars is that we have to distinguish between confext nodes,
which are part of a production’s left- and right-hand side, and new nodes, which are only part of
a production’s right-hand side. It is, for instance, not useful to define a graph grammiar produc-
tion, which creates a Process Y as part of a DFD X together with its DFD definition Y, As a
consequernce, we would not be able to deal with a DFD without any applied Process occurrences
or with more than one occurrence. 1t is, therefore, better to translate the object diagram of figure
4 into two coupled graph grammar productions, as presented in figure 5. The first one, Create—
'DFD&Module, consists of two regular graph grammar subproductions, which have connected
‘grey rectangles as background. Both subproductions have an empty left-hand side and a single
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node on the right-hand side. The SA subproduction creates an isolated DFD node with Name
=Y in the SA document graph, the SD subproduction a corresponding Module node with the
same Name in the related SD document graph.

The following coupled graph grammar production Create—Process&lmport of figure 5
matches two pairs of corresponding DFD and Module nodes with the left-hand sides of its two
subproductions. These nodes together with their correspondence relationship are preserved by

_ the given subproductions due to the fact that the defined right-hand sides contain their left-hand
sides as subgraphs. Furthermore, the coupled subproductions create a new Process occurrence
of DFDY inDFD Xaswell asa correspondmg Import clause with Module X as client and Mod-

" ule Y as server.

" 4.3 From Coupled Graph Grammars to Integration Tool Specifications

As already mentioned, one coupled graph grammar serves as the specification for anumber
of related but nevertheless quite differently behaving integration tools. The same coupled SA-SD
graph grammar may for instance be used to develop an incrementally working forward engineer-
ing tool, which translates SA document updates into SD document updates, and a batch-oriented
reverse engineering tool, which takes a complete SD document as input and produces a corre-
sponding SA document as output. This a consequence of the fact that coupled graph grammar
productions do not distinguish between master documents and dependent documents and that
they do not prescribe how and when consistency between dependent documents is (re-)estab-
lished. .

Coupled graph grammars, which are constructed using a set of object diagrams as input,
never contain node or edge deleting productions, i.. the left-hand sides of their productions are
always subgraphs of their right-hand sides. The restriction to non-deleting productions is not as
severe as it seems to be at a first glance. This is due to the fact that the productions of a coupled
graph grammar are not the editing operations for the involved types of documents. Document
graph editing operations are defined without having certain interdocument consistency relations
in mind. Furthermore, they do not only create, but modify and delete document components. Last
but not least the editing operations for a certain type of document graphs may be used to manipu-
late subgraphs, which are irrelevant and therefore hidden for the regarded document integration
task (cf. Nag 96/ for further details concerning the definition of document views for integration
tools).

The restriction to non-deleting productnons is the necessary prerequisite for bemg able to
derive different kinds of (efficiently working) integration tools from one coupled graph grammar
specification. Otherwise, we would be forced to parse pairs of document graphs w.r.t. to unre-

" stricted types of graph grammars in order to be able to check interdocument consistency relations
(i.e. to solve the membership problem for type O grammars, which is undecidable in the general
case). Having the restriction to non-deleting productions in mind, it is possible to translate
coupled graph grammar productions into different sets of ordinary graph transformation rules.
One set of transformation rules defines the functional behavior of a forward transformation in-
tegration tool, another one the behavior of the corresponding reverse transformation integration
tool, a third one the behavior of a consistency checking tool, and so on.

Figure 6 shows one example of a derived SA-SD forward transformation rule. It translates
a Process occurrence of DFD Y in DFD X of the SA document into an Import between the re-
lated Modules X and Y of the SD document. This rule was constructed as follows: its left-hand
side is the combination of the right-hand side of the corresponding SA production with the left-
and side of the corresponding SD production in figure 5, its right-hand side is the combination
of the right-hand sides of the two coupled SA and SD productions. .
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F ig. 6: A forward graph Iransformation rule from SA to SD )

An SD-SA reverse transformation rule may be constructed by sxmp]y exchanging the roles
of SA and SD productions in the previous paragraph. A consistency checkmg and correspon-
dence relationships establishing transformation rule may be builtby mergmg the constructed for-
ward and reverse transformation rules. '

4.4 From Integration Tool Specif cations to Implenientations

All generated transformation rules have to be combined with a reusable framework which deter-
mines the order of rule applications and which processes needed user interactions. Furthermore
the framework provides a certain bookkeeping strategy for not yet transformed document parts
or already transformed but afterwards changed document parts. Pléase note that ”real” graph
transformation rules are more complex than the one presented in figure 6. They use a more so-
phisticated representation of correspondence relationships (as nodes and edges of separate in-
tegration document graphs) and manipulate therefore three related subgraphs ofa hxerarchlcal
graph instead of one flat graph only /Nag 96/. :

The finally needed translation from forward or backward graph transformauon rulesto eﬂi
" ciently executable C or Modula-2 code is supported by the PROGRES graph grammar environ-
ment /SWZ 95/. This environment is available as free software on the world-wide-web page
http:/fwww—i3.informatik. rwth—aachen.de/research/progres/index.htm!
It represents an integrated set of tools for syntax-directed editing, analyzing, and executing single
graph transformation rules or complex graph transformation programs. Two execution modes are
supported: (1) direct interpretation of created specifications and (2) compilation into lower level

programming languages such as C and Modula-2. Generated program fragments may be com- o

bined with a hand-crafted code, such as the integration too! framework mentioned above.

For further details concerning the construction of graph transformation rules from coupled
graph grammars and the nmplementauon ‘of the needed framework the reader is referred to
/Nag96/ 11SZ 96/. » :

5. Forinal Background of Coupled Graph 'Grammars

The preceding sections introduced a graph grammar based method for the spec:ﬁcatxon and im-
plementation of document integration tools on a rather informal level. A complete formal defini-
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tion of graph grammars, their underlying graph data models, and the definition of appropriate
graph grammar coupling mechanisms is outside the scope of this paper. The interested reader is
referred to /RS 96/ for a formal treatment of restricted types of graph grammars as a visual lan-
guage syntax definition and parsing formalism and to the chapter 7 of the Handbook of Graph
Grammars /Sch 97/ for the formal definition of a very general class of programmed graph trans-
Jformation systems. :

For further details concerning the usage of programmed graph transformation systems as
a tool specification and implementation mechanism the reader is referred to /Nagl 96/. Further
information concerning the design and implementation of the very high-level programming lan-
guage PROGRES and its programming environment may be found in /SSWZ 95/.

Last but not least the reader is referred to /Sch 94/ for a formal definition of coupled graph
grammars, which is based on a very simply graph data model (without different types of nodes
or edges and without attributes) and a simple form of graph grammar productions. A formal defi-
nition of coupled graph grammars for a more complex UML-compatible graph data model and
more complex forms of productions is under development. Its first version, published in /Gru 97,
provides the formal background for the definition of correspondences between graph schemas
(UML class diagrams) and the definition of coupled graph grammar productnons, which respect
the previously defined graph schema correspondences.

6. Summary and Future Work

Development processes of various engineering disciplines are usually rather complex. They con-
sist of many interacting subprocesses, which are carried out by different developers. Various ap-
proaches are propagated nowadays how to support developers in executing their subprocesses
and how to guarantee the overall consistency of their results, rather complex configurations of
dependent technical documents. One may use the experience of developers
" by recording traces of successfully executed subprocesses and transforming them into re-
‘. _ peatable process chunks /PDJ 94/,
"= by offering means for direct multi-media communication, whxch are tightly mtegrated with
technical document manipulating tools /Her 96/,
» and by realizing interactive integration tools, which help their users to monitor and (re-)es-
tablish interdocument consistency relations.,

These three different approaches complement each other and may be combined with appropriate
management tools to support engineering processes on a very high level /NW98/.

This paper had a main focus on document integration tools. It presented a graph grammar
based method for deriving efficiently working integration tool implementations from very
high-level intérdocument consistency specifications. It is worth-while to notice that the presented
method requires not a complete formal specification of the (semantics of the) considered types
of documents and the involved modeling languages and methods. It is sufficient if all regarded
documents have a well-defined internal structure (syntax definition) and if we have some knowl-
edge about possibly corresponding patterns of increments in related documents.

The functionality of presented integration tools varies from a low-level hypertext editor,
where all interdocument relations have to be created and maintained manually (if almost no
knowledge about interdocument consistency relations is available) to an automatically working
document transformation tool (if interdocument consistency relations may be defined as a total
and deterministic function). In many cases the available knowledge about regarded document de-
pendencies lies between these two extremes, such that the resulting integration tools are able to
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-

perform trivial consxslency (re-)establishing tasks on their own and to compu(e sets of possible
consistency (re-)establishing actions in the general case.

It is the subject of ongoing research activities to generalize the presented coupled graph
grammar formalism w.r.t. the form of permitted coupled subproductions. Furthermore, we are
_ planning to realize a new generation of graph grammar coupling tools, based on the experiences
reported in /JSZ 96/ with a rather ad hoc approach to use the PROGRES environment for this
purpose. These tools will offer appropriate support for entering graph schemia correspondences
and coupled graph grammar productions, for checking the consistency between graph schema
correspondences and coupled productions, and for translating coupled graph grammar specifica-
tions into ordinary PROGRES specifications of needed integration tools.

Finally, we are making our first experiences with changing 6ur focus from tightly inte-
grated software engineering environments to tightly integrated chemical process engineering en-
vironments /NM 97/. The new application domain forced us to complement coupled graph gram-
mars with UML class and object diagrams as more appropriate means of communication between
domain experts and future users of integration tools and their developers. But the main challenge
of the new applxcanon domain is that we have to generalize the presented integration approach
from the a-priori integration of self-developed (software engmeermg) tools to the a-posterzon
integration of a]ready existing chemical process engineering tools.
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Abstract

Modeling and documentation are two essential ingredients for the engineering
discipline of software development. During the last twenty years a wide variety of
description and modeling techniques as well as document formats has been pro-
posed. However, often these are not intégrated into a coherent methodology with
well-defined dependencies between the models and documentations. This hampers
focused software development, as well as the provision of powerful tool-support. In
this paper we present the main issues and outline solutions in the direction of a

. 'unified, formal basis for software and system modeling. ' S

1. Introduction. .
'::vComputer' ﬁechnology for commercial applications has evolved rapidly from mainframes
‘through personal computers to distributed systems. Software engineering has not been
,able to keep pace with the resulting demand on powerful application development meth-

ods. This is exemplified by an ever growing number of software projects running behind
schedule, delivering faulty software, not meeting the users needs, or even failing. com-
pletely. There are a number of reasons for that ranging from inadequate project man-
agement, over communication problems between domain experts and software developers
to poorly documexited and designed software. A recent inquiry on industrial software de-
velopers [DHP*98] has shown that despite the great variety of CASE-tools, development

. methods, and modeling techniques, software development still largely produces informal,
. incomplete and inconsistent requirements and design descriptions and poorly documented

code. Modeling techniques are used selectively, but not integrated with.each other and the
coding. The great variety of proprietary modeling techniques and tools makes it difficult to
choose an adequate selection for a project. ‘As exemplified by the newly evolving standard

*The authors of this paper were funded by DFG-Sohderforschungsbeieich 342 “Werkzeuge und Métho—
den fiir die Nutzung paralleler Rechnerarchitekturen”, the project “SysLAB” supported by DFG-Leibnitz
and Siemens Nixdorf, and the Forschungsverbund FORSOFT supported by ‘the Bayerische Forschurgss- -
tiftung. ) : o
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Unified Modeling Languege [BRJ97], the techniques provide a rich collection of complex
notations without the corresponding semantical foundation. Since only static models are
linked to code, behavioural models can only serve as 1llustratxons not worthwhile the big
effort of building the model.

This situation will only change, if modeling techniques come with a set of development
steps and tools for incremental model development, consistency checks, reasoning support
and code generation. Mathematical description techniques like Z {Wor92] or. LOTQS
{Tur93] provide such development steps, but their uptake by industry is hampered by
their heavy notation, lack of tools and lack of integration to established specification and -
assurance techniques [CGR93]. Recently, a number of approaches for the combination of
mathematical and graphical modeling techniques have evolved (e.g. [HuB97, BHH*97])
proving the viability of the integration of selected modeling techniques and formalisms.
However, the integration of mathematical and graphical modeling techniques covering the
whole process of system and software development is still an open problem.

The aim of this paper is to describe coherently the major issues in providing such an
integrating basis. Experience on this subject has been gained mainly in the projects
Focus [BDD*93], SysLaB [BGH*97b] and AuToFocus [HSS96]. The project Focus
is devoted to developing a mathematical development method for distributed systems.
SYSLAB concentrates on graphical description techniques, their formal semantics based
on Focus and their methodical use, in particular for object-oriented systems. AuroFoc-
Us is building a tool aimed at the development of distributed/embedded systems allowing
the combined use of mathematical and graphical description techniques and providing
powerful development steps based on the formal semantics. Its main application area are
components of embedded systems. None of the projects covers the whole development
process, but taken together they provide a clear picture of the road to follow. )
The paper is structured as follows. In the first section we introduce Focus, the theory
of stream processing functions, as the mathematical basis of our work. First, we present
Focus independent of a particular application area. Then we show how to adapt it to -

- object-oriented systems. FOCUS comes with a set of notations and a methodology for -

developing formal specifications which can only be touched on in this paper. Refinement
and compositionality provide the foundation for the formal development steps. We close
‘this section-with a discussion on the enhancement of formal notations to be useful for
practitioners.’

We then go'on to describe the indirect use of FOCUS as the integrating formal semantics
for graphical modeling techniques used in software development. We describe a' bunch
of graphical description techniques covering the main system aspects. These modeling
- techniques are similar to the ones used by structured or object-oriented methods. How-
ever, they differ in detail, because they have been developed with a particular focus on
an integrating formal semantics. The aim of that section is to make explicit the most
important issues in providing such an integrating formal semantics.

The indirect use of formal methods is very valuable to the method developer. It is on]y
- useful to the system developer, if the modeling techniques are accompanied by powerful
development steps which allow them to check and enforce the formal dependencies between
the models. In the third section we discuss consistency checking, model validation and
transformation as the most important development steps, together with possnble tool
support.
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The modeling techniques and development steps have to be integrated into a process of
system development, covering requirements definition, analysis, design and implementa-
tion. In the fourth section we present a framework making explicit the different modeling
areas to be covered, namely the application domain,.the system usage and the software
system, as well as the interplay between different system views and their correspondmg
modeling techniques.

- We close with an outlook on future work. Related work is dicussed along the way.

2 Sémantic 'Framevrrorkv

In this section we describe the formal semantical basis. First, we sketch the mathematics
of system description, treating object-oriented systems as a special case. Then we present
refinement as major constitutent of formal system development. We describe the process
of formal system development and close with an evaluation of this direct use of Focus,
a general framework for formal development of distributed reactlve systems

2.1 Mathematlcal Basrcs

. Focus incorporates a variety of techniques, specification formahsms and semantic choices.
We only give a short and informal description of the main concepts and some simple for-
" mulas. The interested reader is referred to details on [BS97, BDD*93] for an introduction
and more formalization, and [BBSSQ7] for an overview of case studies. There aré many
other formal development methods and description techniques, see e. g. TLA, UNITY or
PrOCOS. For further reading and a compatrison between these and many other formal
.. methods like algebraic or temporal logic approaches based on an umform example we refer
. to [BMS96).
According to the concept of FOCUS a dlstnbuted system consxsts of & number of com-
ponents that are partially connected with each other or with the environment via asyn-
chronous one-way communication channels, comparable with unbounded FIFO-buffers.
- With the behaviours of components and the topology of the network * the connection of -
» “components via the communication channels - the system is completely deseribed. The
behaviour of a system can be deduced from the behaviour of its  constituents. This is
possible because the formal basis of FOCUS allows modular systems specxﬁcatron wrth
‘ composztzonal semantrcs » :

. Timed Streams

The basic data structure needed for the definition of component behaviour are timed
- streams. Assuming a global and discrete time we model the time flow by a special time
signal called time tick. Denoted by +/, a tick indicates the end of a time interval. A timed
stream is a sequence of messages and 4/ that contain an' infinite number of time ticks.
Apart from the time ticks the stream may contain a finite or infinite number of messages.
"Let M be a set of messages that does not contain the time signal V- By M¥ we denote
streams of messages and by M@ we denote the set of infinite, timed streams which contain
* an infinite number of ticks. To illustrate the concept of a timed stream we show a simple
example. The timed stream : : .
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a\/ab\/\/bra\/b\/

contains the stream of smaﬂ letters aabbeab. In the first time intervall a is commumcatcd
in the third intervall there is no communication and in the fourth intervall ﬁrst b then ¢
and last a is communicated. :

The special time signal / should not be understood as a message that is transmitted, but
as a semantic concept to represent discrete global time. With timed streams complete
communication histories are modelled: a specific stream that is associated with a channel
between two components contains all information about what message is sent when bé-
tween these components. Semantic variants of FOCus abstract from time in the untimed
model. In the synchronous model in every time intervall at most one message can be
transported between two components. : .

Component Definition ‘

A (system) component is an active information processing unit that communicates with
its environment through a set of input and output channels. To define a component,
first the interface must be declared. This contains a description of its input and output
channels as well as the type of messages that can be received or sent via these channels. -
The behaviour of a component is described by a relation between its input streams and
its output streams, containing the set of communication histories that are valid for this
component. One way to describe this relation is to define a stream-processing function
that maps input streams to sets of output streams. This function reads an input stream
message by message, and wntes as reaction - some output messages onto the output
channels. Stream-processmg functions have to fulfill further semantic properties as con-
tinuity, realizability, time-guardedness and more, as explained in literature. It is possible
to use state parameters to store control states or additional data that can be helpful for
easier modelling.

Let I be the set of input channels and 0 t.he be the set of output channels Then by
(1,0) the syntactzc interface of a component is given. With every channel in U O we
associate a data type indicating the type of messages sent on that channel. . :
To describe and to design. the topology and the behaviour of a distributed system and
its components, Focus offers different graphical and diagrammatical notations, see sec-
tion 3. All these description formalisms are well founded in the mathematical framework -
described in this section. A graphical representation of a component with its syntac-
tic interface I = {iy,...,in} resp. O = {o1,...,0,} and the individual channel types
S1y...ySa resp. Ry,.. ,R,,. is shown in Flgure 1.

18 01:R;
,————>, > f —
in:Sy - : omt Rm

Figure 1: Graphical Representation of a Component as Dataflow Node
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Given 4 set of channels C we denote by € the set of all channel valuations. It is defined
by: v '
e C=(C —» M%)

Channel valuations are the assignments of timed streams to all channels in C. We assume

that the streams for the channels carry only messages of the right type.

We describe the behaviour of a component by a stream-processing function. It defines the
‘relation between the input streams and output streams of a component that fulfills certain
.conditions with respect to their timing. A stream-processing function is represented by a

set-valued function on valuations of the input channels by timed streams that yields the

set of histories for the output channels ) o .

f T - PO)
and that fulfills the timing property time-guardedness. This property axiomatises the
time flow. It expresses that the set ‘of possible output histories for the first i + 1 time
intervals only depends on the input histories for the first i time intervals. In other words,
the processing of messages in a2 component takes at least one tick of time. For a precise
_ formal definition of this property see [BS97]. C "

2.2 Fouhdations of Object Orientation -

Based on the theory given above, we have defined a set of concepts to give Focus an
object-oriented flavor. This allows us to give a formal semantics to object-oriented mod-
elling techniques, like UML [BRJ97] as we have done in [BHH*97]. S
For that purpose, we have defined a “system model” in fKRBY6], that characterises our -
notion of object-oriented systems. Objects can be naturally viewed as components, as de-
fined in the last section. Based on that, communication paths are defined using identifiers,
~ where each object is associated with exactly one identifier (its identity).
‘In the system model, objects interact by means of asynchronous message passing. Asyii-
». chronous exchange of messages between the components of a system means that a message
can be sent independently of the actual state of the réceiver, as e.g. in C++-or Java. To
model communication between objects we use the FOCUs basic data structure of streams
and stream-processing functions. : S S : L -
- Objects encapsulate data as well as processes. Encapsulation of process means that the
. exchange of a message does not (necessarily) imply the exchange of control: each object is
regarded as a separate process. Encapsulation of data means that the state of an object is
not directly visible to the environment, but can be accessed using explicit communication;
The data part of the object defines its state. It is given in terms of typed attributes.
Objects are grouped into classes, that define the set of attributes of an object and its
method interface (= message interface). This allows to model the behavior of the objects
of each class ¢ as stream-processing functions f. mapping input histories to sets of output
histories. As usual, classes are structured by an inheritance relation . We thus get a
natural definition of inheritance of behavior if we demand that if a class inherits from
‘another, its possible behaviors are a subset: - . :

Vc,d:Class.cI;dk=> feC fa
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In case of method extension, this constraint is adapted to an interface refinement con-
straint.

Dynamic and mobile features, such as creation of new instances and change of communi-
cation structures are also characterized as extension of Focus.

2.3 Refinement and Compositionality

Based on a first formal specification, the development of software and also of distributed
systems is going through several development phases (or levels of abstraction). Through
these phases the envisaged system or system component is described in an increasing
amount of detail until a sufficiently detailed description or even an implementation of the
system is ohtained. The individual steps of such a process can be captured by appropriate
notions of refinement. In a refinement step, parts or aspects of a system description are
described more completely or more detailed. For this purpose, FOCus offers a powerful
compositional refinement concept as well as refinement calculi. On the semantic level,
refinement is modeled by logical implication. The important refinement concepts are:

Behavioural Refinement: The aim of this refinement is the elimination of underspec-
ification as it is needed e.g. for the specification of fault-tolerant behavior.

Interface Refinement: Here, the interface of a specification is refined By changing the -
number or types of the channels as it is needed for concretisation of messages or
splitting communication connections between components. »

Structural Refinement: This concept allows the development of the structure of the
distributed system by refining components by networks of components.

2.4 A Formal System Develo’pment»Proc:ess '

Focus provides a general framework and a methodology in the large for the formal spec-
ification and stepwise top-down development of distributed reactive systems. The formal
system development process consists of several phases of abstraction: .
During the Requirement Phase, a first formalization of a given informal problem descrip-
tion is developed. Since the informal description is often not detailed enough, this first
step of a system specification is often hard to develop. It is, however, essential for the
formal system development, because it will be used as the basis for further development
of specifications with growing degree of accuracy in the following phases. In this step,
- specifications can be formalized as either trace or functional specifications. The tran51t10n
between these paradigms is formally sound and preserving correctness. - :
During the Design Phase, the essential part of the system development is carried out by
developing the structure of a distributed system and refining it up to the intended level of
granularity. These forma) development steps are based on the specification determined in
the requirement phase and their correctness will be shown relative to the first formaliza-
tion. Because the formal development of a more detailed specification possibly uncovers
mistakes or unprecise properties in earlier formalizations the top-down development is not
linear but rather leads to re-specifications of some parts of earlier formalizations. Only
the description of system properties in 2 mathematical and precise manner gives a system
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developer the possibility to formally prove and refine system properties and descriptions.
In this phase, in Focus the specifications are based on the denotational semantics which
models component behaviour by stream-processing functions. For the development of the
specifications during the design phase, paradigms like relational and functional specifica-
tions as well as several specification styles like Assumption/Commitmerit or equational
specifications are defined.. To increase its usability Focus is adapted for the use of var-
ious engineering oriented and practically used techniques and formalisms like tables or
diagrams,-see section 3. Due to the specific natures of these vanants they can be used

" tailor-made for the solution of specific problems.

During the Implementation Phase the design specification is tramformed into an 1mple-
mentation. This phase is subject of future work.

2.5 Further Work

‘Since the semantic foundations of Focus, including its development techniques are al-
. ready explored in depth, the emphasis of further work lies on a better applicability of

the methodology, especially for system developers less experienced in formal methods.
For that purpose, additional wide-spread description techniques, (semi-) automatic and
schematic proof support have to be offered. Several techniques for describing and speci-
fiying systems (like tables, state or system diagrams, MSC-like event traces, the “As-

‘sumptlon/Commltment" style) were successfully integrated in the methodology With

AvuToFocus, tool support for system development is already available, giving future
case studies a new quality by offering appropriate editors, consistency checks, code gener-

" ation and even simulation. Current research activities concern the enhancement of Focus
with methodical guidelines to ease the use of the mathematical formalism, the description

techniques and the development methodology for non-specialists and to support solutions
for specific application fields, like the modelling of operating systems ‘concepts in [Sp198]
Case studies are an important and stimulating work for testing Focus in different appli-
cation areas. FOGUS will be further improved, using the experierice gained from the great

’ “number of case studxes collected in {BFG+94] and {BBSSQ?] and futute studles to come. °

| 2 6 On the Direct Use of Formal Descrlptlo:”_ fI‘echmques

In the last sections we have sketched a mathematlcal framework for system specification.
- ,Thls allows developers to preclsely describe structural and. behavioural properties of the

components and the composed system. As will be argued in section 3, one can hide
the mathematics to developers through the use of graphical descrlptlon techniques whose
semantics is based on the formal framework. However, not everything can adequatly be
expressed in diagrams. Especially, behavioural properties aré difficult to express. Thus,
for example, object-oriented specification methods typically use state transition diagrams
to describe method acceptance in classes or collaboration diagrams to describe method

_calls between classes, but only programming language code to define the method bodies.

Mathematical specification languages like Focus allow complete’ behaviour description
in a much more declarative style. To be useful for practitioners, however, the notation

‘must be simple and the specification language must be enhanced with guidelines for

a systematic development of specifications. These gulde]mes aré useful for developers
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formulating properties of individual systems, as well as for method developers who need
to state and verify properties of the (diagrammatic) description techniques on the basis
of the formal semanties.
In the following we present an example of some guidelines to write down formal spccxﬁca- :
tions in Focus. To make formal specification techniques and methods more acceptable it
is essential that the developer is in the position to concentrate on his or her problem and
“not on the correctness of the formalization. In Focus, equations on stream-processing
functions describe the mapping of patterns of input messages to patterns of output mes-
sages. [Spi98} proposes a special strategy to formulate the required behaviour as struc-
tured text. The translation of this text into a functional equation is-supported by special
schemes. In the following we show such a schema regarding a component C with one
input channel In and one output channel Qut, where messages of type Integer flow on
" these channels. We require that C computes the square of each input message and sends
it on the output channel. For this input/output behaviour we give the following textual
description: -

If the component C receives a message X € Integer on the input channel
In, then C sends as reaction the square X2 as output message on the output
channel Qut. :

This structured text, which includes all information neeéded to specify the required be-
haviour, can be translated with the available schemes in the following functional equation
(here fc denotes the stream—processmg functlon modellmg the behaviour of the compo-
nent C)

fe{In = X}o s) = {Out— X%} o fels)

3 Descrlptlon Techmques

A descnptlon technique ¢an be best charactenzed as a specialized language with the -
purpose of describing a particular view of the systemms to be developed. With the Focus
method, we have already been able to precisely define what our notion of a system is.
It is then an important task to define an appropriate set of description techniques which
allow developers to describe properties of systems.

In the first subsection, we will in general describe the notion of a description techmque
how we treat them, and what the beneﬁts of this treatment are.

3.1 Descrlptlon Techmques, Notations and Semantics

A description technique serves the purpose of descnbmg partlcular aspects (views) of a
system. There exist a variety of graphical and textual description techmques that allow

to describe different aspects. '
A descnptlon technique comes along thh

e a concrete syntax (this is the concrete layout of all documents),

e an abstract syntax (without “syntactic sugar”),
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e context conditions for wellformedness, and
e a semantics definition.’

For a precisely defined description technique all four parts must be present. In case of
textual notations, concrete and abstract grammars are common for the syntax, attributes
on this grammar can be used for wellformedness conditions, and the semantics is usually
defined as a mapping from the syntax in an appropriate semantic domain. -

Similar techniques can be used for graphical notations. Each graphical notation basi-
cally defines a language of wellformed documents, which serves as the syntactic domain.
As we want to use several descnptlon techniques for describing different aspects of the
same systems, we need semantics definitions (mappings) that map the different syntactic
domains onto the same semantic domain. This is the necessary basis to integrate the
different description techniques during development. ‘If we map dlfferent notations onto
the same semantic domain, we (meaning the notation developer!) can compute context
conditions between different notations, which ensure consistency of several views onto a
system. Moreover, we can justify the correctnes of translations from one notatlon into
another one, e.g. translatmg Message Sequence Charts into State Machines, or generating
code. Last but not least, wé can Justxfy the correctnes of refinement - calculi for the ngen

" descriptions.

»There are other benefits of deﬁmng a precxse ‘semantics, e. g- the developer of the seman-
‘tics gains a deeper understandmg of the used notations.” However, .usually this formal
semantics definition cannot be communicated to method users, only the (informal) in-
terpretation of the insights can [FB97]. However, the most important bargam of precise
semantics is the possibility to automate development steps '

As graphlcal techniques usually are not powerful enough to describe {or prove) every
property of a system, it can be interesting to actually translate the documents of a notation
into their “semantlcs and use the power of the semantic formalism to specify further
" aspects.. In our case, é. g dxﬂ'erent kmds of dxagrams can be translated into formulas only
" "using concepts of FOCUS t

: _'In the followmg, we sketch the most xmportant notatlons we have dea]t with’ We sketch
the purpose of the notation and results, we have achieved on that notation. .. )
We emphasize that it is nmportant to also use explanatxons or other informal kmds of
, dxagrams and text durmg development A _good method does not only deal with formal
_ notations; but also allows the’ systematlc treament of informal documents: The Avuro-
.Focus tool uses ‘a subset of the descrlptlon techmques introduced below in vanatlons
-that are taxlored for the development of embedded systems (cf. Flgure 2).

' 3 2 System Structure D:agrams (SSD)

System Structure Diagrams as used in AutoFocus (Figure 2, upper mxddle) focus on
the static structure of a system. They graphically exhibit the components of a ‘'system
. and their interconenctions. Such, they describe the glass box view of a Focus component
and are therefore rather similar to ROOM charts [SGW94] These diagrams focus more
on the static part of a system and are not used in UML [BRJ97] where everythmg is
' assumed to be hxghly dynamxc "
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Figure 2: AuToFocus Description Techniques: SSD, EET, and STD

Componérits tay be hierachically decorposed. Therefore, for each non-elementary com- .. - .

ponent such an SSD can be deﬁned leadmg to a hlerachy of SSD documents descrxbmg
a hierachical system structure. :
If a system (or system ¢omponent) exhlblts dynamlc properties, like changing the ccm—ﬁ
- munication structure or creatmg/deletmg components, the SSD can be used to describe
structural snapshots or the static part of the structure.” In an ob_]ect-onented flavor, an
SSD defines a snapshot of data and communication paths between a set of objects.
As SSDs describe the architectural part of a system, there exists a refinement calculus
for architectures, that allows to transform the internal structure of a component, e.g. by
adding new components or changing communication paths, thhout affecting the external
behavior of the component [PR97b, PR97c] S : '

3.3 Class D_iagrams (CD)

Class Diagrams aré the most important object-oriented notation, and are therefore part.
of UML [BRJ97]. They are used to describe data aspects of a system as well as possible
structure layouts. In contrast to System Structure Diagrams, that focus on the “instance
level”, Class Diagrams focus on the “type level”. Each class may have several objects as
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- instances, each association represents links between appropriate objects.
Class Diagrams define a large class of possible structures. To further detail these struc-
tures, different kinds of invariants are added. E.g. associations have multiplicities, but
in general, it is possible to add predicates defined in our Specification Language SL (see
" below). . - o o , ‘
Class Diagrams are also used to define the signature of a ¢lass and their state space.
The signature consists of a set of method definitions, that also define the set of possible
messages. The attributes define the state space. - , ' B
In [BHH*97] we have argued about the semantics of Class Diagrams:. Although Class
Diagrams are a rather well understood technique, there are still open ‘questions, e.g. on
.~ the treatment of aggregates. e R C

3.4 Specification Languages’ (SL)

Not every aspect of a system can or should be described using graphic techniques. For
example datatype definitions or additional constraints are best described using a textual
~notation. In UML e.g. OCL has been introduced for describing a certain type of con-
staints. However, as OCL does not allow to define data types or auxilary functions; and
" based on our experiences with algebraic specification téchniques [BBB*85, BFG*93a}, we
have decided to define an own language for that purpose. A T
SL is an axiomatic specification language based on predicate logic, resembling Spectrum
[BFG*93a, BFG*93b]. SL allows declarative definitions of properties. Particularly, SL is
‘used for the definition of pre- and post-conditions of transitions and for the definition of
state invariants not only in single objects but also between several objects in the Class
Diagrams. In order to enable automatic testing of verification conditions; SL also incor- .
‘porates concepts of functional programming, especially some taken from Gofer [Jon93]. -
... The step from high-level descriptions towards executable code is facilitated, which in turn- -
facilitates prototyping. - _ ’ o S o e
When restricting to the executable sublanguage, and furthermore o ‘the datatype deﬁni-‘
““tions, then an automatic translation into simulation code is possible.” .
»* We also have experimented with HOLCF [Reg94] as higher order logic as a property defi-
 nition language, especially if used as a front end for the theorem prover Isabelle {Pau94].

35 Méss'ége Sequence Charts (MSC) and Extended Event Traces

~ Message Sequence Charts and Extended Event Traces are both used to describe the flow -
. of communication within exemplary runs of a part of a system. Constituting a high level
of ébs;raction, MSC dre well suited to capture a system’s requirements. Moreover, MSC
can be used for and generated by simulation, respectively. We have developed different
flavors of this technique. One focuses on synchronous message passing between different
- components {[BHS96, BHKS97] and its semantics is primarily a set of traces. These are -
called Extended Event Traces and are used in AutoFocus (Figure 2, top right).
"The other variant focuses on object-oriented systems and is more similar to MSC'96
[Int96]. Both variants are compared and argued about their semantics in [BGH*97a).
For the EET a set of operators was defined to combine EET sequentially, in parallel and
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iterated. This allows not only to define exemp!ary behavior, but also complete sets of
behaviors.
Currently, work is in progress to map EET into State Transition Diagrams.

3.6 State Transition Diagrams (STD)

In principle State Transition Diagrams describe the behavior of a component using the
state of this component. But there are different abstractions and therefore flavors possible.
E.g. STD can be used early in the development (analysis) and also in the design phase,
when some kind of “lifecycle” of a component is modelled. During detailed design and
also prototyping, pre- and postconditions of a certain form (e.g. executable) can be used
to generate code. :

We have explored and developed a whole variety of State Transition Diagrams, that allow
to capture more than just one input or one output element on a transition. Usually a
transition is attributed with a set of messages {sometimes restricted to one message) to
be processed during the transition and a set of messages to be produced. There are timed
and untimed variants, and there are variants incorporating pre- and postconditions on
transitions [RK96, PR94, GKR96, GKRB96, GR95, Rum96, PR97a].

In the object-oriented flavor, State Transition Diagrams describe the lifecycle of obJects

In STD, descriptions of state and behavior are combined. STD can be used at different
levels of abstraction, that allow both the specification of an object’s interface as well as
the specification of individual methods. Refinement techniques enable not only inheri- .
tance of behaviour but also stepwise refinement of abstract STD [Rum96], resulting in an

implementation. v
A textual representation of State 'I‘rans1txon Dlagrams can be given using approprxate

tables [Spi94, Bre97]. Hierachical variants of State Transition Diagrams are exammed in

[NRS96) and also used in AutoFocus (Figure 2, bottom left).

State Transition Diagrams are an extremely promising notation, as they allow on one

hand to describe behavior, but on the other relate it to the state of a component. They

allow to think in rather abstract terms of interaction sequences, but also can be used -
to describe a strategy of implementation (and therefore code generators). It is therefore
worth to explore more precise variants of STD than the ones given in nowadays methods
as UML.

3.7 Programming Language (PL)

The ultimate description technique is the target programming language. For object-
oriented systems, Java {GJSO6] is a rather interesting choice for an implementation lan-
guage, as it exhibits a lot of desirable properties. It is not only a language with a set of
consolidated and clear concepts, it also exhibits some notion of concurrency, which allows
to implement the concurrency concepts of Focus. Hence, we have had a closer look on
Java, e.g. selecting a suitable sublanguage which will be the target for our code generation
from STD and MSC.

To include the programming language i ina proper way into the formal development pro-
cess, a step has been taken in [PR97a] towards a Focus based transitional semantics of
conventional languages like Java.
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3.8 - Further Work

" For some of the above described notations, we already have prototype tools, that allow us
to edit and manipulate documents of that notation. Several others still need consolidation,
as the process of finding not only a precise semantics for given notations, but adapting
the notation in such a way, that it is comfortable to use and allows to express the desired

_properties, needs to do examples. ' o o -
Currently also work to implement refinement caleuli on Class Diagrams and State Tran-
sition Diagrams is in progress.

4 Methodical Ingredients-

A software or system development method (cf. Section 5) covers a variety of different
aspects. Description techniques, as introduced in Section 3, are only one of these aspects,
yet probably the most “visible” one. However, a development method also contains a
. notion of a development process, a model, how developers proceed during the develop-
ment of a system in order to produce the results (the documents, the specifications etc.)
necessary for a complete and consistent system description that fulfills the requirements
and ultimately results in the desired software product. BT PR
~ Such a process model usually operates on different levels of granularity, ranging from a
‘coarse view down to véry detailed, even atomic operations on specification elements or
documents. The former will be treated in more detail in Section 5, whilé the latter are
covered in this section. ' ST e
Methodical steps can basically be partitioned in two disjoint sets of operations oft spéci-
. - fications, operations that modify the contents of specifications, thus effectively yielding a
. different (possibly refined) description, and operations that change the (possibly informal)
status of specifications, for instance from a draft status to a status “validated”, indicating
that’ certain’ properties of the ‘specification have been found to be fulfilled in an informal
S PrOCESS. il . .o Lo
__ In the following sections, we give a set of examples for both kinds of steps that have been
" treated in our work. ‘ U e

4.1 Completeness and Consistency

‘ __Généfa]ly;ta ‘system specification, just like a program that is being written, is neither com- -
“pléte nor consistent most of the time within a development process. This is particularly

" - 'the case in view-based systems development, which specifically aims at separating different

-aspects of a system description in different specification units (specifiation documients, for -
instance) that use a set of appropriate description techniques. From a methodical point
of view, allowing for’inconsisteng:y and incompleteness during a development process is
reasonable because enforcing them at any time restricts developers way too miuch in their
- freedom to specify systems. For instance, instead of concentrating on a certain aspect
of a specification, developers, when changing parts thereof, would immediately have to °
update all other affected specification units that are possibly affected by such a change in

- order to maintain a consistent specification. Apart-from diverting developers’ attention

from their current task, this is, especially with respect to completeness of specifications,
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virtually impossible in practical development. Please note that the notion of consistency
used here refers to the properties of the abstract syntax {the “mcta-model”) of the de-
scription techniques used to specify a system. Semantic aspects, such as, e.g., consistency
of behavior with certain réquirements are not treated in this context. This is quite similar
to compilers for programming laguages which can ensure the “consistency” of a program, -
but not the correctness of the algorithm encoded in the program.

The AuTOFOCUS tool, which uses a view-based approach to specify distributed systems,
offers such a mechanism to test specifications for completeness and consistency. System
specification is based on a subset of the description techniques introduced in Section 3,
namely, system structure diagrams, datatype definitions, state transition diagrams, and
extended event traces. The view specifications covered by these techniques can be devel-
oped separately to a large extent. Only at specific points in the development process, for
instance, when generating a prototype from a specification (cf. Section 4.2), some global
conditions of consistency have to be fulfilled. Consequently, the consistency mechanism
avallable in AuToFOCUS is user-controlled and can be invoked at any time during devel-
opment, allowing to select both an appropriate set of specnﬁcatlons to be checked and the
(sub-) set of consistency conditions to be applied.

4.2 Validation of Specifications

In practical systems development, validation techniques, in contrast to formal verification
techniques, .are widely used today [BCR94] to get more confidence in the appropriate
choices of the requirements. Verification techniques can only show the correctness of an
implementation with respect to a specification. They will be treated in the next section.
Validation techniques are the focus of this section. They cover a broad range of dwerse
techmques such as

o reviews of specifications,
° systemafic specification i;lspection,
o (usability) tests of software, or

. e prototype generation and execution.

These techniques show different facets of validation. For instance, testing is applied usu-
ally for verifying that program code (that is, the ultimate target of a development process)
fulfils certain required properties. Reviews and inspections techniques, in contrast to that,
are applicable in virtually any stage in the development process to ensure consistency and .
certain correctness aspects on an informal level. Reviews, for instance, can be held upon
requirements documents in the very early stages of a devlopment process, but as well on
program code implemented by developers. Prototype generation for a system or parts
thereof can be used once a specification has been developed that is sufficiently consistent
and complete to validate the desired properties. Since a prototype, especially an exe-
cutable prototype in the form of a program, virtually brings a system specification “into
life” this kind of validation technique is especially relevant in communicating development
results to customers. Prototyping has been successfully applied particluarly in areas like
graphical user interfaces (GUI). ‘
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-In software engineering, the usage of graphical formalisins that describe systems from
‘a‘point of view rather close to an implementation is widespread. Examples for such
techniques are statecharts [HPSS87] which are used in the STATEMATE tool {11e90] or
state transition diagrams as used in the AUTOFoOCUS tool, both of which can basically
-be regarded as a kind of graphical programming language. In such cases generatmg
executable prototypes (or even generating final implementation code) is possible.

1In the remainder of this section, we will take a brief look at such a ‘prototyping envi-
ronment, the AuToFocus component SIMCENTER [HS97]. It is based on generating
program code from a set of sufficiently detailed and consistent system specifications and
on observing the behavior of that prototype program in its environment. ‘
S1MCENTER works by generating Java program code from a specification of a dlstnbuted
system, given in the AUTOFOCUS description techniques briefly outlined in Section 4.1..
The generated program code, which is executed in SIMCENTER’s runtime environment,
is closely linked to a visualization component where the progress of the prototype execu-"
tion can bé monitored at the same level of description techniques as used to specify the
system. A prerequisite for generating such an executable prototype, obviously, is that

" the specification is sufficiently complete and consistent in the sense outlined in Section

‘4.1.” Nondeterminism, however, may be present in the behavioral aspects of the specifica-
* tion, they are cuirently resolved by selecting one possible behavior in the code generation
process. This dpproach will be made more flexible from developers’ point of view, for
instance, by allowing them to select one of several nondetermmlstnc behaviors durmg
prototype execution. : }
" As AuToFoCUSs’ primary appllcatlon ‘domain are embedded systems SIMCENTER allows
to monitor the interactions of such a gerated prototype with its environment. In partic-
ular, developers are able to inject stimuli into the system and observé its reactions, both

" from its environment interface in a black box manner and from the internal perspective,

.. as outlined above. Addxtlonally, black box behavior of an embedded system prototype can
~.be optxonally observed and mﬂuenced from 2 user-definable, application domain-oriented
‘envuonment view that can be attached to ‘SIMCENTER via a standard communication

interface. - This allows developers a very customer-oriented presentatlon of the behav- -

. ior.of such a prototype and thus contributes to enhance communication between system
.~ developers and application domain experts. .
..-For technical details about the process and the basms of code generatlon in SIMCENTER
we refer the reader to {HS97], for an AuTOFOCUS development casé study using SiM-
CENTER to validate certain correctness aspects of a spec1ﬁcatlon of a simple embedded

system, we refer to [HMS*98]. ‘ ~

4. 3 Verlﬁcatlon Techmques

. In contrast to informal vahdatxon, formal techniques allow developers to mathematically
~ - prove that a system specification fulfills certain requirements. As a prerequisite, both
the requirements and the specxﬁcatlons need to be formulated in notations that have a
" common mathematical basis, thus ‘allowing formal proofs to be conducted. ,
Our goal is to integrate formal techniques as seamless as possible with some of the descrlp- ‘
tion techniques introduced in Section' 3. Within the AuUTOFOCUS project two ¢ategories
of verification tools are currently under consideration for an integration with graphical
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formalisms. First, interactive theorem provers like Isabetle [Pau94] in conjnnction with
HOLCF [Reg94] could be used to interactively prove properties of a specification. For that
purpose, graphical specifications would have to be transformed into the HOLCF notation,
and developers would have to conduct their proofs on the HOLCF level of description.
-Obviously, this approach is not very intuitive because it forces developers that are used
to graphical notations to use a mathematical formalism to conduct. proofs.

Thus, the second category of tools, automated verification tools like model checkers seem
to be more suitable for 2 seamless intégration. Currently, a prototype for the integration
of the u-cke model checker [Bie97] into AUTOFOCUS is being implemented. It will be able
to check whether a concrete system specification, given by a component network and the
corresponding behavioral descnptlons exposes a refinement of the behavior of a given,
more abstract specification. . : :

4.4 Transformations

. Transformations are methodical steps that effectively change a system description. Thus,
each action by developers that add or change specification elements results in a different
system description. Whether such modifications to specifications preserve certain prop-
erties of a specification that have been established before, is not a priori clear and has
thus again to be validated (or verified, in case of a formal development process). For
that reason, it is desirable, and feasible as well, to have a class of methodical steps that -
allow developers to change specifications in a way that previously estblished properties
-will still hold- after the modifications. Providing such property-preserving modification
steps for a set of object-oriented description techniques is one of the main goals of the
SyYSLAB project. Such property-preserving transformations are defined on the level of the
description techniques and provided to developers in the form of a syntactical refinement
calculus that will be integrated in the toolset that is currently being developed within
SYsSLAB. These transformation rules are formally proven to be property-preserving by’
the method developers and thus enable system developers to perform transformations
on specifications on the syntactical level without having to re-establish the validity of

previously valid properties. Currently, such transformation calculi exist for state transi- - = .-

tion diagrams [Rum96] and for system structure diagrams [PR97b, PR97c] and are being

integrated into the SYSLAB toolset. If developers choose not to use transformations pro- - -

vided by the refinement calculus, but to make arbitrary, manual modifications to their
- specifications they have to explicitly re-establish the necessary properties again. -

4.5 Further Work

In the context of methodical development steps, tool-based active developer support is a
major area of work in the near future. One aspect consists in guiding developers through
the development process, offering them possible development steps that can be or need
" to be performed in order to develop a system.
Another important aspect consists in tracing the development steps applied to specxﬁca—
tions and their effects on other specifications. This pertains both to syntactic consistency
and completeness of the specifications and to possibly invalidated semantic propemes
that need to be re-established after development steps.
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R 5 A Model—Based Software Development Prbcess

'Up to now we have looked at formal modeling techmques tool-support for madel de-

velopment and analysis based on an integrating formal basis, and a formal development -
process. The modeling techniques mentioned above aim at the description of the software
system on various levels of granularity. We show in the following, that they can naturally

. be complemented with a set of description techniques for the software system context
~and the informal problem description. ‘'We will sketch a framework for a model-based

development. process. This framework is made up of three main ingredients {Jacos):

. . the distinction between the world, the machme and thexr mterface and the exphcxt
svstem models of all three of them, :

. the distinction between the external view, the mtemal analysis view’ and the (dis-
tributed) design view of each system, and . »

e a careful deployment of formahty

s These three issues will be discussed in the followmg subsectmns Dependmg on the ap-
- ‘plication domain and the project context this framework needs to be instantiated. ‘'We
- sketch an example process for information system development at the end of this section.’

5.1 The World, the Machine and their Interface SRR
" 'The distinction between the world and the machine is due to Jackson' [Jacos]. The prob- ‘

fem to be solved by a software system is in the world, the machine constitutes the solution

. -,-we construct. Phenomena shared by the world and the machine make up the interface.
... Descriptions produced during software development must be clearly associated to one
:of the these three domains. This is espec1ally difficult for requirement documents; which

typlcally contain references to the world, namely the effects to be achieved by the software

o system to the interface, naxnely the system services, and the machine. In particular, it * - :
is not p0831ble to describe the system services precisely without a clear understandmg of =i’
 the relevant phéncmena of the world. Therefore software engineering methods - formalor - = -
" “pragmatic - typlcally start with informal descmpt)ons of the issues in the world relevant to
« “the software system. These are then transformed into so-called analysis models. The inod- -
-+ eling techniques used for these models are the same as the ones used for the description of <~ -+
- the machine. -Object-oriented methods like OMT {RBP*91] or OOSE [Jax:92] use object” -
' models, structured methods like SSADM [DCC92] use dataflow models. This is fedson--
able, because the world and the machine can both be viewed as systems allowing therefore -
" ‘for the samie modeling techniques. However, there are semantical differences: ‘in object
"models of the software systems associations represent references directly implementable in

the programming language. Associations between objects in the world represent invariant
relationships which typically manifest themselves as natural phenomena (e.g. a person

 has mother and father) or as social or legal processes (e.g. a book has an author). Also,
‘ the purpose of the models of the world and the machine i quite dlstmct Models of the

world capture understanding of important pheriomena (expressmg the indicative mood
accordmg to [Jac95] , while models of the software system capture reqmrements to be
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realized by the software system or document the running system (expressing the optative
* or the indicative mood, respectively).
To make these distinctions explicit, we therefore distinguish three categories of models:

‘models of the world They model the context of the software system, e.g. ‘a railway
system or a lift to be controlled by the software system, or an production company
whose engineers are supported by software systems. In particular, it is 1mportant
to model the processes which the software system is involved in.

models of the interface They model the phenomena shared between the world -and
the machine. In particular, it is important to model the interaction between the
software system and its external partners. The later may be humans or machines.

models of the machine They model the internals of the software system, namely the
internal components (e.g. objects, subsystems ) and how they render the system
services. '

5.2 The External View, the Internal View and the Design View

The world, the interface and the machine constitute systems. They all consist “of ac-

tors, communicating with each other, and executing activities making use of their (data) -
ressources. Figure 3 collects elements of the three different systems in case of a railway -
control system: .

o actors data . activities
world trains, passengers, | timetable, position passengers enter and
conductor ‘ get off the train, train
stops
interface | train personnel, soft- | signals signaling,  to switch |
. | ware system : the points
machine | objects, operating sys- | attributes assignment, method
tem processes ’ call B

Figure 3: The world, the interface and the machine as systems

Software development methods traditionally either focus on the activities and their data
flow (structured methods) or on the actors and their communication (object oriented
methods). We claim that both views are important during system development, and
‘that a third view has to be explicit: the erternal view. The external view describes
the services to be delivered by the system. The activities describe steps to achieve the
requlred services. We call activities and their data the internal enalysis view, because
at this level one experiments with dlﬁerent ways of achieving the services without regard
for the actors. The ‘actors constitute the distributed design view. Activities and data
are encapsulated within actors, such that data flow between activities has to be realized
through communication. As exemplified by object oriented designs, an actor-oriented
structure allows better reusability and extensibility of designs than activity-structured
designs.
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Each of these views can be applied to the world, the interface and the machine. To
understand the purpose of the ¢ontext of the software system, it is usually helpful to
describe the services of this context. In the case of the railway control the services are the
transport services offered by the trains at particular locations and at particular times. In
order to adequately understand the services, the activities and data of the world have to
be ‘modelled quite extensively. The actor structure of the world is very often changed by
mtroductxon of the'software system, since often human labour is replaced Also it is very
often subject to a lot of political decisions. :

The services of the interface are the work processes or technical processes to be supported
by the software system. Jacobsen {Jac92] has'coined the term use case for this. Very often
there is a close correspondence between machine and interface services, the latter being
a high-level view of the former. The analysis and the design view of the interface are
heavily intertwinned. In the interface the actors are mostly given (humans and technical
. systems), but there is a choice of how to dxstnbute the activities between the machine
and the external partners.

The services of the machine are determined by the design of the interface. Typlcally, the
service view and the analysis view of the machine is heavily intertwinned, because the
services cannot be described without resorting to the data of the software system. Often,
also some parts of the design view are fixed, because the machine has to fit into an alréady
existing landscape of software systems. Thus, for example, one actor maybe a particular
database, other actors may be given by a hbrary of classes for a partlcular apphcatxon
domain. .

'5 3 An Example Process

The discussions above can be captnred in the following proposal for a development process
for informations systems covering the external, internal and design views for the world,
the interface and the machine. The formal system descriptions and development steps
discussed in the previous sections are typically only used for the machine view. . Only
if the effects of the software system in the world are critical (e.g: chemical processes)
formalization of the world and interface models will be worthwile.
Figure 4 lists the models for developing a software system design.
This process is influenced on the one hand by SSADM [DCC92] especxally regardmg the
transition from the machine services to the machine analysis view. It has similarities to
OOSE in the use of use cases for the external view of the interface. The transition from
the machine analysis view to the machine design using exemplary commumcatlon flow
descriptions like EET is borrowed from FUSION [CAB*+94].
Of course, this process is only a framework to be instantiated for different application
doma.ms and projects. The interface models have to be qmte detailed in case of human-
" computer intéraction with a new technology [Suc95]. The world models have to be quite
detailed in case of a new or critical application domain. Models of the software system
should allow for a systematic transition to code using the development steps described in
section 4. -
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View World Interface ‘Machine
service (textual) description | use case model listing | system services (spec- |
specifica- | of the enterprise ser- | the user tasks ified in terms of their
tion vices T input/output and/or :
the data changes)
data and | glossary, application | work processes or | data model described
activity domain processes technical processes as ERD or CD, data
analysis changes described by
STD :
actor and | {textual) description | (textual) description | description of * the
commu- of the responsibility | of user roles and tech- | component-orientéd
nication (in terms of data and | nical system partners, | design by SSD, CD,
design activities) of the de-'| allocation of data and | STD, EET
: partments . - activities to software :
system

. Figure 4: Products of a model-based software development process

6 Cohclusion

The paper has discussed the issues of using formally founded description techniques for
system and software engineering. We have shown that formal methods like Focus provide
a rich basis for textual and graphical system descriptions, as well as the basic methodical
steps for system development. This formal basis allows for an integrated view on the
wealth of description techniques found in the literature. Equally important for the system
developer are the methodical elements based on the formal semantics like consistency -
checks and transformations.  For real world application, this formal development process
has to be embedded into a process of application domain (world) and usage (interface)
understanding and description. From our experience, each of these issues is worth its
own project. Our projects have demonstrated that it is possible to resolve each of these
issues on its own, restricted to a particular application domain. The challenge is now to
connect all of this together and to transfer it to new application domains. This can only
be achieved by a widespread use of these techniques in university and industry.
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Formal Methods and Industrial-Strength Computer
Networks
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Oxford Brookes University, Oxford, UK
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Abstract .

Two case studies involving the application of formal methods to industrial-
strength computer networks are described. In both case studies, the formal
“method (CSP/FDR) was thought sufficiently mature for these applications."
However in both cases, for the formal method to be effective it was necessary
to develop techniques requiring expert knowledge in the theory underpinning
_the formal method. These examples illustrate that there remain significant
technical challenges to effective use of formal methods, which come to light
only through large-scale applications. .

Keywords Formal Methods, Network Protocols CSP FDR.

1. Introductlon

There are many varieties of formal methods a term refemng to the apph—
cation of mathematics and mathematically derived techniques to the speci-
fication and development of program code and hardware. They all have the
same purpose: improving the quality and rehablhty of computer software
and hardware

There are also numerous applxcatlons of formal methods The overwhelmmg
majority of these applications have been conducted by specialists in the
formal techniques rather than by specialists in the application domain. I
. will describe two industrial-strength case studies, which help illustrate why
application specialists do not yet effectively use formal methods. In both
cases the formal method had previously been thought sufficiently mature
. for technology transfer; but disappointingly the method was found to have ~
an inadequate match of éxisting techniques to the particular application
domain. Happily in both cases the theory underlying the formal method was
further investigated and focussed on the problem at hand, in order to provide
suitable techniques; and the case-studies were successfully completed. How-
ever, developing suitable techniques which rendered the application prob-
lems tractable required considerable knowledge of the finer points of theory
underpinning the formal method - of the sort it is not realistic to expect
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practitioners to possess.

The first case study briefly described below involves a specification and
verification of a signalling protocol for a realistic pots, “plain old telephone
system” [KR93]. The work was done in the late 1980’s as a part of the
REX project, which was an ESPRIT collaboration among academia and
industry. We constructed a high-level specification of the system using
Timed CSP {TCSP) [RR86] and a refinement also using TCSP, and proved
that the refinement met the specification. The problem was one of “formal
clutter” - an excess of formal expressions at the top-most abstract level so
as to render the problem of proof intractable by hand, or otherwise. We
solved this problem by developing proof conditions whereby constraints which
were relied on by one component were guaranteed by another component. -
This “rely and guarantee” technique significantly reduced the size of the -
specifications which had to be constructed and manipulated. However it -
was important that we establish that the these proof rules were theoretically
sound, in particular, that they did not produce circular reasoning.

The second case study described below is part of ongoing research involving
application of an automated property checker, FDR [FDR94], to modern
high-speed, multiservice networks. FDR is a finite-state model checker for
the process-algebraic language of CSP. Modern multiservice networks such
as the Internet typically use protocols designed to operate with arbitrary
numbers of interacting components. A problem in employing finite-state

model checkers for these protocols is that the model checkers can not directly - -
handle end-to-end properties of arbitrary but unbounded numbers of subcom- - -

ponents. In order to use FDR for the Internet reservation protocol, we first .
had to develop an inductive approach for establishing properties of interest, -
including deadlock and livelock freedom, for such end-to-end protocols.

1 CSP and FDR

CSP [Hoa85] models a system as a process which interacts with its environ-
ment by means of atomic events. Communication is synchronous; that is, -
an event takes place precisely when both the process and environment agree
on its occurrence. CSP comprises a process-algebraic programming language
together with a related series of semantic models capturing different aspects
of behaviour. A powerful notion of refinement intuitively captures the idea
that one system implements another. ' Mechanical support for refinement -
checking is provided by Formal Systems’ FDR refinement checker, which
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also checks for system properties such as deadlock or livelock.

The simplest semantic mode! identifies a process as the sequences of events,
or traces it can perform. We refer to such sequences as behaviours. More
sophisticated models introduce additional information to behavnours which -
can be used to determine liveness properties of processes.

We say that a process P is a refinement of process Q, written  C P lf any
possible behaviour of P is also a possible behaviour of Q. Intuitively, suppose
S (for “specification”) is a process for which all behaviours are in some sense
acceptable. ' If P refines §, then the same acceptability must apply to all
behaviours of P. S can represent an idealised model of a system’s behaviour;

or an abstract property corresponding to a correctness constraint, such as
deadlock freedom.

The theory of refinement in CSP al]ows a wide range of correctness conditions - -
to be encoded as refinement checks between processes. FDR performs a -

" check by invoking a normalisation procedure for the specification process,
which represents the specification in a form where the implementation can be
validated against it by simple model-checking techniques. When a refinement.
check fails, FDR provides the means to explore the way the error arose. The
system provides the user with a description of the state of the implementation
(and its subprocesses) at the point where the error was detected, as well as
the sequence of events that lead to the error. The deﬁmtxve sourcebook for
CSP/FDR can now be found in [Ros97]. :

-Unlike most packages of this type, FDR was specnﬁcally developed by Formal

" Systems for industrial applications, in the first instance at Inmos where -
it is used to develop and verify communications hardware (in the T9000
Transputer and the C104 routing chip). Existing applications include VLSI
design, protocol development and implementation, ¢ontrol, signalling, fault- -
tolerant systems and security. Although the underlying semantic models for
FDR do not specifically address time (in contrast to Timed CSP formalism
[RR86, TCSP92, KR93]), work has been carried out modelling discrete time .
with FDR [Sxd93 Ros97, R98]. A class of embedded real-time scheduler
implementations {Jac96] is analysed with FDR by extracting numerical in-
formation from refinement checks to show not only that a timing requirement
is satisfied, but also to determine the margin by which it is met.
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2. A POTS Signalling Protocol

In [KR93] we described a Timed CSP specification of a telephone exchange,
together with a decomposition into a design also described using TCSP. We
provided selected proofs establishing that the design satisfies the specifi-
cation. The work was based on a large specification given in SDL by a
telecommunications software company which formed a major part of the
REX Esprit Project. The specification was not concerned with billing and
data-transfer, rather with safety and liveness properties of the signalling
phase of a “Plain Old Telephone Service”. It treated awkward race conditions
such as a caller replacing just as the callee telephone is about to ring.

We found that for this relatively large, complex application there was a
tension between writing strong specifications {in order to achieve desired
behaviour, and reduce the formal clutter and state explosion for both the
specification and further refinements) and keeping the specification weak
enough that it could be implemented. This tension does not reveal itself
in the small sized examples underlying the intuition and test beds for much
of the theoretical work on formal methods.

Strong specifications for individual subcomponents allow us to prove many
properties about the composite system made up the components. However,
it may be impossible or impractical to implement a component which satisfies
a desired specification in every possible environment. For these cases it is
desirable to relax {or weaken) component specifications but not so much that
it becomes impossible to prove the composite system correct. We developed
a Rely and Guarantee method for CSP which controls this relaxation by
explicitly describing a component’s intended environment. An added benefit
is that the method can greatly reduced the “formal clutter” problem.

‘An example of a proof rule (stated intuitively for two components) for safety
properties is the following : if S, and S, are initially true (true for the empty
trace) and the events which cause S, and S, to be untrue are mutually
exclusive, then

P sat S,= 5,
Q sat S, =5,
Pli@ sat' S, A S,

We use the above proof rule when we want to design a system to meet
safety properties S, and S,, but we do not want to implement S, and S,
inconditionally for P and Q respectively. Rather the implementor of P can
assume S, while implementing S,, and the implementor of @ can assume
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S, while implementing S, t.hat is the pair of weaker constraints S = 5,
and S, = S, with processes P and Q. There is an apparent cxrculanty here .
in that if Q fails (i.e., fails to satisfy S,), then P is no longer constrained
and so may fail too, thus justifying Q's failure. The side conditions achieve
a resolution by ensuring that P and Q are initially correct, and cannot go
wrong simultaneously. Analogous but more complex rules are formulated for .
liveness properties. B

The side conditions are automatically true (hence requiring no additional
burden of proof). if there are no safety assumptions (constraints) placed
on inputs. This makes intuitive sense because otherwise we would require
the implementor to filter inputs according to value - something not always
appropriaté or efficient to do. For systems such as signalling protocols,
comporients must sensibly deal with whatever inputs they are given, so these
side conditions are automatically met.

We developed an architectural structure for organising and mampulatmg
the specifications which substantially reduce the sheer volume of formal
objects to be handled using this technique. The rely and guarantee parts of -
the specification could be collected together to form interface specifications,
making for a high-level of organisation with a minimum of effort. This
reduction in both effort and formal’ clutter proved the key to effectxvely i
formahsmg the POTS protocol.

The details of this rely and guarantee technique can be found in [KR93]
"The observation of interest here is that for the TCSP formal method to be
effective for this industrial-strength application, a new technique (the rely
and guarantee) first had to be developed There were two aspects of this
new technique: .

vo The proof rules which had to be shown sound using the underlymg
theory of TCSP, and s . E

e The architectural orgamsatlonal/structurmg conventxons which sub- -
stantially reduced the volume of detail.

The structuring conventions were somewhat application related and it might
be hoped that application specialists could have developed such enabling
techniQues “in house”, where necessary. Howevér, establishing that the proof
rules were sound requxred special expertise which we should not. realistically = -
expect application specnahst to possess
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3. An Internet Reservation Protocol

Our second case study of interest involves certain aspects of the Internet
RSVP protocol. We (J Reed, D Jackson, B Deianov and G Reed) used
CSP/FDR to model and automatically check properties satisfied by the end-
to-end protocol [R98].

RSVP is a protocol for multicast resource reservation intended for IP based
networks. ‘The protocol addresses those requirements associated with a new
generation of applications, such as remote video, multimedia conferencing,
and virtual reality, which are sensitive to the quality of service provided
by the network. These applications depend on certain levels of resource
(bandwidth, buffer space, etc.) allocation in order to operate acceptably.

" The RSVP approach is to create and maintain resource reservations along

. each link of a previously determined multicast route, with receivers initiating
the resource requests. Thus it is analogous to a signalling phase prior to
packet/cell transiission (such as found in ATM networks) during which
virtual channels with associated resource assignments are put in place. The
multicast may consist of several senders and several receivers.

The full technical specification for RSVP as given by its developers appears
as a working document of the Internet Engineering Task Force [BZB96]. The
protocol assumes a multicast route, which may consist of multiple senders and
receivers. RSVP messages carrying reservation requests originate at receivers

“and are passed upstream towards the senders. ' Along the way if any node -
rejects the reservation, a RSVP reject message is sent back to the receiver
and the reservation message discarded; otherwise the reservation message is
propagated as far as the closest point along the way to the sender where a
reservation level greater than or equal to it has been made. Thus reservations
become “merged” as they travel upstream; a node forwards upstream only
the “maximum” reservation request.

Receivers can request confirmation messages to indicate that the request
was (probably) successful. A successful reservation propagates upstream
until it reaches a node where there is a (pending) smaller or equal request;
the arriving request is then merged with the reservation in place and a
confirmation message sent back to the receiver. Thus the receipt of this
confirmation is taken to be a (bigh-probability) indication rather than a
guarantee of a successful reservation. There is no easy way for a receiver to -
determine if the reservation is ultimately successful. Enhancements involve
control packets travelling downstream following data paths, which contain
pertinent information to predict the result.
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Several interesting aspects emerge from the intuitive description of the RSVP
protocol. The protocol is defined for arbitrary routing graphs consisting
of several senders and receivers. Confirmations sent by intermediate nodes
to receivers are ultimately valid only for the receiver making the largest
request; i.e., a requester may receive a confirmation although subsequently
the end-to-end reservations fails because of further upstream denial. Clearly
we are dealing with end-to-end properties inherently irivolving arbitrary con-
figurations of intermediate nodes. Global views involving intermediate nodes,
(e.g., a successful reservation propagates upstream until it reaches a node
where there is a (pending) smaller or equal request) present serious problems
indeed for building models consisting of predetermined sets of components :

Previous CSP/FDR network applications pnmanly centre on protocols, but
these applications do not specifically address arbitrary network topologies.
There are numerous examples of formalisations of layered protocols using
a variety of techniques and approaches, including Ethernet - CSMA/CD
(in non-automated TCSP [Dav9l]} (in non-automated algebraic-temporal
logic [Jma95] ), TCP (in non-automated CSP [GJ94]), DSS1 / ISDN §S7
gateway (in LOTOS {LY93]), ISDN Layer 3 (in LOTOS [NM90]), ISDN Link
- Access Protocol (in Estelle [GPB91]), ATM signalling (in TLT, a temporal
logic/UNITY formalism {BC95]). Shankar [Shan] uses an induction scheme
for model-checking in PVS for Peterson’s shared memory algorithm for mu-
tual exclusion, but to our knowledge nothing in the literature specifically -
address the problem of modeling arbitrary network conﬁguratnons such as -
‘ the Internet w1th finite-state model checkers

An Induction Scheme

We approached this problem by developing an induction scheme which lets us
infer properties about arbitrary (but finite) collections of nodes from a small
number of proofs about fixed numbers of nodes. For example, we might
wish to establish deadlock or livelock freedom for an end-to-end protocol
which operates with an arbitrary number of intermediate network nodes.
We would therefore want to express models and properties in a topology
independent manner. To achieve this, we base our specification on a fixed
number of single network nodes together with their immediate neighbours,
and inductively establish the property for arbitrary chains of such nodes.

"Suppose we can characterise the interface which a sender or routing node
presents to the next node downstream by a property P. Considering a single
node (or partial node where splitting has been useéd to avoid cycles), if we can

RTSE'97, p.275



demonstrate that under the assumption that all incoming interfaces satisfy
P then so do all outgoing interfaces, we have established an inductive step
which allows arbitrary acyclic graphs to be built up, always presenting an
interface satisfying P to the nodes downstream. The essential base condition,
of course, is that an individual data source meets P. The symmetric case
starting with a property of a receiving node and building back towards a
source is equally sound. A rigorots presentation of this inductive technique
is given in {CR, Cre].

The essence of the method applied to the reservation protocol is to check an
assertion effectively stating that if “upstream” channels of a module satisfy
property P, then the “downstream” ones do likewise. Figure 1 illustrates the
FDR mechanism to do this: assert that the parallel composition of a given
module with a property satisfying P, with all upstream channels and all but
one downstream channels appropriately hidden (made internal), refines P
itself. . : ‘

JE T

Figure 1: Simple Induction Scheme

The power of this modelling strategy depends on the ability to reduce a

collection of arbitrary n processes to a fixed number of processes, which can «

then be mechanically model-checked. The reduction is possible only if an --
arbitrary process is defined recursively. In our examples, the state space is
kept finite by limiting the resource set to a fixed number, and bounded by
reducing an arbitrary chain of processes to one or two. Not all problems
can be modelled in this fashion. For example, a lossy channel which never
looses an infinite number of messages consecutively can be approximated by -
a process which reliably transmits a minimum of 1 message out of every k, for
some fixed k. But this approach cannot be the basis for our model-checking
induction since the k must range over an infinite set of values. Likewise, we
cannot apply the technique directly to model our reservation protocol for an
arbitrarily large resource set.
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However end-to-end protocols are inherently inductive, in that they are
designed to operate with arbitrary numbers of participating components.
Provided that approximations for unbounded state variables are sufficient,
the technique is very useful for proving properties of these protocols, such as
livelock and deadlock freedom.

. Again as in the first case-study described, in order for the formal technique
to be effective (in this case, usable at all for the problem at hand), we had to~
first develop some techniques requiring specialist knowledge in the underlying
theory. In this case, we had to make especially clever use of the CSP hiding
operator for properly building an inductive structure, and we had to use
“lazy abstraction” (previously used only for establishing security properties
[Ros97]) to ensure that our checks were sufficiently strong.

5. Conclusions

T have described two case studies from my experience with computer networks
which illustrate that all too often, existing techniques in our formal methods
tool bags do not match industrial-strength problems. Encouragingly for

_formal methods advocates, with some extra work effective techniques were '
developed which solved the problem at hand. These techniques required
specialist knowledge in the theory underpinning the formal method. Signif-
icantly, however, the theoretical basis for the formal semantics did not have
to be extended or redefined in any way. Rather we had to appeal to the .
theory in order to establish soundness of the néw techniques.

It is generally recognised that although there has béen considerable work
in formal methods involving theoretical foundations, standards, and even
case-studies, industrial uptake of formal methods is low. Historically for com-
puter networks such as the Internet, correctness potentially offered by formal
methods has not been considered a problem; the Internet is characterised by -
best-effort rather than guaranteed service, and bug fixes have typically been
cheap and easy (simply download an update from the Internet). However the-
success of such multiservice networks is bringing demands for such concerns
as security and financial integrity, where establishing correctness is deemed

. essential.

If formal methods are to be effective for this new generation of network
applications, it is essential that the methods are mature enough to be usable
by people who are specialists in their application areas rather than in the -
“formal theory. It is unrealistic to expect application specialists, even intel-
. ligent and knowledgeable ones, to have the expertise, time or inclination to
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develop techniques requiring particular knowledge of the finer points of theory
underpinning the formal method. The case studies described here illustrate
that there remain significant technical challenges for practical use of formal
methods which come to light only through application to realistic, large-scale
problems. It continues to be important for formal methods specialists to
apply the methods to a variety of industrial-strength problems, and make
available any resultant techniques which contribute to the maturity and
applicability of the methods.
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: Abstract
- Numerous requirements specification approaches have been proposed to improve the qual-
ity of requirements documents as well as the developed software and to increase user sat-
isfaction 'with the final product. However, no or only anecdotal evtdence exists about which
- approach is appropriate in a particular context. This paper discusses the value of experi-
mentation in requirements engineering to gain sound empirical evidence. A franiework is
suggested which facilitates experimentation through an experimental infrastructure based
on the QIP and GOM Paradigm. It helps to structure and formalize a research'agenda for
experimentation and supports the development of experiments. Our agenda and a set of ex-
periments are outlined, focusing on requirements specification approaches Jor embedded
real-time systems

1 Introductron

Software developers who wrsh to improve either the productrvrty or the quality of the software

they develop are faced with an enormous portfolio of techniques, methods, tools, and standards

for requirements specrﬁcatron However, no or only anecdotal evidence exist about which ap-

proach is appropriate in a particular context {Fen93]. Open questions are often: (1) under which
- conditions are requirements specification approaches profitable at all, (2) which approach
. - should be applied in which type of project, (3) how can an approach be applied most efficiently,
. and (4) what is the i 1mpact on related activities (e.g., testmg) A typical example for an anecdotal - -
-evidence is the following statement which was taken from the brochure of a CASE tool for re-
quirements modeling: “the maintenance costs are lowered, the quahty of your apphcatrons im-
proves, and you deliver apphcatrons to market faster”

"The transfer of software engineering technology to mdustry is plagued with a lot of problems,
which can be attributed to some degree to the lack of empirical evidence. First, new technolo-
gies are often rejected by project personnel, since these are considered not well adapted to
project needs and, thus, are perceived as not beneficial. Second, new technologies are bypassed
under project pressure since project personnel are not convinced enough of the benefits to 1ake
any risks and they are not supported by the project management. Project progress is often mea-
sured only in lines of code by the project management: Third, past project experiences are not

“reused in new projects because beneﬁts were not demonstrated explrcnly and, thus, “relxglous”
beliefs win [Rom97] : .

Empmcal research provides strong methods, such as controlled eXpe‘riments, to overcome the

limitations of ad-hoc evaluation of software engineering technology. For instance, results from
empirical research indicates that the introduction of a CASE tool actually leads to a decrease of
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productivity in the first year [Gla92]. Controlled experiments have been proven to be a partic-
ularly effective means for evaluating software engineering methods and gaining the necessary
understanding about their utility {LR96).- We will discuss their strengths and weaknesses in
more detail in the next section. Moreover, an organization’s software competencies are man-
ageable assets. Software competencies are tailored techno]ogxes and methodologies that play a
key role in supporting strategic capabilities of an orgamzauon Experiments are the key o
building up software competencies’ [Rom97] ) i

A brief introduction into methods for empirical research is given in the next section. The third
section discusses the current practices used in evaluating requirements specification approach-
es, which are the focus of our agenda, and the benefits and drawbacks of experimentation in this
area and in reqnirements engineering in general. The fourth section outlines the framework for
experimentation and our agenda for the empirical investigation of requirements engineering. -
Examples of empirical studies found in the requirements engineering literature are character-
ized accordmg to our agenda and an additional set of experiments is proposed.

The focus of our agenda is on requirements specification approaches, more precisely, on lan-
guages, techniques, and methods supporting the specification/documentation of requirements as
well as on associated techniques to verify those requirements. It is worthwhile to investigate re-
quirements specification approaches, since it is well-known that most of the defects found in .
software are caused by misconceptions in the requirements phase. Requirements specification
approaches are proposed as one way of overcoming these problems. Only a few of them are ap--
plied in industrial practice. We believe that this is due to the relatively high investment com-
pared to other improvements, for instance, the introduction of inspections, together with -
unproven merits. Religious beliefs in object-oriented approaches is one manifestation of this sit-
uation. Therefore, our long term goal is to provide empirical insights into this area of require- -
ments engineering. A summary and an outlook on future work concludes this paper. -

2 Introduction into Methods for Empirical Research

Software engineering and consequently requirements engineering is an amalgamation of influ- - -

ences from many fields including theoretical computer science, physical sciences, electrical en--- -
gineering, behavioral and life sciences [Cur88). Considering requirements engineering, for
instance, formal methods [BBD*96] stem from research in theoretical computer science, while

ethnography [SRS*93] has its roots in the behavioral and life sciences. In general, the parent '~
research fields were often used as sources and inspirations for technology development in'soft-- -

ware engineering, but the underlymg research methods of these fields were not adopted to a
large extent. Software engineering and requirements engineering research is about developing
languages, techniques, methods, and tools. Their validation did not play such an integral part of
research as the confirmation and validation of models and hypotheses in physical, behavioral,
or life sciences. It has been claimed that in software engineering, there is a lack of experimen- -
tation to validate research results [TLPH95]. Proposing a model or building a tool is not enough. -
There must be some way of validating that the model or tool is an advantage over current models
or tools [Bas92]. There are some indications that this situation is beginning to change, for in-
stance, the classification scheme used for submissions to the “Intemational Symposium on Re- -

S(rateglc capablhlles are corporate goals deﬁned by the business position of the organization and
d by key busi processe:

T
I
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quirements Engineering” encourages researchers to perform either case studies (dimension D:
‘Case study applying a proposed solution to a substantial example™) or more objective evalua-
tions, i.e., experiments (dim. E: ‘Evaluanon or comparison of proposed solutions’ ) [Zav97].

We believe that software engineering is a true engineering task. Hence, lmprovemem of practi-
cal software development requires an “experimental™ approach. Basili outlines three research
paradigms which comprise experimentation, namely the scientific method, the engineering
method, and the empirical method [Bas92]. The engineering method and the empirical method
are variations of the ‘scientific method. All three methods are depicted in ﬂgure 1.

Scientiﬁc Method ) Engineering Method Empirical Method
- Inductive Observations . Observation of existing } inditctive
: l : ‘ _ solutions K - Observations
oo o
: + - propose propose
Theory \ A v
I improved Solution ' © . Models
derive o ‘ '
. validate - validate
“Hypothesis . .
: Application in Practice .  Empirical Studies
validate . i
Conﬁrmatory Expenment

Figure 1: Research Methods

Basili recommends to apply the research paradxgms as follows: “In the area of software engi-
neering the scientific method might best be used when trying to understand the software pro-
cess, product, people, and environment. It attempts to extract from the world some form of
model which tries to explain the underlying phenomena, and evaluate whether the model is truly
representative of the phénomenon being observed. It is an approach to model building. (..:) The .
engineering method is an evolutionary improvement oriented approach which dassumes one al-
ready has models of the software process, product, people, dnd environment and modifies the
model or aspects of the model in order to improve the thing being studied. (...} The empirical
method is a revolutionary improvement oriented approach which begins by proposmg anew’

“model, not necessarily based upon an existing model, and attempts to study the effects of the

" processor product suggested by the new model.” In an industrial context, the empirical method
can help select and introduce a promising techmque whxch is afterwards contmually optxmxzed
by followmg lhe engineering method.

Expenments can be dlstmgmshed by several dimensions, namely, the putpose, the control over
independent variables, the style of data, and the type of statistical analysis. The purpose of an
experiment can be scientific learning, teaching, training, or technology/process evaluation and
optimization. Examples include experiments to invéstigate the influence of domain knowledge
on the efficiency of inspections, experiments at university to motivate software enginécring
principles, and industrial experiments to compare actual practices with new technologies in or-
_ der to raise confidence. The degree of control over independent variables decides whether a
controlled experiment or a case study is appropriate. A controlled experiment requires high lev-
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el, and low difficulty of control, a case study must be performed otherwise. This decision has ~

also an impact on the style of data gained and the type of statistical analysis. Controlled exper-
iments are better in establishing causal relationships, while the conclusions from case sludxes
are limited to the particular conditions of the study

Experiments can be characterized further by the number of teams replicating each project and
the number of different projects analyzed. A characterization scheme for the scope of investi-
gation was developed by Basili et.al. [BSH86] which is depicted by table 1. Four different types
of studies are outlined, namely blocked subject—pro_lect rephcated project, mullx-pro;ect varia-
tion, and single project.

1 Project - > 1 Project

1 Team Single Project Multi-Project Variation
(Case Study)

> 1 Team Replicated Project "1 Blocked Subject-Project

Table 1: Scope of Empirical Studies

Blocked subject-project studies examine one or more objects, i.e., the examined processes,
products, or models, across a set of teams and a set of projects. Replicated project studies ex-- -
amine object(s) across a set of teams and a single project, while multi-project variation studies
examine object(s) across a single team and a set of projects. Single project studies examine ob-
ject(s) on a single team and a single project. Teams are possibly single-person groups that work
separately, and projects are separate programs or problems on which teams work. As the scope
of examination increases, the wider-reaching a study’s conclusions become and the higher the
- cost. Small studies can be performed in a quantitative mode while larger studies typxcally ind @ -
volve more qualitative and less quantitative analysis. .

Expenmentanon must be guided and there must be a rational for data collection, i.e., a frame-'. .
work for expenmemanon is required. Several frameworks have been proposed to designand an- . - -
alyze empirical studies in software engineering including DESMET by Kitchenham, Pfleeger, - -

et.al. [MSL93), [Pf195], {Kit97]. DESMET focuses on the evaluation of methods and tools, ei-’

ther in a qualitative (subjective), quantitative (objective), or hybrid mode through surveys, case

studies, and format (i.e., controlled) expenments ‘We suggest usmg the following components -

“as an experimental infrastructure: v AR

+ . Quality Improvement Paradigm (QIP) [BR88] [Bas89] : .
The QIP provides an experimental framework for software development based on the scien- - -
tific method (see figure 1). According to the QIP, projects within an organization are based
on the continuous iteration of characterization, goal setting, selection of improved technol-

~ ogy, monitoring and analysis of its effects to correct projects on-line, post-mortem analysis -
to understand what could be done better in future projects, and packaging the newly learned
lessons so they can be reused efficiently in future projects. :

» Goal/Question/Metric Paradigm (GQM) [BR88], [BCR94b], [BDR96] . .
The GQM Paradigm supports the process of stating goals, refining goals in an operauonal
way into metrics, and interpreting the resulting data. The idea behind the GQM Paradigm is
that measurement (and hence experimentation) should be based on goals. By stating goals
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explicitly, all data collection and interpretation activitiés are based on a clearly documented
rationale. ‘ ' : - R

* Experience Factory concept [BCR94a] o R
The experience factory facilitates the reuse of models, gained for instance by experimenta-
tion, across project boundaries within an organization. : ’

We will use thisexperimental infrastructure within our framework which is described in chapter 4.

3 Empirical Research in Requirements Engineering

Experimentation in requirements engineering (RE) was discussed in a panel session at the
International Symposium on Requirements Engineering in 1995 {Rya95]'. Experimentation
was considered quite important, but nevertheless especially difficult to perform in RE reséarch.
One critique was that RE methods are not relevant objects for experimentation, since RE is in
its essence about understanding and problem solving, and none of the present RE methods
would support these tasks sufficiently. Thus, “requirements engineering is about insight not
experimentation” [Jac95]. We subscribe to the first part of the statement. But as long as there
are no real problem solving methods in RE, we have to apply the principles, techniques,
methods, and tools that RE research has produced so far. Empirical research can contribute to
RE by evaluating the truth of principles and the effectiveness of techniques, methods, and tools.

-Another critique on experimental RE was that it is limited to small and unrealistic problems.
“This is true to some extent for replicated project and blocked subject-project treatments (see ta-
ble 1). But multi-project variation treatments can be performed in realistic environments in a
quantitative mode as the field study of El Emani et.al. [EQMY6) illustrates. In this study, a mod-
¢l was developed which predicts the impact of user participation on the quality of RE service
and on the quality of RE products in the presence of uncertainty. The model was tested using’
guantitative data of 39 real world software development projects from different organizations
instead of using toy problems. The results indicates that as uncertainty increases, greater user
participation alleviates the negative influence of uncertainty on the quality of RE service, and
as uncertainty decreases, the beneficial effects on the quality of RE service of increasing user
participation diminish. The interaction between user participation and uncertainty had no im-
pact on the quality of RE products. Empirical research can contribute to RE by validating pre-
dictive models. : T et

The most popular approaches of gathering evidence about requirements specification approach- -
es, which are the focus of our investigations, are providing a sample specification of a common
exemplar (e.g., library, ATM) or qualitative results of an industrial case study. However, the ad-
vantages and disadvantages of these two approaches must be judged from two perspectives: that
* of the RE researcher and that of the practitioner in an organization. The major value of a com-
mon exemplar is to advance research efforts [FFFvL97). From a practitioner's perspective it is
less valuable, instead, it is more likely a demonstration of existence (e:g.; an ATM can be de-'
scribed with notation XYZ). Industrial case studies are valuable for both researchers and prac-

1. "It is difficult to discuss experimentation in réquirements engineering, since the term ‘experimentation”
" isused differently in thé literature. Some authors use it as a synonym for ‘Just trying out’ other imply
controlled experiments with it. We use the termi here as comprising case studies as well as controlled
experiments. . : .
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titioners, since they indicate whether an approach scales up and fits into the context. Their
disadvantages are that they are expensive to perform, and that their results are context-depen-
“dent. Most case studies as well as exemplar studies are mainly qualitative. Controlled experi-
ments complement exemplar and case studies because they produce quantitative results. They
are useful for researchers since they can be replicated at different locations and varied in order
to increase confidence in an requirements specification approach and to understand the influ-
encing factors better. They are useful for practitioners since they can be used to gain confidence
in new techniques before they are applied under project pressure. Experiments are increasingly
performed in other areas of software engineering, e.g., inspections, or software maintenance.

We suggest corimon experiments in analogy to common exemplars for requirements engineer-
ing. Similar to a common exemplar, a common experiment is available to everyone for replica-
tion and variation. A common experiment is either an exemplar case study or a controlled
experiment, dependent on the tackled RE activities, which is developed and conducted accord-
ing to our experimental infrastructure outlined in section 1. Because upstream RE activities,
e.g., elicitation, negotiation, and formalization of requirements, are creative, time-consuming,
and less guidance is available, they require a case study approach for investigation, since the
influencing factors are not under tight control. The downstream RE activities, e.g., reviews and
testing, can be investigated by controlled experiments. The basis for both types of common ex-
_ periments is a common exemplar which we supplement with (1) guidelines and procedures in

- order to make the usage of the exemplars more controlled, and (2) goal-oriented data collection
procedures in order to make comparisons possible. Exemplar case studies differ from industrial
case studies in that first, the effort is lower, and second, exemplar case studies are repeatable
since common exemplars are used in a controlled way. Replications are important to increase
evidence for requirements specification approaches and to compare approaches. Feather et.al.
[FFFvL97] propose the use of ‘requirements exemplars’ (i.e., natural requirements) instead of
‘specification exemplars’ (i.e., tidied and simplified requirements) to study the upstream RE ac-
tivities as well. We use both types of exemplars in our common experiments. S

Furthermore, we propose situated experiments in addition to common experiments. A situated

experiment is more convincing to practitioners because, in contrast to a common experiment,
exemplars and/or processes are taken from their individual application domain. The situated ex- -
periment in combination with the common éxperiment allows the question of whether applica- -

tion domain knowledge plays a role in the efficient application of an approach to be factored -
out. This two step approach of empirical evaluation has been applied successfully in the area of .
inspections [LD97]. ‘ e o

An industrial scale case study may be useful as a follow-up to a common experiment. The ex-
_perimental results can “prove” the feasibility of requirements specification approaches in the
small (replicated project, or blocked subject-project) and industrial scale case studies are per-
formed afterwards to analyze whether the results scale up in a realistic environment (single
project, or multi-project variation). ' : .

Our framework, which is outlined in the next section, comprises an experimental infrastructure
based on the QIP and GQM Paradigm and suggests a set of common experiments for experi-
mentation with requirements specification approaches. Situated experiments can be. derived *
from tailoring common experiments to a particular industrial environment. B
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4, Framework

The purpose of our framework is to facilitate experimentation in software engineering; first, by
" means of structuring and formalizing a research agenda, and second, by an experimental infra-
structure to design, execute, analyze, and package experiments driven by this agenda. The
framework is comprised of the following three components:
¢ aroadmap (i.e., agenda) for experimentation, - ‘ : :
* guidelines for the construction of experiments based on the QIP and GQM Paradigm, and
* a set of experiment descriptions. Each description contains a characterization of the envi-
* ronment in which the experiment took place, the goals, the hypothesis, a description of the
investigated objects, the experimental design, the statistical analysis, the results, and the
" experiences gained. v R
The particular environment (¢.g., university, company), in which the framework should bé ap-
. plied plays an important role. First, for defining a meaningful roadmap, and second, for inter-
preting the experimental results, since extrapolations are depending heavily on the
representativeness of the sample. Therefore, several instantiations of the framework in different
environments are desired in order to increase the range of conclusions. Figure 2 illustrates our
framework. o L

Environment

Road Map
Issue 1 x|l i
Issue2 §x | IR
X .
Issue n §{x
New _
Issues - L
Experiments, & S
Results, :f N “H Artetact |
Experiences 3 e 1 il
] mmeas
Biw 5 Guidelines
~ S TS 1 =
- Experimant Experimant - R lnl Iofownriation
Construction . : Descriptions - )

- Figure 2: Framework

The components of our framework work together in the following manner: The roadmap raises
a set of issues to be addressed by experimentation and maintains pointers to descriptions of al-
ready performed experiments. The ‘experiment construction’ component supports the design,
execution, analysis, and packaging of new experiments based on the QIP and GQM Paradigm.
The roadmap can be altered in case of new issues arising from the results of experiments con-
ducted. : : ‘

The roadmap and the experiment descriptions should be stored in an experience base (not illus- -
trated in figure 2) in order to facilitate reuse [BCR94a]. A prototype implementation of an ex-
perience base which contains experiment descriptions, but not a roadmap, has been created
within the Special Research Project 501 at the University of Kaiserslautern [FMV97], [FV98].
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Compared to previously published frameworks for experimentation by Basili etal. [BSHS6]
and Preece & Rombach [PR94] (see section 2), our framework provides additionally a “front-
end”, namely the roadmap, to describe a plan for a set of interrelated experiments. Guidelines
for the construction of experiments and schemes to describe experiments are reused from ‘the
former frameworks.

The application of the framework in a particular envxronment involves three main steps: deﬁm-
tion of a roadmap (i.e., research agenda), reuse of experiments and their results/experiences
from comparable environments, if necessary, and construction of additional experiments. For -
instance, the Software Engineering Laboratory at NASA Goddard Space Flight Center per-
formed a large number of experiments {BCM*92] which are candidates for reuse. The second
objective of the framework, beside its application to construct experiments, isto classrfy exper—
iments from the hterature

We applied our framework to requirements specification approaches for embedded systems in
auniversity environment. Our agenda and a set of common experiments are described in the re-’
‘mainder of this section. We make both available to the RE community for:

* Replicating experiments : o
A replication is an important contribution for two reasons. First, it helps validate thc expen- :
mental design itself, and second, it incréases potentiaily confidence in the previous results. :
For instance, several replications of the experimental comparison of testing versus code :

reading, e.g., [BS87], [KL95], [WRBMY7] lead to sound evidence that code rcadmg is as
efficient as functional and structural testing. :

» Varying experiments
It is clear from the breadth of requirements engineering that no one researcher or smgle
research team, can be expected to solve all issues regarding the empirical evaluation of .
requirements specification approaches. Therefore, the experiments can be modified and re-

executed, with the help of the experimental infrastructure, in order to increase and comple- S

ment the empirical evidence gained so far. S
* Developing additional experiments - ' i
Goals for additional experiments can be dcrlved drrectly from our agenda.

We drscuss the framework components and our instantiation in the following subsections in .,

- more detail. The focus is on the roadmap and the suggested RE expenments

 4.1Road Map

The roadmap represents a research agenda for a particular environment. It consists of (l) aset
of issues (i.e., questrons) which arise in a particular environment concerning a specific theme,

(2) a “formalization” of issues in terms of GOM goals in order to characterize experiments pre- -

cisely, and (3) pointer from issues to experiments. A GQM goal is defined by the followmg tem-
plate:

Analyze [object of study, e.g., products, processes, resources]

for the purpose of [purpose of measurement, e.g., characterization, monitoring, etc ]
with respect to [quality focus, e.g., cost, efficiency, etc.]

from the viewpoint of the [viewpoint, e.g., reséarcher, practmoner etc.]

in the context of [description of specific context].
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The facets describe what will be analyzed (“object of study™), why the object will be analyzed
(“purpose™), what property/attribute of the object will be analyzed (“quality focus™), who uses
the data collected (“viewpoint™), and in which environment the analysis take place (“context™).
We propose the goal template to characterize empirical studies in requirements engineering.

The development of a relevant roadmap is a crucial task, since the issues must be relevant to the
chosen viewpdint in order to create experiments which are of interest to a larger comimunity
within the particular environment. Our agenda (i.e., roadmap) for the investigation of require-
ments specification approaches is described in the remainder of this subsection.

. Theme and Environment. We currently focus on issues regarding languages for requirements
specification and techniques for reviewing those requirements specifications, rather than deal-
ing with all imaginable issues in this area. As the results and experiences with RE experiments
‘increase, we will expand the agenda. Our investigation takes place in a university contéxt. We
concentrate on embedded real-time systems and state transition-based approaches like State-
charts, because these approaches are the most widely applied in industry beside natural lan-
guage, and because these are embodied in the increasingly popular object-oriented modeling
approaches (e.g., OMT, ROOM, OCTOPUS). We assume that a textual requirements document
(“customer requirements”) is present and a detailed specification (“developer requirements™)
has to be written, either in natural language or with a requirements specification ‘approach. Ap-

- propriate techniques for reviewing the detailed specification have to be chosen in both cases.

Table 2 below depicts the issues of our current agenda and table 3 provides pointers to already

existing experiments and to our proposals, respectively. The tabular representation does not im-

ply a specific order of issues. Other representations, e.g. directed graphs, are possible.

- . Goal Definition
g : ~
§ Issue » : § ] £ :'S‘
s ) Object 1) Quality Focus §' =
&5 . R ] : v § 8
Informal vs. formal Requirements ] R L
What are the differences of apply- | specifications *  Quality of requirements -~
pp! pect ty of req . g
ing semi-formal or formal require- g ~ specification, e.g., ‘;6 8
ments specification approaches 2 - understandability § 8
compared to relying entirely on 2 1. _ Effectiveness and effi- 2 §
textual requirements? @ ciency of requirements . | &2 3
o - specification related - X
3 | Languages . | Requirements | = activities, e.g. verifica- | 8 s
@ | Which requirements specification | specifications | ‘3 don . . . o E :
i éi) language/approach is best suited : ’ 3 1. Effort for further devel- § =}
for a particular environment? Pt opment processes and on & | @
. L
Review Defect 3 q‘;?““" of code . 'z
Which defect detection techniqueis | detection g E ecnvc;nes:t and effi- _‘:B 5
most effective for requirements techniques g clency o rsr?/ ware test- g -2
specifications written in a particu- 3 ng (:iy s]te acceP"’"‘? § =]
lar language? ® test, field test) e

Table 2: Issues for Investigation of Requirements Specification Approaches
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Issues. A set of issues (i.e., questions) arise in the environment described before:

o Informal vs. formal. What are the differences of applying semi-formal or formal require-
ments specification languages compared to relying entirely on textual requirements? The
benefits of semi-formal and formal languages are often claimed: they help to avoid misun-
derstandings due to ambiguity, inconsistency, or incompleteness. Nevertheless a significant
number of software development projects are conducted with completely informal require-
ments documents. There are several reasons for this situation, one of them is that theré are
‘doubts that the promised improvements can be reached in practice.

+ Languages. Which language for requirements specification is best suited for a pamcular
environment? A lot of requirements specification languages/approaches have been proposed
in the past years. For instance, state-based approaches seem to be easy to apply since their
théoretical foundation is often taught in lectures on computer science. Nevertheless, the
expressiveness is somewhat limited (which is indicated for instance by the high number of
extenisions to statecharts). Therefore, more powerful languages have been proposed, for
example, to describe timing properties in real-time systems more concisely. C

« ‘Reviews. Which defect detection technique is most effective for requirements specifications
written in a particular language? Reviews of requirements specifications are important to

. ensure correctness and completeness with respect to the customer’s needs. This is a com- .

plex task which cannot be automated. Several techniques have been proposed rangmg from
‘general purpose réading techniques to specxahzed techmques for requirements. :

Each “informal” issue is “fomialized” by a GQM goal as described in table 2. Furthermore, each
issue/goal defines a set of possible experiments. We discuss in the followxng only the facets of
. the GQM goals, but not each goal in detail. :

" Object. The objects of study are either reqmrements specifications written in different languag-
es, or defect detection techniques. There is a danger to compare “apples and oranges”-since

there arc some requirements specification approaches such as Structured Analysis, in whichthe . .-

language is inherently coupled to a method. Others, such as Z are merely languages.

* Purpose. The purposes of our empirical studies with requirements specification approaches are. o

understanding, characterization, and evaluation.

Quahty Focus. The quality focus is a quantitative description of sub]ectxve terms like “better”

used in the description of an issue. A list of qualities is provided, covering the whole software. - - .

lifecycle, which might be influenced by introducing a requirements specification approach All
these qualities are of interest for each issue, however some factors might be too expenswe to
measure.

V‘ewpomt. The vxewpomt in our first investigations is that of the researcher Other possxble '
viewpoints include practitioner, manager, etc. C

Context. The experiments have to be performed with students at the university. This limits the
choice of ob_;ects because of the required training effort. .

The issues raxsed before are used to charactenze experiments found in the RE literature and to
ldenufy areas which up to now have been neglected or which warrant more investigation. Table
3 below lists some examples of experiments found in the RE literature as well as our proposal
for an additional set of experiments. The studies are characterized according to the issue they
address, the investigated objects, the quality focus, and the type of experiment (controlled ex-
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periment / case study). The degree to which a study covers an issue and the open questions have
to be summarized for each study (which is omitted from table 3).

Issue Study Objects = '{ Quality Focus . Type

Informal vs. Mills {Mil96] Documents written in natu- | Effectiveness of functional ] Controlled

formal R ral language and Real- testing experiment
Time Structured Analysis T

Languages ©Our proposal Deocuments written in Understandability, Testability, Controlled
gu Jur pi

SCR, OMT Verifiability, Mod_iﬁability | experiments
Review Porter et.al. Adhoc, checklist, scenario- | Effectiveness and efficiency of Controlled
{PVBY5) based reading . different reading techniques on experiment

SCR specifications

Table 3: Pointer to Experiments

4.2 Experiment Construction

General guidance for the design; execution, analysis of experiments with the GQM Paradigm is
provided by the experimentation frameworks by Basili et.al. [BSH86] and by Preece’ & Rom-
bach [PR94]. How to incorporate the QIP was discussed in [LM96]. It might be useful to create
an instantiation of these frameworks with tailored and more detailed guidelines, if a topic re-
quires extensive experimentation and experiences with experimentation in this area already ex-
ist. This was done for controlled expenments in the area of defect detection techmques by Lott
et.al. [LR96].

Since there are only a few experiments in the area of requiremernts engmeenng, as indicated by
table 3, and our own experiences with experimentation in RE are mainly concerned with inspec-
tions of textual requxrements documents, we do not present detailed guxdelmes at tl'us time.”

4.3 Experxment Descrnptlons

) Expenments are described accordmg to Basili et. al [BSH86] by four categones whxch reflect

the phases of an empirical study:
1. Definition (i.e, study goals, scope, and hypotheses)

o Planning (i.e, design, metrics, etc.)

3. Operation (i.e, data collection, validation, analysis) "

4. Interpretation

Similar to the discussion of experiment construction above it might be useful to refine these
categories to particular empirical approaches or particular topics of investigation as it was done
in [LR96] for controlied experiments in the area of defect detection techmques

‘We do not present a more detailed characterization scheme for the same reasons as dlscussed in
section 4.2 "Experiment Construction”. In the remainder of this subsectlon our proposal for ex-

periments in RE is presented accordmg to the above scherme.

We have started to define and perform a first set of controlled experiments regarding the eval-
uation of different languages provided by requirements specification approaches. This issue has

_ been addressed so far merely by qualitative case studies. We used mmally the Unified Modehng
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Language (UML) [Rat97}] together with the OMT method [RBP*91] and the SCR style tabular
reqmremenls technique (SCR = Software Cost Reduction) [vS92]. The motivation for these ex-
periments is two-fold. First, object-oriented requirements analysis (OORA) approaches are be-
coming more and more popular. They claim to facilitate understanding, since objects map
directly to real-world entities. OMT is the most applied OORA approach, which is especially
used in technical domains. However, since the behavioral specification in OMT is distributed
over a set of collaborating objects, it is not easy to tell whether an analysis model satisfies the
required end-to-end behavior. The UML is the de-facto standard for documenting object-orient-
ed models. Second, SCR is a widely-known black-box specification technique for technical do-
mains (embedded real-time systems) where its tabular notation is claimed to be readily
understandable. It is easy to verify, since system-internals are not described. Nevertheless, com-
plexity inherent to large systems cannot be wished away by methodological choices and SCR
specifications become complex, too. :

Definition.
Goal: Analyze techniques Ty, Tz, «y Ty, t0 express requirements
- T;: UML language with OMT method
- T,: SCR style tabular requirements technique
- Ty further requirements specification approaches
for the purpose of evaluation ' I
with respect to the understandability, verifiability, testability, and modlﬁablhty
from the viewpoint of the researcher
in the context of a lab course/lecture at the University of Kaiserslautern.
Scope: Replicated project or blocked subject-project
Hypothesis: There is a difference with respect to (a) understandability, (b) verifiability, (c) test-
ability, (d) maintainability. :

Plan.
Objects: Documents in T; and T,
Subjects: Students / Practitioners
_ Tasks: : :
- Answer quesnons regarding behavioral and functional aspects of the specxﬁcatxon (a) s
- Check completeness and consistency with respect to informal requirements (b)
- Perform changes on the specification (c)
- Design test cases based on the specification (d)
Independent and dependent variables:

» Independent Variables

Dependent Variables

e Run (run 1 and run 2)

* Regquirements Specifica-
tion Approach (Ty, T;)

s ‘Type of Document

» Experience of Subjects

Understandability mea-
sured via questionnaire

‘Time needed to complete the questionnaire
Correctness of answered questions
Completeness of answered questions

Verifiability measured
via defect form

Number of inconsistencies found
Time needed

Testability measured via
test cases

Time required to write test cases

Table 4: Overview on independent and dependent Variables
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Independerit Variables -i| Dependent Variables

see above : Modifiability measured ¢ Time needed to perform changes
via success of changes * Completeness of changes
« Correctness of changes
* Modification rate

Table 4: Overview on independent and dependent Variables

Design (random assignment to groups A, B):

Run . Technique (Document)
T, Oy T, (Dy) »
1 A ; B
2 B A

Table 5: 2 x 2 Within-subjects factorial design

The “operation’ and ‘interpretation’ categories are omitted in this experiment description since
this is only a proposal. These experiments are open for variation. It should be relatively easy to
exchange the used specifications, or both the employed requxrements specnﬁcauon approaches
and the used specifications.

5 Summary and Future Work

In this paper we have discussed the role of expemnentanon in requirements engmeermg in over-
coming the lack of empirical evidence in the field. A framework for experimentation in software
engineering, not only requirements engineering, was suggested which facilitates experimenta- _
tion by means of structuring and formalizing a research agenda (i.e., roadmap), and by an ex-
perimental infrastructure for developing experiments according to this agenda. We have
presented our agenda for experimentation with requirements specification approaches for em-
bedded real-time systems, and proposed a set of experiments. The agenda was also used to char- )
acterize already existing experiments in the literature. We performed one of the proposed -
experiments at the Umversnty of Kaiserslautern in December 1997 [KVKR98]. Currently, we
are capturing experiences made in other environments-e.g., the NASA Software Engineering
Laboratory-, developing further experiments, and extending our agenda. The proposed frame-
work, the agenda, and the experiments are parts of a PhD thesis that is currently bemg per-
formed at the Fraunhofer Institute (IESE).

Performing experiments in requirements engineering is beneficial for students, practitioners,
and the research community. Students can experience the relative strengths and weaknesses of
the requirements engineering approaches that are introduced in their lectures. Professionals can
gain confidence in new approaches before they are applied under project pressure. The research
community can accumulate a body of knowledge regarding the utility of various approaches un-
der varying project characteristics. We therefore recommend that replicable experiments be
adopted as a standard part of both eéducation and technology transfer programs.
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The empirical evaluation of requirements engineering approaches cannot be the effort of a sin-
gle person or a single research group. Many experiments are too large for any single organiza-
tion, they must be repeated in different environments. The International Software Engineering
Research Network (ISERN) is a community that believes software engineering research needs
* to be performed in an experimental context. ISERN has facilitated the development of experi-
ments and their replication in different environments. Organizations interested in joining IS-
ERN may access the World-Wide Web information available from the following URL
http://wwwagse.informatik.uni-kl.de/ISERN/isern.html
or send an email to
isern@informatik.uni-kl.de.
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Abstract

This paper presents a toolbox for softwarc specification and design that contains -
techniques from structured and object-oriented specification and design methods.
The toolbox is called TRADE (Toolkit for Requirements and Design’ Engineering).
The conceptual framéwork of TRADE distinguishes external system interactions
from internal components. External interactions in turns are divided into external
functions, behavior and communication. The paper shows that structured and QQ
analysis offer a small number of specification techniques for these aspects, most of -
which can be contbined in a coherent software design specification. It is also shown .
that the esseiitial difference between structured and object-oriented software design
approaches lics in the separation of data storage, data processing and control in
data flow diagrams, versus the encapsulation of these into objects by OO analy-
sis. Functional and suchct-domam—onentcd dccompo«)txon on the other hand, arc
shown to be compatible wnth both approaches.

1 | Introductionb

In this paper, we view design as uncertainty reduction about the future of an artifact.. In
this broad view. design decisions may concern external properties as well as the internal
structure of new artifacts, and may concern changes to existing artifacts or may concern
new artifacts. The result of design is a documentation of the decisions made about the
artifact, called a specification. Specifications always consist of a combination of text
and graphics, both of which may vary in degree of formality, Software design specnﬁca—
tion methods are grouped into two camps. Structured methods emphasize data flows and
functional decomposition. ‘Object-oriented methods emphasize the encapsulation of op-
erations and data and recommend something that we refer to as subject domam -oriented
decomposition.

*Work done while at the Faculty of Mathematics and "Computer Science. Vrije Universiteit,
Amsterdam.
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The need for integration of structured and object-oriented software specification met h-
ods hias been long recognized [1, 3, 32, 47, 51). One of the advantages of such an integration
is that it allows practitioners raised in the world of data flow modeling and nctional de-
compasition to incorporate uscful clements of ohject-oriented specification in a stepwise,
evolutionary manuer. Another advantage is that it allows ns to pick the best elements of
both groups of methods in an cclectic way, which should allow us to advance the state of
the art heyond each of the contributing groups of methods. For example, we show that
stenctured analysis offers useful techniques for the specification of external functionality
but is a bit muddled in its specification of internal decomposition. Object-oriented anal-
ysis, on the other hand, offers useful techniques for the specification of decompositions
but tends to ignore the specification of external functionality. .

Early intcgration proposals incorporate object-oriented ideas in structured analysis
without fundamentally changing structured analysis {51}, or incorporate structured anal-
ysis in object-oriented analysis [3}, or simply use structured analysis as a front-cud to
object-oriented design {1, 32, 47]. None of these proposals is based upon a thorough
analysis of the underlying principles of structured and 00 analysis. Without such an
analysis, it is not possible to sce which elements of structured and OO methods can or
cannot be combined and why this is so. The integration proposed in this paper is based
upon a thorough survey and analysis of six structured and 19 object-oriented specification
methods, recently completed [57]. . v . :

The results of the analysis are used to define the Toolkit for Requirements and Design
Engincering (TRADE). This is a kit of conceptual tools, not software tools. TRADE
contains techniques and heuristics taken from many different methods and allows combi-
nation of these tools in a coherent way. There is a software tool calied TCM that can be
used to use some of the techniques in TRADE, but TCM is not deseribed in this paper,
hecause the essential design tools are made from software but from the experience and
wnelerstanding of the designer. The essential tools are conceptual and consist of design
techniques and heuristics and the tacit knowledge needed to apply them. This approach
is postmodern in the scnse that TRADE contains only elements borrowed from existing
methods. It adds nothing except a framework in which these elements are put, and sct of
rules for using these elements in a coherent way. I hope that TRADE will not be viewed
as yet another method but as a toolkit that, as any other toolkit, should be used flexibly
and in a context-sensitive way. -

I start in section 2 with setting out a framework for software design methods that
allows us to analyze structured and object-oriented methods and their techniques in a
coherent manner. This framework is explained and motivated at length elsewhere {56]. In
addition to allowing us to understand and analyze the use that can be made of specification
‘techniques, the framework also allows us to define the relationships that must hold between
the different techniques in a coherent multi-perspective specification. In section 3, a
catalog is given of techniques taken from structured and object-oriented methods, and
show how they fit into this framework. In section 4, it is shown which techniques are
adopted in TRADE, and how these are connected. Section 5 concludes the paper with a
discussion.
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Figure 1: A framework for systems.

2 A Framework for Software Systems

The TRADE framework classifies the kinds of propemes of software systems that a de-
signer might want to specify. It ignores the design process but focusses on the system:
we return briefly to this below. The framework is derived froin franieworks for systems
enginecring [17, 18] and product development [45] and from an analysis of softwaré design
methods [57]. The two basic dimensions of the framework are those of external interactions
~and internal (de)composition (figure 1).! Each system interacts with its external environ-
ment and is viewed as part of an aggregation hicrarchy, in which higher-level syvstems are
composed of lower-level systems. External interactions and internal decomposition are
orthogonal in the sense that design (lccmons about these two dlmonsnons of a sy stem can
be separated.
The external interactions of a system should be useful for at least some other systems
in its external environment (people, hardware or softwarc). This means that we shionld
_always be able to partition external interactions into chunks of useful interactions that
we call external functions. These cluinks may be atowmic from an external point’ of
view (i.e. they are external transactions), or they may be-complicated dialogs betweet
the system and some external entities. They are not to he confused with mathematical
functions or with functions written in a progmmmmvr language. They are similar to
Jacobson’s 31, 40] use cases: ‘pieces of external behavior that have some use for aii ‘extérnal
agent. Of the many properties that external functions can havé, we ‘single out ‘two kinds:
the ordering of functions in time, called behavior, and their ordering in “space”, called
communication. An external function lS an external interaction, and each external
interaction involves communication with one or more external entities. Moreover: external

. interactions are usually governed by rules of temporal precedence. which leads to the

concept of behavior. The distinction between behavior and communication is the same
as the classification of process operators in CCS into dynamlc and static ones {38].

- There should be a safety valve in our framework in the form of a category “all other
properties”. This includes the famous “ilities” such as usability, portability, interoperabil-
ity, reliability etc. Many of these can be construed as properties of interactions or of the
decomposition. However, structured and object-oriented methods provide no techniques
or heuristics for specifying these properties and TRADE contains no tools for this, so we
“ignore this category in this paper. : :

'The terms “composition” and “dccomposntmn ‘ised in the paper do not refer to bottom-up or top—
down deswn processes but are used to refer to the mternal structure of a system.
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This completes the sketch of our framework for techniques. We will classify the tech-
niques used in structured and object-oriented methods as techniques for specifying exter-
nal functions, behavior or communication, or internal decomposition of a system. Before
we do that, we point out a number of special features of the framework and show how it
can be applied to software systems. . L

First, observe that each component of a system is itself a system. that has an internal
decomposition and interacts with other components and external entities of the system.
In fact, each interaction of the entire system is realized by interactions of its components.
In terms of specification techniques, this means that we can use the same technique to
specify interaction of systems at different levels in the aggregation hierarchy.

Next, we can specify a system’s external external interactions at several levels of re-
fincment, where higher levels of refincment correspond to more detail and less abstraction.

 We can also specify a system’s components, componcnts of those components, cte., leading
"to an aggregation hicrarchy. The orthogonality of external interaction and decompaosition
implics that interaction refinement and system decomposition are orthogonal. This is
visualized in figure 2, called the magic square by Harcl and Pnueli [24]. Orthogonality
means that decisions about interactions can be intertwined with decisions about decom-
positions in any way {49]. .
- To explain this further, we return briefly to the process dimension. It is useful to dis-
tinguish logical design tasks from the way these tasks are ordered in time. Very gencrally,
for any design task, the logical tasks are :

e analysis of problem situation,

. syhthes%s of proposed solutions,

o simulation of solutiovns, and _

o evaluation of simulations {45, ‘56].

For example, we may refine an interaction specification by analyzing the needs of the
external environment, proposing a refinrement, simulating the specified interactions, and
evaluating this simulation. Or again, we may design a decomposition by analyzing the
desired interactions of the system, proposing a decomposition, simulating its behavior, and
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evaliating this simnlation. During an actual project, these tasks may be ordered i itime in
various ways. For example, in waterfall development, thie entire set. of exter nal interactions
is specified before the system is decomposed in a top-down way. This is characterized by
a path through the magic square that: starts at the npper left corner and then procecnds
in a top-down way by alternately moving right (refining) and down (decomposing). |
incremental development, only the most important external intcéractions are spm'iliml
before 'a system architecture is determined. The corresponding path through the magic
square starts at the upper left corner and moves sufficiently right and down to determine
the overall functionality and architecture of the system. 1t then performs a lincar process
for each increment of the system. Other strategies are possible too [24, 56, 60]. In each
strategy, decisions about interactions and architectures are intertwined in a particular way.
- In whatéver way this is done, the result of these decisions must be justifiable as if they
were taken by means of a rational design process [41]. This is the design analogy to the
way in which the historical progress of scientific knowledge can be mtxonally reconstructed
“as if a rational, empirical discovery procedure were followed (33, 56].

" So far, thic framework does not refer to special properties of soft\mrc systcms .m(l is
therefore applicable to all kinds of design. In the case of software systems, we'add two
features to our framework that will turn out to be useful to understand the use that is made
of speclﬁcatlon techniques. First, each software system interacts with its environment by
exchanging symbo! occurrences with its external entities. Now; a symbol eccmrrence is
a physical item to which people have assigned a meaning: So for these people, it refors
to. part of the external world. 1 call the part of the world referred to by the external
interactions of a softwarc system the subject domain of the system. (Another term
often used is Universe of Discourse.) The subjoct domain is itsclf a system and may itself ‘
be under development by another design team. So the framework of figure 1 is applicable
to it. To understand how techniques are used in methods, it is important to understand
what they are used for: to specify the subject domain or to specify the software system.

The second feature to be added to our framework is the identification of the esscn-
tial level of aggregation in the specification of software systems. ‘Given a specification of

*.external functions, behavior and communications of a software system. we can design a
decomposition of this system that would be optimal for this specification of external prop- -
‘erties, and that ignores the properties of underlying implementation layers. I call this an
essential decomposition of the software systéin. The only decomposition ciiteria that
can be used for the essential decomposition are derived from the éxternal environment
of the system, such as its external functionality. external behavior. external communica-
tions, or its subject domain. The concept of essential decomposition arose with McMe-
namin and Palmer [37] and also occurs in the object-oriented method Syntropy under
the guise of the specification model [10]. I return to this when we discuss structured and
object-oriented decomposition criteria in section 3.2.2. All other decomposition levels of
a software system are designed by taking aspects of the underlying nnplementahon envi-
ronment into account. For example, in a distributed system, the essential decomposition
must be allocated to processors in the network, and at each processor. essential compo-
nents must be mapped to schedulable sequential processes. I call these decomposxtxon

" levels implementation-oriented.
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3 A Catalog of Techniques

3.1 External interaction speciﬁcation,
3.1.1 External functions

In our framework. external interactions are partitioned into useful portions called fune-
tions. Functions can be organized in a refinement hicrarchy such that the root of the
hierarchy is the overall system function, called the mission of the system, and the leaves
are elementary functions. I regard a function elementary if it is triggered by an event
and includes all desired responses to the-event. Borrowing from structured analysis, wo
distinguish external events, which arise from an external entity, from temporal events,
which consist of a significant moment in time {52]. For example, pushing an elevator but-
_ton is an external event. If the elevator doors have been open for a certain amount of
time, a timeout occurs, which is a temporal event. . '
- Techniques for specifying external functions come mainly from structured analysis.

o Often forgotten but extremely important is the mission statement of the system.
In the Yourdon Systems Method (YSM) this is catled the statement of purpose [66}.
It consists of a general description of one or two sentences, the major responsibilities
of the system and a list of things the system is agreed not to do.

s The external function hicrarchy can be represented by a function refinement
tree whose root represents the mission and the leaves represent the clementary
functions. This is a well-known technique from Information Engincering [34]. The
trée is merely an organizatiori of external functions and doces not say anything about
the internal decomposition of the system.

¢ Elementary functions, which arc at the leaves of the tree, can be represented as a
list of event-response pairs, another technique from YSM. in which the source of
the event, its meaning, the desired response of the system, timing requirements and
other relevant externally observable properties are described 65, 66].

o If the data interface of events and responses is important, their pre— and post-
conditions in terms of input and output data can be specified. This technique is
used in structured and object-oriented analysis alike {9, 65, 66).

There are several techniques to specify behavioral and comniunication properties in struc-
tured and object-oriented analysis, discussed next. Many of these techniques are too de-
tailed to be used for a specification of external system behavior at the higher levels of

aggregation but as we specify the requirements of lower-level components, they become -

increasingly useful. These lower-level components are systems in their own right and we
continue to refer to them as such.

3.1.2 Behavior

Two groups of behavior representation techniques are used in structured and object-
oriented analysis. state transition diagrams (STDs) and process dependency diagrams.
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. State transmou (hagl ams come in several flavors. In all flavors. an STD isa (ln(‘cte(l
* graph in which the nodes represent states and the edges stare transitions. In the
Mealy convention, an edge can be labcled by the event that triggers the transition
and the action generated by the transition. The triggering event is an external event
" received from the environment of the systeim being specified and the gencrated action
is the response sent to the environment. For example, in the Mealy STD of figure 3
* if the system receives event e when it resides in state S1, it will generate a and move
to state S2.- Most structured analysns methods of the Yourdon school use Mealy
STDs ,

o In the Moore conventlon actlons must be assocmted with states mthcx than
" transitions. . In the Moore STD of figure 3, if the system receives event e when it
.- resides in state S1, it will move to state S2 and upon arrival in this state, gencrate
-a.- The Shlaer-Mellor method for object-oriented analysis uses Moore STDs [48].
Formally, the Mealy and Moore representations have the same expressive power [26 '
page 42], because they recogmze the same language.

¢ In the Statechart convention, both the Mealy and Moo:= conventions are al-
“lowed [19, 27]. More importantly, statecharts allow the reprzsentation of state hi-
~ erarchies and parallelism. For example, in the statechart ¢f figure 3, the system
" is represented by state S, which is partitioned into two parzllel substates S1 and
S2, each of which are further divided into substates. When -he svstem is in state
SI11, it is also in state S11, in state S1 and in state S. If it re-éives event ell when
‘it is in state S111, it will leave S11 and S11, generate all a=d move to state S12.
‘The generated action all may be sent to the external envirnment but may also’
be broadcast to all parallel components (such as $2). The execution semantics of
_statecharts’is complex and has been studied-in detail [4, 25!. Depending upon the
- execution semantics, a statechart can be replaced by a set of Maaly (or Moore) STDs
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that commmnicate via broadeasting. Most object-oriented methods nse statecharts
to represent. behavior.  This may give the impression that the use of statecharts
is the hallmark of object-oriented specification. This is a false impression. becanse
Statemate, which is a structured appraach, also uses statecharts {22, 27]. The State-
mate cxccution semantics of statecharts is precisely defined 23], but the statechart
versions used in object-oriented methods do not have a formally defined semantics.
The exception is the UML, for which a formally defined exceution semantics is car-
rently heing-defined {44, 20, 21]. The reader should be warned that this semanties
is totally different from the Statemate semantics. :

o In order to be able to draw an STD, the number of represented states in an STD
must be finite and small. The number of representable states can be increased if we
introduce local variables. This requires an extension of the graphical technique
with the ability to define data types and declare variables. Furthermore, edge labels
must be extended with the possibility to specify guards that test the value of
these variables, and with the possibility to specify additional actions that consist of
assigmments to these variables. If a guard evaluates to false when an cvent occurs.
then the event e will not trigger the transition. An STD with local variables is called
an extended STD. Mealy STDs, Moore STDs and statecharts can all be extended
this way. Yourdon-style structured analysis do not use extended STDs, but other,
structured methods such as JSD [29] and SDL [5] and all object-oriented methods
use extended STDs.2 1 argue below that this lies at the heart of the difference -
between these approaches. ’ :

o A small number of methods use process dependency diagrams fo represent
behavior. These are dirccted graphs in which the nodes represent processes and
the edges process dependencies. The process at the tail of an arrow must have
terminated in order for the process at the head to begin. Process dependency
diagrams are typically used to represent the flow of control through a number of
processcs, cach of which may be executed by a different system. They are used
for example in workflow modeling. -Process dependency diagrams were introduced
in Information Engineering [35). Martin and Odell use an expanded form of the
notation in their object-oriented specification method [36] and yet another form of
the notation is adopted in the UML {43]. Theré is as yet no forinal semantics for
these notations in their complete forms. : ' ;

Of the STD techniques, Mealy and Moore representations are alternatives and statecharts
are a more powerful variation. Extended versions of these techniques are move expressive
than nonextended ories. Clearly, the STD techniques are not mutually incompatible but
in a particular modeling effort, one of them should be chosen. Whatever STD convention
‘is used. it assumes that external functions of the system have been specified as event- .
response pairs. The STD can then be used to represent temporal orderings of the event-
response pairs. : '

2] regard JSD as a hybrid method that combines elements of structured and OO analysis. JSD uses
process structured diagrams with accompanying text, that are equivalent to STDs. SDL is a description
technique used for telecommunication systems based upon extended finite state machines. The design
philosophy of SDL is functional decomposition but recently, object-oriented features have been added I7,
39]. :
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Process dependency graphs do not reguire that fanctions have heen specified o event -
response pairs.  Viewing cach function as a process, the process dependenicy graph can
then be used to vepresent temporal precedence relationships between these, Most varieties
of process dependency graphs have no formal semantics.  France [16] defines a formal
semantics for data flow diagrams extended with control constructs, but the hest of my
knowledge, this has not been used-in the reviewed methods. Because in the UML, process
dependency diagrams (called activity diagrams) arc based upon statecharts, there is hope
that a formal statechart semantics can be used to define a formal semantics for activity
diagrams. Until such a formal semantics is defined to decide the matter, an integratod
approach slxould use STDs and not process d(‘pcn(lcnc) dld"l ams.

3.1.3 Communication

Tho following communication specification techmquea are med i strurtuu_d aml object-
oriented analysis at the systcm level. . ‘

» Very useful to represent the system boundary is the context dlagram whu'h rep-
resents the system and the external entities which it communicates with (and which
arc sources of external events or destinations of responses). This is an important
technique from structured analysis [14], reccntly reinst.ate(l .b\' Jacksou [3()].

e A variant of the cont(‘\t diagram, mttoduccd in Ol)Jcctmy and since adoptod l;\
many object-oriented methods, is the use case diagram [8,31.42]. A use'case is an
interaction between the system and its environment that is useful for its onvuonmvm
— in other words, it is an external function. - A use casc diagram shows fox one or
more system functions which external entities mav communicate wnth the systom
during an occurrence of each of these flmct,lons «

-» The Shlaer/Mellor method uscs a communication diagram to represent possible

" object communications [48]. This is'a directed graph in which the nodes rejpresent
object classes or external entities and the edges represent possible commumcanons
These are asynchronous in the Shlaer/V I\Iellor ‘method. -

This exhausts the techniques used for the spemﬁcatlon of communication. There are two
othex techmquos that can bé used to illustrate the commumcatlon an(l behavnor of a
system : :

¢ ‘A sequence diagram consists of a set of vertical lines, each representing a commu-
nicating entity. The downwards direction represents the advance of time. - Arrows
between these lines represent communications. Sequence diagrams have been used
for a long time in telecommunication systéms, where they are standardized as.mes-
sage sequence charts {28]. Variations of the technique are used in object-oriented

~ analysis {31, 46] to represent the communication between objects or between the
system and its environment. In an attempt to standardize on an object-oriented
version of the technique it is adopted by the UML [12]. A sequence diagram repre-
sents behavior as well as communication. However. it does not represent all possible
behaviors and commumcatlons1 but only those that can oceur m a pamcular sce-
nario. :
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component 1
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Figure 4: Format of a function decomposition table.

« Collaboration diagrams are directed graphs in which the nodes represent cont-
mumicating entitics and the edges communications. The edges are numbered to
represent the sequence in which comunications take place. Collaboration dia-
grams can be used as alternative to sequence diagrams. Like sequence diagrams,
there are many versions, that differ in the elaborations and adornments that they
allow. The technique plays a central role in responsibility-driven design [64] and in a
number of object-oriented methods such as Booch [6]. Fusion [9], and Syntropy [10].
It has been adopted in the UML as alternative to sequence charts [42].

The communication specification techniques are clearly compatible and can be integrated
in an obvious way. For example, a context diagram can show where the events come from
and where the responses of the system go to. If we add an STD to specify the behavior of
external cvent-response pairs, a sequence or collaboration diagram can be used to illus-
trate possible communication sequences of the system generated by this behavior. In the
specification of external interactions, therefore, there is no incompatibility between strue-
“tured and object-oriented analysis. To find the difference, we must look at decomposition
specification techniques. -

3.2 Decomposition

Taking a systems engineering view, we can represent the allocation and flowdown of exter-
nal functions to components by means of a-function decomposition table, also called
a traceability table in systems engineering [11, page 102]. [12). In figure 4, the top row
Jists all external functions of the system (at a certain level of refinement) and the leftmost
column represents all components of the system {at a certain level of aggregation). An
entry of the table represents the functions that a component must have to in order to
‘realize an external function. A column of the table represents all functions that act to-
gether to realize an external function. The table relates all perspectives that we identified:
functions, decomposition, behavior (ordering of functions in a row) and commuiiication
(columns). ‘Note that each such table corresponds to one point in the magic square of
figure 2, i.e. a refinement level and an aggregation level.

3.2.1 Decomposition specification

Yourdon-style structured analysis uses entity-relationship diagrams (ERDs) and data
flow diagrams (DFDs) to represent software decomposition. Figure 5 contains a simple
DFD that represents three components and the way they communicate with each other
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Figure 6: A Mealy STD for the Terripé?ature control process with a decision state.
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Figure 7: A simple entity-relationship diagram.
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and with external entities. Temperature sensor and Heater are external entities used 1o
control the temperature of a fluid in a cooking tank. These are not components of the
system but part of the envivomment. The rest of the dingram illustrates that DFDs
recognize three different kinds of system components:

e The data store Desired temperature vepresents the desired temperature of the fhiid.
A data store is a place where part of the state of the systent can be stored.

o The data process Compare compares the value stored in Desired temperature with
the value measured by Temperature sensor and sends the result to Temperature con-
trol. A data process is a function that transforms input data into outpnt data.

s The control process Temperature control is a finite state machine that periodically -
triggers the data process Compare and, depending upon the answer, turns the Heater
on or off. .

Dashed arrows represent signals, solid arrows represent data flows. The Mealy STD for
Temperature contro! is shown in figure 6. It shows that Temperature control triggers an
external data process by the action T: Compare and then waits for the answer in the state -
Comparing. It moves to the Heating or Not heating state depending upon the answer, .
turning the heater on or off accordingly. Comparing is called a decision state.

The structure of all data in the system, stored or manipulated. can be represented
by an ERD. Figure 7 shows a fragment of an ERD that describes the structure of some
relevant data. Tt shows that the system must contain data about the Batch of juice to be
heated, the Recipe according to which the batch must be heated. and the Cooking tank -
in which the batch must be heated. The arrow from Batch to Recipe means that there
is exactly one Recnpe for cach Batch. The line between Batch and Cooking tank means
that there is a many-many relationship between these. The Yourdon method does not
prescribe the relationship between ERD and DFD other than that at lcast thc structure
of all stored data must be represented by the ERD.

Yourdon structured analysis thus recognizes three kinds of components to I)o hst(‘(l in o

the leftmost column of thc function decomposition table:
¢ data stores, '
o data processes, and
s control processes.
Object-oriented methods recognize only one kind of component:
e objects, that encapsulate all these three aspects.

"Each object contains data, can perform computatlons with these data, and has a behavior
over time. This mans that object behavior can be specified by extended STDs. What
this means can best be illustrated by an example. ‘
Figure 8 shows a possible class-relationship diagram (CRD of an object -oriented
decomposition of the control software. Each rectangle represents an shject class. Tempera-
ture_control.S has two attributes, Desired_temp and Actual_temp. Tc simplify the diagram,
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Figure 8 A 'sirﬁplg class-relationship diagram.

Turn on .
Time to compare [Desired temp > Actual temp}
Heating )
Time to éompare (Desifed temp <= Actual temp} . Time to compare [Desired temp > Actual tempj
~ Tum off Turn on :
Net h D Time to compare {Desired temp <= Actual temp}

Figure 9: An extended Mealy STD for the Tgrﬁp’erature control object. ’

we omitted the attributes of other objects. The diagram is an extension of the ERD
with object classes that correspond to external entities and to a control process in the
DFD. Bidirectional arrows in the diagram represent one-one relahonshlps single arrows
represent many-one relationships. To emphasize that all objects represented by the CRD
“are software components, we added -S to their names. We did not need to do this in the
ERD of figure 7, because in structured analysns, ERDs always represent (lata structmes
of software systems.

The behavior of the Temperature control object can be specified by an e\tended STD
“such as shown in figure 9. The STD uses the two attributes of Temperature control as local
variables. ‘They receive values from the environmient of the Temperature control, in this
case the Temperature sensor and Recipe software objects. This is not shown in the CRD:
the lines in that diagram represent relationships between the software objects, which tells
us' which software objects know the identity of which other software objects. They do
not tell us which communications between objects take place. The variables are tester
in guards, which are denoted by Boolean expressions written between square brackets.
Thus, if the event Time to compare occurs when the temperature control is in state Not
heatmg then the transition to Heatmg occurs 1f Desired temp > Actual temp, and the
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heater is turned on.

Now, compare this with the Mealy STD in h«rm(‘ 6. 1t is clear that :wp.n,nm-r data
aned control, as is done in DFD wodels, makes for more complex models because this
forces us to introduce decision states in the Mealy machine to await toe onteome of
decisions, and it forces us to introduce data processes that compute the decisions. ane that
comnmmicate with the Mealy machine. “The communication typically has the following
structure: The Mealy machine triggers a data process that must compnte a decision, and
the data process sends its output as an cvent to the Mealy machine. Further complexity
is introduced hecause DFDs separate data processing from data storage. This means
that the data process does not have the data to compute the decision. - It must get this
from an input data flow and/or a data store. Data that survives a single external systram
transaction must be stored in data store, whereas in OO models this data persists in
the state of objects. The consequence of separating data processing, data storage and
control is that DFD-based models are considerably harder to understand than ebject-
oricnted models. Also, these separations are incompatible with the encapsulation principle
of object-oriented decomposition. I conclude that DFDs are incompatible with ohject-
oriented decomposition. - :

3.2.2 Decomposition heuristics

There are several criteria that can be used to find a decomposition. Functional de-
composition uscs external functionality as criterion. In its simplest form, every external
clamentary function corresponds to a component that implements that function. “This
wortld Iead to a diagonal in the function decomposition table, mapping external function-
ality to internal structure. This is alvight if it lcads to small interfaces between components
and if the external functionality never changes. If either of these conditions is false it is a
bad decomposition. It is often claimed that functional decomposition is incompatible with
objcct-orientation. However, there is nothing in the concept of an object that prevents
us from using a functional decomposition criterion for an object-oriented dccompmltmn
For example, in figure 8, Temperature control corresponds to a function of the system.?

A second decomposition criterion that can be used is subject domain-oriented
decomposition.  In section 2 it was noted that software systems interact with their
environment by exchanging symbol occurrences with the énvironment. The subject do-
‘main of a software system was then defined as the part of the world referred to by these
symbols. For example, the subject domain of a database system is the part of the world
represented by the database, and the subject domain of a control system is the part of
the world controlled by the system. In subject domain-oriented partitioning, there
is a correspondence between the software system decomposition and a subject domain de-
composition. For example, figure 8 contains software objects that correspond to a batch,
a recipe and a cooking tank.

This decomposition principle has been adopted by many object-oriented methods but
contrary to what is often thought. it is not characteristic of object- oriented methods.
_For example. the principle is central in JSD [29], which is not purely object-oriented.
Furthermore, as I show elsewhere [55], the principle can easily be applied to data flow

“3[n JSD, such objects are called long-running functions {29] and in Objec!or\ they are called control
objects {31]. -
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madeling. Finally, we find improper use of the principle of subject-domain pnrliﬁ«min--
in object-otiented methods. For example, the Fusion method réconmmends making an
ER-like domain madel first and then drawing a boundary aronnd the object classes that
will canstitute the system {9]. By the act of drawing this boundary, objects in the do-
main (outside the system) become objects inside the system. Ojects outside the houndary
remain subject domain entities. This confuses the subject domain with the internal de-
composition of the system. The resulting diagram combines features of a CRD showing
the essential decomposition of the system with features of a context diagram showing thie
communications with the cnvironment. Published examples show inodels of the domain
{outside the system) that alrcady contain system functions and other essential system
components {2]. In some cases, the domain model contains two copies of an eatity, one

~ for the external entity and one for a essential system component. Use of the method in
_teaching show difficulties precisely at this point {15].

In addition to functional decomposition and subject-domain-or lcnted decompommn
there are two intermediary decomposition heuristics. Event partntmmng recommends
defining onc system component for every elementary event-respouse pair {37} and device

* partitioning recommends defining one system component for every external [66. pages
'355, 509]. In practice, a combination of these heuristics will be used. For example, fig-

ure 8 contains components that correspond to external devices (Heater-S and Temperature
sensor-S) and we have scen that it also conutains components that correspond to subject
domain objects and to a system function.

4 The Techniques in TRADE

Figure 10 lists the techniques that have been a(lopf.éd in TRADE. The rcason for adnpfing
these techniques is that together, they the kinds of propertics that can be specified in a

‘wide variety of structured and object-oriented methods{57]. For cach dimension of our

framework, we chose simple and uséful techniques that can be used to reprcsmit system
properties along that dimension: Because the primary aim of TRADE is to teach infor-
miatics students about software spemﬁcatlon techmques case of understanding is prefcrrod
above expressive power. This is the reason why extended Mealy machines rather than
extended statecharts are chosen to represent behavior. Experience has taught that stu-

~ dents tend to produce unnecessarily complex models when using stéteqharts to represent

behavior. Also, local variables gives us all the added expressive power that we need: state

-nesting and parallelism can be expressed by a set of communicating Mealy machines. And

as argued earlier. the introduction of local variables i in any STD techmque allo“s us to
avoid the complexities of data flow diagrams.
Simplicity of techniques also makes it feasible to define the connectioris that mist

~ hold between different parts of a coherent specifications in an understandable manner.
-Without going to details, if the techniques are used as indicated in figure 11, the links

shown in figure 12 must hold. The entries of the table indicate the techniques between
which there exist links. The table is symmetric around the diagonal, which is why énly
half of it is shown. A brief explanation of the entries of the table follows. where the entries

* are identified by a pair (row.column).

{2.1) The root of the function refinement tree is labeled by the mission statement.
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(3.2) Each leal of the function refinement tree represents an external function, speeified by
means of an event-response specification andfor a pre-posteondition speeitication.
Each external function specification corvesponds to a node in the funetion refincment
tree.

{4.2) Sce (3.2).

(5.3) The event sources and response destinations of an event-respouse specification of
an external function are external entities represented by the context diagram, that
interact with the system. :

(6.2) Each use case corresponds to a node in the function refinement trec.

{6.5) The interactions between a use case and an external entity. represented in a use
case diagram, also occur in the context diagram between the system and an external
entity.

(7.5) The external communications in a sequence diagram of external interactions corre-
spond to the external communications in the context and in use casc diagrams.

(7.6) See (7.5).

(9.2) The top row of the function decomposition table corresponds one-one to the leaves
of the function refinement tree (they represent. external functions).

(9.8) The leftmost column of the function decomposition table corresponds onc-one with
the set of classes in the class diagram. In addition, the entries of the table must be
consistent with the interface of the components declared in the class diagram.

(10.8) The cvents and responscs in a ‘event-response specification of a component must
be consistent with the events and responses of the component declared in the class
diagram. o :

(11.8) The terms in a pre-postcondition specification of an interaction of a component . .
must be consistent with the attributes of the component declared in the class dia-
gram. :

(12.8) The events and responses of the transitions in the Mealy diagram of a class must
correspond with the events and responses of the class declared in the class dia-- .
gram. In addition, the local variables used in the Mealy diagram correspond to the
attributes declared for the class in the class diagram. ‘

(13.8) The communications represented in a communication diagram of comporent in-
teractions correspond with the events and responses declared in the class diagram.
(Each of these is part of the interface of the object and consists of a communication
with another object or with an external entity.)

(13.10) See (13.8).
(13.12) See (138).
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(14.12) The sequence of comumnications in a serence diagram of component” commmni-
cations is consistent with the Mealy diagram of the commmmicating components.

(14.13) The communications in a sequence diagram of componenl communications are
consistent. with the communications represented by the commnnication diagram.

This list suffices to give an l"l])l(‘%‘al()l\ “of the connection rules. There are two ways to
make this more precise, by means of formalization and by means of a m('mmmlvl To
formalize the diagrams and their links, a fol malization based upon order-sorted dynamic
logic and process algebra will be used [53, 63, 62]. This i is pathmldrl_y important for the
riiles in the above list that contain the word “consistent™. Definition of a “metamodel is
ongoing work, which is part of the spccnﬁcatlon and lmplemcntatmn of the TC\[ qofmau-
. tool [59]. ~
" Figure 12 does not define links for the subjcct domdm model (a class d\a«rmm with
extended Mealy machines). These parallel the links between the class diagram and Mealy
'nmchmes for the system decomposition. If subject-domain-or fented clecompomhou for the
system is used, then there will be links between the class dmrrlams of the subject domain
and that of the system. These are however a result of design (leuslons and ‘are not a
consequence of the semantics of the notatiouns. mee 12 only lists the lml\.s that st
hold in all cases. - : -

Observe that we can define the links only hecause’ we pxe.supposc our fmmcmnl\ fm
software design techmqueb It is this framework that gives us the coneepts of subject
domain, functions, behavior, connunication and decomposition, which, give tlw links
meaning and that allows is to justify that the links must be present. .

- Comparing the techniques in TRADE with the UML [4: 5] we obscrve tlmt the sh ne turu
of TRADE models corresponds with that of UML models in that a softw: are :,yst('m is
viewed as a collection of interacting objects, whose structure is represented by a rla»s
-diagram and whose hehavior is represented by state transition diagrams. In a(l(lmon a
TRADE model represents external functionality by a mission statcinent and a fuucnon
refincment tree, and adds traceability by defining a function dccomposmon table. TRADE
only uses the simplest possible state machine notation (Mealy machines) lathcl than the

.- complex statechart notation, and omits collaboratlon diagrams, w lu('h have roughly the
-same expressive power as sequence diagrams.

Just like the Yourdon Systems Method [66], TRADE models contain an elaboxate
specification of external functionality, using roughly the same teclmiques as used in YSM.
Unlike YSM, the essential decomposition is not represented by means of data ﬂow modpls'
but by means of a class diagram. :

Another interesting comparison to make is with SDL [5], used for modelmv telecom—
munication systems. An SDL model represents a system as a hierarchiy of subsystems,
called blocks, that may communicate via channels. Each block at the bottom of the hierar-
.chy consists of one or more communicating processes, each of which is specified by means
of an extended finite state machine. The major difference with TRADE models is that
TRADE contams more techniques for specifying external functlonalltv but contains no
technique for representing subsystems. Addition of a subS) stem representation technique,
and heuristics for partitioning a system into subsystems, is a topic of current research. , -

Turning to the heuristics that can be used to apply the techniques in TRADE, these
have already been described in section 3.2.2. These heuristics have their source in struc-
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tured and object-oriented methods mul can all be used in combination with the tee Inm;m 5

in TRADE:

5 Discussion and Conclusions

TRADE technigues can be used in different design strategics, ranging from waterfall to
incremental or evolutionary. They look familiar to developers with a structured back-
ground as well as those with an object-oriented backgronnd and thercfore shoukd help in

" combining the best elements of both practices. The essential element in this is to institute
a systems engineering way of working, in which specification of external interactions is
separated from a specification of internal decomposition, and explicit traceability from
external interactions to internal components is maintained. Structured techniques for
external interaction specification can then be seamlessly combined with object-oriented
techniques for essential decomposition. DFDs cannot be integrated this way and shonld
be dropped. However, I argued that functional decomposition is compatible with object-
‘oriented decomposition. It can also be combined with other decomposition criteria, such
as device partitioning and subject-domain-oriented partitioning.

To validate the TRADE framework, it has been applied to the industrial production
cell case [54] and in the Esprit project 2RARE to the specification of a system for video
“on demand [61]. Two other case studies are available on the web {50, 58], and several
others are in preparation. Further validation will take place in teaching, where it will be
used to teach techniques in a method-independent way. Use of the TRADE framework
in teaching is supported by a graphical editor called TCM (Tootkit for Conceptual Mod-
cling), frecly available for teaching and rescarch purposes [13]. It supports most of the
to(lnuqucb discussed in this paper. Validation of another kind takes place by providing
a formal scmantics to the techniques in TRADE. ‘A formal semantics of a combination
of objects with behavior and commumcatlon, based on order-sorted dynamic logic and
* process algebra, has bcen given earlicr [53, 63, 62]. Current work concentrates on declar-
ative and operational scmantics of behavior specifications so as to provide an execution
semantics for STDs in' TCM {59]. The methodological role of this is to strengthen the
tools in TRADE by making their meaning and interconnections explicit. Our hope is
that this makes the tools easier to use without burdening the tool user with the formal

_foundations. '
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