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Foreword 

In Europe and North America the competence in software engineering research has differ- 
ent profiles. While in North America there is a lot of know how in the practical, technical, 
and organisational aspects of software engineering, in Europe the work concentrates more 
on foundations and formal modelling of software engineering issues. Both approaches have 
different strengths and weaknesses. Solely practice driven research in software engineering 
is in the danger of developing into a shallow field and could fail to find a solid scientific 
basis and contribute substantially to the progress in software engineering. Work concen- 
trated on formal aspects only is in the danger of becoming too theoretical and isolated 
from practice such that any transfer into practical application will fail. 

Substantial progress in software engineering can be achieved by bringing together 
pragmatic and foundational work in software engineering research. This can provide a 
step towards a more common scientific basis for software engineering that allows us to 
integrate the various results of research and workshops, leading to fruitful synergetic 
effects. It will also help to identify critical research paths and developing an adequate 
paradigm for the scientific discipline of software engineering. 

It was the goal of this workshop to bring together experts from science and practice 
in software and systems engineering from North America and Europe. 

In software and systems engineering it is necessary to distinguish the enormous differ- 
ence between the dynamics in development we refer to and the limited scope assumed by 
many of today's software managers that still use outdated techniques. Many of the un- 
solved problems associated with the old techniques are symptoms of lack of formalization 
and lack of automation support. 

The intended focus of the workshop was on unified sets of formal models and associated 
methods suitable for automation for many aspects of software development, in particular 
those that address change and those that apply on a large scale. Some of the intended 
aspects of software evolution are 

• modifiable software architectures, 

• resource changes, 

• context changes, 

• requirements changes, 

• changes to decomposition structures, and 

• changes in plans. 

These issues are related to formal representations of the version history, and formal 
representations of the activities that produced existing versions or have been proposed to 
produce future versions. 



The essence of the problem is to establish and maintain consistency among various 
kinds of software artefacts throughout the development and evolution process, including 
consistency between requirements, architectures, and programs. Automation support 
is needed to determine dependencies and to use this dependency information to provide 
decision aid for software synthesis, analysis, and evolution. Many versions of each artefact 
are produced as the software evolves, and changes to the dependency structure must be 
recognised and reacted to. The challenge is to better formalise the problems in this area, 
and to develop some of the badly needed technical solutions. 

If we as a community can succeed in this, the results will provide convincing evi- 
dence that formal methods can have strong practical value, and help reverse the trend of 
weakening support for the subject from both industry and governments. It seems that 
previous work on formal methods can be applied to problems related to these topics, but 
it may require non-traditional approaches. The challenge helped to trigger new ideas at 
the workshop, and perhaps opened new opportunities for progress. 

It is well recognised in the meanwhile that software and systems engineering as an 
important issue in technical systems still lack a proper scientific basis. The many efforts 
in academia, especially under the heading formal methods, towards such a scientific basis 
have produced many valuable and interesting scientific results; however, most of the work 
of integrating this with the practice of software engineering is still missing. Nevertheless, 
we can observe a starting trend to bring together practical considerations and approaches 
with scientific results. A good example is the Unified Modelling Language that recently 
was designed and still will evolve. The fact that a proper semantic basis is needed for a 
proper methodological support is much more recognised than in its predecessors. Nev- 
ertheless, more efforts are necessary to give the scientific research more focus w.r.t. the 
questions that are important for practice and to stimulate a transfer between academia 
and application. It was the goal of the workshop to contribute to this task. 

The workshop took place in early October 1997 in Bernried in Germany. It fulfilled 
the expectations formulated above. It is our pleasure to thank Sascha Molterer for his 
excellent help in organising the workshop and the Army Research Office and in particular 
Dave Hislop for the generous financial support. 

March 1998 Manfred Broy, Bernhard Rümpe 
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A Discipline for Handling Feature Interaction 

Egidio Astesiano - Gianna Reggio 
DISI 

Dipartimento di Informatica e Scienze deH'Informazione 
Universitä di Genova 

Via Dodecaneso, 35 - Genova 16146 - Italy- 
pastes, reggio } @ disi.unige.it 

http://wwB.disi.unige.it 

1    Introduction 

Evolution in software development has many facets. One which emerged in the last 
five years, especially in the area of telecommunications and networking, is the continual 
expansion of services. Recognizing that objected-oriented incrementality is not adequate 
to cope with this new problem in full generality, the concept of "feature" as unit of update 
has been introduced, see e.g., [10], and taken as a pivotal unit for even new paradigms, 
like feature-oriented programming, feature-oriented specification and so on [7]. 

In spite of the considerable effort (see some pointers to recent work at the end), still 
many issues deserve further attention and investigation, as it is admitted by the special- 
ists of the subject, also taking into account the growing complexity of the applications 
concerned. Among the issues, feature composition and interaction is definitely the one 
attracting most attention. This is also witnessed by the success of an International Work- 
shop on Feature Interaction, now reaching in '98 its fifth edition. In particular a lot 
of work is reported on the so-called feature interaction detection, possibly done auto- 
matically. According to this viewpoint, feature interaction is synonym with unexpected/ 
unwanted results. 

We are among those sharing the view that the problem of feature-interaction should be 
tackled within a wider methodological approach. This view is best expressed by Pamela 
Zave in [10], who calls for "an approach based on modular specifications and separation 
of concerns ... (aimed) to organize the specification so that it is easy to add without de- 
stroying its structure or desiderable properties". This is indeed the underlying challenging 
problem; again in P. Zave's words "the goal of extendible specifications is as difficult to 
achieve as it is easy to state": For example, in the realm of reactive and concurrent sys- 
tems, the classical approach to incrementality has been based on the notion of process/ 
agent as unit of change; feature-driven incrementality deals instead with incrementality 
within a process and refers/affects the behaviour of the pre-existing processes. 

In this paper we want to outline a specification framework supporting a feature-driven 
software development method with rigorous semantics, offering conceptual tools for ex- 
pressing requirements on unwanted interactions. The framework intends to be adaptable 
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to a variety of different application fields, like telecommunications, information systems; 
clearly, depending on the application, sensible domain specific methods should be derived. 

The specification framework we present is built over a general specification formalism 
for reactive and concurrent systems (labelled transition logic (lj), already supporting 
componentwise modularity. Its adaptation to feature-driven modularity is based on the 
key principle of supporting the separation of concerns by factorizing the specifications. 
Indeed we basically provide various levels of control on interactions: 

• with every feature some interaction requirements are associated, intended to provide 
constraints on the outcome of its composition with other features; 

• for the composition, a flexible concept of "compatibility" is introduced, factorized 
in turn w.r.t. the different components of feature specifications; thus a choice is 
possible between different compatibility criteria; 

• then composition is allowed only for compatible pairs and follows a general schema. 

The developer is guided to analyse the outcome of the composition by looking at 
different possible kinds of interactions, whose "goodness" or "badness" may depend on 
the application. 

Let us now outline from a more detailed technical viewpoint, the main features and 
perhaps novelties of our proposal. 

A system is modelled by a labelled transition system (Sect. 2.1), whose states are sets 
of attribute values (as in many Ö-0 approaches); the transitions denote action capabilities, 
with the labels indicating the exchanges with the external environment; transitions can 
be grouped under action names, essentially indicating the kind of event to which the 
transition refers, for the purpose of feature composition. 

In this paper we restrict ourselves to consider simple systems, i.e. we disregard the fact 
that a system may be composed by other subsystems; this is not a restriction from the 
methodological point of view, but the introduction of component modularity poses further 
interesting technical problems, which are the subject of some still ongoing investigation. 

We address the specifications at the design level, namely for characterizing essentially 
one system; this is achieved by associating a labelled transition system with a specifica- 
tion. A feature specification is basically the specification of a labelled transition system 
with some interaction requirements, i.e. formulae constraining the result of adding other 
features. 

Together with a basic semantics (the associated labelled transition system), we in- 
troduce the novel concept of complete semantics, which consists of all the specification 
models satisfying the interaction requirements, under a kind of anti-frame assumption: 
an attribute value may be changed unless its invariance is explicitly stated. The concept 
of complete semantics plays a major role in composing features and understanding their 
interaction. In order to reason about complete semantics (which usually admits infinitely 
many models), we propose a kind of canonical labelled transition system representation 
(an abstract interpretation), which allows to reason concretely about systems including 
other features. 

Both concepts, basic and complete semantics, apply in turn to the result of feature 
composition, which is again a feature. The analysis of feature interaction is done against 
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the original features at the basis of the result of their composition; this comparison can 
be done w.r.t. different interaction criteria, some of which refer to a comparison of the 
overall behaviour, provided by a notion of feature simulation, reminiscent, but different 
from the classical (bi-)simulation of CCS and process algebras. 

In this paper we try to illustrate the concepts by examples, introducing formalities 
only when required. Necessarily we discuss toy-examples, but an extended specification 
case study around the well-known telephone systems has been specified and analysed with 
our technique. 

2    Feature Specifications and Their Semantics 

2.1    Simple Reactive Systems 
We distinguish reactive systems in simple and structured or concurrent; the latter are those 
having cooperating components, which are in turn reactive systems (simple or structured). 

To model reactive systems we use labelled transition systems (see [6]). 
A labelled transition system (shortly Its) is a triple 

(STATE, LABEL,-*) 

where STATE and LABEL are two sets, the states and the labels of the system, and 
-)• C STATE x LABEL x STATE is the transition relation. A triple (s,/,s') e-> is said 
a transition and is usually written s —► s'. 

A reactive system R is thus modelled by an Its LTS = (STATE,LABEL,-*) and 
an initial state s0 € STATE; the states reachable from so represent the intermediate 
(interesting) situations of the life of R and the arcs between them the possibilities of R of 
passing from a state to another one. It is important to note that here an arc (a transition) 
s —■+ s' has the following meaning: R in the state s has the capability of passing into 
the state s' by performing a transition, where label / represents the interaction with the 
external (to R) world during such move; thus I contains information on the conditions 
on the external world for the capability to become effective, and on the transformation 
of such world induced by the execution of the action; so transitions correspond to action 
capabilities. Later on we will see the use of labels, which, as in CCS ([6]), allows to 
represent open systems and their composition to build concurrent systems. 

Here we assume that the states of simple systems are modelled by heterogeneous 
tuples with named components (records); accordingly to an 0-0 terminology they are 
determined by a set of attributes. Furthermore the labels are described by "constructors" 
possibly parameterized corresponding to the various kinds of interaction with the external 
world of the system. We do not give the precise syntax of our specifications, but just 
present an example. 

Example 2.1 Simple system specification As an example, consider the specification 
of a simple counter whose value may be incremented, decremented and reset to 0. 
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simple system COUNTER-S[c] = 
data NAT 
attrs VALmat 
interface INC, DEC, RESET() 
activity I:c -^-> c[K4i+ l/VAL] 

if VAL > 0 then D:c -^^4 c[VAL - 1/VAL] 
R:c   fl£SEr> c[Q/VAL] 

- NAT is a specification of natural values with a sort nat given elsewhere. This system 
has just one attribute VAL of type nat and three label constructors INC, DEC, 
RESET, in this case they are not parameterized, corresponding to receive the three 
corresponding commands. We use the keyword interface for the specification part 
introducing the labels, because in our setting labels are really the interface of the 
specified reactive system. The signature of NAT, the list of the attributes with 
their types and of the label constructors with the types of their arguments give the 
"signature" of the specification. 

- c is the generic name for a state of the system. 

- The activity of the system (labelled transitions) is specified by the conditional rules 
in the activity part: the system has a transition iff such transition is obtained by 
instantiating a rule in a way that the premises hold. In any state COUNTERS may 
perform a transition labelled by INC incrementing by 1 the value of the attribute 
VAL and can be reset putting VAL to 0; while it may perform a transition labelled 
by DEC only if the value of VAL is bigger than 0 and in such cases VAL will be 
decremented by 1. _[-/_] as usual denotes the update operation. 

I, D and R denote the "actions" to which the transitions belong; their role will be 
explained in Sect. 3.1. 

The semantics of COUNTERJS is essentially (because it includes also the used data 
structures, just a many-sorted first-order structure) given by the Its graphically depicted 
below. In this paper for simplicity we call Its also these richer structures. 

RESET 

RESET 

m 
INC _        INC 

"%•*  S        DEC 

The form of the given specification is a friendly, but rigorous, notation in an 0-0 
style; it can be expanded, in a canonical way, into the following 1st order many-sorted 
specification with positive conditional axioms (Horn clauses), then the associated Its is the 
one obtained by logical deduction (this is what is called "initial" model in the algebraic 
community); see [9]. 
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COUNTER-S = 
use NAT 
sorts        state, label, act 
opns        I, D, R: —» act 
opns {_): nat —» state 

K4Z: state -> nat 
_[_/ VJ4£]: state nat —> state 
INC, DEC, RESET: ^ label 

axioms     K4£((n)) — n 
(n)[n'/VAL) = {n') 

n=K4i(c) + lDl:c-^c[n/W£] 
VMI(c) > 0 A n = VAL(c) - 1 3 D:c -£^> c[n/VAL] 
n = 0 D R:c-^^c[n/VAL] 

End example 

2.2    Feature Specifications 

Intuitively a feature specification for simple reactive systems is a partial description of 
a simple system, intended as a description of only some "parts" of that system; in our 
setting these parts may be some basic data, part of the states (some attributes), part of 
the interface (some label constructors) and part of the activity (some action capability 
descriptions or partial descriptions of some action capabilities).      . 

Technically this partial description may be just a simple system specification as intro- 
duced in Sect. 2.1. But, in our approach, a specification of a feature has another strongly 
relevant component, namely the interaction requirements, a description (specification) of 
the allowed interactions with other features. 

Example 2.2 Counter as a Feature We specify a feature for simple systems, 
COUNTER, corresponding to have a counter with some commands for modifying it, just 
by adding to the system specification C0UNTERJ3 of Ex. 2.1 an interaction requirement 
part, consisting of: 

if a: c -U d and VAL ? VAL' then {I = INC or / = DEC or / = RESET). 
Here and in the following we shorten VAL{<^) to VAL'. The above axiom requires that 
any added feature cannot modify the attribute VAL as a result of a transition with labels 
different from INC, DEC or RESET. Thus other features may, e.g., add new attributes 
and extend transitions labelled with INC or DEC or RESET to act on them, while it is 
not possible to add transitions modifying VAL with new labels. 

Below we give an example of a simple system incorporating this feature, i.e. obtained 
by adding another feature to COUNTER and satisfying the interaction requirements. 
This provides an example of a "good" interaction with COUNTER. 

simple system COUNTER.TIME[c] = 
data NAT 
attrs VAL, TIME: not 
interface INC, DEC, RESET, TICKQ 
activity he -^-* c[VAL+ 1/VAL][TIME+1/TIME] 

RTSE'97, p.ll 



if K4L>0thenD:c 
R:c 
T:c 

DEC * c[VAL-l/VAL][TlME+l/TIME] 
RESET 

TICK 
» c[0/VAL][T1ME+ l/TME] 

>c[TME+l/TME] 

Its semantics is essentially the Its graphically depicted below. 

ML =2 
77C*f=0 

As an example of "bad" interaction let us consider the system whose semantics is 
depicted below. In this case the attribute VAL is changed by transitions with a new label 
(INCS). 

RESET 
RESET 

INC 

DEC 

-    mc INC 

DEC 

INC2 

DEC 
Zt- 

INC2 
INC2 

End example 

An interaction requirement for a feature F is a formula of an appropriate logic express- 
ing some property of a generic system obtained by adding other features to F. There are 
many choices for the logic to use, e.g., first-order, temporal-logic, but also non-standard 
logics for expressing conditions on the added attributes and label constructors. Here 
we prefer to allow only interaction requirements having a very precise form, both for 
methodological (only sensible properties are expressed) and for technical reasons (the for- 
mal setting is simple enough but has interesting characteristics). Experiment with more 
realistic examples will help to find out a good choice. 

Here the general form of an interaction requirement is 
if a: s -^ s' then cond 

where a, s, I, s' are variables of the appropriate types, cond is a first-order formula on 
a, s, I and s', built using only the signature of the basic data structures, the operations 
extracting the value of the attributes from the states and the label constructors. 

The following example presents further interaction requirements and shows a case 
when "action names" differ from labels. 
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Example 2.3   The possibility of failing as a feature 

feature FAIL[c] = 
data         BOOL 
attrs        FAILED: bool 
interface INC, DEC, RESETQ 

activity Fl:c -^L> c[True/FAILED) 

FD:c -^£-> c[True/FAILED] 

it FAILED-False then Uc-I^c 

if FAILED - False then D: c -^-* c 

if £4JX£D = False then R: c   *£S£;r) c 
interaction requirements 

if arc -A c" and FAILED = True then FAILED1 - True 

if a: c -A J and (o = I or a = D or a = R) then FAILED- FAILED' 

Notice how the last three rules, which seem of scarce relevance, define the relations between 
the actions I, D R and the attribute FAILED, by imposing that they can be performed 
only when FAILED is false. The interaction requirements mean that once the attribute 
FAILED is true, it cannot become again false and that actions I, D, R do not modify 
FAILED. In this case actions I and Fl correspond respectively to the correct and failed 
execution of the increment command; similarly for D and FD. End example 

We give below another example of feature which will be used in the following to give 
examples of interactions. 

Example 2.4 A sensor controlling the counter The counter levels over 99 are 
considered dangerous, and so a warning must be issued in such cases; the attribute IN- 
FORMED is used to be sure that the warning is issued only once. Transitions with label 
NORMAL put the system back to a normal situation setting the attribute VAL to a given 
value (NORMAL is a label constructor parameterized by a natural value). 

feature WARNINGfc] = 
data        BOOL, NAT 
attrs VAL:nat 

INFORMED: bool 
interface WARNING, RESETQ 

NORMAL{nat) 

activity if VAL > 100 and INFORMED = False then W:c   mRNma > c[True/INFORMED) 
if n < 100 and INFORMED = True and VAL > 100 then 

BN: c   yoJMWt("), c[False/INFORMED][n/ VAL) 

R.c _RESET^ c[False/INFORMED) 

interaction requirements 
"INFORMED is private" 
"WARNING is private" 
"NORMAL is private" 

"INFORMED is private" is a shortcut requiring that the attribute INFORMED is local 
and can only be modified as expressed by the rules. The corresponding expanded version 
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if a:c _L* c> and INFORMED ? INFORMED' then 
(/ = WARNING and VAL > 100 and INFORMED = False and INFORMED1 = True) or 
(exists n s.t. / = NORMAL[n) and n < 100 and VAL > 100 and 
VAL' = n and INFORMED = True and INFORMED1 = False) or 
(f = ÄFSFT and INFORMED1 = Fafee) 
Analogously "WARNING is private" and "NORMAL is private" correspond to 
if a: c    WARNING > e then VAL > 100 and INF0RMED = Fake and INFORMED1 - True 

NORMAL(n)       ... if a: c *-*-» c* then 
VAL> 100 and n < 100 and INFORMED = True and INFORMED1 = Fafee and K4£' = 

n 
The most common interaction requirements have the above forms, just requiring that 

an action name/an attribute/a label constructor is private. End example 

2.3    Semantics 
Recall that a feature is essentially the description of "parts" of a simple reactive system 
plus some requirements on other "parts" which can be added to get a complete system. 
Usually it is designed by first giving the parts and afterwards the requirements. Thus we 
first provide a semantics, the basic semantics, taking into account only the given parts; 
afterwards, in order to consider the interactions with other features, we provide a second 
one, the complete semantics. 

Basic Semantics In our setting, the parts provided by a feature specification result 
to be a specification of a simple system, and the basic semantics of a feature F, denoted 
by [F]B, is just the semantics of the associated simple system specification, Syst(F), 
determined by the data structures, attributes, label constructors and rules of F. 

Example 2.5 The basic semantics of COUNTER is just the semantics of the system 
specification COUNTERS reported in Ex. 2.1; while the one of FAIL is graphically 
depicted below. 

INC, DEC INC, DEC RESET 
FAILED =  FAILED = 1 . 

 >  Tree        "*" Foinr       ■*- DEC. INC 

By looking at the above Its, we can already detect some trouble in FAIL; precisely 
that the failed system may go on receiving increment and decrement commands. If we 
intend to give a feature without that behaviour, then we may replace the first two rules 
with 

if VAL = False then Fl:c -^ c[True/FAILED], 
if VAL = False then FD: c-5^ c[7Vue/FAILED]; 

the new basic semantics is then 
INC, DEC, RESET 

FAILED =    FAILED = 1 . 
True DEC, INC Fahe      "*  

The basic operational semantics of WARNING is graphically depicted below. 
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INFORMED = Fake INFORMED = True 

VAL = 0 

a M£.= /O0   -« : : : —  VAL=IOO 

WARNING 

End example 

Semantics The (complete) semantics should associate with a feature F a precise (for- 
mal) meaning taking into account all its components, thus also the interaction require- 
ments. For us it is the class of all simple systems (lts's modelling them) having at least 
all parts specified by F and satisfying all its interaction requirements. These systems may 
have more data, attributes, label constructors and actions than Syst(F), and clearly also 
more transitions (i.e. more activity); technically, their signature is an extension of the 
signature of F. 

A most important remark is that we have to allow these systems to loosely satisfy the 
original transition rules of F, in the sense that whenever a rule does not explicitly state 
that an attribute remain unchanged, then such change may be allowed in the system. All 
this amounts to adopt a kind of anti-frame assumption. We can provide the following 
detailed definition. 

Def. 2.6 (Complete semantics) 
Let F be a feature specification over a signature £F. Then the complete semantics of 

F,denoted by |FJ, is the class of all M s.t. 

- M is an Its over some extension SF< of SF; 

- M satisfies all interaction requirements of F; 

- M loosely satisfies all rules of F 

(formally, M loosely satisfies if cond then a: s—>• s[xl/Ai]... [xk/Ak] iff 

for all variable evaluations V, 

if M, V \= cond, then 

there exists s state of M s.t. V(a): V(s) ■—-*-* s and for j = 1,..., k Aj(s) = V(XJ). 
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Since the complete semantics usually consists of infinitely many models, in the fol- 
lowing section we will illustrate a possible canonical representation (a kind of abstract 
interpretation) for reasoning about. 

2.4    Representing Possible Interactions 

Let F be a generic feature specification. We want to analyse F trying to understand its 
characteristics w.r.t. the interaction with other features; that means to examine |F| from 
a behavioural point of view. We do that by singling out a special system in [F], MAX(F), 
whose behaviour may help to understand the possible interactions; more precisely the one 
corresponding to the maximum of interactions with other features. 

Other features may add to F whatever new attributes and labels and so MAX(F) 
should have infinitely many attributes and label constructors; but, since we are interested 
only in the behaviour, the attributes (the actual form of the state) are irrelevant and so 
MAX(F) has the same attributes of F; while MAX(F) will have just an extra label L 
abstractly representing all labels different from those of F. 

Example 2.7   As an example below we present M4X(C0UNTER). 
INC, DEC, RESET 

We can see that imposed interaction requirements are weak, since new transitions with 
label in {DEC, INC, RESET} may freely modify VAL. Notice how we can immediately 
see that transitions with new labels cannot modify VAL, but recall that does not mean 
they cannot modify at all the state, in the above representation we are abstracting from 
possible new attributes. 

Consider instead the feature COUNTER' differing from COUNTER only for the in- 
teraction requirement part, which becomes UINC, DEC and RESET are private", corre- 
sponding to the axioms 

if a: c J£E?ZL> e then VAL' = 0 
if a: c _^£+ e then VAL' - VAL + 1 

~-> d then VAL > 0 and VAL' =VAL- 1. 

c 
1 

INC, DEC. RESET 
 »■ "Ü 

»J 

INC. DEC, RESET 
-*■ n 

2 INC, DEC, RESET 
J 

i 
i 

r*ä INC, DEC. RESET 
.3 

I 
r*"2 

if a:c ■ 
COUNTER' seems more sensible as it is shown by the behaviour of MAX(COUNTER'). 
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RESET, L 

INC. L _ INC, L 

RESET. DEC. h r*-1" DEC. L [~*^ 
End example 

We can now propose the following definition of MAX(F). 

Def. 2.8 Let F be a feature specification. 

• Sig+(F) is the feature signature defined by adding to Sig{F) a constant label con- 
structor L. 

• X is the set of all Siff+(F)-lts's M s.t. 

- the data structure part of M coincides with that of F; 

- the states of M are those of [FJB; 

- the labels of M are those of [FJB plus a special one L; 

- the action names of M are those of |F]B plus a special one A; 

- the transition relation of M (denoted by -*M) is s.t. M \= <t> for all interaction 
requirements <j> of F. 

• MAX(F) is the element of X s.t. ->MAX{F)= ^mx _>A/   n 

Notice that the existence of MAX(F) is permitted by the particular form of the interaction 
requirements (see Sect. 2.2), which express in some sense only safety properties on single 
transitions. For example an interaction requirement like 

a:s > s' iff not a: s —^-> s' 
would prevent the existence of the maximum element intended as above. 

Also notice that, if F is consistent, then MAX{F) 6 [FJ, since any rule o compatible 
with the interaction requirements is loosely satisfied by MAX(F). 

The methodological role of MAX{F) for reasoning about interaction is clarified by an 
appropriate notion of behavioural simulation: MAX{F) abstractly simulates all possible 
behaviours of the systems in the complete semantics of F. In a sense this explain why 
MAX(F) can be seen as an abstract interpretation of the specification of F. 

The intuitive idea of abstract simulation is the following. 
M 6 JF] is abstractly simulated by MAX(F) iff for any state s of M there exists a 

state ms of MAX(F) s.t. s is abstractly simulated by 7ns; where 
s is abstractly simulated by ms iff 

• the value of the attributes of F are the same in s and ms; 

• if s —y s' with / built by a label constructor of F, then there exists ms' s.t. 
ms —>• ms' and s' is abstractly simulated by ms'; 
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• if 5 -i* s' with / built bya label constructor not of F, then there exists ms' s.t. 

ms -^+ ms' and s' is abstractly simulated by ms'. 

The intuition, graphically presented below, can be refined to a completely rigorous defi- 
nition, as for the classical bisimulation semantics [6]. 

M  ' MAX(F) 

F1.F2: label constructors of F; NI.N2: new label constructors same values of F attributes 

Example 2.9   We present below in a graphic way MAX (WARNING) and MAX(FA1L). 
INFORMED = False INFORMED ^True 

=^T = ° ^ ~ ~ Z^"j\-^ 
RESET, h 

RESET, L 
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FAILED =     FAILED = 
True * False 

INC, DEC, RESET, L 

End example 

3    Features and Interactions 

3.1    Compatibility and Composition 
A careful scrutiny of concrete examples shows that feature composition is not at all an 
absolute notion, in the sense that it depends very much on the application and on the 
way features are represented. Thus our approach is essentially methodological, though 
instantiated on our particular feature description formalism. 

We factorize the problem in two ways: first we support a notion of compatibility, 
preliminary to the definition of feature composition; second we deal with compatibility 
and composition componentwise w.r.t. the structure of the feature specifications. The 
method we advocate is to build feature specifications, perhaps by means of some forth 
and back process, in a way that composition be possible and achieve the intended goals 
(requirements). In the following section we will examine from a behavioural viewpoint 
the composition of features, in order to introduce another criterion for reasoning about 
feature composition and checking whether it corresponds to the intended goals. 

Let us assume to have the feature specifications Fi and F2, with components DÄTAi, 
ATTRS,, LABS,, RULE,, IR, and DATA2, ATTRS», LABS2, RULE2, IRZ respectively. 

We will use © to denote the composition operation for features and also the those for 
the subcomponents. ' 

Data The data parts are compatible iff DATAi and DATA2 have disjoint signatures or 
share the common part, a sub data-structure. 

Attributes   The attribute components are compatible iff all attributes with the same 
name in both features have the same result type. 

ATTRS, © ATTRSz = ATTRS, U ATTRSt 

Label constructors The interface components are compatible iff all label constructors 
with the same name in both features have the same number of arguments, of the same 
type and in the same order. 

LABS, © LABSa = LABS, U LABSe 

Rules Since rules correspond to partial descriptions of action capabilities we need in the 
feature specifications a mechanism for deciding which rules r, e RULEi and r2 € RULE2 
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describe parts of the same action capability, and thus have to be composed. Several 
criteria are possible, as: 

1. no pair (i.e., rules correspond to complete action capability description); 

2. those having the same label constructor; 

3. those belonging to the same action. 

To compose rules with the same action name is the most general case; indeed the other 
cases may be recovered by appropriately choosing the action names (case 1) corresponds 
to have all action names of Fi different from those of F2, and case 2) to use the label 
constructors as action names). 

Moreover, we need to define when two rules (partial action descriptions) are compati- 
ble. Then the rule parts are compatible iff each pair of rules to be composed is compatible. 

In the following we assume that the rules of the two features: 

- use only variables to denote the new values of updated attributes (in the update 

parts) and the arguments of the label constructors, e.g., a: s '■—>■ s[4 * B/E] 
could be equivalently written 

if yi =3 + zand y2 = 0 and e = 4*B thena:s—*"'" > s[e/E]i 

- use both the same variables to denote the new values of shared attributes and the 
arguments of the shared label constructors; 

- do not share free variables except those denoting the new values of shared attributes 
and the arguments of the shared label constructors.1 

Let ,"',■■ 
n = if condx then ACT,:a t'(y—y""), S[x\/A[]... WJA^] 

and 

r2 = if cond2 then ACT2: s ^ "^ ) «[*»/Aj] ■ ■ ■ [*?/4U 
be two rules; 

Single rule compatibility rs and r2 are compatible iff ACT, = ACT2 and L\ — L2 (thus 
also yj,..■.,»*,, =3/i,-..,3/„s); 

Single rule composition If r, and r2 are compatible, then T\ © r2 = 

if condi and cond2 then 

ACTi: s   
Lt(y! ^ s[x\/A\}... [xj,MUWMÜ • • • [*?MU 

Note that ri ©r2 may be a null rule (i.e. a rule which does not generate any tran- 
sition, since its premises cannot be satisfied). For example the composition of two 
rules updating both the same attribute with different values is a null rule, since 
condi and cond2 contains x = U and x — t2 with tx and t2 ground terms repre- 
senting different elements of the data structure. 

'This restriction may be overcome by using action names with parameters (and so a mechanism for 
deciding whether two such variables refer to the same quantity) 
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Rules compatibility RULE, and RULE2 are compatible iff for all r, € RULE, and 
r2 € RULE-i about the same action, r, and r2 are compatible. 

Rules composition If RULE, and RULE? axe compatible then we define 

RULE, © ßtfL£2 = 

{n € HOT.Fi 1/3 r2 6 RULE? about the same action } U 

{r2 € RULE? 1/3 n 6 RULEi about the same action } U 

{rj © r2 | r, G RULE,,r2 g RULE2 about the same action }• 

Interaction requirements If the components of Fi and of F2 related to the system 
specification are compatible as defined above, then we compose them just by compos- 
ing data, attributes, labels and rules, getting a simple system specification denoted by 
Syst{P,) © Syst(F2). 

IR, and IR2 
are compatible iff the composition of the system specification parts, • 

SystQF,) © Syst(F2), 
satisfies IR, and IR2, i.e.: 

SjWrt(Fi) © Syst(F2) (= IR, U IR2 

IRi@IRi = IR, U IR2. 
Clearly if IR, U IR2 is inconsistent, then the two features are not compatible. 

Feature compatibility   Fi and F2 are compatible iff all their components are so. 

Feature composition If Fi and F2 are compatible, then Fi © F2 is the feature spec- 
ification whose components are the compositions of the corresponding ones of Fj and of 
F2. 

Prop. 3.1 Properties of © 
Given two compatible feature specifications for simple systems Fi and F2; we have 

that. 

l.'lFxSFjjClF,! n [FJi 

2. © is commutative and associative. D 

Instead, © is not idempotent. 
Let us illustrate the concepts introduced so far by means of two examples; the second 

also illustrate the kind of backward adjustment we have in mind. 

Example 3.2 Composing COUNTER and FAIL (defined in Ex. 2.2 and 2.3) The 
data, the attributes and the interfaces of the two features are trivially compatible; for the 
actions R, I, D there are rules in both features, but they are compatible, and so we can 
compose the two features at the system level. 

simple system Syst(COUNTER) © 5j/s«(FAIL)[c] = 
data        BOOL.NAT 
attrs        VAL:nat 

FAILED: boot 
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interface INC, DEC, RESETQ 

activity if FAILED = False then V.c -^-> c[VAL+l/VAL] 

if K4£ > 0 and FAILED = False then D:c -^-> c[VAL - 1/K4Z] 

if FAILED = Fake then R:c 

F|:c JJE^ c[True/FAILED] 

FD:c -^-> c[True/FAILED] 

RESET >c[0/VAL] 

Such system, whose behaviour is graphically presented below, verifies the interaction 
requirements of both F! and F2, and so the two features may be composed. 

Notice the role played by the action names in this composition, the failed executions 
of the increment/decrement commands do not change the attribute VAL. 

RESET 

m 
on 

■all* 
INC 

- - s-*- 
S ^ 5S :*- u. u. 

-*■» 

DEC 

End example 

O Q 
II lq 

s ,■< S Sfc U. t- 

- P 
II III 
»la g 

ii ta 
■OS 2 
22l 

Example 3.3   Composing COUNTER and WARNING   (defined in Ex. 2.2 and 2.4) 
They are compatible at system level, and the composition of their system parts is 

simple system St,st(COUNTER) © 5</s*(WARNING)[c] = 
data BOOL, NAT 
attrs VAL-.nat 

INFORMED: bool 
interface INC, DEC, RESET, WARNINGQ 

NORMAL[nat) 

activity I: c -^ c[ VAL + 1/ VAL] 

if K4I>0thenD:c   DBC • 

R:c 
RESET , 

-*c[VAL-l/VAL] 

c[0/ VAL][False I INFORMED] 
WARNING 

if VAL > 100 and INFORMED = False then W: c 
if n < 100 and INFORMED - True and VAL > 100 then 

BN:C   NORMAL^) } c[False[INF0RMED][nlVAL] 

whose behaviour is graphically represented by 

+ c[7Vue/INFORMED] 
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INFORMED = Fake 
RESET 

3T7 
INFORMED = True 

RESET 

However this system does not satisfy the interaction requirements of COUNTER; 
indeed transitions with labels NORMAHn) may change the attribute VAL; instead the 
interaction requirements of WARNING are satisfied. 

Consider now another feature WARNING' obtained by WARNING by making NORMAL 
a label without parameters and changing the corresponding rule into 

if INFORMED = True and VAL > 100 then BN:c 
NORMAL + c[FalselINFORMED]; 

WARNING' and COUNTER are compatible, and the operational semantics of their com- 
position is 

INFORMED = False INFORMED-True 

VAL = 0 

DEC 

End example 

Example 3.4   Composing FAIL and WARNING'   The two features are compatible 
at the system level, resulting in 
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simple system 5j/s«(FAIL) © Sys«(WARNING')[c] = 
data        BOOL, NAT 
attrs        FAILED, INFORMED: boot 

VAL:nat 
interface INC, DEC, RESET, WARNING, NORMALQ 

thin 
activity Fl:c -^^ c[True/FAILED] 

?D:c-2^c[True/FAILED) 
if FAILED = False then i:e -^-» c 
if FAILED = False then D: c -£££-> c 

if /M/££® = Fafee then R: c -2MEL+ c[False/INFORMED] 
if ML > 100 and INFORMED = Fafee and M4£ > 100 then 

W: c    WARNING ) clTme/INFORMED] 
if INFORMED = JVue and IttZ > 100 then BN:c   "^ ) c[False/INFORMED] 

and this system satisfies the interaction requirement of both, and so they are compatible. 
End example 

3.2    Feature Interaction 

As already suggested, when organizing a system by features, it is of paramount importance 
to have a clear picture of the variations which may occur when adding features. Here we 
try to single out some basic criteria for reasoning about feature interactions. 

Together with many others (but not all) by "interaction of feature F2 on Fi" (or "F2 

interacts with Fi") we mean that the "part of Fi © F2 due to F, is not as specified by 
Fi". Here we try to provide a rigorous background for this meaning of interaction. In the 
following we try to propose the main concepts, illustrated by examples; but we do not 
pretend to propose a theory, for the moment. 

First of all we need to define what is the part due to Fi in [Fi © F2JB- We assume 
that it is the "projection of p! © F2JB on the signature S:$(Ft)

B, i.e. the Its having only 
the actions, attributes and labels in Sig{Fi) and whose transitions are obtained by those 
of [Fi © F2]B dropping those whose labels or actions are not in S«#(Fi) and projecting 
the states on the Sig(Fi) attributes of the others. We may have different concepts of 
interaction between features depending on how we compare the activity of [FIJB w.r.t. 
that of [F! © F2JB projected on Fi; here we consider: 

a) atomic(-level) interaction, if we look at the single transitions (corresponding to atomic 
activities); 

b) behaviour(-level) interaction, if we consider whether [FJB abstractly simulates all be- 
haviours of [F! © F21B projected on Fj and vice versa, where "abstract simulation" 
has been introduced in Sect. 2.4, and here we abstract w.r.t. the attributes and 
labels not of Fi. 

If there are no interactions following b), then there are no interactions following a) too. 
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Atomic Interaction A feature F2 atomically interacts with Fi whenever the transitions 
of [FIJB are different from those of |F, ffi F2JB projected onto the attributes and the labels 
of F1. There are various reasons for such transitions to be different, as: 

- the premises of a rule of Ft become more restrictive when it is composed with a rule 
ofF2; 

- a rule of Fi when it is composed with one of F2 may update attributes of F, previ- 
ously not modified; 

- new rules about new action names but with Fi labels and modifying the Fj attributes 
are added by F2. 

Let Ft and F2 be two compatible feature specifications. We say that F2 atomically- 
interacts with Ft   iff -+B'«k is different from the set of transitions s -^ s7 s.t. 

_ s _I+ s> e_>fF.fflF2h) 

- / is built by a label constructor of Fi and 

- s, s' are the projections of s, s' onto the attributes of Fj. 

Fi and F2 are atomically-independent iff Fi does not atomically-interacts with F2 and 
F2 does not atomically-interact with Fj. 

It is not true that any case of interaction intended in this way is negative and must be 
prohibited; for example, think of a feature for a telephone system which offers a discount 
whenever some particular green numbers are called (transitions which do not change the 
debt of a user, now decrease it). 

Example 3.5 COUNTER and FAIL are not atomically-independent; indeed by looking 
at Ex. 2.1 and Ex. 3.2 we can see that FAIL has added transitions with labels INC and 
DECwhich do not modify the attribute VAL. 

Instead by looking also at Ex. 3.3 we can see that COUNTER and WARNING' are 
atomically-independent. End example 

This view of interaction has very nice properties. 
Indeed, it is possible to give extremely general and almost syntactic sufficient condition 

for ensuring that two features are atomically independent (where "extremely general" 
means that if Ft and F2 are atomically independent, then we can modify Fi and F2 to 
get two new feature specifications Fi' and F2' so that their composition is the same of Fi 
and of F2 and F/ and F2' satisfy the sufficient conditions; "almost syntactic" means that 
the conditions are syntactic, except for what concerns the data elements). Thus it should 
be possible to develop tools for automatically checking atomic independence. 

• Furthermore atomic interaction may be disciplined by interaction requirements made 
by the subset of the safety formulae as presented in Sect. 2. 

if a: s —■+ «' then cond 
where a does not occur in cond. Indeed, for each pair of compatible features Fi and F2 

s.t. F2 atomically interacts with F1; there exists a formula <j> of the above type s.t. added 
to the interaction requirements of Fi makes F, and F2 not compatible. 
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Behavioural Interaction A feature F2 behaviourally interacts with Fi whenever ei- 
ther |F,]B is not abstractly simulated by [Fi © F2JB or vice versa, where in this case 
"abstractly" means to forget the attributes and the label constructors not of Fj. 

Fi and F2 are behaviourally-independent iff Fj does not behaviour-interact with F2 

and F2 does not behaviour-interact with Fi. 
It is not true that any case of interactions intended in this way are negative and must 

be prohibited; for example a feature stating that all calls made on Sunday are free results 
in a case of behavioural interaction; indeed the handling of the free Sunday call is an 
added piece of behaviour, while handling of the paid Sunday calls has been removed. 

Example 3.6 The feature WARNING' behaviourally interacts with COUNTER; indeed 
by looking at Ex. 3.3 we see in fCOUNTER © WARNING^ the behaviour 

'•'     S -> § -* 

Sol o-l|fil«|elfi ii   I        « s        »     £        »    §        "     s        »    §        « 

ll       si si ll II Si II 
which cannot be abstractly simulated by any behaviour of [COUNTER]B (see Ex. 2.1), 
since when VAL is equal to 100 any transition of ICOUNTERJB modifies its content. 
End example 

Unfortunately it is not so easy to find sufficient condition for two features being be- 
haviourally independent general enough, and we have to find which are the formulae to 
be used as interaction requirements to be able to discipline this kind of interaction, i.e. as 
for atomic interaction, which are the formulae that added to the interaction requirements 
part may make two compatible behaviourally interacting features incompatible. 

4    Conclusion and Related Work 

We have illustrated a rather general framework for feature-oriented development. Some- 
what differently than in other approaches, our aim is to provide a flexible discipline for 
handling features, more than just checking the interactions. The flexibility is provided 
by factorizing the specification development: first, by means of the representation of the 
complete semantics we can check wether our feature specification which includes interac- 
tion requirements, corresponds to our intuitive understanding; second, when adding some 
new feature we may adjust its specification, by checking its capabilities and reasoning 
about the resulting composition. 

In our opinion the general framework should be adapted to the particular domain 
specific application, as it is supported by the work of P. Zave on telephone systems [11]. 

It is worthwhile mentioning that the useful graphical representations are really possible 
not only for the toy examples considered in the paper; indeed there is a way of presenting 
graphically design specifications for reactive and concurrent sytems (see [8]), which is 
adjustable to the case of features, as we plan to do in some further work. 
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As for the automatic generation of the graphical representations, it does not sem out 
of the state-of-the-art, though not yet explored by us. 

Together with improving the graphical representation, our ongoing work aims at deal- 
ing with features for structured systems, i.e. systems made of subsystems; in other words 
we want to have at hand both component and feature modularity. 

Recently some papers trying to study features and their interactions on a formal 
ground have started to appear, but none of them presents something of similar to our 
"interaction requirements". Among them we recall [2], presenting feature specifications 
based on logical formulae conceptually similar to our rules, but their idea of "feature com- 
position" and of "interaction" is really less flexible than our (e.g., using our terminology 
transitions are composed only when have the same label, and interaction is just atomic 
interaction). In e.g., [3] Bredereke, trying to give a formal view of features and inter- 
actions, considers the importance of the behavioural aspects. Also [4] presents a formal 
based treatment of features for telecommunication systems, but at a more concrete level 
(i.e. more oriented towards the implementation) and so it is difficult it to fully relate to 
our work. 

Prehqfer considers both methodological aspects as in [7] and formal aspects, as in [5], 
where he presents an approach based on transition systems (diagrams); but differently 
from our work, for him to add a feature to a system means to refine graphically a part 
of the diagram specifying it. It is interesting to note that our framework may offer a 
formal counterpart to part of his work in [7] including the "lifters", i.e. feature modifiers 
for helping to resolve feature interactions. 
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Abstract 

We propose a model of software changes and a method for combining changes to a 
software specification. This work was motivated by the desire to provide automated 
decision support for the evolution of software prototypes. We define a behavioral 
refinement ordering on software specifications and indicate how this structure can be 
used to automatically combine several changes to a specification. A set of examples 
illustrates the ideas. 

1    Introduction 
Changing software without damaging it is difficult and accounts for the bulk of software- 
related costs. This issue is particularly prominent in the context of software prototyp- 
ing, where requirements, specifications, and designs are undergoing radical and repeated 
change, under constraints of low cost and rapid response. In this context teams often ex- 
plore changes to different aspects of a system concurrently, and may develop prototypes 
of several competing formulations simultaneously, to obtain user guidance about the ben- 
efits and drawbacks of different alternatives. When the preferred alternatives are clear, 
we must consistently combine the changes to the system specification corresponding to 
the preferred alternative for each aspect of the system that has been explored. 

This paper presents a formal model and a method for addressing this problem in 
the context of black-box specifications for systems. We address specifications expressed 
in logic, using a notation for system specification that has been designed to support 
development of large and complex systems [5]. We explore the problem in the context of 
prototyping because it is a promising way to address the main source of system faults, 
namely requirements errors [23]. Evolutionary prototyping provides an efficient approach 
to formulating accurate software requirements [20]. 

The focus of the current work is the evolution of proposed specifications and prototype 
designs. Much of the previous work on changes to software has focused on meaning- 
preserving transformations [2,15,17,27]. However, it has been recognized that in realistic 

"This research was supported in part by theNational Science Foundation under grant number CCR- 
9058453, by the Army Research Office under grant number 30989-MA, and by the Army Al Center under 
grant number 6GNPG00072. 
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contexts, many changes do not preserve the observable behavior of the system [28]. Most 
of the work on the area of meaning-changing transformations has been concerned with 
classifying the types of semantic modifications that are used in practice [13, 12, 16]. We 
investigate the relationships between different versions of the specifications and propose 
an abstract model of the design history to provide a more formal model for understanding 
the details of this subject. 

Modeling the design history can enhance the prototyping process by capturing the 
conceptual dependencies in a design. A properly structured derivation of a specification 
can highlight the structure of the design decisions leading to the proposed system, which 
can be used to record and guide systematic exploration of the design space. Such a rep- 
resentation is necessary if we are to develop software tools for managing this process and 
extracting useful information from the design history. These tools should help coordinate 
the efforts of analysts and designers faced with a changing set of requirements, to avoid 
repeated effort and inconsistent parallel refinements, and to aid the designers in combining 
design choices from different branches of a parallel exploration of the design space. 

In larger prototyping efforts, several explorations of the requirements that are focused 
on distinct aspects of the system may proceed in parallel. In such cases, the lessons 
learned from different branches of the effort must be combined and integrated. This is a 
specification-level instance of the software change-merging problem [8]. Solutions to this 
problem can also be used to propagate improvements to all affected versions. 

The rest of the paper is organized as follows. Section 2 defines a model of soft- 
ware changes and a behavioral refinement ordering for software specifications. Section 
3 discusses change merging for specifications and indicates how merged versions can be 
constructed. Section 4 presents some examples. Section 5 contains conclusions. 

2    Software Changes 
To formalize changes to black-box descriptions of systems, we must consider what are the 
externally observable attributes of a system and how the attributes of different versions 
are related. 

2.1    Attributes of System Behavior 

We characterize changes to a system specification in terms of three orthogonal attributes 
of a system: its vocabulary, its behavior, and its granularity [22]. These concepts are 
reviewed below. 

• The vocabulary of a system is the set of all external stimuli recognized by the system. 

• The granularity of a system is the set of all internal stimuli recognized by the system. 

• The behavior of a system is the set of all possible traces for the system relative to a 
given vocabulary and granularity. 

Each of these three attributes is a set, and is subject to an ordering induced by the 
subset relation. The resulting partially ordered set becomes a Boolean algebra under the 
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set union, set intersection, and set complement operations. As explained in Section 3, 
this structure can support a formal model of software change merging. 

If we restrict primitive changes to be monotonic and to affect just one of the three 
attributes listed above, we get the classification of primitive changes shown in Figure 1, 
which is repeated from [225. 

The symbol As represents the attribute A of the original system S, and A$- represents 
the attribute A of the modified system S'. 

Attribute A 
Effect of Change 

As C As> As D As> 
Vocabulary extending contracting 
Granularity refining abstracting 
Behavior relaxing constraining 

Figure 1: Types of Changes 

A decomposition of the chronological evolution history into primitive substeps con- 
forming to these restrictions enables the rearrangement of a sequential derivation con- 
taining meaning-modifying changes into a tree-like rooted directed acyclic graph whose 
paths consist solely of meaning-preserving changes that add information via compatible 
vocabulary extensions, granularity refinements, or behavior constraints [11]. We propose 
this mechanism as a concrete means to document software as if it had been developed us- 
ing a rational process [24], and conjecture that such structures will be useful for choosing 
demonstration scenarios, guiding requirements reviews, and summarizing past history for 
analysts formulating the next version. 

A conceptual derivation history is a simplified version of the chronological history 
of an evolving system that includes only the decisions that were not undone in later 
steps. We model conceptual derivation histories as graphs whose nodes represent versions 
and whose arcs represent monotonic changes that add new capabilities or constraints. 
An idealized prototype evolution process should steadily strengthen the requirements in 
this sense, until they become acceptable to the users. In practice the path is often less 
direct. However, a reconstructed direct path in which each step strictly strengthens the 
requirements should provide a useful summary of the relevant parts of the evolution of 
the requirements. An example can be found in [11]. 

2.2    The Behavioral Refinement Ordering 

Change merging depends on an ordering with a specialized algebraic structure, usually 
either a Boolean or Brouwerian algebra [8]. We propose a behavioral refinement ordering 
C on software specifications, defined as follows: 

pQq   *>   vocabulary(p) C vocabulary(q)& 

granularity(p) C granularity(q) k 

behavior(p) D projection(behavior(q), vocabulary(p) U granularity{p)) 

The vocabulary, granularity, and behavior of a specification are defined in Section 2. The: 

projection is needed to ensure that we are comparing just the corresponding parts of 
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the two behaviors; it removes all events in traces of q that are outside the vocabulary 
and granularity of p. The ordering p Q q means that q satisfies the specification of p. 
From the point of view of a user q is just as good as p, and it may be strictly better 
if it provides some services that p does not. Enhancements can occur if q responds to 
additional external stimuli, its behavior is specified at a more detailed level of abstraction, 
or its behavior is subject to stricter constraints. 

We would like to separate the effects of changes to orthogonal attributes of the system 
as much as possible, so that these independent changes can be automatically re-combined 
in different combinations. The problem of automatically combining different versions of 
programs has been formally studied in several different contexts [9, 10, 7, 8, 6, 25, 3], and 
has been informally discussed in terms of the development of requirements in [14], where 
the independence of elaborations was assessed manually. However, the problem has not 
yet been solved completely, particularly for requirements. 

We make a step towards automating the detection of independent elaborations by 
proposing a formal model for refinement structures. There is potential for parallel elabo- 
ration whenever the refinement ordering can be decomposed in a cross product structure, 
because different components of the cross product can be refined independently. For ex- 
ample, this is often the case for changes to different messages in a system. Interactions 
between messages can occur via invariants associated with state models of machines or 
instance models of types. 

Previous methods for software change merging have assumed that the vocabulary is 
fixed and common to all versions to be merged. The model proposed here is a possible 
basis for extending some previous work on merging [7, 3] to cases where the vocabulary 
changes. Such an extension adopts an open and extensible view of the vocabulary: the 
behavior of a system whose vocabulary does not contain a given stimulus is considered 
equivalent to the behavior of a modified system that extends its vocabulary with the extra 
stimulus and leaves its response to that stimulus undefined and unconstrained. This is 
appropriate for requirements exploration and prototyping, although it is not consistent 
with the closed-world view typically adopted in software products, where requests outside 
the vocabulary are expected to produce error messages and have no other effect. Section 
3 sketches some of the main ideas for this extension. 

3    Combining Changes 

The Boolean algebra structure of the vocabulary, granularity, and behavior of a specifi- 
cation identified in Section 2 implies that the usual formulation of the change merging 
operation can be applied in the context of changes to software specifications. If A, B, 
and C are specifications, the result of combining the change from B to A with the change 
from B to C is denoted by A[B]C, which is defined as follows. 

A[B]C=(A-B)U{Ar\C)U(C-B) 

Here U denotes the least upper bound and (1 denotes the greatest lower bound with respect 
to the ordering defined in Section 2.2. The difference is defined by 

A-B = An~B 
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where the bar denotes the complement operation. This operation is well defined for any 
Boolean algebra; in the special case of sets ordered by C, it is the set difference operation. 

The interpretations of the above Boolean operations for different aspects of software 
specifications are summarized in Figure 2. Since it is common to represent sets of be- 
haviors by logical assertions representing postconditions, we include the postcondition 
representation as well. 

Aspect 
Operation 

XCY XUY xr\Y X-Y 
Vocabulary XCY XUY xr\Y X-Y 
Granularity XCY XXiY XQY X-Y 
Behavior XDY XDY XUY Y-X 
Postcondition X-^Y X/\Y XVY XV-Y 

Figure 2: Concrete Interpretations of Abstract Operations 

The set inclusions in the definition of the specification refinement ordering (see section 
2.2) go in the opposite direction for the system behavior than for the vocabulary and the 
granularity. This is reflected in the interpretations of the Boolean operations for those 
aspects. Since the specification refinement ordering is derived from the orderings of the 
three different aspects according to the usual ordering construction for a cross product 
domain, all of the operations extend componentwise. This implies that we can com- 
pute change merges for the three aspects independently, according to the interpretations 
summarized in Figure 2. 

4    Examples of Combining Changes to Specifications 
Some examples illustrate the effects of the definitions presented in the previous section. 
Suppose we represent vocabularies as sets of messages. Then the combination of the 
change that removes the message m2 from the starting vocabulary {mi,m2} and the 
changes that adds m3 to the same starting vocabulary is calculated as follows: 

{"ii}[{"ii,m2}]{mi,m2,m3} 

=   ({mi}-{'»i,»n2})U({mi}n{ml,m2,m3})U({m1,m2,m3}-{m,,m2}) 
=   {mi,m3} 

The corresponding calculations on postconditions representing behaviors may be bit 
less intuitive. If P, Q, and R are assertions representing postconditions, we can apply the 
general definition and simplify to give the following rule: 

P[Q]R   =   (PVnQ)A(PVfi)A(fiVnQ) = (PVR)A(Q=>P)A(Q^R) 

We illustrate the consequences of this rule for some common change patterns. Suppose 
that a, b, and c are three assertions representing postconditions in the specification of the 
behavior of a system in response to a given stimulus. 

The combination of two different constraining changes to a behavior includes both 
constraints: 

(öA6)[6](6Ac) = (aA6Ac) 
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The first changes adds the constraint a to the postcondition b of the base version and the 
second change adds a different constraint c. The original constraint and both of the new 
ones are present in the combination. 

The combination of two relaxing changes loosens both of the affected constraints: 

a[ahb]b = aVb 

Note that the combination of removing each of two constraints separately does not result in 
a vacuous requirement: either of the two relaxed versions of the requirements is acceptable, 
but the system must satisfy at least one of them. 

The combination of a relaxing change and a constraining change selectively loosens 
and also tightens the requirements: 

b[a A b]{a A b A c) = b A (a =» c) 

The constraint 6 is common to all three versions, and it appears in the combination as 
well. The first change drops the constraint a, while the second change adds the constraint 
c. In the combination, the new constraint c must hold only in the cases where the original 
constraint a is satisfied. This moderation of the constraining change is due to the presence 
of the relaxing change; if we do not remove the constraint a then the new constraint c is 
added unconditionally: 

(a A b)[a A b](a A b A c) = a A b A c 

FUNCTION spell.1 
MESSAGE spell(report: sequencefvord} ) REPLY(errors: sequence{word}) 

WHERE ALL(w: word :: w IN errors <=> w IN report ft "(w IN dictionary)) 

CONCEPT dictionary:  set{word} 
~ The words in the Oxford English Dictionary. 

END 

INSTANCE word IMPORT Subtype FROM type 
WHERE Subtype(word,  string), 

ALL(c: character, w: word :: c IN w => c IN ({a ..    z} Ü {A ..    Z})) 
END 

Figure 3: Specification of Initial Spelling Checker 

To illustrate the effects of these rules in a more realistic context, consider the specifi- 
cation of a simple spelling checker whose base version is shown in Figure 3. We focus on 
the spell command. Figure 4 shows two changes to the behavior of this command, and 
the result of combining the changes using the method outlined in section 3. 

All of the change merges in the examples follow directly from the definition, after 
simplification using the laws of ordinary propositional logic. These simplifications were 
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— base version: 
MESSAGE spelKreport: sequence{word} ) REPLY(errors: sequencefword}) 

WHERE ALL(w: word :: u IN errors <=> 
w IN report ft "(w IN dictionary) ) 

-- first modification: 

MESSAGE spell(report: sequence{word} ) REPLY(errors: sequence{word}) 
WHERE ALL(w: word :: w IN errors <=> 

w IN report ft ~(w IN dictionary) 4 "acronym(w) ) 

— second modification: 
MESSAGE spell(report: sequence{word} ) REPLY(errors: sequence{word}) 

WHERE ALL(w: word :: w IN errors <=> 
w IN report ft "(w IN dictionary)   ), 
sorted{less_or_equal4lword} (errors) 

— result of change merging: 
MESSAGE spell(report: sequence{word} ) REPLY(errors: sequence{word}) 

WHERE ALL(w: word :: w IN errors <=> 
w IN report ft ~(w IN dictionary) ft "acronym(w)   ), , 

sorted{less_or_equal«word}(errors) I 
ALL(w: word :: w IN report ft "(w IN dictionary) ft acronym(w) ft 

"(w IN errors)) 

Figure 4: Merging Changes to the Spelling Checker 

performed manually and then checked via an automatic simplifier for propositional logic 
that is implemented using term rewriting with respect to a canonical set of rewrite rules. 

The base version has only the most basic requirements: there is only one dictionary, 
and there are no constraints on the order of the words in the output. The first enhance- 
ment introduces the modified requirement that acronyms (which contain only capital 
letters) are never reported as spelling errors. The second enhancement adds a require- 
ment for sorting the output. The result of merging the two changes includes the acronym 
modification, but requires sorting only in the cases where the acronym modification did 
not take effect. This is a consequence of the minimal change principle [8] implicit in the 
change merging formula. In this case, a review by an analyst concludes that the case 
where the sorting requirement is suspended is impossible: the dictionary (a constant in 
the specification) cannot be empty in any acceptable version of a spell checking system, 
as would be required by the second condition in the last quantifier of Figure 4. In general, 
application of the change merging rules can highlight cases where requirements changes 
interact. These cases can then be reviewed by people to check whether a subtle interaction 
was missed or misjudged. 

The implementation of the change merging definitions for specifications is Straight- 
forward, just as is the implementation of weakest preconditions for loop-free code. The 
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difficulty of automatic application lies in the simplification step in both cases: since most 
logics that are useful for specification are not decidable, it is in general impossible to do 
a perfect job of simplification. For these logics, there is no computable canonical form 
in which all tautologies reduce to the logical constant "true" and all contradictory state- 
ments reduce to the logical constant "false". In the above examples, simplification using 
only the propositional structure of the formulas was sufficient to get useful results, even 
though human judgement was needed to recognize constraints that hold in the problem 
domain, but are not universally true in the logical sense. However, even for decidable 
systems such as propositional logic, the existence of a canonical form does not solve the 
problem completely, because the result produced by the simplifier does not resemble the 
original formulas and is typically hard to read. Manual simplification was needed in the 
above examples to make the results readable by people. Heuristic methods that try to 
match the original structures as far as possible would be useful for practical decision 
support. This is an area for further research. 

5    Conclusions 

We have presented a method for merging changes to a black box software specification, 
particularly those expressed using logic. Since logic has a natural Boolean algebra struc- 
ture, the application of standard change merging models was straightforward once the 
refinement oredering for the larger scale aspects of system specifications were determined. 
Although the definition of the Boolean difference operation for logical assertions is a di- 
rect consequence of this algebraic structure, it is an unfamiliar operation and its behavior 
is somewhat counter-intuitive. We found that the effects of the change merging formu- 
las were hard to predict without performing the detailed calculations prescribed by our 
method. ;   ; 

The main issues remaining for practical application are verifying the conformance of 
these models to the actual intent of designers who wish to combine their changes, and pro- 
viding effective automation support for assertion simplification that can put synthesized 
assertions into a form readily understood by people. 

Our previous research has explored formal models of the chronological evolution his- 
tory [21]. This model has been applied to automate configuration management and a 
variety of project management functions [1]. The ideas presented in this paper are a 
promising basis for improving these capabilities, particularly in the area of computer aid 
for extracting useful design rationale information from a record of the evolution of the 
system. 

Challenges facing future research on meaning-altering changes are to span the software 
design space using a set of manageable changes with precise and expressive representa- 
tions, to provide automatic procedures for suggesting applicable changes, and to con- 
struct automatic or computer-aided procedures for decomposing manual design changes 
into sequences of primitive changes. Successful research in this direction and its future 
applications will support software design automation with great scientific and economic 
impact. 
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Domains as a Prerequisite for Requirements and Software 

Domain Perspectives & Facets, 
Requirements Aspects and Software Views 

Dines Bj0rner 

Bernried, 12 October 1997 — Lyngby 5 March 1998 

Abstract 

We take software [systems] engineering to consist of three major phases: domain engi- 
neering, requirements engineering and software [systems] design engineering. We outline 
these and emphasise domain perspectives andfacets, requirements aspects and software 
architecture and program organisation views. 

This paper is the direct result of a US Office of Army Research October 12-14,1997 
workshop on Requirements Targeting Software and Systems Engineering held at Bernried 
am Staarnberger See, Bavaria, Germany. In consonance with the aims & objectives ofthat 
workshop we conclude some subsections with a set of meta-requirements (i.e. requirements 
to software engineering, its research, education and practice). 

The paper is discursive and informal: we identify a number of methodological prin- 
ciples, techniques and tools. Not all such (hence discursive) and not all necessarily for- 
malisable (hence informal). Wrt. the latter: one cannot formalise the principles that are 
needed in a systematic, well-guided process of selecting and applying techniques and tools 
in the analysis and synthesis of Specifications—whether of domain, requirements or soft- 
ware. Instead we are left to conjecture the usefulness of certain such principles, techniques 
and tools. Sometimes such conjectures are refuted when better principles, techniques and 
tools are proposed. 

Some sociological issues of formal methods' are summarised (in section 4.5). 
Since this paper will appear in a workshop proceedings with a number of other papers 

from that workshop, the paper will not repeat the relevant points made by other workshop 
participants and supposedly published in their contributions. I refer, amongst several, 
to contributions made at the workshop by Carl Günther, Anthony Finkelstein, Michael 
Jackson, Tom Maibaum and others. 

On issues of requirements, I have, in particular, benefited much from [100, 99, 142]. 
The handy book [99] is simply a pearl: delightful and thought provoking! 
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1    Introduction 

We present an interpretation of the state of affairs, i.e. level of professionalism, in software 
engineering, the thesis of this paper, and a first justification of the thesis. 

1.1    The State of Affairs 

In the US more than US $ 180 billion was spent in 1996 on software development projects that 
were curtailed, given up and abandoned, because management did not believe they could 
conclude these projects. Most often cited reasons for this failure were: The requirements 
were insufficient, elusive or changed, and the domains were not properly understood. This is 
according to the article: FonnaJ Methods: Promises and Problems, IEEE Software, Vol. 14, 
No. 1, Jan. 1997, pp. 73-85. US$180 billion is a sizable amount. 
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To this we can add that even if and when developers get the domains and requirements 
right, they often get the implementation wrong — but this aspects apparently does not bother 
people who willingly buy MicroSoft software even when it is known that it definitely contains 
thousands upon thousands of (even known) bugs. 

A survey, in Europe, by the industry 'Think Tank' ESI, the European Software Institute in 
Bilbao, Spain, records that most software industry managers express that their must urgent 
problems have to do with grossly insufficient methods, techniques and especially tools for 
coping with requirements definitions — and they are basically unaware of the pre-cursor to 
requirements develeopment, namely domain modeling! 

1.2 The Thesis — and the Contributions 

The thesis of this paper is that the kind of domain, requirements, software architecture 
and program organisation principles and techniques expounded in this paper seems to offer 
workable solutions to the problems. At least they address the issues "head-oil" and in a 
systematic manner not yet reported this extensively. Besides the 'triptych' decomposition 
of development into domain, requirements, software architecture and program organisation 
organsiation, we also would offer the identification of domain perspectives and facets, the 
requirements aspects and the redefinition of software views as a contribution. 

1.3 The'Triptych' 

Software (systems) engineering, to us: 

• "Starts"1 with domain engineering. Result: A formal theory T>. 

• "Goes on" with requirements engineering. Result: A formal theory Tt. 

f "Concludes" with software (systems) design engineering. Result: A formal theory S 

We expect the following kind of relationship2 to hold between V, %, S: 

•.t>,S\= S 

A classical example is compiler development: 

• Domain: 

We define the concrete (BNF) and abstract syntaxes the abstract mathematical seman- 
tics of the source and target languages (programming, resp. (e.g.) machine), and a proof 
system for the source language. 

• Requirements: 

We define the specific compiler and run-time requirements: fast compilation, or fast 
execution, or extensive compilation diagnostics, or extensive run-time execution diag- 
nostics, or some combination of these (+many other facets). 

We often put double quotes around words when their meaning is only approximate. The actual sequence 
from'start'to'conclusion'is usually iterative and "spiral"! 

"See Carl Günther [81]. 
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• Design: 

We develop the compiler and fun-time systems: possibly a single or a multi-pass com- 
piler while using such design tools as lexical scanner generators, (possibly syntax error 
correcting) parser generators, (possibly a variety of) attribute grammar evaluators, etc. 

We define: 

• A method is a set of principles, techniques and tools for analysing problems and for 
selecting and applying techniques and tools in order efficiently to construct an efficient 
artifact — here software (a systew). 

• Methodology is the study and knowledge of methods. 

Jackson [100,99] has proposed a decomposition of the unending variety of problems for which 
software engineers are expected to develop software solutions, into a possibly in[de]finite 
set of problem frames. Our compiler development example above thus is archetypical of a 
'translation problem frame'. Each frame is characterised by its distinct cluster of development 
principles, techniques and tools. Therefore we speak not of one method but of possibly an 
in[de]finite collection of methods. 

Common to these, we argue [36], is that they all evolve along domain, requirements and 
design engineering axes. 

1.4    First Justifications 

Software offers functions. Usually the client expresses expectations about the software to 
be delivered: that is, requirements that include characterisations of externally observable 
properties of these functions. 

So before we develop software we ought know very precisely the externally observable, 
that is: the user expectations about the concepts & facilities to be offered by the software. 

These requirements usually deal with components, actions and behaviours of the client 
domain, the application domain. And usually the requirements are expressed in terms of 
terms (nouns and verbs) that 'reside' in — are special, professional terms of— the domain. 

So before we develop the requirements definition it seems a good idea to recognise, discover 
and capture the domain and to make precise the structure and meaning of all the special, 
professional domain terms otherwise used in informally expressing requirements. 

The situation is not new. In other engineering branches we encounter the need for securing 
the domain understanding —- and usually also formally — before requirements are expressed. 
In control engineering for aerospace the domain is typically that of Kepler's and Newton's 
laws. So there was Johannes and Isaac working on their laws only to get an understanding of 
celestial mechanics, or to prove the existence (or non-existence) of God, or at least to be able 
to calculate (predict) planetary movements. There was, in those days, little expectation of 
the laws being generally applicable, and certainly not to for example automotive engineering 
or satellite orbit determination. Usually a problem in these areas starts with the control 
engineer specialising the normative theories of Kepler and Newton to the specifics of the 
problem at hand. Requirements are then usually expressed as constraints on the mechanical 
behaviours specified (typically) by the differential equations that describe the instantiated 
problem domain (i.e. instantiated theory). Control design then finds controllers (S) and show 
that they satisfy the requirements (&) under theassumption of the domain model (V). One 
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would never dream of hiring a person to develop control for flight systems unless they were 
well-educated and professionally specialised in the appropriate control, respectively aerospace 
engineering disciplines. 

Similarly for electrical and communications engineers, etcetera. They, or you, may not 
think of the laws of electronics (Ohm's, Kirschoff's, etc.), or Maxwell's equations, constitute 
domain models; but that is what they do! And so it goes. One would never dream of 
hiring a person to develop sensor electronics or space communications for flight systems 
unless they were well-educated and professionally specialised in the appropriate electronics 
and communications engineering disciplines. 

It is high time that software engineers become as smart and mature, productive and 
responsible, professional and specialised as other engineers. On one hand most practising 
software engineers today are unaware of the advances wrt., and the broad applicability of 
formal techniques — available for many years now. On the other hand: how can they believe 
that they can develop software for banking, railway or manufacturing industry applications 
without having studied — or themselves developed — appropriate domain theories for these 
application areas. 

2    Domain Engineering 

The aim of domain enginering is to develop, together with stake-holders of, or in, the se- 
lected domain, a precise set of concordant descriptions of the domain, a set that the parties, 
developers and stake-holders, can agree upon. 

Thus we foresee some set of loose contractual obligations binding the two parties. 
from a formal point of view, domain engineering establishes the theory V. 

2.1    Example Domains — Infrastructures 

Examples of domains, limited to infrastructure systems, are: 

• Transport Systems: [11SI 

-Railways [16,37,47,62,22,23] 

- Air: Trafic and Lines [19 12] 

- Metropolitan Transport (bus, train, taxi, ec.) [140,59] 

- Shipping 

• Manufacturing Industry: [74,75,6,102,7,101,103] 

Infrastructures'connecting'software packages(across each of the individual (intra: (i)), 
respectively between these (inter: (ii)) spectra: (i) marketing, design, order process- 
ing, shop floor production, wharehousmg, sales, service, etc., and (ii) suppliers and 
consumers, producers and traders, etc. 

• Financial Service Industry: 

With individual models, and with models that span across the entire industry: 

- Banking: Demand/deposit, savings & loan, investment, etc. [20, 107, 21] 
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- Insurance Companies: Health, life, accident, theft, risk, etc. 

- Securities: Exchanges, brokers, traders, etc. 

- Etcetera: credit card and bank cheque clearing; portfolio management, etc. 

• Ministry of Finance: [57] 

• Health Care Systems 

• Decision Support Systems for Sustainable Developments [85, 17] 

• Resource Management: [18, 123] 

• &c. 

2.2 First Aims of Domain Engineering 

An aim of domain engineering is to provide partial and sufficient answers to questions like: 
What is a railway company?, a transport industry?, a bank?, a financial service industry?, 
a manufacturing enterprise?, respectively: What is a manufacturing industry? The question 
is expected answered without any reference to possible requirements to potential software, 
and (certainly) without any reference to implementations of such software — as the domain 
in question already exists, existed (or still exists) without any software for a long time. We 
expect the domain description to be both informal, but in the professional language of the 
domain (including its dagrammatic and other linguistic devices), and formal, in the form 
of a formal specification of the crucial terms (viz.: nouns and verbs) of the professional 
domain language(s). We will not in this paper analyse any perceived problem of extracting 
or communicating this domain knowledge. 

A domain description is a model of the domain, that is: necessarily an abstraction. To 
conquer possible complexities of the domain we may focus on various perspectives of the 
domain — i.e. understandings as held by various groups of domain stake-holders. 

2.3 Domain Models — An Example: Railway Systems 

Let us try give an example. The problem of giving an example of a domain model of a sizable 
domain is that the example need be kept within limits, but the domain is usually perceived, 
by the reader, as being inordinately complex and "large". 

First we give an informal description — which ideally consists of a triple: a synopsis, a 
narrative and a terminology. Then we present a formal specification (in the RAISE [77] 
Specification Language: RSL [76]). 

2.3.1    Synopsis, Narrative & Terminology 

• Synopsis:3 

A synopsis is a terse informal text which — by mentioning, in a reasonably structured 
and "softly" enumerative way, the names of a number of components, actions and 
behaviours — may lead the reader onto 'what the whole thing is all about'. 

*Thc synopsis shown may be claimed to be sufficient. 
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Tiie domain (and hence its description) is normative,4 and is that of railway systems. 
Common to these we find that railway systems can be characterised in terms of the 
railway net with lines and stations, of timetables, of traffic (in terms of the movement 
of trains), of passenger and freight ticket and space reservation, ticketing, loading and 
unloading, of the shunting and marshalling of trains, of various concerns about rolling 
stock, of the management and human operation of the system, and of repair, mainte- 
nance and development of all of these resources. 

Narrative:5 A narrative is a careful description of all the relevant notions of the 
described "thing": 

- Railway Nets:  A net consists of lines and stations.  A line connects two distinct 
stations. 

Stations consists of tracks and other combinations of rail units. Lines and tracks 
consists of sequences of linear units.8 Lines can be seen as a sequence of blocks 
which are then sequences of linear units. 

Units have connectors.   A linear unit is a unit with exactly two connectors.  A 
switch (unit) has three connectors. A cross-over (unit) has four connectors. Etc.7 

Connectors have identity. At most two units can share at most two connectors and 
do so if they have identical identity* 

With a unit we can associate the set of its potential states. A state of a unit is the 
set of open paths through a unit. A path of a unit is a direction through the unit 
in which traffic ftrain movement) is possible. Over time a unit can undergo state 
changes.9 

- Timetables: 

Several notions of timetables may (co-)exist: 

A timetable may be very basic and show, for example for each train number, the 
route of the train, that is: the sequence of station visits together with the train 
arrival and departure times at those stations. Or a timetable may additionally 
be train-dispatch oriented and may furthermore show train clearance and station 
routing information as well as approximately when (at which times) the train 
should be at which blocks along the lines. Or a timetable may be passenger- 
oriented and also show quantity and quality of seats and sleepers. Etcetera. 
Stations have unique names. 

- Traffic: 

By a normative description we mean a description of a class, rather than a particular member of the class. 
The narrative shown here is much too simplified — but the example shows what is meant by a narrative. 
Pragmatically: Example tracks are: passenger and freight train through tracks, passenger train platform 

tracks, freight train sidelines, load/unloading tracks and shunting and marshalling yard tracks. 
Pragmatically: Connectors seem to be an artificial "device" needed in order to easily define nets. Units 

are similarly pragmatically chosen atomic quantities. 
'Pragmatically: the two units are connected at the "join" of those two identically identified connectors. 
"Pragmatics: The state of a unit may be effected by the setting of switches and signals —but so far 

we abstract that. The state of a unit serves to route trains properly. Trains are intended to only pass in 
the direction of an open unit: from one connector towards another. Whether trains obey the state setting 
is a matter outside the domain. In the domain we must also model human errors, technology failures and 
catastrophes. 
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Traffic is the continuous movement — interspearsed by temporary stops — of trains 
along the net. Trains have both train numbers and unique train identifiers.10 

By movement we mean that if at two relatively close times (say separated by a 
few seconds, t, t") a train is moving snd is at, i.e. occupy, two distinct sequences 
of units, i.e. at positions (p,p"), then at any time ft') in-between, the train is at 
monotonic positions (p?) in-between p and p"-11 

Traffic can be observed, and ideally, as the above 'continuous' function, or traffic 
can be scheduled (planned). Scheduled traffic may be in the form of a discretised 
prescription, as in the train-dispatch oriented timetable. 

- &c. 

Terminology:12 A terminology is an alphabetically sorted list of concise, informal 
definitions. 

We only examplify a few terms. 

Capitalised terms used in definitions refer to separate entries. Defined terms are listed 
alphabetically. 

- Connector: A Connector has an Identity and is further undefined. At most two 
Units may share at most equal identity Connectors. 

- Hump: A Hump is a Unit and is a notion of Marshalling.13 

- Incoming (Marshalling) Tracks: A set of one or more Tracks form an Incoming 
(Marshalling) Track configuration if the Tracks at one end are 'fanned-in' (merged) 
into a Hump.1* 

- Line: A Line is a non-empty sequence of Linear Units. A Line 'connects' two 
Stations. 

- Marshalling: Marsfiaiiiiuj are the actions of decomposing a (potentially unending) 
series of sequences offreight cars, passenger waggons, etc., into a potentially un- 
ending series of set of (parallel) sequences of freight cars, passenger waggons, etc. 

- Marshalling Yard: A Marshalling Yard consists of three main parts: a smali set of 
one or more Incoming tracts {otherwise connected, at an incoming end, to (other) 
units of a Station), a usually large set of Outgoing Tracks (otherwise connected, 
at an outgoing end, to (other) units of a Station), and a Hump. Usually routes 
through the Marshalling Yard are only possible from the Incoming to the Outgoing 

Tracks. 

'"Pragmatics: Two or more trains on the net may have identifical train numbers — since their journey may 
last longer than the time interval by means of which a timetable may be defined. In this case we may wish to 
use train identities in order to be able to distinguish any two trains. 

"By monotonic movement we mean that the direction of the train does hot change in the closed interval 

b.p"]- 
"Another term could be: •Dictionary'. This one is very "sparse", but we hope sufficient for the reader to 

get the idea. 
"Pragmatics: A Hump 'connects' Incoming and Outgoing Tracks and permit the orderly selection of cars, 

waggons, etc. from Incoming Tracks and their distribution to appropriate Outgoing Tracks. 
"Pragmatics: A series of incoming sequences of cars and waggons may be routed onto the other end so that 

individual cars or waggons may be routed onto the Hump from either Incoming Track. 
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- Net: A Net consists of a set of one or more (known) Lines and a set of two or more 
(known) Stations. All known Lines must connect known Stations. Each known 
Station must be connected to at least one known Line. 

- Outgoing (Marshalling) Tracks: A set of one or more Tracks form an Outgoing 
(Marshalling) Track configuration if from a Hump there is a 'fan-out 'to the Tracks 
at one end which at the the other end are connected to other Station Units.15 

- Open Path: An Open Path is a Path which is in the current Traffic State of a Unit. 

- Open Route: An Open Route is a Route all of whose Paths are in the current 
Traffic State of the Net. 

- Path: A Path is a way through (a direction along) a Unit. 

- Route: A Route is an orderly connected sequence of Paths. 

- Station: A Station consists of a set of one or more Bracfcs and a set of Units.16 

- Traffic State of a Net: The totality of the Traffic States of the Units of a Net makes 
up the Traffic State of a Net. 

- Traffic State of a Unit: A Unit can, at various times, "occupy" one or another 
Traffic State.17 

- Track: A Trade is a linear sequence of one or more Linear Units.la 

- Unit: A Unit is — for the purposes of this description —' a smallest 'unit' of rail. 
Units serve to compose Nets. Nets can be decomposed into Units. There are Linear 
Units, Switch Units, Crossover Units, Turntable Units, Track End Units, etc.19 

2.3.2    Formal Specification 

• Nets: 

.type 
Net, Lin, Sta, Trk, Uni, Con 

value 
obs_Lins: Net -» Lin-set 
obsJStas: Net -> Sta-set 
obs.Unis: (Net|Sta|Lin) -> Uni-set 
obs—Cons: Uni-set 
LinStas: Lin -» Sta x Sta 

Pragmatics: It may be better to »ay that a Hump is the root of a fan-out to a number of trades, where 
the fan-out is a configuration of mainly switch units whose "leaves" are connected to one end of the Outgoing 
Tracks. 

Pragmatics: The Tracks serve a mam purpose of a Station: to Load and Unload Passengers and Freight, 
to temporarily "park' trains, to Marshal a set of Trains into another set, and to let Through Trains pass the 
Station. The (other) Station Units serve to Route Trains between Lines and Tracks. 

"Pragmatics: A Traffic State of a Unit indicates a number of Paths through that Unit as being open for 
Traffic. 

"Pragmatics: Tracks can be classified to belong to one or more of either: Platform Tracks, Through Tracks, 
Shunting/Sideline Tracks, Freight Load/Unloading Tracks, Incoming and Outgoing Marshalling Tracks, etc. 

"Pragmatics: You may wish to think of a linear Unit as a pair of rails, a large set of sleepers, each sleeper 
fastened to the rails by *nails', etc. 
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V n:Net • 
let stas = obs-Stas(n), 

Uns = obs.Lins(n) in 
V s,s' in stas s/s' => 3 1 in lins • LinStas(l) = (s.s') 
end 

• Timetable: 

type 
TT, T, Sn, Tn 
TimeTable = Tn w (Sn ^(T X T)) 

value 
obs_Sn: S -> Sn 

axiom 
/* observed station visits are linearly ordered: trains */ 
/* arrive at stations before they leave, and arrival times */ 
/* at "later, subsequent' stations follow departure */ 
/* times from "earlier, previous' stations. */ 

The times shown in one way (TimeTable) of observing (i.e. projecting) an abstract 
timetable (TT) are modulo some reasonable interval, say working days, week-ends, 
holidays. 

• Traffic: 

type 
TF, Tid, Rou 
rTraffic = T 4 (Tid ^ Rou) 
sTraffic = T ^ (Tid ^ Uni) 

value 
obs.Tn: Tid -f Tn 
obs.UniRou: Rou -> Uni* 
obs-Traffic: TF ->• rTraffic 

• Managed Nets and Traffic: 

type 
MN, MTF 
MgdNet = T -* Net 
MgdTraffic = T -> (Net x ((Tid ^ Rou) x (Tid ^ Uni))) 

axiom 
/* Routes and Units of train positions must be thos of the */ 
/* net. Unit positions of scheduled traffic must have */ 
/* appropriately open paths. Etcetera. */ 

10 
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A managed net reflects the time changing set of unites and states of units. A managed 
traffic reflects the managed net, the real and the scheduled traffic. 

2.4    Domain Perspectives 

The concept of perspective is a pragmatic one. It serves to decompose an otherwise large 
domain description into a more manageable, structured set of related descriptions — each 
corresponding, as closely as possible, to a stake-holder perspective. The pragmatics, at the 
domain level of perspectives is that each perspective, i.e. each sub-description covers a distin- 
guishable set of closely related components, properties, actions and behaviours of the domain 
being described. <"-■.- 

• Domain Perspective: 

We can (formally) define a perspective as a partial specification of a domain, consisting 
of a type space and a set of functions. 

We continue the railway systems example from above. 

• Base Perspectives: 

It seems that railway nets and timetables form the main two base perspectives. 

As a minimum any stake-holder seems to agree that the railway net in terms just of 
lines and stations and a simple observation of timetables suffice to characterise many 
aspects of railway systems. 

The timetable and the net are related by stations and — implicitly — by lines. 

• Signalling Perspectives: 

By signalling, at the intrinsic level (see domain facets, section 2.5) of domain descrip- 
tions, we mean just the state of the net (including its units). Signalling is a control 
perspective. 

For trains to actually journey across the net through stations and along lines signalling 
must be in effect: paths and routes must be opened and closed in order to ensure safe 
and speedy traffic. 

So we need to further detail the net into units and their states, open and closed. Man- 
aged nets and traffic may be a way to describe signalling. 

• Passenger Perspectives: 

Passengers, in addition to the basic net and timetable descriptions, as well as railway 
system staff with whom they interact, have a perspective of the railway systems as 
somehow embodying ticket reservation, cancellation, etc. Passenger perspectives are 
user perspectives. 

type 
B, Date, Tn 
Occ = Tid ^ ((Sn x Sn) ^ (Free x Bound)) 

value 
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ide: Date x Tn 4 Tid 
res: Date x Tn x (Sn x Sn) x B 4 (B x Ticket) 
can: Ticket x B 4 B 

axiom 
/* Can only reserve if free seats. Accepted reservation*/ 
/* leads to less free sests, more booked ones */ 
/* Cancellation only if ticket is validly reserved. */ 
/* Etcetera. */ 

We should have stressed before, and will here stress, that domain descriptions of com- 
ponents, like B, and actions, like reservations and cancellations, and constraints, like 
the axioms stated, are abstractions of "real world"20 phenomena which may not (or 
may already) be machine supported. That is: our descriptions are assumptions about 
the "real world", with or without computing support for what is being described. In 
other words, B, may or may not become the basis for a computerisation, etc. 

There are many other (rail net and rail service development (i.e. plant), statistics, timetable 
planning (i.e. management), etc.) perspectives. It is not the purpose of this paper to enu- 
merate as many as possible, nor to further analyse the concept of perspectives. 

2.5    Domain Facets 

The 'domain perspective' concept was application-oriented. Each perspective portrayed a 
suitably and pragmatically chosen part of the domain. 

The 'domain facet' concept is a somewhat technical one, but still is basically determined 
on pragmatic grounds. 

Any domain has some intrinsic parts. These are parts which reflect 'stable' properties of 
the domain, that is: properties which remain properties also when the "hard" technologies 
that 'support' the domain change, or when the rules & regulations that 'govern' stake-holder 
domain actions and behaviours change, etc. 

* Domain Facet: 

We can (formally) define a facet as a partial specification of a domain, consisting of a 
type space and a set of functions. 

In the following we will illustrate 'clusters' of these facets in the context of the railways 
example: 

• Intrinsic Facets: 

By an intrinsics of a domain we loosely (pragmatically) mean those facets which remain 
invariant under changing support technologies, changing enterprise system or infras- 
tructure rules & regulations, changing stake-holder behaviours, etc. That is: We define 
intrinsics as a core and relative to (modulo) other facets. 

Therefore an improved characterisation of intrinsics should emerge as we next deal with 
supposedly non-intrinsic facets. 

30No-one knows what "real traffic is. Therefore we put double (tongue-in-cheek) quotes around that concept. 
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• Support Technology Facets: 

Much of the technology that reside in the railway domain is changing regularly while 
its intrinsics remain stable. 

- Switch Technology: 

One example is the switch technology. In the early years of railways switches 
were thrown manually, by railway staff, one per switch! Later mechanical gad- 
gets, including momentum amplifiers, were connected by thick wires to a central 
cabin house which predominantly featured a row of 'throwers'. Now we find that 
combinations of switches are activated electronically and electrically through so- 
-called solid-state switches. The same underlying, intrinsic concept, a switch, has 
its internal functioning determined by varieties of support technologies. 

- Signal Technology: 

Another example is, or was, the visible, mechanical signals consisting of a tall mast 
(or pole) to which are affixed, at tie top, for example one or two 'Bags'. These are 
hoisted or lowered through cabin-located 'throwers'. Later some such mechanical 
signals were replaced by signals consisting of not so tall poles on which are fixed 
red/yellow/green or just red/green lamps. In future we can foresee that all such 
signals are replaced by radio messages sent to each individual train informing it of 
whether to make a stop or not, including actually performing that control — the 
meaning of a signal. 

- Sensor Technology: 

Yet a third example is the following. It is based in how we observe traffic. In the 
intrinsics we claim that traffic is a continuous function from time (at least within 
a suitably chosen interval) to train positions. In "physical reality" we know that 
at whichever time we choose to observe the traffic there will indeed be trains. In 
the "observable reality" we cannot observe all the time all the positions. Instead 
we place observers at suitably chosen points (units). That is, wrt. space, we 
choose to sample, and this spatial sampling discretises our observations. Also: we 
do not observe all the time, but chooses to let the observers inform us only of 
changes: now there is a train starting to pass by in that direction, now the trains 
ends passing by. That is: rather than being subject to continuous evaluation we 
discretise in the form of observable events. The observers form a fand öf'support 
technology'. In the "old days" the observers were railway staff that might have 
used some form of telegraphic or telephonic equipment to inform a more-or-less 
central gathering of observations. Today optical sensors (optical gates) may be 
used as observers (and perhaps with extended functionality). The point is: the 
support technology changes. 

- &c. 

(The point is also that) Support technology may fail. In the intrinsics observations, 
switch setting, unit openings and closing were "ideal". In the presence of possibly and 
probabilistically failing technology switches may fail to change state, signals may "get 
stuck", and sensors may register a 'train-passing-by' event when in "real reality" there 
is no such train, or vice-versa: may fail to register a passing train. 

!3 
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- Modeling: 
The intrinsics descriptions (models, whether informal or formal) must therefore be 
extended (enriched) to include the components, actions and behaviours of support 

technology. 
Typically the models must incorporate real-time, safety criticality, (failure) prob- 
abilistic, etc. properties. 
Formal specification languages that are able to cope with some of these facets are 
the Duration Calculi of Zhou Chaochen [45, 50, 49, 43, 44, 92, 48, 93]. 

Rules & Regulations Facets: 

Written procedural guidelines exists in most man-made domains. They are intended 
to regulate the actions and behaviours of staff in operating, i.e. interacting with the 

domain. 

- Railways: 
Examples, again relating to the railways, are: 

* Trains at Stations: 
In China, probably due to some pretty disastrous train crashes at stations, 
there is a rule, concerning acceptance of incoming trains and dispatch of de- 
parting trains at stations. This rule states that in any n minute interval (where 
n = 5) there must at most be one train arriving or departing a station — even 
though some stations may have ample tracks and disjoint routes from and to 
lines: sufficient to actually receive or send several trains simultaneously.21 But 
a rule is a rule! 

* Trains along Lines: 
Lines may be decomposed into blocks, with blocks delineated by for example 
signals. The purpose of blocks is usually to ensure that there is at most one 
train in each block, or that there is at least one block between any two trains 
on the same line. Again blocking may be introduced in order to make it 
simpler to monitor and "control"22 traffic along lines in order to ensure safety 
(no crashes). Thus some support technology (e.g. signals) may be a means to 
ensure a rule. 

* Dispatch & Rescheduling Rules: 
Rules giverning the dispatch and rescheduling priorities among train types 
(international vs. local passenger trains vs. similar grades of freight trains vs. 
military trains) abound.23 

* &c. 

"This kind of rule is similar to air traffic at airports: Pairwise adjacent landings on any given runway must 
be separated by, say, at least 2 minutes. Similar for take offs. And any adjacent pair of a landing and a 
take-off, or a take-off and a landing must be separated by, say, 5 minutest 

"What exactly is meant by'control'is left undefined. 
"Especially these rules are changing rapidly these years in the light of the "ownership" decomposition of 

of railway systems: base net & signalling infrastructure in terms of one operator vs. commercial passenger 
and freight traffic in terms of possibly several, competing operators. They are changing in order to further 
competition. 

14 

RTSE'97, p.52 



- Banks: 

Customer deposit monies into savings accounts, for example as 'exchanged' with a 
bank teller, involve 'interpretation', by the teller, of rules & regulations for posting 
such deposits. Depending on the customer account contract (in which the rules 
& regulations concerning all transaction are 'defined'), the clerk performs one or 
another set of actions (a 'script') "against" the account (i.e. banking) system. The 
account contract (generally set up when the account is first established) 'binds* 
concepts (i.e. concept identifiers) such as for fees, interest rates, loan limits, etc. to 
actual values. (This binding is reminiscent of environments EJVV when modelling 
block-structured programming languages.) The domain model of deposit and other 
transactions are therefore modelled as a Bank Programming Language script. A 
script has two formal parameter lists, a transaction arument list and a contract 
identifier list. When performing a transaction, i.e. when invoking the script, trans- 
action parameter values are bound to identifiers of the transaction argument list, 
while the (latest) contract environment is used to find the values of the contract 
parameter list. 

Model: 

type .■;...:....•■.-■.■ 
Pid.Cid, Cmd 
Bank = {accounts} ^ (C ,# Ace) ... 
ENV = Cid ^ VAL 
Script = (Pid* x Cid*) x Cmd 
Sn = {....deposit.withdraw^ave.borrow,.,.} 
Ace ='...'". 

U {balance} ^ VAL 
U{linit} rt VAL 
U {interest} ^ VAL 
IK*«} nt VAL 
U {yield} * VAL 
U {overdraw} ^ VAL 

U {scripts} ■,£ (Sn ■& Script) 

U {contract} ^ Text 
U {env} ^ (ENV x T)* 

Trans = Sn x VAL* 

value 
int Jtou: C X Trans -> Bank -> Bank 
int_Rou(c,sn,vall)(b) = 

let a = (b(accounts)J(c) in 
let ((pl,cl),cmd) = (a(c))(sn), 

env =  (a(c))(env) in 
/* assert: */ len vail = len pi /* end assert */ 

15 

RTSE'97,p.53 



let p - [pl[i] i-> va!I[i] | i:Nat • i 6 inds] 
U [cl[i]i->'env(d[i])]in 

int_Cmd(cmd)p end end end 

Comments: Many other domains have rules & regulations that must be interpreted 
by humans, and the same rule & regulation may have to be interpreted according to 
some 'context'. 

More generally on modelling we can say: 

- General Comments on Modeling: 
The intrinsics and technology support descriptions (models, whether informal or 
formal) must therefore be extended (enriched) to include the components, actions 
and behaviours of rules & regulations. 
Procedural (human f+ domain) matters tend to express logical properties for which 
also "exotic" logics like [auto]epistemic, belief, defeasible, deontic, and modal logics 
in general, may well serve as a basis for formalisation [66, 65, 67, 68]. 
In general rules <fc regulations seem to be best modeled in terms of a special script 
language of commands. The command language is "tailored" to be able to access 
the domain state components. So: on one hand we do define major aspects of the 
intrinsics (basis), support technology, rules & regulations, human (stake-holder) 
behaviour, etc., using one (or another) specification language. But when it comes 
to typically the rules & regulations facet we defer further modelling to scripts 
written in a further defined domain specific (rules & regulations) script language. 
Now each such rule & regulation is then, in the domain model, associated with 
some script. Which script some rule & regulation is 'paired' with we do not model! 
But we should give example of sample interpretations of rules & regulations in 
terms of such rules! 
We refer to the item on Ground Staff Sub-facets page 17, in particular the con- 
tinued bank example (page 17), for further on how humans may interpret rules & 
regulations. 

• Stake-holder Facets: 

An important facet of the domain is the stake-holder concept: the staff of the system 
of interest within the domain (owners, managers, workers), the clients and customers, 
politicians, otherwise affected citizens, etc. Each have their own 'agenda' vis-a-vis the 
system, the domain in which it is embedded and more loosely connected issues which 
we may otherwise think of as "outside the domain". 

They express opinions, they have goals and objectives (not to be confused with re- 
quirements [to computing]), they manage other staff and other resources of the system 
(i.e. the enterprise, viz. a specific railway system operator), they operate its resources, 
they use the services or acquire the products of the enterprise, and they are otherwise 
"interested" in the well-being of the domain and its surroundings. 

Again some examples may serve to illustrate the points being made here: 
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Owner Sub—facets: 

Owners of a system — an enterprise — residing within the system or domain 
may think of that system (or enterprise) in terms of goals and objectives that 
do not (later) easily translate into software requirements. Their facet is that of 
profitability, of growth, and of market share. Further subsidiary goals may then 
have to do with customer and staff satisfaction, with environmental (bio-sphere) 
concerns, etc. A model facet may try to cover this — but formalisation is probably 
difficult. It is impossible if there is no other formalisation of the domain, that 
is: formalisation of owner sub-facets may be enhanced in the presense of formal 
models of the domain. The system (state) 'variables' or 'indicators' in terms of 
which their sub-facets are to be formulated need be rather directly relatable to the 
domain model notion of state (and other) components. 
Manager Sub-facets: 
Managers acquire and dispose (i), allocate and schedule (ii), and deploy (Hi) re- 
sources in order to meet goals and objectives at various levels: strategic (i), tactical 
(ii) and operational (iii) — respectively. At the higher, the strategic to tactical 
levels, one may be able to identify the kinds of components — including clients 
—'■ involved and the kind (i.e. the type) of predicates that express satisfaction of 
goals and objectives — where the type of components are the type of the various 
resources being managed: time, people, equipment, monies, etc. Similar the de- 
cisions taken by management can be characterised, if neither algorithmicaUy nor 
logically, then at least through their (algebraic) signatures. Report [18] shows 
that one can formally capture the domain sub-facets of the strategic, tactical and 
operational management of resources. 
Staff Sub-facets: 
The staff are the persons, "on the ground", being managed, and most directly 
exposed to the daily operations of the domain. They are the ones who directly 
handle the actual, tangible (manifest) mechanical and other like resources — as 
well as customers. In the case of the railways this staff is comprised from train 
staff: engineers, sleeper attendants, etc., station staff: train dispatchers, shunting 
staff, etc., passenger service staff: seat reservation and ticketing staff, etc. As do 
the managers, the ground staff must carry out actions according also to Rules & 
Regulations. And they may fail or succeed, more-or-less 'punctually & precisely'. 
Also this may be describable, informally, and perhaps also formally. Experiments 
and experience will show! 
To illustrate an issue we take up the thread from the bank example above. 

* The Bank Example—Continued: 
A clerk may perform the transaction correctly (and many different sequences 
of actions may be involved and applicable), or the clerk may make a mistake, or 
the clerk — or some already installed software support — maliciously diverts 
sums to "other" accounts! The contract therefore, in the domain, denotes a set 
of named ruie & regulation designations. Each such named rufe & regulation, 
since it may be potentially interpreted in any number of ways, is now modeled 
as a set of scripts. Transaction processing, say be a human clerk, then involves 
a non-deterministic choice among the possibly infinite ways of interpreting a 
client request. 
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type 
Ace = 

(J {scripts} ^ (Sn ja Script-infset) 

value 
int.Script: C X Trans -* Bank -> Bank 
int_Script(c,sn,vall)(b) = 

let a = (b(accounts))(c) in 

let {(pl,cl),cmd) = select((a(c))(sn)), 
env ==  (a(c))(env) in 

/* assert: */ len vail = len pi /* end assert */ 
let p = [pl[i] H>. vall[i] | i:Nat • i 6 inds] 

U [cl[i]>-+ env(cl[i])]in 
int.Cmd(cmd)/? end end end 

select: Script-infset -* Script 
select (ss) as s post s G ss 

- User Sub-facets: 
Users (clients) interact with ground staff and with equipments (products) and 
service offerings of the domain system. They may interact according to expecta- 
tions, or they may fail. They may be satisfied, or disgruntled. They may be loyal 
customers, or they may search for other 'vendors' of services and products in a 
competitive manner. 

- &c. 

Our list of facets have "moved" from the seemingly more easily formalisable, the "hard" 
facets, to "softer" facets that are increasingly more difficult to formalise. 

- Modeling: 
The intrinsics, support technology and rules fe regulations descriptions (models, 
whether informal or formal) must therefore be extended (enriched) to include the 
components, actions and behaviours of humans. 

' To model, informally and formally, stake-holder facets may be difficult — but that 
is no reason for not trying. It seems that more research is needed, especially in 
the area of formalisation and in the concordance of informal and formal descrip- 
tions. That research may result in altogether different syntactical (visual) forms 
of descriptions. 

There are many other (customer, economics, etc.) facets. It is not the purpose of this paper 
to enumerate as many as possible, nor to further analyse the concept of facets. 

The list of facets given above is illustrative. The developers may be guided by this list, 
or may have to analyse the problem domain in order to determine for themselves the nature 
of other, not exemplified, facets. 
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2.6 Domain Elicitation & Validation 

The terms elicitation and acquisition are used interchangeably. 
There is an emerging, "rich" literature on techniques and tools that might help domain 

developers in extracting domain knowledge from stake-holders of the domain. 
We would have liked, at this place, to give a reasonably thorough survey of contributions 

made by researchers and practitioners in the area. The problem is, however, that there are 
very few — if, in reality, any — relevant contributions. "Classical" software engineering tends 
to have focused on requirements elicitation and to have bundled occasional domain elicita- 
tion with requirements elicitation. An examination of the "schools" of domain knowledge 
engineering seems more relevant for our purposes. 

Instead, therefore, of a satisfactory account we shall just mention a few possibly relevant 
papers: 

• Formal Ontology: , :    :   [52] 

• Epistemology: [125] 

• The knowledge-level reinterpreted: modeling socio-technical systems: [51] 

• The frame problem in the situation calculus: [126] 

A simple solution (sometimes) and a completeness result for goal regression: 

• Formal Ontology, Conceptual Analysis and Knowledge Representation, and: [79] 

Some Organising Principles for a Unified Top-level Ontology: [80] 

• Modelling and Methodologies for Enterprise Integration: [13] 

• The Logic of Enterprise Modelling: [78] 

• An Algebraic Logic for Concept Structures [120] 

A Categorical View on Concept Structures [122] 

and Object Logic for Conceptual Modelling: [121] 

— with a Medical Domain as Case Study 

We hope sometime to be able to relate this work to that of ours. 

2.7 FAQ: Domains 

• Can stake]-holders understand the domain descriptions? 

Appropriate stake-holders should understand corresponding perspectives of the informal 
descriptions. In fact it is desirable — in future, after computing scientists have identified 
basic methods — that they be able to write informal domain descriptions. 

Whether these stake-holders also can read the formal descriptions is another matter. 
We do not think that it is — at the moment — necessary that all classes of stake-holders 
meet this criterion. 
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For certain developments the client may make use of independent software engineering 
consultants (who can indeed both read and write formal descriptions) to inspect the 
developers documents — much like Norwegian Veritas and Lloyd's Register of Shipping 
act oh behalf of future ship-owners when the ship is built. 

• What should be the languages of informal descriptions? 

We believe they should be the languages spoken by the staff and users (customers) of 
the domain. 

In the example of railways this means that a variety of informal, yet sufficiently precise, 
professional languages should be used in a "cleaned-up" manner. The clean-up should 
only affect the non-professional, usualy, national and natural language parts and consists 
in improving the narrative and terminological precision. 

The informal, professional languages often deploy various diagrammatic parts (pictures, 
figures, tables) as well as sometimes even mathematical formulas. Such parts should be 
'ported' to the narratives, etc. 

• What should be the languages of formal descriptions? 

In this paper we show only the formal specification language of RSL [76], the RAISE [77] 
Specification Language. RSL is not the only possibility: we could probably as well have 
used VDM-SL, Z, or some other sufficiently endowed language. We do find, however, 
that RSL's concurrency constructs (not found in VDM-SL and Z) as well as its clear 
and simple methodology [77], bias us in the direction of RAISE. 

Where the domain exhibit temporal notions then RSL, VDM-SL and Z cannot be used 
— for those, temporal parts:  Instead we might decide on using a suitable Duration 
Calculus. 

Many formal specification languages exists: 

-B [5,3,91,4], 

- Duration Calculi [46, 50, 49, 43, 44, 92, 48, 93], 

-Larch t»2, 83], 

- RAISE/RSL (76, 77] 

- STeP/React [114, 115], 

_ VDM '                   [24,25, 104,55, 109,58,108,64], 

- Z [86, 139,129,135,117,132, 131, 136, 137, 138, 56, 40, 130, 133], 

- etc. 

• When have we specified enough — minimum/maximum? 

Recall that domain description aims not primarily, but only also to serve as a basis for 
requirements description. That is: if we were only to describe the instantiated domain 
that very explicitly relates to requirements — we may call this kind of domain descrip- 
tion 'minimal', then it is not so difficult to know when we have specified enough: We 
have specified a minimal domain when all the professional domain (system) terms that 
"pop-up" in requirements have been defined in the domain. But usually that "mini- 
mum" is insufficient for a number of reasons. 'Minimum' terms may need clarifications 
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which refer to undefined domain terras. Any one domain may give rise to several re- 
quirements, each covering (supporting) more-or-less "disjoint" areas of domain activity. 
Eventually emerging (i.e. resulting) software packages that implement these different 
requirements are desired to share facilities and concepts, i.e. to exchange data and 'call' 
each other! Any "gap" between the software packages usually is a reflection on some 
similar gap in their counterpart "minimal" domain descriptions. 'Domain-describing' 
these gaps — perhaps already before the software package interactions might have been 
conceived — amount to "non-minimal" domain descriptions. The process of securing a 
suitably comprehensive domain description is an uncertain one. 

We take the position wrt. to the above "minimality/maximality" problem, that it is an 
issue of normative versus instantiated domain descriptions: minimal when instantiated, 
maximal when normative! 

• Normative and/or Instantiated Domeün Descriptions? 

- Normative Domain Descriptions: 

A normative domain description is a description which is intended to describe 
a class of usually two or preferably more "closely resembling domains". A nor- 
mative railway domain description should thus cover for example the railways of 
Denmark, Norway, Sweden, perhaps even Russia and China — in fact: should de- 
sirably describe any national or private railway system! Whether such a normative 
description is possible is another matter! 

So a normative description may ideally cover the class of all domains, especially 
domain systems and their environments, but will probably do so in a way that 
makes their use for any particular, any specifically instatiated domain a less than 
trivial, but not an altogether unreasonable task. 

Research into and the development of such normative domain descriptions may 
typically not be a concern of any one particularly instantiate domain (system): 
why should they develop more than they think they need? Why, in competive 
situations, should they develop something that might as well benefit competition? 
Etcetera. So we may conclude that if it is reasonable to develop normative domain 
descriptions, then the needed precursor research as well as the development ought 
take place in peer-reviewed contexts, in an open fashion, that is: typically at a 
public research center or at a university. 

One can therefore imagine a potentially many year university project, with interna- 
tionally collaboratoring "schools" — with varying participation over the years. To 
develop a reasonably comprehensive, normative model of a typical infrastructure 
domain may take 10-20 years. As in nuclear physics, the domain model emerges 
through partial contributions, slowly, but steadily. 

We suggest such a possibility for a number of domains: railways (residing in trans- 
port departments or institutes at technical universities), financial service industry 
(residing at schools of economics, finance and business management), etc. There 
is already loose collaboration between individuals of such schools, but perhaps 
'human genome'-Iike 'domain projects' could be justified. 

-Instantiated   Domain Descriptions: 
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Since there can be little if any doubt that any specific domain (or system within 
such) needs domain descriptions that are particularly "geared" to its "peculiar- 
ities" , there can also be little doubt that it would be nice if there were already 
available a normative, and appropriate domain description from which a rewrite, 
editing or parameterisation into an instantiated domain description was a reason- 
ably straightforward development step. 

We foresee a day when the description methods, techniques and tools of computing 
science and software engineering have matured to such a degree and relative to a num- 
ber of domains such that continued methdology research and tool development takes 
place, riot in computing science and software engineering departments, but in the more 
domain specific institutes. This predicated situation is akin to that of numerics, in 
fact of classical mathematics: many branches of natural sciences and engineering are 
today themselves capable of conducting necessary and sufficient mathematical work on 
modeling their own domains. 

• Why Domain Engineering by Computing Scientists & Software Engineers? 

If we examine the basic development issue across the spectrum of domain, requirements 
and software design engineering (especially for man-made domain systems, in particular 
infrastructure systems), then we find that the overwhelmingly largest construction tasks 
all have to do with structuring very large descriptions: securing proper syntax, semantics 
and pragmatics. These descriptions shall primarily satisfy laws of mathematics, in 
particular of mathematical logic. 

No other engineering focuses so intensely on textual structures. No other engineering 
discipline speaks of syntax, semantics and pragmatics. In all other engineering branches 
there is sooner or later a quantum jump: from some diagrammatic, computable descrip- 
tion to the (assembly line or refractory tower or other) construction of tangible, manifest 
products satisfying laws of nature. 

A major contribution of computing science and software engineering is exactly that of 
devising precise techniques and tools for handling large descriptions. 

That is the reason why computing science must study and software engineering must 
practice domain engineering — for years to come. 

2.8    Domain Research, Education and Development Issues 

The Bernried workshop, sponsored by the US Department of Defense (DoD) Office of Naval 
Research (ONR), had as a main objective of the ONR to evaluate, on the background of 
workshop presentations and discussions, which were and are the research, education and 
development issues. In this section, and in sections 3.5 (page 27) and 4.6 (page 31), we 
therefore relate put own contribution to that of needed research, education and development. 

• Domain Research Issues: 

We need do more research on the linguistic and formal domain recognition and capture 
issues that may govern both informal and formal descriptions of domains [98]. 

Specialisation in software engineering is one way of achieving the level of other engineer- 
ing disciplines' professionalism and methodology. We may most likely be well-adviced 
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in moving firmly in that direction by following Jackson's notion of Problem Frames 
[98,99,36]. 

To do this research we envisage a number of desirably parallel executed experimental 
research projects. The number and kind of these should preferably be chosen so as to 
span a suitable spectrum of problem frames, and within the specifically chosen (problem 
frame specific) examples also span a suitable variety of perspectives and facets. 

We need sharper, more methodology-oriented, perhaps formally founded and explored, 
ways of characterising the perspective and facet concepts, as well as individual such 
perspectives and facets. For a beginning we may follow the software view notion of 
Daniel Jackson [95]. 

• Domain Education Issues: 

There are currently no appropriate text books and monographs in the area of domain 
knowledge engineering, but there is are papers on knowledge engineering, ontology and 
enterprise modelling. 

The current author is issuing a series of reports covering the spectrum from domain 
engineering via requirements enginering to software design. These are intended to also 
be part of a monograph on formal aspects of software engineering. 

• Domain Development Issues: 

Much experimental and exploratory development is needed in order to ensure that the 
researched and evolving domain modeling techniques and the concepts of perspectives 
and facets are appropriate. Over the years 1994-1997 we explored domain models for 
railways [26, 37,47, 62, 35], manufacturing industry [74, 75, 6,102, 7,101,103], ministry 
of finance [57], etc. while we established, built up and directed UNU/IIST, the UN 
University's International Institute for Software Technology. We are currently, 1997- 
1998, at our current address, with colleagues and students, further exploring domain 
methodologies in the areas of railways, metropolitan transports, banking, full scale 
finance accounting [28, 107, 21], etc. 

3    Requirements 

The aim of requirements enginering is to develop, together with stake-holders of the selected 
domain, a precise set of concordant descriptions of the requirements, a set that the parties, 
developers and stake-holders, can agree upon. 

We will not give a detailed account, such as in the revious section on domain engineering, 
but only touch upon some issues. 

Thus we expect a set of precise contractual obligations binding the two parties. 
From a formal point of view, requirements engineering establishes the theory V.. 

3.1    Requirements Models 

Without further ado we — perhaps somewhat dogmatically — state that a requirements 
specification, i.e. a requirements model, basically builds upon the domain model, possibly a 
subset. Requirements reside in the domain as Zave & Jackson says [143]. 
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3.2    Requirements Aspects 

* Requirements Aspect: 

We can (formally) define an aspect as a partial specification of a requirements, con- 
sisting of a type space and a set of functions. 

A number of aspects seems to govern the composition of requirements: 

• Domain Aspects — 'Functional' Requirements: 

o Domain Projections: 
Some of the domain type (i.e. state) space is usually projected onto the require- 
ments. 
Prom the domain model we have: 

type 
rTraffic = T -4 (Tid ^ Rou) 
oTraffic = T rf- (Tid ^ Uni) 

That is: "real traffic" is a partial function (total over a closed time interval) from 
time to the discrete routes of the railway net occupied by identified trains. Ob- 
servable traffic discretises (through 'sampling') the partial function. 
This was in the domain. Now, if the requirements have to do with monitoring the 
air traffic, then we must decide upon (i) what, more precisely, of the air traffic is 
being observed, (ii) how often (i.e. more precisely about the 'sampling'), and (iii) 
by whom (i.e. how). 
From an underlying reality of support technology of sensors one could imagine that 
what we are observing is more like: 

type 
Interval = T x T 
Sensing = Interval nj- (Uni y& Tid) 

hence 

value 
Convert: Sensing -4 oTraffic 

The requirements have to deal with domain component (here state) projection 
issues related to this. 
Similarly with the functions that may need be computed by the software: 

value 
TooClose: oTraffic 4 (Tid ^ Uni) 
Crashes:  oTraffic 4 (Tid ^ Uni) 
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o Domain 'Dichotomies': 
Here we take a dichotomy as a potential conflict between what is expressed in 
one part of the domain model and what is expressed in another part of that do- 
main model. Dichotomies only need be resolved by a requirements if the general 
requirements otherwise relate to the concerned parts of the domain model. 
An example is that of "ghost trains". If the requirements is about monitoring (and 
'controlling') traffic, then the Law of N 'Ghost' Trains of the intrinsics somehow 
conflicts with the possibility of failing support technology to create the illusion, 
through misleading samplings, that there are indeed 'ghost' trains. On one hand 
we know that the intrinsics espresses that there can not be 'ghost' trains, while on 
the other hand we might indeed register such! 
A requirements to a traffic monitoring system may be to resolve such conflicts 
through re-sampling, and — if such fails — to correct the illusion, for example by 
stopping appropriate trains. 

6 Domain'Extensions': 

Functional requirements usually focus on some domain concepts and facilities and 
direct the support of some of these. Once the whole apparatus of for example 
extensive and expensive, net-wide train sensing is being demanded, it may be little 
extra to demand that a number of traffic prediction and rescheduling functions also 
be required: functions that were not in the domain because they were impractical 
or inordinately expensive to realise without computing. 
In other words: the software + hardware machine, once inserted into the domain, 
becomes a part of it, and its concepts and facilities becomes a part of the domain 
for the next round of development. 

• Machine Aspects: 

Among so-called "non-functional"24 requirements we have those that relate to the ma- 
chine itself, where by the machine we mean the computing systems made up by the 
required software and its execution platform, both soft and hard. Aspetcs include: 

o Execution Platforms: 

Requirements may dictate the use of specific hardware as well as run-time system 
software such as operating system, database management system, data (network) 
communication software etc. Among "etc." we include OMG packages (CORBA), 

■ ^c-  ■ 

o Dependability & Performance Issues: 
For the specific combination:   (i) provision of functional aspects (concepts and 
facilities), and (ii) computing platform, the client usually expects a certain quality 
of dependability & performance: 

* Availability: minimum down-time 
* Reliability: mean time between and to next failures, etc., 
* Safety: machine response in case of equipment failures, 

'The functional requirements are those (formalisable) ones that derive directly from (i.e. *reside' in) the 
" domain. 
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* Security: hierarchies of authorised access to the use of facilities, 

and: 
* Performance: execution times needed in order to provide timely computations 

of certain functions; and: response times expected wrt. domain interactions. 

Some of these aspects may be formalisable, others not (yet). 

o Maintenance Issues: 
Perfective, corrective and adaptive maintenance is unavoidable. Requirements (ac- 
tually they are a kind of meta-linguistc requirements) may make statements as to 
the "ease" with which such maintenance can be performed. 
Perfective maintenance aims at improving performance. Corrective maintenance 
aims at removing bugs. Adaptive maintenance aims at fitting existing software to 
new hardware arid/or new software extensions to previously required software. 

As in our response to user-friendliness requirements below, we argue now that 
carefully developed and sufficiently broad domain models help us to "anticipate 
software sockets" for next generation software packages within the domain. And 
thus to help improve adaptability. 

• Domain <-> Machine Interface Aspects: 

Among further, so-called "non-functional" requirements we have those that relate specif- 
ically to the man/machine interface. 

o Graphical & other User Interfaces 
Our view is here: Visualising clear, well-described domain concepts determine basic 
concepts of graphical interfaces., 

o Dialogue Monitoring & Control 
Again our view is: clear, well-described domain concepts, including events and 
behaviour, determine basic concepts of dialogue management. 

o User Friendliness: Psychology, Physiology, etc. of Interface: 
Often a broad sweeping statement is made: "the software, when the basis of exe- 
cutions, should lead to a user-friendly system". 

As in our response to adaptability requirements above, we repeat the argument 
that carefully developed and sufficiently broad domain models where the eventually 
developed software is expected (required) to primarily reflect only the concepts 
and facilities of the domain, in some isomorphic or homomorphic manner25, is an 
indispensable basis for securing user friendliness. 

3.3    Requirements EHcitation & Validation 

The terms elicitation and acquisition are used interchangeably. 
I have little to say on this subject — and, although I have indeed followed the literature 

on requirements [134, 60, 63, 105, 53, 124, 116, 15, 127, 113, 111, 88, 54, 141, 94, 87, 106, 61] 

MA step of development from one, abstract step to a concrete step can be said to be homomorphic if 
individual concepts of the abstract step are likewise individually identifiable in the concrete step. 
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I have much to do as I find that most of the literature need be re-conceptualised, re-worked 
and re-worded substantially to relate meaningfully in a formal and domain-based setting. 

Fine insight need be rather substantially revised when requirements, as here suggested, 
are separated, but derived from domains. . 

Immediate, fine candidates, in my rather personal view, are: [73, 118,14, 97,110, 39,143, 
112]. 

3.4 FAQ: Requirements 

• Where do requirements come from? 

From the domain, and basically only from the domain. The functional requirements are 
expressed by stake-holders in the domain and in terms of their professional language. 

• What about platform and interface requirements? 

Well they are usually domain-independent. An example are software correctness. If 
computers etc. already exist in the domain, platform requirements and interface usually 
relate to these. 

• Should clients read formal requirements document?., 

The answer is along the same line as given above— FAQ: Domains—first item. 

• Acquirements always change, so why formalise? 

Well, requirements do change, but the domain from which they emerge change much less 

rapidly. Therefore it is additionally useful (i) to try "complete" a domain specification, 
(ii) to formulate requirements using terms only from the domain, and (iii) to base a 
software architecture on the core concepts of the domain, and hence the requirements. 
For situations where the application problem "occupies" but a tiny fraction of the 
domain it is usually still useful, in anticipation of future requirements changes, to 'relate', 
in the requirements and in the software architecture, "back" to the larger concepts •■ 
of the domain. By mandating that the requirements 'homomorphically' reflect the 
domain, and that the software design 'homomorphically' reflects the requirements, some 
considerable robustness is achieved — and one can calmly await and handle requirements 

.'^changes.   . 

3.5 Requirements: Research, Education and Development Issues 

For the issues listed below answers in line with those of section 2.8 (page 22) can be given 
here. 

■ • Requirements Research Issues: 

We need better understand the relations between domains and requirements and be- 
tween requirements and software architecture. The issues of projection, of the input, 
Vetting and update of domain (data value) projections need also be studied. Finally 
the issue of relations between functional and non-functional requirements need skeptic 
clarification. In particular we need to better understand whether non-functional re- 
quirements can be formalised. To this end one may need to investigate entirely new 
(formal) specification paradigms. 
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• Requirements Education Issues 

Current textbooks in requirements engineering are full of many very good, mostly prag- 
matic observations, but I believe that we need textbooks on requirements engineering 
(etc.) that use formal specification and design calculation techniques [144, 128], 

• Requirements Development Issues: 

We refer to the domain item on this issue page 23. 

4    Software/Systems Design Engineering 

An aim of design engineering is to develop, for the client, a software package or system (i.e. 
a set of "connected" packages) that satisfies the requirements. 

Usually, given a requirements specification we can normally design both the hardware 
configuration and the software system — so we may take the term 'systems engineering' to 
include both hardware and software (sub-)system design. 

A legally binding contract between the developer and the client describes mutual obliga- 
tions wrt. delivery of ("more-or-less") correct software. 

FVom a formal point of view, design engineering establishes the software design theory <S. 

4.1    Software Architecture 

By a software architecture we understand a specification which primarily specifies the ex- 
ternal interface behaviour of the software (to be, or already designed).26 In contrast to 
(the) 'program organisation', the software architecture, typically, implements the functional 
requirements whereas, typically, implements the non-functional requirements. 

The important aspect of software architectures that we need to focus on here is that they 
are basically derived from the requirements. 

Indeed, it can sometimes be a bit difficult to see any deeper difference between a require- 
ments specification and a software architecture specification. We have found, however, that 
the following characterises the step from requirements to software architecture: 

"David Garlan et al. ([8, 71,1, 72, 9, 2, 69,10, 70]) define the concept of Software Architecture much more 
broadly than we do. We do not mind, but find it a little disturbing. In the 1960s computer (ie. hardware) 
architecture was agreed, and was defined, seminally, by Amdahl, Blaauw and Brooks [11], to be the interface 
as seen by programmers: the computer data structures (byte, halfword, word, double word and variable length 
character strings), the addresing forms, the instruction repertoire, the channel commands, etc. That is: All 
things that were visible at the assembler code level. In 1964 the one IBM/360 architecture gave rise to a 
variety of machine organisations: from the IBM 360 Model 20, via Models 30, 40, 44, 50, 60, 65 and 70; that 
is: from byte via halfword, and word to double word machine data busses, from strictly sequential machines 
to highly overlapped (pipelined) flows. So: when it came to hardware there was a dear distinction between 
the architecture and the organsiation — just as we have seen with the Intel (etc.) series from eight bit byte 
organsiations (8086) via halfword, and word to double word machine data busses. But with basically the same 
architecture. We also refer to Hennesey and Pattersons two tomes: [90, 89] 

Instead it seems that Garlan et al. defines an architecture to be anything you would like to say aobout the 
structure of either soft- or hardware and such that you say this diagrammatically. 

We do not mind their definition, only — in relation to our software related definitions — theirs mean: any 
form of software architecture, program organisation or more refined structure. 
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• Requirements as a Set of Partial Specifications: 

— in contrast to a software architecture specification which collects all the "bits and 
pieces" of the various, aspect-oriented partial specifications. 

The software architecture specification therefore formulates a consistent and complete 
whole. 

• Requirements as a Under-specified Specification: 

■— in contrast to a software architecture specification which completes the requirements: 
fills in "wholes" that were deliberately left under-specified. 

It is often useful to let some requirements facet specifications be completed during 
software design. 

• Functional vs. Non-funcional Requirements: 

Functional requirements usually can be rather explicitly "carried" into software archi- 
tectures— as they were usually also formally specificed. 

Non-functional requirements are usually not (yet) formalisable. A software architecture 
— or, at the "latest", a program organisation — proposal therefore has to come up with 
initial answers as how to satisfy these non-functional requirements (such as performance, 
security, user-friendliness, maintainability, etc.). 

4.2 Program Organisation (Software Structure) 

By a program organisation (or [internal] software structure) we understand a specification 
which, in addition to the externally observable interface behaviour also specifies the internal 
structuring of the software (to be, or already designed). A determining factor in choosing 
one organistation design over another is whether non-functional requirements can thereby be 
satisfied. 

A program organisation thus settles many issues that might have been left 'abstract' even 
by the software architecture. Examples are: A software architecture may specify a data type 
abstractly. A concretisation of this seemingly 'monolithic' abstract data type may be in the 
form of a set of data types. The program organisation specification further commits each 
member of the set to be implemented as a state variable (i.e. as an assignable variable) — 
and these may then be [geographically] distributed. 

: And a program organisation, in line with the above, introduces and specifies internal 
processes, committed (concrete) data structures — including the use of for example database 
management system support, data communication system support — etc. 

4.3 Refinement 

Although an element of software development we need not treat this methodology concept in 
this paper — since we primarily wishes to relate domains to requirements, requirements to 
software, and since we also primarily wish to enunciate the concepts of domain perspectives, 
domain facets, requirements aspects and software views. 
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4.4 Software Views 

[95] defines a: 

• Software View: 

as a partial specification of a program, consisting of a state space and a set of operations. 

We have "re-used" this definition, slightly paraphrased, in our characterisations of domain 
perspectives and facets and requirements aspects.27 

Since Daniel Jackson has basically set the agenda for the study of software views we shall 
refer to his paper [95]. 

4.5 FAQ: Formal Software Design 

Instead of listing frequently asked questions wrt. software design we list a number of myths 
and commandments more generally related to the larger concept of 'formal methods': 

• In [84] Anthony Öall lists and dispels the following seven "Myths": 

1. Formal Methods can Guarantee that Software is Perfect 

2. Formal Methods are all about Program Proving 

3. Formal Methods are only Useful for Safety-Critical Systems 

4. Formal Methods Require highly trained Mathematicians 

5. Formal Methods Increase the Cost of Development 

6. Formal Methods are Unacceptable to Users 

■■'. 7. Formal Methods are Not Used on Real, Large-Scale Software 

• In [41] Jonathan P. Bowen and Michael G. Hinchey continue dispelling myths: 

8- FormaJ Methods Delay the Development Process 

9. Formal Methods are Not Supported by Tools 

10. Formal Methods mean Forsaking Traditional Engineering Design Methods 

11. Formal Methods only Apply to Software 

12. Formal Methods are Not Required 

13. Formal Methods are Not Supported 

14. Formal Methods People always use Formal Methods 

• And in [42] Jonathan P. Bowen and Michael G. Hinchey suggests ten rules of software 
engineering conduct: 

I. Thou shaft choose an appropritae notation 

II. Thou shaft formalise but not over-formalise 

III. Thou shaft estimate costs 

IV. Thou shaft shall have a formal methods guru on call 

Pages 11, 12 and 24 respectivey. 
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V. Thou shaft not abandon thy traditional development methods 

VI. Thou shaft document sufficiently 

VII. Thou shaft not compromise thy quality standards 

VIII. Thou shaft not be dogmatic 

IX. Thou shaft test, test, and test again 

X. Thou shaft reuse 

4.6    Software Design: Research, Education and Development Issues 

The: 

• Software Design Research 

• Software Design Education 

• Software Design Development 

issues seem reasonably well taken care of in at least Europe The European, so- 
called 'formal methods' awareness "movement" (as exemplified through the more than 
a decade-long efforts of first VDM Europe, later Formal Methods Europe (FME)) These 
propagation efforts are based primarily on European research. 

The US attitude is basically that formal methods are anchored in, yes some (John 
Rushby) even state: only have to do with tools. The European attitude, in contrast, take 
formal methods are mostly specification (i.e. formal specification and design calculi). 

It will be interesting to see how these two schools may eventually merge. 

The US school on 'software architecture', notably that part which we call: 'program 
organisation', is very strong [8, 71, 1, 72, 9, 2, 69, XO, 70). We should like to see a 
clearer separation between what we define as separate concepts: software architecture 
and program organisation. Some research is needed to clarify this issue and to develop 
principles and techniques for the 'derivation' of (families of) architectures from require- 
ments specifications and of (families of) program organisations from these architectures. 

5    Conclusion 

A proposal for a triptych decompostion of software engineering has been presented. Some of 
the subsidiary, methodology principle concepts has been likewise presented: domain principles 
and facets, requirements aspects and software design views. A development methodology 
assumption is that all descriptions being presented (both informally and formally), and that 
relations between triptych phase documents and between stages and steps within these, be 
also formally characterised. 

The paper has suggested a number of software engineering practices be currently dispensed 
by software engineers rather than domain professions. We argue so since the disciplines of 
computing science and software engineering has carefully developed and honed attendant 
description principles, techniques and tools. The paper has likewise suggested that a number 
of subsidiary areas be subject either to research, and/or to support by more or less mechanised 
tools, and/or to more specialised education: teaching and training. 

31 

RTSE'97, p.69 



What has been described is essentially the authors current research, university education 
and technology transfer interests. With colleagues we are trying out ideas of this paper in 
student project work, in exploratory & experimental demo & prototyping work — some with 
one or another of the kind of infrastructure enterprises or industries mentioned in section 2.1 
— and hence also in more or less applied research. It is therefore to be expected that future 
publications will report on this as well as on more foundational work. 

A    Software Engineering Terminology 

A.l    Special Terminology 

The wording of many of the definitions of this report may sound dogmatic. Prudent reflection 
will soon reveal that it is merely a set of reasonable and useful delineations. 

1. Software Development: 

To us software development consists of three major components: domain engineering, 
requirements engineering and software design. Together they form software engineering. 

Discussion: This is a somewhat "bureaucratic" characterisation. Namely 
one given in terms of its "way of being handled" — who does it, rather than 
what it does! 

Therefore: Software Development aims at constructing software — or as we shall later 
"enlarge" it: machines. It does it by also constructing models of the domain in which the 
software will reside, the requirements that the software must satisfy, etc. The present 
report will deal with the processes of software development. 

.2. Systems vs. Software Engineering: 

Perhaps the term 'software engineering' is too restrictive. Since any implementation of 
especially a larger software system entails procurement also of hardware, development 
will also include configuration and acquisition of hardware components. That larger 
concept: the development, procurement, installation, performance tuning, operation 
and disposal of computing systems (hardware © software) is therefore what We mean 
by systems engineering. Thus software engineering is part of systems engineering. 

Discussion: As eloquently pointed out by Michael Jackson [98] the term 
software engineering is probably much too broad a term, or it should be 
understood as a dass term. As such it covers a set of specialised software 
engineering specialtie)s. Mechanical engineering stands for rather separate 
groups of for example automotive, heat/water/ventilation, hydrological, nau- 
tical, aero-nautical, and many other engineering specialities. Software engi- 
neering is still far from having identified suitably specialised such groups — 
except perhaps for compiler designers. We refer to item 12 (page 41) for hints 
at what such groups might be. 

3. Linguistic Notions: 
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(a) Descriptions & Documents: 

AU stages of software development results in descriptions and documents. The 
two terms are almost synonymous: description refer to the semantic content of the 
syntactic document. We describe and document domains, requirements, software 
architectures, program organisations, etc. We sometimes also, again synonymously, 
refer to these descriptions as Definitions (as f.ex. for a domain model or a require- 
ments model), sometimes as Specifications (as f.ex. for a software architecture 
model), yes even as Designs (as f.ex. for a program organisation model), 

software engineering management takes the syntactic, document view of develop- 
ment; whereas programming takes the semantic, description view. 

(b) Concordant Documents: 

A set of documents, spanning the spectrum of descriptions of domains, require- 
ments, software architectures, program organisations, etc., form a set of concordant 
descriptions, and within each of these we may also need alternative, complementary 
descriptions — which form another set of concordant descriptions. 

Two or more documents are said to be concordant wrt. each other if they all 
purport to present descriptions of basically the same thing — but each emphasising 
different, but related aspects. / ' 

We shall later introduce pragmatic notions of perspectives, facets, aspects and 
views. These represent equivalence classes of concordant documents. 

(c) The Informal Languages of Indications, Options and Actions: '. 

As pointed out by Jackson [99] the informal language of domain descriptions is 
indicative: "what there is", that of requirements descriptions is optative: "what 
there should be", and that of software design descriptions is imperative: "do this, 
do that — how to do it!". 

(d) Descriptive and Prescriptive Theories: 

We could also use the terms descriptive and prescriptive theories in lieu of indicative 
and optative descriptions. 

(e) The Formal Languages of descriptions: 

In contrast, the languages of formal descriptions are mathematical, and in mathe- 
matics we cannot distinguish between indicative, optative and imperative moods. 
Such distinctions are meta-linguistic, but necessary. Similarly with the various 
equivalence classes of concordant documents: perspectives, facets, aspects and 
views. 

(f) Description Techniques: 

We refer to Jackson [98, 99]: "Phenomenology — recognising and capturing the 
significant elementary phenomena of the subject of interest (domain, requirements, 
software) and their relationships. Say as much as is necessary, with perfect clarity, 
but no more. ... Choose and express abstractions and generalisations formally in 
order necessarily to bring an informal reality under intellectual control." 
Constituent techniques [99] are those of: 

• Designations: 

That is: system identification. Establishing the informal relationship between 
real world phenomena and their description identifiers. 
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» Definitions: 

The definition of concepts based on real world phenomena. 
• Refutable Assertions: 

The usually axiomatic expression of real world properties. 

4. Machine: 

The aim of software development is to create software. That software is to function on 
some hardware. Together we call the executing software ffi hardware for the machine. 
The machine is, in future, to serve in the (future) domain as part of the (future) system. 

Since domain engineering and requirements engineering aim at descriptions that may 
eventually lead to procurement of both software and hardware we shall refer to software 
development leading to a machine. 

5. Domain Concepts: 

Two approaches seem current in today's 'domain engineering': one which takes its 
departure point in model-oriented, Mathematical Semantics specification work (and 
which again basically represents the 'Algorithmic' school), and one which takes its 
departure point in knowledge engineering — an outgrowth from AI and Expert Systems. 
The latter speaks of Ontologies. For now we focus on the former approach. 

(a) Domain = System © Environment ffi Stake-holders: 

By domain we roughly understand an area of human or other activity. We "divide" 
the fomain into system, environment arid stakeholder. All are part of a perceived 
world. 

Discussion: Examples of domains are.' railways, air traffic, road trans- 
port, or shipping of a region; a manufacturing industry witii its consumers, 
suppliers, producers and traders; a ministry of finance's taxation, budget 
and treasury divisions as manifested through government, state, provin- 
cial and city offices and their functions; the financial service industry, or 
just one enterprise in such an industry (a bank, an insurance company, a 
securities broker, or a combination of these); etcetera. 
Since we are developing software packages that serve in these domains it is 
important that the software developers are presented with, or themselves 
help develop precise descriptions (models, see later) of these domains. 
Our argument here parallels that given for compiler development: we must 
first know the syntax and semantics of the (source, target and implemen- 
tation) languages involved. 

(b) System: 

By system we understand a part of the domain. The system is typically an enter- 
prise. Once the machine has been installed in the system then it becomes a part 
of a new domain wrt. future software development. 

Discussion: A railway System consists of the railway net (lilies, stations, 
signalling, etc.), the rolling stock (locos, passenger waggons, freight cars, 
etc.) and trains, the time tables and train journey plans, etc. A description 
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of the railway domain must make precise the structure and components 
of the railway systems as well as all the behaviours it may exhibit 
Identification of the system is an art. 
Please note that when we speak of a system we do not refer to a computing 
system. 

(c) Environment: 

By environment we understand that part of the perceived world which interacts 
with the system. Thus the system complement wrt. "the perceived world", i.e. the 
environment, together with the system and stakeholder makes up the domain of 
interest. 

Discussion: Tie Environment of an air traffic system includes the weather 
(the meteorology) and the topology of the geographical areas ßown over. 
Identification of the Environment is an art. 
Since the Environment interacts with the System (and hence potentially 
with the Machine to be built) it is indispensable that we describe (incl. 
formally model) that part of the Environment which interacts. 

(d) Stakeholder = Clients ® Customers © Staff: 

By stakeholder we mean any of the many kinds of people that nave some form of 
"interest" in the (delivered) machine: enterprise owners, managers, operators and 
customers of the enterprise: within the system or in the environment. 

Discussion:  Stakeholders of a ministry of finance include government 
ministers, ministry staff and tax payers, 
Identifying all relevant stakeholders is an art. .>•<:;•> 
Since also they interact with the System (and hence potentially with the 
Machine to be built) it is indispensable that we describe (incl. formally 
model) possible stakeholder interactions with the System. 

(e) Client: 

By client we understand the legal entity which procures the machine to be de- 
veloped. The client is one of the stakeholders, and must be considered a main 
representative of the system. 

Discussion: A financial enterprise Client is usually the appropriate level 
executive who specifically contracts some software to serve in the enter- 
prise. 

(f) Staff: 

By staff we understand people who are employed in, or by, the system: who works 
for it, manages, operates and services the system, staff are a major category of 
stakeholders. 

(g) Customer: 

By customer we understand the legal entities (people, companies), within the sys- 
tem, who enter into economic contracts with the the client: buys products and/or 
services from the client, etc. customers form another main category of stakeholders: 
outside the system, but within the domain. 

Discussion: We have identified important components of a domain. The 
software engineers — in collaboration with domain stakeholders — face 
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the further tasks of specifically identifying the exact components to be 
considered for a given Domain. 
That 'identification' is still an art: requires experience and cannot be 
settled before preliminary modelling experiments have been concluded. 

(h) Domain Engineering 
= Recognition 
<-> Capture 
■(-+ Model 
<-> Analysis 
<-* Theory: 

Domain Engineering, through the processes of domain acquisition and domain 
modelling, establishes models of the fomain. A domain model is — in principle 
— void of any reference to the machine, and strives to describe (i.e. explain) the 
fomain as it is. domain analysis investigates the domain model with a view towards 
establishing a domain theory. The aim of a domain theory is to express laws of 
the fomain. 

Discussion: The Domain Engineer could be a special version of a Soft- 
ware Engineer — one who could be specially trained both as a Software 
Engineer, in general, and as a "Domain Expert", in particular. 

(i) Domain Recognition: 
System identification is an art! To recognise which are the important phenomena 
in the domain, and which phenomena are not (important) is not a mechanistic 
"thing", 

(j) Domain Capture 
= Acquisition 
44 Modelling: 

Discussion: We make a distinction between the "soft" processes of do- 
main acquisition: linguistic and other interaction with stakeholders, and 
domain modelling: the "hard" processes of writing down, in both informal 
and formal notations, the domain model. 
The domain capture process, when actually carried out, often becomes 
confused with the subsequent requirements capture process. It is often 
difficult for some stakeholders and for some developers, to make the dis- 
tinction. It is an aim of this report to advocate that there is a crucial 
distinction and that much can be gained from keeping the two activities 
separate. They need not be kept apart in time. They may indeed be 
pursued concurrently, but their concerns, techniques and documentation 
need be kept strictly separate. 

(k) Ontology: 
What we call domain models some researchers call ontology — almost! 
In the 'Enterprise Integration and in the 'Information Systems communities on- 
tology means: "formal description of entities and their properties". Ontological 
analysis is applied to modelling the domain of (manufacturing) enterprises and 
such systems (typically management systems) whose implementation is typically 
database oriented. 
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(1) Domain Model: 

By a Domain Model we understand an abstraction of the Domain. 

Discussion: Usually we expect a Domain Model, i.e. a Description of 
the Domain to be presented both informally and formally. 
The informal Description typically consists of a Synopsis which sum- 
marises the Model, a Terminology which for every professional term of 
the Domain defines that term, and a iVarrative which -^ in a readable 
style — describes how the terms otherwise relate. The formal Model is 
then expressed in some formal specification language and can be subject 
to Calculations using a Design Calculi of that notation. The model thus 
presents the syntax, semantics and, possibly also, the pragmatics of terms 
of the Domain. Not the syntax and semantics of the professional language 
spoken by Staff of the Domain System, but just the crucial terms. 

(m) Domain Modelling Techniques 

Domain modelling usually proceeds by constructing a partial specification (type 
space, functions and axioms) for each of a number of domain perspectives and 
similarly one for each domain facet. 

(n) Description Technology: 

Crucial concepts in domain modelling include: 

• system identification, 

• i.e. enumeration of designations [99], 
• formulation of definitions and 

• expression of possibly refutable assertions. 

The latter typically in the form of constraints on types and functions. 

(6) Domain Perspective: 

Domain perspectives reflect the conception of the domain business as seen by 
various stake-holders. 

(p) Domain Facet: 

Domain facets reflect some more 'technical, pragmatic decomposition' of the do- 
main together with a 'separation of concerns'. Specification typically proceeds 
from intrinsic facets, via support technology facets and rules & regulations facets 
to staff facets, etc. 

(q) Domain Model Analysis: 

By Domain Analysis we understand informal and formal analyses of the Domain 
and of the resulting Model — whether informal or formal. 

Discussion: TAe purposes of the analyses can be to ascertain whether 
a component and/or its behaviour qualifies as a component (etc.) of the 
Domain, and for such included components analyses may reveal Model 
properties not immediately recognised as properties of the Domain. Note 
the distinction being made here: the Domain as it exists "out there", and 

the Model as an abstraction thereof and which "exists" on the (electronic) 
"paper" upon which the Model is represented. 
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(r) Domain Theory: 

The purpose of Domain Analysis is to also establish a Theory of the Domain, or 
rather: of the Models purported to represent the Domain! 

Discussion: Examples of theorems in a theory of railways could be: (1) 
(Kirschhoffs law for trains:)  "Over a suitably chosen time interval (say 
24 hours) the number of trains arriving at any station, minus the number 
of trains taken out of service at that station, plus the number of trains 
put into service at that station, equals the number of trains leaving that 
station"; (2) (God doesn't play dice:)   "Two trains moving down a line 
cannot suddenly change place"; (3) (No Ghost Drains) "If at two times 
'close to each other' (say seconds apart) a train has been observed on the 
railway net, then that train is on the railway net somewhere between the 
two original observation positions at any time between the two original 
observation times". Etc. 
Failure to record essential theorems may result in disastrously erroneous 
software. 
Ability to identify and establish appropriate theorems is an art and taies 
years! 

(s) Domain Model Validation 

An informal process whereby informal and formal specification parts are related 
and where these again are related to the "real world" domain (system identifica- 
tion) 

6. Requirements Concepts: 

Requirements, as we have seen, form a bridge between the larger Domain and the 
"narrower" software which is to serve in the Domain. 

(a) Requirements = System © Interface © Machine: 

Requirements issues are either such which concern (i) machine support of the 
system, (ii) human (and other) interfaces between the system and the machine, or 
(iii) the machine itself. 
Requirements describes the system as the stakeholders would like to see it. 

(b) Functional & Non-Functional Requirements: 

Functional requirements include the concepts and facilities to be offered by the 
desired software.Non-functional requirements emphasise such less tangible issues 
as performance, user dialogue interface, dependability, etc. 

(c) Requirements Engineering 

= Capture 

+-► Model * 

44 Analysis 

*-> Theory: 

Requirements Engineering, through the process of requirements capture, estab- 
lishes models of the requirements. The "conversion" from requirements information 
obtained through requirements elicitation, via requirements modelling to require- 
ments models is called requirements capture. Requirements Models are formally 
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derived from and extends domain models. Requirements Engineering also analyses 
requirements models, in order to derive further properties of the requirements. 

Discussion: We hope the reader observes the "similarity" in the compo- 

nents of domain engineering vs. those of requirements engineering. 
(d) Requirements Capture 

= Elicitation 
■H Modelling:- 

Remarks similar to those under Domain Capture — item 5j (page 36) apply. 
(e) Requirements Model: 

A specification of the requirements. Usually in the form of a set of partial specifi- 
cations, one for each requirements aspect. 

(f) Requirements Modelling Techniques: 

Requirements "reside in the domain", and are hence primarily projections of their 
type space and functions. Functional techniques deal with projections, resolv- 
ing domain/requirements dichotomies and extending domains. Non-functional 
techniques deal with machine notions: computing platform, system dependability 
and maintainability, and with computer human interface issues: user-friendliness, 
graphic user interfaces, dialogue management, etc. 

(g) Requirements Model Analysis: 

By Requirements Analysis we understand informal and formal analyses of the 
Requirements and of the resulting Model — whether informal or formal. 

Discussion: Tie purposes of the analyses can be to ascertain whether a 
component and/or its behaviour qualifies as a component (etc.) of theRe- 
quirements, and for such included components analyses may reveal Model 
properties not immediately recognised as properties of the Requirements. 

Note the distinction being made here: the Requirements as it exists "out 
there" — among Stake-holders, and the Model as an abstraction thereof 
and which "exists" on the (electronic) "paper" upon which the Model is 
represented. 

(h) Requirements Theory: 

The purpose of Requirements Analysis is to also establish a Theory of the Domain, 
or rather: of the Models purported to represent the Domain! 

7. Software Concepts: 

(a) Software Design 

= Software Architecture Specification , 
f+ Program Organisation Specification 
•H- Refinements 
o Coding: 

Software Design, through the process of design ingenuity, proceeds from establish- 
ing a software architecture, to deriving a program organisation/and from that, in 
further steps of design reification, also called design refinement, constructing the 
"executable code". 
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(b) Software Architecture: 
A software architecture description specifies the concepts and facilities offered the 
user of the software — i.e. the external interfaces. 
Usually functional requirements "translate" into software architecture properties. 

(c) Program Organisation: 
A program organisation description specifies internal interfaces between program 
modules (processes, platform components, etc.). 
Usually non-functional requirements "translate" into program organisation design 
decisions. 

(d) Refinement: 
Design Refinement covers the derivation from the requirements model of the soft- 
ware architecture, of the program organisation from the software architecture, and 
of further steps of concretisations into program code. 

8. Creation — Acquisition,. Elicitation and Invention: 

All stages and steps of the software development process involves creation: domain 
acquisition & domain modelling, requirements elicitation & requirements modelling, 
and design ingenuity. This human process of invention leads to the construction of 
informal as well as formal descriptions. 

9. Systematic, Rigorous and Formal Development: 

The software development may be characterised as proceeding in either a systematic, a 
rigorous or even, in parts, a formal manner — all depending on the extent to which the 
underlying formal notation is exploited in reasoning about properties of the evolving 
descriptions. 

(a) Format Notation: 
By a formal notation we understand a language with a precise syntax, a precise 
semantics (meaning), and a proof system. By "a precise ..." we usually mean "a 
mathematical...". 

(b) Systematic Use of Formal Notation: 
By a systematic use of formal notation we understand a use of the notation in 
which we follow the precise syntax and the precise semantics. 

(c) Rigorous Use of Formal Notation: 
By a rigorous use of formal notation we understand a systematic use in which we 
additionally exploit some of the 'formality' by expressing theorems of properties of 
what has been written down in the notation. 

(d) Formal Use of Formal Notation: 
By a formal use of formal notation we understand a rigorous use in which we fully 
exploit the 'formality' by actually proving properties. 

(e) Forma/ Method as Forma/ Specification ® Calculation: 
We refer to item 3 (page 43) for a definition of 'method'. 
The methods claimed today to be formal methods may be formal, but are not 
methods in the sense we define that term! Since we do not believe that a method 
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for developing software: from domains via requirements, can be formal, but only 
that use of the notations deployed may be, we (now) prefer the terms: formal 
specification and calculation. 

(f) Design Calculi — or Format Systems: 

By a design calculus we understand a formal system consisting of a formal notation 

and a set of precise rules for converting expressions of the formal notation into other 
such, semantically 'equivalent' expressions. 

10. Satisfaction = Validation ©Verification: 

The domain acquisition and requirements elicitation processes alternate with domain 
modelling and requirements modelling, respectively, and these again with securing sat- 
isfaction. 

(a) Validation: 

In this report we are not interested in the crucial process of interactions between 
software developers (i.e. software engineers, which we see as domain engineers, 
requirements engineers and software designers) and the stakeholders, validation is 
thus the act of securing, through discussion, etc., with the stakeholders that the 
domain model correctly reflects their understanding of the domain. 

(b) Verification: 

Let V, 72 and S stand for the theories of the fomain, requirements and software. 
Then verification: 

shall mean that we can verify that the designed software satisfies the requirements 
in the presence of knowledge (i.e. a theory) about the fomain. 

11. Software Engineering: 

Software Engineering is the combination of domain engineering, requirements engineer- 
ing and software design, and is seen as the process of going between science and technol- 
ogy. That is, of developing descriptions on the basis of scientific results using mathemat- 
ics — as in other engineering branches — and of understanding (the constructed fomain 
of) existing (software) technologies by subjecting them to rigorous domain analysis. 

12. Frame Specialisation: 

Discussion: In item 2 (page 32) we discussed the problem of software engi- 
neering being seemingly as a too wide field. And we hinted that specialisation 
might be a natural way of achieving a level of professionalism achieved in tra- 
ditional engineering gelds. In this item we will briefly introduce the concept 
of problem frames and give example of distinct such frames. 

A problem frame is well-delineated part of all the problems to which computing might 
be applied — such that this frame offers a precise set of principles, techniques and tools 
for software development, and such that this 'method' fits the frame "hand in glove". 
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• Principal Parts and Solution Task 

Following Jackson [98, 99] we think of a (problem) frame as consisting of its principal 
parts and a solution task. The principal parts are (1.) the domain — which exists 
a-priori — and (2.) the requirements. The solution task is that of developing the 
software — something relatively new! Tackling an application problem consists initially 
of analysing it into a frame, including a multi-frame with clearly identified part-frames. 

We explain a few frames and otherwise refer to [98, 99, 27]: 

(a) Translation Frame: 
The principal parts are: (i) two formalised languages (syntax and semantics), 
source and target; (ii) the concrete form of the syntactic representations of either: 
the source usually in the form of a BNF grammar for textual input, the target 
usually in the form of an internal ("electronic") data structure; (iii) user requests 
for compilation from source to target; (iv) the compiler; and (v) the translation 
function, (i-ii) form the domain, (iii-iv-v) the requirements. 

The solution task now involves developing the compiler using a well-defined set of 
techniques and tools: lexical scanner generators, possibly error-correcting parser 
generators, attribute grammar interpreters, etc. 

(b) fieact/ve Systems Frame: 

The principal parts are (i) the dynamic (temporal, real-time) "real world"; (ii) its 
observable variables [output], (iii) its controllable variables [input]; (iv) user (or 
other system) requests for the monitoring and/or control of the "real world"; (v) 
the monitoring & control (software etc.) system; and (vi) the specific monitoring 
& control functions (optimisation, safety, dependability, etc.). Items (i-ii-iii) form 
the domain, (iv-vi) the requirements. 
The solution task now involves control theoretic and real-time, safety critical soft- 
ware design principles, techniques and tools. 
It seems that Jackson refers to the reactive systems frame as the environment-effect 
frame [98]. 

(c) Information Systems Frame: 

The principal parts are almost as for reactive systems (i-ii) except that there is no 
desire for control, and the issues of safety criticality, real-time and dependability 
are replaced by (vi) (observable) information security and the need for usually 
"massive" information storage (for statistical and other purposes); (iv) the requests 
are concerned with the visualisation of observed information and computations over 
these; (v) the system is thus more of an information (monitoring) system; and (vi) 
the functions include specifics about the visualisation and other processing. 
The solution task can perhaps best be characterised in terms of the principles, 
techniques and tools for example offered by Jackson's JSD method [96, 98]. 

(d) Connection frame: See [98, 99, 27] for details. 

(e) Workpiece Frame: See [98, 99, 27] for details. 

(f) Transaction Frame: See [98, 99, 27] for details. 
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(g) Mufti-frame: See [98, 99, 27] for details. 

Usually a problem is not reducible to a single of the frames mentioned above (and 
some of these, due to requirements, often "overlap"). In such cases we have a 
multi-frame, a frame being best characterised in terms of hopefully reasonable 
well-delineated (sub-) frames. 

(h) 0c. 

A.2    General Terminology 

Many more terms are used in the subject field of this report: in its science and in its engineer- 
ing. Sometimes with unclear meanings, and not always with the same meaning from paper 
to paper. We shall therefore try delineate also important general concepts. 

Some dogmas: 

1. Computer Science: 

Computer Science, to us, is the study and knowledge of the foundations of the artifacts 
that might exist inside computers: the kinds of information, functions and processes (i.e. 
type theory), models of computability and concurrency; bases for denotational, alge- 
braic and operational semantics; specification and programming language proof theories; 
automata theory; theory of formal languages; complexity theory; etc. 

2. Computing Science: 

Computing Science, to us, is the study and knowledge of how to construct the artifacts 
that are to exist inside computers. Successful computing science results in a useful 
programming methodology. 

The present report "falls", subject-wise, somewhere between computing science and 
software engineering. 'v ,\,' 

3. Method: 

By a method we understand a set of principles of analysis, and for selecting and applying 
techniques and tools in order efficiently to construct efficient artifacts — here software. 

4. Methodology: 

By methodology we understand the study and knowledge about methods. Since we can 
assume that no one software development method will suffice for any entire construction 
process we need be concerned with methodology. 

5. Software: 

By software we understand all the documentation that is necessary to install, operate, 
run, maintain and understand the executable code; as well as that code itself and the 
tools that are needed in any of the above (i.e. including the original development tools). 

6. Software Technology: 

By software technology we understand sets of software tied to sets of specific platforms. 
(By a platform we mean "another" machine!) 
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7. Programming: 

Programming is a subset of activities within software engineering which focus on the 
systematic, via rigorous to formal creation of descriptions using various design calculi. 

8. Engineering: 

Engineering is the act of constructing technology based on scientifically established 
results and of understanding existing technologies scientifically. 

9. Engineer: 

Engineers perform engineering and use, as a tool, mathematics. It is used in order to 
model, analyse, predict, construct, etc. software engineers reason about the artifacts 
they construct, be they (fomain, requirements, software architecture, program organi- 
sation, etc.) model descriptions (i.e. definitions or specifications) or program code. 

10. Technician: 

Technicians use technologies: they compose, use and "destroy" them — without neces- 
sarily using mathematics. 

11. Technologist: 

Technologists are technicians who manage technologies: perceive, demand, produce, 
procure, market and deploy technologies. 

This report views software engineering as hinted above: As the act of going between science 
and technology, using mathematics — wherever useful. 
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Abstract 

Software development is no longer an enterprise where the traditional waterfall method of 
system construction is acceptable. Information technology is changing at a pace that requires 
complete system development and fielding in less than 18 months. This is due in part to faster 
technology insertion, and in part by increased user expectations. Both reasons provide 
justification for changing the way software is built and fielded. Increased user expectations 
require that we involve the user more in the requirements engineering process, and deliver the 
software to the user much more quickly. Faster technology insertion requires that we incorporate 
new technology into existing products much faster and with less rework. 

A new software evolution paradigm is needed to accomplish these goals, along with the 
automated tools to realize the benefits. Computer-Aided prototyping is one such method that 
incorporates the goals and opinions of the user from the beginning of the software evolution 
process, throughout the Iifecycle, and into retirement. Automated tools, like the Computer-Aided 
Prototyping System [1], assist the software developer in building executable prototypes of a 
software system very quickly, involving the user in an iterative build, execute, modify loop until 
the user is satisfied with the demonstration of the prototype. The prototype is then used to build 
the final version of the software through the use of the architecture included in the prototype, as 
well as the validated set of requirements constructed during the prototyping process. This final 
version is delivered very quickly, hopefully before the user's requirements have an opportunity to 
change. 

In the event that the user's requirements do change, new requirements can be incorporated into a 
next version of the system by using the same iterative process where the fielded version of the 
system provides the base version of the process. This incremental evolution process can proceed 
throughout the life of the system. 

What is needed in the paradigm is a method for automating the parts of the process that are not 
already automated by CAPS. These include computer-aided construction Of the prototype 
through intelligent interpretation of requirements into design, and better mechanisms for finding 
and retrieving reusable components from a repository. Current capability in CAPS provides for 
the ability to retrieve reusable components from a stand-alone repository built for the purpose, but 
to be useful in general, a methodology that uses some commercial standard, such as CORBA, for 
storing the components is needed to allow distributed access to multiple repositories. 
Additionally, an integrated automated testing capability is needed to provide for more robust 
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prototypes to be delivered to customers as increments of the final system. Current prototypes are 
not industrial strength, and therefore cannot be expected to perform in a safe manner in the user's 
environment. 

This idea of a new paradigm to build software is not new. Many have tried to develop new 
ways to do the same things. I do not propose a revolutionary new way o do software 
development, but merely propose a new way to use some existing technology to satisfy a growing 
need, quicker delivery of software products that can be maintained more easily, and updated more 
rapidly. 

1. Luqi and Ketabchi, M., "A Computer-Aided Prototyping System" IEEE Software, March 1988. 
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Abstract. It is possible with RAISE to specify and do most refinement in an 
applicative framework, and then transform the concrete applicative specification 
into an imperative sequential or concurrent one. This transformation changes from 
a style more appropriate to proof of refinement to a style more appropriate to 
implementation. 
The resulting imperative specification is typically hierarchical, with upper levels 
calling the functions of lower ones. This paper presents a further stage of develop- 
ment in which the hierarchical structure is transformed into a distributed one, and 
components communicate asynchronously. This also allows "horizontal" communi- 
cation between components of previously separate hierarchies. 
A major design aim is to reuse the hierarchical specification, as far as possible ex- 
tending the existing modules by standard, generic components. The method should 
achieve correctness by construction, and be amenable to quality control; it is is 
an example of an engineering approach using standard components and standard 
assembly techniques. 
The method is illustrated by collaborative work done between UNU/IIST and the 
Vietnamese Ministry of Finance in developing a specification of a national financial 
information system. 
Keywords Formal specification, development, refinement, reuse, restructuring, dis- 
tributed systems, software engineering 

1    Introduction 

We take it that engineering, as opposed to science, creates artifacts as far as possible 
through combining existing components. Speed and cost are minimised and reliability 
maximised through having to invent from fresh as little as possible. In this process the 
engineer exploits the known properties of the components, and the known laws of the 
combining activity which allows the engineer to compute the properties of the combina- 
tions. 

In this paper we describe the development of a distributed system, a financial infor- 
mation system, by developing first an applicative (or functional) specification and then 
transforming this, first into an imperative concurrent but still hierarchical system, and 
then into a distributed system. The first of these transformations follows the existing 
ideas of the RAISE method [1]. The second transformation is new and is based on a 
small number of standard components. Hence it exemplifies an essentially engineering 
approach. 

In section 2 we describe the problem we tackled, the development of a specification of 
a national financial information system for Vietnam. In section 3 we describe the RAISE 
method in outline and show how it was applied to the problem. In section 4 we describe 
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how the transformation to a distributed system was achieved. Section 5 is a concluding 
discussion. 

2    A Financial Information System 

During 1996-7 United Nations University International Institute For Software Technology 
(UNU/IIST) in Macau and the Vietnam Ministry of Finance (MoF) undertook a joint 
project called MoFIT (Ministry of Finance Information Technology) aimed at doing the 
domain analysis and specification for a national financial information system for Vietnam. 
The aim was to specify the major components of such a system and to specify the main 
activities and information flows. A second aim was to train software engineers from 
Vietnam in the relevant techniques. As well as the first author from UNU/IIST, the 
project involved seven mainly young software engineers from Vietnam: four from the 
MoF, one from the Institute of Information Technology in Hanoi and one from Hanoi 
University. During the 16 months of the project these people each spent between 6 and 
12 months working at UNU/IIST. As well as the main work described here studies were 
also made of other aspects like system security and the possible effects of changes in 
taxation policy. The results are described in two UNU/IIST technical reports [2,3] which 
in turn reference a number of more detailed project reports. 

Vietnam is divided into 61 provinces, provinces are divided into districts, and districts 
into communes. The major government ministries reflect this structure, with offices at the 
national, province, district and in some cases commune levels. So much of the collection or 
dissemination of information follows this hierarchical structure. In collecting information 
about taxes, for example, districts will supply information to their provincial offices, 
which will merge and perhaps summarise it and send it to the national office for the final 
merge into national information. Changes in taxation policy, or requests for information, 
flow down the hierarchy in the obvious manner. 

The main organisation concerned with generating revenue is the taxation system, 
which is part of the MoF. In the first phase of the project all the engineers had experience 
of developing software for this system, mainly packages for particular tasks for province 
and district taxation offices. So in this phase we concentrated on analysing and specifying 
the taxation system. 

In the second phase we considered other components. The treasury system is con- 
cerned with the actual collection and disbursement of money, with offices at national, 
provincial and district levels. The budget system is concerned with collecting budgetary 
estimates at the commune, district, province and national levels and, after government 
decision on the final figures, distributing actual annual budgets at the various levels and 
then monitoring these budgets. We also looked at two systems which exist only at the 
national level: the external loans and external aid systems. 

2.1    The Taxation System 

Taxation in Vietnam is currently primarily on enterprises. There are various categories of 
tax, such as profit taxes and sales taxes that may be levied. Provincial tax departments 
are responsible for larger enterprises as well as their district offices; district offices are 
concerned with smaller enterprises. 
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Province and district taxation offices therefore share the task of demanding, collecting 
and accounting for taxes. They need to maintain for each taxpayer 

- a roll of comparatively static information about the taxpayer, including basic details 
like name and address as well as information about the kind of business the taxpayer 
is in, from which the applicable categories of tax can be determined 

- bases or figures collected from taxpayers about actual turnover, profits, etc. 
- accounts recording taxes demanded, paid and owing for each category of tax for each 

taxpayer in each period. 

They also need the current national taxation rules, called the regime, for tax calculation. 
National and provincial taxation offices share the tasks of collecting, merging and 

summarising reports from their constituent offices at the immediately lower level. 
It is apparent that there are several functional or organisational components of the 

taxation system that one would like the design to reflect: 

- accounting for each category and period for each taxpayer 
- registration of taxpayers 
- recording base information for taxpayers 
- making, merging and summarising reports 
- structurally relating districts to provinces, provinces to the national office 

Making the structure of the specification reflect the main conceptual components aids 
in the comprehension of the overall system. Making the components separate with the 
standard properties of internal coherence and minimal linkage makes them easier to 
develop independently and robust against changes to other components. 

One would also like to specify only once shared data structures and functions over 
them. 

2.2    The taxation system specification 

The taxation system specification does meet these structural requirements. There are 
separate components for a regime, for registration, for a roll, for a base and the tax 
calculation from it, for a collection of bases, for an account and a collection of accounts. 
These combine as illustrated in figure 1 into a group, which provides all the functions for 
dealing with a collection of taxpayers. It also shares some other specifications that will 
be used globally: an abstract description of a report format with a functions to merge 
and summarise reports with common formats, and an abstract summation function that 
can be applied to the range of a mapping. 

In figure 1 nested boxes indicate extension (inheritance), continuous lines indicate 
module dependency where the lower box is used to make an object in the upper one, and 
broken lines indicate dependency on shared modules through parameterisation. 

The main structure of the specification then follows the hierarchical structure of the 
taxation system. Each district and province has a group; a province has a number of 
districts and the national or general taxation department (GTD) has a collection of 
provinces. See figure 2. For example, the type Office at the provincial (PTD) level is 
defined as a record containing its group and its district offices represented as a mapping 
from their identifiers to their offices: 
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Fig. 1. Modules involved in specifying a taxation group 

type 
Office :: 

taxpayers : GR.Group 
offices      : T.DTDid w DTD.Office 

(1) 

The prefixes in the type names indicate that the types are defined in other modules. 
There is a function mk-ieport that specifies that a provincial report with a particular 

format is the result of collecting the district reports, merging these, creating the report 
from its own group, and merging this and the merged report from the districts. Thus the 
basic requirement that a provincial report combines these elements is clearly specified. 

The specification at this point consists of about 1000 lines of RSL in 22 modules. 
The specification is applicative (functional). We wanted to develop it further towards 
a possible implementation. We had taken some account of a possible implementation 
strategy in that the main component of the Group module was a database (specified 
abstractly as a standard generic module) instantiated with a structure of information to 
be recorded about each taxpayer. So we separated the storage and retrieval of information 
about taxpayers from its processing, and provided a basis for a database implementation. 
Further design work would suggest possible detailed database Schemas or relations that 
could be used for implementation. But such an implementation would be imperative, not 
applicative. Additionally, the actual system runs asynchronously, with different offices 
separated geographically and within one office probably several concurrent users. Finally, 
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Fig. 2. Taxation system hierarchy 

as we shall see, the taxation system communicates with other systems like the treasury 
and budget systems. 

To see how we developed the specification to reflect these issues we first describe the 
RAISE method in more general terms. 

3    The RAISE Development Method 

The RAISE specification language (RSL) [4] allows specification in both applicative 
and imperative styles, and of both sequential and concurrent systems. The applica- 
tive/imperative and sequential/concurrent distinctions are orthogonal, giving four possi- 
ble styles, but the applicative concurrent style is rarely used. So we use applicative, im- 
perative and concurrent as abbreviations for applicative sequential, imperative sequential 
and imperative concurrent respectively. 

RSL supports the specification of data types in the standard algebraic style, by defin- 
ing abstract types (sorts) and axioms over their generators and observers. 

A design goal of RSL was uniformity, and so it is also possible to specify imperative 
programs using axioms, and also to specify concurrent systems in the same way. This 
allows equational reasoning about all styles of specification. 

When one speaks about an abstract data type, one is being abstract about the struc- 
ture of the type. The imperative counterpart is to be abstract about the variable(s) 
involved (in the programming language sense of a variable as an assignable entity whose 
contents can later be retrieved). One can see the collection of variables (with their types) 
of an imperative specification as corresponding to the "type of interest" [5j of an applica- 
tive specification. 

The concurrent part of RSL is based on process algebra (similar to CSP [6] and 
CCS [7]) with communication of values along channels. One can abstract away from 
the channels involved (and hence also about the possible internal communications with 
sub-processes). 

Consider a simple example of an abstract data type with a generator empty and an 
observer is.empty. Here are the appropriate axioms in the three styles: 
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(applicative] 
is-empty(empty) — true 

[imperative] 
empty() ; is_empty() = empty() ; true 

[concurrent] 
V test : Bool -4 Unit • 

(main() )f empty()) \ test(is_empty()) = (main() \ empty()) f[ test(true) 

The strong equivalence "=" between expressions compares not only results but also ef- 
fects, i.e. changes to variables and communications on channels. (In the applicative case 
it could be replaced by "=", as there are no effects.) The applicative generator empty 
becomes in the imperative case a function of the same name that will change some vari- 
ables so that the current state is "empty". The applicative observer is-empty becomes 
an imperative function that can read some or all of these variables. Thus the impera- 
tive axiom says that performing empty followed by performing isjempty is in every way 
equivalent to performing empty and returning true. 

In the concurrent case we need a main or server process that controls the imperative 
state. The functions empty and is.empty become "interface processes" that interact with 
the server to change or interrogate its internal state. (In object oriented terminology these 
would be called "methods".) The interlock operator "jf" is like the parallel operator but 
allows its constituent processes to communicate only with each other until one of them 
terminates. The test process is just a technique necessitated by interlock requiring its 
arguments to be of type Unit. So we can read the concurrent axiom as saying that if 
we force the server main to communicate with empty, and the resulting process with 
is.empty, the result will be in every way equivalent to forcing the communication with 
empty and obtaining true. 

It should be clear that all these axioms say essentially the same thing. If you make 
it empty, and then ask if it is, it will be. But the effort and machinery to make this 
simple assertion becomes progressively more difficult as we proceed to imperative and 
then concurrent styles. This was certainly the experience of early users of RSL. 

The difference does not only apply to specification, but also to reasoning about spec- 
ifications. Whether this is done manually or with a proof tool, our experience is that 
proving the "same" property in the different styles for the "same" "specification involves 
effort and difficulty on a ratio of something like 1:2:5 for the three styles. These figures 
are only impressions — we have made no measurements. We only want to make the point 
that things get much more difficult. A proof tool with better strategies could undoubtedly 
alleviate the problems, but we doubt the disparity can be removed. 

So we conclude that (abstract) applicative specifications are easiest to construct and 
to reason about, but imperative or concurrent systems are what we typically need to 
implement. There does seem to be a notion of them being the "same" thing in some 
sense —■ or at least there being imperative and concurrent counterparts to applicative 
specifications. So perhaps we can transform the latter into the former. If we can supply 
a notion of correctness, i.e. define precisely what we mean by "same", then we have a 
possible development method. 
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This was described in the book on the RAISE method [1]. We can follow the devel- 
opment route illustrated in figure 3. We start with a more or less abstract applicative 
specification. Making this concrete essentially involves making its types concrete and 
defining the required functions over these concrete types. Showing refinement involves 
showing that these functions satisfy the axioms of the more abstract specifications. The 
concrete types typically are records or products of other types which sometimes merit 
being made the "types of interest" of subsidiary modules. This process naturally produces 
a hierarchy of modules (with some complications when we use parameterisation to make 
modules generic or to allow them to be "shared"). 

Applicative Imperative Concurrent 

Abstract 

Concrete ' r 

■-—7"- — *Y 

Refinement -..- - *- - ■ Transformation 

Fig. 3. Development route 

When we have a concrete applicative specification we can transform it into a concrete 
imperative one, using a standard set of transformation rules. This transformation operates 
on a module by module basis, and preserves the structure of the specification. We arrive at 
a similarly hierarchic specification where the "leaf' modules have variables and functions 
to change or report on their state. "Branch" modules normally have no variables; their 
functions call the functions of the leaf modules below them. 

Finally there may be some small refinement steps that are best done in an imperative 
context, like replacing recursion with iteration, or to make the specification translat- 
able into a programming language, like introducing iteration to refine existentially or 
universally quantified expressions. 

The syntax of the transformation is straightforward, but what about its semantics? 
What is the semantic relation between the applicative specification and the imperative 
one generated from it? 

The imperative specification cannot be a refinement of the applicative one, because 
the signatures of the functions have changed: parameters corresponding to state variables 
have disappeared. The refinement relation in RSL is required to allow substitution in a 
system of a component by a refinement of it. So certainly such changes in signature are 
precluded. But there is a meta-theorem (figure 4) that says 

- there is an abstract imperative specification 10 (i.e. one with no explicitly defined 
variables) that refines the concrete imperative one II 
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a conservative extension 10 + D of this abstract imperative specification refines the 
original abstract imperative one AO 

-*- 10+D 

-&-   Refinement 

■3>-' Transformation 

 -^ II 

Fig. 4. Transformation theorem 

This construction was originally described in [8]. 
The point is that there is no need to write the abstract imperative specification 

10 or the extension D: we know they exist and we know that the concrete imperative 
specification constructed by transformation is "correct" with respect to the applicative 
one. 

Another way to see this notion of correctness is to consider again the three axioms 
(1) of section 2.2. The transformation ensures that if the applicative specification has 
a property, such as that relating empty and is.empty, then the imperative specification 
will have the corresponding imperative property, where "corresponding" is defined by the 
transformation. 

Another point to note is that the method need not even start with an abstract ap- 
plicative specification. It is possible to start with a concrete one, which is for most people 
the easiest starting point, and there is a simple abstraction method that will create an 
abstract applicative one from it. In the MoFIT project we did almost no refinement; most 
of the applicative modules have concrete types and explicit algorithms. 

A further transformation, first described in [1], will produce a concrete concurrent 
specification from the concrete imperative one. This again applies module by module and 
maintains the overall structure of the specification. Leaf modules contain the imperative 
state components embedded in "server" processes. 

As an example to illustrate these ideas we consider the buffer that we will use later 
both for the message system and the in-tray of our distributed system. We start with a 
parameter scheme BUFFJPARM which postulates a type EJem, a particular null value 
of this type, and a test j's_nuJ]: 

scheme BUFF_PARM = 
class 

type Elem 
value 

null: Elem • isjiull(null), 
is_null: Elem -> Bool 

end 
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The applicative specification A^BUFFER given here is concrete in that its type of interest 
Buffer is concrete: it is a list of Elem values. The function put is explicitly specified: 
it returns a new buffer with the extra value appended. The get function is specified 
implicitly. It takes a predicate as a parameter allowing it to be used either as a function 
to get the first element in the buffer (by making the predicate "A x:X.Elem • true") or 
for extracting an element with some particular property. We will need this feature for the 
in-tray later, when we need to be able to extract a message with a particular number. 
Failure, because the buffer is empty or there is no element with the required property, is 
indicated by returning the null element. 

scheme A_BUFFER(X : BUFF_PARM) = 
class 

type Buffer = X.Elem* 
value 

put : X.Elemx Buffer -> Buffer 
put(e, b) = b ~ (e), 

get: (X.Elem -> Bool) x Buffer -» X.Elem x Buffer 
get(f, b) as (e, b') post 

(V x : X.Elem • x € elems b =*■ ~ f(x)) A e = X.null A b' = b 
V 

(3 bl, b2 : Buffer • 
b = bl~(e)~b2A 
b' = bl ~ b2 A f(e) A 
(V x : X.Elem • x <= elems bl =*. ~ f(x))) 

end 

One way to transform the applicative A.BUFFER to a concurrent C.BUFFER is to use 
the former in the definition of the latter: 

scheme OBUFFERfX : BUFF _PARM) = 
hide A, buff, put-ch, get-ch, getjres.ch in 
class 

object A: A_BUFFER(X) 
variable buff: A.Buffer := {) 
channel put.ch, get_res.ch : X.Elem, get.ch : X.Elem ->• Bool 
value 

main : Unit -> in put.ch, get.ch out get.res.ch write buff Unit 
main() =      ' 

while true do 
buff := A.put(put.ch?, buff) 
0 
let (e, b') = A.get(get_ch?, buff) in 

buff := b'; get jes.chle 
end 

end, 
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get : (X.EIem —» Bool) -» in get-res.ch out getxh X.Elem 
get(f) = get_ch!f ; getjresxh?,   . 

put: X.Elem -» out put.ch Unit 
put(e) = put.ch!e 

end 

Here we have a server process main that runs for ever, mostly waiting for interactions 
with the "interface processes" put and get. The imperative state is held in a variable 
buff, and three channels are used for communication. The variable and channels are 
hidden, so the only possible interactions are via the interface processes. For example, 
when get is called with actual parameter a predicate f, it will communicate with main by 
outputting f on the channel get.ch. main uses the functions defined earlier in AJBUFFER 
to compute the result from the predicate fand the current value of the variable buff Then 
the new buffer value is assigned to buff and the result element output back to get on the 
get_res-ch channel, get then terminates, returning the element value it received. It should 
be intuitively clear that the concurrent buffer "behaves like" the applicative one, and this 
can be formalised in terms of transforming applicative properties into concurrent ones. 

When the types of interest of sequential modules are functions or mappings over finite 
types, the concurrent system has an extra level through there being RSL "object arrays". 
Thus the mapping in the provincial tax department of district tax department identifiers 
to district tax department offices results in an array of objects modelling district tax 
offices. 

We can see the effect of this transformation for our provincial tax office. The type 
definition (1) of section 2.2 becomes 

object 
GR: GROUP, 
DTDS[id : T.DTDid] : DTD 

We have an object for the province's group of taxpayers and an array of objects repre- 
senting its constituent district tax departments. 

The semantic relation, and hence the notion of correctness of the concurrent system, 
is similar to the imperative case. There will exist an abstraction from the concrete con- 
current specification to an abstract concurrent one, a conservative extension of which can 
be shown to implement the original abstract applicative one. We can guarantee that if the 
applicative specification has a property, the concurrent one will have the corresponding 
transformed property. 

The concurrent architecture has some convenient features. In particular: 

- It is guaranteed to be deadlock free. 
- The states of the imperative components are independent, since all communication is 

between leaf and branch nodes. This means in turn that it is possible for branch mod- 
ules to call the interface processes of their leaf nodes in parallel instead of sequentially, 
with the same results; there is no interference. 

It seems possible in practice to further develop this calling structure, in particular to deal 
with "shared" nodes, so that leaves can call the interface processes of other leaves. This 
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requires care in the proper sequencing of calls in branch modules, and also requires that 
the dependencies between modules are acyclic. 

It is not suggested that all concurrent systems can be designed in this particular 
way. But it does seem to apply quite conveniently to many systems and to give a very 
satisfactory architecture. 

4    From Concurrent to Distributed 

The construction described in the previous section was applied to the taxation specifica- 
tion. In the meantime we had worked on the treasury and budget systems. These exhibit 
essentially the same kind of hierarchic structure based on provinces, districts (and, for 
the budget system, communes). The three specifications needed to be combined into a 
single specification, since in practice the three systems communicate, and they do so at 
the local level. For example, when someone pays tax they actually pay it at the local 
treasury oflice. This sends a notification to the corresponding tax office. It also reports 
amounts collected to the local budget office, since this monitors budget performance. We 
had modelled for each system the receipt of such information but not (since we had three 
separate specifications) the transmission of it. 

We also wanted to include the two other specifications we had'done, of the external 
loans and external aid systems. These do not exhibit the same problems since they only 
have national offices. 

The structure of the hierarchic specifications seemed wrong for introducing "horizon- 
tal" communication between local offices of different systems. The provincial offices are 
modelled by an array of objects "inside" the national one, and the district offices are 
similarly "inside" the provincial ones. This is really just a conceptual issue; there is no 
reason why a treasury office in district D of province P should not call a function named 
lax.P.D.pay to report a tax payment, but to some members of the team it seemed wrong 
to apparently pass the call through the national office. 

More real is the problem that communication in the hierarchic systems is synchronous, 
while communication in the actual systems will be asynchronous; The means of commu- 
nication between offices vary, and at present very few are electronic. Asynchrony applies 
vertically as well as horizontally — and often the delays are longest in this direction. Dis- 
trict treasury and taxation offices may be co-located, but some way from their provincial 
offices. 

So we wanted to move from the situation illustrated in figure 5 to that illustrated in 
figure 6. 

4.1    Construction 

There are two issues: how to construct the combined and distributed system, and its 
semantics: how to relate its properties to those of the separate hierarchical ones. The 
first we describe in this section 4.1, the second in section 4.2. 

The aim was to achieve this restructuring of the specification while reusing as much 
as possible of the work done already. It was clear that the restructuring would need 
some additional components — the message system for a start. We wanted to make these 
components as far as possible generic and hence reusable between the systems we had 
aiid also for similar problems in the future 
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Fig. 5. Separate hierarchical systems 

The Message System The message system clearly needs a universal set of addresses for 
offices in different systems. This is easy enough to specify. A district address, for example, 
has the form System.Province.District which makes it easy for a district treasury office, 
for example, to address a message to its corresponding tax office, or to its treasury 
provincial office. 

We also apparently need a universal message type. We did not want to enforce such 
a type across the component systems, so instead we specified a message type for each 
system plus a global one, together with encode and decode functions within each system 
between its type and the global one. There are axioms for each system 

V m : System-message • decode(encode(m)) = m 

to guarantee correct message passing within the system. This leaves open the design of 
suitable functions to deal with the encoding and decoding of particular kinds of messages 
that pass between systems without it necessarily following that the tax system, say, car» 
read all messages intended to stay within the treasury system. 

The message system is specified as an array of the concurrent buffers we specified 
earlier, one buffer for each address. The get function for the array takes an address as 
argument and gets the next message in the buffer with that address. It does not use the 
feature we included in the buffer for extracting an element satisfying a predicate: we used 
that for the "in-tray" component described later in section 4.1. 

We decided to enforce a rule that all messages are numbered (by defining a module 
to store and increment a number and instantiating it in each office, so that address and 
number together can uniquely identify a message), and include the sender's address, and 
a protocol that all messages are answered by at least an acknowledgement. The reply 
carries the same message number as the message it is answering or acknowledging. This, 
as we shall see, enables the automation of report collection and, if required, of other 
activities. 

A "null" message may be the result of faulty communication, or merely the result of 
seeking a reply that has not yet arrived. 
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Fig. 6. Distributed and combined systems 

An In-tray Each office has an in-tray for receiving incoming messages. This is an 
instantiation of the same buffer used to make the message system, but now we shall also 
use the facility for extracting a message by number, to allow for replies to messages to 
be extracted. 

It is interesting to note that the function to extract a reply from an in-tray is a loop 
— it keeps trying until a non-null message is extracted. This breaks the normal design 
rule that only servers must potentially loop for ever: this is an interface process intended 
to interact with server processes, and must be guaranteed, assuming it finishes waiting 
to interact with a server, to terminate. In practice such a process will need an overall 
time-out or repetition limit to prevent it looping for ever, and also some delay between 
iterations to prevent "race" conditions. We could have specified this but it did hot seem 
worth it— it is a problem easily solved at the final implementation stage'—~ so we 
indicated the problem merely by a comment. 

A Secretary Messages sent to the message system are placed in the appropriate desti- 
nation buffer. They need to be transferred from there to the destination's in-tray. This is 
a traditional role for a secretary — to open the mail. The name of this module is quite 
intentional — in many tax, treasury, etc. offices in Vietnam this is currently a manual 
process and likely to be so for some time. In specifying this system we are not assum- 
ing that all of it will be implemented in software. Some instances of some components 
will be manual, and our specification then represents our assumptions about what will 
be done. In fact any specification component of a larger system has a dual role. To the 
other components that use it it describes what assumptions they may make about that 
component; to its implementor it describes what services must be provided. 

We wrote two versions of the secretary module. An "unskilled" one merely transfers 
messages from the message system to the in-tray. A "skilled" one is supplied with a 
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function that decides if a particular (decoded) message can be "handled" by the secretary, 
in which case the appropriate function is applied and the reply encoded and dispatched 
to the sender of the original message. So, for example, the collection of reports within 
the tax system can be handled by the secretary modules since the tax "generate report" 
functions already exist. If desired, the recording of tax payments notified by messages 
from the treasury system can be done because the "pay" function in the taxation system 
already exists, and an acknowledgement can be sent. All that is required is to write the 
"handle" functions that call the appropriate existing functions according to the data in 
the message. This needs to be written for each office (or each class of office perhaps) but 
is a straightforward task. 

Secretaries never handle replies to messages sent from their offices: they just place 
them in the in-tray. There are other components, like the stubs described in the next 
section, that will be waiting for them. 

Stub modules Each provincial office, for example, contains in the hierarchical version 
an array of objects representing its district offices. These will no longer appear inside it, 
but need to be replaced by simple stub modules. For each function in the hierarchical 
system called in a lower object from a higher, the stub module will apparently provide 
the same function, returning the same result. But in fact it will send an appropriate 
message to the office for which it is a stub, and wait for a reply (recognised by message 
number) to appear in it's office's in-tray. It then returns the content of the reply and thus 
(assuming no communication faults) appears, modulo some delay, to act exactly like the 
function it replaced. 

Changes to existing modules It should be apparent that the only modules that need 
to be changed in forming the distributed system are those for each system defining the 
office at the national, provincial, district and possibly commune levels. Each needs to be 
supplied with 

- an object defining its own system message type, used to instantiate the in-tray, sec- 
retary and stub modules 

- objects for the message number counter, in-tray, and secretary, which are just instan- 
tiations of generic modules 

- a constant specifying its own address 
- stub modules to replace the lower level modules 
- canJiandJe and handle functions for the (skilled) secretary module to use 

Only the last two of these require more than a very few lines of specification, and are 
easy to write and to check because they follow a very regular pattern. 

This is a very small change to the specification. For the taxation system, for example, 
only three modules of the 22 needed any change, and the changes only affected a very 
small part of these three. 

4.2    Semantics 

The construction of the distributed system is comparatively simple. But its semantics 
seem much more of a problem. In "opening up" the hierarchies and apparently allow- 
ing arbitrary asynchronous communication we are immediately faced with the notorious 
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problem of interference which prevents us making reliable conclusions about concurrent 
systems based on the properties of their components. 

But in fact our distributed system retains some important structural properties. Al- 
though the message system is capable of allowing communication between arbitrary 
nodes, it is only used in very particular ways: 

- The communication within, say, the tax system is still hierarchical. That is, we did 
not introduce any new communication paths between tax offices. The only possible 
communications between tax offices are those between an office and its immediate 
superior or inferiors in the hierarchy. 

- We only introduce "horizontal" communication paths for particular purposes, such as 
allowing a treasury office to report a tax payment to a tax office. If we can keep the 
number of these paths low we can deal with them individually. 

- We have adopted the protocol that all messages are replied to. This means that we 
can rely on either obtaining an answer to a query or deciding, after some suitable 
wait, that it is "null". 

We consider a number of requirements and see how we can validate the distributed system 
against them: 

1. Taxes for taxpayers are calculated according to the current regime on the basis of 
their bases and roll information. 

2. Reports collected by an office will correctly reflect the current information from its 
group of taxpayers and/or its subsidiary offices 

3. Tax paid by a taxpayer at a treasury office will be correctly credited at the corre- 
sponding tax office 

The first requirement is mostly about the calculations that are carried out within the 
"Group" specification. The group is still part of a provincial or district tax office and 
is unaffected by the distribution. If this property was true in the original, applicative 
specification it will, appropriately transformed, still be true. 

There are some additional questions about the "current" regime, the identification of 
the taxpayer's roll and base information, but it is comparatively easy to check that there 
is a function to transmit a regime down the tax hierarchy (and to check its receipt) and 
that the one transmitted is the one used until a new one is received. Similarly we can 
check that roll and base information is properly installed. 

The second requirement is another example of a function within the tax system. In the 
original, applicative specification it was stated explicitly. Hence we know its concurrent 
counterpart holds in the hierarchical specification. The problem comes now from two 
sources: interference from other activities, either within the tax system (e.g. a taxpayer 
declares their profits and changes their base) or from another system (e.g. the treasury 
reports payment of some tax by a taxpayer). 

Information systems like this are typically not meant to deal in very precise ways with 
this kind of problem. It is not in general required, say, that an office "lock" its database 
against all other accesses while a report is compiled, only that its compilation does not 
affect those other activities. It is accepted that figures may vary according to other events 
occurring, by chance, just before or just after the report is compiled/The problem, in 
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this case, is one of finding a specification of the "current information" that is sufficiently 
loose! 

A possible approach to this problem is to use partial orders on events as indicating 
causality [9], and to specify that the event of asking for a report from each district precedes 
the arrival of the request there, which precedes the report being sent back, which in turn 
precedes its receipt and merging with others. The "current information" is that existing 
at some point between the request arriving and the report's dispatch, and hence between 
the superior office's request and merge. But we can check informally that the requirement 
is met if we check that each superior office sends the appropriate message to" each of its 
subordinate ones, that such messages are properly delivered, that the subordinate offices 
"handle" and correctly reply with the information requested, and that the responses are 
correctly merged. Much of this (the production of the report in the district office, the 
merging of reports at the province office) is already specified in the hierarchical system 
and reused (unchanged) in the distributed system. 

The third requirement is an example of communication between systems, so it is a 
requirement that the separate hierarchical systems could not have been specified to meet. 
But we can decompose it into 

1. Payment of tax at a treasury office will be correctly reported to the appropriate tax 
office. 

2. (Report of) payment of tax to a tax office will be correctly credited 

The second of these is already a property of the "Group" and is unchanged by the 
distribution. So we need to check: 

- Each treasury office can receive tax payments. 
- The correct information (amount, tax category, taxpayer) is sent to the correct tax 

office. 
- The message system delivers messages to the correct recipient. 
- Such messages can be correctly "handled" by tax offices, with the appropriate group 

functions called, and the appropriate acknowledgement sent. 

(These need to be extended to allow for possible non-communication with checks for 
non-acknowledgement, resending of information, and recognition of duplicate inputs.) 

We conclude that it is not feasible to have a general theory of such a distribution, 
but that if we have sufficient restrictions on possible communication paths, and suitable 
message protocols, then we can argue informally that requirements are met provided 
particular properties of the extra components we added for distribution are true. These 
are properties like 

- The message system sends messages to their addressees 
- Messages are correctly encoded/decoded 
- Received messages are correctly "handled", i.e. the appropriate existing function is 

called with the correct parameters 
- Messages are replied to with the correct response, or acknowledged 

The point to notice about these properties are that they are easily stated requirements of, 
for example, the message system or the encode/decode functions, and hence can be part 
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of their specification, or they are easily checked by looking at a few lines of specification. 
The only possible exception to this is the "there is always a reply or acknowledgement" 
since its generation may conceivably be some way textually from the handling of the 
message it should be a response to, but in practice one can structure the specification 
so that it is clear. Hence these properties can be checked "by inspection" rather than by 
proof; they are amenable to quality control. 

Or, of course, one can take a particularly critical property like "all messages are replied 
to or acknowledged" and perform the proof. In general we want to restrict proofs at this 
stage to critical properties, because of the problems of proof about concurrent systems 
that we remarked on earlier, and do as much as possible by quality control. 

5    Conclusions 

We achieved a number of aims. We were able to separate clearly the functional aspects 
of particular parts of the system (like tax accounting and report merging) from more 
organisational aspects. We were able to do this partly through adopting a "bottom- 
up" approach that allowed us to tackle one problem at a time. This also had a pedagogic 
purpose — it is particularly hard to do things top-down with people with little experience 
in formal specification. Much of what is done top-down in making things abstract and 
generic, and in dealing with many modules, is hard to motivate to such people, and makes 
their initial specifications hard to conceptualise. But as long as one has the confidence 
that things can be put together later the bottom-up approach has much to recommend 
it in keeping things simple for as long as possible, and in allowing separate parts to be 
worked on independently. In general, even with experienced people, it is often a good idea 
to look first at new, difficult problems regardless of where they will eventually appear in 
the specification structure. 

We stated at the start of this paper that engineering involved composing entities with 
known properties in combinations with accompanying rules that allowed the properties 
of the combinations to be computed. This we have done for the applicative to imperative, 
sequential to concurrent transformations. We know exactly how to relate the properties of 
the result to the properties of the starting point. The method involves working initially 
with applicative specifications, perhaps refining these to more concrete versions, and 
perhaps even proving these refinements, or at least some important properties. Then 
there is a transformation step which is simple enough to be amenable to quality control. 
It might be automated, though in practice there are various options that can be chosen 
as to how exactly to structure the variables or channels being introduced. 

The further step introduced in this paper from separate hierarchical systems to a 
combined and distributed system uses a number of standard generic modules. The changes 
to the existing system are very small and, again, open to quality control. 

The introduction of asynchrony, and the opening of hierarchies for independent com- 
munications between their components, makes the system semantics more complicated, 
and much more difficult to relate to those of the synchronous, hierarchical system. But 
it seems that, given sufficient architectural constraints on the possible communication 
paths, and reasonable protocols that enable non-reception of messages to be decided, we 
can still relate asynchronous properties to synchronous ones in a reasonable manner, and 
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the required checks are again amenable to quality control. There is more work to be done 
to generalise and properly formalise these ideas. 

The attempt to separate concerns and put things together later is not always so 
successful. We also looked, for example, at how the security aspects of the tax system 
could be specified, starting with the current policy. This uses a quite conventional system 
of groups of users with levels of functional access to the user-level functions and access 
rights for various functions and parts of the taxation database in each office. 

We hoped at one point to be able to put a "shell" around the system so that user 
access could be controlled at the outer level without changing the specification within it. 
But this proved very difficult, mainly because at the abstract level it is difficult to say 
exactly what data is being accessed. It seemed inevitable that we would need to pass the 
user identities associated with top level transactions down to the level of the database 
accesses in order to validate them there. This is probably good practice anyway, as there 
is less of the system to validate against security leaks. But it involves a simple but rather 
tedious addition of an extra parameter to many functions. 
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Abstract 

The Internet is becoming the infrastructure upon which an increasing number of new 
applications is being developed. These new applications allow new services to be provided 
and even new business areas to be opened. The growth of Internet-based applications has been 
one of the most striking technological achievements of the past few years. In this paper we 
discuss some risks inherent in this growth. Rapid development and reduced time to market has 
probably been the highest priority concern for application developers. Use of unstable 
technology is also typical of such developments. So far, applications development was less 
concerned with the quality of the resulting products, such as reliability or modifiability. And 
developments seem to proceed without following a disciplined approach. We argue that these 
systems will become the legacy systems of the near future, when people will discover that 
their quality needs to be improved but, at the same time, modifications will be hard to make 
in an economical and reliable way. In this paper we discuss the needs for a software 
engineering approach to the development of network applications. In particular, we discuss a 
possible research agenda for software engineering research by looking at two specific areas: 
the Web and applications based on mobile code. 

Keywords and phrases: Internet, World Wide Web, mobile computing, distributed systems, 
software engineering, software quality, software development process. 
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2.  Introduction 

Since the beginning of the 1990's, use of the Internet and the World Wide Web (WWW) have 
exploded, fostered by cheaper and higher performance hardware and communication media. 
Today, there are more than 50 million users from about 200 countries; the yearly growth rate 
has been more than 50%, and the number of forecasted users by the year 2000 is about 380 
million [Kambil, Doing Business in the Wired World, IEEE Computer 30, 5, pp. 56-61, May 
1977.]. 

In recent years, there has been a shift in the way the Internet is being used and in the way its 
potential is perceived both by technology developers and by users. It is not seen merely as the 
communication infrastructure that allows people to communicate in a fast, cheap, and reliable 
way. It is increasingly seen as the infrastructure upon which new services, new applications, 
and even new and previously unforeseen types of social processes are becoming possible. For 
example, electronic commerce will probably support new kinds of business and will change 
the way business is done. As another example, interactive distance learning and tutoring will 
probably change the way knowledge is transferred and will support new kinds of learning 
processes. 

A new field is therefore emerging: network computing. By this, we mean computing where 
the computational infrastructure is a large set of autonomous and geographically distributed 
computers connected by the Internet. Although such infrastructure is a distributed system, and 
therefore the methods and techniques developed so far by the research community dealing 
with distributed computing can be viewed as foundational background for network computing, 
many new issues arise that make network computing different from distributed computing. 
This issue is discussed further in Section 2. 

In this paper we discuss the current stage of network computing in a critical way, in order to 
understand the risks that are currently inherent in his growth. Rapid development and reduced 
time to market seem to be the major concerns that drive the developments of network 
applications. Furthermore, such applications are developed using either unstable or 
inappropriate technology. Applications are developed in an ad-hoc manner, without following 
disciplined design approaches, and often with little concern on their qualities, such as 
reliability or modifiability. We argue that these systems are likely to become the legacy 
systems of the near future, when people will discover that they will be difficult to maintain in 
an economical and reliable way. We see a similarity between the current situation and the one 
that existed in the sixties (see [E.W. Dijkstra, GOTO Statement Considered Harmful] and 
much of the work that was then spurred on by this paper), when the risks due to the lack of 
appropriate mathematical foundations, methods, and tools were recognized, and a suitable 
research agenda was set for software engineering to tame those risks. 

In this paper, we dig into two specific important areas of the network computing domain: the 
Web and applications based on mobile code. For these two areas we discuss where the main 
risks are and outline a possible research agenda. This is not meant to be an exhaustive account 
of what is needed, but rather reflects a subjective viewpoint that is based on our work and 
some initial results that have been achieved by our research group. 

3.  Network computing 
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Network computing was defined as computing where the computational infrastructure is a 
network of geographically distributed computers connected by a telecommunication network. 
Such a network is composed of heterogeneous technologies: from those used to connect 
computers in a LAN, to those used to interconnect LANs geographically, to those used to 
connect mobile computing devices. The different technologies used to provide connectivity, 
spanning from fiber optics to different kinds of wireless connections, provide different levels 
of quality of services, e.g., in terms of performance and reliability. 

Network interconnection is becoming a commodity. It is available anywhere and anytime, 
independent of the user's physical location. Wireless technology allows computational nodes 
to move, still being connected to the net. This supports mobile users, who may be using 
laptops or persona) digital assistants (PDAs). As we will discuss in Section 4, the network 
infrastructure allows not only computing devices to move, but also software components to 
migrate over the network. Such components can be viewed as „software agents", which can 
have some levels of autonomy in achieving their specific goals, including the ability to move 
to different computing nodes. 

The potential of this pervasive and ubiquitous infrastructure is enormous, and it is quite 
difficult to anticipate the way it will evolve and how far it will go. New applications and new 
services are announced almost every day. Although in many cases they promise more than 
they actually deliver, the speed and complexity of the evolution are indeed so high that they 
are difficult to dominate. It is therefore quite important to build a Coherent framework of 
principles, abstractions, methods, and tools that would allow network computing to be 
understood and practiced in a systematic fashion [A. Fuggetta, G.P. Picco, and G. Vigna, 
Understanding Code Mobility, Politecnico di Milano Technical Report, June 1997, Accepted 
for publication on IEEE Transactions on Software Engineering.]. We claim that these are the 
challenges that software engineering must face in this context. 

At the foundational level, we need to identify the theories that are needed to describe, reason 
about, analyze network computations, where the topology and structure of the computing layer 
can change dynamically, users can move, and computations can move. We need to identify 
security models to protect the sites from possible attacks of incoming agents; and, conversely, 
to protect agents from malicious sites. From a methodology viewpoint, we need to identify 
process models that are suitable to describing and managing applications developments for the 
new computing infrastructure, where applications grow in a largely independent way, no 
precise pre-planning is possible, and evolution/reconfiguration are the norm. 

How can we deal with inherently chaotic, partly self-regulating systems? From the technology 
viewpoint, what languages can be provided to program applications? What tools can support 
interoperability? What tools can be defined to support service deployment, by allowing 
changes of evolving applications to be easily distributed to their users? 

This wide spectrum of problems provides a real challenge for software engineering research. 
A number of efforts are already in place, but much more focused work is needed. The efforts 
we describe in this paper are only a small sample of what could be done in this area. 

4.  Software Engineering for WWW applications 
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From its first introduction in 1990 [T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk 
Nielsen and A. Secret, The World Wide Web, Communications of the ACM, vol. 37, num. 8, 
August 1994.], the World Wide Web (WWW) is evolving at a fast pace. The number of 
WWW sites is increasing as Internet users realize the benefits that stem from a globally 
interconnected hypermedia system. Each site, in fact, provides structured information as an 
intertwined net of hypertext resources; links can point both to local resources and to nonlocal 
resources belonging to other Web sites, thus providing a way to navigate from local to 
geographically distributed information sources. Companies, organizations, and academic 
institutions exploit the WWW infrastructure to provide customers and users with information 
and services. The expectations of both providers and consumers are driving R&D efforts 
aimed at improving the WWW technology. Examples are represented by the introduction of 
active contents in static hypertext pages by means of languages like Java fJ. Gosling and H. 
McGilton, The Java Language Environment: a White Paper, Technical Report, Sun 
Microsystems, October 1995.] and JavaScript [D. Flanagan, JavaScript - The Definitive 
Guide, 2nd Edition, O'Reilly & Ass., January 1997.] and by the use of the Servlet technology 
[Sun Microsystems, The Java Servlet API White Paper, 1997. 
22. Taligent Inc.Building Object-Oriented Frameworks, A Taligent White Paper, 1994. 

23. G. Vigna, Paradigms and Technologies for Distributed Applications Development Based 
on Mobile Code, PhD Thesis, Politecnico di Milano, 1998. 

] to customize the behavior of Web servers. This technological evolution has promoted a shift 
in the intended use of the WWW. The Web infrastructure is going beyond the mere 
distribution of information and services; it is becoming a platform for generic, distributed 
applications in a worldwide setting. 

This promising scenario is endangered by the lack of quality of most existing WWW-based 
applications. Although there is no well-defined and widely accepted notion of Web quality 
(and indeed, this would be a valuable research objective in its own), our claim is based on the 
following common observations that can be made as WWW users: 
1. we know that a required piece of information is there in a certain WWW site, but we keep 

navigating through a number of pages without finding it; 
2. we get lost in our navigation, i.e., we do not understand where We are in our search; 
3. we keep encountering broken links; 
4. the data we find are outdated (for example, we find the announcement of a „future" event 

that has already occurred); 
5. duplicated information is inconsistent (for example, in a university Web providing pages 

in two language versions, say English and Italian, the same instructor has different office 
hours); 

6. the navigation style is not uniform (for example, the „next page in the list" link is in the 
bottom right corner for some pages, and in the top left corner for others). 

This is only a sample list. Items 3 to 5 of the list can be defined as Web flaws; they affect 
„correctness" of the Web. The others are more related to style issues, and affect usability. 
Furthermore, even if we start from a Web that does not exhibit these weaknesses, these are 
likely to occur as soon as the Web undergoes modifications. Thus maintenance of legacy 
Webs becomes more and more difficult, and Web quality becomes lower and lower. If we try 
to understand what the causes of these inconveniences are, we realize that they all boil down 
to the lack of application of systematic design principles and the use of inadequate (low-level) 
tools during development. 

RTSE'97, p.126 



Most current WWW site designs are not guided by systematic design methodologies and do 
not follow well-defined development processes. Räther, they proceed in a very unstructured, 
ad-hoc manner. Developers focus very early, and predominantly, on low-level mechanisms 
that enable, for example, particular visual effects, without focusing on who the expected users 
are, what the conceptual contents of the information is, and how should the information be 
structured. In particular, they rarely focus on the underlying conceptual model of the 
information that should be made available through the Web. The lack of such conceptual 
model becomes evident to the users, who find it difficult to search the Web to retrieve the data 
they are interested in. In addition, even if design starts at a high level, from a conceptual 
model of the information to be made available, no design guidance nor adequate abstractions 
are available to help Web designers move down systematically towards an implementation, 
possibly being supported by suitable tools. 

This situation reminds the childhood of software development when applications were 
developed without methodological support, without the right tools, simply on the basis of 
good common sense and individual skills. WWW site development suffers from a similar 
problem. Most WWW developers delve directly into the implementation phase, paying little 
or no attention to such aspects as requirements acquisition, specification, and design. Too 
often, implementation is performed by using a low-level technology, such as the Hypertext 
Markup Language (HTML) [Sun Microsystems, The Java Servlet API White Paper, 1997. 
22. Taligent Inc.JBuilding Object-Oriented Frameworks, A Taligent White Paper, 1994. 

23. G. Vigna, Paradigms and Technologies for Distributed Applications Development Based 
on Mobile Code, PhD Thesis, Pohtecnico di Milano, 1998. 

]. Using the analogy with conventional software development, this approach corresponds to 
implementing applications through direct mapping of very informal designs (if any) into an 
assembly-level language. Furthermore, the lack of suitable abstractions makes it difficult to 
reuse previously developed artifacts, or to develop frameworks that capture the common 
structure of classes of applications and allow fast development by customization. Finally, the 
management of the resulting Web site is difficult and error prone, because change tracking 
and structural evolution must be performed directly at the implementation level. This problem 
is particularly critical since WWW systems, by their very nature, are subject to frequent 
updates and even redesigns. 

Software research has provided methods for requirements acquisition, languages and methods 
for specification, design paradigms, technologies (such as object-oriented programming 
languages), and tools (e.g., integrated development environments) that provide systematic 
support to the software development process. In principle, their availability should allow 
software developers to deliver quality products in a timely and cost-effective manner. A 
similar approach has to be followed in order to bring WWW development out of its 
immaturity. The next two subsections discuss a possible approach to these problems. 

3.1 A WWW Software process 

The benefits of a well-defined and supported software process are well known [C. Ghezzi, M 
Jazäyeri, and D. Mandrioli, Fundamentals of Software Engineering, Prentice Hall, 1991.J. As 
for conventional software, the development of a Web site should be decomposed into a 
number of phases: requirements analysis and specification, design, implementation. After the 
site has been implemented and delivered, its structure and contents are maintained and 
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evolved. By identifying these phases of the development process we do not imply any specific 
development process structure. Different process models (waterfall, spiral, prototype based) 
can be accommodated in the framework. Actually, the continuous and rapid changes in 
business, which will be reflected by the evolution of the corresponding WWW sites, is likely 
to favor flexible process lifecycles, based on rapid prototyping and continuous refinement. In 
the sequel, we briefly and informally outline the possible objectives of the different phases of 
WWW development, based on our own experience. 

Requirements analysis and specification 

During requirements analysis, the developer collects the needs of the stakeholders, in terms of 
contents, structuring, access, and layout. Contents requirements define the domain-specific 
information that must be made available through the Web site. Structuring requirements 
specify how contents must be organized. This includes the definition of relationships and 
views. Relationships highlight semantic connections among contents. For example, 
relationships could model generalization (is-a), composition (is-composed-of), or domain- 
dependent relationships. Views are perspectives on information structures that „customize" 
contents and relationships according to different use situations. Different views of the same 
contents could be provided to different classes of user (e.g., an abstract of a document can be 
made accessible to „external" users, while the complete document can be made accessible to 
„internal" users). Access requirements define the style of information access that must be 
provided by the Web site. This includes priorities on information presentation, indexing of 
contents, query facilities, and support for guided tours over sets of related information. Layout 
requirements define the general appearance properties of the Web site, such as emphasis on 
graphic effects vs. text-based layout. 
We argue that existing tools supporting requirements specification and traceability of 
requirements through all development artifacts can be used in this context too. Further 
research is needed both to extend the above framework and to identify the additional specific 
features that a tool supporting requirements for Web based applications should exhibit. 

Design 

Based on the requirements, the design phase defines the overall structure of a WWW site, 
describing how information can be organized and how users can navigate across it. A careful 
design activity should highlight the fundamental constituents of a site; it should abstract away 
from low-level implementation details, and should allow the designer to identify recurring 
structures and navigation patterns to be reused [F. Garzotto, L. Mainetti, and P. Paolini, 
Information Reuse in Hypermedia Applications, Proceedings of ACM Hypertext '96, 
Washington DC, ACM Press, March 1996.]. As such, a good design can survive the frequent 
changes in the implementation, fostered by -say- the appearance of new technologies. 

Being largely implementation-independent, the design activity can be carried out using 
notations and methodologies that are not primarily Web-oriented. Any design methodology 
for hypermedia applications could be used; e.g., HDM [F. Garzotto, L. Mainetti, and P. 
Paolini, Hypermedia Design, Analysis, and Evaluation Issues, Communications of the ACM, 
Vol. 38, No. 8, August 1995.], RMDM [V. Balasubramanian, T. Isakowitz, and E. A. Stohr, 
RMM: A Methodology for Structured Hypermedia Design, Communications of the ACM, 
38(8), August 1995.], or OOHDM [Schwabe and G. Rossi, From Domain Models to 
Hypermedia Applications: An Object-Oriented Approach, Proceedings of the International 
Workshop on Methodologies for Designing and]. Our experience is based on the adoption of 
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the HDM (Hypertext Design Model) notation [F. Garzotto, L. Mainetti, and P. Paolini, 
Hypermedia Design, Analysis, and Evaluation Issues, Communications of the ACM Vol 38 
No. 8, August 1995.]. 

In designing a hypermedia application, HDM distinguishes between the hyperbase layer and 
the access layer. The hyperbase layer is the backbone of the application and models the 
information structures that represent the domain, while the access layer provides entry points 
to access the hyperbase constituents. 
The hyperbase consists of entities connected by application links. Entities are structured 
pieces of information. They are used to represent conceptual or physical objects of the 
application domain. An example of entity in a literature application is „Writer". Application 
links are used to describe domain-specific, non-structural relationships among different 
entities (e.g., an application link from a „writer" to the „novels" he wrote). Entities are 
structured into components, i.e., clusters of information that are perceived by the user as 
conceptual units (for example, a writer's „biography"). Complex components can be 
structured recursively in terms of other components. Information contained in components is 
modelled by means of nodes. Usually, components contain just one node, but more than one 
node can be used to give different or alternative views (perspectives, in HDM) of the 
component information (e.g., to describe a piece of contents in different languages, or to 
present it in a „short" vs. an „extended" version). Navigation paths inside an entity are defined 
by means of structural links, which represent structural relationships among components. 
Structural links may, for example, define a tree structure that allows the user to move from a 
root component (for example, the data-sheet for a novel) to any other component of the same 
entity (e.g., credits, summary, reviews, etc.) 

Once entities and components are specified, as well as their internal and external 
relationships, the access layer defines a set of collections that provide users with the structures 
to access the hyperbase. A collection groups a number of „members", in order to make them 
accessible. Members can be either hyperbase elements or other collections (nested 
collections). Each collection owns a special component called collection center that represents 
the starting point of the collection. Examples of collections are guided tours, which support 
linear navigation across members (through next/previous, first/last links), or indexes, where 
the navigation pattern is from the center to the members and viceversa. For example, a guided 
tour can be defined to navigate across all horror novels, another one can represent a survey of 
14  century European writers. 

Implementation 

The implementation phase creates an actual Web site from the site design. As a first step, the 
elements and relationships highlighted during design are mapped onto the constructs provided 
by the chosen implementation technology. As a second step, the site is populated. The actual 
information is inserted by instantiating the structures defined in the previous step and the 
cross-references representing structural and application links among the elements. Collections 
are then created to provide structured access to the hyperbase contents. The third step is 
delivery. The site implementation must be made accessible using standard WWW 
technologies, namely Web browser like Netscape's Navigator or Microsoft's Internet Explorer 
that interact with servers using the Hypertext Transfer Protocol (HTTP). This can be achieved 
by translating the site implementation into a set of files and directories that are served by a 
number of „standard" WWW servers (also called http daemons in the UNIX jargon). 
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The standard tools available today to implement the Web are rather low-level and 
semantically poor. The basic abstractions available to Web developers are: 
• HTML pages, i.e., text files formatted using a low-level markup language; 
• directories, i.e., containers of pages; and 
• references, i.e., strings of text embedded in HTML tags that denote a resource (e.g., an 

HTML page) using a common naming scheme. 
There are no systematic methods nor linguistic constructs to define the mapping of the types 
that define the semantics of the application domain (entities) onto implementation-level types 
(pages). There are no constructs to define complex information structures, like sets of pages 
with particular navigational patterns, such as lists of pages or indexes. Such structured sets of 
information must be realized manually by composing the existing constructs and primitives. In 
addition, there is no way to create document templates and mechanisms to extend existing 
structures by customization. The development of a set of documents exhibiting the same 
structure is carried out in an ad hoc manner by customizing manually sample prototypes. 
There are no constructs or mechanisms to specify different views of the same information and 
to present such views depending on the access context. This hampers effective reuse of 
information. The only form of reuse is by copy. Some authoring tools like Microsoft's 
FrontPage [Microsoft Corp., FrontPage Home Page, Fehler! Textmarke nicht definiert) 
and NetObject's Fusion [NetObjects Inc., Fusion Home Page, Fehler! Textmarke nicht 
definiert.] try to overcome some of these limitations by providing a site-level view on the 
information hyperbase. Nonetheless, these tools are strictly based on the low-level concepts of 
HTML pages and directories. As a consequence, the developer is faced with a gap between the 
high level concepts defined during design and the low-level constructs available for 
implementation. 

The situation gets worse in the maintenance phase. Web sites have an inherently dynamic 
nature. Contents and their corresponding structural organization may be changed 
continuously. Therefore, maintenance is a crucial phase, even more than in the case of 
conventional software applications. As for conventional software, we can classify 
maintenance into three categories: corrective, adaptive, and perfective maintenance [C. 
Ghezzi, M Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering, Prentice Hall, 
1991.]. Corrective maintenance is the process of correcting errors that exist in the Web site 
implementation. Examples are represented by internal dangling references, errors in the 
indexing of resources, or access to outdated information (as in the case of published data with 
an expiration date). Adaptive maintenance involves adjusting the Web site to changes in the 
outside environment. A notable example is represented by verification of the references to 
documents and resources located at different sites. Outbound links become dangling as a 
consequence of events over which the site developer has no control. Thus, maintenance is a 
continuous process. Perfective maintenance involves changing the Web site in order to 
improve the way contents are structured or presented to the end user. Changes may be fostered 
by the introduction of new information or the availability of new technologies. Perfective 
maintenance should reflect updates to the requirements and design documents. Maintenance in 
general, and perfective maintenance in particular, is by far the activity that takes most of the 
development effort. 

Presently, Web site maintenance is carried out using tools like link verifiers or syntax 
checkers that operate directly on the low-level Web site implementation. This approach may 
be suitable for some cases of corrective and adaptive maintenance, but does not provide 
effective support for tasks that involve knowledge of the high-level structure of the Web site. 
For example, since reuse is achieved by copy, modifying a reused component, like a recurring 
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introduction paragraph for a number of documents, involves the identification of every use of 
the component and its consistent update. In a similar way, modification of the structure or 
style of a set of similar documents requires updates in all instances. For example, if we decide 
that the background color of the summary page of all „horror" novels must be changed to 
purple, this requires consistent change of all files representing such summaries. More 
generally, since perfective maintenance may require a modification of the structure and 
organization of information, it should be supported by a structural view of the site and of the 
relationships between design elements and their implementation constructs. These 
relationships are of paramount importance because they allow the developer to reflect design 
changes onto the implementation and viceversa. Standard Web technologies do not provide 
any means to represent these relationships and the high level organization of information. 
Another problem concerns maintenance of hypertext references. In the standard WWW 
technology, references are just strings embedded inside the HTML code of pages; they do not 
have the status of first-class objects. Therefore, their management and update is an error prone 
activity. 

3.2 The WOOM approach 

An example of what could be done to support Web design is given by a project we are 
currently carrying out in our group. In this project, we developed a WWW object-oriented 
modeling framework, called WOOM - Web Object Oriented Model. WOOM provides 
concepts, abstractions, and tools that help in the mapping from high-level design of a Web site 
(e.g., in HDM) into an implementation that uses „standard" WWW technology. 

In WOOM, a site is first modeled by introducing a number of entities and relationships, using 
an object-oriented notation. Entities can be organized in an inheritance hierarchy. In addition, 
WOOM predefines the basic implementation types that can be used to implement WWW 
sites. This includes hyperpages, containers (which can contain hyperpages), and elements (the 
constituents of a page)1. An entity implementation is described by inheriting from the entity 
and from an implementation type (e.g., a page). A WWW instance is described as a DAG 
whose node types are implementation types (or subtypes thereof). The DAG allows an 
information item (e.g., a page or a container) to be shared by different contexts. For example, 
one can describe that the page representing a novelist (say, Patricia Highsmith) belongs both 
to the container which groups the American contemporary writers and the container grouping 
crime-story writers. The process of publication of the DAG, which generates the target Web 
site in HTML, takes care of generating two different instances of Patricia Highsmith's page. In 
the context of American contemporary writers, its „next writer button" might, say, refer to 
Saul Bellow' page. In the context of crime-story writers, such a button might refer to, say, 
George Simenon's page. Since this done automatically by the publication tool, consistency is 
automatically preserved (only one instance of the writer's data is kept), and maintenance is 
greatly facilitated. In addition, to improve currency of the published data, the prototype 
version of WOOM that is being developed allows such data to be kept in a database, and the 
values to be extracted from it at publication time. Moreover, the publication process is quite 
sophisticated. Basically, it consists of a recursive traversal of the DAG. In such traversal it 
propagates attributes that allow for powerful customization of the information to be published 
in the different contexts, based on the attributes of the object encountered during traversal. For 

This is a simplified and incomplete list of the implementation types provided by WOOM. Basically, these types 
define the components that can be defined using HTML 
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example, we might wish to specify that the background color of horror story pages should be 
yellow, while the background of American contemporary writers should depict the American 
flag. This can be specified by two different actions setting the background, performed by the 
publishing algorithm as the relevant pages are encountered during the recursive traversal. As 
another example, One attribute might be the expiration date of a page. During traversal, the 
page with an expired validity date would not be published in target web page. In general, it is 
possible to define events, whose occurrence would trigger the publication process to be 
performed as changes occurred which would require modification of the target site. 

An,important result of this approach is that it clearly separates the description of the data from 
the way the data are presented through the Web interface. The same data can be presented 
differently in different contexts. This separation not only helps in designing the application, 
but also provides support to changes and Web site evolution. 

5.  Mobile computing 

As we mentioned, a new class of network applications is emerging, which assumes that users 
can move and software components can also migrate over the net. This area of computing is 
often informally denoted as „mobile computing". 

The idea that software can migrate is not new. In particular, it has been exploited by several 
distributed systems in order to support load balancing. Mobile computing, however, differs 
from distributed computing in many respects [A. Fuggetta, G.P. Picco, and G. Vigna, 
Understanding Code Mobility, Politecnico di Milano Technical Report, June 1997, Accepted 
for publication on IEEE Transactions on Software Engineering.]. First, traditional distributed 
computing systems deal with a set of machines connected by a local network, whereas in 
mobile computing mobility is exploited at a much larger scale (the Internet scale); hosts are 
heterogeneous, they are managed by different authorities, they are connected by heterogeneous 
links. Secondly, mobility is seldom supported in distributed systems: In the particular cases 
where it is supported, it is not provided as a feature given to the programmer to be exploited in 
achieving particular tasks. Rather, it is used to allow components to be automatically relocated 
by the system to achieve load balancing. This, however, is not visible to the applications" 
programmer, since a software layer is often provided on top of the network operating system 
to hide the concept of physical locality of software components. On the other hand, in mobile' 
computing programming is location aware and mobility is under the programmer's control. 
Components can be moved to achieve specific goals, such as accessing specific resources. 

There are many expectations from mobile computing; we fear, however, that they are a bit 
premature, and probably unjustified by the current level of maturity of the field. The 
technology to support mobility is still in its infancy, there are no methods to follow in 
designing applications based on mobility, and it still unclear which are the applications that 
can really benefit from mobility. 

Concerning the available technology, let us consider programming languages supporting 
mobility. The concepts and terminology are confused, and often it is hard to compare precisely 
what different languages provide to support mobility. For example, some languages provide 
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facilities to simply move the code; others allow the code and (part of) the state to be moved2. 
The latter case is what one would expect to have to implement agents that move on the 
network to perform autonomous tasks. Unfortunately, however, the best known and most 
widely available example of network programming language (Java) does not support this kind 
of mobility, and therefore it is hard to implement network agents. 

An important aspect of mobile languages is the way they support secure computations. Most 
current language proposals do not deal explicitly with this issue, which is often left as „future 
work". Instead, our viewpoint is that security should be one of the cornerstones of a language 
design. There are two facets of the security problem. First, it is necessary that the site which 
hosts execution of an incoming component protects itself from malicious attacks. This is 
traditionally recognized as a problem from researchers, and is rather well studied. Second, its 
is necessary to protect the incoming component from attacks from malicious hosts. For 
example, imagine the case where the component is an agent that migrates over the network to 
perform some critical business operation for a user, such as finding the best options for 
investment. A malicious site might change the data accumulated in the agent's state to make 
the options provided by the site look better than what was found by visiting other sites. A first 
attempt to deal with security issues in the design of a mobile language is provided in [G. 
Vigna, Paradigms and Technologies for Distributed Applications Development Based on 
Mobile Code, PhD Thesis, Politecnico di Milano, 1998.]. 

Concerning design of mobile applications, one would like to be able to be provided with a 
number of design paradigms among which to choose to structure an application. Here too 
traditional distributed systems and mobile computing systems differ from one another, In 
traditional distributed computing, applications are mainly designed by using the client-server 
paradigm, using linguistic facilities like remote procedure call. Code mobility supports a 
wider range of paradigms, among which we can consider the following sample: 
• remote evaluation, where code is uploaded remotely to perform its task, and the results 

are sent back to the originator site; 
• code-on-demand, where code is downloaded from a remote site; 
• autonomous agent, where a software component moves along with its state. 

In principle, it would be helpful to be able to analyze the tradeoffs among the different 
solutions based on different paradigms at the design level, before proceeding to an 
implementation. For example, [A. Carzaniga, G. P. Picco, and G. Vigna. Designing 
Distributed Applications with Mobile Code Paradigms, in Proceedings of the 19th 
International Conference on Software Engineering, Boston, 1997.] discusses a set of 
paradigms and evaluates their tradeoffs in an example of a distributed information retrieval 
application. The tradeoffs are evaluated in terms of a simple quantitative quality measure: 
network traffic. The case study shows that, in general, there is no definite winner among the 
different paradigms, but rather the choice depends on a number of parameters that 
characterize the specific problem instance. 

These are just some initial steps in the direction of guiding design of mobile code applications 
by a systematic development process. More experiments are needed before we can identify a 

For a comprehensive survey and assessment of currently available mobile computing languages, the reader can 
refer to [G. Cugola, C. Ghezzi, G.P. Picco, G. Vigna, „Analyzing Mobile Code Languages", in 
Mobile Object Systems: Towards the Programmable Internet, Jan Vitek and Christian 
Tschudin, eds.. Lecture Notes on Computer Science, Springer Verlag April 1997) 
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set of generally useful methods and techniques,  and provide tools to support them. Besides 
distributed information retrieval, the areas in which mobility might be explored include: 
- active documents, i.e., documents that include the capability of executing programs; 
- advanced telecommunications services; 
- remote configuration, control and maintenance of devices; 
- support to distributed cooperation and coordination (e.g., distributed workflow); 
- active networks, i.e., the ability of „programming" the network according to the 

application's needs. 

6.  Conclusions 

Network computing is a rapidly evolving field, which is raising much interests, both in 
industry and in research institutions. It is a very promising field but, at this stage of maturity, it 
is perhaps raising too many unjustified expectations. Growth is both chaotic and exciting. We 
see many interesting things being done in practice which are not backed up by adequate 
methods and tools. A challenge exists for software engineering research to evaluate critically 
how things are done today in order to identify a possible comprehensive approach to the 
development of network applications, The „just do it" approach that seems to be behind the 
current efforts are simply inadequate to reach the desired levels of quality standards of the 
resulting applications, for example in terms of reliability and ease of change. We must, of 
course, keep into account what makes network applications different from most traditional 
applications. In particular, their intrinsic levels of flexibility, autonomy, decentralization, and 
continuous change that cannot be pre-planned centrally. These properties must eventually be 
combined with the necessary discipline that allows the desired level of reliability to be 
reached in a measurable and economical way. 
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Abstract. We present two concepts that help software engineers to perform different software 
development activities systematically. The concept of an agenda serves to represent technical process 
knowledge. An agenda consists of a list of steps to be performed when developing a software artifact. 
Each activity may have associated a schematic expression of the language in which the artifact is 
expressed and validation conditions that help detect errors. Agendas provide methodological support 
to their users, make development knowledge explicit and thus comprehensible, and they contribute 
to a standardization of software development activities and products. 
The concept of a strategy is a formalization of agendas. Strategies model the development of a 
software artifact as a problem solving process. They form the basis for machine-supported devel- 
opment processes. They come with a generic system architecture that serves as a template for the 
implementation of support tools for strategy-based problem solving. 

Keywords: Software engineering methodology, process modeling, formal methods 

1    Introduction 

Software engineering aims at producing software systems in a systematic and cost-effective 
way. Two different aspects are of importance here: first, the process that is followed 
when producing a piece of software, and second, the various intermediate products that 
are developed during that process, e.g., requirements documents, formal specifications, 
program code, or test cases. 

To date, research on the process aspects of software engineering concentrates on the 
management of large software projects, whereas research on the product aspects of soft- 
ware engineering concentrates on developing appropriate languages to express the various 
software artifacts, e.g., object-oriented modeling languages, architectural description lan- 
guages, specification or programming languages. 

The work presented in this paper is intended to fill a gap in current software engineering 
technology: it introduces concepts to perform the technical parts of software processes in a 
systematic way. By ensuring that the developed products fulfill certain pre-defined quality 
criteria, our concepts also establish an explicit link between processes and products. 

RTSE'97, p.137 



agenda 

1 
? 
3 

manual 
.. application 

software artifact 

rSiale—    r-Op— 

Control »jiX.... 

meta-agenda 

1 
? 
3 

formatization 

strategy 

stra! = (cr, cr„l 

c^ = (I: tuple I...) 

strategy 
implementation 

machine supported 

application 

setup 
v   dependencies / 

,'       accept       /» 

assemble "* * + ""*. /" V . 
,'    local       \ 

,        accept     \ 

Fig. 1. Relation between agendas and strategies 

We wish to systematically exploit existing software development knowledge, i.e., the 
problem-related fine-grained knowledge acquired by experienced software engineers that 
enables them to successfully produce the different software engineering artifacts. To date, 
such expert knowledge is rarely made explicit. As a consequence, it cannot be re-used to 
support software processes and cannot be employed to educate novices. Making develop- 
ment knowledge explicit, on the other hand, would 

- support re-use of this knowledge, 
- improve and speed up the education of novice software engineers, 
- lead to better structured and more comprehensible software processes, 
- make the developed artifacts more comprehensible for persons who have not developed 

them, 
- allow for more powerful machine support of development processes. 

Agendas and strategies help achieve these goals. An agenda gives guidance on how to 
perform a specific software development activity. It informally describes the different steps 
to be performed. Agendas can be used to structure quite different activities in different 
contexts. 

Strategies are a formalization of agendas. They aim at machine supported development 
processes. The basic idea is to model software development tasks as problem solving 
processes. Strategies can be implemented and supplied with a generic architecture for 
systems supporting strategy-based problem solving. 

Figure 1 shows the relation between agendas and strategies. First, the development 
knowledge used by experienced software engineers must be made explicit. Expressed as 
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an agenda, it can be employed to develop software artifacts independently of machine 
support. If specialized machine support is sought for, the agenda can be formalized as a 
strategy. Such a formalization can be performed systematically, following a meta-agenda. 
Implemented strategies provide machine support for the application of the formalized 
knowledge to generate software artifacts. In general, the steps of an agenda correspond 
to subproblems of a strategy. 

Agendas and strategies are especially suitable to support the application of formal 
techniques in software engineering. Formal techniques have the advantage that one can 
positively guarantee that the product of a development step enjoys certain semantic prop- 
erties. In this respect, formal techniques can lead to an improvement in software quality 
that cannot be achieved by traditional techniques alone. 

In the following two sections, we present agendas and strategies in more detail. Related 
work is discussed in Section 4, and conclusions are drawn in Section 5. 

2    Agendas 

An agenda is a list of steps to be performed when carrying out some task in the context 
of software engineering. The result of the task will be a document expressed in a certain 
language. Agendas contain informal descriptions of the steps. With each step, schematic 
expressions of the language in which the result of the activity is expressed can be associ- 
ated. The schematic expressions are instantiated when the step is performed. The steps 
listed in an agenda may depend on each other. Usually, they will have to be repeated to 
achieve the goal. 

Agendas are not only a means to guide software development activities. They also 
support quality assurance because the steps of an agenda may have validation conditions 
associated with them. These validation conditions state necessary semantic conditions 
that the artifact must fulfill in order to serve its purpose properly. When formal tech- 
niques are applied, the validation conditions can be expressed and proven formally. Since 
the validation conditions that can be stated in an agenda are necessarily application in- 
dependent, the developed artifact should be further validated with respect to application 

: dependent needs. 

2.1    An Agenda for Formally Specifying Safety-Critical Software 

To illustrate the agenda concept, we present a concrete agenda that supports the for- 
mal specification of software for safety-critical applications. Because we want to give the 
readers a realistic impression of agendas, we present the agenda unabridged and give a 
brief explanation of the important aspects of software system safety and the language and 
methodology we use to specify safety-critical software. 

The systems we consider in the following consist of a technical process that is controlled 
by dedicated system components being at least partially realized by software. Such a 
system consists of four parts: the technical process, the control component, sensors to 
communicate information about the current state of the technical process to the control 
component, and actuators that can be used by the control component to influence the 
behavior of the technical process. 

Two aspects are important for the specification of software for safety-critical systems. 
First, it must be possible to specify behavior, i.e. how the system reacts to incoming 
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events. Second, the structure of the system's data state and the operations that change 
this state must be specified. We use a combination of the process algebra real-time CSP 
[Dav93] and the model-based specification language Z [Spi92] to specify these different 
aspects. 

In [Hei97,HS96] we have described the following principles of the combination of both 
languages in detail: For each system operation Op specified in the Z part of a specification, 
the CSP part is able to refer to the events Oplnvocation and OpTermination. For each 
input or output of a system operation defined in Z, there is a communication channel 
within the CSP part onto which an input value is written or an output value is read 
from. The dynamic behavior of a software component may depend on the current internal 
system state. To take this requirement into account, a process of the CSP part is able to 
refer to the current internal system state via predicates which are specified in the Z part 
by Schemas. 

There are several ways to design safety-critical systems, according to the manner in 
which activities of the control component take place, and the manner in which system 
components trigger these activities. These different approaches to the design of safety- 
critical systems are expressed as reference architectures. 

We present an agenda for a reference architecture where all sensors are passive, i.e., 
they cannot trigger activities of the control component, and their measurements are per- 
manently available. This architecture is often used for monitoring systems, i.e., for systems 
whose primary function is to guarantee safety. Examples are the control component of a 
steam boiler whose purpose it is to ensure that the water level in the steam boiler never 
leaves certain safety limits, or an inert gas release system, whose purpose is to detect and 
extinguish fire. 

Figure 2 shows the structure of a software control component associated with the 
passive sensors architecture. Such a control component contains a single control operation, 
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which is specified in Z, and which is executed at equidistant points of time. The sensor 
values v coming from the environment are read by the CSP control process and passed 
on to the Z control operation as inputs. The Z control operation is then invoked by the 
CSP process, and after it has terminated, the CSP control process reads the outputs of 
the Z control operation, which form the commands c to the actuators. Finally, the CSP 
control process passes the commands on to the actuators. 

Agendas are presented as tables with the following entries for each step: 

- a numbering for easy reference, 
- an informal description of the purpose of the step, 
- a schematic expression that proposes how to express the result of the step in the 

language used to express the document, 
- possibly some informal or formal validation conditions that help detect errors. 

The agenda for the passive sensors architecture is presented in Tables 1 and 2, where in- 
formal validation conditions are marked "o", and formal validation conditions are marked 
"h". The dependencies between the steps are shown in Figure 3. 

2 

Fig. 3. Dependencies of steps of agenda for passive sensors architecture 

The agenda gives instructions on how to proceed in the specification of a software-based 
control component according to the chosen reference architecture. Usually, different phases 
can be identified for processes expressed as an agenda. The first phase is characterized 
by the fact that high-level decisions have to "be taken! For these decisions, no validation 
conditions can be stated. In our example, these are the Steps 1 and 2. In the second phase, 
the language templates that can be proposed are fairly general (for example, we cannot 
say much more than that Schemas should be vised to define the internal system states and 
the initial states), but it is possible to state a number of formal and informal validation 
conditions. In our example, the second phase consists of Steps 3 and 4. 

In the third and last phase of an agenda, the parts of the document developed in the 
earlier phases are assembled. This can be done in a routine or even completely automatic 
way. Consequently, no validation conditions are necessary for this phase. In our example, 
the third phase consists of Steps 5 and 6. Step 7 allows specifiers to add specification text, 
if this is necessary for the particular application. The example shows that 

- the agenda is fairly detailed and provides non-trivial methodological support, 
- the structure of the specification need not be developed by the specifier but is deter- 

mined by the agenda, 
- the schematic expressions proposed are quite detailed, 
- the validation conditions that help avoid common errors are tailored for the reference 

architecture and the structure of its corresponding specification. 
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Step 
Define the Z con- 
trol operation. 

Specify the con- 
trol process in real- 
time CSP. 

Specify further re- 
quirements if nec- 
essary.  

Schematic Expressions 
_ Control - 

AfnternalSyslemState 
Sensors: Actuators 

mode — Model =* OpModel 
A... A 
mode = ModeK =* OpModeK 

ContwIComponent £ SystemlnitExec -> ControlCompREADY 

CpntrolCompRBADY == A*X •     ':   " 
\(sensorl?valueSl -* inV.valueSl -» Skip || ... || 
sensorN?valueSN -» inN'.valueSN -* Skip); 
Contwllnvocation -* ControlTermination -» 
(oiitl?oo/ue/41 -+ octtiotorl!»a(tie^l -» Skip || ... || 
outMlvalueAM -> actuatorMlvalue AM-+ Skip) 

|| WaiJWTfJflVAI); * 

Table 2. Agenda for the passive sensors architecture, part 2 

2.2    Agenda-Based Development 

In general, working with agendas proceeds as follows: first, the software engineer selects 
an appropriate agenda for the task at hand. Usually, several agendas will be available 
for the same development activity, which capture different approaches to perform the 
activity. This first step requires a deep understanding of the problem to be solved. Once 
the appropriate agenda is selected, the further procedure is fixed to a large extent. Each 
step of the agenda must be performed, in an order that respects the dependencies of steps. 
The informal description of the step informs the software engineer about the purpose of 
the step. The schematic language expressions associated with the step provide the software 
engineer with templates that can just be filled in or modified according to the needs of 
the application at hand. The result of each step is a concrete expression of the language 
that is used to express the artifact. If validation conditions are associated with a step, 
these should be checked immediately to avoid unnecessary dead ends in the development. 
When all steps of the agenda have been performed, a product has been developed that 
can be guaranteed to fulfill certain application-independent quality criteria. 

Agenda-based development of software artifacts has a number of characteristics: 

- Agendas make software processes explicit, comprehensible, and assessable. 
Giving concrete steps to perform an activity and defining the dependencies between the 
steps make processes explicit. The process becomes comprehensible for third parties 
because the purpose of the various steps is described informally in the agenda. 

- Agendas standardize processes and products of software development. 
The development of an artifact following an agenda always proceeds in a way consistent 
with the steps of the agenda and their dependencies. Thus, processes supported by 
agendas are standardized. The same holds for the products: since applying an agenda 
results in instantiating the schematic expressions given in the agenda, all products 
developed with an agenda have the same structure. 
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- Agendas support maintenance and evolution of the developed artifacts. 
Understanding a document developed by another person is much less difficult when 
the document was developed following an agenda than without such information. Each 
part of the document can be traced back to a step in the agenda, which reveals its 
purpose. To change the document, the agenda can be "replayed". The agenda helps 
focus attention on the parts that actually are subject to change. In this way, changing 
documents is greatly simplified, and it can be expected that maintenance and evolution 
are less error-prone when agendas are used. 

- Agendas are a promising starting point for sophisticated machine support. 
First, agendas can be formalized and implemented as strategies, see Section 3. But 
even if a formal representation of development knowledge is not desired, agendas can 
form the basis of a process-centered software engineering environment (PSEE) [GJ96]. 
Such a tool would lead its users through the process described by the agenda. It 
would determine the set of steps to be possibly performed next and could contain a 
specialized editor that offers the user the schematic language expressions contained 
in the agenda. The user would only have to fill in the undefined parts. Furthermore, 
an agenda-based PSEE could automatically derive the validation obligations arising 
during a development, and theorem provers could be used to discharge them (if they 
are expressed formally). 

We have defined and used agendas for a variety of software engineering activities that we 
supported using different formal techniques. These activities include (for more details on 
the various agendas, the reader is referred to (Hei97]): 

- Requirements engineering 
We have defined two different agendas for this purpose. The first supports require- 
ments elicitation by collecting possible events, classifying these events, and expressing 
requirements as constraints on the traces of events that may occur. Such a require- 
ments description can subsequently be transformed into a formal specification. The 
second agenda places requirements engineering in a broader context, taking also main-* 
tenance considerations into account. This agenda can be adapted to maintain and 
evolve legacy systems. 

- Specification acquisition in general 
There exist several agendas that support the development of formal specifications 
without referring to a specific application area (such as safety-critical systems). The 
agendas are organized according to specification styles that are language-independent 
to a large extent. 

- Specification of safety-critical software 
Besides the agenda presented in Section 2.1, more agendas for this purpose can be 
found in [HS97,GHD98]. 

- Software design using architectural styles 
In [HL97], a characterization of three architectural styles using the formal descrip- 
tion language LOTOS is presented. For each of these styles, agendas are defined that 
support the design of software systems conforming to the style. 

- Object-oriented analysis and design 
An agenda for the object-oriented Fusion method [CAB+94] makes the dependencies 
between the various models set up in the analysis and design phases explicit and states 
several consistency conditions between them. 
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- Program synthesis 
We have defined agendas supporting the development of provably correct programs 
from first-order specifications. Imperative programs can be synthesized using Gries' 
approach [Gri81], and functional programs can be synthesized using the KIDS ap- 
proach [Smi90]. 

3    The Strategy Framework 

In the previous section, we have introduced the agenda concept and have illustrated what 
kind of technical knowledge can be represented as agendas. Agendas are an informal 
concept whose application does not depend on machine support. They form the first layer 
of support for systematic software development. 

We now go one step further and provide a second layer with the strategy framework. In 
this layer, we represent development knowledge formally. When development knowledge 
is represented formally, we can reason about this knowledge and prove properties of it. 
The second aim of the strategy framework is to support the application of development 
knowledge by machine in such a way that semantic properties of the developed product 
can be guaranteed. 

In the strategy framework, a development activity is conceived as the process of con- 
structing a solution for a given problem. A strategy specifies how, tp reduce a given problem 
to a number of subproblems, and how to assemble the solution' qf the original problem 
from the solution to the subproblems. The solution to be constructed must be acceptable 
for the problem. Acceptability captures the semantic requirements concerning the product 
of the development process. In this respect, strategies can achieve stronger quality criteria 
than is intended, e.g., by CASE. The notion of a strategy is generic inthe definition of 
problems, solutions and acceptability. 

How strong a notion of acceptability can be chosen depends on the degree of formality 
of problems and solutions. For program synthesis, both problems and solutions can be 
formal objects: problems can be formal specifications, solutions can be programs, and 
acceptability can be the total or partial correctness of the program with respect to the 
specification. For specification acquisition, on the other hand, we might wish to start from 
informal requirements. Then problems consist of a combination of informal requirements 
and pieces of a formal specification. Solutions are formal specifications, and a solution is 
acceptable with respect to a problem if the combination of the pieces of formal specification 
contained in the problem with the solution is a semantically valid specification. This 
notion of acceptability is necessarily weaker than the one for program synthesis, because 
the adequacy of a formal specification with respect to informal requirements cannot be 
captured formally. Only if the requirements are also expressed formally, a stronger notion 
of acceptability is possible for specification acquisition. 

The strategy framework is defined in several stages, leading from simple mathematical 
notions to an elaborated architecture for systems supporting strategy-based problem solv- 
ing. In the first stages, strategies are defined as a purely declarative knowledge representa- 
tion mechanism. Experience has shown that formal knowledge representation mechanisms 
are (i) easier to handle and (ii) have a simpler semantics when they are declarative than 
when they are procedural. As for strategies, (i) agendas can be transformed into strategies 
in a routine way (see Section 1), and (ii) the relational semantics of strategies supports 
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reasoning about and combination of strategies. Further stages gradually transform declar- 
atively represented knowledge into executable constructs that are provided with control 
structures to guide an actual problem solving process. Figure 4 shows the different stages. 

relations 

I 
constituting relations 

declarative 
knowledge strategies -slrategicals 
representation i 

implementable » 
concepts modular representation 

1 
abstract problem solving algorithm 

support-system architecture 

Fig. 4. Stages of definitions 

The basic stage consists in defining a suitable notion of relation, because, formally, 
strategies establish a relation between a problem and the subproblems needed so solve 
it, and between the solutions of the subproblems and the final solution. Relations are 
then specialized to problem solving, which leads to the definition of constituting relations. 
Strategies are defined as sets of constituting relations that fulfill certain requirements. 
In particular, they may relate problems only to acceptable solutions. Strategical are 
functions combining strategies; they make it possible to define more powerful strategies 
from existing ones. 

To make strategies implementable, they are represented as strategy modules, which rely 
on constructs available m programming languages. In particular, relations are transformed 
into functions. The next step toward machine support consists in defining an abstract 
problem solving algorithm. This algorithm describes the manner in which strategy-based 
problem solving proceeds and can be shown to lead to acceptable solutions. The generic 
system architecture provides a uniform implementation concept for practical support sys- 
tems. 

In the following, we sketch the definitions of the strategy framework (for details, see 
[Hei97]). Subsequently, we discuss its characteristics. Strategies, strategical, and strategy 
modules are formally defined in the language Z [Spi92]. This does not only provide precise 
definitions of these notions but also makes reasoning about strategies possible. 

3.1    Relations 

In the context of strategies, it is convenient to refer to the subproblems and their solutions 
by names. Hence, our definition of strategies is based on the the notion of relation as used 
in the theory of relational databases [Kan90], instead of the usual mathematical notion 
of relation. In this setting, relations are sets of tuples. A tuple is a mapping from a set of 
attribtdes to domains of these attributes. In this way, each component of a tuple can be 

RTSE'97, p.146 



referred to by its attribute name. In order not to confuse these domains with the domain 
of a relation as it is frequently used in Z, we introduce the type Value as the domain 
for all attributes and define tuples as finite partial functions from attributes to values: 
tuple : F(Attribute -*» Value). Relations are sets of tuples that all have the same domain. 
This domain is called the scheme of the relation. 

relation :P(f tuple) 

Vr : relation • V<i, t2 : r • dorn ti = dom fe 

3.2    Constituting Relations 

Constituting relations specialize relations for problem solving. Attributes can either be 
ProblemAttributes or SolutionAttributes, whose values must be Problems or Solutions, 
respectively. The types Problem and Solution are generic parameters. 

const-rel: P relation .. 

V cr : const-rel • V t : cr; a : scheme cr • 
scheme cr C (ProblemAttribute U SolutionAttribute) A 
(a € PrpblemAttribute => t a € Problem) A 
(06 SolutionAttribute => ta £ Solution) .   . ; , 

Acceptability, the third generic parameter, is a relation between problems and solutions: 
-acceptable-for-: Solution «• Problem. By default, we use the distinguished attributes 
P-init and S-final to refer to the initial problem and its final solution. 

The schemes of constituting relations are divided into input attributes I A and. output 
attributes OA. The constituting relations restrict the values of the output attributes, given 
the values of the input attributes. Thus, they determine an order on the subproblems that 
must be respected in the problem solving process. Based on the partitioning of schemes, 
it is possible to define a dependency relation on constituting relations. A constituting' 
relation cr2 directly depends on another such relation en (en 'c cr2) if one of its input 
attributes is an output attribute of the other relation: OA en D IÄ cr2 ^0. For any given 
set crs of constituting relations, a dependency relation Cer, is defined io be the transitive 
closure of the direct dependency relation it determines. 

A set of constituting relations defining a strategy must conform to our intuitions about 
problem solving. Among others, the following conditions must be satisfied: 

- The original problem to be solved must be known, i.e. P-init must always be an input 
attribute. 

- The solution to the original problem must be the last item to be determined, lie. 
S-final must always be an output attribute. 

- Each attribute value except that of P-init must be determined in the problem solving 
process, i.e., each attribute except P-init must occur as an output attribute of some 
constituting relation. 

- The dependency relation on the constituting relations must not be cyclic. 

Finite sets of constituting relations fulfilling these and other requirements are called ad- 
missible. For a complete definition of admissibility, see [Hei97]. 
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Example. For transforming the agenda presented in Section 2.1 into a strategy, we must 
first define suitable notions of problems, solutions, and acceptability. A problem pr : 
SafProblem consists of three parts: the part pr.req contains an informal requirements de- 
scription, the part pr.context contains the specification fragments developed solar, and 
the part pr.to-develop contains a schematic Z-CSP expression that can be instantiated 
with a concrete one. This schematic expression specifies the syntactic class of the specifi- 
cation fragment to be developed, as well as how the fragment is embedded in its context. 
Solutions are syntactically correct Z-CSP expressions, and a solution sot: SafSolution is 
acceptable for a problem pr if and only if it belongs to the syntactic class of pr.to develop, 
and the combination of pr.context with the instantiated schematic expression yields a se- 
mantically valid Z-CSP specification. 

3.3    Strategies 

We define strategies as admissible sets of constituting relations that fulfill certain condi- 
tions. Let strat = {era,■ ■-,crm„} and scheme,strat = scheme cr0 U ... U scheme crmax. 
The set strat is a strategy if it is admissible and 

- the set scheme, strat, contains the attributes P-init and S-final, 
- for each problem attribute o of scheme, strat, a corresponding solution attribute, called 

sol a, is a member of the scheme, and vice versa, 
- if a member of the relation t*i strat1 contains acceptable solutions for all problems 

except P-init, then it also contains an acceptable solution for P-init. Thus, if all 
subproblems are solved correctly, then the original problem must be solved correctly 
as well. 

strategy : P(F const-rel) 

V strat: strategy • 
admissible strat A 
{P-init, S-final} C scheme, strat A 
(Va : ProblemAttribute • a 6 scheme, strat <=> sol a € scheme, strat) A 
(Vres :ixi strat • 

(Va : subprs, strat • (res (sol a)) acceptable-for (res a)) 
=$■ (res S-final) acceptable-^'or (res P-init)) 

The last condition guarantees that a problem that is solved exclusively by application of 
strategies is solved correctly. This condition requires that strategies solving the problem 
directly must produce only acceptable solutions. Figure 5 illustrates the definition of 
strategies, where arrows denote the propagation of attribute values. 

Example. When transforming an agenda into a strategy, we must decide which of the steps 
of the agenda will become subproblems of the strategy. If the result of a step consists in 
a simple decision or can be assembled from already existing partial solutions, then no 

A join N combines two relations. The scheme of the joined relation is the union of the scheme of the given 
relations. On common elements of the schemes, the values of the attributes must coincide. The operation « 
denotes the join of a finite sets of relations. 

RTSE'97, p.148 



P_init 

passive_sensors       s_sens/act 

P_ops, S_ops    P_other. S_other 

S_(inal 

Fig. 5. Strategy for passive sensors 

subproblem corresponding to the step is necessary. Considering the agenda of Section 2.1, 
we decide that Steps 2, 5, and 6 need not become subproblems. Hence, we can define 

passive-sensors — {step-A,steps-.2/3,step-4,stepsJ5/6/7,passsol} 

Figure 5 shows how attribute values are propagated. The constituting relation stepi, 
for example, has as P-init as its only input attribute, and P-.sens/act and Ssens/act 
as its output attributes. The requirements P'sens</'act. reg consist of the requirements 
P-init.req with the addition "Model the sensor values and actuator commands as members 
of Z types." (see Table 1). The context P-sensfact.context is the same as for P-init, and 
P-sens/act.to-develop consists of the single metavariable type_defs : Z-ax-def, which 
indicates that axiomatic Z definitions have to be developed. For the solution S-sens/act of 
problem Psens/act, the only requirement is that it be acceptable. The other constituting 
relations are defined analogously. The complete strategy definition can be found in [Hei97]. 

3.4 Strategical 

Strategicals are functions that take strategies as their arguments and yield strategies as 
their result. They are useful to define higher-level strategies by combining lower-level 
ones or to restrict the set of applicable strategies, thus contributing to a larger degree of 
automation of the development process. 

Three strategicals are defined [Hei97] that are useful in different contexts. The THEN 
strategical composes two strategies. Applications of this strategical can be found in pro- 
gram synthesis. The REPEAT strategical allows stepwise repetition of a strategy. Such a 
strategical is useful in the context of specification acquisition, where often several items of 
the same kind need to be developed. To increase applicability of the REPEAT strategical, 
we also define a LIFT strategical that transforms a strategy for developing one item into 
a strategy for developing several items of the same kind. 

3.5 Modular Representation of Strategies 

To make strategies implementable, we must find a suitable representation for them that 
is closer to the constructs provided by programming languages than relations of database 
theory. The implementation of a strategy should be a module with a clearly defined 
interface to other strategies and the rest of the system. 
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Because strategies are defined as relations, it is possible for a combination of values 
for the input attributes of a constituting relation to be related to several combinations of 
values for the output attributes. A type Extlnfo is used to select one of these combinations, 
thus transforming relations into functions. Such external information can be derived from 
user input or can be computed automatically. A strategy module consists of the following 
items: 

- the set subp : P ProbhmAttribute of subproblems it produces, 
- a dependency relation -depends „on- : ProbhmAttribute f* Problem Attribute on these 

subproblems, 
- for each subproblem, a procedure setup : tuple x Extlnfo -t» Problem that defines 

it, using the information in the initial problem and the subproblems and solutions it 
depends on, and possibly external information, 

- for each solution to a subproblem, a predicate local-accept : tuple <-> Solution that 
checks whether or not the solution conforms to the requirements stated in the consti- 
tuting relation of which it is an output attribute, 

- a procedure assemble : tuple x Extlnfo -*+ Solution describing how to assemble the 
final solution, and 

- a test accept- : P tuple of acceptability for the assembled solution. 

Optionally, an explain component may be added that explains why a solution is acceptable 
for a problem, e.g., expressed as a correctness proof. 

3.6    An Abstract Problem Solving Algorithm 

The abstract problem solving algorithm consists of three functions, called solve, apply, 
and solvesubprs. The function solve has a problem pr as its input. To solve this problem, 
a strategy strat must be selected from the available strategies. The function apply is called 
that tries to solve the problem pr with strategy strat. If this is successful, then the value 
of the attribute S-final obtained from the tuple yielded by apply is the result of the solve 
function. Otherwise, another trial is made, using a different strategy. ' 

The function apply first calls another function solvesubprs to solve the subproblems 
generated by the strategy strat. It then sets up the final solution and checks it for ac- 
ceptability. If the acceptability test fails, apply yields a distinguished failure element. 
Otherwise, it yields a tuple that lies in M strat (see Section 3.3). 

The function solvesubprs has as its arguments the tuple consisting of the attribute 
values determined so far, and a set of subproblems still to be solved. It applies solve 
recursively to all subproblems contained in its second argument. 

Problem solving with strategies usually requires user interaction. For the functions 
solve, apply, and solvesubprs, user interaction is simulated by providing them with an 
additional argument of type seq Userlnput, where the type Userlnput comprises all pos- 
sible user input. User input must be converted into external information, as required by 
the strategy modules. To achieve this, we use heuristic functions. Heuristic functions are 
those parts of a strategy implementation that can be implemented with varying degrees 
of automation. It is also possible to automate them gradually by replacing, over time, 
interactive parts with semi-or fully automatic ones. 
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It can be proven that the functions solve, apply and solvesubprs model strategy-based 
problem solving in an appropriate way: Whenever solve yields a solution to a problem, 
then this solution is acceptable. 

3.7    Support-System Architecture 

We now define a system architecture that describes how to implement support systems for 
strategy-based problem solving. Figure 6 gives a general view of the architecture which is 
described in more detail in [HSZ95]. This architecture is a sophisticated implementation 
of the functions given in the last section. We introduce data structures that represent the 
state of the development of an artifact. This ensures that the development process is more 
flexible than would be possible with a naive implementation of these functions in which 
all intermediate results would be buried on the run-time stack. It is not necessary to first 
solve a given subproblem completely before starting to solve another one. 

Two global data structures represent the state of development: the development tree 
and the control tree. The development tree represents the entire development that has 
taken place so far. Nodes contain problems, information about the strategies applied 
to them, and solutions to the problems as insofar as they have been determined. Links 
between siblings represent dependencies on other problems or solutions. 

initial external 
problem      information 

(XX) 

strategy selection 

development tree 

o 

/l\ ■ » o o 

control tree 

setup 
\ dependencies 

('       accept 
IB" /5* 

assemble 
/    local     ' 

/      accept 

local 
accept 

strategy base 

Fig. 6. General view of the system architecture 

The data in the control tree are concerned only with the future development. Its nodes 
represent uncompleted tasks and point to nodes in the development tree that do not yet 
contain solutions. The degrees of freedom in choosing the next problem to work on are 
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also represented in the control tree. The third major component of the architecture is the 
strategy base. It represents knowledge used in strategy-based problem solving via strategy 
modules. 

A development roughly proceeds as follows: the initial problem is the input to the 
system. It becomes the root node of the development tree. The root of the control tree 
is set up to point to this problem. Then a loop of strategy applications is entered until a 
solution for the initial problem has been constructed. 

To apply a strategy, first the problem to be reduced is selected from the leaves of 
the control tree. Secondly, a strategy is selected from the strategy base. Applying the 
strategy to the problem entails extending the development tree with nodes for the new 
subproblems, installing the functions of the strategy module in these nodes, and setting 
up dependency links between them. The control tree must also be extended. 

If a strategy immediately produces a solution and does not generate any subproblems, 
or if solutions to all subproblems of a node in the development tree have been found 
and tested for local acceptability, then the functions to assemble and accept a solution 
are called; if the assembling and accepting functions are successful, then the solution is 
recorded in the respective node of the development tree. Because the control tree contains 
only references to unsolved problems, it shrinks whenever a solution to a problem is 
produced, and the problem-solving process terminates when the control tree vanishes. The 
result of the process is not simply the developed solution - instead, it is a development 
tree where all nodes contain acceptable solutions. This data structure provides valuable 
documentation of the development process, which produced it, and can be kept for later 
reference. 

A research prototype that was built to validate the concept of strategy and the system 
architecture developed for their machine-supported application. The program synthesis 
system IOSS (Integrated Open Synthesis System) [HSZ95] supports the development of 
provably correct imperative programs. 

3.8    Discussion of Strategies 

The most important properties of the strategy framework are: 

- Uniformity. The strategy framework provides a uniform way of representing devel- 
opment knowledge. It is independent of the development activity that is performed 
and the language that is used. It provides a uniform mathematical model of problem 
solving in the context of software engineering. 

- Machine Support. The uniform modular representation of strategies makes them 
implementable. The system architecture derived from the formal strategy framework 
gives guidelines for the implementation of support systems for strategy-based devel- 
opment. Representing the state of development by the data structure of development 
trees is essential for the practical applicability of the strategy approach. The practi- 
cality of the developed concepts is confirmed by the implemented system IOSS. 

- Documentation. The development tree does not only support the development pro- 
cess. Is also useful when the development is finished, because it provides a documen- 
tation of how the solution was developed and can be used as a starting point for later 
changes. 
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- Semantic Properties. To guarantee acceptability of a solution developed with an 
implemented system, the functions local-accept and accept are the only components 
that have to be verfied. Hence, also support systems that are not verified compeletiy 
can be trustworthy. 

- Stepwise Automation. Introducing the concept of heuristic function and using these 
functions in distinguished places in the development process, we have achieved a sep- 
aration of concerns: the essence of the strategy, i.e. its semantic content, is carefully 
isolated from questions of replacing user interaction by semi or fully automatic proce- 
dures. Hence, gradually automating development processes amounts to local changes 
of heuristic functions. 

- Scalability. Using strategicals, more and more elaborate strategies can be defined. In 
this way, strategies can gradually approximate the size and kind of development steps 
as they are performed by software engineers. 

4    Related Work 

Recently, efforts have been made to support re-use of special kinds of software development 
knowledge: Design patterns [GHJV95] have had much success in object-oriented software 
construction. They represent frequently used ways to combine classes or associate objects 
to achieve a certain purpose. Furthermore, in the field of software architecture [SG96], 
architectural styles have been defined that capture frequently used design principles for 
software systems. Apart from the fact that these concepts are more specialized in their 
application than agendas, the main difference is that design patterns and.architectural 
styles do not describe processes but products. 

Agendas have much in common with approaches to software process modeling [Huf96]. 
The difference is that software process modeling techniques cover a wider range of activ- 
ities, e.g., management activities, whereas with agendas we always develop a document, 
and we do not take roles of developers etc. into account. Agendas concentrate more on 
technical activities in software engineering. On the other hand, software process modeling 
does not place so much emphasis on validation issues as agendas do. 

Chernack [Che96] uses a concept called checklist to support inspection processes. In 
contrast to agendas, checklists presuppose the existence of a software artifact and aim at 
detecting defects in this artifact. 

Related to our aim to provide methodological support for applying formal techniques 
is the work of Souquieres and Levy [SL93]. They support specification acquisition with 
development operators that reduce tasks to subtasks. However, their approach is limited to 
specification acquisition, and the development operators do not provide means to validate 
the developed specification. 

Astesiano and Reggio [AR97] also emphasize the importance of method when using 
formal techniques. In the "method pattern" they set up for formal specification, agendas 
correspond to guidelines. 

A prominent example of knowledge-based software engineering, whose aims closely 
resemble our own, is the Programmer's Apprentice project [RW88]. There, programming 
knowledge is represented by cliches, which are prototypical examples of the artifacts 
in question. The programming task is performed by "inspection"- i.e., by choosing an 
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appropriate cliche and customizing it. In comparison to cliches, agendas are more process- 
oriented. 

Wile's [Wil83] development language Paddle provides a means of describing proce- 
dures for transforming specifications into programs. Since carrying out a process specified 
in Paddle involves executing the corresponding program, one disadvantage of this procedu- 
ral representation of process knowledge is that it enforces a strict depth-first left-to-right 
processing of the goal structure. This restriction also applies to other, more recent ap- 
proaches to represent software development processes by process programming languages 
[Ost87,SSW92]. 

In the German project KORSO [BJ95], the product of a development is described by 
a development graph. Its nodes are specification or program modules whose static compo- 
sition and refinement relations are expressed by two kinds of vertices. There is no explicit 
distinction between "problem nodes" and "solution nodes". The KORSO development 
graph does not reflect single development steps, and dependencies between subproblems 
cannot be represented. 

The strategy framework uses ideas similar to tactical theorem proving, which has first 
been employed in Edinburgh LCF [MH72]. Tactics are programs that implement "back- 
ward" application of logical rules. The goal-directed, top-down approach to problem solv- 
ing is common to tactics and strategies. However, tactics set up all subgoals at once when 
they are invoked. Dependencies between subgoals can only be expressed schematically by 
the use of metavariables. Since tactics only perform goal reduction, there is no equivalent 
to the assemble and accept functions of strategies. 

5    Conclusions 

We have shown that the concept of an agenda bears a strong potential to 

- structure processes performed in software engineering, 
- make development knowledge explicit and comprehensible, 
- support re-use and dissemination of such knowledge, 
- guarantee certain quality criteria of the developed products, 
- facilitate understanding and evolution of these products, 
- contribute to a standardization of products and processes in software engineering that 

is already taken for granted in other engineering disciplines, 
- lay the basis for powerful machine support. 

Agendas lead software engineers through different stages of a development and propose 
validations of the developed product. Following an agenda, software development tasks 
can be performed in a fairly routine way. When software engineers are relieved from the 
task to find new ways of structuring and validating the developed artifacts for each new 
application, they can better concentrate on the peculiarities of the application itself. 

We have validated the concept of an agenda by defining and applying a number of 
agendas for a wide variety of software engineering activities. Currently, agendas are ap- 
plied in industrial case studies of safety-critical embedded systems in the German project 
ESPRESS [GHD98]. 

Furthermore, we have demonstrated that strategies are a suitable concept for the for- 
mal representation of development knowledge. The generic nature of strategies makes it 
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possible to support different development activities. Strategical contribute to the scala- 
bility of the approach. The uniform representation as strategy modules makes strategies 
implementable and isolates those parts that are responsible for acceptability and the ones 
that can be subject to automation. 

The generic system architecture that complements the formal strategy framework gives 
guidelines for the implementation of support systems for strategy-based development. The 
representation of the state of development by the data structure of development trees 
contributes essentially to the practical applicability of the strategy approach. 

In the future, we will investigate to what extent agendas are independent of the lan- 
guage which is used to express the developed artifact, and we will define agendas for other 
activities such as testing and specific contexts, e.g., object-oriented software development. 
Furthermore, we will investigate how different instances of the system architecture can 
be combined. This would provide integrated tool support for larger parts of the software 
lifecycle. 
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Abstract 

Relationships among different modeling perspectives have been systematically 
investigated focusing either on given notations (e.g. OMT) or on domain reference 
models (e.g. SAP). In contrast, many successful informal methods for business 
analysis and requirements engineering (e.g. JAD) emphasize team negotiation, goal 
orientation and flexibility of modeling notations. This paper addresses the question 
how much formal and computerized support can be provided in such settings without 
destroying their creative tenor. Our solution comprises four components: 

(1) A modular conceptual modeling formalism organizes individual perspectives 
and their interrelationships. (2) Perspective schemata are linked to a conceptual 
meta meta model of shared domain terms, thus giving the architecture a semantic 
meaning and enabling adaptability and extensibility of the network of perspectives. 
(3) Inconsistency management across perspectives is handled in a goal-oriented man- 
ner, by defining the analysis goals as meta rules which are automatically adapted 
to perspective schemata. (4) Continuous incremental maintenance of inconsistency 
information is provided by exploiting recent view maintenance techniques from de- 
ductive databases. 

The approach has been fully implemented as an extension to the ConceptBase 
meta database management system and is currently experimentally applied in the 
context of business analysis and data warehouse design. 
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1    Introduction 

As observed in [Poh94], modeling processes proceed along three dimensions: represen- 
tational transformation, domain knowledge acquisition, and stakeholder agreement. Ex- 
isting methodologies tend to emphasize one of these dimensions over the others: the 
modeling notations, the available knowledge within a specific domain, or the people in- 
volved in the analysis project. All three method types have a long history, with little 
interaction between them. 

The management of inconsistent partial models is an inevitable part of requirements 
engineering (RE) [Bal91, FF91, Eas96]. Multiple stakeholders with conflicting opinions, 
contradicting requirements and alternative perspectives cause these inconsistencies. 

All methodologies support multiple partial models to represent the set of requirements. 
They differ substantially in the preferred coupling of the partial models. This requires 
cross-model analysis to guarantee consistency between the partial models. The extent, 
justification and customizability of the performed analysis constitute a main difference 
between the reviewed methodologies and illustrate the specific problems with the team- 
and goal-oriented methods. 

Notation-oriented methods manifest their assistance in the set of modeling nota- 
tions they offer. Their philosophy can be characterized by the slogan In the language lies 
the power. Examples of notation-oriented methods are structured analysis approaches, as, 
e.g., Modern Structured Analysis [You89], and object-oriented techniques, as, e.g., UML 
[FS97]. They attach great importance to the consistency of the developed models. Con- 
flicts between stakeholders, inconsistencies induced by a different terminology or simple 
name clashes have to be resolved 'outside' the model. The analysis goals are defined di- 
rectly on the constructs of the notations, i.e. on the contents of the corresponding (maybe 
hypothetical) meta models. 

Since the mid-80s, researchers have attempted to formalize semi-formal notations via a 
transformation to well-understood specification formalisms like logic [Gre84], graph gram- 
mars and algebraic specifications. They specify a fixed semantics the user must accept 
and cannot modify. A recent and very comprehensive example is a formal semantics for 
SSADM (Structured Systems Analysis and Design Method) [DCC92] based on algebraic 
specification [BFG+93) by [Hus94]. 

A different strategy is employed by the domain-oriented analysis methods. For a 
specific application domain, e.g., public administration or furniture industry, they offer a 
predefined set of reference models. Reference models describe typical data, processes and 
functions, together with a set of consistency tests which evaluate relationships between the 
models. Reference models represent the knowledge collected in multiple analysis projects 
within a particular domain: In the knowledge lies the power. The reuse of reference models 
can considerably reduce the analysis effort. However, it can be inflexible since the user 
can tailor the notations, the constraints or contents only to the degree foreseen by the 
developers of the reference models. 

The SAP Business Blueprints are reference models from the business domain [SAP97]. 
The Aris Toolset (IDS96] offers a platform for working with reference models. It offers 
hard-coded constraint checks within and across the models.   Analysis goals exist only 
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implicitly. They are reflected by the implementation of the reference models, i.e. by the 
contents and the structure of the models. 

Goal- and team-oriented approaches specifically address the objective to capture 
requirements from different information sources and to make arising conflicts productive: 
In the people lies the power. Prominent examples include IBM's JAD (Joint Applica- 
tion Design) [Aug91], SSM (Soft Systems Methodology) [Che89], and PFR (Analysis of 
Presence and Future Requirements) [Abe95] focus on the early and direct participation 
of all stakeholders, the rapid generation of joint results, the tolerance of conflicting per- 
spectives, a goal-oriented process, and informal, graphical notations. Experiences in the 
application of JAD give evidence for a 20% to 60% increased productivity compared with 
semi-formal and formal methods [GJ87, Cra94]. It is typical for these methods that the 
execution is supported by highly skilled group facilitators which animate the participants, 
guide the analysis process and keep an eye on the compliance with the specified analysis 
goals. Conflicts and inconsistencies are tolerated for the benefit of a fast and creative ac- 
quisition process. Moreover conflicts are employed as a tool for the analysis process. For 
each topic in the domain they collect perspectives from different stakeholders to provoke 
conflicts and use them to guide further discussions and interviews. 

Teamwork remains very informal to enhance creativity. Neither notations nor analysis 
goals are predefined by the methods but specified by the participants according to the 
actual problem to be solved. To accomodate the change of goals during project execution, 
the customization of analysis goals and notations is possible even during a running project. 
At present, no supporting tools are available beyond simple groupware tools. The main 
reasons for this dilemma are the high degree of customizability the tools must offer and 
the lack of formalizations available. 

In the next section we give a detailed overview of our approach. In sections 3 and 
4 we then present the main contributions. The axiomatization of a modular conceptual 
modeling language yields a formally precise way of how to define perspectives and control 
the information exchange between them. On top of this basic formalism, we develop tech- 
niques for the definition, compilation, and distribution of analysis goals in a customizable 
modeling environment (i.e. one without a fixed set of notations Or domain models). A 
distributed execution environment enables efficient incremental maintenance of instance- 
level information about violations of analysis goals. The paper ends with a comparison 
to related work in section 5 and a summary and outlook in section 6. 

2    Overview of the Approach 

The informal team-based information acquisition is not subject to any formalization 
(though it could at least be recorded in multimedia). The potential for formalization 
and computer-based tools lies in the other part of the methods: the cross-perspective 
analysis which is performed by moderators and analysts to extract knowledge and fur- 
ther questions from the collected information. The team produces many perspectives in 
a very short time containing lots of conflicts and inconsistencies. The situation for the 
analysts becomes even harder since the notations and the analysis goals can change from 
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Figure 1: Overview of the Approach 

one project to another. The manual comparison of perspectives becomes a big problem 
and is both time-consuming and error-prone. 

2.1    Components 

The basis of our formalization are the analysis goals and the notations as specified by the 
stakeholders at the beginning of method execution. We forge links to the notation- and 
the domain-oriented methods by formally transforming the domain-oriented analysis goals 
into integrity constraints over notational meta models. The result is a set of syntactic 
and domain-oriented inter-relationships between the notations, just as it is the case in the 
notation- and the domain-oriented methods. But in our approach they are automatically 
generated from user-defined declarative, notation-independent specifications of analysis 
goals. Figure 1 presents the components of our approach. 

(1): Separation of Multiple Perspectives. The conceptual models represent in- 
dividual perspectives of stakeholders. The figure shows three perspectives (A1.A2.A3) 
expressed in Notation A and two perspectives (B1.B2) expressed in Notation B. Our 
separation mechanism offers independent modeling contexts (modules) and enables the 
representation of inconsistent conceptual models. 

(2): Extensible Meta Modeling. The notations used to express the perspectives 
are defined on the second level, the meta level. The example comprises two notations, 
Notation A and Notation B. Since the notations are subject to modification, the mod- 
eling formalism must support the creation and modification of meta models. These meta 
models also reside in separate modules. 
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(3): Specifying Common Domain Terms and Analysis Goals. A shared meta 
meta model inter-relätes all perspective notations. It specifies the domain structure and 
the analysis goals. This model is created by teamwork at the beginning of the analysis 
project and documents the common language of all participating stakeholders. The per- 
spective notations are views on this model, i.e. a notation covers a specific fragment of 
the common domain terms. 

This assignment of notations to domain fragments gives the architecture a semantic 
meaning. The semantics of the domain structure is defined by the analysis goals - formulas 
which formalize the correct or intended behaviour as well as expected problems of the 
domain components. These goals define the scope of the cross-perspective check performed 
on the bottom level between concrete conceptual models. 

(4): Transformation of Analysis Goals. To close the gap between the domain- 
oriented analysis goals and the perspectives expressed in notations and to enable a dis- 
tributed modeling activity and consistency check, the analysis goals of the meta meta 
model are automatically transformed to integrity constraints on the notation meta mod- 
els. The relationships between different notations reside in so-called resolution modules 
which are connected to the corresponding notation modules via coordinates links. In 
the figure we have a resolution module for the two notations mentioned before. 

(5): Continuous Inconsistency Documentation. To avoid interrupting the creative 
modeling activity in the presence of inter-perspective inconsistencies, the cross-perspective 
analysis takes place in separate resolution modules. The figure presents a resolution 
module (the shaded module on the bottom level) to check the perspectives Al ,A3 and Bl. 
This is also the place where the conflicts are documented and continuously monitored. 

2.2    Industrial Application: Supporting the PFR Analysis Method 

In [NJJ*96] we reported the application of bur approach to the PFR analysis method. 
We use this application as a running example. 

PFR is mainly employed in the early phases of projects developing information systems 
supporting business processes. The method has three steps: 

• In a two-day workshop, stakeholders agree on the scope of the analysis project: the 
current problems which should be solved and in correspondence to this, the domain 
structure and the analysis goals. The group also makes a rough analysis of the 
current business processes in terms of information exchange among organizational 
units, identifies weak spots and drafts a redesigned business process. 

• The perspectives identified as critical to success are then captured in detail by in- 
terviews, workflow and document analysis. The acquisition process is accompanied 
by a cross-perspective analysis of the captured information for consistency, com- 
pleteness, and local stakeholder agreement. The results of the comparisons guide 
subsequent interviews to clarify conflicts and complete the models. 

• In a second workshop the goal is to draw together individual perspectives to achieve 
global stakeholder agreement. The step is accompanied and followed by the de- 
velopment of a comprehensive requirements document of typically several hundred 
pages. 
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Figure 2: Example: The PFR meta meta model 

The first workshop leads to a problem-oriented meta meta model defining shared 
domain terms and analysis goals. Figure 2 presents a model that is used as a default in 
PFR analysis projects. It is modified to fit to the actual problems and analysis goals if 
necessary. The current status of the processes is analysed from three perspectives: the 
information-exchange within the first workshop, the activity-sequence and the document- 
structure within the detailed acquisition process in the second step. 

The meta meta model in figure 2 explains the basic concepts of these perspectives and 
their interrelationships. The information-exchange perspective is represented by an Agent 
who supplies other agents with a Medium, the activity-sequence by the Activity that 
is performed.by an Agent and produces Data as input or output, and the document- 
structure by a Medium that contains Data. 

The meta meta model contains a precise description of the terms that are employed 
during a PFR analysis. Its structure focuses on the expected problems in the specific 
domain. The distinction between Medium and Data, for example, is essential to talk 
about the unnecessary exchange of documents, i.e. documents which contain data that is 
not used by any activity. 

Figure 3 presents a part of.the PFR environment as an example of the two top levels 
of our architecture. The top level module contains the PFR meta meta model together 
with an analysis goal stating that "Every exchanged Medium must contain Data". This 
goal formalizes the basic requirement that an efficient business process should not include 
exchange of documents that do not contain useful data. The formal definition of this goal 
will be given in section 4. 

Below the PFR meta meta model reside the notation meta models to formulate the 
information-exchange and the document-structure perspectives. The resolution module 
connected to both notation modules contains the transformed version of the above analysis 
goal. It specifies an integrity constraint on both perspective notations. The exact formal 
definition of this integrity constraint will also be given in section 4. 
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3    M-Telos: Separation of Multiple Perspectives 

The conceptual modeling language Telos [MBJK90] was designed for managing (meta) 
information about information systems. It integrates aspects from database design, knowl- 
edge representation and conceptual modeling. The object-oriented Telos data model sup- 
ports the abstraction principles classification/instantiation, specialization/generalization 
and aggregation. A basic concept of Telos is the representation of every single piece of 
information as an object with its own identity. The unlimited instantiation hierarchy 
enables classes to be themselves instances of other classes, so-called meta classes. Meta 
classes may again be instances of meta meta classes, and so on. 

A version of Telos called O-Telos was formalised in [Jeu92] and implemented in Con- 
ceptBase [JGJ+95], a deductive object manager for meta databases. This axiomatizatiOn 
enables the interpretation of an Telos object base as a special case of a deductive database 
with stratified negation and perfect model semantics [Min87|. 

M-Telos extends O-Telos by introducing so-called modules as a separation mecha- 
nism. A module provides an independent modeling context where users can create an 
individual analysis perspective in the form of a conceptual model. The intended applica- 
tion scenario of modules in concurrent conceptual modeling processes induces the need for 
communication between modules [NKF94]. The module concept supports cooperation 
among group members by the possibility to define local modules. 

It is often the case that one modeling task depends on another one and reuses a part 
of its results. To support this situation, two modules Can communicate by setting up 
an import-relationship. The importing module obtains access to the contents of the 
imported module. To protect a specific part of the module contents, the concept allows 
the division of the accessible contents of a module into a private and a public part. 

We need not only a modeling context but also a context for the resolution of multiple 
perspectives. We use dedicated modules for this monitoring task, the so-called resolution 
modules (cf. section 4). As our experiences indicate [NJJ+96], such resolution modules 
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need a special way to access the monitored modules. Therefore the module concept offers 
a coordination relationship between modules which enable a resolution module to 
access all accessible objects of the monitored modules. 

3.1    Formal Definition of M-Telos 

The semantics of a M-Telos object base is given by a mapping to a deductive database con- 
taining predefined objects, integrity constraints and deductive rules. This set of objects, 
constraints and rules constitute the axiomatization of M-Telos. 

The basic data structure of M-Telos is very Simple. It represents all information using 
labeled nodes and arcs with object identity. 

Definition 3.1 (Extensional Object Base) 
Let ID be a set of object identifiers, LAB be a set of labels. An extensional object 
base OB is defined as a finite set of objects: 

OB   C   { P(o,s,l,d) | o,s,d,€ ID, I € LAB}. 

Every object is represented in form of a tuple P(o,s,l,d) with object identifier o, 
start object s, destination object d and label I. The above object o can be read as: 
"The object s has a relationship called I to the object d". We distinguish four different 
categories of objects: Objects of the form P(o,o,l,o) are called individuals. They 
represent self-standing entities. Objects containing the special label in like P(o, s, in, d) 
describe instantiation relationships. Objects containing the label isa like P(o, c, isa, d) 
represent specialization relationships. All other objects denote just attributes. 

Five predefined objects document the above mentioned four object categories: Object 
contains all objects of an extensional object base as instances; Individual, InstanceOf, 
IsA, and attribute contain the individuals, instantiation, specialization and attribute 
relationships as instances (cf. axioms A-l tö A-5). 

M-Telos introduces an additional predefined object called Module which contains 
all modules as instances. It offers four attributes: contains links to the objects which 
are defined within the specific module; exports declares accessible objects to be public; 
imports.frorn refers to another module and indicates an import relationship; coordinates 
indicates a coordination relationship to another module (cf. axioms A-6 to A-10). A spe- 
cial predefined module called System contains all predefined objects including itself (cf. 
axioms A-ll.l to A-11.26). 

Figure 4 visualizes the predefined objects as a semantic network. The attributes spec- 
ifying the contents of System are omitted for readability. Individual objects are denoted 
as nodes of the graph, instantiation, specialization and attribute relationships as dotted, 
shaded and labelled directed arcs between their source and destination components. 

Due to space limitations, we concentrate on the axioms that define the properties of 
the module concept. The complete list of axioms can be found in appendix A [Nis96]. 

M-Telos requires that the names of individual objects must be unique among all in- 
dividuals defined within the same module (A-16). Note that names need not be unique 
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Figure 4: Predefined objects in M-Telos 

among all objects that are accessible in a module. Within a single module two individ- 
uals with the same name but different object identifiers and different defining modules 
may exist. Especially for the representation of multiple conceptual models which may be 
developed by different people observing the same domain this is an essential feature. 

The intention behind the module concept is that the access to objects is only possible 
through modules, i.e. every object should belong to exactly one module. Axiom A-18 
requires a defining module for every object of an extensional object base. In addition 
axiom A-19 requires that every object is contained in only one module. 

Until now there was no possibility to talk about the set of accessible objects within a 
module (as opposed to defined). The new literal PMoi(M, o, s, I, d) describes the objects 
P{p, s, I, d) which are accessible in module M. The set of accessible objects for a module 
M comprises 

• all objects defined within A/(axiom A-22), 

• all imported objects (axiom A-23), 

• all accessible objects of coordinated modules (axiom A-24), and 
• all objects that are accessible in the containing module (axiom A-25).'  . 

The closed world assumption (CWA) [Min87] guarantees that exactly the literals 
PMod(M, o, x, I, y) that can be deduced using these rules hold and no others. 

The exported objects of a module must form a subset of all the accessible objects 
of that module. Axiom A-48 formulates this as an integrity constraint. The export 
part describes a subpart of the conceptual model formed by all accessible objects. This 
subpart is exported to be reused and extended in another module. To be able to reuse 
the exported subpart all referenced objects must also be included. This requirement of 
referential integrity particularly for the export part is formalised in axiom A-49. 

For the perspective resolution we shall need the coordinates relationship between two 
modules. The coordination relation is transitive, i.e. if module Ml coordinates module 
A/2 and A/2 coordinates module A/3 then Ml also coordintes (indirectly) the module 
A/3. This fact is expressed in axiom A-50. Since a cyclic coordination relationship leads 
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to enormous problems in the handling of perspective inter-relationships (see section 4), 
we explicitly forbid this with axiom A-51. 

On basis of the axioms presented so far, other properties of M-Telos are defined which 
are not directly related to the module concept. We mention in the following only the 
important ones. 

• Instantiation axiom (A-U): An instance of a class is allowed to instantiate the 
class's attributes. 

• Specialization axiom (A-43): The destination (called superclass) of a specialization 
relationship inherits all instances of the source (called subclass). 

In combination with the instantiation axiom this defines the attribute inheritance 
from superclass to subclass: instances of the subclass can instantiate attributes of 
the superclass. 

• Multiple generalization/instantiation axiom (A-45, A-4V-' M-Telos supports multi- 
classification and multi-generalization under some restrictions. 

• System classes axioms (A-29 to A-39): For every object the instantiation relation- 
ships to the predefined objects Object, Individual, InstanceOf, IsA and attribute 
are deduced and may not be contained in the extensional object base. Also, every 
instance of the objects Individual, InstanceOf, IsA and attribute must have the 
specific structure introduced at the beginning of this section. 

3.2    Properties of the Axiomatization 

A main goal of the axiomatization of M-Telos was to preserve the simplicity of the O- 
Telos formalization given in [Jeu92]. We formulated 76 axioms, of which 32 were slightly 
modified axioms from the O-Telos formalization. 31 of the new axioms are new predefined 
objects. This number results from the definition of the module System. Otherwise we 
only defined seven new rules and six new constraints. 

Now we are able to formally define a consistent M-Telos object base. It forms a special 
deductive database. A deductive database is a triple (EDB,IDB,IC) where EDB, 
the extensional database is a set of facts in the form of relations, IDB, the intensional 
database, is a set of deductive rules defining intensional relations, and IC is a set of closed 
formulas stating integrity constraints. For a M-Telos object base, EDB becomes the 
extensional object base containing only facts of the P-relation, IDB is exactly the set of 
axioms forming deductive rules, and IC is exactly the set of the axioms interpreted as 
integrity constraints. 

Definition 3.2 (M-Telos Object Base) 
Let AXOB be all axioms describing predefined objects, AXR be all axioms which are 
deductive rules and AXJC be all axioms which are constraints. 

Then the triple {OB, AXR, AXIC) is a M-Telos object base if AXOB C OB holds. 

(OB, AXR, AX/C) is called a consistent M-Telos object base if the perfect model 
of (OB, AXR) satisfies all integrity constraints of AXJC- 
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An important property of an object base is the referential integrity within each module. 
This property guarantees that for every accessible object in a module also the destina- 
tion and the source components are accessible objects in that module. The following 
proposition proves this property for consistent M-Telos object bases. 

Proposition 3.3 (Referential Integrity [Nis96]) 
Let (OB, R, JC) be a consistent M-Telos object base. Then for every object P(o, s, I, d) "6 
OB and every module M with P(#M, #M, M, #M) € OB and /n(#M,#Modu/e) 
deducible from OB holds: If the object o is accessible in M, i.e. PMcd(#M, o, s, I, d) is 
deducible from OB using the rules from R, then also the objects with the identifiers s 
and d are accessible in M. 

The following propositions formalizes the architecture of a modular knowledge base. 
The modules always form a tree such that the contents of the System module will be 
accessible in every single module. 

Proposition 3.4 (contains Relation Forms a Unique Tree [Nis96]) 
Let (OB,R,IC) be a consistent M-Telos object base. Then (a) all modules are directly 
or indirectly contained in System and (b) the contains relation forms a tree 

A distinctive feature of O-Telos is the possibility for unlimited metamodeling. It allows 
the user to build meta models, meta meta models and so on. This property is preserved 
in M-Telos. Meta modeling is still possible without any restrictions within a module. In 
addition the modules'can be arranged according to their degree of abstraction. A module 
then contains only conceptual models of one abstraction level, the more concrete level 
and the more abstract level reside then in different modules. Of course, any combination 
of these approaches is also possible. 
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4    Goal-oriented and Customizable Inconsistency 
Management 

The goal- and team-oriented methods are designed to produce the maximum of conflicts 
possible. They employ highly overlapping perspectives and acquire almost all information 
from different stakeholders (cf. section 1). Due to this redundancy, a large number 
of relationships exist between perspectives. The cross-perspective analysis checks these 
relationships. It follows the goals specified in the problem-oriented meta meta model. 

The analysis goals are formulated as so called meta formulas: They make statements 
about objects that reside two abstraction levels below the formula. This is necessary since 
the perspectives we actually want to analyse reside two levels below the meta meta model 
(cf. figure 1). 

In more technical words: A formula tp is called a meta formula if ip contains a literal 
(a) In(x, c) where c is a variable, or (b) A(x, m, y) where x is not range restricted by a 
literal In(x,c) where c is a constant. In such a case we call these literals meta literals. 

Example 4.1 (Meta Formula) 
The following meta formula is the formalization of the analysis goal given in figure 3 
in natural language. It contains several meta literals as, e.g., In(med, m'), In(supp, s'), 
In(with,w'). The variables med,supp,with denote objects two levels below the meta 
meta model. They are not bound to any concrete object on the meta level; m', s', w' are 
again variables. 

In(m[,#Medium)Aln{d,#Data)Aln{s\#Agent\svpplies)A 
In(e?,#Medium\cmtains)Aln(v/,#Agent]supplies\with)Aln(med,m')A 

In(supp,s')Aln{with,w')AFrom(with,supp)ATo(with,med) 
=*• 3 data, cant In(data, d) A In(cont,e?) 

AFrom(cont, med) A To(cont, data) 

D 

Analysis goals for the PFR method exist for a single perspective, for dependencies 
between multiple perspectives, and to test the desirability of the modeled business pro- 
cesses. Although it is possible to use the analysis goals as they are we will transform them 
to integrity constraints on the notations's meta models. At this point we have to make 
clear our terminology in the following subsections: an analysis goal is a formula that is 
specified within the meta meta model and is thus a meta formula. An integrity constraint 
is a formula that is not a meta formula. 

The analysis goals represent the agreement among the stakeholders about the goals, 
or more specific, the questions and problems, the analysis project is dedicated to. Ac- 
cordingly, our architecture manages the analysis goals within the central module. But 
the analysis and modeling process does not run in a centralizes way, it is distributed and 
involves many agents. A central control instance will then be a system bottleneck. On the 
other hand, a complete distribution without any central control instance like in [NKF94] 
would not cover the global relationships.  To be efficient in such a setting and at the 
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same time be able to manage the global connection we follow the approach of [ACM95] 
which is a compromise of the two extremes mentioned before: The environments for the 
perspective development are distributed and work autonomously but there still exists a 
central instance which has knowledge about their possible inter-relationships. Applied to 
our case: from the global meta meta model we generate integrity constraints which can 
be evaluated locally within the modules of the meta level. The global module needs not 
be accessed during inconsistency monitoring time. 

We explain the mechanism in two steps: First we describe the technique of partial 
evaluation which is used to transform an analysis goal into integrity constraints. Since 
not all analysis goals need to be transformed to all modules we guide the partial evaluation 
by generating a transformation plan, i.e. the assignment of analysis goals to modules. The 
algorithms to compute these plans are subject of the second step. 

The last subsection gives then a short overview of the continuous inconsistency man- 
agement on the instance level. More details on this part are given in [NJ97]. 

4.1    Partial Evaluation of Analysis Goals 

We employ the technique of partial evaluation to transform a meta formula iiito an in- 
tegrity constraint. In [Jeu92] the application of this technique to the O-Telos object model 
is presented. We can directly adapt the results to M-Telos. We will therefore only sketch 
the technique of partial evaluation. 

A meta formula contains (meta) literals In(x,c) where c is not a constant but a 
variable. In our specific case this variable is used to denote an object of the meta model 
of a notation. The typical situation is thus to have two such literals - In(x,y) and 
In(y,c) - within one formula where c is an object of the meta meta model and a: and y 
are variables. The meta formula then makes statements about the behaviour of a: which 
denotes an object of a conceptual model. The goal of partial evaluation is to find a solution 
for y by evaluating the literal In(y,e) within a specific module of the object base. Each 
occurence of y within the meta formula is then replaced by the computed object. In our 
case this object comes from the meta level and denotes an object of the meta model of a 
notation. Since we then already know that the literal In(y,c) evaluates to true with the 
computed object we can omit the literal and simplify the formula. For every solution of 
that literal we get a new, partially evaluated version of the original meta formula. 

This process has to be repeated for every meta literal until all meta literals have been 
evaluated. Since we evaluate a meta formula always within a specific module we do it on 
basis of a notations meta model or a resolution module. The resulting formulas contain 
no more objects of the meta meta model but only objects of the meta model of a notation. 
It is therefore only valid for that notation. If not all meta literals of a meta formula can 
be evaluated in a module then this meta formula is not partially evaluable within this 
specific module. 
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Example 4.2 (Transformed Meta Formula) 
The following formula is the transformed version of the meta formula presented in ex- 
ample 4.1. The meta variables are replaced by concrete objects of the two notations 
for information-exchange and document-structure perspectives (cf. figure 3). The lit- 
eral In(med,m') of the meta formula is replaced by In(med,#Package). In addition 
all the literals connecting these variables to objects of the meta meta model as, e.g., 
/n(m',#A/erfium), are eliminated. 

In{med, ^Package) A In(supp, #OrgUnit\sends) A In(with, #OrgUnitlsends\a)A 
Fram(with, supp) A To(with, med) 

=> 3 data, cant In(data, #/*em) A In(cont, #Form\includes) 
AFrom(cont,med) ATo(cont,data) 

4.2    Computation of Transformation Plans 

Unnecessary partial evaluations of analysis goals may arise if modules are connected via 
coordinates relationships: If there exists a coordinates link from module A to module B 
then everything accessible in B is also accessible in A. Any analysis goal that could be 
transformed for B therefore can also be transformed for A. Since the transformed con- 
straint becomes accessible in A anyway, a separate transformation for A is not necessary. 
To avoid such inefficiency we compute for every analysis goal the minimal set of modules 
it must be transformed to. 

Algorithm 4.1 (Computation of Destination Modules) 
The algorithm first computes the following sets and functions: 

• the set M of all modules of the meta level 
M = {Mi,...,M,}, 

• the set C of all specified coordinates relationships: 
C = {(MM, Mh2),.. ■, (Mm,i, Mm,2)}, where (My, M<l2) denotes a coordinates re- 
lationship from My to Mj|2. 
The set C denotes a directed, acyclic graph. 

• the set AG of all analysis goals specified within the meta meta model: 
AG = {<pu...,(pi}, 

• the function applicable which computes for each analysis goal tp e AG the set of 
modules for which a partial evaluation is possible: 
applicable : AG -4 p{M) 
Whether M e applicable^) holds or not is computed by a comparison of the 
quantifications in <p with the instantiation relationships of M to the meta meta 
model. Only if for every quantification in <p an instantiation in M exists all meta 
literals in ip can be evaluated. 
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For every analysis goal <p e AG 
compute P* = applicable(<p), the set of potential destination modules 
compute the set Cv with 

C = {{MiiUMia): {Mi,uMii2) e C,Af,,i e P",Mi2 6 P*} 
letE" = P»> 
for each (A/i,,, M;2) eC"^ 

do 
delete A/j,i from J5* 
od D 

The resulting set Ev denotes all the modules of the meta level for which a trans- 
formation of ip is necessary. The set Ev is independent from the selections out of C 
and is always uniquely determined. For Ev we can prove correctness and completeness 
concerning the accessibility of transformed integrity constraints as well as its minimality. 

Proposition 4.3 (Correctness and Completeness ) 
The computed set Ev for an analysis goal <p is 

(a) correct, i.e. E* contains only such modules for which a partial evaluation of <p is 
allowed. 

(b) complete, i.e. the transformation of <p with respect to all modules in Ev results in 
the accessibility within all potential destination modules. 

Proposition 4.4 (Minimality) 
For every analysis goal ip the algorithm 4.1 computes in E" the minimal set of destination 
modules such that its accessibility in all potential destination modules is guaranteed. 

The above proved completenesses defined with respect to the given module structure 
on the meta level. But there exists a second view on completeness with respect to the 
analysis goals of the meta meta model: The transformation is complete if all analysis 
goals of the meta meta model have been transformed. 

This kind of completeness does not always hold. If there is no notation for a specific 
fragment of the meta meta model then the analysis goals specified for this fragment could 
not be transformed to integrity constraints. The result is that some formal statements 
represented within the meta meta model could not be tested during the analysis process. 
In some cases this kind of incompleteness is not a problem or even desired. But in all 
cases it is useful for the users to get information about analysis goals that can not be 
transformed. 

An automatic completion of the module structure on the meta level is not always 
possible. A tool could constitute additional resolution modules but cannot automatically 
establish new notations if a fragment of the meta meta model is not covered yet. We 
developed an algorithm computing additional resolution modules such that an analysis 
goal becomes transformable (see JNJ97] for details). The result is in general not minimal. 
One minimal set can be computed by an algorithm which follows the computation of a 
minimal set of functional dependencies in relational database schema design [EN94]: A 
module is eliminated if its relationships are covered by the reminding modules in the set. 
We present such an algorithm in [NJ97]. 
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4.3    Continuous Inconsistency Management 

Inconsistencies detected by goal-oriented inconsistency management are often not repaired 
immediately. Analysts must continue their current work without the need to check their 
model for syntactic correctness or to resolve conflicts with other users. The process of 
the goal- and team-oriented methods offer special meetings and interviews where the list 
of detected inconsistencies are discussed among the users. Due to space limitations we 
only sketch our inconsistency management approach. The detailed presentation is given 
in[NJ97]. 

We employ view maintenance technology [Sta96] for the continuous inconsistency man- 
agement. We rewrite integrity constraints as deductive view definitions such that the view 
contents represents constraint violations. Inconsistency monitoring is then achieved by 
monitoring such inconsistency views. We capture the reasons behind integrity violations 
by recomputing the derivation trees using a meta interpreter. In the continuous version 
we declare objects of the current transaction which participate in the derivation tree as 
the reasons for the violation. In traditional databases these objects will be rejected. In 
our approach we store them as provisioal objects, i.e. as inconsistent objects which will 
be repaired in the near future. 

Each violation is documented within the knowledge base by a special object which 
references the reasons for the violation. The derivation tree is stored as the justification 
for the documentation. A simple truth maintenance system manages this justification 
network. The system do not only check for primary inconsistencies, i.e. constraint viola- 
tions, but also for secondary inconsistencies, i.e. the satisfaction of an integrity constraint 
only because of existing provisional objects. This enables us to talk about consequences 
of the tolerance of inconsistent information within the knowledge base. 

5    Related Work 

We first compare our approach to work which covers either the modularization of con- 
ceptual models or the perspective resolution. In the end we discuss an approach covering 
both the separation and the resolution of multiple perspectives. 

Separation mechanisms have been developed for different purposes in requirements 
engineering and for modeling environments. The Requirements Apprentice [RW91] uses a 
context mechanism called Cliche to represent predefined domain descriptions. Since dif- 
ferent domain descriptions may be inconsistent to each other, this separation is necessary. 
They are organised in a specialization hierarchy and can be used as a starting point in re- 
quirements engineering. ARIES [JH91] employs a similar concept called Folder. A Folder 
captures partial domain information and is used for the development of a requirements 
specification. The engineer creates a new Folder and maybe a relationship to one of the 
predefined domain descriptions. He then extends this description according to the actual 
problem domain. 

The modularization presented in this paper is compatible with module concepts de- 
veloped for software architecture languages (as, e.g., [Nag90]). A module is a collection 
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of information (conceptual models and program statements, resp.) and provides infor- 
mation hiding by encapsulating its content. The communication is supported by import 
relationships between modules which extend the set of accessible information or resources. 
To control the communication the contents is divided into a public and a private part. 
To handle a large number of modules they provide the local definition of modules as a 
structuring principle. We adapted this for M-Telos and exactly formalized the principles 
of usability specified for software module hierarchies for deductive databases. 

The Cyc Project at MCC is concerned with the development of a knowledge base 
containing conceptual descriptions of most if not all areas of the real world. To separate 
the huge amount of information they use a mechanism called context [Guh90]. They offer 
similar properties to the module concept we developed with M-Telos. They can be organ- 
ised in a specialization hierarchy which makes the whole contents of the general context 
accessible in the more specific context. This is comparable to our inclusion hierarchy of 
modules. A most general context called BaseKB contains all other contexts as special- 
izations. In contrast to our module concept, there exists a most specific context called 
BrowsingCntxt where all informations of the knowledge base are accessible. It is used to 
inspect the contents of the knowledge base and is a special case of our resolution module. 

Existing perspective resolution approaches are limited to a fixed set of analysis goals 
and in many cases concentrate on syntactical relationships. Leite and Freeman employ 
in [LF91] a purely syntatctic perspective comparison. The contents of perspectives are 
represented by a set of production rules. They compare the rule bases of two perspectives 
by identifying the most probable rule pairs as well as the rules with no pairs. On basis 
of the evaluated mapping they detect wrong, missing and inconsistent information. They 
do not take information about the domain into account. The analysis rules are predefined 
in the Static Analyzer and cannot be customized by the user. 

The viewpoint analysis of Kotonya and Sommerville [KS96] comprises two stages: the 
correctness and completeness of the viewpoint documentation and the conflict analysis. 
The completeness of a viewpoint documentation is checked according to the predefined 
viewpoint structure. This structure defines the required components and attributes of a 
viewpoint. A problem-oriented definition of the structure by the user is not supported. 
The conflict analysis is performed by the requirements engineer with the help of the 
provided toolset. 

The ViewPoint approach [NKF94] is a framework for distributed software engineering, 
in which multiple perspectives are maintained separately as distributable objects called 
ViewPoints. The necessity to include communication features similar to our module con- 
cept is mentioned in [NKF94] and comprises model transfer between ViewPoints and 
information hiding using interfaces. The integration of ViewPoints is defined by so-called 
inter-ViewPoint rules. The rules are defined by a method engineer for ViewPoint tem- 
plates, i.e. for ViewPoint types in which only the notation and the work plan have been 
defined. The relationships therefore perform always only an integration with respect to 
the notations; an integration based on the domain that is analysed is not supported. 

All rules are bilateral, i.e. they formulate a relationship between a source ViewPoint 
and a destination ViewPoint. A relationship between multiple ViewPoints must be broken 
down to bilateral rules. A rule can only be invoked from the source ViewPoint. To allow 
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both ViewPoints to invoke their relationship it has to be duplicated and refomulated for 
the destination ViewPoint. The analysis goals used in our approach do not make any 
assumptions about the perpspectives where they have to be checked. When defining an 
analysis goal the participants do not need to think about the involved notations and 
in which direction it should be evaluated. In addition they are not limited to bilateral 
relationships. At definition time the participants define the goals or questions of the 
current analysis project and don't have to care how the domain is covered by different 
notations. 

6    Conclusions and Further Work 

For some years software specification and design methods have been formalized by a 
transformation to well-understood formalisms like logic, graph grammars or algebraic 
specifications to enable a computer-based analysis. It is characteristic of these approaches 
to assign the methods a fixed semantics the user must accept when using such a system. 
Beyond that it is assumed that the various partial conceptual models form views on a 
consistent entire model. 

In some other parts of practice just the opposite trend can be observed. Informal 
teamwork methods leave the details of notations to a great extent to the user and con- 
sciously employ conflicts and inconsistencies as an analysis tool, instead of avoiding them.' 
These methods (examples are JAD, SSM and PFR) enjoy increasing popularity exactly 
because they give negotiation and mutual learning priority over a fixed axiomatization or 
restriction by reference models. To enhance analysis quality and efficiency formalization 
and computer support is also desireable for these methods, but they must offer features 
different to the approaches mentioned above. 

In this paper we elaborated these requirements by (i) presenting a comparison of 
different analysis support methodologies and (ii) by presenting industrial case studies in 
the business analysis area. On this basis we developed a comprehensive solution for a 
computer-based support of team- and goal-oriented analysis methods. We extended the 
formal conceptual modeling language Telos by a separation mechanism called modules, 
which enables the representation of multiple, conflicting perspectives. We showed that 
a simple axiomatization of the extended language M-Telos exists, which allows for a 
realization by well-understood deductive database technology. 

We developed the model-based perspective resolution where the knowledge about the 
structure of the domain and the analysis goals are specified in a meta meta model. The 
use of M-Telos as representation formalism keeps even the meta meta model customizable. 
By declaring the notations as partial views on this model we define a connection between 
the semantic domain description and the syntactic perspective schemata. We used this 
connection for goal-oriented inconsistency management by the transformation of domain- 
oriented analysis goals into notation-based integrity constraints. Since in many cases 
the simple evaluation of cross-perspective relationships is not enough we developed a 
technique for continuous maintenance of inconsistency information based on deductive 
database technology. 
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Our approach is completely implemented in ConceptBase [JG.J+95], a deductive object 
base manager which uses M-Telos as object model. In cooperation with the German 
consulting house and software firm USU we applied our approach in several case studies 
to business process engineering with the PFR analysis method [NZ95J. The indirect 
support of the formalization and the computer-based support increased the efficiency of 
the cross-perspective analysis and the quality of analysis results. The system is currently 
in use by USU in industrial requirements engineering projects. 

The four components of our approach can also be used in stand-alone mode together 
with existing modeling environments or viewpoint mechanisms. The simple axiomatiza- 
tion of the module concept enables its adaption to existing, even non-Telos repositories 
(as, e.g., the Microsoft Repository [BHS+97]) to represent multiple development per- 
spectives. The combination of the goal-oriented inconsistency management concept with 
notation-centered CASE tools lead to a more guided modeling process with customizable, 
domain-oriented integrity constraints. This also works for distributed environments like 
the ViewPoints approach. Since the constraints are checked locally as before, the Central 
goal definition implies no decrease of system performance. 

Data warehousing [Inm96] is concerned with the extraction, integration, aggregation 
and customization of distributed, heterogenuous operational data. Building, using and 
managing a data warehouse requires the features we developed in this paper. Data come 
from multiple sources and may be inconsistent with each other, thus a separation mecha- 
nism is needed. To be able to interpret the data right, the existence of conflicts must be 
monitored and the infected data must be marked. 
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A    Complete List of M-Telos Axioms 
Predefined objects: 

(A-l) P{#Obj,#Obi,Object,#Obj) 

(A-2) P(#Indiv, #Indiv, Individual, #Indiv) 

(A-3) P(#aitr, #Obj, attribute, #Obj) 

(A-4) P{#Inst, #Obj, InstanceOf, #Obj) 

(A-5) P{,#Isa,#Obj,IsA,#Obj) 

Specification of object Module: 

(A-6) P(#Mod, #Mod, Module, #Mod) 

(A-7) P(#cont, #Mod, contains, #Obj) 

(A-8) P{#exp, #Mod, exports, #Obj) 

(A-9) P{#imp,#Mod,imports-from,#Mod) 

(A-10) P{#coord, #Mod, coordinates, #Mod) 
The contents of module System : 

(A-11.1) P(#Sys,#Sys,System,#Sys) 

(A-11.2) P(#Sysin,#Sys,in,#Mod) 

(A-11.3) P(#SysCl,#Sys,cl,#Obj) 

(A-11.4) P(#Sysn,#SysCl,in,#cont) " 

(A-l 1.5) P(#SysC2,#Sys,c2,#Indiv) 

(A-11.6) P{#SysI2,#SysC2,in,#cont) 

(A-11.7) P(#SysC3,#Sys,c3,#attr) 

(A-l 1.8) P(#%9/3, #Sj/«C3, in, #cont) 

(A-11.9) P(#SysC4,#Sys,c4,#Inst) 

(A-11.10) P(#SysU,#SysCA,in,#cont) 

(A-ll.ll) P(#SysC5, #5ys, c5, #Isa) 

(A-11.12) P(#SysI5, #SysC5, in, #cont) 

(A-11.13) P(#SysC6,#Sys,c6,#Mod) 

(A-11.14) P(#SysI6, #SysC6, in, #cont) 

(A-11.15) P(#SysC7,#Sys,c7,#amt) 

(A-11.16) P(#Sysn,#SysC7,in,#cont) 

(A-11.17) P(#5j/sC8, #Sys, c8, #exp) 

(A-11.18) P(#SysI8,#SysCS,in,#cont) 

(A-11.19) P(#5ysC9, #Sys, c9, #imp) 

(A-11.20) P{#SysI9,#SysC9,in,#cont) 

(A-11.21) P(#SysCW,#Sys,cW,#coord) 

(A-11.22) P{#SysI10, #SysC10, in, #cont) 

(A-11.23) P(#SysCll,#Sys,cn,#Sys) 

(A-11.24) P{#SysIU,#SysCll,in,#ccmt) 

(A-11.25) P(#SysC\2, #Sys, cl2, #Sysin) 

(A-11.26) P(#SysI\2, #SysC\2,in, #cont) 
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Object identity: 

(A-12)   P(o,n,l,,srt)AP(o,ar2,'/2,j«s)'=*(a;i =aJ2)A(/i =/2)A(j/i ='jft) 

Drived literals: 

(A-13)   P(o,i,m,c)=S- In(i,c) 

(A-14)   P{o,x,l,y) A P{p,c,m,d) A In(o,p) =* A(x,m,y) 

Uniqueness of module names: 

(A-15)   i'(oi,oi,m,o1)AP(o2,02,m,02)A/n(o1,#Mod)A/n(o2,#Mod)=s> (oi =02) 

Uniqueness of individual names: 

(A-16)   In(M,ifMod)AP(ououl,ol)AP(o2,02,l,02)AA(M,contains,o1)/\ 

A(M, contains, 01) =S> (01 = 02) 

Uniqueness of attribute names: 

(A-17)   P{oi,sJ,di}AP(o2,sJ,d2)Aln(M,#Mod)AA(M,contains,oi)A 

A(M, contains, 02) => (01 = 02) V (I = in) V (/ = isa) 

Objects belong to exactly one module: 

(A-18)   P(o,x,l,y) => 3M In(M,#Mod) A A(M,contains,o) 

(A-19)   MM,#Mod)Aln(N,#MctfAP{o,x,l,y)AA{M,cohtains,o)A 

A(N,contains,o) => (M = N) 

Derived contains relations for a modules attributes: ■■'. 

(A-20)   In(M,#Mod)AP(o,M,l,y)A(In(o,#cont)Vln(o,#imp)V 

In{o, #exp) V In(o, #coord)) =*• A(M, contains, o) 

(A-21)   ln(M, #Mod) A P(o, M, I, y) A (P(x, o, in, #cont) V P(x, o, in, #imp) V 

P(x, o, in, #exp) V P(x, o, in, #coord)) =s> A(M, contains, x) 

Definition of predicate pMod : 

(A-22)   In(M,#Mo$AP(o,x,l,y)AA(M,contains,o)=i-PM°d(M,o,x,l,y) 

(A-23)   In{M,#Mod) ATnMed(M,N,#Mod)APMoi(N,o,x,l,y) A 

AMod(M, M, imports.from, N) A AMad(N, N, exports, o) => PMoi(M, o, x, I, y) 

(A-24)   In(M,#Mod)AlnMod(M,N,#Mod)APMa,(N,o,x,l,y)A 

AM°i{M,M,coordinates,N)^PMoi{M,o,x,l,y) 

(A-25)   InM*(N,M,#Mod)Aln{N,#Mod)AAM°i(N,N,contains,M)A 

P(N,o,x,l,y) =* PM°*(M,o,x,i,y) 

Definition of predicates InMod,IsaMod,AMod : 

(A-26)   PMai{M, o, i, in, c) => InMod(M, i, c) 

(A-27)   PMod(M,o,x,l,y) APMod(M,p,c,m,d) AlnMod(M,o,p) =» AMod(M,x,m,y) 

(A-28)   PMod(M,0,c,isa,d) ^IsaMod(M,c,d) 

Membership to the builtin classes: 
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(A-29)   PMod(M,o,s,l,d) =* InMod{M,o,#Obj) 

(A-30)   InM°d{M,o,#Obj)^3s,l,dPM°d(M,o,s,l,d) 

(A-31)   PMod(M,o,o,l,o)^lnMod(M,o,#Indiv) 

(A-32)   InMod(M,o,#Indiv)=>3lPMod(M,o,o,l,o) 

(A-33)   PMai(M,o,i,in,c) => /nMod(M,o,#/nst) 

(A-34)   JnM^(M,o,#Jnst)^3i,ci>M^(M,o,i,m,c) 

(A-35)   /'Mo<i(M,o,c,tsa,(i)=*/nMo<i(Af,o,#5pec) 

(A-36)   /nWod(M,o,#Spec)=>3c,(iPMw'(Af,o,c,.wa,d) . 

(A-37)   PMoi{M,o,s,l,d)A{o? s) A (o?d)A(l?in) A (i ^ tsa) =* JnMod(M,o,#Attr) 

(A-38)   JnM<"'(Af,o,#^«r)=>3s,J,<iPM<K'(M,o,s,i,d)A(o5i*)A(o54d)A 

(I ^ in) A (/ ^ isa) 

Any object falls into one of the four categories: 

(A-39)   InMod(M, o, #Obj) =*• InMod(M, o, #Indiv) V InMod(M, o, #Inst) V 

JnMod(Af, o, #Spec) V /nMod(M, o, #Attr)   . 

The isa relation is a partial order: 

(A-40)   InMoi(M,c,#Obj) => IsaMod(M,c,c)        . 

(A-41)   IsaMod{M,c,d)AlsaMai(M,d,e)^IsaMod(M,c,e) 

(A-42)   IsaMod{M,c,d)AlsaMod(M,d,c)=$-(c = d) 

Inheritance of class membership: 

(A-43)   InMod{M,i,c)APMod{M,o,c,isa,A)=>InMoi(M,i,d) 

Attributes are typed by the atribute classes: 

(A-44)   PMoi(M,o,s,l,d)AlnMoi{M,o,p)^3c,m,kPMod{M,p,c,m,k)A 

InMoi{M,s,c) AlnMod(M,d,k) 

Consistency of a specialization relationship: 

(A-45)   IsaMoi(M,ouo2)APMod(M,ol,cll,e)APMod{M,o2,d,h,f) 

=*IsaMod(M,c,d)AlsaM°d{M,e,f) 

Attribute refinement: 

(A-46)   IsaMod(M,c,d) APMod(M,ox,c,l,e) APM0d(M,O2,d,l,f) 

^IsaMod{M,e,f)AlsaMod(M,ouo2) 

Multiple classification: ■ 

(A-47)   InMod(M,i,c)AlnMod(M,i,d)PM?d{M,ouc,l,f)APM°d(M,02,d,l,g) 

=»■ 3 e, h, 03 InMod(M, i, e) A PMat(M, 03, e, I, ft) A 

lsaMod{M,e,c)AlsaM°d(M,e,d) 

The export part satisfies referential integrity: 

(A-48)   In(M,#Mod) A P{o,x,I,y) A AMod(M,M,exports,o) => PMod{M,o,x,l,y) 
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(A-49)   In(M,#Mod) AAMod(M,M,exports,o) A PMod(M,o,x,l,y) 

=* AMod(M, M, exports, x) A AMod(M, M, exports, y) 

Constraints of the coordinates relationship: 

(A-50)   In{M, #Mod) A In(N, #Mod) A In(P, #Mod) A A(M, coordinates, N) A 

A(N, coordinates, P) => A{M, coordinates, P) 

(A-5I)   In(M, #Afod) A /n(iV, #Mod) A A(M, coordinates, AT) A 

/l(Af, coordinates, M) =* (Af = N) 
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Abstract 

Rapid prototyping is a promising approach for formulating accurate software re- 
quirements, particularly for complex systems with hard real-time constraints. Com- 
puter aid is needed for realizing the potential benefits of this approach in practice, 
because the problems associated with software evolution are greatly amplified in the 
context of iterative prototyping and exploratory design. 

Our computer-aided prototyping system CAPS provides automated support for 
many aspects of requirements analysis and software prototyping, including: (1) 
maintaining logical dependencies between assumptions about needs of different 
groups, software requirements, and design decisions, (2) managing design history, al- 
ternatives and dependencies, (3) planning, assigning and scheduling job assignments 
for teams of designers in the presence of uncertainty, (4) checking and propagating 
design constraints, (5) maintaining consistency between graphical and text views of 
a design, (C) constructing real-time schedules, (7) generating control code, and (8) 
retrieving and instantiating reusable software components. 

The principles and methods that make this possible and the practical application 
of the system are explained via examples. 

1    Introduction 

The software industry remains far short of the mature engineering disciple needed to 
meet the demands of our information age society. Symptoms of the problem are large 
sums spent on cancelled software projects [38], costly delays [19], and software reliability 
problems [13]. 

Lack of formalization of rapidly emerging application areas makes software engineer- 
ing more difficult than other engineering disciplines. Requirements for complex systems 
are nearly always problematic initially and evolve throughout the life of the systems. 
Requirements and specification problems have been found to be the dominant cause of 
faults in the Voyager/Galileo software [34], and we believe this applies to most large and 
complex systems. 

'This research was supported in part by the National Science Foundation under grant number CCR- 
9058453 and by the Army Research Office under grant number 309S9-MA. 
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Evolutionary prototyping can alleviate this problem by providing an efficient approach 
to formulating accurate software requirements [27]. Simple models reflecting the main 
issues associated with the proposed system are constructed and demonstrated, and then 
reformulated to better match customer concerns, based on specific criticisms and the issues 
they elicit. This process aids understanding because independent issues are separated awl 
treated m isolation as much as possible, via communication based on the simplest models 
possible. The models are refined only as needed to resolve open issues, and the issues 
arising at one level of detail are resolved as much as possible before considering the next, 
level of detail, or the next aspect of the system. This helps to focus the attention of tin- 
customers, designers, aiid analysts because only a few selected aspects of the system are 
changing at any point in the process. 

Automation is necessary to enable the rapid, economical and effective change needed 
for evolutionary prototyping. Our hypothesis has been that increasing the degree of 
automation for system development and evolutionary prototyping should improve the 
quality of the systems produced. A sound basis for the engineering automation is needed 
to realize evolutionary prototyping for large and complex systems, which typically have 
real-time constraints. We have explored formal models of various aspects of software 
development and evolution to achieve reliable and quantifiable automation of subtasks. 
Formal models have enabled analysis and assessment of the accuracy and efficiency of 
proposed algorithms and heuristics. 

It has been necessary to interleave this theoretical work with experimental validation 
and adjustment of the models to better fit practical reality. This has been necessary be- 
cause software development and evolution are extremely complex problem domains, and 
engineering automation systems have correspondingly complex requirements that strongly 
manifest all of the difficulties identified above. Thus we have applied the evolutionary 
prototyping approach to the development of techniques and software for supporting the 
evolutionary prototyping approach itself. We have found this strategy successful for devel- 
oping accurate models, effective automation and decision support methods for evolution of 
software and system requirements. This paper summarizes our experiences and presents 
some of our recent progress on carrying out the plan outlined above. 

The rest of the paper is organized as follows. Section 2 describes our strategies for 
achieving automation support for evolutionary prototyping and summarizes progress to 
date. Section 3 discusses a formal model of software evolution and explores some auto- 
mated processes that can be supported by the model. Section 4 illustrates our ideas with 
an example. Section 5 contains conclusions. 

2    Strategy for Automation Support 

The main components of our strategy are developing languages and methods based on 
formal models of selected aspects of the problem. In each case we sought the simplest 
models adequate for achieving our purposes, and based the languages and methods on 
these models. We started with the simplest possible models and refined them only as 
needed, based on experimental application of the models to assess their adequacy. Our 
guiding principle was to avoid model features unless we has a convincing practical scenario 
that required those features. Consequently we were always searching for simplifications 
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and reformulated models whenever we found a way to eliminate a model concept. This 
was done because wo wanted the resulting methods and tools to he easy to use and learn. 
We expected simpler models to speed up the processes of analysis and design by reducing 
the number of mandatory choices. This is particularly appropriate in the context of 
prototyping, where it is important to get the major decisions correct rapidly, without 
spending effort on fine-tuning. Our experience has confirmed this hypothesis. We have 
also found that removing concepts from the models and the attention of tin; designer 
can introduce stringent requirements for design automation capabilities. Removed design 
attributes must be derived automatically, accurately, and in a way that provides good 
designs. 

The first area to be modeled was the behavior of real-time systems, because the pro- 
totyping approach requires the ability to demonstrate proposed system behavior. The 
simplest formulation we could find was a refinement of data flow models that incorporates 
declarative control and timing constraints. The prototype system description language 
PSDL [25] was developed based on this model. The model ivas extended to include dis- 
tributed computation [30] and a formal semantics Of the language was developed [22]. 
The model and language have been found to be adequate for representing a variety of 
complex systems, including a generic C3I station [29] and a wireless acoustic monitor for 
preventing sudden infant death syndrome [36]. 

Real-time scheduling and software integration are other key issues for rapid realization 
of complex systems. We developed related models in these two areas, based on the model 
of system behavior. 

Real-time scheduling depends on models of the timing requirements and on models of 
the capabilities of the target hardware. The behavioral model underlying PSDL contains 
a model of real-time requirements, which we extracted for this purpose [26]. This model 
was used to develop our initial scheduling methods, and it proved adequate. The initial 
hardware model was empty, which was adequate for scheduling with respect to .fixed, 
single processor architectures. We realized that scheduling depended on hardware models 
when we started addressing scheduling methods for more general hardware configurations. 
We developed a series of more sophisticated hardware models [30], and found that these 
together with the original model of real-time requirements were adequate for supporting 
scheduling methods for multi-processor and distributed target hardware configurations [7, 
32]. Ongoing work is exploring models and methods that can schedule larger distributed 
real-time computations within practical resource limits. 

Software integration is the process of ensuring that all the parts of a software system 
work together to achieve their intended purpose. Software integration depends on models 
of interactions between subsystems and control constraints, including those derived from 
timing requirements and the schedules used to realize them. We addressed software inte- 
gration by developing software architectures and methods for architecture-based program 
generation. Automated program generation is necessary in our context because we had 
to support rapid, low cost change, and small changes to timing requirements can affect 
large portions of the code. 

The software architecture for prototypes embodies a general structure for realizing 
interactions and real-time schedules for systems that have a mix of time-critical and 
non time-critical computations. The structure used to automatically realize connections 
between subsystems was derived from the system interaction part of the behavioral model 
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underlying PSDL. The structure that realizes the schedules uses a high-priority thread 
for computations with hard deadlines and a low-priority thread for computations without 
deadlines. 

The software architecture was implicitly defined by a program generator driven by 
a description of desired system behavior expressed in PSDL and a real-time schedule 
constructed by a scheduling algorithm. This program generator was itself generated using 
an attribute grammar processor. This approach works but is not particularly elegant or 
easy to adapt to other problems. 

Our initial capability for generating executable prototypes from simple and quickly 
constructible models of the problem domain enabled experimental validation of the con- 
jecture that prototyping and demonstrations of systems behavior were valuable aids to 
requirements determination. The initial experiments supported the validity of this con- 
jecture, which motivated us to put more effort into software reuse and evolution. 

Software reuse is a critical part of prototyping for real-time systems because efficiency 
is of the essence in the time-critical parts of these systems. The highest levels of efficiency 
can only be achieved by intensive engineering and refinement of sophisticated algorithms 
and data structures, which usually takes large amounts of time and effort, and produces 
designs that depend on intricate chains of reasoning. The easiest way to take advantage 
of such components in a process that must be cheap and rapid is to use a previously 
constructed library of standard and well-optimized components. Thus we explored formal 

. models of how such libraries could be organized and searched to quickly find the most. 
appropriate components for each particular context (24]. Search methods must trade 
off precision (retrieving only relevant components) against recall (finding components 
if they are relevant). We have developed a software component search method that 
can simultaneously achieve high levels of precision and recall, based on algebraic queries 
representing symbolic test cases. 

Software evolution is a critical aspect of prototyping [27]. In the early stages of 
requirements formulation the purposes of the proposed system are highly uncertain and 
major changes are expected. Planning, version control, team coordination, and project 
management are key issues in this context. Another important issue is how to repeatedly 
and rapidly change a design without having it degenerate into an unstructured maze that 
cannot be quickly understood and modified. The next section summarizes our progress 
on software evolution. 

3    Software Evolution 
Our initial step towards formalizing software evolution in the large was a graph model of 
the evolution history [28]. This work led to the insights that the essence of project history 
lies in dependencies among versions of project documents and the activities that produce 
them, that the formal structures of project history and project plans are essentially the 
same, and that integrated modeling and support for software configuration management 
and project management enables higher automation levels for both [1]. More recent work 
suggested that hypergraphs may be useful [33], and that integration with personnel models 
and rationale models enables decision support for the problematic early stages of critique 
analysis and change planning [8]. 
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To achieve simplicity, vvc seek to model the products and processes involved in sod ware 
evolution «sing a minimal sot. of general object, types,-and introduce specialized subclasses 
only when necessary for accurate modeling. The current version of the model has onlv 
thrcc main types: component, step, and person. 

The type component, represents any kind of vcrsioncd software-related object, includ- 
ing critiques, issues, requirements, designs, programs, manuals, test cases, plans, etc. 
These arc the information products produced by software evolution processes. 

The type step represents instances of any kind of scheduled software evolution activity, 
such as analysis, design, implementation, testing, inspection, demonstration, etc. Steps 
are activities that are usually carried out by people, and may be partially or completely 
automated. When viewed in the context of evolution history, steps represent dependencies 
among components. Steps that are not yet completed represent plans. Steps are a subclass 
of component because they can have versions, to provide a record of how the project, plans 
evolved. 

The type person represents the people involved in the software evolution activity, 
including the stakeholders of the software system, software analysts, designers, project 
managers, testers, software librarians, system administrators, etc. We need to represent' 
the people involved to be able to trace requirements back to the original raw data, and 
to link it to the roles the authors of critiques play in the organizational structure. This 
is a part of the rationale of the system that helps to identify viewpoints and analyze 
tradeoffs between conflicting requirements. The people in the development team must 
be modeled because of concerns related to project scheduling and authorization to access 
project information. Person is also a subclass of component, and therefore vcrsioncd, to 
provide a record of how the roles and qualifications of the people involved in the project 
change with time. 

We have recently developed an improved model of system evolution that better ac- 
counts for hierarchical structures of components and steps. The associated refinement 
concept is useful for helping developers and planners to cope with the complexity of large 
projects. This model is summarized as follows. 

An evolution record is a labeled acyclic directed hypergraph {.V, E,I,0,C,S] where 

.1. N is a set of nodes, representing unique identifiers for components, 

2. £ is a set of'*edges, representing unique identifiers for steps. 

3. I : E -+ 2N is a function giving the set of inputs of each edge, . 

4. O : E -> 2^ is a function giving the set of outputs of each edge, such that 
0(e) n O(e') ^ 0 implies e = e\ 

5. C : N -» component is a function giving the component associated with each 
node, and 

6. S : E -* step is a function giving the step associated with each edge. 

The hypergraph must be acyclic because its edges represent input/output dependen- 
cies for the processes that create components. These dependencies induce precedence 
constraints for the project schedule, because an activity cannot start until all of its input 
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components are available. The restriction on the outputs says thai, each component is 
produced by a unique step. This establishes clear lines of responsibility and produces » 
record of authorship when each step completes. 

Let H denote the set of evolution records. 
A hierarchical evolution record is an acyclic directed graph [n.r] with label maps 

h,r and decomposition maps dn,dc where 

1. n is a set of nodes representing unique identifiers for evolution records. 

2. e is a set, of edges representing unique identifiers for evolution record refinements, 

3. h : n -» H is a function giving the evolution record associated with each node, 
such that (ni,n2) e e implies A(n,) is a subhypergraph of h{n2). This means that. 
h(ni).N C h(n2).N, h{n,).E C li(n2).E, li(ni).I C /i(n2)./, /i(n,).0 C h(n2).0, 
fc(ni).C C h(n2).C, and A(n,).S C A(n2).S. 

4. »•: e • ► step is a function giving the step that is refined by each edge, 

5. dn : N -* 2N is a function giving the set of subcomponent nodes of each com- 
ponent node appearing in the evolution record hfa) for any node n; 6 n, where 

6. de : E -» 2E is a function giving the set of substep edges of each step edge aj>- 
pearing in the evolution record /i(?ii) for any node nL 6 n, where E = Un,€« '*(»i)-^- 

7. The graph has a single root (a node with no incoming edges) and a single leaf (a 
node with no outgoing edges). 

8. Any two paths p{ and P2 from the root node with the same step label set {r(c)|c € 
p{} — {r(e)|e e p2} end in the same node. 

9. If (nun2) € e, then there is an £, 6 /i(n,).J5 with S{Ei) = r(e), 0 # dE(Ey) C 
A(n2).E, and for each E2 € dc(^i). ^(^2) C Uwl6/(E,)rfn(Ari) -S /i("2).Ar and 

Each node of a hierarchical evolution record represents a view of the evolution history. 
The root node is the most abstract view, containing only the top level steps and the top 
level components those steps produce. The leaf node is the most detailed view, which 
contains the top level steps and components together with all direct and indirect substeps 
and subcomponents. 

A step is refined by adding all of its substeps to the evolution record, along with the 
input and output components of the substeps. The last condition in the definition says 
that the step associated with the link between two views must be decomposed into at 
least one substep in the detailed view, that the inputs and outputs of the substeps must 
be subcomponents of the inputs and outputs of the superstep, and that the input and 
output components of the substeps must appear in the detailed view. 

The hierarchical evolution record has a large number of nodes, which are not intended 
to be stored explicitly in an implementation. The model is intended as a framework 
for navigation through the possible views of the evolution record at different levels of 
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abstraction. Practical implementations will materialize only those view nodus thai are 
visited. 

This model can be used to automatically schedule steps, automatically locate and 
deliver the proper versions of the input components to the developer assigned to carry 
out the step, and to automatically check in the new components produced when the step 
is completed. It can also be used to generate default plans, to maintain the consistency 
of plans, and to help managers and developers navigate through the plan and document 
structures of an evolutionary prototyping or development effort. 

4    Example 

Figure 1 shows an example of a top level evolution record. In this example, the first 
version of the requirement (Pi) is used to derive the first version of the prototype (Pi), 
which is demonstrated to system stakeholders and elicits the criticism (Cl). When a 
step to derive the second version of the requirement (P2) from the criticism is proposed, 
the system automatically proposes a step to create the second version of the prototype 
(P2), because the prototype depends on the requirement and the requirement will be 
updated. The proposed steps will be scheduled automatically when they are approved by 
the project management. 

Figure 1: Top Level Evolution Record 

Figure 2 shows the refinement of step SI of the top level evolution record shown in 
Figure 1. Both 51 and its substeps 51.1 and 51.2 are present in the refined evolution 
record. The top level steps are shown with thicker lines. The component Rl is decom- 
posed into the subcomponents Pal and Ä61 because these components are inputs to the 
substeps, and PI is decomposed into Pel and Pdl because these are the outputs of the 
substeps. 

Figure 3 shows a further refinement of the evolution record shown in Figure 2 that 
expands all of the top-level steps. We have left out the top level steps to avoid cluttering 
the diagram. Note that the subrequirement Rbl is shared by both versions of the require- 
ment R, because it is not affected by the elicited criticism, and that the subsystem Pdl 
of the prototype that depends only on this subrequirement is also shared by both versions 
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Figure 2: Refinement of Step SI 

of the prototype P. Our goal is to provide tools based on this model that will make« it 
easier to discover and manage large scale structures of this variety. 

The decomposition mappings for the subcomponents arc denoted by geometrical con- 
tainment in the figures. The decomposition relations for the steps are indicated only via 
the structure of the step names. Note that the graphical display would get crowded if the 
decomposition relations were explicitly displayed as hyper-edges, even for this very small 
example. In realistic situations, there can be many more nodes in the evolution records. 
We are currently exploring automatic mechanisms for determining and displaying small 
neighborhoods of these structures that are relevant to particular planning and analysis 
tasks arid are small enough to be understood. Some initial results along these lines can 
be found in [23]. 

5    Conclusions 

Our previous research has explored formal models of the chronological evolution history 
[28]. This model has been applied to automate configuration management and a variety 
of project management functions [1]. The ideas presented in this paper provide a basis for 
improving these capabilities, particularly in the area of computer aid for understanding 
the record of the evolution of the system to extract useful information from it. Some 
recent work on improving the project scheduling algorithms based on these models has 
enabled scheduling 100,000 tasks in less than a minute [14]. These results suggest that 
the project scheduling support will scale up to projects of formidable size. 

We are currently working on models and notations that support explicit definitions of 
software architectures for solving given classes of problems independently from the rules 
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Figure 3: Further Refined Evolution Record 

that determine a particular instance of the architecture for solving a given instance of the 
class of problems. This should make it easier for software architectures and associated 
program generation capabilities to evolve. 

Architecture evolution provides a practical path for quickly obtaining automation ca- 
pabilities for new problem domains, and to gradually improve those capabilities by adding 
solution techniques that expand the problem domain and Incorporating optimizations for 
specialized subproblems that improve performance. 

Formalizing these aspects of software architectures and developing the corresponding 
engineering automation methods will eventually enable us to certify that all programs 
possibly generated from a mature architecture are free from given classes of faults or that 
they work correctly for all possible inputs. These steps will bring us closer to the point 
where product-quality software can be economically produced using the same engineering 
automation technology that enables evolutionary prototyping and helps analysts home 
in on good requirements models. Our vision is to eliminate the current conflict between 
rapid development and high software quality. 

Our ultimate research goal is to create conceptual models and software tools that allow 
automatic generation of variations on a software system with human consideration of onlv 
the highest-level decisions that must change between one version and the next. Realization 
of this goal will lead to more flexible software systems and should make prototyping and 
exploratory design more effective. 

RTSE'97, p. 191 



References 

[1] S. Badr, Luqi, Automation Support, for Concurrent. Software Engineering, fror, 
of the 6th International Conference Software Engineering and Knowledge Engi- 
neering, .lurniala, Latvia, Juno 20-23, 1994, 46-53. 

f   [2] F. Bauer ct al.. The Munich Project CIP. Volume II: The Program Change. System 
CIP-S, Lecture Notes in Computer Science 292, Springer 1987. 

[3] V. Berzins, On Merging Software Enhancements Ada Informatiea, Vol. 23 No. 
6, Nov 1986, pp. 607-619. 

[4] V. Berzins, Lnqi, An Introduction to the Specification Language Spec, IEEE 
Software, Vol. 7 No. 2, Mar 1990, pp. 74-84. 

[5] V. Berzins, Luqi, Software Engineering with Abstractions: An Integrated Ap- 
proach to Software Development using Ada, Addison-Wcsley Publishing Com- 
pany, 1991, ISBN 0-201-08004-4. 

[6] V. Berzins, Software Merge: Models and Methods, Journal of Systems Integra- 
tion, Vol. 1, No. 2, pp. 121-141 Aug 1991. 

[7] V. Berzins, Luqi, M. Siting, Rcal-Time Scheduling for a Prototyping Language, 
Journal of Systems Integration, Vol. 6, No. 1-2, pp. 41-72, 1996. 

[8] V. Berzins, O. Ibrahini, Luqi, A Requirements Evolution Model for Computer 
Aided Prototyping Proceedings of the. 9th International Conference on Software. 
Engineering and Knowledge Engineering, Madrid, Spain, June 17-20, 1997, pp. 
38-47. 

[9] D Datnpier, Luqi, V. Berzins, Automated Merging of Software Prototypes. Jour- 
nal of Systems Integration, Vol. 4, No. 1, February, 1994, pp. 33-49. 

[10] V. Berzins, Software Merge: Semantics of Combining Changes to Programs. ACM 
TOPLAS, Vol. 16, No. 6, Nov. 1994, 1875-1903. 

[11] V. Berzins, Software Merging and Slicing, IEEE Computer Society Press Tutorial, 
1995, ISBN 0-8186-6792-3. 

[12] V. Berzins, D. Dampier, Software Merge: Combining Changes to Decompositions. 
Journal of Systems Integration, special issue on CAPS (Vol. 6, No. 1-2, March 
1996), pp. 135-150. 

[13] M. Dowson, The ARIANE 5 Software Failure, ACM Software Engineering Notes, 
Vol. 22 No. 2, March 1997, p. 84. 

[14] J. Evans, Software Project Scheduling Tool, MS Thesis, Computer Science: Naval 
Postgraduate School, Sep. 1997. 

[15] M. Feather, A System for Assisting Program Change. A CM Transactions on 
Programming Languages and Systems, Vol. 4 No. 1. Jan 1982, pp. 1-20. 

RTSE'97, p.192 



[IC] M. Feather, A Survey and Classification of some .Program Change A|>pr<inches 
and Teclini(|iies, in Program. Specification and Change (Proceedings of Ike I PIP 
TC2/WG 2.1 Working Conference.), L.G.L.T. Meertens. Ed.. North-Holland.' 
1987, pp. 165-195. 

[17] M. Feather, Constructing Specifications by Combining Parallel Elaborations, 
IEEE Transactions on Software Engineering, Vol. 15 No. 2, Feb 1989, pp. 198 
208. 

[18] S. Fickas, Automating the Transformational Development of Software, IEEE 
Transactions on Software Engineering, Vol. 11 No. 11, Nov 1985, pp. '1-268 1277. 

[19] W. Gibbs, Software's Chronic Crisis, Scientific American, SEP 1994, pp. 86 94. 

[20] W. Johnson, M Feather, Building an Evolution Change Library, 12lh Interna- 
tional Conference on Software Engineering, 1990, pp. 238-24S. 

[21] E. Kant, On the Efficient Synthesis of Efficient Programs, Artificial Intelligence, 
Vol. 20 No. 3, May 1983, pp. 253-36. Also appears in [35], pp. 157-183. 

[22] B. Kraemer, Luqi, V. Bcrzins, Compositional Semantics of a Real-Time Proto- 
typing Language IEEE Transactions on Software Engineering, Vol. 19, No. 5, pp. 
453-477, May 1993. 

[23] D. Lange, Hypermedia Analysis and Navigation of Domains, MS Thesis, Com- 
puter Science, Naval Postgraduate School, Sep. 1997. 

[24] Luqi, M. Ketabchi, A Computer Aided Prototyping System, IEEE Software, Vol. 
5 No. 2, Mar 1988, pp. 66-72. 

[25] Luqi, V. Bcrzins, It. Ych, A Prototyping Language for Real-Time Software, IEEE 
Transactions on Software Engineering, Vol. 14 No. 10, Oct. 1988, pp, 1409-1423. 

[26] Luqi, Handling Timing Constraints in Rapid Prototyping Proceedings of the 22nd 
Annual Hawaii International Conference on System Sciences, IEEE Computer 
Society, Jan. 1989, pp. 417-424. 

[27] Luqi, Software Evolution via Rapid Prototyping, IEEE Computer, Vol. 22, No. 
5, May 1989, pp. 13-25. 

[28] Luqi, A Graph Model for Software Evolution, IEEE Transactions on Software 
Engineering, Vol. 16, No. 8, pp. 917-927, Aug. 1990. 

[29] Luqi, Computer-Aided Prototyping for a Command-and-Control System Using 
CAPS, IEEE Software, Vol. 9, No. 1, pp. 56-67, Jan. 1992. 

[30] Luqi, Real-Time Constraints in a Rapid Prototyping Language, Journal of Com- 
puter Languages, Vol. 18, No. 2, pp. 77-103, Spring 1993. 

[31] Luqi, Specifications in Software Prototyping, Proc. SEKE 96, Lake Tahoe. NY", 
June 10-12, 1996, pp. 189-197. 

RTSE'97, p.193 



[32] Lii(|i, Scheduling Real-Time Software Prototypes, Pror.adings of Ihr 2nd Inter- 
national Symjioiiium on Operations Research and Us Applications, Guilin, China. 
December 11-13, 1996, pp. 614-623. 

[33] Lnqi, .J. Goguen, Formal Methods: Promises and Problems. IEEE Software. Vol. 
14, Nro. 1, .Jan. 1997, pp. 73-85. 

[34] R. Lutz, Analyzing Software Requirements: Errors in Safely-Critical Embedded 
Systems, TR 92-27, Iowa State University, AUG 1992. 

[35] C. Rich, R. Waters, Eds., Readings in Artificial Intelligence and Software Engi- 
neering, Morgan Kaufmann, 1986. 

[36] D. Rusin, Lnqi, M. Scanion, S1DS Wireless Acoustic Monitor (SWAM), Proc. 
21st Int. Conf. on Lung, Sounds, Chester, England, International Lung Sounds 
Association, Sep. 4-6, 1996. 

[37] D. Smith, G. Kotik, S. Westfold, Research on Knowledge-Based Software Envi- 
ronments at Kestrel Institute, IEEE Transactions on Software Engineering, Vol. 
11 No. 11, Nov 1985, pp. 1278-1295. 

[38] Chaos, Technical Report, The Standish Group, Dennis, MA, 1995, 
http://vvww.standishgroup.com/chaos.html. 

[39] W. Swartont, R. Bal/cr, On the Inevitable intertwining of Specification and im- 
plementation, Communication of the ACM, Vol. 25 No. 7, July 1982, pp. 438 440. 
Also appears in Software Specification techniques. N. Gehani, A.D. McGcttrick, 
Eds., 1986, pp. 41-45. 

RTSE'97, p.194 



Deductive-Algorithmic Verification of 
Reactive Systems (Extended Abstract) * 

Zohar Manna, 
Nikolaj S. Bj0rner, Anca Browne, Michael Colon, Bernd Finkbeiner, 

Mark Pichora, Henny B. Sipma, and Tomas E. Uribe 

Computer Science Department, 
Stanford University 

Stanford, CA. 94305-9045 
mannaQcs.stanford.edu 

1    Introduction 
Reactive systems have an ongoing interaction with their environment. Many systems can be 
seen as reactive systems, including computer hardware, concurrent programs, network proto- 
cols, and embedded systems. Temporal logic [Pnu77] is a convenient language for expressing 
properties of reactive systems. A temporal verification methodology provides procedures for 
proving that a given reactive system satisfies its temporal specification [MP95]. 

The two main approaches to the verification of temporal properties of reactive systems 
are deductive verification (theorem-proving) and algorithmic verification (model checking). 
In deductive verification, the validity of a temporal property over a given system is reduced 
to the general validity of first-order verification conditions. In algorithmic verification, a 
temporal property is established by an exhaustive search of the system's state space, looking 
for a counterexample computation. 

Model checking procedures are usually automatic, while deductive verification often relies 
on user interaction to identify suitable lemmas and auxiliary assertions. However, model 
checking is usually applicable only to systems with a finite, fixed number of states, while the 
deductive approach can verify infinite-state systems and parameterized systems, where an 
unbounded number of similar components are composed. 

"This research was supported in part by the National Science Foundation under grant CCR-95-27927, the 
Defense Advanced Research Projects Agency under NASA grant NAG2-892, ARO under grant DAAH04-95- 
1-0317, ARO under MURI grant DAAH04-96-1-0341, and by Army contract DABT63-96-C-0096 (DARPA). 
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Figure 1: An outline of the STeP system 

2    The STeP System 
The Stanford Temporal Prover (STeP) supports the computer-aided formal verification of 
reactive, real time and hybrid systems based on their temporal specifications, expressed in 
linear-time temporal logic (LTL). STeP integrates model checking and deductive methods to 
allow the verification of a broad class of systems, including parameterized (AT-component) 
circuit designs, parameterized (JV-process) programs, and programs with infinite data do- 
mains. 

Figure 1 presents an outline of the STeP system. The main inputs are a reactive system 
(which can be a hardware or software description, with real-time and hybrid components) and 
a property to be proven about the system, expressed as a temporal logic formula. Verification 
can be performed by model checking or deductive means, or a combination of the two. 

The deductive methods of STeP verify temporal properties of systems by means of ver- 
ification rules and verification diagrams. Verification rules are used to reduce temporal 
properties of systems to first-order verification conditions [MP95].   Verification diagrams 
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[MP94] provide a visual language for guiding, organizing, and displaying proofs, automati- 
cally generating the appropriate verification conditions as well. 

On the algorithmic side, STeP features automatic explicit-state and BDD-based sym- 
bolic model checking for LTL. While the symbolic model checker is limited to finite-state 
systems, the explicit-state model checker can sometimes handle infinite-state ones, but is not 
guaranteed to terminate. ,■'.-.-' 

STeP also includes deductive model checking [SUM98], for the interactive model checking 
of infinite-state systems. Deductive model checking proceeds by transforming a diagram 
that abstracts the product of the system's state-space and the tableau (automaton) for the 
temporal property being verified. 

STeP implements techniques for the automatic generation of invariants (and intermediate 
assertions) [BBM97]. STeP also provides an integrated suite of simplification and decision 
procedures for automatically checking the validity of a large class of first-order formulas (see 
Section 3.1). 

Verification diagrams can be used to organize proofs that require user guidance. In all 
cases, the automatic prover is responsible for generating and proving the required verification 
conditions. An interactive Gentzen-style theorem prover is available to establish verification 
conditions that are not proved automatically. Tactics are available to automate parts of the 
high-level proof search by encoding long or repetitive sequences of proof commands. 

Figure 2 describes the scope of STeP. Note that deductive methods allow the verification 
of real-time and hybrid systems whose discrete component is infinite-state (e.g. described by 
software, rather than a finite automaton). They are described by clocked transition systems 
(UTS) and phase transition systems (PTS), which generalize fair transition systems (see 
Section 3.2). 

3    Recent Developments 

■3.1    Decision Procedures 

The verification conditions generated in deductive verification refer to particular theories, 
reflecting the domain of computation of the system being verified. Rather than treat them 
as uninterpreted first-order formulas, decision procedures for the specific theories of interest 
can greatly increase the power, efficiency and ease of use of deductive verification systems. 

STeP includes decision procedures for a number of theories common in formal verifica- 
tion: linear arithmetic, datatypes and finite domains occur in most systems to be verified; 
rationals and reals appear in the analysis of real-time and hybrid systems. As in most other 
verification tools with support for ground theory reasoning (e.g. [BDL96, ORR+96]), we 
have found congruence closure [NO80] to be an essential component of the decision proce- 
dures. Shostak's combination of decision procedures closure [Sho84, CLS96] improves the 
basic equality reasoning of congruence closure by efficiently integrating solvable theories such 
as inductive datatypes and linear arithmetic. 

Decision procedures for bit-vectors [BP98] are particularly useful in the hardware domain 
These are now part of STeP, together with a Verilog hardware description front-end. 
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Quantifiers appear in the axiomatization of theories for which there is no specialized 
support. They are also present in verification conditions when verifying parameterized and 
(infinite-state) software, real-time and hybrid systems. Thus, the ground-level reasoning 
provided by most efficient decision procedures is no longer sufficient. To address this problem, 
STeP now includes methods for combining first-order reasoning and decision procedures 
[BSU97], in the form of a validity checker that performs partial quantifier instantiation 
based on rigid unification procedures. 

3.2    Real-Time and Hybrid Systems 

STeP supports the verification of safety properties of real-time and hybrid systems, based on 
the computational model of clocked and phase transition systems [MP96]. Systems described 
by timed transition systems, timed automata or hybrid automata can be readily translated 
into these formalisms. 

In clocked transition systems, the untimed linear-time temporal logic is extended with 
a global clock measuring the overall progress of time.   The transition system consists of 
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Standard instantaneous transitions that can reset auxiliary clocks, and a transition that 
advances time, constrained by conditions on the global and auxiliary clocks. Phase transition 
systems contain other continuous variables, whose evolution is described by activities, usually 
in the form of differential equations. A progress condition limits the time that the system 
can stay in a particular discrete state. 

The transition system model is retained by modeling the advance of time as a discrete 
transition parameterized by the duration of the time-step, and constrained by the progress 
condition. This representation allows STeP to reuse existing verification rules for untimed 
temporal logic. STeP has been applied to real-time benchmarks such as Fisher's mutual 
exclusion protocol and an iV-process railroad crossing gate controller [HL94], as reported 
in [BMSU97]. Verification of hybrid systems with STeP is described in [MS98], including 
invariant generation methods and test cases. 

3.3 Visual Verification 

The interface for the latest version of STeP (2.0) is developed in Java, to allow the imple- 
mentation of a wide class of visual verification formalisms. This includes deductive model 
checking [SUM98] and the generalized and hierarchical verification diagrams presented in 
[BMS95] and [BMS96]. These diagram-based verification formalisms share the following 
features [dAMSU97]: 

• Diagrams are formal proof objects, which succinctly represent a number of verification 
conditions that replaces a set of textual verification rules. 

• The verification conditions are local to the diagram; failed verification conditions point 
„.■:..  to missing edges or nodes, weak assertions, or possible bugs in the system. The neces- 

sary global properties of diagrams can be proved algorithmically. 

• The construction of a diagram can be incremental, starting from a high-level outline 
and then filling in details as necessary. The diagrams for a given program can serve 
as documentation. They can also be re-used for similar proofs over refined or similar 
programs. 

3.4 Modularity 

STeP includes facilities for compositional specification and verification [FMS98]. Systems 
are described by a set of modules, which may be composed synchronously or asynchronously. 
Each module has an interface that determines the observability of module variables and 
transitions. Modular properties can be established by the same methods as global properties, 
accounting for environment transitions. Property inheritance then allows such properties to 
be used as lemmas in proofs over composite modules. 

In [BMS96] we present hierarchical verification diagrams, which allow a proof by verifica- 
tion diagram to consist of multiple diagrams at different levels. In such diagrams, auxiliary 
temporal properties may be abstracted away and proved by lower-level diagrams. 
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To obtain STeP, send email to step-requestacs.stanford.edu. A new release, ver- 
sion 2.0, featuring most of the new interface and developments described above, will be 
made available by April 1998. A technical report describing the basic design of STeP is 
[MAB+94]. Recent test cases are reported in [BLM97] and [BMSU97], and a tutorial is 
presented in [BMSU98]. Information on the system can be also found on the web—see 
http://theory.stanford.edu/~zm. 
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Abstract 
We discuss the definition and modeling of reference architectures, and the notion of confor- 
mance. NSA's MISSI (Multilevel Information System Security Initiative) security reference 
architecture is used as an illustrative example. 
We demonstrate that an ADL should have not only the capability to specify interfaces, con- 
nections and operational constraints, but also to specify how it is related (or conforms)'with 
other architectures or to implementations. 
A reference architecture such as MISSI is defined in Rapide [10] as a set of hierarchical inter- 
face connection architectures [9]. Each Rapide interface connection architecture serves as a 
reference architecture - an abstract architecture that allows a number of different implemen- 
tations, but which enforces common structure and communication rules. The hierarchical ref- 
erence architecture defines the MISSI policies at different levels - at the level of enclaves 
communicating through a network, at the level of each enclave being a local area network 
with firewalls and workstations and at the level of the individual workstations. The reference 
architecture identifies standard components, communication patterns and policies common to 
MISSI compliant networks of computer systems. 

Key Words and Phrases: Software architectures, conformance, security, reference ar- 
chitecture, software engineering, specification, testing. 

1. Introduction 
Everybody knows what an architecture is - it is a set of components and connections between 
them. However, that is as far as agreement goes. What the proper methods of defining these 
entities are, what conformance means, what the distinctions are between an architecture, and 
architecture style and a reference architecture, these are issues that are unresolved (and pre- 
sumably unresolvable, as they are questions closely related to world-views, methods and con- 
sequently often come down to pseudo-religious beliefs). 

Architectures are used in different situations, and for distinct reasons. The most concrete 
use is in designing software systems, to make an initial sketch of it in terms of its module de- 
composition architecture in the top-down tradition of design, focusing on the high-level com- 
ponents and their means of interaction [24]. Architectures are also used to define references 
against which implementations can be checked for compliance. Such reference architectures 
define the functional components of the architecture and how the components may interact, 
but need not require that distinct components in the architecture necessarily be distinct also in 
the implementation. The use of reference architectures allows a separation of concerns in the 
system specification - distinct reference architectures address distinct aspects of the system 
(e.g., there might be one reference architecture stating fault-tolerance requirements, another 

t This project was funded by TRW under contract 23679HYL6M, DARPA under F30602-95-C-0277 
(subcontract C-Q0097), and by NFR under contract 100426/410. 
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(such as the MISSI reference) stating security requirements, another (such as the ISO OS] ref- 
erence stack) addressing communication protocols, etc.). 

The presence of a component or connection between components in a reference architec- 
ture may signify different requirements, depending on which aspect of the system the refer- 
ence addresses. E.g., does the lack of a connection between two modules indicate a prohibi- 
tion against their direct interaction (i.e., is the interaction graph as given by the architecture 
supposed to be complete)? Does a connection between two components indicate that they will 
communicate (i.e. a connection represents not only a potential for interaction, it is also a re- 
quirement that such an interaction shall occur)? And in all cases, what is the concept of inter- 
action anyway? Does an architecture imply what protocol an interaction shall adhere to? E.g. 
RPC vs. buffered pipes vs. passive, reactive systems vs. event broadcasting, etc. 

In the end, what distinguishes one kind of architecture from another is the conformance 
requirements imposed by the architecture. 

This article discusses how one can capture a security reference architecture in a manner 
amenable to analysis and automatic conformance checking. We shall start by pointing out in 
section 2 that the notion of abstraction changes when we move from prescriptive to descrip- 
tive specifications. This works well with the notion of conformance w.r.t. multiple perspec- 
tives (or reference architectures), which we touch upon in section 3. Then, after giving a brief 
overview of the Rapide ADL in section 4, we present in section 6 the process of architecting 
using the Rapide ADL, giving examples from the MISSI reference architecture. In section 7 
we go through all the top level requirements of the MISSI reference architecture one by one, 
showing how they are captured in the Rapide ADL. In section 8 we shall briefly look at how 
the reference architecture can be put to use for (semi-) automatic checking, visualization and 
analysis of implementation system conformance. 

2. Abstract activity 
Modern programming languages contain constructs for defining abstract objects. One of the 
consequences of "information hiding" is that an abstract object may accept many different 
implementations which are consistent with its abstract definition. Implementations may differ 
on the structures representing values, or the algorithms for the operations. 

Similarly, the activity of a program, or system, may also be defined abstractly. On the one 
hand there is the operational abstraction embodied in the procedure and function concepts of 
most languages. There is also an abstraction mechanism inherent in the definition of events 
and actors of interest in a concurrent system. By identifying the classes of actors and activity 
we want to consider in describing the behavior of a system we establish a granularity of ob- 
servation, ignoring details of implementation and the potentially composite nature of a single 
"event" or "actor." 

In moving from procedural (imperative and state oriented) abstraction to behavioral 
(observational and event oriented) abstraction, a problem arises. A refinement of a procedural 
abstraction is accomplished by defining the abstraction in terms of other, more detailed proce- 

dural elements. This works well, since a pro- 

High level 
(procedure invocation) 

Program start:     r 
Low level 

(procedure body) 

cedural abstraction is invoked - low level 
activities are initiated by a higher level, the 
program invocation itself being the most ab- 
stract (Figure 1). 

Furthermore, the identity of the invoker 
does not change as the program is refined, 
e.g. a high level procedure of a module and 

Fieure l- 'ts invocati°n are retained in the final, fully 
Mapping from abstract to concrete activity    detailed program. 
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Abstract events 9 

9 
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Concrete events 

Program start: 

"WA 

The analogous observation does not nec- 
essarily hold true for an event based model. 
A process or event at some level of abstrac- 
tion may not exist at a lower level. In speci- 
fying a lift system for instance, the concept 
of "lift" is natural, and a specification is 
readily given in terms of activities of such 
lifts. However, when implementing a lift 
system, there may be no distinct syntactical 
(or physical) entity corresponding to a par- 
ticular lift of the abstract architecture (a lift 
being much more than simply the box itself - 
multiple lifts may share motors, sensor sys- 
tems, etc.). The implementation of a lift may 
be in terms of motors, door sensors, arrays of 
buttons, etc., possibly shared among the ab- 
stract lifts. Events abstractly generated by a 

lift may be particular patterns of events at a level of increased detail. The abstract event of a 
lift moving from one floor to the next may correspond to the sequence of events "sense doors 
closed, signal controller, controller starts motor, sense reached next floor, signal controller, 
controller stops motor" in the implementation. 

The result is a Copernican revolution: The causal relationship is one of concrete events 
and actors giving rise to more abstract ones (Figure 2). 

Figure 2: 
Mapping from sets of concrete events to 

abstract events 

3. Multiple Perspectives on a system 

Hotel 

Public facilities 

Restaurants  ...  Guest lifts 

Service facilities 

Kitchen  ...  Service lifts 

Consider a description of a hotel. In describing such an entity one might want to partition it in 
a number of different ways. One way could be according to domains - there is a domain of 

publicly accessible facilities, another 
of behind-the-scenes service facili- 
ties, etc. (Figure 3). 

These domains may then be 
further subdivided, e.g. the public 
facilities one into restaurants, inter- 
nal transportation (public lifts), etc., 
and the service facilities into kit- 
chens, '• internal transportation 
(service lifts), etc., into the final, 

Figure 3: Conceptual decomposition solid structure which is the imple- 
mented hotel. 

In describing the functionality of the hotel, another decomposition may be more ap- 
propriate, for instance a partitioning of the hotel into domains of technical responsibility, e.g. 
electrical components, plumbing, etc. (Figure 4). This decomposition may also be refined 
through layers of less and less abstraction to the details of the finally implemented hotel. 

Thinking procedurally, one has to choose one or the other of these views, the choice be- 
ing determined primarily by expected ease of construction, i.e. by criteria not intrinsic to the 
system as perceived by the specifiers. 

Having chosen a particular abstract description, it may function well as a component 
breakdown for construction purposes if (J) the specification language is prescriptive and (2) 
the flow of control in the system is initiated by imperatives at the highest level of abstraction. 
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Hotel 

..--" 
*- 

**■***»' 

Electricity Plumbing 

Sensors          ...         Motors 

I.e. detailed activity occurs as a result 
of abstract activity being initiated, e.g. 
as in a procedure call (abstract) results 
in execution of the procedure body 
(detailed). 

However, there is not always a 
single decomposition which is pre- 
eminent for a particular system. Fur- 
thermore, descriptive, event oriented 

Figure 4: Functional decomposition concurrent languages appropriate for 
abstraction in concurrent systems do 

not satisfy the two criteria above, since an event at one abstraction level does not cause its 
component events at a more detailed level. 

Moving from concrete architectures (such as the hotel above) to software architectures 
the discontinuity between architectures levels arid between architectures and their implemen- 
tation as a running system may become even more problematic, in terms of what conformance 
entails. Soni et al. [25] distinguishes between four architectural perspectives on a given sys- 
tem: The conceptual architecture, the module interconnection architecture, the execution ar- 
chitecture and the code architecture, and the transition from one to another may result in dif- 
ferent identification of modules, connections etc., requiring a non-trivial definition of when 
(say) the module interconnection architecture conforms to a given conceptual architecture. 

We seem to be caught on the horns of a dilemma. On the one hand, we need to be able to 
describe system behavior under different, often competing, perspectives. On the other hand, 
an architecture may also be used to prescribe behavior, indicating in some detail how the 
system shall generate the behavior the descriptions require. 

4. An Architecture Definition Language 
In reading an architecture description, the question of what the description actually means 
needs to be resolved unambiguously in the readers* and designers' mind in order to evaluate 
and then implement a given architecture. Without a clear understanding of the semantics of a 
notation (be it graphical - boxes and arrows - or textual) one cannot be sure that whatever is 
extracted from it (be it implementation strategies, modeling results, etc.) is implied by the de- 
scription given, and understood by other readers of the architectural description. 

An interface connection architecture [9] is defined by identifying 
• Components: the primary elements of the architecture, and their means of interaction with 

other components. Components are considered black boxes constrained only by the defi- 
nitions of their interfaces. 

• Connections: the lines of interaction between components. 
• Conformance: identifying minimum requirements of how an implementation may satisfy 

the architecture. 
The Rapide model of architectures is event based - a basic notion being that architecture 

components are defined by the kinds of events they may generate or react to. An interface also 
identifies the semantics of a conforming component by giving event based constraints, speci- 
fying whether particular protocols are to be adhered to, identifying causal relationships be- 
tween events, etc. Such constraints form the basis for analysis and testing tools, such as run- 
time checking for conformance violations [6,17]. 

A successful ADL requires a high degree of flexibility in how an architecture can be re- 
fined. Naturally one wants to be able to refine interface definitions, making use of subtype 
substitutivity when extending an interface with new capabilities or by adding further con- 
straints. In addition to this basic capability, an ADL should enable the definition of hierar- 
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chies of architectures, where one architecture can be interpreted quite flexibly as an imple- 
mentation (or refinement) of another. The Rapide map construct gives the designer the tool to 
explicitly define how complex patterns of events in one architecture correspond to more ab- 
stract events of another, thereby enabling a powerful and checkable notion of conformance: 

The literature presents a number of distinct ways of distinguishing kinds of architectures 
(e.g., Soni et al. [25] makes a distinction between object and function decomposition archi- 
tectures, among others, Shaw and Garlan [24] identifies patterns of object decomposition ar- 
chitectures). We prefer the notion that "an architecture description conveys a set of views, 
each of which depicts the system by describing domain concerns." [5] The distinction be- 
tween different architectures descriptions then becomes one of a difference of conformance 
requirements. In moving from (say) ^module decomposition architecture to an implementa- 
tion, conformance would require disjoint sets of modules implementing distinct components 
of the architecture. In contrast, in checking whether a reference architecture is satisfied by a 
particular implementation one would make the weaker conformance requirement that there be 
a mapping of components and events at the implementation level to components and events of 
the reference architecture. 

This perspective on what an architecture is allows a clean separation of concerns. One can 
specify multiple architectures for any given implementation, each focusing on a particular as- 
pect of the system, each with an appropriate set of conformance requirements. For instance, 
when specifying a distributed object system it is reasonable to separate security concerns from 
fault tolerance concerns. Part of the security architecture for the system would state the con- 
formance requirement that information should flow only along connections defined in the ar- 
chitecture; the architecture identifies the maximal connectivity of an information flow graph. 
In contrast, part of the fault tolerance architecture for the system would be to state the con- 
formance requirement that information should be able to flow independently along all con- 
nections defined in the architecture, making no restrictions on the presence of extra connec- 
tions; the architecture identifies the minimal connectivity of an information flow graph. In 
claiming that a particular implementation satisfies both perspectives the implementor would 
explicitly give the two maps, from the implementation to each of the reference architectures, 
showing the conformance argument. 

The vocabulary of the Rapide ADL [10] incorporates and extends the basic vocabulary of 
interface connection architectures: 
Events: Representing that something happened. What that something is may vary from archi- 

tecture to architecture, and with varying degrees of abstraction. 
Causality: In Rapide one can specify whether particular (patterns of) events should be inde- 

pendent or causally related. This allows a very precise description of information flow. 
Patterns: Descriptions of how events may be related by causality, time or other relations. 

Patterns are described using an extension of regular expressions with placeholders to de- 
scribe partial orders of events. 

Constraints: Predicates, usually in the form of prescribed or proscribed patterns of behavior, 
indicating the intended functionality of a component. 

Maps: Relating architectures to one another (and specifically, implementations to one or more 
architectures), indicating how conformance is obtained. 
Rapide's object-oriented type- and module definition sublanguage provides features for 

code refinement and reuse (through inheritance and polymorphism) and specification refine- 
ment and reuse (through subtyping and polymorphism). 

The semantic model of Rapide emphasizes causal and temporal relationships between 
events of a system, and thus provides the capability to be quite specific about how compo- 
nents of an architecture may (or may not) interact. Causal relations can often identify whether 
assumptions about the degrees of independence among an architecture's components are war- 
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ranted or not. E.g., the focus on causal relationships allows the Rapide user to state in very 
general terms assumptions about the presence of covert channels, and to identify possible 
means of covert interaction in an architecture through the analysis of causal relationships dis- 
played by test executions. 

Furthermore, it allows tools to investigate the causal relations between events, distin- 
guishing between temporal relationships that are causally significant and those that are not. 

The Rapide pattern and constraint languages supports the definition of operationaJ policies 
and specific protocols, which can take into account causal- as well as rime-relationships be- 
tween events. 

The Rapide map construct supports explicit statements of conformance - the implementor 
of an architecture can state exactly how the implementation conforms: it defines which (sets 
of) components of the implementation play the role of particular components of the architec- 
ture, how patterns of events in the implementation correspond to more abstract events used in 
the architecture, etc. Since maps are given explicitly, they allow tools to check for confor- 
mance automatically, adding an extra degree of confidence that any conformance violations 
will be caught, offering a valuable supplement (or alternative) to formal reasoning. 

The map construct is also a valuable tool whenever an architecture is given a hierarchical 
structure. E.g., if one level of structure is defined in terms of federations of enclaves con- 
nected via wide area networks, and another level as network-connected workstations, certifi- 
cate servers, etc., then maps are the means whereby the distinct levels can be related in the 
architecture definition. For instance, through the definition of appropriate maps the designer 
can identify how the set of networks, workstations and servers aggregate into enclaves and 
WANs. 

5. Secure architectures 
There are a number of perspectives one may apply when discussing the security aspects of a 
software architecture. In particular, in this document we shall address two aspects of the 
MISSI reference architecture: 

Structures: That the secure architecture has a certain structure [24], requiring the existence of 
certain components (such as "certificate authorities," or "enclaves" [7]). The structures 
may be defined at different levels of abstraction, with different conformance require- 
ments. We shall deal with 
1. a global level, focusing on the main components and the overall constraints on their 

interaction. At this level general policies about information flow and the like may be 
stated, without regard to how these policy constraints are ensured by particular pro- 
tocols, functional units, etc. 

2. a concept of operations (f'conops") level, focusing on the functional decomposition 
of the architecture, identifying the events of interest, the main functional components 
and their potential for interaction. 

3. an execution level, describing the dynamic, modular decomposition structure of the 
system. 

The architectures at each of these levels are related to one another and impose different 
conformance requirements on the implementation. Both the relationships and the confor- 
mance requirements must be defined. 

Information flow integrity: That certain policies and procedures regarding the authorization 
and acceptability of information are adhered to as it is being generated and propagated. 
Such policies may be in terms of any of the three levels listed above and could also in- 
volve references to cryptographic and encoding requirements, as well. 
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6. The Architecting Process 
The MISSI reference architecture is defined in a series of prose documents, some with first 
order predicate logic definitions of MISSI policies. In this exposition we shall stay with the 
overview document, given in full in [7]. The overview is an executive summary of the refer- 
ence architecture, but contains enough detail to evaluate the utility of Rapide to specify the 
architecture. 

We find the process of constraints capture in itself very useful. This process can be quite 
enlightening - interpreting the prose and giving it an unambiguous meaning often identifies 
potential contradictions or holes in the original definitions of the reference architecture. Even 
in the case where the final reference document is given in prose, we find that the exercise of 
formalizing the prose as it is being developed may help the development team, by enhancing 
their understanding of the interplay of their own statements. 

Reference documents are also subject to mishaps, resulting from typographical mistakes 
through incomplete version-control to out-right conceptual misunderstandings. The sheer size 
of most such documents make them hard to check for consistency and correctness unless such 
checks are assisted by (semi-)automatic tools. Consequently, the presence of supporting tools 
should be almost mandatory in the definitions of standards. Tools require the existence of 
(parts of) the standard in a machine-manipulatable form, i.e., in the form of a formalized set of 
definitions. 

6.1 Prose and Constraints Capture 

The process leading up to a formal capture of an architecture has three main steps: (1) identi- 
fying the components, (2) identifying how they are connected, and (3) identifying how the 
connections are used. The three steps are accompanied by a fourth, stating the conformance 
requirements, when relating the architecture to an implementation (or model, or a more de- 
tailed version). We'll go through the process of capturing the MISSI reference overview, 
giving examples of each of these steps. 

Capturing the interface connection architectures defined in the MISSI specification, we 
first identify the levels of the reference architecture. In this article we shall deal with two lev- 
els, the global and the concept of operations levels (see section 5 above). 

For each level we proceed to identify and define the components of the level by defining 
their interfaces (sections 6.2,6.5.1), and then going on to define the connections among them 
(sections 6.3,6.5.3) and how they are used (sections 6.4,6.5.3) 

As appropriate, we then go on to define how the components and activities of one level 
conform to those of another. 

6.2 What are the components? 
For each kind of component (such as an enclave at the global level) we define a Rapide type, 
whose interface is developed as the architecture is being refined. Part of this definition may 
identify how one type is a refinement or subtype of another [15]. Of course the interface defi- 
nitions themselves rely on other types (such as security classifications and security tokens) 
already having been defined. 

A very first approximation of an enclave type is given in Figure 5. 
It identifies two key characteristics of an enclave: 

1. The provides declaration of s.class makes it possible to refer to the security attributes 
(here exemplified by it having a security classification) of every enclave. 

2. The service declaration of wan.conn states that every enclave interface contains a Flow 
entity which (as we shall see) defines the minimum communication capabilities of en- 
claves. 
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type Enclave is interface 
provides 

s_class        : SecurityClassification; 
service 

wan.conn   : Flow; 
end Enclave; 

ENCLAVE 

s_class 

wan conn I Flow 

Figure 5: A definition of an enclave type 

Architecture component interfaces can be highly structured. It may be helpful to think in 
terms of plugs and sockets [9]: a component's interface offers a set of distinguishable means 
of connecting it to its environment, similarly to what one expects in the hardware world. Such 
a means of connecting come in dual forms (as in plugs and sockets being duals in hardware), 
and may have further substructures (as in a single plug carrying pins/sockets for a number of 
wires). 

It is natural to depict the Flow service type graphically (Figure 6), similarly to how we 
depict the Enclave interface definition in Figure 5. We can see that the wan.conn attribute 
has a structure; the declaration of its type, Flow, shows that wan_conn consists of two action 
declarations. An out action declaration indicates that the component may generate events 
which its environment may observe, an in action declaration indicates that the component may 
react to events generated by the environment. The wan.conn declaration is therefore in fact a 
bi-directional communication interface offering both a means of sending messages to the en- 

type Flow is interface 
action 

out   Release (data : Data; destination : Address); 
in     Accept (data : Data; destination : Address);       r^r~-^-~--»~—T^T--- -n 

end Flow; M^Ptq^«*Pf  ■ 
release       T| release   | 

type DualFlow is interface PSa^^^ätfffSk 
action 

in     Release (data : Data; destination : Address); 
out  Accept (data : Data; destination : Address); 

end Flow; 

Figure 6: Plugs and sockets 

vironment (intended to be a WAN) as well as of accepting such messages from the environ- 
ment. 

In Rapide, such structured communication interfaces are called services. The dual of the 
wan.conn service will be part of the interface of the wide area network component of the ar- 
chitecture, and is naturally depicted as the inverse of the Flow type (i.e., it forms a plug to the 
Flows socket). Where the type Flow has an out action there will be a corresponding in action 
of the dual, and vice versa. One need not declare dual types explicitly, but can instead use the 
keyword dual. We have given the dual of Flow explicitly in Figure 6. 

Though plausible as a first approximation in the global view of a distributed system, we 
may want to add some instrumentation points to the definition of an enclave. Consequently, in 
Figure 7 we create a subtype of the Enclave type. Some of the other actions and functions will 
be used later. For each, the comment succeeding the declaration identifies where it is used.) 
We introduce a new out action called internal to be able to speak about things going on 
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Create a subtype of the 

0 

type MISSLEnelave is 
include Enclave; 

Enclave type 
interface 
provides 

function   release_reviewers 
(See rule l(j, k)) 

return set(release_reviewer type); 
action 

out internal (a : Activity); - - (See Figure 10) 
out releasable (d : Data);     - - (See Figure 17) 
out MiSSI.releasable (d : Data);     - - (See Figure 23) 

end MISSLEnelave; 

MISSI_ENCLAVE 

ZI 
wan_c6nnfccePt"-l 

jrelease     i 

d 
MiSSI.releasable 

release_reVfewers 

Figure 7: Extending the definition of an enclave 

within the enclave (leaving the notion of "Activity uninterpreted for now). As we shall see 
later, this turns Out to allow an interesting architectural constraint about the existence of cov- 
ert channels. 

Having identified the types of components that make up the architecture, we define their 
number (if known), their structure (if any) and whether new components can be created while 
the system evolves, and whether existing components can terminate and remove themselves 
before the architecture terminates. 

In the case of the MISSI reference architecture there is not much structure at the global 
level, and the architecture does not address the issue of dynamic component creation or re- 
moval. In its purest form, we may simply state that the components of the architecture are a 
set of enclaves, a single WAN (a simple routing model) and directory service agent and a set 
of unclassified (i.e., non-DoD) sites, as in Figure 8. 

This is deceptively simple, but then the architecture is rather simple, at this level. The 
complexity arises primarily at the lower level architecture, where we see a wide variety of ar- 
chitecture components and policies. 

6.3 How are components connected? Adding structural constraints 

Having identified the types and numbers of the components of the architecture, we proceed to 
define how they may interact. At this level of abstraction, the interaction is quite simple: The 
enclaves and sites are all connected to the WAN through their respective wan conn services 

architecture MISSK) is 
internet    : WAN; 
DNS 
enclaves 
sites 

end MISSI 

: DirectoryServiceAgent; 
: set(MISSLEnclave); 
: set(Site); 

Figure 8: The components of the MISSI reference architecture 
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connect 
for   e: Enclave in enctaves.enumO generate 

intemet.socket to e.wan_conn; 
end;  

Figure 9: Connecting architecture components 

(Figure 9). 
The role of the connection definitions are domain specific. In secure systems architec- 

tures, the interpretation of the set of connections would be that they identify all possible 
means of interaction among the architecture components. There is an implied frame axiom for 
the architecture specification that information shall flow only along those lines and in those 
forms explicitly defined by the connection definitions for the architecture (see Figure 10). 

We notice that since all the enclaves are given a bi-directional connection to the internet, 
we have that the enclaves are all indirectly connected to each other. This is a common pattern 
- that components of an architecture communicate via intermediaries that allow for communi- 
cation transformation, filtering, routing, etc. Such intermediaries are called connectors. 

6.4 How are connections used? Adding operational constraints 

After We have specified the structural properties of the global architecture, we go on to spec- 
ify some operational requirements that implementations have to obey. Operational require- 
ments define protocols and possibly other restrictions on the behavior of components of the 

INTERNAL    |- 

|    INTERNAL     \ 

observe (?el, ?e2: MISSLEnclave) 
?el .internal -> anyO-» ?e2.internal where ?el * ?e2 

match 
?el .internal -» any() -»?el .wan_conn.to.net 

-» any() -» 
?e2.wan_conn.to_node -> ?e2.internal; 

end; :  

Figure 10: A security constraint 
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architecture. Where a connection between two components indicates a potential for interac- 
tion, the operational specifications will indicate precisely under what circumstances such in- 
teraction actually can (or must) take place, as well as indicating when interaction Shall not oc- 
cur. 

In the constraint sublanguage of the Rapide ADL one can specify simple protocols for in- 
teraction (such as handshaking, etc.), as well as more sophisticated requirements regarding 
information flow, causal relationships, etc. At the global level the most powerful security con- 
straint would be that 

No information should flow from one enclave to another without going through offi- 
cial network connections. 

There are a number of different ways to make such a statement precise, and the Rapide 
formalization of the architecture specification allows us to clearly identify and thus discuss 
the alternatives. The strictest interpretation is probably that 

There shall be no internal activity in two distinct enclaves such that they are caus- 
ally related without interveningwan_conn events. 

Stated in Rapide (see Figure 10), the semantics may be more immediately apparent: 
whenever we see a causal chain of events from an internal activity of one enclave to an inter- 
nal activity of another enclave, then there must be two wan_conn events within that chain, 
one sending (from the originating enclave), and one receiving (at the other end). The variables 
?eJ, ?e2 are free, indicating that the constraint holds for a« enclaves. 

This is a significantly stronger (and to-the-point) constraint than what we would obtain by 
stating the requirement in terms of time. If we interpreted "a-» b" as "a happened before b in 
time" then the above constraint would be satisfied if two enclaves were (legitimately) inter- 
acting with high frequency while information were to flow covertly from the one to the other 
at a lower frequency. The fact that there would be legitimate wan.conn events interspersed 
between the sending and the receipt of covert information would legitimize the communica- 
tion of the covert information. On the other hand, the interpretation of "-*" as representing 
causal dependency correctly precludes such a scenario from being acceptable. 

The Rapide pattern language has much in common with regular expressions extended with 
variables and the ability to evaluate Boolean expressions, and extended to deal with partial 
orders as well as the sequences of more traditional regular expressions. The key difference is 
that the Rapide pattern language encourages specifications of causal dependency relationships. 
The Rapide "a-»b" relationship between two events requires that they occur in a particular 
order; a before b, and also that there be an established dependency between a and b, e.g. that 
a represents writing of data and b represents reading of that data, or a represents the sending 
of a message and b its receipt. For a full exposition of the Rapide pattern and constraint lan- 
guages, see [11,18,19,20] 

6.5 Repeat as needed... the concept of operations level 

The next level of architecture is a concept of operations ("conops") architecture. The conops 
architecture specifies the structure of enclaves, and how the operations within an enclave are 
carried out by its various components (including human beings). 

As with the global architecture, the definition of the conops architecture identifies (1) the 
components of an enclave, (2) their connections and (3) how these connections may (or may 
not) be used. 

6.5.1 What are the components? 
The components are such entities as users and workstations, confidentiality and authentication 
servers as well as other servers such as firewalls. We shall not enumerate all the component 
types of the conops architecture. However, the MISSI document [7] does give us an example 
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module certificate_authority 
(certificate_generator: Certificate_generator_type; 

return Ceitificate_authority_type is 

end;  

Figure 11 An implicit architecture dependency 

of a hontrivial decision we face when formalizing the definitions of the component types. It 
says: 
2(a) "An authorized releaserfor a particular enclave must be a MISS1 certificate holder 

and reside within the enclave." 
This paragraph introduces the component type "authorized releaser," and can be inter- 

preted in two different ways, depending on our interpretation of the word "must." If an 
authorized releaser by definition is a MISSI certificate holder, then one makes the type re- 
leaser a subtype of the type certificate.holder. A consequence of such a choice would be 
that one cannot entertain (or formally specify) situations where a releaser is not a certificate 
holder, just as one cannot entertain the notion that an even number not be an integer. 

Another tack would be to identify the relationship between an enclave and its set of re- 
leasers, each of which is of the generic MISSI_user_type. In which case we are obliged to de- 
fine a function from such user components to their set of certificates (in order to state that all 
releasers hold certificates) as well as a residency relation between enclaves and its residents 
(in order to state that the residency requirements should hold). Such functions and relations 
can be defined as being part of a component (i.e., an attribute of it), or as a function or predi- 
cate external to the component. We chose the latter approach. 

We are faced with a similar decision in paragraph 1(b): 
](b) "All legitimate MISSI users must have a valid certificate for some classification 

level they are cleared to read." 

Is this a definition of what a "legitimate MISSI user" is (in which case we define the type ; 

legitimate.MISSLuser and add the requirement that the attribute certificate.set be non- 
empty)? Or is it a definition of when a MISSI-user is "legitimate" (in which case we define 
the type MISSLuser with the attribute legitimate, which is true if and only if the attribute 
certificate.set is non-empty)? We settled for the latter interpretation. 

6.5.2 How are components connected? 
At the enclave level we also see a number of requirements regarding access and connectivity, 
such as: 
1(a) "Authorized certificate authorities (and no others) must be provided with access to 

certificate generation functions." 

As with many of the MISSI requirements this one has both a prescriptive as well as a restric- 
tive aspect: There shall be access for one class of components, and such access by any other 
component is prohibited. The former is reasonably interpreted as a structural requirement, the 
latter may either be structural (that there simply be no physical accessibility), or one of proto- 
col (that there shall be no attempts at exercising the certificate generation functions without 
proper authorization.) 
The prescriptive part of the requirement is easily modeled with in Rapide using interface type 
definitions (see Figure 12). The presence of a requires clause in the definition lists all the 
entities a Certificate_authority_type module expects to be able to use without further ado - 
it is up to the architecture implementation to supply it with a suitable module to satisfy this 
requirement. The requires section of a type specification indicates what the environment - 
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type Certificate_authority_type is 
include Authority 

interface 
provides 

function authorized () return Boolean; 
requires 

certificate_generator: Certifrcate_generator_type; 

end; 

amiGcate_ganeritor 

Figure 12: An enclave component identifying its requirements 

the architecture - has to make available to objects of type Certificate_generator_type. This 
mechanism differs from the usual object-oriented approach of employing parameterization of 
the type or the object constructors of the type. If one were to employ the alternative of sup- 
plying the server references as parameters to object constructors as in Figure 11 then we 
would bury a key implicit element of the prose requirements; that the assignment of a server 
to a user is an architectural one, which may change over time as the system evolves and the 
user acquires or relinquishes certificates. 

Rapide allows us to make the style distinction between parameterized definitional depend- 
encies (which are identified by the parameter lists of type definitions), parameterized imple- 
mentation dependencies (which are identified by the parameter lists of module constructors) 
and (dynamic) architectural dependencies (which are identified by requires sections in inter- 
face definitions). 

The restrictive part of the requirement ("...and no others...") can be addressed explicitly 
or implicitly. By using the frame axiom for security architecture conformance (i.e., in the ab- 
sence of any connections, no information flow shall take place) we can deduce this restriction 
from the absence of any explicit connections between modules that are not authorized certifi- 
cate authorities and certificate generators. Such a structure-oriented representation of the re- 
quirement would be using conditional connections in the architecture itself to set up the con- 
nections for all the authorized certificate authorities (see Figure 13). Here the architecture 
specification makes clear that access to the new.token function will be given only to those 

connect 
(?c: Certificate_authority_type) 

?c.new_token where fc.authorized 
to    certificate.generator.new.token; 

Figure 13: A conditional connection 

certificate.authority.type components that have the authorized attribute set to true. 
However, a requirements document that relies on the absence of certain statements might 

be asking for too much of the reader. 
If one instead wishes to make this requirement explicit in the formal version of the refer- 

ence architecture then it is naturally rephrased as a protocol requirement, that all modules at- 
tempting to make use of the certificate generators are duly authorized. Since this is a usage 
restriction relevant to certificate generators, it is reasonable to locate it within the definition of 
the Certificate_generator interface (see Figure 14). 

When it states "Authorizedcertificate authorities (andno others)..."the constraint inter- 
prets the "(and no others)" as meaning not only all non-authorized certificate authorities, but 
also all other entities of other categories. The mechanism is through observing all calls to the 
newjtokeri function, and then requiring that all these calls be made by components of the 
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type Certificate is interface ... end; 

type Certificate_generator_type is interface 
function new_token(...) return Certificate; 

constraint 
observe (?p : root) new_token'call(performer is ?p) 
match (?c : Certificate_authority_type) 

new_token'call(performer is ?c) where ?c.authorized; 
end; 

end certificate_generator_type;  

Figure 14: A restrictive protocol definition 

Certificate_authority_type, where that component also has the authorized attribute set to 
true. 

A number of the requirements - l(c,d,e) - as well as the later l(e, g, h, i, k), are on the 
same form: 

"All MISS1 certificate holders must be provided with access to appropriate 
<keyword> functions for each classification level they are cleared to read." 

(Where the <keyword> identifies the distinct functions, such as confidentiality, integrity,-and 
certificate validation.) 

There are two elements to each of these requirements as well: 
1. There is a reference to what a confidentiality (and similarly integrity-, certificate valida- 

tion-, etc.) function is. That aspect deals with definitions of functions and abstract data 
types, and are best dealt with using an ADT- or object specification formalism. Rapide in- 
corporates the data type specification capabilities of ANNA [8], but since the specifica- 
tion of datatypes impinges minimally on our discussion of architectures, we shall not pur- 
sue this aspect. 

2. That for a particular functionality the actual function supplied may differ depending upon 
which access level is being exercised by the certificate holder. Consequently, access to 
server functions may change over time, as certificates are acquired or relinquished. Fur- 
thermore, there is no requirement that the appropriate function for a given access level be 
fixed for the duration of the system - consequently, the formalization should allow for a 
conforming system to supply different functions at different times for a given access level 
and user. 
To state or allow for the latter is a challenge to ADLs and specification formalisms based 

on (first order) logics, which do not address the issue of time. In Rapide time is implicitly pre- 
sent throughout a specification, and can be made explicit as necessary through references to 
clocks or events. 

We shall assume (see 1 above) that we can define precisely what is expected of a set of 
confidentiality functions (and similarly for the other functionalities). 

Given such definitions of the server functions, we specify the access requirements explic- 
itly (Figure 15). Each MISSI_user_type object will assume the (external) existence of a func- 
tion returning a reference to a confidentiality server (assuming that the types Key_type, 
Wrap_info_type, and Wrapped.type are defined elsewhere), an integrity server and a vali- 
dation server. 

This requirement is formalized using the requires clause of Rapide. In so doing we sig- 
nal that a MISSI_user_type object may call the function confidentiality.server with the ex- 
pectation that the architecture (i.e., the environment) will supply a binding for it. The archi- 
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type Confidentiality_ref is       ~~~ 
Confidentiality_server(Key_type, Wrap_info_type, Wrapped type)- 

- - and similarly for the other servers 

type MISSLuser.type is interface 
provides 

classification: set(Classification_type); 

requires 
function confidentiality_server (c: Classification_type) 

return Confidentialy_ref 
constraint (classification.element(c)); 

function integrity.server (c: Classification type) 
return tntegrity.ref 
constraint (classification.element(c)); 

function validation_server        (c: Classification type) 
return Validation.ref 
constraint (classification.element(c)); 

end MISSI_user_type;   

Figure 15: Capturing access requirements 

tecture may change this binding during the execution of the system. By adding the 
"constraint (classification.element(c))" to the function declaration we identify that the 
function is only required and accessible for a particular classification level if the MISSLuser 
actually is cleared at that level. 

The "(and no others)" part of requirements l(j, k) are dynamic prohibitions and are for- 
malized in the same way we made precise the similar injunction in 1(a), i.e., as a check that 
whenever there is a call for a confidentiality.server it is from a component with the proper 
clearance. 

6.5.3 How are connections used? 
Finally, there are the policy requirements, stating preconditions for information flow within 
the enclave or from the enclave to the outside. An example is 
2(c) "All data transferred outside of a secret-high enclave and addressed to a MISSI 

certificate holder must be protected by a confidentiality service, a proof of Origin 
non-repudiation service and a recipient authentication service." 
This can be modeled either as the data having certain properties (essentially having 

stamps of approval from the respective servers), or as a precondition on the history leading up 
to a release of data outside a secret-high enclave. We recommend the latter approach, in 
which case we make use of the Rapide pattern language to identify the protocol that defines a 
data release: it fits the pattern of Figure 16, i.e., that for any piece of data, if it is released to 
the outside then that release has to be preceded by the three services checking it off. 

pattern otitside_release_ok(?d: data) is ' ' ■■ " "    " 
(conf_service(?d) ~ origin_service(?d) ~ recip_service(?d)) -» data_release(?d) 

Figure 16: Abstracting patterns 
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map abstract.enclaves from e: enclave_architecture to MISSLenclave is 
rule 
rule_l: 

(?e: event) ?e@ 
||> intemal(?e); 

rule_2: 
(?d : Data, ?a : Address) @firewall.wan_conn.to_net(?d,?a) 

||> wan_conn.release(?d,?a); 

rule_3: 
(   (?ws : COTSWorkstation; 'content: Data) 

?ws.net_conn.to_node(Certificate_Validation, ?content) 

?ws.net_conn.to_node(lntegrity, ?content) 

?ws.net_conn.to_node(Encryption,?content)) 
ll> 

releasable(?content);; 

end; 

Figure 17: Three abstraction maps 

6.6 Defining relationships between architectures 

At this point in our process we have a definition of the global level of the reference architec- 
ture, whose principal components are MlSSI_enclaves and WANs, and the conops level, 
whose principal components are workstations, firewalls, LANs, and servers. 

Part of the definition of a reference architecture with multiple levels of abstraction identi- 
fies precisely how the levels are related. There are clear relationships between these two lev- 
els - e.g., the enclave architectures of the lower level are modeling the MISSI_encIaves at the 
top level, the activities of the firewalls at one level represent release and accept events at the 
higher level, the simple wan.conn of the abstract enclave definition corresponds to the fire- 
walLtype objects of the conops architecture. But in the conops level definition there is no ac- 
tion "internal" which may play such a crucial role in the constraints of the global level archi- 
tecture - the reference architecture must define what conops-level events correspond to the 
internal events of the global level. 

It would not be a good idea to merge the definitions from the two levels into one un- 
structured definition of the notion of "enclave." Instead we use Rapide maps to relate compo- 
nents and activities of the conops architecture to their corresponding components and activi- 
ties in the global architecture. 

Figure 17 gives an example of such an abstraction map. It consists of three rules, each of 
which defines how occurrences of patterns of events at the conops level correspond to more 
abstract events at the global level. 

The first rule indicates that any event in the cönops enclave ("(?e : event) ?e@") will be 
mapped up to ("||>") the abstract internal event, indicating that something happened (but 
where we abstract away from the particulars of what happened). The second rule maps each 
transmission of data from the firewall to the WAN ("@firewall.wan_conn.to_net") to the 
abstract event release, representing the flow of information out of the enclave, abstracting 
away the particulars of how the information became public. The last rule is an example of 
how a more complex pattern of events may represent a single abstract event: Whenever a 
piece of information (represented by the placeholder ?content) has been approved by the 
validation, integrity, and encryption servers then the information becomes releasable, ab- 
stracting away from the actual protocol required for attaining this status. 
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Global level 

Conops level 

Figure 18: Events at two levels of architectural abstraction 

Figure 18 shows an excerpt from a computation, indicating the two levels of abstraction 
and the relationship between a set of events at the lower level with a single abstract event at 
the higher. 

As we see, there is no prohibition against a single concrete event participating in more 
than one abstract event (as each of the server events are both represented as abstract internal 
events as well as being part of the releasable event). 

If one of the steps in the protocol is missing (for instance, if the Validation never took 
place), we would not get the required Releasable global event. The result would be as in 
Figure 19, and would result in a violation of a global level constraint. 

7. Formalizing the MISSI requirements summary 
In this section we go through all the requirements of the MISSI overview, showing how we 
would capture them in Rapide. 

We have already dealt with the very first requirement (section 6.5.2): 
1(a) "Authorized certificate authorities (and no others) must be provided with access to 

certificate generation functions." 

INTERNAL 

INTERNAL 

ENCRYPTION 

RELEASE 

INTEGRITY 

Global level 

ConopS level 

>   flREWALLTO NET 

Figure 19: Missing conops event -» missing global event 
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type MISSLuser.type is interface 
provides 

function classification   0 return set(Classification_type); 
function certificates () return set(Certificate_type); 
function legitimate       0 return Boolean; 

function residency        {) return Enclave; 

constraint 
legitimateö = not certificatesO-empty; 
legitimateO implies 
not map(certificate_type,classification_type,certificatesO,security_level). 

intersect(classification()).empty; 
end MISSLuser.type; ■  '        ■■ 

Figure 20 An invariant constraint 

We have also touched upon the next requirement earlier (section 6.2): 
1(b) "All legitimate MISS] users must have a valid certificate for some classification 

level they are cleared to read. Entities with valid certificates must be legitimate 
MISSI users." 

If this is a definition of when a MISSI-user is "legitimate" we define the type MISSLuser 
with the attribute legitimate, which is true if and only if the attribute "certificate.set" is 
non-empty.' 

The last constraint implies the first, of course, but in the interest of clarity of intention we 
state both explicitly, since redundancy adds rather than detracts from the confidence we have 
in the specification. 

An alternative representation would define two types; MISSI_user_type and le- 
git_MISSI_user_type <: MISSLuser.type. The latter would be constrained always to have in 
hand appropriate certificates, the former would allow its transformation into a le- 
git_MISSI_user_type object after performing the appropriate checks. 

The next three requirements - l(c,d,e) - as well as the later l(e, g, h, i, k), all contain a 
requirement on the same form: 

"All MISSI certificate holders must be provided with access to appropriate 
<keyword> functions for each classification level they are cleared to read." 
(Where the <keyword> identifies the distinct functions, such as confidentiality, integrity, 

and certificate validation.) They have been discussed extensively earlier, in section 6.5.3. 
Requirements l(j, k) strengthens the access requirements by adding that accessed func- 

tionality be 
"...for the enclave in which they reside. (All <entities> are MISSI certificate hold- 

ers and reside in the enclaves in which they perform their task.)" 

1 The polymorphic function map takes two types S and T (the source and target type), an object M of type 
Set(S) and a function F with signature S—»T, and returns an object of type set(T), each of whose elements is 
the result of applying F to some element of M. The function security.level is assumed to map certificates to 
security levels. 
2 Each shaded area represents a releasable event justifying the corresponding release event. There is an 
example of a single releasable justifying multiple releases, as well as a single release being justified by 
multiple releasable events. 
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...-.■- :.,    ,-'";'-:.—-x ...:-,::.:.::.::>  observe 
"El"s,BtE    /"^"^r~hRf^AB^h7HRf^j;   from releasable, release 

>-' RELEASABLE I 

! RELEASABLE |' 

; RELEASABLE i- 

^^^^^   where (security_classification() = 
^uAse| secret_high) 

match Pcontent: Data) 
I* rel union] (releasable(?content > 

-» . 
release(?content)) union 
[* rel ~] releasable; 

end; 

Figure 21: Satisfying the releasability requirement2 

These are simply invariants over the relationships between components and enclaves, and 
could be stated in those terms, e.g., in the subtype release_reviewer_type of the 
MISSI_user_type there is the invariant that: 

not certificatesO.empty; 
residency().release_reviewers0.element(self); 

Sections 2 and 3 of the requirement set identify the circumstances under which informa 
tion may be released from or accepted into an enclave. 

2(a) "An authorized releaserfor a particular enclave must be a M1SS1 certificate holder 
and reside within the enclave." 

2{a) is similar to the requirements of 1, and is dealt with in the same way. 
2(b) "All data transferred outside of a secret-high enclave must have been sent by an 

authorized releaser in the originating enclave, must be protected by an integrity 
server, and must pass a releasability check in the originating enclave." 
2(b) establishes protocol precursors for the event representing the release of data from an 

enclave. Assuming that data is being released by means of the firewall communicating to the 
network, the notion of data being releasable was captured earlier. Given that, 2(b) becomes a 
constraint of the abstract enclave definition. Observing release and releasability events 
(Figure 21), every communication to the net of a piece of data has to be preceded by a re- 
leasability event (but not the other way around - releasable data is not required to actually be 
released): 

Note that there must be a causal chain from establishing releasability to the actual release. 
The use of the union relation over the set of pairs of releasable and release events al- 

lows a single releasable event to justify multiple actual releases (as in Figure 21). 
If the requirement specified that all releasable data actually be released then we would 

omit the second component of the union collecting all the dangling releasable events. 

observe 
from MISSLreleasable, wan.conn.release 

where (security_classification() = secret_hiqh) 
match (?content: Data) 

[* rel union] (MISSI_releasabIe(?content) 
-»     wan_conn.retease(?content)) 

union   [* rel ~] MISSLreleasable; 
end; 

Figure 22: MISSI releasability restriction 

RTSE'97. p.221 



rule 
(?ws : COTSWorkstation; 'content: Data) 

(?ws.net_conn.to_node (Confidentiality, ?content) 

?ws.net_conn.to_node   (Non_repudiation, ?content) 

?ws.net_conn.to_node   (Recipient_validation, ?content) 
ll> ■•■■'■. ' 

MISSI_releasable(?content);;  

Figure 23: A variant on the releasability definition 

observe 
('content: Data; 'recipient: receipt_authentication_enclave; 'address : Address) 
wan_conn.release(?content, ?address) 

where (security_classification() = secret_high 
and ?recipient = ?address.enclave), 

-> ([* rel ~] receipt_acknowledgef?content.ack)) 
not match 

wan.conn.release; 
end; 

Figure 24: A negative form of constraint 2(d) 

2(c) "All data transferred outside of a secret-high enclave and addressed to a MISSI 
certificate holder must be protected by a confidentiality service, a proof of origin 
non-repudiation service, and a recipient authentication service." 

2(c) is similarly structured to 2(b), the main difference being that we limit our interest to data 
addressed to MISSI certificate holders. By implication, this requires a global (specification) 
function mapping addresses to attributes of the addressee3. Figure 22 gives a variant on the 
2(b) requirement. The global event MISSLreleasable is defined in Figure 23, and is similar to 
the definition of releasable (see Figure 17), as a mapping from a protocol pattern at the 
conops level to a single event at the global level. We assume that the function Recipient : 
Data-»Root gives us the identity of the intended recipient of the data, and then use subtyping 
to limit the applicability of the mapping to those messages that have MISSLusers as recipi- 
ents. 
2(d) "If a recipient is capable of providing authentic receipts and the originator of the 

data requests a receipt, all data transferred outside of a secret-high enclave must be 
protected by a proofof receipt non-repudiation service." 

This requirement mixes references to capabilities of enclaves (offering an authentication 
service) and events (the data being transferred with a return receipt request). To be "receipt 
confirmation capable" is modeled by adding a node Receipuauthentication_enclave to the 
type structure, introducing a subtype of the Enclave type. Stated in protocol terms, a receipt 
acknowledgment must be generated whenever data leaves a secret-high enclave addressed to a. 
receipt confirmation capable component. There are a number of ways one can phrase this. As 
a negative, one can write that for each release event and all its (causally) subsequent ac- 
knowledgments for the receipt of the release, the set of acknowledgments cannot be empty 
(Figure 24). 

' This mapping seems methodologically dubious, bur jl does not offer any problems for the transformation of the 

prose into precisely formalized requirements. 
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observe 
: (?cöntent: Data; 'recipient: Receipt_authentication enclave; ?address 

Address) 
wan_conn.release(?content,'address) 

where (security_classification() = secret.high 
and 'recipient = ?address.enclave), 

'.'■.--*([* rel ~] receipt_acknowledge(?content.ack)) 
match 

wan_conn.release -^ ([+ rel ~] receipt_acknowledge); 
end;     , 

Figure 25: A positive form of constraint 2(d) 

Or one can write it in positive terms - for each release event and all its (causally) subse- 
quent acknowledgments for the receipt of the release, the set of acknowledgments has to con- 
tain at least one acknowledgment (Figure 25). 

In both cases, the Rapide form is one of (1) filtering the set of events to extract those sub- 
sets (possibly overlapping) that are of interest (in this case to each single release and its 
(possibly empty) set of responding acknowledgments), and then (2) specifying the pattern 
these events have to comply with (in this case that the set of acknowledgments be non-empty). 
3(a) "An authorized receiver for an enclave must be a MlSSl certificate holders and re- 

side within the enclave in question." 

3(a) is similar to 2(a), and is dealt with in the same way. 
3(b) "Any data admitted to a secret-high enclave from the outside must be protected by 

an integrity service, must pass an admissibility check for the enclave, and must have 
a designated recipient within the enclave who is authorized to receive external 
data." 

3(b) is similar to 2(b), and is dealt with in the same way. 
4(a) "All sensitive administrative data must be protected by an integrity service while in 

transit or in storage." 

As with 2(b) and (c) there are two, quite distinct, perspective on this kind of constraint. 
One can either view the requirements as related to state, i.e., every piece of 

(administrative) data has some state attribute indicating whether it is in storage, in transit or in 
(possibly) other modes. In which case the natural mode of expression is one of first order 
logic (as in [7]), but at the cost of reduced checkability and increased complexity of expres- 
sion - data and other basic types would acquire an ever-growing set of more or less obvious 
attributes, an attribute collection which may become intractable as the abstract notion of data 
becomes refined. 

Or one can view it more dynamically, and focus on the action of storing or putting into 
transit a piece of data, in which case the assertion of being protected by an integrity service is 
tied to the transitional event itself. This is the path taken in the fornialization of 2(b) and (c), 
and would be repeated for 4(a), here. 

8. Putting a Rapide reference architecture to use 
Given a Rapide formalization of the reference model we can put it to a number of different 
uses. The most obvious is as a precise definition of the model itself - being expressed in a 
formal language it allows us to draw unambiguous conclusions from the formalization based 
on testable arguments within a formal framework (in the case of Rapide constraints the 
framework is a simple one of sets and partial orders). 
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Figure 26: Some components of an 
intermediate level model architecture 

Since Rapide is supported by a growing 
toolkit of visualization and testing modules [21, 
22], the reference architecture can be the target 
for conformance testing by implementations 
purporting to satisfy the architecture's require- 
ments. Such automatic conformance testing re- 
quires two things: ....; 
• An instrumentation of the implemented 

system which supplies the tools with the 
information required to compare the im- 

plementation to the reference architecture. Such an instrumentation can in many cases be 
automatically generated by a modified set of compilers,4 generating the code necessary to 
create events and maintain the dependency graph. 

• An abstraction map essentially defining how the patterns of events generated by the in- 
strumentation correspond to the types of events and components referred to in the archi- 
tecture.5 

Such a map makes the conformance argument precise, and adds documentation 
as to how the implementor thought her system relates to the reference architecture. 
Given such instrumentation and the argument how conformance is obtained, the system 

conformance test becomes automatic, and can become a standard part of any regression test 
one might wish to subject the"system to as its implementation evolves! 

Furthermore, the instrumentation together with its conformance map can become an em- 
bedded, permanent part of the production system. The result is another layer of security 
checking, where the different perspective on the system offered by the conformance argument 
may detect architecture violations that might otherwise go unnoticed. 

A variant of the conformance testing is the use of the tools for scenario testing and pres- 
entations. The Rapide toolkit has been applied to such diverse models as the SPARC V9 refer- 
ence hardware architecture and a stock market model, as well as a simple scenario for security 
protocols based on elements of the MISSI reference architecture. 

In the security model scenario we constructed a model vertically partitioned into three 
layers. 

At the bottom layer we defined an executable conops model of users, workstations, pro- 
tocol servers, firewalls, and networks. 

The topology was one of a set of LANs, each with its workstations, firewalls and servers, 
and each workstation with its users. The LANs were connected by means of a WAN, through 
their respective firewall modules. 

All the networks were broadcast networks. 
This bottom layer corresponds to an actual system, a flat, relatively unorganized set of 

components communication hither and thither - possibly in conformance with the require- 
ments of the reference architecture. Or possibly not - that is what the toolkit checks. 

The second level is an intermediate one. Each architecture is an enclave, each of which is 
accompanied by a set of the enclave-related requirements (such as 2(b), about releasability). 
Each enclave in the intermediate architecture is the target for a Rapide map, which transforms 
patterns of conops model behaviors into activities defined for enclaves (e.g., as in the defini- 
tion of the releasability map, see Figure 17). Some components of an enclave is shown in 

4 Such an instrumented compiler-set exists for Java, Verilog and CORBAIDL besides for Rapide itself. 
5 We have already made use of such maps in defining how the abstract releasable event occurs as an abstrac- 
tion from a pattern of lower-level events. 
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Figure 27: A global level 
architecture 

Figure 26 (from an animation of the conformance 
check), an enclave with two users, two workstations, 
a LAN and a firewall (besides the local servers, not 
shown in this figure). 

The third level is that of the global architecture, 
consisting of enclaves, WANs, etc. (Figure 27) gives 
an abbreviated view, from an animation of the refer- 
ence architecture conformance test of a model with 
four enclaves.) At this level we check the constraints 
relating to multi-enclave concerns, such as the global 
requirement prohibiting covert channels. The archi- 
tecture level can be obtained by maps directly from 
the conops model, or in two stages: by the maps from 
the conops model to the intermediate level, and then 
maps from the intermediate level on to the global 

,  ,.      ,    . _,. Ievel- Which of these one chooses is a question of 
whether the intermediate models contain all the information required for the global architec- 
ture model (e.g., the notion of general internal activity) or not. 

A. model (or a system in testing or production) typically generates a large number of 
events. When investigating data for possible non-conformance it is critical that the number of 
data elements - events of possible interest - be reduced as early as possible. The Rapide 
toolkit offers two means to achieve this end. The first is the use of architecture maps in struc- 
  tuni)g 'he instrumentation. Each map construct results in the 

automatic construction of a transformational filter (or sieve) 
which passes on only those events that are considered significant 
in the abstraction, possibly transformed so as to aggregate event 
patterns into single events or simpler event patterns. 

The second is the visualization toolset of Rapide. This part of 
the toolset allows the user to apply various patterns of events to a 
given execution, displaying only those events fitting patterns of 
interest. Combined with the Raptor (22] animator this makes it 
possible to watch an animation of a running system at a chosen 
level of abstraction. Then, if interesting events (such as protocol 
violations) are detected, the user can move to the POV (poset 
yisualizer) [21] and use it to investigate the causal patterns lead- 
ing up to the events that piqued her interest. In particular, the 
POV allows the efficient removal of extraneous information to 
ease the identification of interesting events among the clutter of 
all the events of the system. 

As an example, consider the events of Figure 28. These were 
,     . . cu"ed from the execution of a network model, after the occur- 

rence of an inconsistent event was observed at the global level. (An inconsistent event signals 
nfvlS,S",o'?1?Ctl°n • %constraint yioIation.in »his case the global reusability constraint 
Ife iX %movmS^om the global architecture to the conops architecture, using the 
POV, and then following the causal links past-wards from the inconsistent event, we identify 
ihfiS f S6nM of

A
me

u
InteSrity and Encryption steps of the protocol making a piece of 

information releasable As the user only engaged the Confidentiality server, once the infor- 

Sectare constrain ^ fireWa" ,0 ** WAN' She W3S in v'olation of the reference 

9. Conclusion 
We have indicated how one may use the event based language of Rapide to capture elements 
of a reference architecture. Both the structural and the operational requirements of the archi- 

Figure 28: 
Detecting a protocol 

violation 
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lecture can be stated precisely in Rapide, and the resulting specification may become the basis 
for (1) analysis, (2) model checking, (3) implementation conformance testing and (4) produc- 
tion code conformance surveillance. 

A key element in the successful application of an architecture description language to the 
design of reference or other software architectures is the degree to which it allows one to state 
alt aspects of the architecture, and the flexibility of the abstraction mechanisms that may be 
applied when the conformance requirements are stated (as part of the architectural design). 
Distinct architectural perspectives require distinct abstraction mappings, and it is important 
that the designer be able to separate such perspectives from each other - giving separate refer- 
ence architectures for each perspective, as appropriate. 

Furthermore, an ADL is only as good as the tools that support it - in the absence of tool 
support, design capture and conformance reasoning easily devolves into vague hand-waving. 
The tool support should help automate conformance testing and other aspects of architecture 
design analysis, as well as allowing the designer to construct test scenarios and visualize the 
behavior of architecture conforming systems. 

We have found that the Rapide ADL with its supporting toolset offers an interesting ap- 
proach to the design of distributed architectures. In particular, the event orientation of the 
system, coupled with its sophisticated ability to identify causal chains and patterns of behav- 
iors where causal relationships may play an integral role are quite enticing. 
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Abstract: Development processes Of various engineering disciplines are usually rather complex They consist of 
many interacting subprocesses, which are carried out by different developers. Each subprocess delivers its own 
documents, which are part of the overall result. All involved documents and their mutual, fine-grained dependen- 
cies are subject to permanent changes during the life-time of their development process. Keeping these documents 
m a consistent state is one of the most important prerequisites for the success of any engineering project As com- 
pletely automatic change control between documents is often impossible, interactive consistency monitoring and 
(re-)establishing tools are necessary, which we call integration tools. This paper reports about experiences in build- 
ing integration tools for software engineering environments and about ongoing efforts to build similar integration 
tools for chemical process engineering. Furthermore, the paper presents an object-oriented and graph-grammar- 
based formal method for specifying integration tools and sketches how their implementations are derived from 
their high-level specifications. 

Key words: development processes, product integration, tool specification, 
fine-grained interdocument relations, coupled graph grammars 

1. Development Processes and their Results 

Development Processes (DP) in areas such as software development, computer integrated 
manufacturing, or chemical process control usually involve different developers. Each developer 
produces a certain set of documents, which is part of the overall DP result. His documents have 
to be kept in a consistent state with documents produced by other developers. Between docu- 
ments, directed and mutual consistency dependencies have to be taken into account. A Software 
design specification; which depends on a requirement specification, is an example of a directed 
dependency. The different perspectives of a requirement specification —such as a data-oriented 
view and a function-oriented view-*— are an example for mutual document dependencies. Simul- 
taneous engineering /BW 96/ aims at accelerating DPs by starting dependent subprocesses as 
early as possible with preliminary results (prereleases) of preceding subprocesses. Concurrent 
engineering /Re 93/, On the other hand, allows to develop different perspectives of the same prod- 
uct part in parallel. ■.;.--■ 

1.1 Development Subprocesses and their Results 

A key problem in the development of any engineering product is change control, especially in 
the case of simultaneous or concurrent engineering. Changes are carried out due to detected er- 
rors, due to changed design decisions but also, in the extreme case, due to changed requirements 
in an ongoing project. In the course of a usual development process many errors are made and 
the construction of required results is often not straightforward. Therefore, we can state that both 
development and maintenance of engineering products have to deal with permanent changes of 
intermediate or final DP results. -....-.., 

:    Stipendiat der Deutschen Forschungsgemeinschaft im Graduiertenkolleg für Informatik und Technik 
der Rheinisch-Westfälischen Technischen Hochschule Aachen 
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In any application area mentioned above complex document configurations art built up and 
maintained. They do not only consist of the final configuration (e.g. the source code of a software 
system) but also of many further subconfigurations responsible for describing the requirements, 
the architectural plan, documenting the developed ideas and met decisions, assuring quality, or 
managing the whole development process. Such an overall configuration consists of many docu- 
ments which, in turn, may have a complex inner structure. 

Produced documents often have many fine-grained dependencies between their constitu- 
ents. For the quality of the whole product and the efficiency of the total process these dependen- 
cies are of minor importance. A single developer is usually responsible for the internal consis- 
tency of a document. He should be able to keep all local consistency requirements in mind and, 
in many cases, he is supported by suitable document processing tools such as a syntax-directed 
diagram editor or a CASE analysis tool. The fine-grained dependencies between documents cor- 
respond to the interfaces between the work of different developers. As we shall see in section 2, 
no suitable support is available for keeping these interdocument dependencies in a consistent 
state. Therefore, we concentrate on this problem in the following. We use the relations between 
a requirement specification and the design of a software system as a running example. 

For coordinating a team of developers, anagement information (administration configura- 
tion) about a project has to be built up and maintained. We distinguish between process, product 
(configuration and version), resources, and department or company information, and we regard 
their mutual relations in order to coordinate the labour of a team of developers. Management in 
this sense has to be supported by suitable tools. There, interesting problems arise as the adminis- 
tration configuration is changed in its structural form, when a development process is carried out 
/Kra 98/. However, in this paper we concentrate on the support of technical developers and the 
interfaces of their results. 

Many DP documents, which are the results of technical development subprocesses, have 
a semiformal contents. Some documents are completely informal, as the nonfunctional require- 
ments specification, where we find plain text possibly presented in a standardized (sub-)chapter 
form. Very few documents are formal, as e.g. a specification in a logic-based language such as 
Z. A standard case is that we find documents in diagrammatic, tabular, pictorial, or textual form 
which altogether possess an underlying structure and a more or less well-defined syntax. Exam- 
ples of this kind are OO-analysis diagrams, module descriptions in a software design description 
language, and so on. So, "semiformal" either means that formalization of a certain DP result is 
not carried out completely or, even more, that the underlying document description language is 
only formalized to a certain extent. 

Having most documents in a semiformal form, tins fine-grained relations between docu- 
ments are semiformal, too. Often, we can state that a certain increment (subpart) of one document 
may be related to an increment of another document if both increments are instances of corre- 
sponding types, have compatible properties, and appear in a certain context within their docu- 
ments. A technical documentation may, for instance, contain a section for each module of a re- 
lated software design document, and a section may contain a subsection for each exported 
resource of the related module. 

1.2 Preserving Consistency of Dependent Documents 

Language correspondences have to be elaborated, which define legal interdocument relations, 
before supporting tools can be built /Jan 92/. This is usually called method integration /Kro 93/. 
In some cases method integration rules require that instances of some type TA in a document A 
are always related to instances of type some Tß in a document B, as it was the case with modules 
and sections in software design and technical documentation documents, respectively. This is 
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called a bijective (1:1) correspondence between increment types of documents. In many cases, 
we have (m:n) correspondences on the type level such that further information is needed in order 
to decide whether an increment of type TA of document A may be related to an increment of type 
Tg in document B. Such a decision may depend on 

»   local properties of inspected increments, . 
■•'   their contexts in the regarded pair of documents, 
•   and manual design decisions of an involved developer. 

Usually, consistency establishing subprocesses of a development process cannot be auto- 
mated. The development of some document Bj, which is the result of one subprocess, often de- 
pends on the result of another subprocess, some master document A, in a rather imprecisely de- 
fined way. Exceptions are generating an NC program from a CAD document, generating module 
frames from a software design document etc. In these cases, the contents of involved documents 
are closely related to each other and a complete formal definition of the corresponding interdocu- 
ment dependencies is feasible. 

The standard case is that subprocesses are creative in the sense that a developer is not able 
to come up with a precise and complete formal definition of a procedure (method, plan) how 
changes of a master document A have to be translated into corresponding changes of dependent 
documents B; (cf. figure 1). As an example, regard the development of a coarse-grained software 
design for a given requirements specification. The design may be one of the "structured" world, 
an object-based or an object-oriented one /Nag 90/, and it is influenced by many factors such as 
the underlying middleware or the decision to (re-)use certain libraries or frameworks. As a conse- 
quence, there is no chance to automate the transition from requirements engineering to software 
design completely. However, the transition can be simplified by tools, which perform trivial sub- 
tasks on their own and keep track of once established relations between the requirements for and 
the design of a software system (see below). 

document Bj 

o interdocumeni 
document     relation 

s subprocess 
■ dependency subprocess 

Fig. 1: Dependent documents and their development subprocesses. 

Changes within a master document A require changes in a dependent document B; which 
then require further Changes in dependent documents of Bj. There are many different possibilities 
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how to translate an update of a master document into updates of its dependent documents. Fur- 
thermore, rather different strategies may be used to propagate necessary changes along chains 
of dependent documents. One possibility is called batch-oriented. It reestablishes first complete 
consistency between a document A and all its directly dependent documents Bj w.r.t. a sequence 
of updates on A, before proceeding with the dependent documents of Bj. Another possibility is 
called trace-oriented. It propagates one performed update on a document A to all directly or indi- 
rectly affected dependent documents after the other. Both strategies have their specific advan- 
tages and disadvantages and should be supported by integration tools. 

The following sections discuss the specification and realization of various types of integra- 
tion tools, which are responsible for monitoring and (re-)establishing consistency of dependent 
documents. These tools have to regard the semiformal structure of corresponding documents. 
They have to give substantial support for fine-grained integration by regarding the current form 
of documents and offering different possibilities how to propagate changes, which are selected 
based oh creative design decisions. Furthermore, they must not enforce certain orders of process 
steps as quite different consistency reestablishing strategies are possible. Finally, it should be pos- 
sible to work with existing and a posteriori integrated tools, when manipulating the correspond- 
ing documents. 

2. Available Support for Interdocument Consistency Control 

The available support for monitoring and maintaining consistency of related documents on a fi- 
ne-grained technical level is usually on a considerably lower level than the kind of tight integra- 
tion sketched in the previous section. The standard procedure is that developers exchange docu- 
ments in some low^level Standardformat (Postscript, SGML, HTML etc.). In any case, the 
developer of a dependent document has to find out which changes have taken place on a master 
document A and then to perform the right changes on the dependent documents Bj. 

Another wide-spread approach, especially in the software engineering community /SB 93/, 
is to write batch-oriented and automatically working converters after the corresponding method 
integration has taken place. So, neither incremental changes of some master document A can be 
handled, nor do they regard that its dependent documents Bj are already elaborated to a certain 
state, nor can creative design decisions of developers be taken into account. Furthermore, such 
transformers are often hand-coded. As many documents in different languages as well as differ- 
ent method integration approaches exist, hand-coding of integration tools has to be replaced by 
generating them from high-level specifications. 

A similarproblem occurs with document exchange standards such as STEP with its data 
modeling language EXPRESS /ISO/ or CDEF /CDIF 94/. They define huge class diagrams (data 
models) for certain types of engineering documents, but disregard consistency relations between 
different types of documents to a great extent. The data modeling language EXPRESS allows, 
for instance, to define the data model of each type of documents as a separate module and to im- 
port the data model of one module into another one. Furthermore, EXPRESS offers rules for de- 
fining static integrity constraints across document boundaries. But it is very difficult to derive 
consistency establishing operations from these static integrity constraints. As a consequence, 
STEP/EXPRESS data models are not a suitable source of input for generating integration tools. 

Also hypertext systems, as introduced in /Co 87/, do not offer an appropriate solution for 
preserving the consistency of a set of related documents. They have no knowledge about the se- 
mantics of links and just offer basic mechanisms to insert unspecific links and to browse along 
them. Consistency control is on a low level, namely detection of dangling links. Finally, all links 
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have to be established manually by the user. He has no profit if he is forced to insert them manu- 
ally and then only gets warnings that a part of them are dangling. 

More refined concepts can be found in (meta) software development environments, where 
documents are internally represented as attributed syntax trees. Support is given for propagating 
changed attribute values up and down the syntax tree. This allows to specify and generate analysis 
tools, which check interdocument consistency constraints /KKM 87/ if all regarded documents 
are modeled as subtrees of a common syntax tree. Other systems offer better support for the re- 
quired nesting of documents. Gate nodes and door attributes of a distributed syntax tree model 
the transition from one document's language to another one /Bo 88/. 

All syntax tree based systems mentioned above have problems with the specification of ac- 
tive transformation tools (in contrast to passive consistency checking tools). Attribute coupled 
grammars and variants thereof/GG 84, RT 88/, tree pattern matchers /ACT 89/, and context-sen- 
sitive tree transformation tools ICC 93/ are promising attempts to overcome these problems. They 
are useful forpurposes like concrete syntax generation (unparsing) or compiler back-end genera- 
tion. The still remaining problem with these approaches is that generated transformation tools 
are unidirectional, batch-oriented, and not interactive. 

Federated database systems /SL 90/ represent another form of data integration. They offer 
a common global schema for different local database systems, which usually is used for retrieval 
of data but not for updates (update problem). Active database systems /DHW 95/ offer event-trig- 
ger mechanisms to keep databases consistent. Event-trigger mechanisms play about the same role 
for the data-oriented integration paradigm as messages do for the control-oriented integration 
paradigm of broadcast message servers /Rei 90, Fro 90, Fra 91/. Event-trigger mechanisms and 
broadcasted messages are still rather low level means to simplify the implementation of integra- 
tion tools and to propagate updates between related documents or document processing tools. 

For the sake of completeness we should mention the existence of tools, which coordinate 
development subprocesses and their results on a coarse-grained level, i.e. without taking the in- 
ternal structure of documents and the fine-grained interdocument relations between them into ac- 
count. There, we find CAD frameworks /HN 90/ or EDM systems /Mel 95/ for managing project 
databases. Workflow systems /GHS 95/coordinate development subprocesses. Furthermore, we 
find configuration and version control tools on coarse- as well as fine-grained level. However 
the latter are usually unspecific w.r.t the structure of their documents /NW 98/. 

3. Experiences in Building Integration Tools 

Our experiences in building integration tools date back to 1988, when the implementation of our 
first integrated CASE tool prototype was finished /Lew 88/. Its most important integration tool 
has the task to keep a program's design in a consistent state with its technical documentation. This 
tool can be used in two different modes. Its free format mode allows to create arbitrary links be- 
tween increments of the design document andsections orparagraphs of the accompanying techni- 
cal documentation. In this case, the tool supports browsing along hyperlinks and issues warnings 
that once created hyperlinks are now dangling or that sources or targets of hypertext links are mo- 
dified. The integration tool's more sophisticated fixed format mode enforces a structure of the 
technical documentation, which is closely related to the structure of its software design docu- 
ment. Any module of the design document corresponds to a section of the technical documenta- 
tion, any exported module resource to a paragraph of the enclosing section. Section headlines are 
automatically derived from module names. 

The (software design, technical documentation) integration tool realizes therefore a com- 
bination of a hyperlink browser, a consistency checker, and a consistency reestablishing trans- 
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formation tool (as any other integration too! presented here). Updates of the design document are 
immediately propagated as change messages to the dependent technical documentation. These 
messages are then asynchronously processed and—partly automatically, partly manually—trans- 
lated into appropriate updates of the technical documentation. The integration tool was manually 
implemented without any kind of reuse of basic components and without a formal specification 
of its expected behavior. Needed hyperlinks were stored as pairs of unidirectional pointers in re- 
lated documents. 

Some years later an incrementally and automatically working (software design, Modula-2) 
integration tool was built using a more elaborate specification and implementation approach 
/Wes91/. First of all, the EBNF syntax definitions of both involved types of documents were re- 
lated to each other and then manually translated into ^programmed graph rewriting specification 
of trie integration tool's functional behavior. Based on the graph rewriting specification, an in- 
tegration tool was handcrafted, which keeps a software system's design and the corresponding 
configuration of Modula-2 implementation documents in a consistent state. The main progress 
of this integration tool—compared with the (software design, technical documentation) integra- 
tor—is that hyperlinks are now stored in a separate integration document. This allows the integra- 
tion of already implemented types of documents more easily, simplifies multi-user access to re- 
lated documents, and offers the appropriate database for storing information about an ongoing 
integration process. 

The needs to build an integration tool, which keeps requirements engineering documents 
and software design documents in a consistent state, forced us to generalize the integration tool 
specification and implementation approach /Jan 92/. The most challenging feature of the (re- 
quirements engineering, software design) integration tool was the required interaction between 
the computation of applicable transformations rules and the manual selection of actually applied 
rules. This is due to the fact that consistency relations between Structured Analysis (SA) dia- 
grams and Entity Relationship (ER) diagrams on one hand and design documents on the other 
hand are rather vague and context-dependent. An S A data flow diagram (DFD) may be translated 
into a module or a procedure of a design document depending on the number of applied occur- 
rences of the DFD in its SA document, the way how related SA increments were already trans- 
lated into software design increments, and creative design decisions of the involved integration 
tool user. 

Figure 2 shows one example of an SA document and a graphical as well as a textual view 
of its related design document. The top left DFD SellProduct contains the three processes Accept- 
Choice, CheckPayment, and CalculatePrice as well as the two data stores CoinCharacteristics and Pri- 
ceTable. The latter two provide needed input data for CheckPayment and CalculatePrice, respec- 
tively. The DFD in the left bottom corner of figure 2 represents the refinement of the process 
CheckPayment. All involved DFDs—except CheckPayment—are translated into so-called Func- 
tion) modules, all data stores into so-called O(bject) modules, and the occurrence of a certain pro- 
cess or data store Y in a DFD X corresponds to an import between the related modules X and Y. 
The data flows between processes as well as the input and output ports of DFD SellProduct (the 
small rectangles labeled Input and Message on its left-hand side) are disregarded on this level of 
granularity. They may be useful later on for determining formal parameter lists of generated pro- 
cedures.The missing module CheckPayment together with all its dependent components is just 
under construction. The black background color of DFD CheckPayment in the SA document 
informs the integration tool's user that this SA increment has not yet any counterpart in the corre- 
sponding program design. It is up to the user to decide whether it is worthwhile to build a separate 
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module for CheckPayment, too, or whether the functionality of CheckPayment may be im- 
plemented as a single local function of module SeilProduct. 
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Fig. 2: Requirements engineering and program design integration tool. 

The syntax of the regarded requirements engineering and software design documents with 
their diagrammatic notations was no longer defined in the form of EBNFs, but in the form of (ex- 
tended) ER diagrams. As a consequence, a hew meta modeling approach had to be invented to 
identify corresponding entity types of ER diagrams instead of corresponding nonterminal classes 
of previously used EBNFs. This approach to relate entity types of different (database) Schemas 
by deriving them from the same meta class has been adopted by the data base community for solv- 
ing data base migration problems/JJ 95/. 

Unfortunately, it is often not possible to derive consistency checking or document trans- 
formation code directly from constructed meta models. The problem is that entity type correspon- 
dences, such as DFD is either related to module or to procedure, are not precise enough to define 
the wanted behavior of integration tools. Therefore, we returned to the idea presented in /Wes91/ 
to describe the syntax of documents by means of grammars and to specify dependencies between 
documents by coupling these grammars. The main difference between the old proceeding in 
/Wes91/ and the new proceeding in /Lef 95/ is that the former one uses context-free string gram- 
mars (EBNFs) for this purpose, whereas the latter one is based on context-sensitive graph gram- 
mars, as already suggested in /Pra71A 

Following this approach, the specification and realization of document integration tool pro- 
ceeds now as follows: 

1. The internal structures of dependent documents are modeled as directed graphs, which con- 
tain different classes (types) of attributed nodes and edges for different kinds of increments 
and intradocument relations. 
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2. UML' class diagrams are then constructed to define the relevant components of regarded doc- 
ument graphs from a static point of view. 

3. Next, correspondences between UML class diagrams are established in accordance with the 
meta modeling approach of/Jan 92/. They identify possibly related increment classes (node 
types) of dependent documents. 

4. Afterwards, object diagrams are used to define corresponding substructures (subgraphs) of 
related document graphs more precisely on the instance level. 

5. These object diagrams are translated into graph grammars that generate those subsets of 
schema consistent document graphs, which consist of previously defined object diagrams only 
(thereby excluding intermediate inconsistent or incomplete document editing results as valid 
integration tool inputs). 

6. Finally, the constructed graph grammars are coupled such that each production of a master 
document graph is related to a set of productions of a dependent document graph. 

All needed kinds of integration tools may be derived from a single coupled graph grammar 
specification of the corresponding interdocument consistency relations. This includes a forward 
transformation tool, which propagates updates from a master document to the dependent docu- 
ment, a reverse transformation tool, which propagates updates from a dependent document back 
to its master document, or a pure analysis tool, which checks (traces) consistency of dependent 
documents without changing their contents. 

Up to now, all integration tools are manually derived from a given coupled graph grammar 
specification, based on a reusable framework for the construction of integration tools /Nag 96/. 
The reusable framework offers, for instance, various forms of document traversing and compar- 
ing strategies as well as a standard implementation Of integration documents. These integration 
documents, which were first introduced in /Wes 91/, are now used for storing all hyperlinks be- 
tween two dependent documents together with all design decisions of users how to translate up- 
dates of master documents into updates of dependent documents. 

It is the subject of ongoing research activities to translate coupled graph grammar specifica- 
tions, which define interdocument consistency relations in a purely declarative manner, automat- 
ically into programmed graph rewriting specifications, which define the functional behavior of 
specific integration tools in the form of complex document graph transformations /JSZ 96/, 
/Gru97/. These graph rewriting specifications may be translated into equivalent C or Modula-2 
code, using the compiler of the PROGRES graph grammar development environment /SWZ 95/. 

The presented integration tool development process is explained in more detail in the fol- 
lowing section 4. It was already successfully used for realizing another version of the (require- 
ments engineering, software design) integration tool of figure 2 as well as for realizing new in- 
tegration tools between software designs and Eiffel programs or between SA and ER diagrams 
/Lef 95/. Furthermore, related graph grammar based approaches were used for translating rela- 
tional DBMS Schemas into object-oriented DMBS Schemas /JSZ 96/ and for integrating commer- 
cial SA editors with a research prototype for high-level timed Petri nets /BOP 97/. Last but not 
least a refined version of the presented integration approach is currently used for integrating 
chemical process engineering tools /NM 97/. 

1.   UML, the Unified Modeling Language, is the new standard notation for object-oriented analysis and design. It was 
developed by Rational Rose and is now an accepted standard of the Object Management Group OMG /FS 97/. 
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4. Specifying Interdocument Consistency Preserving 
Integration Tools 

The previous section presented a number of graph grammar based integration tools and sketched 
their development. It is the purpose of this section to explain the graph grammar based develop- 
ment of integration toolsin more detail, using the running example of the (requirements engineer- 
ing, software design) integration tool. As already mentioned, the development of such a tool starts 
with modeling all involved types of documents as directed graphs. Different types 6f incre- 
ments—such as DFD or Process—correspond to different types (classes) of nodes, different 
types of intradocument relations—such as DFD contains Process or DFD defines Proces- 
s—are introduced as different types of directed edges (associations). Furthermore, node attrib- 
utes are needed to represent local properties of increments, such as the Name of a DFD or a Pro- 
cess. 

4.1 UML Class and Object Diagrams define Interdocument Relations 

The needed components of document graphs and their relations are introduced as so-called graph 
Schemas. It is a matter of taste whether an ER-diagram-like notation or an UML-class-diagram 
notation is used for this purpose. Within this paper, we prefer the upcoming standard 00 notation 
UML, which allows to draw class diagrams as well object diagrams /FS 97/. Furthermore, UML 
offers the concept of packages, which allows to encapsulate document graph Schemas and to dis- 
tinguish between local and externally visible document graph components. 

SA-SD-Paclcage        | 
■   . 

SA::Obje« SD::Object 

A A 
1 «correspondence» 1 

SA::DFD SD::Module 

                '             l                 i 

SA-Package~"| 

Object 

Namerstring 

I 
i« - - - J        <----?i 

«import» «impon» 

defines ► 

SP-Package"! 

Objeel 

Namerstring 

Module Import 

Fig. 3: Corresponding SA and SD document graph schema definitions. 

Figure 3 shows a cut-out of the graph schema definitions for Structured Analysis (SA) and 
software design (SD) documents. Its packages SA and SD display only those definitions of 
classes and associations which are needed for the translation of a DFD and a Process into a Mod- 
ule and an Import, respectively. Both packages introduce a superclass Object to declare a Name 
attribute for DFD and Process on one side and for Module and import on the other side. Please 
note that the Import relation is modeled as part of its client Module (source) and possesses the 
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Name of its server Module (target) as its own Name. This reflects the way how import relations 
(clauses) are defined in the textual software design document representation of figure 2. 

The additional SA—SD package imports all externally visible classes of its dependent pack- 
ages SA and SD and introduces the required class correspondences between the two (abstract) 
Object superclasses and between their subclasses DFD and Module as well as between their sub- 
classes Process and Import. Many classes and class correspondences have been omitted in fig- 
ure 4 due to lack of space, as e.g. the SD class Procedure and its correspondence to the SA class 
DFD. 

Some constraints have been developed concerning legal and illegal combinations of gener- 
alization relationships with graph schema crossing correspondence relationships. These 
constraints, defined in /Gru 97/, prohibit e.g. the definition of a correspondence relationship be- 
tween the classes SA::DFD and SD::ObjeCt in the presence of a correspondence relationship be- 
tween the classes SA::Object and SD::Module. This is considered as a contradiction between 
the requirement that any SA::Object is mapped onto a SD::Module and the fact that a SA::DFD, 
a special kind of SA::Object, may be mapped onto any SD::Object. 

:SA::DFD 

Name=X 

contains  1 

Name=Y « 

defines 

:SA::DFn 

Name=Y 4 

< <cwrcspondence» 

:SD::Module 

Name=:X 

«correspondence» 
:SD::tmport 

«fcocrespondeoce» 

:SD::Module 

Fig. 4: Object diagram definition of corresponding SA and SD subgraphs. 

Based on graph schema correspondences, which define a superset of all possible relations 
between SA increments and SD increments, it is now necessary to identify existing interdocu- 
ment consistency relations more precisely. Experiences showed that object diagrams are the most 
appropriate notation for this purpose. They allow one to define pairs of subgraphs (subpatterns, 
substructures) on the instance level, which relate certain configurations of SA increments to cor- 
responding configurations of SD increments and vice-versa. Figure 4 presents one example of 
this kind. It states that a DFD X, which contains a Process Y with its own DFD definition, may 
be related to a Module X, which contains an Import clause for Module Y. Furthermore, it re- 
quires that the DFD instances X and Y correspond to Module instances X and Y, and that the Pro- 
cess instance of Y in DFD X corresponds to the Import clause for Module Y in Module X. 

Many object diagrams of this kind are necessary to define the set of all relevant interdocu- 
ment relations between S A and SD document graphs. Unfortunately, it is not possible to establish 
useful consistency or completeness criteria for the resulting set of object diagrams in the general 
case. This is due to the fact that subgraphs of different object diagrams may overlap and that cer- 
tain document subgraphs on one side may not have corresponding document subgraphs on the 
other side. Our running example requires e.g. the construction of another object diagram, which 
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relates the same SA subgraph as in figure 4 to a Module X, which contains a Procedure Y. As 
a consequence, it is not possible to interpret the constructed set of object diagrams as the consis- 
tent definition of a deterministic function, which translates SA documents into SD documents. 
The completeness criteria is violated by the fact that there may be some SA documents without 
corresponding SD documents. There is perhaps no rule how to translate a DFD X, which contains 
a Process X as a forbidden self-reference, into a corresponding SD document substructure. 

4.2 From Class and Object Diagrams to Coupled Graph Grammars 

The UML class diagrams and object diagrams of the previous subsection are the appropriate 
means to discuss the functionality of an integration tools with its future users. These users have 
the needed knowledge about the regarded application domain for building the appropriate set of 
class and object diagrams as well as for checking consistency and completeness of these dia- 
grams. The following step of the integration tool building process is on a more technical level 
and may be performed without any assistance of application domain experts. It concerns the 
translation of a set of object diagrams into a coupled graph grammar specification. Each object 
diagram is translated into one or more coupled graph grammar productions. Each coupled graph 
grammar production is a pair of two regular graph grammar productions plus the definition of 
a correspondence relationship between the nodes on the left- and right-hand sides of the com- 
bined productions. 

coupled production Creäte-DFD&Module = 

«empty left-hand side> 

i 
<einpt\ lift-hand SH)L> 

aiSASWT* 

.aSDSMnrtiite 

BNaBsS« 

::SÄgraph grammar subpröddfetfon 

correspondence relationship 

«SD gr$ph£r.iminar subprwluuion 

coupled production Create-Process&lmport = 

4.SD Mo,li,l> 

aSffltex?; 

6:SD:.Module 

mintmlii 
4SD Moilnlc contain«    5SD: Imnon defines 

Fig. 5: Two coupled graph grammar productions derived from figure 4. 

Figure 5 shows two examples of coupled graph grammar productions, which were pro- 
duced by taking the object diagram of figure 4 as input. The main problem of the transition from 
object diagrams to coupled graph grammars is that we have to distinguish between context nodes, 
which are part of a production's left- and right-hand side, and new nodes, which are only part of 
a production's right-hand side. It is, for instance, not useful to define a graph grammar produc- 
tion, which creates a Process Y as part of a DFD X together with its DFD definition Y. As a 
consequence, we would not be able to deal with a DFD without any applied Process occurrences 
or with more than one occurrence. It is, therefore, better to translate the object diagram of figure 
4 into two coupled graph grammar productions, as presented in figure 5. The first one, Create- 
DFD&Module, consists of two regular graph grammar subproductions, which have connected 
grey rectangles as background. Both subproductions have an empty left-hand side and a single 
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node on the right-hand side. The SA subproduction creates an isolated DFD node with Name 
= Y in the SA document graph, the SD subproduction a corresponding Module node with the 
same Name in the related SD document graph. 

The following coupled graph grammar production Create— Process&lmport of figure 5 
matches two pairs of corresponding DFD and Module nodes with the left-hand sides of its two 
subproductions. These nodes together with their correspondence relationship are preserved by 
the given subproductions due to the fact that the defined right-hand sides contain their left-hand 
sides as subgraphs. Furthermore, the coupled subproductions create a new Process occurrence 
of DFD Y in DFD X as well as a corresponding Import clause with Module X as client and Mod- 
ule Y as server. 

4.3 From Coupled Graph Grammars to Integration Tool Specifications 

As already mentioned, one coupled graph grammar serves as the specification for a number 
of related but nevertheless quite differently behaving integration tools. The same coupled SA-SD 
graph grammar may for instance be used to develop an incrementally working forward engineer- 
ing tool, which translates S A document updates into SD document updates, and a batch-oriented 
reverse engineering tool, which takes a complete SD document as input and produces a corre- 
sponding S A document as output. This a consequence of the fact that coupled graph grammar 
productions do not distinguish between master documents and dependent documents and that 
they do not prescribe how and when consistency between dependent documents is (re-estab- 
lished. 

Coupled graph grammars, which are constructed using a set of object diagrams as input, 
never contain node or edge deleting productions, i.e. the left-hand sides of their productions are 
always subgraphs of their right-hand sides. The restriction to non-deleting productions is not as 
severe as it seems to be at a first glance. This is due to the fact that the productions of a coupled 
graph grammar are not the editing operations for the involved types of documents. Document 
graph editing operations are defined without having certain interdocument consistency relations 
in mind. Furthermore, they do not only create, but modify and delete document components. Last 
but not least the editing operations for a certain type of document graphs may be used to manipu- 
late subgraphs, which are irrelevant and therefore hidden for the regarded document integration 
task (cf. /Nag 96/ for further details concerning the definition of document views for integration 
tools). 

The restriction to non-deleting productions is the necessary prerequisite for being able to 
derive different kinds of (efficiently working) integration tools from one coupled graph grammar 
specification. Otherwise, we would be forced to parse pairs of document graphs w.r.t. to unre- 
stricted types of graph grammars in order to be able to check interdocument consistency relations 
(i.e. to solve the membership problem for type 0 grammars, which is undecidable in the general 
case). Having the restriction to non-deleting productions in mind, it is possible to translate 
coupled graph grammar productions into different sets of ordinary graph transformation rules. 
One set of transformation rules defines the functional behavior of a forward transformation in- 
tegration tool, another one the behavior of the corresponding reverse transformation integration 
tool, a third one the behavior of a consistency checking tool, and so on. 

Figure 6 shows one example of a derived SA-SDforwardtransformation rule. It translates 
a Process occurrence of DFD Y in DFD X of the S A document into an Import between the re- 
lated Modules X and Y of the SD document. This rule was constructed as follows: its left-hand 
side is the combination of the right-hand side of the corresponding SA production with the left- 
and side of the corresponding SD production in figure 5, its right-hand side is the combination 
of the right-hand sides of the two coupled SA and SD productions. 
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transformation Translate-^röcess-Inlo-lmport = 

l:SA::DFD 

2:SA::Process 

«tiirrespomlence » 
4:SD::Mni1iifc 

defines 

iSAJJED fcSE>;:Mo<tote 

Name=Y 

1:SA::DFD 

2;SA;;Prgcw 

3:SA::DFD 

Name=Y       < 

4:SO::Module 

Name=X 

client 

. 5;SD;;lmiwrt 

Name=Y 

server 

6:SD::Module 

Name=Y 

Fig. 6: A forward graph Iransformation rule from SA to St).', 

An SD-S A reverse transformation rule may be constructed by simply exchanging the roles 
of SA and SD productions in the previous paragraph. A consistency checking and correspon- 
dence relationships establishing transformation rule may be built by merging the constructed for- 
ward and reverse transformation rules. 

4.4 From Integration Tool Specifications to Implementations 

All generated transformation rules have to be combined with a reusable framework, which deter- 
mines the order of rule applications and which processes needed user interactions. Furthermore, 
the framework provides a certain bookkeeping strategy for not yet transformed document parts 
or already transformed but afterwards changed document parts. Please note that "real" graph 
transformation rules are more complex than the one presented in figure 6. They use a rhore so- 
phisticated representation of correspondence relationships (as nodes and edges of separate in- 
tegration document graphs) and manipulate therefore three related subgraphs of a hierarchical 
graph instead of one flat graph only/Nag 96/. 

The finally needed translation from forward or backward graph transformation rules to effi- 
ciently executable Cor Modula-2 code is supported by the PROGRES graph grammar environ- 
ment /SWZ 95/. This environment is available as free software on the world-wide-web page 

httpS/www-J3Jnfonvatik.rwth-aachen.de/research/progres/index.html 
It represents an integrated set of tools for syntax-directed editing, analyzing, and executing single 
graph transformation rules or complex graph transformation programs. Two execution modes are 
supported: (1) direct interpretation of created specifications and (2) compilation into lower level 
programming languages such as C and Modula-2. Generated program fragments may be com- 
bined with a hand-crafted code, such as the integration tool framework mentioned above. 

For further details concerning the construction of graph transformation rules from coupled 
graph grammars and the implementation of the needed framework the reader is referred to 
/Nag96/, /JSZ96/. 

5. Formal Background of Coupled Graph Grammars 

The preceding sections introduced a graph grammar based method for the specification and im- 
plementation of document integration tools on a rather informal level. A complete formal defini- 
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tion of graph grammars, their underlying graph data models, and the definition of appropriate 
graph grammar coupling mechanisms is outside the scope of this paper. The interested reader is 
referred to /ES 96/ for a formal treatment of restricted types of graph grammars as a visual lan- 
guage syntax definition and parsing formalism and to the chapter 7 of the Handbook of Graph 
Grammars /Sch 97/ for the formal definition of a very general class ofprogrammed graph trans- 
formation systems. 

For further details concerning the usage of programmed graph transformation systems as 
a tool specification and implementation mechanism the reader is referred to /Nagl 96/. Further 
information concerning the design and implementation of the very high-level programming lan- 
guage PROGRES and its programming environment may be found in /SWZ 95/. 

Last but not least the reader is referred to /Sch 94/ for a formal definition of coupled graph 
grammars. Which is based on a very simply graph data model (without different types of nodes 
or edges and without attributes) and a simple form of graph grammar productions. A formal defi- 
nition of coupled graph grammars for a more complex UML-compatible graph data model and 
more complex forms of productions is under development. Its first version, published in /Gru 97/, 
provides the formal background for the definition of correspondences between graph Schemas 
(UML class diagrams) and the definition of coupled graph grammar productions, which respect 
the previously defined graph schema correspondences. 

6. Summary and Future Work 

Development processes of various engineering disciplines are usually rather complex. They con- 
sist of many interacting subprocesses, which are carried out by different developers. Various ap- 
proaches are propagated nowadays how to support developers in executing their subprocesses 
and how to guarantee the overall consistency of their results, rather complex configurations of 
dependent technical documents. One may use the experience of developers 

•'. by recording traces of successfully executed subprocesses and transforming them into re- 
peatable process chunks/PDJ 94/, 

"' •  by offering means for direct multi-media communication, which are tightly integrated with 
technical document manipulating tools /Her 967, 

•  and by realizing interactive integration tools, which help their users to monitor and (re-es- 
tablish interdocument consistency relations., 

These three different approaches complement each other and may be combined with appropriate 
management tools to support engineering processes on a very high level /NW98/. 

This paper had a main focus on document integration tools. It presented a graph grammar 
based method for deriving efficiently working integration tool implementations from very 
high-level interdocument consistency specifications. It is worth-while to notice that the presented 
method requires not a complete formal specification of the (semantics of the) considered types 
of documents and the involved modeling languages and methods. It is sufficient if all regarded 
documents have a well-defined internal structure (syntax definition) and if we have some knowl- 
edge about possibly corresponding patterns of increments in related documents. 

The functionality of presented integration tools varies from a low-level hypertext editor, 
where all interdocument relations have to be created and maintained manually (if almost no 
knowledge about interdocument consistency relations is available) to an automatically working 
document transformation tool (if interdocument consistency relations may be defined as a total 
and deterministic function). In many cases the available knowledge about regarded document de- 
pendencies lies between these two extremes, such that the resulting integration tools are able to 
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perform trivial consistency (re-establishing tasks on their own and to compute sets of possible 
consistency (re-)establishing actions in the general case. 

It is the subject of ongoing research activities to generalize the presented coupled graph 
grammar formalism w.r.t. the form of permitted coupled subproductions. Furthermore, we are 
planning to realize a new generation of graph grammar coupling tools, based on the experiences 
reported in /JSZ 96/ with a rather ad hoc approach to use the PROGRES environment for this 
purpose. These tools will offer appropriate support for entering graph schema correspondences 
and coupled graph grammar productions, for checking the consistency between graph schema 
correspondences and coupled productions, and for translating coupled graph grammar specifica- 
tions into ordinary PROGRES specifications of needed integration tools. 

Finally, we are making our first experiences with changing our focus from tightly inte- 
grated software engineering environments to tightly integrated chemical process engineering en- 
vironments/NM 97/. The new application domain forced us to complement coupled graph gram- 
mars with UML class and object diagrams as more appropriate means of communication between 
domain experts and future users of integration tools and their developers. But the main challenge 
of the new application domain is that we have to generalize the presented integration approach 
from the a-priori integration of self-developed (software engineering) tools to the a-posteriori 
integration of already existing chemical process engineering tools. 
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Abstract 

Modeling and documentation are two essential ingredients for the engineering 
discipline of software development. During the last twenty years a wide variety of 
description and modeling techniques as well as document formats has been pro- 
posed. However, often these are not integrated into a coherent methodology with 
well-defined dependencies between the models and documentations. This hampers 
focused software development, as well as the provision of powerful tool-support. In 
this paper we present the main issues and outline solutions in the direction of a 
unified, formal basis for software and system modeling. 

1    Introduction 
Computer technology for commercial applications has evolved rapidly from mainframes 
through personal computers to distributed systems. Software engineering has not been 
able to keep pace with the resulting demand on powerful application development meth- 
ods. This is exemplified by an ever growing number of software projects running behind 
schedule, delivering faulty software, not meeting the users needs, or even failing com- 
pletely. There are a number of reasons for that ranging from inadequate project man- 
agement, over communication problems between domain experts and software developers 
to poorly documented and designed software. A recent inquiry on industrial software de- 
velopers [DHP+98] has shown that despite the great variety of CASE-tools, development 
methods, and modeling techniques, software development still largely produces informal, 
incomplete and inconsistent requirements and design descriptions and poorly documented 
code. Modeling techniques are used selectively, but not integrated with each other and the 
coding. The great variety of proprietary modeling techniques and tools makes it difficult to 
choose an adequate selection for a project. As exemplified by the newly evolving standard 

•The authors of this paper were funded by DFG-Sonderforschungsbereich 342 "Werkzeuge und Metho- 
den für die Nutzung paralleler Rfichnerarchitekturen", the project "SYSLAB" supported by DFG-Leibnitz 
and Siemens Nixdorf, and the Forschungsverbund FORSOFT supported by the Bayerische Forschungss- 
tiftung. 
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Unified Modeling Language [BRJ97], the techniques provide a rich collection of complex 
notations without the corresponding semantical foundation. Since only static models are 
linked to code, behavioural models can only serve as illustrations not worthwhile the big 
effort of building the model. 
This situation will only change, if modeling techniques come with a set of development 
steps and tools for incremental model development, consistency checks, reasoning support 
and code generation. Mathematical description techniques like Z [Wor92] or LOTOS 
[Tur93] provide such development steps, but their uptake by industry is hampered by 
their heavy notation, lack of tools and lack of integration to established specification and 
assurance techniques [CGR93]. Recently, a number of approaches for the combination of 
mathematical and graphical modeling techniques have evolved (e.g. [Huß97, BHH+97]) 
proving the viability of the integration of selected modeling techniques and formalisms. 
However, the integration of mathematical arid graphical modeling techniques covering the 
whole process of system and software development is still an open problem. 
The aim of this paper is to describe coherently the major issues in providing such an 
integrating basis. Experience on this subject has been gained mainly in the projects 
Focus [BDD+93], SYSLAB [BGH+97b] and AUTOFOCUS [HSS96]. The project Focus 
is devoted to developing a mathematical development method for distributed systems. 
SYSLAB concentrates on graphical description techniques, their formal semantics based 
on Focus and their methodical use, in particular for object-oriented systems. AUTOFOC- 

US is building a tool aimed at the development of distributed/embedded systems allowing 
the combined use of mathematical and graphical description techniques and providing 
powerful development steps based on the formal semantics. Its main application area are 
components of embedded systems. None of the projects covers the whole development 
process, but taken together they provide a clear picture of the road to follow. 
The paper is structured as follows. In the first section we introduce Focus, the theory 
of stream processing functions, as the mathematical basis of our work. First, we present 
FOCUS independent of a particular application area. Then we show how to adapt it to 
object-oriented systems. Focus comes with a set of notations and a methodology for 
developing formal specifications which can only be touched on in this paper. Refinement 
and compositionality provide the foundation for the formal development steps. We close 
this section with a discussion on the enhancement of formal notations to be useful for 
practitioners. 
We then go on to describe the indirect use of Focus as the integrating formal semantics 
for graphical modeling techniques used in software development. We describe a bunch 
of graphical description techniques covering the main system aspects. These modeling 
techniques are similar to the ones used by structured or object-oriented methods. How- 
ever, they differ in detail, because they have been developed with a particular focus on 
an integrating formal semantics. The aim of that section is to make explicit the most 
important issues in providing such an integrating formal semantics. 
The indirect use of formal methods is very valuable to the method developer. It is only 
useful to the system developer, if the modeling techniques are accompanied by powerful 
development steps which allow them to check and enforce the formal dependencies between 
the models. In the third section we discuss consistency checking, model validation and 
transformation as the most important development steps, together with possible tool 
support. 
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The modeling techniques and development steps have to be integrated into a process of 
system development, covering requirements definition, analysis, design and implementa- 
tion. In the fourth section we present a framework making explicit the different modeling 
areas to be covered, namely the application domain,.the system usage and the software 
system, as well as the interplay between different system views and their corresponding 
modeling techniques. 
We close with an outlook on future work. Related work is dicussed along the way. 

2    Semantic Framework 

In this section we describe the formal semantical basis. First, we sketch the mathematics 
of system description, treating object-oriented systems äs a special case. Then we present 
refinement as major constitutent of formal system development. We describe the process 
of formal system development and close with an evaluation of this direct use of Focus, 
a general framework for formal development of distributed reactive systems. 

2.1    Mathematical Basics 

FocuS incorporates a variety of techniques, specification formalisms and semantic choices. 
We only give a short and informal description of the main concepts and some simple for- 
mulas. The interested reader is referred to details on [BS97, BDD+93] for an introduction 
and more formalization, and [BBSS97] for an overview of case studies. There are many 
other formal development methods and description techniques, see e.g. TLA, UNITY or 
PROCOS. For further reading and a comparison between these and many other formal 
methods like algebraic or temporal logic approaches based on an uniform example we refer 
to[BMS96]. ' ... . ..■*:-.•■■ 
According to the concept of Focus, a distributed system consists of a number of com- 
ponents that are partially connected with each other or with the environment via asyn- 
chronous one-way communication channels, comparable with unbounded FIFO-buffers. 
With the behaviours of components and the topology of the network-the connection of 
components via the communication channels - the system is completely 'described. The 
behaviour of a system can be deduced from the behaviour of its constituents. This is 
possible because the formal basis of Focus allows modular systemsspecification with 
compositional semantics. ■■'--. 

Timed Streams 

The basic data structure needed for the definition of component behaviour are timed 
streams. Assuming a global and discrete time we model the time flow by a special time 
signal called time tick. Denoted by j, a tick indicates the end of a time interval. A timed 
stream is a sequence of messages and yj that contain an infinite number of time ticks. 
Apart from the time ticks the stream may contain a finite or infinite number of messages. 
Let M be a set of messages that does not contain the time signal y/. By M" we denote 
streams of messages and by M" we denote the set of infinite, timed streams which contain 
an infinite number of ticks. To illustrate the concept of a timed stream we show a simple 
example. The timed stream 
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a y/ab y/y/bca y/ b ^/... 

contains the stream of small letters aabbcab. In the first time intervall a is communicated, 
in the third intervall there is no communication and in the fourth intervall first b then c 
and last a is communicated. 
The special time signal s/ should not be understood as a message that is transmitted, but 
as a semantic concept to represent discrete global time. With timed streams complete 
communication histories are modelled: a specific stream that is associated with a channel 
between two components contains all information about what message is sent when be- 
tween these components. Semantic variants of Focus abstract from time in the untimed 
model. In the synchronous model in every time intervall at most one message can be 
transported between two components. 

Component Definition 

A (system) component is an active information processing unit that communicates with 
its environment through a set of input and output channels. To define a component, 
first the interface must be declared. This contains a description of its input and output 
channels as well as the type of messages that can be received or sent via these channels. 
The behaviour of a component is described by a relation between its input streams and 
its output streams, containing the set of communication histories that are valid for this 
component. One way to describe this relation is to define a stream-processing function 
that maps input streams to sets of output streams. This function reads an input stream 
message by message, and writes - as reaction - some output messages onto the output 
channels. Stream-processing functions have to fulfill further semantic properties as con- 
tinuity, realizability, time-guardedness and more, as explained in literature. It is possible 
to use state parameters to store control states or additional data that can be helpful for 
easier modelling. 
Let / be the set of input channels and O the be the set of output channels. Then by 
(/, O) the syntactic interface of a component is given. With every channel in I U O we 
associate a data type indicating the type of messages sent on that channel. 
To describe and to design the topology and the behaviour of a distributed system and 
its components, Focus offers different graphical and diagrammatical notations, see sec- 
tion 3. All these description formalisms are well founded in the mathematical framework 
described in this section. A graphical representation of a component with its syntac- 
tic interface I = {ix,...,in} resp. O — {oi,...,om} and the individual channel types 
Si,...,Sn resp. Ri,...,Rm is shown in Figure 1. 

i I :.Si oi * Ri 

f 

i n : $n °n> Rm 

Figure I: Graphical Representation of a Component as Dataflow Node 
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Given a set of channels C we denote by C the set of all channel valuations It is defined 
by: 

C = (C->MU) 

Channel valuations are the assignments of timed streams to all channels in C. We assume 
that the streams for the channels carry only messages of the right type. 
We describe the behaviour of a component by a stream-processing function. It defines the 
relation between the input streams and output streams of a component that fulfills certain 
conditions with respect to their timing. A stream-processing function is represented by a 
set-valued function on valuations of the input channels by timed streams that yields the 
set of histories for the output channels 

.•/■:•/-» V(<5) 

and that fulfills the timing property time-guardedness. This property axiomatises the 
time flow. It expresses that the set of possible output histories for the first i + 1 time 
intervals only depends on the input histories for the first i time intervals. In other words, 
the processing of messages in a component takes at least one tick of time. For a precise 
formal definition of this property see [BS97]. 

2.2    Foundations of Object Orientation 

Based on the theory given above, we have defined a set of concepts to give Focus an 
object-oriented flavor. This allows us to give a formal semantics to object-oriented mod- 
elling techniques, like UML [BRJ97] as we have done in [BHH+97]. 
For that purpose, we have defined a "system model" in [KRB96], that characterises our 
notion of object-oriented systems. Objects can be naturally viewed as components, as de- 
fined in the last section. Based on that, communication paths are defined using identifiers, 
where each object is associated with exactly one identifier (its identity). 
In the system model, objects interact by means of asynchronous message passing. Asyn- 
chronous exchange of messages between the components of a system means that a message 
can be sent independently of the actual state of the receiver, as e.g. in C++ or Java. To 
model communication between objects we use the Focus basic data structure of streams 
and stream-processing functions. 
Objects encapsulate data as well as processes. Encapsulation of process means that the 
exchange of a message does not (necessarily) imply the exchange of control: each object is 
regarded as a separate process. Encapsulation of data means that the state of ah object is 
not directly visible to the environment, but can be accessed using explicit communication. 
The data part of the object defines its state. It is given in terms of typed attributes. 
Objects are grouped into classes, that define the set of attributes of an object and its 
method interface (= message interface). This allows to model the behavior of the objects 
of each class c as stream-processing functions fc mapping input histories to sets of output 
histories. As usual, classes are structured by an inheritance relation C. We thus get a 
natural definition of inheritance of behavior if we demand that if a class inherits from 
another, its possible behaviors are a subset: 

Vc,d: Class. cQd => fcQfd 
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In case of method extension, this constraint is adapted to an interface refinement con- 
straint. 
Dynamic and mobile features, such as creation of new instances and change of communi- 
cation structures are also characterized as extension of Focus. 

2.3 Refinement and Compositionality 

Based on a first formal specification, the development of software and also of distributed 
systems is going through several development phases (or levels of abstraction). Through 
these phases the envisaged system or system component is described in an increasing 
amount of detail until a sufficiently detailed description or even an implementation of the 
system is obtained. The individual steps of such a process can be captured by appropriate 
notions of refinement. In a refinement step, parts or aspects of a system description are 
described more completely or more detailed. For this purpose, Focus offers a powerful 
compositional refinement concept as well as refinement calculi. On the semantic level, 
refinement is modeled by logical implication. The important refinement concepts are: 

Behavioural Refinement: The aim of this refinement is the elimination of underspec- 
ification as it is needed e.g. for the specification of fault-tolerant behavior. 

Interface Refinement: Here, the interface of a specification is refined by changing the 
number or types of the channels as it is needed for concretisation of messages or 
splitting communication connections between components. 

Structural Refinement: This concept allows the development of the structure of the 
distributed system by refining components by networks of components. 

2.4 A Formal System Development Process 

Focus provides a general framework and a methodology in the large for the formal spec- 
ification and stepwise top-down development of distributed reactive systems. The formal 
system development process consists of several phases of abstraction: 
During the Requirement Phase, a first formalization of a given informal problem descrip- 
tion is developed. Since the informal description is often not detailed enough, this first 
step of a system specification is often hard to develop. It is, however, essential for the 
formal system development, because it will be used as the basis for further development 
of specifications with growing degree of accuracy in the following phases. In this step, 
specifications can be formalized as either trace or functional specifications. The transition 
between these paradigms is formally sound and preserving correctness. 
During the Design Phase, the essential part of the system development is carried out by 
developing the structure of a distributed system and refining it up to the intended level of 
granularity. These formal development steps are based on the specification determined in 
the requirement phase and their correctness will be shown relative to the first formaliza- 
tion. Because the formal development of a more detailed specification possibly uncovers 
mistakes or imprecise properties in earlier formalizations the top-down development is not 
linear but rather leads to re-specifications of some parts of earlier formalizations. Only 
the description of system properties in a mathematical and precise manner gives a system 
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developer the possibility to formally prove and refine system properties and descriptions. 
In this phase, in Focus the specifications are based on the denotational semantics which 
models component behaviour by stream-processing functions. For the development of the 
specifications during the design phase, paradigms like relational and functional specifica- 
tions as well as several specification styles like Assumption/Commitment or equational 
specifications are defined. To increase its usability Focus is adapted for the use of var- 
ious engineering oriented and practically used techniques and formalisms like tables or 
diagrams, see section 3. Due to the specific natures of these variants they can be used 
tailor-made for the solution of specific problems. 
During the Implementation Phase the design specification is transformed into an imple- 
mentation. This phase is subject of future work. 

2.5 Further Work 

Since the semantic foundations of Focus, including its development techniques are al- 
ready explored in depth, the emphasis of further work lies on a better applicability of 
the methodology, especially for system developers less experienced in formal methods. 
For that purpose, additional wide-spread description techniques, (semi-) automatic and 
schematic proof support have to be offered. Several techniques for describing and speci- 
fiying systems (like tables, state or system diagrams, MSC-like event traces, the "As- 
sumption/Commitment" style) were successfully integrated in the methodology. With 
AUTOFOCUS, tool support for system development is already available, giving future 
case studies a new quality by offering appropriate editors, consistency checks, code gener- 
ation and even simulation. Current research activities concern the enhancement of Focus 
with methodical guidelines to ease the use of the mathematical formalism, the description 
techniques and the development methodology for non-specialists and to support solutions 
for specific application fields, like the modelling of operating systems concepts in [Spi98]. 
Case studies are an important and stimulating work for testing Focus in different appli- 
cation areas. Focus will be further improved, using the experience gained from the great 
number of case studies collected in [BFG+94] and [BBSS97] and future studies to come. 

2.6 On the Direct Use of Formal Description Techniques 

In the last sections we have sketched a mathematical framework for system specification. 
This allows developers to precisely describe structural and behavioural properties of the 
components and the composed system. As will be argued in section 3, one can hide 
the mathematics to developers through the use of graphical description techniques whose 
semantics is based on the formal framework. However, not everything can adequatly be 
expressed in diagrams. Especially, behavioural properties are difficult to express. Thus, 
for example, object-oriented specification methods typically use state transition diagrams 
to describe method acceptance in classes or collaboration diagrams to describe method 
calls between classes, but only programming language code to define the method bodies. 
Mathematical specification languages like Focus allow complete behaviour description 
in a much more declarative style. To be useful for practitioners, however, the notation 
must be simple and the specification language must be enhanced with guidelines for 
a systematic development of specifications.  These guidelines are useful for developers 
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formulating properties of individual systems, as well as for method developers who need 
to state and verify properties of the (diagrammatic) description techniques on the basis 
of the formal semantics. 
In the following we present an example of some guidelines to write down formal specifica- 
tions in Focus. To make formal specification techniques and methods more acceptable it 
is essential that the developer is in the position to concentrate on his or her problem and 
not on the correctness of the formalization. In Focus, equations on stream-processing 
functions describe the mapping of patterns of input messages to patterns of output mes- 
sages. [Spi98] proposes a special strategy to formulate the required behaviour as struc- 
tured text. The translation of this text into a functional equation is supported by special 
schemes. In the following we show such a schema regarding a component C with one 
input channel In and one output channel Out, where messages of type Integer flow on 
these channels. We require that C computes the square of each input message and sends 
it on the output channel. For this input/output behaviour we give the following textual 
description: 

If the component C receives a message X e Integer on the input channel 
In, then C sends as reaction the square X2 as output message on the output 
channel Out. 

This structured text, which includes all information needed to specify the required be- 
haviour, can be translated with the available schemes in the following functional equation 
(here fc denotes the stream-processing function modelling the behaviour of the compo- 
nent C): 

fc({In^X}os) = {Out-> X2} o fc(s) 

3    Description Techniques 

A description technique can be best characterized as a specialized language with the 
purpose of describing a particular view of the systems to be developed. With the Focus 
method, we have already been able to precisely define what our notion of a system is. 
It is then an important task to define an appropriate set of description techniques which 
allow developers to describe properties of systems. 
In the first subsection, we will in general describe the notion of a description technique, 
how we treat them, and what the benefits of this treatment are. 

3.1    Description Techniques, Notations and Semantics 

A description technique serves the purpose of describing particular aspects (views) of a 
system. There exist a variety of graphical and textual description techniques, that allow 
to describe different aspects. 
A description technique comes along with 

• a concrete syntax (this is the concrete layout of all documents), 

• an abstract syntax (without "syntactic Sugar"), 
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• context, conditions for Wellformedness, and 

• a semantics definition. 

For a precisely defined description technique all four parts must be present. In case of 
textual notations, concrete and abstract grammars are common for the syntax, attributes 
on this grammar can be used for wellformedness conditions, and the semantics is usually 
defined as a mapping from the syntax in an appropriate semantic domain. 
Similar techniques can be used for graphical notations. Each graphical notation basi- 
cally defines a language of wellformed documents, which serves as the syntactic domain. 
As we want to use several description techniques for describing different aspects of the 
same systems, we need semantics definitions (mappings) that map the different syntactic 
domains onto the same semantic domain. This is the necessary basis to integrate the 
different description techniques during development. If we map different notations onto 
the same semantic domain, we (meaning the notation developer!) can compute context 
Conditions between different notations, which ensure consistency of several views onto a 
system. Moreover, we can justify the correctnes of translations from one notation into 
another one, e.g. translating Message Sequence Charts into State Machines, or generating 
code. Last but not least, we can justify the correctnes of refinement calculi for the given 
descriptions. 
There are other benefits of defining a precise semantics, e.g. the developer of the seman- 
tics gains a deeper understanding of the used notations. However, usually this formal 
semantics definition cannot be communicated to method users, only the (informal) in- 
terpretation of the insights can [FB97]. However, the most important bargain of precise 
semantics is the possibility to automate development steps. 
As graphical techniques usually are not powerful enough to describe (or prove) every 
property of a system, it can be interesting to actually translate the documents of a notation 
into their "semantics" and use the power of the semantic formalism to specify further 
aspects.. In our case, e.g. different kinds of diagrams can be translated into formulas only 
using concepts of Focus. 
In the following, we sketch the most important notations we nave dealt with. We sketch 
the purpose of the notation and results, we have achieved on that notation. 
We emphasize that it is important to also use explanations or other informal kinds of 
diagrams and text during development. A good method does not only deal with formal 
notations, but also allows the systematic treament of informal documents. The AuTO- 
Focus too! uses a subset of the description techniques introduced below in variations 
that are tailored for the development of embedded systems (cf. Figure 2). 

3.2    System Structure Diagrams (SSD) 

System Structure Diagrams as used in AUTOFOCUS (Figure 2, upper middle) focus on 
the static structure of a system. They graphically exhibit the components of a system 
and their interconenctions. Such, they describe the glass box view of a Focus component 
and are therefore rather similar to ROOM charts [SGW94]. These diagrams focus more 
on the static part of a system and are not used in UML [BRJ97], where everything is 
assumed to be highly dynamic. . 
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Figure 2: AuTöFocus Description Techniques: SSD, EET, and STD 

Components may be hierachically decomposed. Therefore, for each non-elementary com- 
ponent such an SSD can be defined, leading to a hierachy of SSD documents describing 
a hierachical system structure. 
If a system (or system component) exhibits dynamic properties, like changing the Com- 
munication structure or creating/deleting components, the SSD can be used to describe 
structural snapshots or the static part of the structure. In an object-oriented flavor, an 
SSD defines a snapshot of data and communication paths between a set of objects. 
As SSDs describe the architectural part of a system, there exists a refinement calculus 
for architectures, that allows to transform the internal structure of a component, e.g. by 
adding new components or changing communication paths, without affecting the external 
behavior of the component [PR97b, PR97c]. 

3.3    Class Diagrams (CD) 
Class Diagrams are the most important object-oriented notation, and are therefore part 
of UML [BRJ97]. They are used to describe data aspects of a system as well as possible 
structure layouts. In contrast to System Structure Diagrams, that focus on the "instance 
level", Class Diagrams focus on the "type level". Each class may have several objects as 
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instances, each association represents links between appropriate objects. 
Class Diagrams define a large class of possible structures. To further detail these struc- 
tures, different kinds of invariants are added.  E.g.  associations have multiplicities, but 
in general, it is possible to add predicates defined in our Specification Language SL (see 
below). 
Class Diagrams are also used to define the signature of a class and their state space. 
The signature consists of a set of method definitions, that also define the set of possible 
messages. The attributes define the state space. 
In [BHH+97] we have argued about the semantics of Class Diagrams: Although Class 
Diagrams are a rather well understood technique, there are still open questions, e.g. on 
the treatment of aggregates. 

3.4 Specification Languages (SL) 

Not every aspect of a system can or should be described using graphic techniques. For 
example datatype definitions or additional constraints are best described using a textual 
notation. In UML e.g. OCL has been introduced for describing a certain type of con- 
stants. However, as OCL does not allow to define data types or auxilary functions, and 
based on our experiences with algebraic specification techniques [BBB+85, BFG+93a], we 
have decided to define an own language for that purpose 
SL is an axiomatic specification language based on predicate logic, resembling Spectrum 
[BFG+93a, BFG+93b]. SL allows declarative definitions of properties: Particularly, SL is 
used for the definition of pre- and post-conditions of transitions and for the definition of 
state invariants not only in single objects but also between several objects in the Class 
Diagrams. In order to enable automatic testing of verification conditions; SL also incor- 
porates concepts of functional programming, especially some taken from Gofer [Joii93]. 
The step from high-level descriptions towards executable code is facilitated, which in turn 
facilitates prototyping. 
When restricting to the executable sublanguage, and furthermore to the datatype defini- 
tions, then an automatic translation into simulation code is possible. 
We also have experimented with HOLCF [Reg94] as higher order logic as a property defi- 
nition language, especially if used as a front end for the theorem prover Isabelle [Pau94] 

3.5 Message Sequence Charts (MSC) and Extended Event Traces 
■.-•■   (EET) ■■■ ■■■■.:.■..:..■'■■■ .... 

Message Sequence Charts and Extended Event Traces are both used to describe the flow 
of communication within exemplary runs of a part of a system. Constituting a high level 
of abstraction, MSC are well suited to capture a system's requirements. Moreover, MSC 
can be used for and generated by simulation, respectively. We have developed different 
flavors of this technique. One focuses on synchronous message passing between different 
components [BHS96, BHKS97] and its semantics is primarily a set of traces. These are 
called Extended Event Traces and are used in AutoFocus (Figure 2, top right). 
The other variant focuses on object-oriented systems and is more similar to MSC'96 
[Int96]. Both variants are compared and argued about their semantics in [BGH+97a]. 
For the EET a set of operators was defined to combine EET sequentially, in parallel and 
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iterated.   This allows not only to define exemplary behavior, but also complete sets of 
behaviors. 
Currently, work is in progress to map EET into State Transition Diagrams. 

3.6 State Transition Diagrams (STD) 

In principle State Transition Diagrams describe the behavior of a component using the 
state of this component. But there are different abstractions and therefore flavors possible. 
E.g. STD can be used early in the development (analysis) and also in the design phase, 
when some kind of "lifecycle" of a component is modelled. During detailed design and 
also prototyping, pre- and postconditions of a certain form (e.g. executable) can be used 
to generate code. 
We have explored and developed a whole variety of State Transition Diagrams, that allow 
to capture more than just one input or one output element on a transition. Usually a 
transition is attributed with a set of messages (sometimes restricted to one message) to 
be processed during the transition and a set of messages to be produced. There are timed 
and untimed variants, and there are variants incorporating pre- and postconditions on 
transitions [RK96, PR94, GKR96, GKRB96, GR95, Rum96, PR97a]. 
In the object-oriented flavor, State Transition Diagrams describe the lifecycle of objects. 
In STD, descriptions of state and behavior are combined. STD can be used at different 
levels of abstraction, that allow both the specification of an object's interface as well as 
the specification of individual methods. Refinement techniques enable not only inheri- 
tance of behaviour but also stepwise refinement of abstract STD [Rum96], resulting in an 
implementation. 
A textual representation of State Transition Diagrams can be given using appropriate 
tables [Spi94, Bre97]. Hierachical variants of State Transition Diagrams are examined in 
[NRS96] and also used in AutoFocus (Figure 2, bottom left). 
State Transition Diagrams are an extremely promising notation, as they allow on one 
hand to describe behavior, but on the other relate it to the state of a component. They 
allow to think in rather abstract terms of interaction sequences, but also can be used 
to describe a strategy of implementation (and therefore code generators). It is therefore 
worth to explore more precise variants of STD than the ones given in nowadays methods 
as UM'L. 

3.7 Programming Language (PL) 

The ultimate description technique is the target programming language. For object- 
oriented systems, Java [GJS96] is a rather interesting choice for an implementation lan- 
guage, as it exhibits a lot of desirable properties. It is not only a language with a set of 
consolidated and clear concepts, it also exhibits some notion of concurrency, which allows 
to implement the concurrency concepts of Focus. Hence, we have had a closer look on 
Java, e.g. selecting a suitable sublanguage which will be the target for our code generation 
from STD and MSC. 
To include the programming language in a proper way into the formal development pro- 
cess, a step has been taken in [PR97a] towards a Focus based transitional semantics of 
conventional languages like Java. 
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3.8    Further Work 

For some of the above described notations, we already have prototype tools, that allow us 
to edit and manipulate documents ofthat notation. Several others still need consolidation, 
as the process of finding not only a precise semantics for given notations, but adapting 
the notation in such a way, that it is comfortable to use and allows to express the desired 
properties, needs to do examples. 
Currently also work to implement refinement calculi on Class Diagrams and State Tran- 
sition Diagrams is in progress. 

4    Methodical Ingredients 

A software or system development method (cf. Section 5) covers a variety of different 
aspects. Description techniques, as introduced in Section 3, are only one of these aspects, 
yet probably the most "visible" one. However, a development method also contains ä 
notion of a development process, a model, how developers proceed during the develop- 
ment of a system in order to produce the results (the documents, the specifications etc.) 
necessary for a complete and consistent system description that fulfills the requirements 
and ultimately results in the desired software product. 
Such a process model usually operates on different levels of granularity, ranging from a 
coarse view down to very detailed, even atomic operations on specification elements or 
documents. The former will be treated in more detail in Section 5, while the latter are 
covered in this section. . 
Methodical steps can basically be partitioned in two disjoint sets of operations on speci- 
fications, operations that modify the contents of specifications, thus effectively yieldirigä 
different (possibly refined) description, and operations that change the (possibly inforhial) 
status of specifications, for instance from a draft status to a status "validated", indicating 
that certain properties of the specification have been found to be fulfilled in an informal 

■ process.' 
In the following sections, we give a set of examples for both kinds of steps that have been 
treated in our work. 

4.1    Completeness arid Consistency 
Generally, a system specification, just like a program that is being written, is neither com- 
plete nor consistent most of the time within a development process. This is particularly 
the case in view-based systems development, which specifically aims at separating different 
aspects of a system description in different specification units (speculation documents, for 
instance) that use a set of appropriate description techniques. From a methodical point 
of view, allowing for inconsistency and incompleteness during a development process is 
reasonable because enforcing them at any time restricts developers way too much in their 
freedom to specify systems. For instance, instead of concentrating on a certain aspect 
of a specification, developers, when changing parts thereof, would immediately have to 
update all other affected specification units that are possibly affected by such a change in 
order to maintain a consistent specification. Apart from diverting developers' attention 
from their current task, this is, especially with respect to completeness of specifications, 
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virtually impossible in practical development. Please note that the notion of consistency 
used here refers to the properties of the abstract syntax (the "meta-model") of the de- 
scription techniques used to specify a system. Semantic aspects, such as, e.g., consistency 
of behavior with certain requirements are not treated in this context. This is quite similar 
to compilers for programming laguages which can ensure the "consistency" of a program, 
but not the correctness of the algorithm encoded in the program. 
The AUTOFOCUS tool, which uses a view-based approach to specify distributed systems, 
offers such a mechanism to test specifications for completeness and consistency. System 
specification is based on a subset of the description techniques introduced in Section 3, 
namely, system structure diagrams, datatype definitions, state transition diagrams, and 
extended event traces. The view specifications covered by these techniques can be devel- 
oped separately to a large extent. Only at specific points in the development process, for 
instance, when generating a prototype from a specification (cf. Section 4.2), some global 
conditions of consistency have to be fulfilled. Consequently, the consistency mechanism 
available in AUTOFOCUS is user-controlled and can be invoked at any time during devel- 
opment, allowing to select both an appropriate set of specifications to be checked and the 
(sub-) set of consistency conditions to be applied. 

4.2    Validation of Specifications 

In practical systems development, validation techniques, in contrast to formal verification 
techniques, are widely used today [BCR94] to get more confidence in the appropriate 
choices of the requirements. Verification techniques can only show the correctness of an 
implementation with respect to a specification. They will be treated in the next section. 
Validation techniques are the focus of this section. They cover a broad range of diverse 
techniques, such as 

• reviews of specifications, 

• systematic specification inspection, 

• (usability) tests of software, or 

• prototype generation and execution. 

These techniques show different facets of validation. For instance, testing is applied usu- 
ally for verifying that program code (that is, the ultimate target of a development process) 
fulfils certain required properties. Reviews and inspections techniques, in contrast to that, 
are applicable in virtually any stage in the development process to ensure consistency and 
certain correctness aspects on an informal level. Reviews, for instance, can be held upon 
requirements documents in the very early stages of a devlopment process, but as well on 
program code implemented by developers. Prototype generation for a system or parts 
thereof can be used once a specification has been developed that is sufficiently consistent 
and complete to validate the desired properties. Since a prototype, especially an exe- 
cutable prototype in the form of a program, virtually brings a system specification "into 
life" this kind of validation technique is especially relevant in communicating development 
results to customers. Prototyping has been successfully applied particluarly in areas like 
graphical user interfaces (GUI). 
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In software engineering, the usage of graphical formalisms that describe systems from 
a point of view rather close to ati implementation is widespread. Examples for such 
techniques are Statecharts [HPSS87] which are used in the STATEMATE tool [Uo90] or 
state transition diagrams as used in the AUTOFOCUS tool, both of which can basically 
be regarded as a kind of graphical programming language. In such cases generating 
executable prototypes (or even generating final implementation code) is possible. 
In the remainder of this section, we will take a brief look at such a prototyping envi- 
ronment, the AUTOFOCUS component SIMCENTER [HS97]. It is based on generating 
program code from a set of sufficiently detailed and consistent system specifications and 
on observing the behavior of that prototype program in its environment. 
SIMCENTER works by generating Java program code from a specification of a distributed 
system, given in the AUTOFOCUS description techniques briefly outlined in Section 4.1. 
The generated program code, which is executed in SIMCENTER'S runtime environment, 
is closely linked to a visualization component where the progress of the prototype execu- 
tion can be monitored at the same level of description techniques as used to specify the 
system. A prerequisite for generating such an executable prototype, obviously, is that 
the specification is sufficiently complete and consistent in the sense outlined in Section 
4.1. Nondeterminism, however, may be present in the behavioral aspects of the specifica- 
tion, they are currently resolved by selecting one possible behavior in the code generation 
process. This approach will be made more flexible from developers' point of view, for 
instance, by allowing them to select one of several nondetermiriistic behaviors during 
prototype execution. 
As AUTOFOCUS' primary application domain are embedded systems, SIMCENTER allows 
to monitor the interactions of such a gerated prototype with its environment. In partic- 
ular, developers are able to inject stimuli into the system and observe its reactions, both 
from its environment interface in a black box manner and from the internal perspective, 
as outlined above. Additionally, black box behavior of an embedded system prototype can 
be optionally observed and influenced from a user-definable, application domain-oriented 
environment view that can be attached to SIMCENTER via a standard communication 
interface. This allows developers a very customer-oriented presentation of the behav- 
ior of such a prototype and thus contributes to enhance communication between system 
developers and application domain experts. 
For technical details about the process and the basics of code generation in SIMCENTER 

we refer the reader to [HS97], for an AUTOFOCUS development case study using SIM- 

CENTER to validate certain correctness aspects of a specification of a simple embedded 
system, we refer to [HMS+98]. 

4.3    Verification Techniques 

In contrast to informal validation, formal techniques allow developers to mathematically 
prove that a system specification fulfills certain requirements. As a prerequisite, both 
the requirements and the specifications need to be formulated in notations that have a 
common mathematical basis, thus allowing formal proofs to be conducted. 
Our goal is to integrate formal techniques as seamless as possible with some of the descrip- 
tion techniques introduced in Section 3. Within the AUTOFOCUS project two categories 
of verification tools are currently under consideration for an integration with graphical 
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formalisms. First, interactive theorem provers like habetle [Pau94] in conjunction with 
HOLCF [Reg94] could be used to interactively prove properties of a specification. For that 
purpose, graphical specifications would have to be transformed into the HOLCF notation, 
and developers would have to conduct their proofs on the HOLCF level of description. 
Obviously, this approach is not. very intuitive because it forces developers that are used 
to graphical notations to use a mathematical formalism to conduct proofs. 
Thus, the second category of tools, automated verification tools like model checkers seem 
to be more suitable for a seamless integration. Currently, a prototype for the integration 
of the /i-cke model checker [Bie97] into AUTOFOCUS is being implemented. It will be able 
to check whether a concrete system specification, given by a component network and the 
corresponding behavioral descriptions, exposes a refinement of the behavior of a given, 
more abstract specification. 

4.4 Transformations 

Transformations are methodical steps that effectively change a system description. Thus, 
each action by developers that add or change specification elements results in a different 
system description. Whether such modifications to specifications preserve certain prop- 
erties of a specification that have been established before, is not a priori clear and has 
thus again to' be validated (or verified, in case of a formal development process). For 
that reason, it is desirable, and feasible as well, to have a class of methodical steps that 
allow developers to change specifications in a way that previously estblished properties 
will still hold after the modifications. Providing such property-preserving modification 
steps for a set of object-oriented description techniques is one of the main goals of the 
SYSLAB project. Such property-preserving transformations are defined on the level of the 
description techniques and provided to developers in the form of a syntactical refinement 
calculus that will be integrated in the toolset that is currently being developed within 
SYSLAB. These transformation rules are formally proven to be property-preserving by 
the method developers and thus enable system developers to perform transformations 
on specifications on the syntactical level without having to re-establish the validity of 
previously valid properties. Currently, such transformation calculi exist for state transi- 
tion diagrams [Rum96] and for system structure diagrams [PR97b, PR97c] and are being 
integrated into the SYSLAB toolset. If developers choose not to use transformations pro- 
vided by the refinement calculus, but to make arbitrary, manual modifications to their 
specifications they have to explicitly re-establish the necessary properties again. 

4.5 Further Work 

In the context of methodical development steps, tool-based active developer support is a 
major area of work in the near future. One aspect consists in guiding developers through 
the development process, offering them possible development steps that can be or need 
to be performed in order to develop a system. 
Another important aspect consists in tracing the development steps applied to specifica- 
tions and their effects on other specifications. This pertains both to syntactic consistency 
and completeness of the specifications and to possibly invalidated semantic properties 
that, need to be re-established after development steps. 
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5    A Model-Based Software Development Process 

Up to now we have looked at formal modeling techniques, tool-support for model de- 
velopment and analysis based on an integrating formal basis, and a formal development 
process. The modeling techniques mentioned above aim at the description of the software 
system on various levels of granularity. We show in the following, that they can naturally 
be complemented with a set of description techniques for the software system context 
and the informal problem description. We will sketch a framework for a model-based 
development process. This framework is made up of three main ingredients [Jac95]: 

• the distinction between the world, the machine and their interface and the explicit 
system models of all three of them, 

• the distinction between the external view, the internal analysis view and the (dis- 
tributed) design view of each system, and 

• a careful deployment of formality. 

These three issues will be discussed in the following subsections. Depending on the ap- 
plication domain and the project context this framework needs to be instantiated. We 
sketch an example process for information system development at the end of this section. 

5.1    The World, the Machine and their Interface 
The distinction between the world and the machine is due to Jackson [Jac95]. The prob- 
lem to be solved by a software system is in the world, the machine constitutes the solution 
.we construct. Phenomena shared by the world and the machine make up the interface. 
Descriptions produced during software development must be clearly associated to one 

rof the these three domains. This is especially difficult for requirement documents, which 
typically contain references to the world, namely the effects to be achieved by the software 
system, to the interface, namely the system services, and the machine. In particular, it ■ 
is hot possible to describe the system services precisely without a clear understanding of 
the relevant phenomena of the world. Therefore software engineering methods - formal of 
pragmatic - typically start with informal descriptions of the issues in the world relevant to 
the software system. These are then transformed into so-called analysis models. The mod- 
eling techniques used for these models are the same as the ones used for the description of 
the machine. Object-oriented methods like OMT fRBP+91] or OOSE [Jac92] use object 
models, structured methods like SSÄDM [DCC92] use dataflow models. This is reason- 
able, because the world and the machine can both be viewed as systems allowing therefore 
for the same modeling techniques. However, there are semantical differences: in object 
models of the software systems associations represent references directly implementable in 
the programming language. Associations between objects in the world represent invariant 
relationships which typically manifest themselves as natural phenomena (e.g. a person 
has mother and father) or as social or legal processes (e.g. a book has an author). Also, 
the purpose of the models of the world and the machine is quite distinct. Models of the 
world capture understanding of important phenomena (expressing the indicative mood 
according to [Jac95]), while models of the software system capture requirements to be 
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realized by the software system or document the running system (expressing the optative 
or the indicative mood, respectively). 
To make these distinctions explicit, we therefore distinguish three categories of models: 

models of the world They model the context of the software system, e.g. a railway 
system or a lift to be controlled by the software system, or an production company 
whose engineers are supported by software systems. In particular, it is important 
to model the processes which the software system is involved in. 

models of the interface They model the phenomena shared between the world and 
the machine. In particular, it is important to model the interaction between the 
software system and its external partners. The later may be humans or machines. 

models of the machine They model the internals of the software system, namely the 
internal components (e.g. objects, subsystems ) and how they render the system 
services. 

5.2    The External View, the Internal View and the Design View 

The world, the interface and the machine constitute systems. They all consist of ac- 
tors, communicating with each other, and executing activities making use of their (data) 
ressources. Figure 3 collects elements of the three different systems in case of a railway 
control system: 

actors data activities 
world trains,       passengers, 

conductor 
timetable, position passengers enter and 

get off the train, train 
stops 

interface train personnel, soft- 
ware system 

signals signaling, to switch 
the points 

machine objects, operating sys- 
tem processes 

attributes assignment, method 
call 

Figure 3: The world, the interface and the machine as systems 

Software development methods traditionally either focus on the activities and their data 
flow (structured methods) or on the actors and their communication (object oriented 
methods). We claim that both views are important during system development, and 
that a third view has to be explicit: the external view. The external view describes 
the services to be delivered by the system. The activities describe steps to achieve the 
required services. We call activities and their data the internal analysis view, because 
at this level one experiments with different ways of achieving the services without regard 
for the actors. The actors constitute the distributed design view. Activities and data 
are encapsulated within actors, such that data flow between activities has to be realized 
through communication. As exemplified by object oriented designs, an actor-oriented 
structure allows better reusability and extensibility of designs than activity-structured 
designs. 
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Each of these views can be applied to the world, the interface and the machine. To 
understand the purpose of the context of the software system, it is usually helpful to 
describe the services of this context. In the case of the railway control the services are the 
transport services offered by the trains at particular locations and at particular times. In 
order to adequately understand the services, the activities and data of the world have to 
be modelled quite extensively. The actor structure of the world is very often changed by 
introduction of the software system, since often human labour is replaced. Also, it is very 
often subject to a lot of political decisions. 
The services of the interface are the work processes or technical processes to be supported 
by the software system. Jacobsen [Jac92] has coined the term use case for this. Very often 
there is a close correspondence between machine and interface services, the latter being 
a high-level view of the former. The analysis and the design view of the interface are 
heavily intertwinned. In the interface the actors are mostly given (humans and technical 
systems), but there is a choice of how to distribute the activities between the machine 
and the external partners. 
The services of the machine are determined by the design of the interface. Typically, the 
service view and the analysis view of the machine is heavily intertwinned, because the 
services cannot be described without resorting to the data of the software system. Often, 
also some parts of the design view are fixed, because the machine has to fit into an already 
existing landscape of software systems. Thus, for example, one actor maybe a particular 
database, other actors may be given by a library of classes for a particular application 
domain. 

5.3    An Example Process 

The discussions above can be captured in the following proposal for a development process 
for informations systems covering the external, internal and design views for the world, 
the interface and the machine. The formal system descriptions and development steps 
discussed in the previous sections are typically only used for the machine view.  Only 
if the effects of the software system in the world are critical (e.g. chemical processes), 
formalization of the world and interface models will be worthwile. 
Figure 4 lists the models for developing a software system design. ...... 
This process is influenced on the one hand by SSADM [DCC92], especially regarding the 
transition from the machine services to the machine analysis view. It has similarities to 
OOSE in the use of use cases for the external view of the interface. The transition from 
the machine analysis view to the machine design using exemplary communication flow 
descriptions like EET is borrowed from FUSION [CAB+94]. 
Of course, this process is only a framework to be instantiated for different application 
domains aud projects. The interface models have to be quite detailed in case of human- 
computer interaction with a new technology [Suc95]. The world models have to be quite 
detailed in case of a new or critical application domain. Models of the software system 
should allow for a systematic transition to code using the development steps described in 
section 4. 
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View World Interface Machine 
service 
specifica- 
tion 

(textual)    description 
of the enterprise ser- 
vices 

use case model listing 
the user tasks 

system services (spec- 
ified in terms of their 
input/output and/or 
the data changes) 

data  and 
activity 
analysis 

glossary,    application 
domain processes 

work     processes     or 
technical processes 

data model described 
as ERD or CD, data 
changes described by 
STD 

actor and 
commu- 
nication 
design 

(textual)   description 
of  the   responsibility 
(in terms of data and 
activities) of the de- 
partments 

(textual)    description 
of user roles and tech- 
nical system partners, 
allocation of data and 
activities to software 
system 

description    of    the 
component-oriented 
design by SSD, CD, 
STD, EET 

Figure 4: Products of a model-based software development process 

6    Conclusion 

The paper has discussed the issues of using formally founded description techniques for 
system and software engineering. We have shown that formal methods like Focus provide 
a rich basis for textual and graphical system descriptions, as well as the basic methodical 
steps for system development. This formal basis allows for an integrated view on the 
wealth of description techniques found in the literature. Equally important for the system 
developer are the methodical elements based on the formal semantics like consistency 
checks and transformations. For real world application, this formal development process 
has to be embedded into a process of application domain (world) and usage (interface) 
understanding and description. From our experience, each of these issues is worth its 
own project. Our projects have demonstrated that it is possible to resolve each of these 
issues on its own, restricted to a particular application domain. The challenge is now to 
connect all of this together and to transfer it to new application domains. This can only 
be achieved by a widespread use of these techniques in university and industry. 
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Abstract 

Two case studies involving the application of formal methods to industrial- 
strength computer networks are described. In both case studies, the formal 
method (CSP/FDR) was thought sufficiently mature for these applications. 
However in both cases, for the formal method to be effective it was necessary 
to develop techniques requiring expert knowledge in the theory underpinning 
the formal method. These examples illustrate that there remain significant 
technical challenges to effective use of formal methods, which come to light 
only through large-scale applications. 

Keywords: Formal Methods, Network Protocols, CSP, FDR. 

1. Introduction 

There are many varieties of formal methods, a term referring to the appli- 
cation of mathematics and mathematically derived techniques to the speci- 
fication and development of program code and hardware. They all have the 
same purpose: improving the quality and reliability of computer software 
and hardware. 

There are also numerous applications of formal methods. The overwhelming 
majority of these applications have been conducted by specialists in the 
formal techniques rather than by specialists in the application domain. I 
will describe two industrial-strength case studies, which help illustrate why 
application specialists do not yet effectively use formal methods. In both 
cases the formal method had previously been thought sufficiently mature 
for technology transfer; but disappointingly the method was found to have 
an inadequate match of existing techniques to the particular application 
domain. Happily in both cases the theory underlying the formal method was 
further investigated and focussed on the problem at hand, in order to provide 
suitable techniques; and the case-studies were successfully completed. How- 
ever, developing suitable techniques which rendered the application prob- 
lems tractable required considerable knowledge of the finer points of theory 
underpinning the formal method - of the sort it is not realistic to expect 
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practitioners to possess. 

The first case study briefly described below involves a specification and 
verification of a signalling protocol for a realistic pots, "plain old telephone 
system" [KR93]. The work was done in the late 1980's as a part of the 
REX project, which was an ESPRIT collaboration among academia and 
industry. We constructed a high-level specification of the system using 
Timed CSP (TCSP) [RR86] and a refinement also using TCSP, and proved 
that the refinement met the specification. The problem was one of "formal 
clutter" - an excess of formal expressions at the top-most abstract level so 
as to render the problem of proof intractable by hand, or otherwise. We 
solved this problem by developing proof conditions whereby constraints which 
were relied on by one component were guaranteed by another component. 
This "rely and guarantee" technique significantly reduced the size of the 
specifications which had to be constructed and manipulated. However it 
was important that we establish that the these proof rules were theoretically 
sound, in particular, that they did not produce circular reasoning. 

The second case study described below is part of ongoing research involving 
application of an automated property checker, FDR [FDR94], to modern 
high-speed, multiservice networks. FDR is a finite-state model checker for 
the process-algebraic language of CSP. Modern multiservice networks such 
as the Internet typically use protocols designed to operate with arbitrary 
numbers of interacting components. A problem in employing finite-state 
model checkers for these protocols is that the model checkers can not directly 
handle end-to-end properties of arbitrary but unbounded numbers of subcom- 
ponents. In order to use FDR for the Internet reservation protocol, we first 
had to develop an inductive approach for establishing properties of interest, 
including deadlock and livelock freedom, for such end-to-end protocols. 

1    CSP and FDR 

CSP [Hoa85] models a system as a process which interacts with its environ- 
ment by means of atomic events. Communication is synchronous; that is, 
an event takes place precisely when both the process and environment agree 
on its occurrence. CSP comprises a process-algebraic programming language 
together with a related series of semantic models capturing different aspects 
of behaviour. A powerful notion of refinement intuitively captures the idea 
that one system implements another. Mechanical support for refinement 
checking is provided by Formal Systems' FDR refinement checker, which 
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also checks for system properties such as deadlock or livelock. 

The simplest semantic model identifies a process as the sequences of events, 
or traces it can perform. We refer to such sequences as behaviours. More 
sophisticated models introduce additional information to behaviours which 
can be used to determine liveness properties of processes. 

We say that a process P is a refinement of process Q, written Q C P, if any 
possible behaviour of P is also a possible behaviour of Q. Intuitively, suppose 
S (for "specification") is a process for which all behaviours are in some sense 
acceptable. If P refines S, then the same acceptability must apply to all 
behaviours of P. S can represent an idealised model of a system's behaviour, 
or an abstract property corresponding to a correctness constraint, such as 
deadlock freedom. 

The theory of refinement in CSP allows a wide range of correctness conditions 
to be encoded as refinement checks between processes. FDR performs a 
check by invoking a normalisation procedure for the specification process, 
which represents the specification in a form where the implementation can be 
validated against it by simple model-checking techniques. When a refinement 
check fails, FDR provides the means to explore the way the error arose. The 
system provides the user with a description of the state of the implementation 
(and its subprocesses) at the point where the error was detected, as well as 
the sequence of events that lead to the error. The definitive sourcebook for 
CSP/FDR can now be found in [Ros97]. 

Unlike most packages of this type, FDR was specifically developed by Formal 
Systems for industrial applications, in the first instance at Inmos where 
it is used to develop and verify communications hardware (in the T9000 
Transputer and the C104 routing chip). Existing applications include VLSI 
design, protocol development and implementation, control, signalling, fault- 
tolerant systems and security. Although the underlying semantic models for 
FDR do not specifically address time (in contrast to Timed CSP formalism 
[RR86, TCSP92, KR93]), work has been carried out modelling discrete time 
with FDR [Sid93, Ros97, R98]. A class of embedded real-time scheduler 
implementations |Jac96] is analysed with FDR by extracting numerical in- 
formation from refinement checks to show not only that a timing requirement 
is satisfied, but also to determine the margin by which it is met. 
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2. A POTS Signalling Protocol 

In [KR93] we described a Timed CSP specification of a telephone exchange, 
together with a decomposition into a design also described using TCSP. We 
provided selected proofs establishing that the design satisfies the specifi- 
cation. The work was based on a large specification given in SDL by a 
telecommunications software company which formed a major part of the 
REX Esprit Project. The specification was not concerned with billing and 
data-transfer, rather with safety and liveness properties of the signalling 
phase of a "Plain Old Telephone Service". It treated awkward race conditions 
such as a caller replacing just as the callee telephone is about to ring. 

We found that for this relatively large, complex application there was a 
tension between writing strong specifications (in order to achieve desired 
behaviour, and reduce the formal clutter and state explosion for both the 
specification and further refinements) and keeping the specification weak 
enough that it could be implemented. This tension does not reveal itself 
in the small sized examples underlying the intuition and test beds for much 
of the theoretical work on formal methods. 

Strong specifications for individual subcomponents allow us to prove many 
properties about the composite system made up the components. However, 
it may be impossible or impractical to implement a component which satisfies 
a desired specification in every possible environment. For these cases it is 
desirable to relax (or weaken) component specifications but not so much that 
it becomes impossible to prove the composite system correct. We developed 
a Rely and Guarantee method for CSP which controls this relaxation by 
explicitly describing a component's intended environment. An added benefit 
is that the method can greatly reduced the "formal clutter" problem. 

An example of a proof rule (stated intuitively for two components) for safety 
properties is the following: if Sp and Sq are initially true (true for the empty 
trace) and the events which cause Sp and 5, to be untrue are mutually 
exclusive, then 

P   sat    Sp=$-Sq 

Q    sat    S, => S, 
PHQsatSpAS, 

We use the above proof rule when we want to design a system to meet 
safety properties Sp and S„ but we do not want to implement Sp and 5, 
unconditionally for P and Q respectively. Rather the impiementor of P can 
assume 5, while implementing Sp, and the impiementor of Q can assume 

RTSE'97, p.272 



Sp while implementing Sq, that is the pair of weaker constraints Sp =» 5, 
and Sq => Sq with processes P and Q. There is an apparent circularity here 
in that if Q, fails (i.e., fails to satisfy S,), then P is no longer constrained 
and so may fail too, thus justifying Q's failure. The side conditions achieve 
a resolution by ensuring that P and Q axe initially correct, and cannot go 
wrong simultaneously. Analogous but more complex rules are formulated for 
liveness properties. 

The side conditions are automatically true (hence requiring no additional 
burden of proof) if there are no Safety assumptions (constraints) placed 
on inputs. This makes intuitive sense because otherwise we would require 
the implementor to filter inputs according to value - something not always 
appropriate or efficient to do. For systems such as signalling protocols, 
components must sensibly deal with whatever inputs they are given, so these 
side conditions are automatically met. 

We developed an architectural structure for organising and manipulating 
the specifications which substantially reduce the sheer volume of formal 
objects to be handled using this technique. The rely and guarantee parts of 
the specification could be collected together to form interface specifications, 
making for a high-level of organisation with a minimum of effort. This 
reduction in both effort and formal clutter proved the key to effectively 
formalising the POTS protocol. 

The details of this rely and guarantee technique can be found in [KR93]. 
The observation of interest here is that for the TCSP formal method to be 
effective for this industrial-strength application, a new technique (the rely 
and guarantee) first had to be developed. There were two aspects of this 
new technique: 

■■• The proof rules which had to be shown sound using the underlying 
theory of TCSP, and 

• The architectural organisational/structuring conventions which sub- 
stantially reduced the volume of detail. 

The structuring conventions were somewhat application related and it might 
be hoped that application specialists could have developed such enabling 
techniques "in house", where necessary. However, establishing that the proof 
rules were sound required special expertise which we should not realistically 
expect application specialist to possess. 
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3. An Internet Reservation Protocol 

Our second case study of interest involves certain aspects of the Internet 
RSVP protocol. We (J Reed, D Jackson, B Deianov and G Reed) used 
CSP/FDR to model and automatically check properties satisfied by the end- 
to-end protocol [R98]. 

RSVP is a protocol for multicast resource reservation intended for IP based 
networks. The protocol addresses those requirements associated with a new 
generation of applications, such as remote video, multimedia conferencing, 
and virtual reality, which are sensitive to the quality of service provided 
by the network. These applications depend on certain levels of resource 
(bandwidth, buffer space, etc.) allocation in order to operate acceptably. 
The RSVP approach is to create and maintain resource reservations along 
each link of a previously determined multicast route, with receivers initiating 
the resource requests. Thus it is analogous to a signalling phase prior to 
packet/cell transmission (such as found in ATM networks) during which 
virtual channels with associated resource assignments are put in place. The 
multicast may consist of several senders and several receivers. 

The full technical specification for RSVP as given by its developers appears 
as a working document of the Internet Engineering Task Force [BZB96]. The 
protocol assumes a multicast route, which may consist of multiple senders and 
receivers. RSVP messages carrying reservation requests originate at receivers 
and are passed upstream towards the senders. Along the way if any node 
rejects the reservation, a RSVP reject message is sent back to the receiver 
and the reservation message discarded; otherwise the reservation message is 
propagated as far as the closest point along the way to the sender where a 
reservation level greater than or equal to it has been made. Thus reservations 
become "merged" as they travel upstream; a node forwards upstream only 
the "maximum" reservation request. 

Receivers can request confirmation messages to indicate that the request 
was (probably) successful. A successful reservation propagates upstream 
until it reaches a node where there is a (pending) smaller or equal request; 
the arriving request is then merged with the reservation in place and a 
confirmation message sent back to the receiver. Thus the receipt of this 
confirmation is taken to be a (high-probability) indication rather than a 
guarantee of a successful reservation. There is no easy way for a receiver to 
determine if the reservation is ultimately successful. Enhancements involve 
control packets travelling downstream following data paths, which contain 
pertinent information to predict the result. 
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Several interesting aspects emerge from the intuitive description of the RSVP 
protocol. The protocol is defined for arbitrary routing graphs consisting 
of several senders and receivers. Confirmations sent by intermediate nodes 
to receivers are ultimately valid only for the receiver making the largest 
request; i.e., a requester may receive a confirmation although subsequently 
the end-to-end reservations fails because of further upstream denial. Clearly 
we are dealing with end-to-end properties inherently involving arbitrary con- 
figurations of intermediate nodes. Global views involving intermediate nodes, 
(e.g., a successful reservation propagates upstream until it reaches a node 
where there is a (pending) smaller or equal request) present serious problems 
indeed for building models consisting of predetermined sets of components. 

Previous CSP/FDR network applications primarily centre on protocols, but 
these applications do not specifically address arbitrary network topologies. 
There are numerous examples of formalisations of layered protocols using 
a variety of techniques and approaches, including Ethernet - CSMA/CD 
(in non-automated TCSP [Dav91]) (in non-automated algebraic-temporal 
logic [Jma95] ), TCP (in non-automated CSP [GJ94]), DSSl / ISDN SS7 
gateway (in LOTOS [LY93]), ISDN Layer 3 (in LOTOS [NM90J), ISDN Link 
Access Protocol (in Estelle [GPB91]), ATM signalling (in TLT, a temporal 
logic/UNITY formalism [BC95]). Shankar [Shan] uses an induction scheme 
for model-checking in PVS for Peterson's shared memory algorithm for mu- 
tual exclusion, but to our knowledge nothing in the literature specifically 
address the problem of modeling arbitrary network configurations such as 
the Internet with finite-state model checkers. 

An Induction Scheme 

We approached this problem by developing an induction scheme which lets us 
infer properties about arbitrary (but finite) collections of nodes from a small 
number of proofs about fixed numbers of nodes: For example, we might 
wish to establish deadlock or livelock freedom for an end-to-end protocol 
which operates with an arbitrary number of intermediate network nodes. 
We would therefore want to express models and properties in a topology 
independent manner. To achieve this, we base our specification on a fixed 
number of single network nodes together with their immediate neighbours, 
and inductively establish the property for arbitrary chains of such nodes. 

Suppose we can characterise the interface which a sender or routing node 
presents to the next node downstream by a property P. Considering a single 
node (or partial node where splitting has been used to avoid cycles), if we can 
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demonstrate that under the assumption that all incoming interfaces satisfy 
P then so do all outgoing interfaces, we have established an inductive step 
which allows arbitrary acyclic graphs to be built up, always presenting an 
interface satisfying P to the nodes downstream. The essential base condition, 
of course, is that an individual data source meets P. The symmetric case 
starting with a property of a receiving node and building back towards a 
source is equally sound. A rigorous presentation of this inductive technique 
is given in [CR, Cre]. 

The essence of the method applied to the reservation protocol is to check an 
assertion effectively stating that if "upstream" channels of a module satisfy 
property P, then the "downstream" ones do likewise. Figure 1 illustrates the 
FDR mechanism to do this: assert that the parallel composition of a given 
module with a property satisfying P, with all upstream channels and all but 
one downstream channels appropriately hidden (made internal), refines P 
itself. 

c 
9 

II 

-11 

Figure 1: Simple Induction Scheme 

The power of this modelling strategy depends on the ability to reduce a 
collection of arbitrary n processes to a fixed number of processes, which can 
then be mechanically model-checked. The reduction is possible only if an 
arbitrary process is defined recursively. In our examples, the state space is 
kept finite by limiting the resource set to a fixed number, and bounded by 
reducing an arbitrary chain of processes to one or two. Not all problems 
can be modelled in this fashion. For example, a lossy channel which never 
looses an infinite number of messages consecutively can be approximated by 
a process which reliably transmits a minimum of 1 message out of every k, for 
some fixed k. But this approach cannot be the basis for our model-checking 
induction since the k must range over an infinite set of values. Likewise, we 
cannot apply the technique directly to model our reservation protocol for an 
arbitrarily large resource set. 

RTSE'97, p.276 



However end-to-end protocols are inherently inductive, in that they are 
designed to operate with arbitrary numbers of participating components. 
Provided that approximations for unbounded state variables are sufficient, 
the technique is very useful for proving properties of these protocols, such as 
livelock and deadlock freedom. 

Again as in the first case-study described, in order for the formal technique 
to be effective (in this case, usable at all for the problem at hand), we had to 
first develop some techniques requiring specialist knowledge in the underlying 
theory. In this case, we had to make especially clever use of the CSP hiding 
operator for properly building an inductive structure, and we had to use 
"lazy abstraction" (previously used only for establishing security properties 
[Ros97]) to ensure that our checks were sufficiently strong. 

5. Conclusions 

I have described two case studies from my experience with computer networks 
which illustrate that all too often, existing techniques in our formal methods 
tool bags do not match industrial-strength problems. Encouragingly for 
formal methods advocates, with some extra work effective techniques were 
developed which solved the problem at hand. These techniques required 
specialist knowledge in the theory underpinning the formal method. Signif- 
icantly, however, the theoretical basis for the formal semantics did not have 
to be extended or redefined in any way. Rather we had to appeal to the 
theory in order to establish soundness of the new techniques. 

It is generally recognised that although there has been considerable work 
in formal methods involving theoretical foundations, standards, and even 
case-studies, industrial uptake of formal methods is low. Historically for com- 
puter networks such as the Internet, correctness potentially offered by formal 
methods has not been considered a problem; the Internet is characterised by 
best-effort rather than guaranteed service, and bug fixes have typically been 
cheap and easy (simply download an update from the Internet). However the 
success of such multiservice networks is bringing demands for such concerns 
as security and financial integrity, where establishing correctness is deemed 
essential. 

If formal methods are to be effective for this new generation of network 
applications, it is essential that the methods are mature enough to be usable 
by people who are specialists in their application areas rather than in the 
formal theory. It is unrealistic to expect application specialists, even intel- 
ligent and knowledgeable ones, to have the expertise, time or inclination to 
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develop techniques requiring particular knowledge of the finer points of theory 
underpinning the formal method. The case studies described here illustrate 
that there remain significant technical challenges for practical use of forma! 
methods which come to light only through application to realistic, large-scale 
problems. It continues to be important for formal methods specialists to 
apply the methods to a variety of industrial-strength problems, and make 
available any resultant techniques which contribute to the maturity and 
applicability of the methods. 
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Abstract 
Numerous requirements specification approaches have been proposed to improve the qual- 
ity of requirements documents as well as the developed software and to increase user sat- 
isfaction with the final product. However, no or only anecdotal evidence exists about which 
approach is appropriate in a particular context. This paper discusses the value of experi- 
mentation in requirements engineering to gain sound empirical evidence. A framework is 
suggested which facilitates experimentation through an experimental infrastructure based 
on the QIP and GQM Paradigm. It helps to structure and formalize a research agenda for 
experimentation and supports the development of experiments. Our agenda and a set of ex- 
periments are outlined, focusing on requirements specification approaches for embedded 
real-time systems. 

1   Introduction 

Software developers who wish to improve either the productivity or the quality of the software 
they develop are faced with an enormous portfolio of techniques, methods, tools, and standards 
for requirements specification. However, no or only anecdotal evidence exist about which ap- 
proach is appropriate in a particular context [Fen93]. Open questions are often: (1) under which 
conditions are requirements specification approaches profitable at all, (2) which approach 
should be applied in which type of project, (3) how can an approach be applied most efficiently, 
and (4) what is the impact on related activities (e.g., testing). A typical example for an anecdotal 
evidence is the following statement which was taken from the brochure of a GASE tool for re- 
quirements modeling: "the maintenance costs are lowered, the quality of your applications im- 
proves, and you deliver applications to market faster". 

The transfer of software engineering technology to industry is plagued with a lot of problems, 
which can be attributed to some degree to the lack of empirical evidence. First, new technolo- 
gies are often rejected by project personnel, since these are considered not well adapted to 
project needs and, thus, are perceived as not beneficial. Second, new technologies are bypassed 
under project pressure since project personnel are not convinced enough of the benefits to lake 
any risks and they are not supported by the project management. Project progress is often mea- 
sured only in lines of code by the project management. Third, past project experiences are not 
reused in new projects because benefits were not demonstrated explicitly and, thus, "religious" 
beliefs win [Rom97]. 

Empirical research provides strong methods, such as controlled experiments, to overcome the 
limitations of ad-hoc evaluation of software engineering technology. For instance, results from 
empirical research indicates that the introduction of a CASE tool actually leads to a decrease of 
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productivity in the first year [Gla92]. Controlled experiments have been proven to be a partic- 
ularly effective means for evaluating software engineering methods and gaining the necessary 
understanding about their utility [LR96]. We will discuss their strengths and weaknesses in 
more detail in the next section. Moreover, an organization's software competencies are man- 
ageable assets. Software competencies are tailored technologies and methodologies that play a 
key role in supporting strategic capabilities of an organization1. Experiments are the key to 
building up software competencies [Rom97]. 

A brief introduction into methods for empirical research is given in the next section. The third 
section discusses the current practices used in evaluating requirements specification approach- 
es, which are the focus of our agenda, and the benefits and drawbacks of experimentation in this 
area and in requirements engineering in general. The fourth section outlines the framework for 
experimentation and our agenda for the empirical investigation of requirements engineering. 
Examples of empirical studies found in the requirements engineering literature are character- 
ized according to our agenda and an additional set of experiments is proposed. 

The focus of our agenda is on requirements specification approaches, more precisely, on lan- 
guages, techniques, and methods supporting the specification/documentation of requirements as 
well as on associated techniques to verify those requirements. It is worthwhile to investigate re- 
quirements specification approaches, since it is well-known that most of the defects found in 
software are caused by misconceptions in the requirements phase. Requirements specification 
approaches are proposed as one way of overcoming these problems. Only a few of them are ap- 
plied in industrial practice. We believe that this is due to the relatively high investment com- 
pared to other improvements, for instance, the introduction of inspections, together with 
unproven merits. Religious beliefs in object-oriented approaches is one manifestation of this sit- 
uation. Therefore, our long term goal is to provide empirical insights into this area of require- 
ments engineering. A summary and an outlook on future work concludes this paper. 

2   Introduction into Methods for Empirical Research 
Software engineering and consequently requirements engineering is an amalgamation of influ- 
ences from many fields including theoretical computer science, physical sciences, electrical en- 
gineering, behavioral and life sciences [Cur88]. Considering requirements engineering, for 
instance, formal methods [BBD^ö] stem from research in theoretical computer science, while 
ethnography [SRS+93] has its roots in the behavioral and life sciences. In general, the parent 
research fields were often used as sources and inspirations for technology development in soft- 
ware engineering, but the underlying research methods of these fields were not adopted to a 
large extent. Software engineering and requirements engineering research is about developing 
languages, techniques, methods, and tools. Their validation did not play such an integral part of 
research as the confirmation and validation of models and hypotheses in physical, behavioral, 
or life sciences. It has been claimed that in software engineering, there is a lack of experimen- 
tation to validate research results [TLPH95]. Proposing a model or building a tool is not enough. 
There must be some way of validating that the model or tool is an advantage over current models 
or tools [Bas92]. There are some indications that this situation is beginning to change, for in- 
stance, the classification scheme used for submissions to the "International Symposium on Re- 

I.  Strategic capabilities are corporate goals defined by the business position of the organization and 
implemented by key business processes. 
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quirements Engineering" encourages researchers to perform either case studies (dimension D: 
'Case study applying a proposed solution to a substantial example") or more objective evalua- 
tions, i.e., experiments (dim. E: 'Evaluation or comparison of proposed solutions') [Zav97]. 

We believe that software engineering is a true engineering task. Hence, improvement of practi- 
cal software development requires an "experimental" approach. Basili outlines three research 
paradigms which comprise experimentation, namely the scientific method, the engineering 
method, and the empirical method [Bas92]. The engineering method and the empirical method 
are variations of the scientific method. All three methods are depicted in figure 1. 

Scientific Method Engineering Method Empirical Method 

jctive Observations Observation of existing Inductive 

1 solutions Observations 

propose | 1 
propose 

'  ■■* 

propose 

Theory * * 
1 improved Solution Models 

derive i 1 
validate i validate 

Hypothesis * * 
1 Application in Practice Empirical Studies 

Confirmatory Experiment 

Figure 1: Research Methods 

Basili recommends to apply the research paradigms as follows: "In the area of software engi- 
neering the scientific method might best be used when trying to understand the software pro- 
cess, product, people, and environment. It attempts to extract from the world some form of 
model which tries to explain the underlying phenomena, and evaluate whether the model is truly 
representative of the phenomenon being observed. It is an approach to model building. (..:) The 
engineering method is an evolutionary improvement oriented approach which assumes one al- 
ready has models of the software process, product, people, and environment and modifies the 
model or aspects of the model in order to improve the thing being studied. (...) The empirical 
method is a revolutionary improvement oriented approach which begins by proposing a new 
model, not necessarily based upon an existing model, and attempts to study the effects of the 
process or product suggested by the new model." In an industrial context, the empirical method 
can help select and introduce a promising technique which is afterwards continually optimized 
by following the engineering method. 

Experiments can be distinguished by several dimensions, namely, the purpose, the control over 
independent variables, the style of data, and the type of statistical analysis. The purpose of an 
experiment can be scientific learning, teaching, training, or technology/process evaluation and 
optimization. Examples include experiments to investigate the influence of domain knowledge 
on the efficiency of inspections, experiments at university to motivate software engineering 
principles, and industrial experiments to compare actual practices with new technologies in or- 
der to raise confidence. The degree of control over independent variables decides whether a 
controlled experiment or a case study is appropriate. A controlled experiment requires high lev- 
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el, and low difficulty of control, a case study must be performed otherwise. This decision has 
also an impact on the style of data gained and the type of statistical analysis. Controlled exper- 
iments are better in establishing causal relationships, while the conclusions from case studies 
are limited to the particular conditions of the study. 

Experiments can be characterized further by the number of teams replicating each project and 
the number of different projects analyzed. A characterization scheme for the scope of investi- 
gation was developed by Basili et.al. [BSH86] which is depicted by table 1. Four different types 
of studies are outlined, namely blocked subject-project, replicated project, multi-project varia- 
tion, and single project. 

1 Project > 1 Project 

1 Team Single Project 
(Case Study) 

Multi-Project Variation 

> 1 Team Replicated Project Blocked Subject-Project 

Table 1: Scope of Empirical Studies 

Blocked subject-project studies examine one or more objects, i.e., the examined processes, 
products, or models, across a set of teams and a set of projects. Replicated project studies ex- 
amine object(s) across a set of teams and a single project, while multi-project variation studies 
examine object(s) across a single team and a set of projects. Single project studies examine ob- 
jects) on a single team and a single project. Teams are possibly single-person groups that work 
separately, and projects are separate programs or problems on which teams work. As the scope 
of examination increases, the wider-reaching a study's conclusions become and the higher the 
cost. Small studies can be performed in a quantitative mode while larger studies typically in- 
volve more qualitative and less quantitative analysis. 

Experimentation must be guided and there must be a rational for data collection, i.e.; a frame- 
work for experimentation is required. Several frameworks have been proposed to design and an- 
alyze empirical studies in software engineering including DESMET by Kitchenham, Pfleeger, 
et.al. [MSL93], [Pfl95], [Kit97]. DESMET focuses on the evaluation of methods and tools, ei- 
ther in a qualitative (subjective), quantitative (objective), or hybrid mode through surveys, case 
studies, and formal (i.e., controlled) experiments. We suggest using the following components 
as an experimental infrastructure: 
• Quality Improvement Paradigm (QIP) [BR88], [Bas89] 

The QIP provides an experimental framework for software development based on the scien- 
tific method (see figure 1). According to the QIP, projects within an organization are based 
on the continuous iteration of characterization, goal setting, selection of improved technol- 
ogy, monitoring and analysis of its effects to correct projects on-line, post-mortem analysis 
to understand what could be done better in future projects, and packaging the newly learned 
lessons so they can be reused efficiently in future projects. 

• Goal/Question/Metric Paradigm (GQM) [BR88], [BCR94b], [BDR96] 
The GQM Paradigm supports the process of stating goals, refining goals in an operational 
way into metrics, and interpreting the resulting data. The idea behind the GQM Paradigm is 
that measurement (and hence experimentation) should be based on goals. By stating goals 
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explicitly, all data collection and interpretation activities are based on a clearly documented 
rationale. 

»   Experience Factory concept [BCR94a] 
The experience factory facilitates the reuse of models, gained for instance by experimenta- 
tion, across project boundaries within an organization. 

We will use this experimental infrastructure within our framework which is described in chapter 4. 

3   Empirical Research in Requirements Engineering 
Experimentation in requirements engineering (RE) was discussed in a panel session at the 
International Symposium on Requirements Engineering in 1995 [Rya95]'. Experimentation 
was considered quite important, but nevertheless especially difficult to perform in RE research. 
One critique was that RE methods are not relevant objects for experimentation, since RE is in 
its essence about understanding and problem solving, and none of the present RE methods 
would support these tasks sufficiently. Thus, "requirements engineering is about insight not 
experimentation" [Jac95]. We subscribe to the first part of the statement. But as long as there 
are no real problem solving methods in RE, we have to apply the principles, techniques, 
methods, and tools that RE research has produced so far. Empirical research can contribute to 
RE by evaluating the truth of principles and the effectiveness of techniques, methods, and tools. 

Another critique on experimental RE was that it is limited to small and unrealistic problems. 
This is true to some extent for replicated project and blocked subject-project treatments (see ta- 
ble 1). But multi-project variation treatments can be performed in realistic environments in a 
quantitative mode as the field study of El Emam et.al. [EQM96] illustrates. In this study, a mod- 
el was developed which predicts the impact of user participation on the quality of RE service 
and on the quality of RE products in the presence of uncertainty. The model was tested using 
quantitative data of 39 real world software development projects from different organizations 
instead of using toy problems. The results indicates that as uncertainty increases, greater user 
participation alleviates the negative influence of uncertainty on the quality of RE service, and 
as uncertainty decreases, the beneficial effects on the quality of RE service of increasing user 
participation diminish. The interaction between user participation and uncertainty had no im- 
pact on the quality of RE products. Empirical research can contribute to RE by validating pre- 
dictive models. 

The most popular approaches of gathering evidence about requirements specification approach- 
es, which are the focus of our investigations, are providing a sample specification of a common 
exemplar (e.g., library, ATM) or qualitative results of an industrial case study. However, the ad- 
vantages and disadvantages of these two approaches must be judged from two perspectives: that 
of the RE researcher and that of the practitioner in an organization. The major value of a com- 
mon exemplar is to advance research efforts [FFFvL97]. From a practitioner's perspective it is 
less valuable, instead, it is more likely a demonstration of existence (e.g.; an ATM can be de- 
scribed with notation XYZ). Industrial case studies are valuable for both researchers and prac- 

1. It is difficult to discuss experimentation in requirements engineering, since the term 'experimentation' 
is used differently in the literature. Some authors use it as a synonym for'just trying out'other imply 
controlled experiments with it. We use the term here as comprising case studies as well as controlled 
experiments. 
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titioners, since they indicate whether an approach scales up and fits into the context. Their 
disadvantages are that they are expensive to perform, and that their results are context-depen- 
dent. Most case studies as well as exemplar studies are mainly qualitative. Controlled experi- 
ments complement exemplar and case studies because they produce quantitative results. They 
are useful for researchers since they can be replicated at different locations and varied in order 
to increase confidence in an requirements specification approach and to understand the influ- 
encing factors better. They are useful for practitioners since they can be used to gain confidence 
in new techniques before they are applied under project pressure. Experiments are increasingly 
performed in other areas of software engineering, e.g., inspections, or software maintenance. 

We suggest common experiments in analogy to common exemplars for requirements engineer- 
ing. Similar to a common exemplar, a common experiment is available to everyone for replica- 
tion and variation. A common experiment is either an exemplar case study or a controlled 
experiment, dependent on the tackled RE activities, which is developed and conducted accord- 
ing to our experimental infrastructure outlined in section 1. Because upstream RE activities, 
e.g., elicitation, negotiation, and formalization of requirements, are creative, time-consuming, 
and less guidance is available, they require a case study approach for investigation, since the 
influencing factors are not under tight control. The downstream RE activities, e.g., reviews and 
testing, can be investigated by controlled experiments. The basis for both types of common ex- 
periments is a common exemplar which we supplement with (1) guidelines and procedures in 
order to make the usage of the exemplars more controlled, and (2) goal-oriented data collection 
procedures in order to make comparisons possible. Exemplar case studies differ from industrial 
case studies in that first, the effort is lower, and second, exemplar case studies are repeatable 
since common exemplars are used in a controlled way. Replications are important to increase 
evidence for requirements specification approaches and to compare approaches. Feather et.al. 
[FFFvL97] propose the use of 'requirements exemplars' (i.e., natural requirements) instead of 
'specification exemplars' (i.e., tidied and simplified requirements) to study the upstream RE ac- 
tivities as well. We use both types of exemplars in our common experiments. 

Furthermore, we propose situated experiments in addition to common experiments. A situated 
experiment is more convincing to practitioners because, in contrast to a common experiment, 
exemplars and/or processes are taken from their individual application domain. The situated ex- 
periment in combination with the common experiment allows the question of whether applica- 
tion domain knowledge plays a role in the efficient application of an approach to be factored 
out. This two step approach of empirical evaluation has been applied successfully in the area of 
inspections [LD97]. 

An industrial scale case study may be useful as a follow-up to a common experiment. The ex- 
perimental results can "prove" the feasibility of requirements specification approaches in the 
small (replicated project, or blocked subject-project) and industrial scale case studies are per- 
formed afterwards to analyze whether the results scale up in a realistic environment (single 
project, or multi-project variation). 

Our framework, which is outlined in the next section, comprises an experimental infrastructure 
based on the QIP and GQM Paradigm and suggests a set of common experiments for experi- 
mentation with requirements specification approaches. Situated experiments can be derived 
from tailoring common experiments to a particular industrial environment. 
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4   Framework 
The purpose of our framework is to facilitate experimentation in software engineering; first, by 
means of structuring and formalizing a research agenda, and second, by an experimental infra- 
structure to design, execute, analyze, and package experiments driven by this agenda. The 
framework is comprised of the following three components: 
• a roadmap (i.e., agenda) for experimentation, 
• guidelines for the construction of experiments based on the QIP and GQM Paradigm, and 
• a set of experiment descriptions. Each description contains a characterization of the envi- 

ronment in which the experiment took place, the goals, the hypothesis, a description of the 
investigated objects, the experimental design, the statistical analysis, the results, and the 
experiences gained. 

The particular environment (e.g., university, company), in which the framework should be ap- 
plied plays an important role. First, for defining a meaningful roadmap, and second, for inter- 
preting the experimental results, since extrapolations are depending heavily oh the 
representativeness of the sample. Therefore, several instantiations of the framework in different 
environments are desired in order to increase the range of conclusions. Figure 2 illustrates our 
framework. 
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Figure 2: Framework 

The components of our framework work together in the following mannen The roadmap raises 
a set of issues to be addressed by experimentation and maintains pointers to descriptions of al- 
ready performed experiments. The 'experiment construction' component supports the design, 
execution, analysis, and packaging of new experiments based on the QIP and GQM Paradigm. 
The roadmap can be altered in case of new issues arising from the results of experiments con- 
ducted. 

The roadmap and the experiment descriptions should be stored in an experience base (not illus- 
trated in figure 2) in order to facilitate reuse [BCR94a]. A prototype implementation of an ex- 
perience base which contains experiment descriptions, but not a roadmap, has %een created 
within the Special Research Project 501 at the University of Kaiserslautern [FMV97], [FV98]. 
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Compared to previously published frameworks for experimentation by Basili et.al. [BSH86] 
and Preece & Rombach [PR94] (see section 2), our framework provides additionally a "front- 
end", namely the roadmap, to describe a plan for a set of interrelated experiments. Guidelines 
for the construction of experiments and schemes to describe experiments are reused from the 
former frameworks. 

The application of the framework in a particular environment involves three main steps: defini- 
tion of a roadmap (i.e., research agenda), reuse of experiments and their results/experiences 
from comparable environments, if necessary, and construction of additional experiments. For 
instance, the Software Engineering Laboratory at NASA Goddard Space Flight Center per- 
formed a large number of experiments [BCM+92] which are candidates for reuse. The second 
objective of the framework, beside its application to construct experiments, is to classify exper- 
iments from the literature. 

We applied our framework to requirements specification approaches for embedded systems in 
a university environment. Our agenda and a set of common experiments are described in the re- 
mainder of this section. We make both available to the RE community for: 
• Replicating experiments 

A replication is an important contribution for two reasons. First, it helps validate the experi- 
mental design itself, and second, it increases potentially confidence in the previous results. 
For instance, several replications of the experimental comparison of testing versus code 
reading, e.g., [BS87], [KL95], [WRBM97] lead to sound evidence that code reading is as 
efficient as functional and structural testing. 

• Varying experiments 
It is clear from the breadth of requirements engineering that no one researcher, or single 
research team, can be expected to solve all issues regarding the empirical evaluation of 
requirements specification approaches. Therefore, the experiments can be modified and re- 
executed, with the help of the experimental infrastructure, in order to increase and comple- 
ment the empirical evidence gained so far. i      .f 

• Developing additional experiments 
Goals for additional experiments can be derived directly from our agenda. 

We discuss the framework components and our instantiation in the following subsections in 
more detail. The focus is on the roadmap and the suggested RE experiments. 

4.1 Road Map 
The roadmap represents a research agenda for a particular environment. It consists of (1) a set 
of issues (i.e., questions) which arise in a particular environment concerning a specific theme, 
(2) a "formalization" of issues in terms of GQM goals in order to characterize experiments pre- 
cisely, and (3) pointer from issues to experiments. A GQM goal is defined by the following tem- 
plate: 

Analyze [object of study, e.g., products, processes, resources] 
for the purpose of [purpose of measurement, e.g., characterization, monitoring, etc.] 
with respect to [quality focus, e.g., cost, efficiency, etc.] 
from the viewpoint of the [viewpoint, e.g., researcher, practitioner, etc.] 
in the context of [description of specific context]. 
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The facets describe what will be analyzed ("object of study"), why the object will be analyzed 
("purpose"), what property/attribute of the object will be analyzed ("quality focus"), who uses 
the data collected ("viewpoint"), and in which environment the analysis take place ("context"). 
We propose the goal template to characterize empirical studies in requirements engineering. 

The development of a relevant roadmap is a crucial task, since the issues must be relevant to the 
Chosen viewpoint in order to create experiments which are of interest to a larger community 
within the particular environment. Our agenda (i.e., roadmap) for the investigation of require- 
ments specification approaches is described in the remainder of this subsection. 

Theme and Environment. We currently focus on issues regarding languages for requirements 
specification and techniques for reviewing those requirements specifications, rather than deal- 
ing with all imaginable issues in this area. As the results and experiences with RE experiments 
increase, we will expand the agenda. Our investigation takes place in a university context. We 
concentrate on embedded real-time systems and state transition-based approaches like State- 
charts, because these approaches are the most widely applied in industry beside natural lan- 
guage, and because these are embodied in the increasingly popular object-oriented modeling 
approaches (e.g., OMT, ROOM, OCTOPUS). We assume that a textual requirements document 
("customer requirements") is present and a detailed specification ("developer requirements") 
has to be written, either in natural language or with a requirements specification approach. Ap- 
propriate techniques for reviewing the detailed specification have to be chosen in both cases. 
Table 2 below depicts the issues of our current agenda and table 3 provides pointers to already 
existing experiments and to our proposals, respectively. The tabular representation does not im- 
ply a specific order of issues. Other representations, e.g. directed graphs, are possible. 
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Issues. A set of issues (i.e., questions) arise in the environment described before: 
• Informal vs. formal. What are the differences of applying semi-formal or formal require- 

ments specification languages compared to relying entirely on textual requirements? The 
benefits of semi-formal and formal languages are often claimed: they help to avoid misun- 
derstandings due to ambiguity, inconsistency, or incompleteness. Nevertheless a significant 
number of software development projects are conducted with completely informal require- 
ments documents. There are several reasons for this situation, one of them is that there are 
doubts that the promised improvements can be reached in practice. 

• Languages. Which language for requirements specification is best suited for a particular 
environment? A lot of requirements specification languages/approaches have been proposed 
in the past years. For instance, state-based approaches seem to be easy to apply since their 
theoretical foundation is often taught in lectures on computer science. Nevertheless, the 
expressiveness is somewhat limited (which is indicated for instance by the high number of 
extensions to Statecharts). Therefore, more powerful languages have been proposed, for 
example, to describe timing properties in real-time systems more concisely. 

• Reviews. Which defect detection technique is most effective for requirements specifications 
written in a particular language? Reviews of requirements specifications are important to 
ensure correctness and completeness with respect to the customer's needs. This is a com- 
plex task which cannot be automated. Several techniques have been proposed ranging from 
general purpose reading techniques to specialized techniques for requirements. 

Each "informal" issue is "formalized" by a GQM goal as described in table 2. Furthermore, each 
issue/goal defines a set of possible experiments. We discuss in the following only the facets of 
the GQM goals, but not each goal in detail. 

Object. The objects of study are either requirements specifications written in different languag- 
es, or defect detection techniques. There is a danger to compare "apples and oranges" since 
there are some requirements specification approaches such as Structured Analysis, in which the 
language is inherently coupled to a method. Others, such as Z are merely languages. 

Purpose. The purposes of our empirical studies with requirements specification approaches are 
understanding, characterization, arid evaluation. ■"■•■ 
Quality Focus. The quality focus is a quantitative description of subjective terms like "better" 
used in the description of an issue. A list of qualities is provided, covering the whole software 
lifecycle, which might be influenced by introducing a requirements specification approach. All 
these qualities are of interest for each issue, however some factors might be too expensive to 
measure. 

Viewpoint The viewpoint in our first investigations is that of the researcher. Other possible 
viewpoints include practitioner, manager, etc. 

Context. The experiments have to be performed with students at the university. This limits the 
choice of objects because of the required training effort. 

The issues raised before are used to characterize experiments found in the RE literature and to 
identify areas which up to now have been neglected or which warrant more investigation. Table 
3 below lists some examples of experiments found in the RE literature as well as our proposal 
for an additional set of experiments. The studies are characterized according to the issue they 
address, the investigated objects, the quality focus, and the type of experiment (controlled ex- 
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periment /case study). The degree to which a study covers an issue and the open questions have 
to be summarized for each study (which is omitted from table 3). 

Issue Study Objects Quality Focus Type 

Informal vs. 
formal 

Mills [MH96] Documents written in natu- 
ral language and Real- 
Time Structured Analysis 

Effectiveness of functional 
testing 

Controlled 
experiment 

Languages Our proposal Documents written in 
SCR.OMT 

Understandability, Testability, 
Verifiability, Modifiability 

Controlled 
experiments 

Review Porter et.al. 
[PVB95] 

Adhoc, checklist, scenario- 
based reading 

Effectiveness and efficiency of 
different reading techniques on 
SCR specifications 

Controlled 
experiment 

Table 3: Pointer to Experiments 

4.2 Experiment Construction 
General guidance for the design, execution, analysis of experiments with the GQM Paradigm is 
provided by the experimentation frameworks by Basili et.al. [BSH86] and by Preece & Rom- 
bach [PR94]. How to incorporate the QIP was discussed in ILM96]. It might be useful to create 
an instantiation of these frameworks with tailored and more detailed guidelines, if a topic re- 
quires extensive experimentation and experiences with experimentation in this area already ex- 
ist. This was done for controlled experiments in the area of defect detection techniques by Lott 
et.al. [LR96]. 

Since there are only a few experiments in the area of requirements engineering, as indicated by 
table 3, and our own experiences with experimentation in RE are mainly concerned with inspec- 
tions of textual requirements documents, we do not present detailed guidelines at this timei 

4.3 Experiment Descriptions 
Experiments are described according to Basili et.al. [BSH86] by four categories which reflect 
the phases of an empirical study: 
1. Definition (i.e. study goals, scope, and hypotheses) 
2. Planning (i.e, design, metrics, etc.) 
3. Operation (i.e, data collection, validation, analysis) 
4. Interpretation 
Similar to the discussion of experiment construction above, it might be useful to refine these 
categories to particular empirical approaches or particular topics of investigation as it was done 
in [LR96] for controlled experiments in the area of defect detection techniques. 

We do not present a more detailed characterization scheme for the same reasons as discussed in 
section 4.2 "Experiment Construction". In the remainder of this subsection our proposal for ex- 
periments in RE is presented according to the above scheme. 

We have started to define and perform a first set of controlled experiments regarding the eval- 
uation of different languages provided by requirements specification approaches. This issue has 
been addressed so far merely by qualitative case studies. We used initially the Unified Modeling 
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Language (UML) [Rat97] together with the OMT method [RBP^l] and the SCR style tabular 
requirements technique (SCR = Software Cost Reduction) [vS92]. The motivation for these ex- 
periments is two-fold. First, object-oriented requirements analysis (OORA) approaches are be- 
coming more and more popular. They claim to facilitate understanding, since objects map 
directly to real-world entities. OMT is the most applied OORA approach, which is especially 
used in technical domains. However, since the behavioral specification in OMT is distributed 
over a set of collaborating objects, it is not easy to tell whether an analysis model satisfies the 
required end-to-end behavior. The UML is the de-facto standard for documenting object-orient- 
ed models. Second, SCR is a widely-known black-box specification technique for technical do- 
mains (embedded real-time systems) where its tabular notation is claimed to be readily 
understandable. It is easy to verify, since system-internals are not described. Nevertheless, com- 
plexity inherent to large systems cannot be wished away by methodological choices and SCR 
specifications become complex, too. 

Definition. 
Goal: Analyze techniques TL T2,-., Tn to express requirements 

- T,: UML language with OMT method 
- T2: SCR style tabular requirements technique 
- Tn: further requirements specification approaches 
for the purpose of evaluation 
with respect to the understandability, verifiability, testability, and modifiability 
from the viewpoint of the researcher 
in the context of a lab course/lecture at the University of Kaiserslautern. 

Scope: Replicated project or blocked subject-project 
Hypothesis: There is a difference with respect to (a) understandability, (b) verifiability, (c) test- 

ability, (d) maintainability. 

Plan. 
Objects: Documents in Tj and T2 
Subjects: Students / Practitioners 
Tasks: - 

- Answer questions regarding behavioral and functional aspects of the specification (a) 
- Check completeness and consistency with respect to informal requirements (b) 
- Perform changes on the specification (c) 
- Design test cases based on the specification (d) 

Independent and dependent variables: 

Independent Variables Dependent Variables 

• Run (run 1 and run 2) 
• Requirements Specifica- 

tion Approach (T|, T2) 
• Type of Document 
• Experience of Subjects 

Understandability mea- 
sured via questionnaire 

• Time needed to complete the questionnaire 
• Correctness of answered questions 
• Completeness of answered questions 

Verifiability measured 
via defect form 

• Number of inconsistencies found 
• Time needed 

Testability measured via 
test cases 

•   Time required to write test cases 

Table 4: Overview on independent and dependent Variables 
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Independent Variables Dependent Variables 

see above Modifiability measured 
via success of changes 

• Time needed to perform changes 
• Completeness of changes 
• Correctness of changes 
• Modification rate 

Table 4: Overview on independent and dependent Variables 

Design (random assignment to groups A, B): 

Run Technique (Document) 

Ti(D,) T2(D2) 

I A B 

2 B A 

Table 5: 2x2 Within-subjects factorial design 

The 'operation' and 'interpretation' categories are omitted in this experiment description since 
this is only a proposal. These experiments are open for variation. It should be relatively easy to 
exchange the used specifications, or both the employed requirements specification approaches 
and the used specifications. 

5  Summary and Future Work 
In this paper we have discussed the role of experimentation in requirements engineering in over- 
coming the lack of empirical evidence in the field. A framework for experimentation in software 
engineering, not only requirements engineering, was suggested which facilitates experimenta- 
tion by means of structuring and formalizing a research agenda (i.e., roadmap), and by an ex- 
perimental infrastructure for developing experiments according to this agenda. We have 
presented our agenda for experimentation with requirements specification approaches for em- 
bedded real-time systems, and proposed a set of experiments. The agenda was also used to char- 
acterize already existing experiments in the literature. We performed one of the proposed 
experiments at the University of Kaiserslautern in December 1997 [KvKR98]. Currently, we 
are capturing experiences made in other environments-e.g., the NASA Software Engineering 
Laboratory-, developing further experiments, and extending our agenda. The proposed frame- 
work, the agenda, and the experiments are parts of a PhD thesis that is currently being per- 
formed at the Fraunhofer Institute (IESE). 

Performing experiments in requirements engineering is beneficial for students, practitioners, 
and the research community. Students can experience the relative strengths and weaknesses of 
the requirements engineering approaches that are introduced in their lectures. Professionals can 
gain confidence in new approaches before they are applied under project pressure. The research 
community can accumulate a body of knowledge regarding the utility of various approaches un- 
der varying project characteristics. We therefore recommend that replicable experiments be 
adopted as a standard part of both education and technology transfer programs. 
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The empirical evaluation of requirements engineering approaches cannot be the effort of ä sin- 
gle person or a single research group. Many experiments are too large for any single organiza- 
tion, they must be repeated in different environments. The International Software Engineering 
Research Network (ISERN) is a community that believes software engineering research needs 
to be performed in an experimental context ISERN has facilitated the development of experi- 
ments and their replication in different environments. Organizations interested in joining IS- 
ERN may access the World-Wide Web information available from the following URL 

http://wwwagse.informatik.uni-kl.de/ISERN/isem.html 
or send an email to 

isern@informatik.uni-kl.de. 
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Abstract 

This paper presents a toolbox for software specification and design that contains 
techniques from structured and object-oriented specification and design methods. 
The toolbox is called TRADE (Toolkit for Requirements and Design Engineering). 
The conceptual framework of TRADE distinguishes external system interactions 
from internal components. External interactions in turns are divided into external 
functions, behavior and communication. The paper shows that structured and OO 
analysis offer a small number of specification techniques for these aspects, most of 
which can be combined in a coherent software design specification. It is also shown 
that the essential difference between structured and object-oriented software design 
approaches lies in the separation of data storage, data processing and control in 
data flow diagrams, versus the encapsulation of these into objects by 00 analy- 
sis. Functional and subject-domain-oriented decomposition, on the other hand, are 
shown to be compatible with both approaches. 

1    Introduction 

In this paper, we view design as uncertainty reduction about the future of an artifact. In 
this broad view, design decisions may concern external properties as well as the internal 
structure of new artifacts, and may concern changes to existing artifacts or may concern 
new artifacts. The result of design is a documentation of the decisions made about the 
artifact, called a specification. Specifications always consist of a combination of text 
and graphics, both of which may vary in degree of formality. Software design specifica- 
tion methods are grouped into two camps. Structured methods emphasize data flows and 
functional decomposition. Object-oriented methods emphasize the encapsulation of op- 
erations and data and recommend something that we refer to as subject-domain-oriented 
decomposition. 

"Work done while at  the Faculty of Mathematics and Computer Science.   Vrije  Universiteit, 
Amsterdam. 
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The need for integration of structured and object-oriented software specification meth- 
ods has been long r« ognizod [1,3, 32, 47,51]. One or the advantages or such an integral ion 
is that. it. allows practitioners raised in the world or data flow modeling and fimrtionn! de- 
composition' to incorporate useful elements of object-oriented spccifical ion in a .stepwise. 
evolutionary manner. Another advantage is that it allows us to pick the best elements of 
both groups of methods in an eclectic way, which should allow us to advance the state of 
the art beyond each of the contributing groups of methods. For example, we show that 
structured analysis offers useful techniques for the specification of external functionality 
but is a bit muddled in its specification of internal decomposition. Object-oriented anal- 
ysis, on the other hand, offers useful techniques for the specification of decompositions 
but tends to ignore the specification of external functionality. 

Early integration proposals incorporate object-oriented ideas in structured analysis 
without fundamentally changing structured analysis [51], or incorporate structured anal- 
ysis in object-oriented analysis [3], or simply use structured analysis as a front-end to 
object-oriented design [1, 32, 47]. None of these proposals is based upon a thorough 
analysis of the underlying principles of structured and 00 analysis. Without such an 
analysis, it is not possible to sec which elements of structured and 00 methods can or 
cannot be combined and why this is so. The integration proposed in this paper is ■based 
upon a thorough survey and analysis of six structured and 19 object-oriented specification 
methods, recently completed [57]. 

The results of the analysis are used to define the Toolkit for Requirements and Design 
Engineering (TRADE). This is a kit of conceptual tools, not software tools. TRADE 
contains techniques and heuristics taken from many different methods and allows combi- 
nation of these tools in a coherent way. There is a software tool called TCM that can be 
used to use some of the techniques in TRADE, but TCM is not described in this paper, 
because the essential design tools are made from software but from the experience and 
understanding of the designer. The essential tools are conceptual and consist of design 
techniques and heuristics and the tacit knowledge needed to apply them. This approach 
is postmodern in tlie sense that TRADE contains only elements borrowed from existing 
methods. It. adds nothing except a framework in which these elements are put, and set of 
rules for using these elements in a coherent way. I hope that TRADE will not be viewed 
as yet another method but as a toolkit that, as any other toolkit, should be used flexibly 
and in a context-sensitive way. 

I start in section 2 with setting out a framework for software design methods that 
allows us to analyze structured and object-oriented methods and their techniques in a 
coherent manner. This framework is explained and motivated at length elsewhere [56]. In 
addition to allowing us to understand and analyze the use that can be made of specification 
techniques, the framework also allows us to define the relationships that must hold between 
the different techniques in a coherent multi-perspective specification. In section 3, a 
catalog is given of techniques taken from structured and object-oriented methods, and 
show how they fit into this framework. In section 4, it is shown which techniques are 
adopted in TRADE, and how these are connected. Section 5 concludes the paper with a 
discussion. 
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Figure 1: A framework for systems. 

2    A Framework for Software Systems 

The TRADE framework classifies the kinds of properties of software systems that, a de- 
signer might want to specify. It ignores the design process but focusscs on the system: 
we return briefly to this below. The framework is derived from frameworks for systems 
engineering [17,18] and product development [45] and from an analysis of software design 
methods [57]. The two basic dimensions of the framework are those of external interactions 
and internal (de)composition (figure 1).' Each system interacts with its external environ- 
ment and is viewed as part, of an aggregation hierarchy, in which higher-level systems are 
composed of lower-level systems. External interactions and internal decomposition arc 
orthogonal in the sense that design decisions about these two dimensions of a system can 
be separated. 

The external interactions of a system should be useful for at least some other systems 
in its external environment (people, hardware or software). This moans that we should 
always be able to partition external interactions into chunks of useful interactions that 
we call external functions. These chunks may be atomic from an external point of 
view (i.e. they are external transactions), or they may be complicated dialogs between 
the system and some external entities. They are not to be confused with mathematical 
functions or with functions written in a programming language. They are similar to 
Jacobson's [31,40] use cases: pieces of external behavior that have some use for an external 
agent. Of the many properties that external functions can have, we single out two kinds: 
the ordering of functions in time, called behavior, and their ordering in "space", called 
communication. An external function is an external interaction, and each external 
interaction involves communication with one or more external entities. Moreover; external 
interactions are usually governed by rules of temporal precedence, which leads to the 
concept of behavior. The distinction between behavior and communication is the same 
as the classification of process operators in CCS into dynamic and static ones [38] 

There should be a safety valve in our framework in the form of a category "all other 
properties". This includes the famous "ilities" such as usability, portability, interoperabil- 
ity, reliability etc. Many of these can be construed as properties of interactions or of the 
decomposition. However, structured and object-oriented methods provide no techniques 
or heuristics for specifying these properties and TRADE contains iio tools for this, so we 
ignore this category in this paper. 

'The terms "composition" and "decomposition" used in the paper do not refer to bottom-up or top- 
down design processes but are used to refer to the internal structure of a system. 
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Figure 2: The magic square. 

This completes the sketch of our framework for techniques. We will classify the tech- 
niques used in structured and object-oriented methods as techniques for specifying exter- 
nal functions, behavior or communication, or internal decomposition of a system. Before 
we do that, we point out a number of special features of the framework and show how it 
can be applied to software systems. 

First, observe that each component of a system is itself a system, that has an internal 
decomposition and interacts with other components and external entities of the system. 
In fact, each interaction of the entire system is realized by interactions of its components. 
In terms of specification techniques, this means that we can use the same technique to 
specify interaction of systems at different levels in the aggregation hierarchy. 

Next, we can specify a system's external external interactions at several levels of re- 
finement, where higher levels of refinement correspond to more detail and less abstraction. 
We can also specify a system's components, components of those components, etc., leading 
to an aggregation hierarchy. The orthogonality of external interaction and decomposition 
implies that interaction refinement and system decomposition arc orthogonal. This is 
visualized in figure 2, called the magic square by Harcl and Piineli [24]. Orthogonality 
means that decisions about interactions can be intertwined with decisions about, decom- 
positions in any way [40]. 

To explain this further, we return briefly to the process dimension. It is useful to dis- 
tinguish logical design tasks from the way these tasks are ordered in time. Very generally, 
for any design task, the logical tasks are 

• analysis of problem situation, 

• synthesis of proposed solutions, 

• simulation of solutions, and 

• evaluation of simulations [45, 56]. 

For example, we may refine an interaction specification by analyzing the needs of the 
external environment, proposing a refinement, simulating the specified interactions, and 
evaluating this simulation. Or again, we may design a decomposition by analyzing the 
desired interactions of the system, proposing a decomposition, simulating its behavior, and 

RTSE'97, p.300 



evaluating this simulation. During an nrt.mil project, these tasks may be ordered in I iine in 
various ways. For example, in waterfall development, the entire set of external interactions 
is specified before the system is decomposed in a top-down way. This is characterized by 
a path through the magic square that, starts at the upper left, comer and then proceceds 
in a top-down way by alternately moving right (refining) and down (decomposing). In 
incremental development, only the most important external interactions are .specified 
before a system architecture is determined. The corresponding patii through the magic 
square starts at the upper left corner and moves sufficiently right and down to determine 
the overall functionality and architecture of the system. It then performs a linear process 
for each increment of the system. Other strategies are possible too [24, 56, CO]. In each 
strategy, decisions about interactions and architectures are intertwined in a particular way. 
In whatever way this is done, the result of these decisions must be justifiable as if they 
were taken by means of a rational design process [41]. This is the design analogy to the 
way in which the historical progress of scientific knowledge can be rationally reconstructed 
as if a rational, empirical discovery procedure were followed [33, 56]. 

So far, tlie framework does not refer to special properties of software systems and is 
therefore applicable to all kinds of design. In the case of software systems, we add two 
features to our framework that will turn out to be useful to understand the use that is made 
of specification techniques. First, each software system interacts with its environment by 
exchanging symbol occurrences with its external entities. Now, a symbol occurrence is 
a physical item to which people have assigned a meaning. So for these people, it refers 
to part of the external world. I call the part of the world referred to by the external 
interactions of a software system the subject domain of the system. (Another term 
often used is Universe of Discourse.) The subject domain is itself a system and may itself 
be under development by another design team. So the framework of figure 1 is applicable 
to it. To understand how techniques arc used in methods, it is important to understand 
what they arc used for: to specify the subject domain or to specify the software system. 

The second feature to be added to our framework is the identification of the essen- 
tial level of aggregation in the specification of software systems, Given a specification of 
external functions, behavior and communications of a software system, we can design a 
decomposition of this system that would be optimal for this specification of external prop- 
erties, and that ignores the properties of underlying implementation layers. I call this an 
essential decomposition of the software system. The only decomposition criteria that 
can be used for the essential decomposition are derived from the external environment 
of the system, such as its external functionality, external behavior, external communica- 
tions, or its subject domain. The concept of essential decomposition arose with McMe- 
namin and Palmer [37] and also occurs in the object-oriented method Syntropy under 
the guise of the specification model [10]. I return to this when we discuss structured and 
object-oriented decomposition criteria in section 3.2.2. All other decomposition levels of 
a software system are designed by taking aspects of the underlying implementation envi- 
ronment into account. For example, in a distributed system, the essential decomposition 
must be allocated to processors in the network, and at each processor, essential compo- 
nents must be mapped to schedulable sequential processes. I call these decomposition 
levels implementation-oriented. 
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3    A Catalog of Techniques 

3.1    External interaction specification 

3.1.1    External functions 

In our framework, external interactions are partitioned into useful portions called func- 
tions. Functions can he organized in a refinement hierarchy .such that, the root of" the 
hierarchy is the overall system function, called the mission of the system, and the leaves 
are elementary functions. I regard a function elementary if it is triggered by an event 
and includes all desired responses to the event. Borrowing from structured analysis, we 
distinguish external events, which arise from an external entity, from temporal events, 
whichconsist of a significant, moment in time [52]. For example, pushing an elevator but- 
ton is an external event. If the elevator doors have been open for a certain amount of 
time, a timeout occurs, which is a temporal event. 

Techniques for specifying external functions come mainly from structured analysis. 

• Often forgotten but extremely important is the mission statement of the system. 
In the Yomdon Systems Method (YSM) this is called the statement of purpose [66]. 
It consists of a general description of one or two sentences, the major responsibilities 
of the system and a list of things the system is agreed not. to do. 

• The external function hierarchy can be represented by a function refinement 
tree whose root represents the mission and the leaves represent the elementary 
functions. This is a well-known technique from Information Engineering [34]. The 
tree is merely an organization of external functions and does not say anything about 
the internal decomposition of the system. 

• Elementary functions, which arc at the leaves of the tree, can be represented as a 
list of event-response pairs, another technique from YSM. in which the source of 
the event, its meaning, the desired response of the system, timing requirements and 
other relevant externally observable properties are described 65, 66]. 

• If the data interface of events and responses is important, their pre- and post- 
conditions in terms of input and output data can be specified. This technique is 
used in structured and object-oriented analysis alike [9, 65, 66]. 

There are several techniques to specify behavioral and communication properties in struc- 
tured and object-oriented analysis, discussed next. Many of these techniques are too de- 
tailed to be used for a specification of external system behavior at the higher levels of 
aggregation but as we specify the requirements of lower-level components, they become 
increasingly useful. These lower-level components are systems in their own right and we 
continue to refer to them as such. 

3.1.2    Behavior 

Two groups of behavior representation techniques are used in structured and object- 
oriented analysis, state transition diagrams (STDs) and process dependency diagrams. 
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Figure 3: The Mealy, Moore and Statechart conventions. 

• State transition diagrams come in several flavors. In all flavors, an STD is a directed 
graph in which the nodes represent states and the edges stare transitions. In the 
Mealy convention, an edge can be labeled by the event that triggers the transition 
and the action generated by the transition. The triggering event is an external event 
received from the environment of the system being specified and the generated action 
is the response sent to the environment. For example, in the Mealy STD of figure 3, 
if the system receives event, e when it resides in state Si, it will generate a and move 
to state 52. Most structured analysis methods of the Yourdon school use Mealy 
STDs. 

• In the Moore convention, actions must be associated with states rather "than 
transitions. In the Moore STD of figure 3, if the system receives event e when it 
resides in state Si, it will move to state 52 and upon arrival in this state, generate 
a. The Shlaer-Mellor method for object-oriented analysis u.-:es Moore STDs [48]. 
Formally, the Mealy and Moore representations have the same expressive power [2G, 
page 42], because they recognize the same language. 

• In the Statechart convention, both the Mealy and Moor-? conventions arc al- 
lowed [19, 27]. More importantly, Statecharts allow the representation of state hi- 
erarchies and parallelism. For example, in the statechart of figure 3, the system 
is represented by state S, which is partitioned into two parallel substates SI and 
S2, each of which are further divided into substates. When :he system is in state 
Sill, it is also in state Sll, in state SI and in state S. If it receives event ell when 
it is in state Sill, it will leave Sll and Sll, generate all arxl move to state S12. 
The generated action all may be sent to the external environment but may also 
be broadcast to all parallel components (such as S2). The execution semantics of 
Statecharts is complex and has been studied in detail [4, 25]. Depending upon the 
execution semantics, a statechart can be replaced by a set of M-ealy (or Moore) STDs 
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I hat communicate via broadcasting. Most object -oriented met hods use slate-harts 
to represent, behavior. This may Rive the impression that the use of statecharts 
is the hallmark of object-oriented specification. This is a false impression, because 
Slatcmate, which is a structured approach, also uses statecharts [22, 27]. The Stale- 
mate execution semantics of statecharts is precisely defined [23], but the statechart 
versions used in object-oriented methods do not have a formally defined semantics. 
The exception is the UML, for which a formally defined execution semantics is cur- 
rently being defined [44, 20, 21]. The reader should be warned that this semantics 
is totally different from the Statematc semantics. 

• In order to be able to draw an STD, the number of represented states in an STD 
must be finite and small. The number of representablc states can be increased if we 
introduce local variables. This requires an extension of the graphical technique 
with the ability to define data types and declare variables. Furthermore, edge labels 
must be extended with the possibility to specify guards that test the value of 
these variables, and with the possibility to specify additional actions that consist of 
assignments to these variables. If a guard evaluates to false when an event occurs, 
then the event e will not trigger the transition. An STD with local variables is caller I 
an extended STD. Mealy STDs, Moore STDs and statecharts can all be extend«! 
this way. Yourdon-style structured analysis do not use extended STDs. but other 
structured methods such as JSD [29] and SDL [5] and all object-oriented methods 
use extended STDs.2 I argue below that this lies at the heart of the difference 
between these approaches. 

• A small number of methods use process dependency diagrams to represent 
behavior. These arc directed graphs in which the nodes represent processes and 
the edges process dependencies. The process at the tail of an arrow must, haw 
terminated in order for the process at. the head to begin. Process dependency 
diagrams are typically used to represent the flow of control through a number of 
processes, each of which may be executed by a different system. They are used 
for example in workflow modeling. Process dependency diagrams were introduced 
in Information Engineering [35]. Martin and Odell use an expanded form of the 
notation in their object-oriented specification method [36] and yet another form of 
the notation is adopted in the UML [43]. There- is as yet no formal semantics for 
these notations in their complete forms. 

Of the STD techniques, Mealy and Moore representations are alternatives and statecharts 
are a more powerful variation. Extended versions of these techniques are more expressive 
than nonextended ones. Clearly, the STD techniques are not mutually incompatible but 
in a particular modeling effort, one of them should be chosen. Whatever STD convention 
is used, it assumes that external functions of the system have been specified as event- 
response pairs. The STD can then be used to represent temporal orderings of the event- 
response pairs. 

21 regard JSD as a hybrid method that combines elements of structured and OO analysis. JSD uses 
process structured diagrams with accompanying text, that are equivalent to STDs. SDL is a description 
technique used for telecommunication systems based upon extended finite sta-e machines. The design 
philosophy of SDL is functional decomposition but recently, object-oriented feaiures have been added [7, 
30]. 
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Process dependency graphs do not'require that functions have been specified as event- 
response pairs. Viewing each function as a process, the process dependency graph can 
then be used to represent temporal precedence relationships between these. Most varieties 
of process dependency graphs have lio formal semantics. France [IG] defines a formal 
semantics for data flow diagrams extended with control constructs, but the best of my 
knowledge, this has not been used in the reviewed methods. Because in the UML, process 
dependency diagrams (called activity diagrams) arc based upon statecharts, there is hoi«' 
that a formal statechart semantics can be used to define a formal semantics for activity 
diagrams. Until such a formal semantics is defined to decide the matter, an integrated 
approach should use STDs and not process dependency diagrams. 

3.1.3    Communication 

The following communication specification techniques are used in structured and object- 
oriented analysis at the system level. 

• Very useful to represent the system boundary is the context diagram, which rep- 
resents the system and the external entities which it communicates with (and which 
are sources of external events or destinations of responses). This is an important 
technique from structured analysis [14], recently reinstated by Jackson [30]. 

• A variant of the context diagram, introduced in Objectory and since adopt«! by 
many object-oriented methods, is the use case diagram [8,31.42]. A use case is an 
interaction between the system and its environment that is useful for its environment 
— in other words, it Is an external function. A use case diagram shows for one or 
more system functions which external entities may communicate with the system 
during an occurrence of each of these functions. 

• The Shlaer/Mellor method uses a communication diagram to represent possible 
object communications [48]. This is a directed graph in which the nodes represent 
object classes or external entities and the edges represent possible communications. 
These are asynchronous in the Shlaer/Mellor method. 

This exhausts the techniques used for the specification of communication. There are two 
other techniques, that can be used to illustrate the communication and behavior of a 
system. 

• A sequence diagram consists of a set of vertical lines, each representing a commu- 
nicating entity. The downwards direction represents the advance of time. Arrows 
between these lines represent communications. Sequence diagrams have been used 
for a long time in telecommunication systems, where they are standardized as mes- 
sage sequence charts [28]. Variations of the technique are u=ed in object-oriented 
analysis [31, 46] to represent the communication between objects or between the 
system and its environment. In an attempt to standardize on an object-oriented 
version of the technique it is adopted by the UML [42]. A sequence diagram repre- 
sents behavior as well as communication. However, it does not represent all possible 
behaviors and communications, but only those that can occur in a particular sce- 
nario. 
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function 1 function n 

component 1 

component m 

Figure 4: Format of a function decomposition table. 

. Collaboration diagrams are directed graphs in which the nodes represent com- 
municating entities and the edges communications. The edges are numbered to 
represent the sequence in which communications take place. Collaboration dia- 
grams can be used as alternative to sequence diagrams. Like sequence diagrams, 
there are many versions, that differ in the elaborations and adornments that they 
allow The technique plays a central role in responsibility-driven design [64] and m a 
number of object-oriented methods such as Booch [6]. Fusion [9], and Syntropy 110]. 
It has been adopted in the UML as alternative to sequence charts [42]. 

The communication specification techniques are clearly compatible and can be integrated 
in an obvious way. For example, a context diagram can show where the events come fron, 
and where the responses of the system go to. If we add an STD to specify the behavior of 
external cvcnt.-respon.se pairs, a sequence or collaboration diagram can be user! to illus- 
trate possible communication sequences of the system generated by tins behav.or. In the 
specification of external interactions, therefore, there is no incompatibility between struc- 
tured and object-oriented analysis. To find the difference, we must look at decomposition 
specification techniques. 

3.2    Decomposition 
Taking a systems engineering view, we can represent the allocation and flowdown of exter- 
nal functions to components by means of a function decomposition table, also called 
a traceability table in systems engineering [11. page 192]. [12]. In figure 4 the top row 
lists all external functions of the system (at a certain level of refinement) and the leftmost 
column represents all components of the system (at a certain level of aggregation). An 
entrv of the table represents the functions that a component must have to in order to 
realize an external function. A column of the table represents all functions that act to- 
gether to realize an external function. The table relates all perspectives that we identified: 
functions, decomposition, behavior (ordering of functioas in a row), and commumcat.on 
(columns). Note that each such table corresponds to one point in the magic square ot 
figure 2, i.e. a refinement level and an aggregation level. 

3.2.1    Decomposition specification 

Yourdon-style structured analysis uses entity-relationship diagrams (ERDs) and data 
flow diagrams (DFDs) to represent software decomposition. Figure 5 contains a simple 
DFD that represents three components and the way they communicate'with each other 
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Figure 5: A simple data flow diagram. 
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Figure 6: A Mealy STD for the Temperature control process with a decision state. 
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Figure 7: A simple entity-relationship diagram. 
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and with external entities. Temperature sensor and Heater arc external «-nliiw-s used lo 
control the temporal me or a fluid iti a cooking tank. These are not components of ihc 
system hut. part of the environment. The rest of the diagram illustrates thai OFDs 
recognize three different kinds of system components: 

• The data store Desired temperature represents the. desired temperature of the fluid. 
A data store is a place where |>art of the state of the system can he stored. 

• The data process Compare compares the value stored in Desired temperature with 
the value measured by Temperature sensor and sends the result to Temperature con- 
trol. A data process is a function that transforms input data into output data. 

• The control process Temperature control is a finite state machine that periodically 
triggers the data process Compare and, depending upon the answer, turns the Heater 
on or off. 

Dashed arrows represent signals, solid arrows represent data flows. The Mealy STD for 
Temperature control is shown in figure 6. It shows that Temperature control triggers an 
external data process by the action T: Compare and then waits for the answer in the state 
Comparing. It moves to the Heating or Not heating state depending upon the answer, 
turning the heater on or off accordingly. Comparing Is called a decision state. 

The structure of all data in the system, stored or manipulated, can be represented 
by an ERD. Figure 7 shows a fragment of an ERD that describes the structure of some 
relevant data. It. shows that the system must contain data about the Batch of juice to be 
heated, the Recipe according to which the batch must be heated, and the Cooking tank 
in which the batch must he heated. The arrow from Batch to Recipe moans that there 
is exactly one Recipe for each Batch. The line between Batch and Cooking tank means 
that there is a many-many relationship between these. The Yourdon method docs not. 
prescribe the relationship between ERD and DFD other than that at least the structure 
of all stored data must be represented by the ERD. 

Yourdon structured analysis thus recognizes three kinds of components to be listed in 
the leftmost column of the function decomposition table: 

• data stores, 

• data processes, and 

• control processes. 

Object-oriented methods recognize only one kind of component: 

• objects, that encapsulate all these three aspects. 

Each object contains data, can perform computations with these data, and has a behavior 
over time. This mans that object behavior can be specified by extended STDs. What 
this means can best be illustrated by an example. 

Figure 8 shows a possible class-relationship diagram (CRD of an object-oriented 
decomposition of the control software. Each rectangle represents an object class. Tempera- 
ture-control-S has two attributes, Desired.temp and ActuaLtemp. To simplify the diagram, 
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Figure 8: A simple class-relationship diagram 

J I Turn on 

Time to compare [Desired temp <= Actual temp] 

Turn off 

Heating        _J 
 JK— 

Time to compare [Desired temp > Actual temp] 
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Turn on 

Not heating D Time to compare [Desired temp <- Actual temp] 

Figure 9: An extended Mealy STD for the Temperature control object. 

we omitted the attributes of other objects. The diagram is an extension of the ERD 
with object classes that correspond to external entities and to a control process in the 
DFD. Bidirectional arrows in the diagram represent one-one relationships, single arrows 
represent many-one relationships. To emphasize that all objects represented by the CRD 
are software components, we added -S to their names. We did not need to do this in the 
ERD of figure 7, because in structured analysis, ERDs always represent data structures 
of software systems. 

The behavior of the Temperature control object can be specified by an extended STD 
such as shown in figure 9. The STD uses the two attributes of Temperature control as local 
variables. They receive values from the environment of the Temperature control, in this 
case the Temperature sensor and Recipe software objects. This is not shown in the CRD: 
the lines in that diagram represent relationships between the software objects, which tells 
us which software objects know the identity of which other software objects. The}- do 
not tell us which communications between objects take place. The variables are tested 
in guards, which are denoted by Boolean expressions written between square brackets. 
Thus, if the event Time to compare occurs when the temperature control is in state Not 
heating, then the transition to Heating occurs if Desired temp > Actual temp, and the 
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Iwfiti-r is turned on. 
Now, compare this with the Mealy STD in fig»1'«' 6. Il is clear thai separating data 

awl control, as is done in DFD models, makes for more complex models because this 
forces us to introduce decision states in the Mealy machine to await toe outcome of 
decisions, and it forces us to introduce data processes that compute tin: derisions, and that 
communicate with the Mealy machine. The communication typically has the following 
structure: The Mealy machine triggers a data process that must compute a decision, and 
the data process sends its output as an event to the Mealy machine. Further complexity 
is introduced because DFDs separate data processing from data storage. This means 
that the data process does not have the data to compute the decision. It must get this 
from an input data flow and/or a data store. Data that survives a single external system 
transaction must be stored in data store, whereas in OO models this data persists in 
the state of objects. The consequence of separating data processing, data storage and 
control is that DFD-based models are considerably harder to understand than object- 
oriented models. Also, these separations are incompatible with the encapsulation principle 
of object-oriented decomposition. I conclude that. DFDs are incompatible with object- 
oriented decomposition. 

3.2.2    Decomposition heuristics 

There are several criteria that can be used to find a decomposition. Functional de- 
composition uses external functionality as criterion. In its simplest form, every external 
elementary function corresponds to a component that implements that function. This 
would lead to a diagonal in the function decomposition table, mapping external function- 
ality to internal structure. This is alright if it leads to small interfaces between components 
and if the external functionality never changes. If either of these conditions is false it is a 
bad decomposition. It is often claimed that functional decomposition is incompatible with 
object-orientation. However, there is nothing in the concept of an object that prevents 
us from using a functional decomposition criterion for an object-oriented decomposition. 
For example, in figure 8, Temperature control corresponds to a function of the system.'' 

A second decomposition criterion that can be used is subject domain-oriented 
decomposition. In section 2 it was noted that software systems interact with their 
environment by exchanging symbol occurrences with the environment. The subject do- 
main of a software system was then denned as the part of the world referred to by these 
symbols. For example, the subject domain of a database system is the part of the world 
represented by the database, and the subject domain of a control system is the part of 
the world controlled by the system. In subject domain-oriented partitioning, there 
is a correspondence between the software system decomposition and a subject domain de- 
composition. For example, figure 8 contains software objects that correspond to a batch, 
a recipe and a cooking tank. 

This decomposition principle has been adopted by many object-oriented methods but 
contrary to what is often thought, it is not characteristic of object-oriented methods. 
For example, the principle is central in JSD [29], which is not purely object-oriented. 
Furthermore, as I show elsewhere [55], the principle can easily be applied to data flow 

3In JSD, such objects are called long-running functions [29] and in Objectory, they are called control 
objects [31]. 
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modeling. Finally, wo find improper use of the j>rh»<-i|»i'- of subject-domain partitioning 
in object-oriented methods. For example, the Fusion method recommends making a» 
ER-like domain model first and then drawing a boundary around the object classes that 
will constitute the system {9]. By the act of drawing this boundary, objects in the do- 
main (outside the system) become objects inside the system. Ojecfs outside the boundary 
remain subject domain entities. This confuses the subject domain with the internal de- 
composition of the system. The resulting diagram combines features of a CRD showing 
the essential decomposition of the system with features of a context 'diagram showing the 
communications with the environment. Published examples show models of the domain 
(outside the system) that already contain system functions and other essential system 
components [2]. In some cases, the domain model contains two copies of an entity, one 
for the external entity and one for a essential system component. Use of the method in 
teaching show difficulties precisely at this point [15]. 

In addition to functional decomposition and subject-domain-oriented decomposition, 
there are two intermediary decomposition heuristics. Event partitioning recommends 
defining one system component for every elementary event-response pair [37] and device 
partitioning recommends defining one system component for every external [66. pages 
355, 509]. In practice, a combination of these heuristics will be used. For example, fig- 
tire 8 contains components that correspond to external devices (Heater-S and Temperature 
sensor-S) and we have seen that it also contains components that correspond to subject 
domain objects and to a system function. 

4    The Techniques in TRADE 

Figure 10 lists the techniques that have been adopted in TRADE. The reason for adopting 
these techniques is that together, they the kinds of properties that can bo specified in a 
wide variety of structured and object-oriented methods [57]. For each dimension of our 
framework, we chose simple and useful techniques that can be used to represent system 
properties along that dimension. Because the primary aim of TRADE is to teach infor- 
matics students about software specification techniques, ease of understanding is preferred 
above expressive power. This is the reason why extended Mealy machines rather than 
extended Statecharts are chosen to represent behavior. Experience has taught that stu- 
dents tend to produce unnecessarily complex models when using Statecharts to represent 
behavior. Also, local variables gives us all the added expressive power that we need: state 
nesting and parallelism can be expressed by a set of communicating Mealy machines. And 
as argued earlier, the introduction of local variables in any STD technique allows its to 
avoid the complexities of data flow diagrams. 

Simplicity of techniques also makes it feasible to define the connections that must 
hold between different parts of a coherent specifications in an understandable manner. 
Without going to details, if the techniques are used as indicated in figure 11, the links 
shown in figure 12 must hold. The entries of the table indicate the techniques between 
which there exist links. The table is symmetric around the diagonal, which is why only 
half of it is shown. A brief explanation of the entries of the table follows, where the entries 
are identified by a pair (row.column). 

(2.1) The root of the function refinement tree is labeled by the mission statement. 
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tion technique 

Communication 
specification   tech- 

nique 

Decomposition 
specification    tech- 

nique 

Mission Statement X 

Function       refine- 

ment tree 
X 

Event^response 
specification 

X 

Pre-postcondition 

specification 
X 

Extended       Mealy 
machine diagram 

X 

Communication di- 

agram 
X 

Sequence diagram X X 

Class diagram X 
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Figure 10: The techniques in TRADE. 

Subject domain 
External system in- 
teractions 

System decomposi- 

tion 

Component    inter- 

actions 

Mission statement Mission 

Function       refine- 
ment tree 

Mission refinement 

Event-response 
specification 

Elementary external 
functions 

Component    func- 
tions 

Pre-postcondition 

specification 

Elementary external 

functions 

Component    func- 

tions 

Extended      Mealy 
machine diagram 

Subject domain en- 
tity behavior 

Component behav- 

ior 

Communication di- 

agram 

Context diagram 
Use case diagram 

Component    inter- 
action 

Sequence diagram 
External interaction 
sequences 

Component    inter- 
action sequences 

Class diagram 
Subject domain de- 
composition 

Essential decompo- 
sition 

Function decompo- 
sition table 

' 

Allocation         and 
flow/down of func- 

tions 
"■ 

Figure 11: Use of the techniques in TRADE. 
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Figure 12: Links between parts of a coherent specification. 
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»1. 

(3.2) Each leaf of the fiiw-tinn refinement tree represents an external function, specified by 
means of an event-response specification and/or a pre-post condition specific»! ic 
Enrli external function specification corresponels to a node in the function refinement 

tree. 

(4.2) See (3.2). 

(5.3) The event sources awl response destinations of an event-response» specification of 
an external function are external entities represent«! by the context diagram, that 
interact with the system. 

(6.2) Each use case corresponds to a node in the function refinement tree. 

(6.5) The interactions between a use case and an external entity, represented in a use 
case diagram, also occur in the context diagram between the system anel an external 
entity. 

(7.5) The external communications in a sequence diagram of external interactions corre- 
spond to the external communications in the context anel in use case diagrams. 

(7.6) See (7.5). 

(9.2) The top row of the function decomposition table corresponds one-one to the leaves 
of the function refinement tree (they represent external functions). 

(9.8) The leftmost column of the function decomposition table corresponds one-one with 
the set of classes in the class diagram. In addition, the entries of the table nittst In- 
consistent witli the interface of the components eleclarcel in the class diagram. 

(10 8) The events and responses in a event-response specification of a component, must 
be consistent with the events anel responses of the component .declared in the class 
diagram. 

(11.8) The terms in a pre-postcondition specification of an interaction of a component 
must be consistent with the attributes of the component declared in the class dia- 
gram. 

(12.S) The events and responses of the transitions in the Mealy diagram of a class must 
correspond with the events and responses of the class declared in the class dia- 
gram. In addition, the local variables used in the Mealy diagram correspond to the 
attributes declared for the class in the class diagram. 

(13.8) The communications represented in a communication diagram of component in- 
teractions correspond with the events and responses declared in the class diagram. 
(Each of these is part of the interface of the object and consists of a communication 
with another object or with an external entity.) 

(13.10) See (13.8). 

(13.12) See (13.8). 
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(1-1.12) The sequence of communications in a .sequence diagram of component communi- 
cations is consistent with the Mealy diagram of the communicating components. 

(14.13) The communications in a sequence diagram of component communications are 
consistent with the communications represented by the communication diagram. 

This list suffices to give an impression of the connection rules. There HIT. two ways to 
-make this more precise, by means of formalization and by means of a metainodel. To 
formalize the diagrams and their links, a formalization based upon order-sorted dynamic 
logic and process algebra will be used [53, 63, 62]. This is particularly important for the 
niles in the above list that contain the word "consistent". Definition of a metamodcl is 
ongoing work, which is part of the specification and implementation of the TCM software 
tool [59]. 

Figure 12 does not define links for the subject domain model (a class diagram with 
extended Mealy machines). These parallel the links between the class diagram and Mealy 
machines for the system decomposition. If subject-domain-oriehted decomposition for the 
system is used, then there will be links between the class diagrams of the subject domain 
and that of the system. These are however a result of design decisions and are not a 
consequence of the semantics of the notations. Figure 12 only lists the links that must 
hold in all cases. 

Observe that we can define the links only because we presuppose our framework for 
software design techniques. It is this framework that gives us the concepts of subject 
domain, functions, behavior, -communication and decomposition, which, give the links 
meaning and that allows is to justify that the links must be present. 

Comparing the techniques in TRADE with the UML [43], we observe that the struct lire 
of TRADE models corresponds with that of UML models in that a software system is 
viewed as a collection of interacting objects, whose structure is represented by a class 
diagram and whose behavior is represented by state transition diagrams. In addition, a 
TRADE model represents external functionality by a mission statement and a function 
refinement tree, and adds traceability by defining a function decomposition table. TRADE 
only uses the simplest possible state machine notation (Mealy machines) rather than the 
complex Statechart notation, and omits collaboration diagrams, which have roughly the 
same expressive power as sequence diagrams. 

Just like the Yourdon Systems Method [66], TRADE models contain an elaborate 
specification of external functionality, using roughly the same techniques as used in YSM. 
Unlike YSM, the essential decomposition is not represented by means of data flow models 
but by means of a class diagram. 

Another interesting comparison to make is with SDL [5], used for modeling telecom- 
munication systems. An SDL model represents a system as a hierarchy of subsystems, 
called blocks, that may communicate via channels. Each block at the bottom of the hierar- 
chy consists of one or more communicating processes, each of which is specified by means 
of an extended finite state machine. The major difference with TRADE models is that 
TRADE contains more techniques for specifying external functionality but contains no 
technique for representing subsystems. Addition of a subsystem representation technique, 
and heuristics for partitioning a system into subsystems, is a topic of current research. 

Turning to the heuristics that can be used to apply the techniques in TRADE, these 
have already been described in section 3.2.2. These heuristics have their source in struc- 
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lured and objoct-oriented methods and ran all lie; used in combination with ihr trilimqiiis 

in TRADE. 

5    Discussion and Conclusions 

TRADE techniques can be used in different, design strategies, ranging from waterfall to 
incremental or evolutionary. They look familiar to developers with a structured hack- 
ground as well as those with an object-oriented background and therefore should help in 
combining the best elements of both practices. The essential element in this is to institute 
a systems engineering way of working, in which specification of external interactions is 
separated from a specification of internal decomposition, and explicit traccability from 
external interactions to internal components is maintained. Structured techniques for 
external interaction specification can then be seamlessly combined with object-oriented 
techniques for essential decomposition. DFDs cannot be integrated this way and should 
be dropped. However, I argued that functional decomposition is compatible with object- 
oriented decomposition. It. can also be combined with other decomposition criteria, such 
as device partitioning and subject-domain-oriented partitioning. 

To validate the TRADE framework, it has been applied to the industrial production 
cell case [54] and in the Esprit project 2RARE to the specification of a system for video 
on demand [61]. Two other case studies arc available on the web [50, 58], and several 
others are in preparation. Further validation will take place in teaching, where it will be 
used to teach techniques in a method-independent way. Use of the TRADE framework 
in teaching is supported by a graphical editor called TCM (Toolkit for Conceptual Mod- 
cling), freely available for teaching and research purposes [13]. It supports most of the 
techniques discussed in this paper. Validation of another kind takes place by providing 
a formal semantics to the techniques in TRADE. A formal semantics of a combination 
of objects with behavior and communication, based on order-sorted dynamic logic and 
process algebra, has been given earlier [53, 63, 62]. Current work concentrates on declar- 
ative and operational semantics of behavior specifications so as to provide an execution 
semantics for STDs in TCM [59]. The methodological role of this is to strengthen the 
tools in TRADE by making their meaning and interconnections explicit. Our'hope is 
that this makes the tools easier to use without burdening the tool user with the formal 
foundations. 
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