Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Over the last two decades the molecular phylogeny and classification of Metarhizium has been widely studied. Despite these efforts to understand this enigmatic genus, the basal lineages in Metarhizium are still poorly resolved. In this study, a phylogenetic framework is reconstructed for the Clavicipitaceae focusing on Metarhizium through increased taxon-sampling using five genomic loci (SSU, LSU, tef, rpb1, rpb2) and the barcode marker ITS rDNA. Multi-gene phylogenetic analyses and morphological characterisation of green-spored entomopathogenic Metarhizium isolates from Thailand and soil isolates of M. carneum and M. marquandii reveal their ecological, genetic and species diversity. Nineteen new species are recognised in the Metarhizium clade with narrow host ranges: two new species are found in the M. anisopliae complex - M. clavatum on Coleoptera larvae and M. sulphureum on Lepidoptera larvae; four new species are found in the M. flavoviride complex - M. biotecense and M. fusoideum on brown plant hoppers (Hemiptera), M. culicidarum on mosquitoes, M. nornnoi on Lepidoptera larvae; three new species M. megapomponiae, M. cicadae, M. niveum occur on cicadas; five new species M. candelabrum, M. cercopidarum, M. ellipsoideum, M. huainamdangense M. ovoidosporum occur on planthoppers, leafhoppers and froghoppers (Hemiptera); one new species M. eburneum on Lepidoptera pupae; and four new species M. phuwiangense, M. purpureum, M. purpureonigrum, M. flavum on Coleoptera . Of these 19 new species, seven produce a sexual morph (M. clavatum, M. eburneum, M. flavum, M. phuwiangense, M. purpureonigrum, M. purpureum, and M. sulphureum) and asexual morphs are found in the remaining new species and also in M. sulphureum, M. purpureonigrum and M. purpureum. Metarhizium blattodeae, M. koreanum and M. viridulum are new records for Thailand. An alternative neotype for Metarhizium anisopliae is proposed based on multi-gene and 5'tef analyses showing that CBS 130.71 from Ukraine is more suitable, being from a much closer geographical location to Metchnikoff's Metarhizium anisopliae. This isolate is distinct from the neotype of Metarhizium anisopliae var. anisopliae proposed by M. Tulloch from Ethiopia (ARSEF 7487). Six new genera are established for monophyletic clades subtending the core Metarhizium clade, including Keithomyces, Marquandomyces, Papiliomyces, Purpureomyces, Sungia, and Yosiokobayasia. Metarhizium carneum, M. aciculare, and M. neogunnii are combined in Keithomyces and one new combination for M. marquandii in Marquandomyces is proposed. Purpureomyces is introduced for species producing purple stromata including a new combination for M. khaoyaiense and two new species P. maesotensis and P. pyriformis. Papiliomyces contains two new combinations for M. liangshanense and Metacordyceps shibinensis. The genus Sungia is proposed for the Korean species M. yongmunense on Lepidoptera pupa and Yosiokobayasia for the Japanese species M. kusanagiense also on Lepidoptera pupa. A synoptic and dichotomous key to the accepted taxa is provided together with tables listing distinguishing morphological characters between species, host preferences, and geography.

Free full text 


Logo of simycolStudies in MycologyAbout the JournalInstructions to AuthorsEditorial BoardWebshopSubscribe
Stud Mycol. 2020 Mar; 95: 171–251.
PMCID: PMC7426330
PMID: 32855740

Revisiting Metarhizium and the description of new species from Thailand

Associated Data

Supplementary Materials

Abstract

Over the last two decades the molecular phylogeny and classification of Metarhizium has been widely studied. Despite these efforts to understand this enigmatic genus, the basal lineages in Metarhizium are still poorly resolved. In this study, a phylogenetic framework is reconstructed for the Clavicipitaceae focusing on Metarhizium through increased taxon-sampling using five genomic loci (SSU, LSU, tef, rpb1, rpb2) and the barcode marker ITS rDNA. Multi-gene phylogenetic analyses and morphological characterisation of green-spored entomopathogenic Metarhizium isolates from Thailand and soil isolates of M. carneum and M. marquandii reveal their ecological, genetic and species diversity. Nineteen new species are recognised in the Metarhizium clade with narrow host ranges: two new species are found in the M. anisopliae complex – M. clavatum on Coleoptera larvae and M. sulphureum on Lepidoptera larvae; four new species are found in the M. flavoviride complex – M. biotecense and M. fusoideum on brown plant hoppers (Hemiptera), M. culicidarum on mosquitoes, M. nornnoi on Lepidoptera larvae; three new species M. megapomponiae, M. cicadae, M. niveum occur on cicadas; five new species M. candelabrum, M. cercopidarum, M. ellipsoideum, M. huainamdangense M. ovoidosporum occur on planthoppers, leafhoppers and froghoppers (Hemiptera); one new species M. eburneum on Lepidoptera pupae; and four new species M. phuwiangense, M. purpureum, M. purpureonigrum, M. flavum on Coleoptera. Of these 19 new species, seven produce a sexual morph (M. clavatum, M. eburneum, M. flavum, M. phuwiangense, M. purpureonigrum, M. purpureum, and M. sulphureum) and asexual morphs are found in the remaining new species and also in M. sulphureum, M. purpureonigrum and M. purpureum. Metarhizium blattodeae, M. koreanum and M. viridulum are new records for Thailand. An alternative neotype for Metarhizium anisopliae is proposed based on multi-gene and 5′tef analyses showing that CBS 130.71 from Ukraine is more suitable, being from a much closer geographical location to Metchnikoff’s Metarhizium anisopliae. This isolate is distinct from the neotype of Metarhizium anisopliae var. anisopliae proposed by M. Tulloch from Ethiopia (ARSEF 7487). Six new genera are established for monophyletic clades subtending the core Metarhizium clade, including Keithomyces, Marquandomyces, Papiliomyces, Purpureomyces, Sungia, and Yosiokobayasia. Metarhizium carneum, M. aciculare, and M. neogunnii are combined in Keithomyces and one new combination for M. marquandii in Marquandomyces is proposed. Purpureomyces is introduced for species producing purple stromata including a new combination for M. khaoyaiense and two new species P. maesotensis and P. pyriformis. Papiliomyces contains two new combinations for M. liangshanense and Metacordyceps shibinensis. The genus Sungia is proposed for the Korean species M. yongmunense on Lepidoptera pupa and Yosiokobayasia for the Japanese species M. kusanagiense also on Lepidoptera pupa. A synoptic and dichotomous key to the accepted taxa is provided together with tables listing distinguishing morphological characters between species, host preferences, and geography.

Key words: Biological control, Clavicipitaceae, Entomopathogenic fungi
Taxonomic novelties: New genera: Keithomyces Samson, Luangsa-ard & Houbraken, Marquandomyces Samson, Houbraken & Luangsa-ard, Papiliomyces Luangsa-ard, Samson & Thanakitpipattana, Purpureomyces Luangsa-ard, Samson & Thanakitpipattana, Sungia Luangsa-ard, Samson & Thanakitpipattana, Yosiokobayasia Samson, Luangsa-ard & Thanakitpipattana
New species: Metarhizium biotecense Luangsa-ard, Khonsanit, Thanakitpipattana & Samson, M. candelabrum Luangsa-ard, Mongkolsamrit, Thanakitpipattana & Samson, M. cercopidarum Luangsa-ard, Mongkolsamrit, Thanakitpipattana & Samson, M. cicadae Luangsa-ard, Tasanathai, Thanakitpipattana & Samson, M. clavatum Luangsa-ard, Mongkolsamrit, Lamlertthon, Thanakitpipattana & Samson, M. culicidarum Luangsa-ard, Khonsanit, Thanakitpipattana & Samson, M. eburneum Luangsa-ard, Noisripoom, Thanakitpipattana & Samson, M. ellipsoideum Luangsa-ard, Khonsanit, Thanakitpipattana & Samson, M. flavum Luangsa-ard, Mongkolsamrit, Thanakitpipattana & Samson, M. fusoideum Luangsa-ard, Mongkolsamrit, Thanakitpipattana & Samson, M. huainamdangense Luangsa-ard, Mongkolsamrit, Thanakitpipattana & Samson, M. megapomponiae Luangsa-ard, Tasanathai, Thanakitpipattana & Samson, M. niveum Luangsa-ard, Tasanathai, Thanakitpipattana & Samson, M. nornnoi Luangsa-ard, Khonsanit, Thanakitpipattana & Samson, M. ovoidosporum Luangsa-ard, Khonsanit, Thanakitpipattana & Samson, M. phuwiangense Luangsa-ard, Mongkolsamrit, Himaman, Thanakitpipattana & Samson, M. purpureonigrum Luangsa-ard, Tasanathai, Thanakitpipattana & Samson, M. purpureum Luangsa-ard, Mongkolsamrit, Lamlertthon, Thanakitpipattana & Samson, M. sulphureum Luangsa-ard, Khonsanit, Thanakitpipattana & Samson, Purpureomyces maesotensis Luangsa-ard, Noisripoom, Thanakitpipattana & Samson, P. pyriformis Luangsa-ard, Noisripoom, Himaman, Mongkolsamrit, Thanakitpipattana & Samson
New combinations: Keithomyces acicularis (H. Iwasaki et al.) Samson, Luangsa-ard & Houbraken, Keithomyces carneus (Duché & R. Heim) Samson, Luangsa-ard & Houbraken, Keithomyces neogunnii (T.C. Wen & K.D. Hyde) Luangsa-ard, Thanakitpipattana & Samson, Marquandomyces marquandii (Massee) Samson, Houbraken & Luangsa-ard, Papiliomyces liangshanensis (M. Zang et al.) Luangsa-ard, Samson & Thanakitpipattana, Papiliomyces shibinensis (T.C. Wen et al.) Luangsa-ard Samson & Thanakitpipattana, Purpureomyces khaoyaiensis (Hywel-Jones) Luangsa-ard, Samson & Thanakitpipattana, Sungia yongmunensis (G.H. Sung et al.) Luangsa-ard, Thanakitpipattana & Samson, Yosiokobayasia kusanagiensis (Kobayasi & Shimizu) Samson, Luangsa-ard & Thanakitpipattana
Neotype: Metarhizium anisopliae (Metsch.) Sorokīn

Introduction

The genus Metarhizium is one of the ubiquitous genera of entomopathogenic fungi with diverse asexual reproductive morphologies and life cycle stages (Bischoff et al., 2009, Kepler et al., 2012a, Luangsa-ard et al., 2017). Known to cause the “green muscardine disease”, it was first described by Metchnikoff (1879) occurring in its asexual morph on a wheat cockchafer Anisoplia austriaca (scarab beetle, Coleoptera) in Russia (Zimmermann et al. 1995). Tulloch (1976) reviewed the genus and she reduced the genus only to two species – M. anisopliae and M. flavoviride, but recognising two varieties, M. anisopliae var. anisopliae with small conidia and M. anisopliae var. majus with large conidia. Two species published by Petch, M. album (Petch 1931) and M. brunneum (Petch 1934) were considered synonyms of M. anisopliae and with M. album considered as an immature specimen of M. anisopliae. Rombach et al., 1986, Rombach et al., 1987 took into account the shapes of the conidia and phialides, as well as the conidial formation to form prismatic columns and presence or absence of subhymenial zones as the diagnostic criteria for delimiting species. They also added M. flavoviride var. minus to accommodate Asian isolates with shorter conidia and resurrected M. album as a separate species. China and Japan reported M. pingshaense, M. cylindrosporum, M. guizhouense (Guo et al., 1986, Shimazu, 1989) and M. taii with its sexual morph Cordyceps taii (Liang et al. 1991).

Before 2000, the classification of Metarhizium was mainly based on morphological characters and Driver et al. (2000) increased our understanding of the genetic diversity in Metarhizium by studying the ITS regions and RAPD patterns of isolates identified as M. anisopliae, M. flavoviride and M. album. They recognised four varieties within the M. anisopliae group, five varieties in M. flavoviride group and M. album. Sung et al. (2007) erected Metacordyceps to accommodate Cordyceps spp. within Clavicipitaceae s.l. that are associated with Metarhizium and Pochonia. In a multi-gene phylogenetic study of M. anisopliae and M. flavoviride lineages, Bischoff et al., 2006, Bischoff et al., 2009 elevated and accepted Metarhizium varieties to species rank by using additional protein-coding genes (tef, rpb1, rpb2 and tub). The authors recognised the synonymy of M. taii (Liang et al.1991) and M. guizhouense (Guo et al. 1986), thus proposing nine species as members of the M. anisopliae complex. Metarhizium brunneum was resurrected as a species and two new species in the M. anisopliae complex, M. globosum and M. robertsii, as well as one species in the M. flavoviride complex, M. frigidum, were recognised as valid species. In an effort to follow the concept of single nomenclature, Kepler et al. (2014) proposed the suppression of Metacordyceps in favour of a broad concept of Metarhizium and subsequently recognising that there are taxa with uncertain placement in their analyses, but favouring taxonomic stability and minimising disruption. Pochonia was retained and a new genus, Metapochonia was erected to accommodate members of Pochonia that did not group with the type species. Chamaeleomyces, Nomuraea spp. excluding N. atypicola, and Paecilomyces viridis were transferred to Metarhizium, recognising a total of 34 species. Over the last decade, with increased availability of sequence data, recognition of new species in Metarhizium increased our understanding of its diversity, host affiliation, ecology and distribution with new species described from Argentina (Gutierrez et al. 2019), Brazil (Montalva et al., 2016, Lopes et al., 2018, Luz et al., 2019), China (Li et al., 2010, Chen et al., 2017, Wen et al., 2017, Chen et al., 2018a, Chen et al., 2018c), Japan (Nishi et al., 2017, Iwasaki et al., 2019, Yamamoto et al., 2020), and Thailand (Luangsa-ard et al., 2017, Thanakitpipattana et al., 2020).

Originally known as generalists with a global distribution, many Metarhizium species are now described as members of M. anisopliae or M. flavoviride species complexes with certain species adapted to specific hosts (M. acridum, M. gryllidicola, M. phasmatodeae) or ecologies. Over 50 years ago, Metarhizium anisopliae was recorded to infect 200 insect species (Zimmermann 2007) and this ability to infect different host species in the field has been exploited in biological control strategies. Metarhizium anisopliae is used for control of insect pests in many countries around the world including Brazil, Iran, Japan, Thailand, and the USA (Jackson and Jaronski, 2008, Ghayedi and Abdollahi, 2013, Thongkaewyuan and Chairin, 2018, Beys-da-Silva et al., 2020, Kim et al., 2020a, Kim et al., 2020b) as an environmentally safe alternative to the use of chemical pesticides. Most of the initially identified M. anisopliae isolates may belong to any of the species in the M. anisopliae complex (Bischoff et al., 2009, Luangsa-ard et al., 2017, Chen et al., 2018a, Chen et al., 2018c, Luz et al., 2019, Yamamoto et al., 2020) and the host range reported for M. anisopliae in the past may belong to one of the newly erected species. In this complex, only M. acridum was regarded as specific to locusts and grasshoppers (Vega et al. 2012). Later studies in Thailand have also showed M. gryllidicola, a species in the M. anisopliae complex, occurring on Orthoptera (Thanakitpipattana et al. 2020). Recent genome sequencing projects on Metarhizium tried to focus on host associations (Hu et al., 2014, Zhang et al., 2019) claiming some species are more host-specific than others. Correct identification of the species and its host-range, thus using the right species for biological control of agricultural pests is paramount to a successful biocontrol strategy.

The aims of this study were (1) to re-evaluate the concept of Metarhizium, its phylogenetic relationships and taxonomic stability among closely related clavicipitoid fungi, and (2) to evaluate what morphological and ecological characters could be used in the circumscription of the genus and (3) to identify and describe Metarhizium species from insects and soil, collected primarily in Thailand.

Materials and methods

Fungal materials and isolation

The entomogenous specimens in this study were collected from various national parks and community forests in Thailand. Forest floors, leaf litter, twigs, upper and underside of leaves were carefully inspected for the emergence from any attached or buried insects of brown, yellow or green coloured stromata. The specimens were picked up carefully in order not to damage the host, were stored in small plastic boxes before returning to the laboratory for isolation. The material was examined under a dissecting microscope (Olympus SZ61). The isolation from the sexual morph follows Luangsa-ard et al. (2018) with modifications: the fertile head of the stromata containing mature perithecia were placed on the potato dextrose agar plates (PDA; fresh diced potato 200 g/L, dextrose 20 g/L, agar 15 g/L). These were placed in a plastic box with moist tissue paper overnight to create a humid chamber. The following morning, plates were examined with a dissecting microscope to examine the discharged ascospores. Discharged ascospores were transferred to fresh PDA plates.

Isolation from the asexual morph was done as described in Mongkolsamrit et al. (2018) with modifications: the conidia from sporulating structures were touched by using a flame-sterilized inoculation needle and streaked on PDA plates, then incubated in a plastic box at room temperature (RT) and examined regularly for germinated conidia. The geminated conidia were also transferred to fresh PDA plates. Pure cultures derived from sexual and asexual morphs were incubated at 25 °C under light/dark condition (L:D=14:10) and examined daily for fungal contaminants. Isolations with contaminants were sub-cultured to fresh PDA plates. The cultures were then allowed to grow for 2–4 wk, pure cultures were deposited in the BIOTEC culture collection. Specimens were dried in an electric food dryer (50–55 °C) overnight and stored in plastic boxes before storage at the BIOTEC Bangkok Herbarium (BBH).

Seventeen ex-type strains from the USDA, ARSEF were included to study the phenotypical characters (Table 3, Supplementary Table S1).

Table 3

Phialide characteristics of asexual morphs in Metarhizium.

Phialide morphologySpecies
Metarhizium-likeM. acridum, M. album, M. alvesii, M. anisopliae, M. argentinense, M. baoshanense, M. bibionidarum, M. biotecense, M. blattodeae, M. brachyspermum1, M. brasiliense, M. brittlebankisoides1, M. brunneum, M. candelabrum, M. campsosterni1, M. cercopidarum, M. clavatum1, M. culicidarum, M. ellipsoideum, M. flavoviride, M. flavum1, M. frigidum, M. fusoideum, M. gaoligongense, M. globosum, M. gryllidicola, M. guizhouense1, M. guniujiangense1, M. huainamdangense, M. humberi, M. indigoticum1, M. kalasinense1, M. koreanum, M. lepidiotae, M. majus, M. minus, M. nornnoi, M. novozealandicum, M. pemphigi, M. phasmatodeae, M. pingshaense, M. purpureogenum, M. purpureonigrum1, M. purpureum1, M. robertsii, M. sulphureum1
Nomuraea-likeM. chaiyaphumense1, M. cicadae, M. cylindrosporum, M. dendrolimatilis, M. megapomponiae, M. niveum, M. ovoidosporum, M. owariense1, M. prachinense1, M. rileyi, M. samlanense, M. takense1, M. viridulum
Paecilomyces-likeM. granulomatis, M. phuwiangense1,2, M. reniforme, M. viride
UnknownM. atrovirens1, M. eburneum1, M. pseudoatrovirens1

Definitions: Metarhizium-like: Candelabrum-like arrangement of phialides from compact conidiophores that form a hymenial layer; conidia ovoid, cylindrical, or globose, which often aggregate into prismatic columns. Nomuraea-like: Conidiophores mono- or synnematous, phialides in whorls, oval-cylindrical with very short or almost indiscernible neck; conidia in dry basipetal chains. Paecilomyces-like: Conidiophores mononematous, verticillate, bearing short branches with whorls of two to four phialides or borne directly on stalk. Phialides consisting of a globose basal portion and a distinct thin neck, conidia in chains.

1 = Sexual morph found in nature.

2 = The phialides are globose with a long cylindrical neck but is not tapering.

Morphological observations

The macro-morphological characters and relevant data of the fungus, such as the host, host location, colour and shape of the stromata, perithecial orientation (superficial, immersed, semi-immersed; ordinal or oblique) were examined under a dissecting microscope (Olympus SZ61). For micro-morphological characterization, perithecia, asci, ascospores, phialides and conidia were mounted in lactophenol cotton blue solution and measured using a compound microscope (Olympus CX31). Twenty to fifty perithecia, asci, ascospores, phialides and conidia were measured and the range and standard deviations calculated. Specimens were photographed with an Olympus DP70 Digital Camera mounted on an Olympus BX51 compound microscope. The reaction of the stromata obtained in this study with 3 % potassium hydroxide (KOH) was observed as a colour reaction.

Cultures were grown on oatmeal agar (OA, Difco), PDA and one quarter strength SDAY (SDAY/4, Difco) (Bischoff et al. 2009), incubated at 25 °C under light/dark conditions (L:D=14:10). Cultures were studied for comparison of important morphological characters such as shapes and sizes of conidia, phialides, colony growth and colouration. The colour of fresh specimens and cultures incubated on OA, PDA, and SDAY/4 was described and codified following the Online Auction Colour Chart and (abbreviated “oac” herein), Methuen handbook of colour (Kornerup & Wanscher 1963) and Naturalist’s Colour Guide (Smithe 1975). The sporulation on three media were daily observed. Images of 2-wk-old cultures on three media were taken. Slow-growing species were allowed to grow longer until sporulation is observed for 20–30 d. Details of phialides and conidia were also described by illustrating structures with a Hitachi scanning electron microscope (Model SU8020).

DNA isolation, amplification and sequencing

Genomic DNA of Metarhizium was extracted using a modified CTAB protocol (Doyle 1987). Samples were prepared by grinding fresh mycelium with a pestle in CTAB buffer including polyvinyl pyrrolidone (PVP) to remove polyphenols (Maliyakal 1992). Ground mycelium was incubated at 65 °C for 30 min. After incubation, chloroform:isoamyl alcohol (24:1) was added and mixed by inverting the tube. Genomic DNA was precipitated by the addition of ice-cold isopropanol. The pellet was washed with 70 % ethanol and resuspended in 1× TE buffer.

The extracted DNA was preserved at −20 °C and used as template for PCR amplifications. PCR amplifications for six loci of all strains including nuclear rDNA region encompassing the internal transcribed spacers 1 and 2 along with the 5.8S rDNA (ITS), nuclear ribosomal small and large subunits (SSU and LSU), the largest and second largest subunits of DNA-directed RNA polymerase II (rpb1 and rpb2), translation elongation factor 1-α (tef) and 5′ intron-rich region of elongation factor 1-α (5′tef) were performed in 25 mL reaction volumes consisting of 1× PCR buffer, 200 μM of each of the four dNTPs, 2.5 mM MgCl2, 1 U Taq DNA Polymerase, recombinant (Thermo Scientific, US), 0.5 μM of each primer and 50–100 ng DNA template. PCR primers used to amplify the gene regions for this study were: ITS5, ITS4 for ITS (White et al. 1990), LROR and LR5 for LSU (Vilgalys and Hester, 1990, Rehner and Samuels, 1994), EF1-983F and EF1-2218R for tef (Rehner & Buckley 2005), CRPB1 and RPB1Cr for rpb1 (Hall, 2003, Castlebury et al., 2004), RPB2-5F2 and RPB2-7Cr for rpb2 (Liu et al., 1999, O’Donnell et al., 2007) and EF1T and EF2T for 5′tef (Bischoff et al. 2009). Thermocycler conditions for amplification of the DNA regions used in this study followed previousy published protocols (Sung et al., 2007, Mongkolsamrit et al., 2019).

Phylogenetic analyses

The DNA sequences generated in this study were examined for ambiguous bases using BioEdit v. 7.2.3 (Hall 2004) and then submitted to GenBank. The ITS, SSU, LSU, tef, rpb1, rpb2 and 5′tef sequences obtained in this study and their accession numbers are shown in Table 1. Sequences of ITS, SSU, LSU, tef, rpb1, rpb2 and 5′tef from related species in previous studies were downloaded from GenBank to elucidate relationships in Clavicipitaceae (Table 1). ITS sequences were generated only for barcoding purposes and not included in the multi-gene analyses. The phylogenetic relationships among congeneric Metarhizium species and related genera within Clavicipitaceae were further studied using ITS, and a combined rpb1 and rpb2 dataset (Supplementary Figs 1 and 2). Each combined dataset was generated to discriminate closely related species and species-level identification in certain lineages for placement of the clavicipitaceous fungi. All datasets were aligned using MUSCLE v. 3.6 (Edgar 2004). Maximum parsimony analysis was conducted on the combined dataset using PAUP v. 4.0a166 (http://paup.phylosolutions.com, Swofford 2019), adopting random addition sequences (10 replications) with gaps treated as missing data. A bootstrap (MPBS) analysis was performed using the maximum parsimony criterion in 1 000 replications. Bayesian phylogenetic inference was performed using MrBayes v. 3.2.7a (Ronquist et al. 2012) with a general time reversible plus proportion invariant plus gamma (GTR+I+G) model of DNA substitution as the best fit model. This model was chosen as the result from a pre-test using MrModeltest v. 2.2 (Nylander 2004) which selected GTR+I+G as the best nucleotide substitution model. Four Markov chains were run from random starting trees for 3 M generations using sampled frequency of 1 000 generations and a burn-in of 10 % of the total run. Bayesian posterior probabilities (BPP) were calculated on the posterior distribution of trees excluding the initial set of burn-in tree. Maximum likelihood (ML) analyses were performed with RAxML-VI-HPC2 v. 8.2.12 (Stamatakis 2014) on XSEDE in the CIPRES Science Gateway v. 3.3 (https://www.phylo.org/) using a GTRCAT model of evolution (Stamatakis 2006) with 1 000 bootstrap replicates (MLBS).

Table 1

List of specimens and GenBank accession numbers of sequences used in this study. Bold accession numbers were generated from this study.

SpeciesStrainsLocalityHostSSULSUtefrpb1rpb2ITS5'tefReferences
Aschersonia badiaBCC 8105ThailandHemiptera: Scale insectDQ522537DQ518752DQ522317DQ522363DQ522411Spatafora et al. (2007)
A. placentaBCC 7869ThailandHemiptera: Scale insectEF469121EF469074EF469056EF469085EF469104Sung et al. (2007)
Balansia epichloeA.E.G. 96-15aPoaceaeJN049848Kepler et al. (2012a)
B. henningsianaA.E.G.96-27aPoaceae: Panicum sp.AY545723AY545727AY489610AY489643DQ522413JN049815Sung et al. (2007)
GAM 16112Poaceae: Panicum sp.JN049815Sung et al. (2007)
B. pilulaeformisA.E.G. 94-2PoaceaeAF543764AF543788DQ522319DQ522365DQ522414JN049816Sung et al. (2007)
Chamaeleomyces viridisCBS 348.65MadagascarChameleo lateralisAY624197Luangsa-ard et al. (2005)
CBS 659.71Chameleo lateralisHQ165673HQ165735HQ165692HQ165652HQ165714Luangsa-ard et al. (2017)
Claviceps fusiformisATCC 26019PoaceaeDQ522539U17402DQ522320DQ522366Sung et al. (2007)
C. paspaliATCC 13892PoaceaeU32401U47826DQ522321DQ522367DQ522416Sung et al. (2007)
C. purpureaSA cp11PoaceaeEF469122EF469075EF469058EF469087EF469105Sung et al. (2007)
Conoideocrella tenuisNHJ 6791ThailandHemiptera: Scale insectJN049863Johnson et al. (2009)
Cordyceps brittlebankisoidesG97025AJ309332Liu et al. (2001)
C. chlamydosporiaCBS 101244Diplopoda: Egg of slugDQ522544DQ518758DQ522327DQ522372DQ522424JN049821Sung et al. (2007)
C. cylindricaCBS 744.73JapanArachnida: SpiderEF468987EF468841EF468786EF468892GU980041Sung et al. (2007)
C. fratricidaTNS 19011FungiJQ257022JQ257023JQ257028JQ257016JQ257021Kepler et al. (2012b)
C. gunniiG97011ChinaAJ243773Chan et al. (2011)
G97022ChinaAJ309340Chan et al. (2011)
Cordyceps sp.EFCC 2131KoreaLepidopteraEF468977EF468833EF468770EF468876JN049856Sung et al. (2007)
EFCC 2135KoreaLepidopteraEF468979EF468834EF468769EF468877Sung et al. (2007)
GNJ020527-04ChinaAY913757Li et al. (2010)
HMIGD20885DQ150247Zhang et al. (2004)
BCC19475ThailandLepidopteraKY348781Luangsa-ard et al. (2017)
BCC19950ThailandLepidopteraGU979934GU979943GU979952GU979961GU979967KY348780Luangsa-ard et al. (2017)
BCC37621ThailandLepidopteraGU979937GU979946GU979955GU979964GU979970Luangsa-ard et al. (2017)
Hypocrella schizostachyiBCC 14123ThailandHemipteraDQ522557DQ518771DQ522346DQ522392DQ522447Sung et al. (2007)
Hypocrella sp.GJS 89–104Hemiptera: Scale insectDQ518772DQ522347DQ522393DQ522448Spatafora et al. (2007)
Isaria takamizusanensisNBRC 110230JapanHemipteraLC008202Ban et al. (2015)
Keithomyces carneusCBS 158.69USASoilMT078886This study
Keithomyces sp.CBS 126563TanzaniaSoilMT078871MT078856MT078848MT078864MT078921MT078883This study
CBS 127407USASoilMT078873MT078858MT078850MT078866MT078923This study
Marquandomyces sp.CBS 127132USASoilMT078872MT078857MT078849MT078865MT078922MT078882This study
Marquandomyces sp.CBS 129413USASoilMT078874MT078859MT078851MT078867MT561567This study
Metacordyceps atrovirensTNM-F10184JapanColeopteraJF415950JF415966JN049884JN049882Kepler et al. (2012a)
Mc. brittlebankisoidesHn1ChinaColeopteraAB778556AB778555AB778554Nishi et al. (2015)
Mc. indigoticaTNS-F18553JapanLepidopteraJF415953JF415968JF416010JN049886JF415992JN049874Kepler et al. (2012a)
TNS-F18554JapanLepidopteraJF415952JF415969JF416011JN049887JF415993JN049875Kepler et al. (2012a)
Mc. khaoyaiensisBCC12687ThailandLepidoptera larvaJN049868Kepler et al. (2012a)
BCC14290ThailandLepidoptera larvaJF415970KJ398797JN049888JN049869Kepler et al. (2012a)
Mc. kusanagiensisTNS-F18494JapanColeopteraJF415954JF415972JF416014JN049890JN049873Kepler et al. (2012a)
Mc. liangshanensisEFCC 1452KoreaLepidopteraEF468962EF468815EF468756Sung et al. (2007)
EFCC 1523KoreaLepidopteraEF468961EF468814EF468755EF468918Sung et al. (2007)
Mc. martialisEFCC 6863KoreaLepidopteraJF415975JF416016JF415995Luangsa-ard et al. (2017)
HMAS 197472ChinaColeoptera: CerambycidaeJF415955JF415973JF416015JN049892JF415994JN049881Luangsa-ard et al. (2017)
TTZ070716-04JN049871Luangsa-ard et al. (2017)
Mc. neogunniiBUM 415ChinaLepidoptera larvaMH143845MH143828MH143861MH143876MH143891Chen et al. (2018b)
Mc. owariensisNBRC33258JapanHemipteraHQ165669HQ165730HQ165689HQ165747Luangsa-ard et al. (2017)
Mc. pseudoatrovirensTNSF-16380JapanColeopteraJF415977JN049893JF415997JN049870Kepler et al. (2012a)
Mc. shibinensisGZUH SB13050311ChinaLepidopteraKR153588KR153589KR153590Wen et al. (2015)
Metacordyceps sp.ARSEF 2038KoreaHemiptera: DelphacidaeKJ398806KJ398616Kepler et al. (2014)
GZUH SB13050305ChinaLepidoptera larvaKU729724KU729729KU729734KY423507Wen et al. (2017)
SK 2014IndiaHymenopteraKJ179838Sharma & Gautam (2015)
Mc. taiiARSEF 5714ChinaLepidopteraJN049829EU248856Bischoff et al. (2009)
Metapochonia bulbillosaCBS 145.70DenmarkPicea abiesAF339591AF339542EF468796EF468902EF468943AJ292410Sung et al. (2007)
Mp. bulbillosaCBS 464.88ScotlandNematode eggsAF339615AF339566EF468797EF468903EF468944AJ292400Sung et al. (2007)
CBS 891.72GermanyFungiAF339599AF339550DQ522354DQ522401DQ522458AJ292409Sung et al. (2007)
Metarhizium aciculareJCM 33284JapanSoilLC435738LC435741LC462188Iwasaki et al. (2019)
JCM 33285JapanSoilLC435739LC435742LC462189Iwasaki et al. (2019)
M. acridumARSEF 324AustraliaOrthopteraEU248844Bischoff et al. (2009)
ARSEF 5748MexicoOrthopteraEU248879Bischoff et al. (2009)
ARSEF 7486NigerOrthopteraEU248845EU248897EU248925HQ331458EU248845Bischoff et al. (2009)
M. albumARSEF 1941PhilippinesNephotettix virescensAF137067Driver et al. (2000)
ARSEF 1942PhilippinesNephotettix virescensHM055452
ARSEF 2082IndonesiaHemipteraDQ522560DQ518775DQ522352DQ522398DQ522452AY375446Sung et al. (2007)
M. anisopliaeARSEF 6347ColombiaHomopteraMH604976Mayerhofer et al. (2019)
ARSEF 7450AustraliaColeopteraEU248852Bischoff et al. (2009)
ARSEF 7487EthiopiaOrthopteraDQ463996DQ468355DQ468370MH604974DQ463996Bischoff et al. (2009)
CG1233BrazilColeopteraKC832296Lopes et al. (2013)
CG814BrazilColeopteraKF357928Lopes et al. (2014)
IP86BrazilSoilJQ061186Rocha et al. (2013)
CBS 130.71UkraineAvena sativaMT078868MT078853MT078845MT078861MT078918MT078884MT078928This study
M. argentinenseCEP424ArgentinaBlaberidae: EpilamprinaeMF966624MF966625MF966626Gutierrez et al. (2019)
M. biotecenseBCC51812TThailandHemiptera: DelphacidaeMN781937MN781838MN781693MN781745MN781792MN781878This study
BCC51813ThailandHemiptera: DelphacidaeMN781938MN781839MN781694MN781746MN781793MN781879This study
M. blattodeaeMY00896ThailandBlattodeaHQ165657HQ165719HQ165678HQ165739HQ165638HQ165697Luangsa-ard et al. (2017)
NHJ11597ThailandBlattodeaHQ165703Luangsa-ard et al. (2017)
M. brachyspermumCM1JapanColeopteraLC469749LC469751LC469747LC469752Yamamoto et al. (2020)
CM2JapanColeopteraLC469748Yamamoto et al. (2020)
M. brasilienseARSEF 2948BrazilHemipteraKJ398809KJ398620Kepler et al. (2014)
M. brunneumARSEF 2107USAColeopteraEU248855EU248907EU248935KC178691EU248855Bischoff et al. (2009)
ARSEF 4152AustraliaSoilEU248853Bischoff et al. (2009)
ARSEF 4179AustraliaSoilEU248854Bischoff et al. (2009)
CBS 316.51USAColeoptera: ElateridaeMT078875MT078860MT078852MT078888MT078927This study
M. candelabrumBCC29224TThailandHemiptera: leafhopperMN781952MN781853MN781708MN781755MN781804MN781881This study
M. cercopidarumBCC31660TThailandHemiptera: leafhopperMN781953BCC31660MN781709MN781756MN781805MN781880This study
M. chaiyaphumenseBCC28241ThailandHemiptera: CicadidaeMN781932MN781831MN781684MN781740MN781784MN781884This study
BCC78198ThailandHemiptera: CicadidaeKX369596KX369593KX369592KX369594KX369595MT078881Luangsa-ard et al. (2017)
M. cicadaeBCC48696ThailandHemiptera: CicadidaeMN781948MN781848MN781703MN781800MN781885This study
BCC48881TThailandHemiptera: CicadidaeMN781949MN781849MN781704MN781752This study
M. clavatumBCC84543TThailandColeoptera larvaMN781834MN781689MN781741MN781789MN781886MT078929This study
BCC84558ThailandColeoptera larvaMN781835MN781690MN781742This study
M. culicidarumBCC2673ThailandDiptera: CulicidaeMN781950MN781851MN781706MN781753MN781802MN781887This study
BCC7600TThailandDiptera: CulicidaeMN781951MN781852MN781707MN781754MN781803MN781889This study
BCC7625ThailandDiptera: CulicidaeMN781850MN781705MN781801MN781888This study
M. cylindrosporaeARSEF 6926ChinaHemiptera: CicadidaeAF368270
RCEF 3632ChinaHemiptera: CicadidaeJF415964JF415987JF416022JN049872Kepler et al. (2012a)
M. cylindrosporaeTNS-16371JapanHemiptera: CicadidaeJF415963JF415986JF416027JN049902Kepler et al. (2012a)
M. eburneumBCC79252TThailandLepidoptera pupaMN781829MN781682MN781736MN781914This study
BCC79267ThailandLepidoptera pupaMN781826MN781735MN781915This study
M. ellipsoideumBCC12847ThailandHemiptera adultMN781959MN781860MN781715MN781761MN781810MN781925This study
BCC49285TThailandHemiptera adultMN781957MN781858MN781713MN781759MN781808MT078876This study
BCC53509ThailandHemiptera adultMN781958MN781859MN781714MN781760MN781809MT078877This study
M. flavovirideCBS 700.74USAMT078870MT078855MT078847MT078863MT078920MT078925This study
ARSEF 2133Czech RepublicColeopteraNR131992DQ463988Bischoff et al. (2006)
CBS 125.65USAMT078869MT078854MT078846MT078862MT078919MT078885MT078926This study
CBS 218.56Czech RepublicColeopteraKJ398787KJ398598Kepler et al. (2014)
M. flavumBCC90870TThailandColeoptera larvaMN781965MN781874MN781731MN781776MN781822This study
BCC90874ThailandColeoptera larvaMN781966MN781875MN781732MN781777MN781823This study
M. frigidumARSEF 4124AustraliaColeopteraDQ464002DQ468361DQ468376NR132012Bischoff et al. (2006)
M. fusoideumBCC28246TThailandLepidopteraMN781944MN781844MN781699MN781749MN781796MN781893This study
BCC41242ThailandPsocopteraMN781942MN781825MN781679MN781780This study
BCC53130ThailandPsocopteraMN781943MN781843MN781698MN781795MN781894This study
M. globosumARSEF 2596IndiaLepidopteraEU248846EU248898EU248926NR132020Bischoff et al. (2009)
M. granulomatisUAMH 11028DenmarkChamaeleo calyptratusHM635076HM195304KJ398781NR132013Sigler et al. (2010)
UAMH 11176DenmarkChamaeleo calyptratusHM635078KJ398781KJ398593HM195306Sigler et al. (2010)
M. gryllidicolaBCC22353ThailandOrthoptera: Gryllidae: adult cricketMT078890Thanakitpipattana et al. (2020)
BCC37915ThailandOrthoptera: Gryllidae: adult cricketMN781896Thanakitpipattana et al. (2020)
BCC37918ThailandOrthoptera: GryllidaeMN781935MN781836MN781691MN781743MN781790MN781897Thanakitpipattana et al. (2020)
BCC53857ThailandOrthoptera: GryllidaeMT078889Thanakitpipattana et al. (2020)
BCC82988ThailandOrthoptera: GryllidaeMK632117MK632091MK632062MK632166MK632143MT078891Thanakitpipattana et al. (2020)
M. guizhouenseARSEF 4303AustraliaSoilEU248859Bischoff et al. (2009)
ARSEF 4321AustraliaSoilEU248860Bischoff et al. (2009)
ARSEF 6238ChinaLepidopteraEU248857EU248909EU248937EU248857Bischoff et al. (2009)
CBS 258.90ChinaLepidopteraEU248862EU248914EU248942HQ331448EU248862Bischoff et al. (2009)
M. huainamdangenseBCC32190ThailandHemiptera: leafhopperMN781954MN781855MN781710MN781757MN781899This study
BCC44270TThailandHemiptera: leafhopperMN781956MN781857MN781712MN781807MN781898This study
BCC7672ThailandHemiptera: leafhopperMN781955MN781856MN781711MN781758MN781806MN781901This study
M. humberiIP46BrazilSoilMH837574MH837556MH837565JQ061205Luz et al. (2019)
M. indigoticumNBRC 100684JapanLepidopteraKJ398784Kepler et al. (2014)
M. kalasinenseBCC53581ThailandColeoptera larvaKX823944Luangsa-ard et al. (2017)
BCC53582ThailandColeoptera larvaKC011175KC011183KC011189KC011179KX823945Luangsa-ard et al. (2017)
M. khaoyaienseBCC1376ThailandLepidoptera larvaKX983468KX983462KX983457KX983465Luangsa-ard et al. (2017)
M. koreanumBCC27998ThailandHemiptera: FulgoromorphaMN781945MN781845MN781700MN781797MN781903This study
BCC30455ThailandHemiptera: FulgoromorphaMN781946MN781846MN781701MN781750MN781798MN781904This study
M. lepidiotaeARSEF 7412AustraliaColeopteraEU248864Bischoff et al. (2009)
ARSEF 4628AustraliaSoilEU248863Bischoff et al. (2009)
ARSEF 7488AustraliaColeopteraEU248865EU248917EU248945HQ331456EU248865Bischoff et al. (2009)
M. majusARSEF 1015JapanLepidopteraEU248866EU248918EU248946HQ331444EU248866Bischoff et al. (2009)
ARSEF 1914PhilippinesColeopteraEU248868EU248920EU248948HQ331445EU248868Bischoff et al. (2009)
ARSEF 1946PhilippinesColeopteraEU248867Bischoff et al. (2009)
M. megapomponiaeBCC25100TThailandHemiptera: MegopomponiaMN781947MN781847MN781702MN781751MN781799MN781906This study
M. minusARSEF 2037PhilippinesHemipteraAF339580AF339531DQ522353DQ522400DQ522454AF138271Sung et al. (2007)
ARSEF 1099PhilippinesHemipteraKJ398799KJ398608KJ398706Kepler et al. (2014)
M. niveumBCC52400TThailandHemiptera: CicadidaeMN781933MN781832MN781685MN781785MN781907This study
M. nornnoiBCC19364ThailandLepidoptera larvaMN781940MN781841MN781696MN781747MN781891This study
BCC25948TThailandColeoptera: adult beetleMN781941MN781842MN781697MN781748MN781892This study
M. novozealandicumARSEF 4661AustraliaSoilKJ398811KJ398622Kepler et al. (2014)
ARSEF 4674AustraliaSoilKJ398812KJ398623Kepler et al. (2014)
M. ovoidosporumBCC29223ThailandHemiptera: CercopidaeMN781960MN781861MN781716MN781762MN781909This study
BCC32600TThailandHemiptera: EurybrachidaeMN781961MN781862MN781717MN781763MN781910This study
BCC7634ThailandHemiptera adultMN781962MN781863MN781718MN781764MN781811MN781908This study
M. pemphigiARSEF 6569United KingdomHemipteraKJ398813KJ398624DQ468378Kepler et al. (2014)
ARSEF 7491United KingdomHemipteraKJ398819KJ398629DQ468379Kepler et al. (2014)
BUM1ChinaMH143795Chen et al. (2018c)
BUM39.4ChinaKY087809Chen et al. 2018c
M. phasmatodeaeBCC2841ThailandOrthoptera: PhasmatodeaMN781931MN781828MN781681MN781738MN781782MN781911Thanakitpipattana et al. 2020
BCC49272ThailandOrthoptera: PhasmatodeaMK632119MK632093MK632064MK632145MK632035MT078893Thanakitpipattana et al. (2020)
BCC55003ThailandOrthoptera: PhasmatodeaMT078892Thanakitpipattana et al. (2020)
M. phuwiangenseBCC78206ThailandColeoptera adultMN781719MN781765MN781812MT078879This study
BCC85068ThailandColeoptera adultMN781864MN781720MN781766MN781813MN781912This study
M. phuwiangenseBCC85069TThailandColeoptera adultMN781865MN781721MN781767MN781814MN781913This study
M. pingshaenseARSEF 3210IndiaColeopteraDQ463995Bischoff et al. (2006)
ARSEF 4342Solomon IslandsColeopteraEU248851Bischoff et al. (2009)
ARSEF 7929AustraliaIsopteraEU248847Bischoff et al. (2009)
CBS 257.90ChinaColeopteraEU248850EU248902EU248930HQ331450EU248850Bischoff et al. (2009)
M. prachinenseBCC47950ThailandLepidopteraKC011172KC011180KC011186KC011184KC011176Luangsa-ard et al. (2017)
BCC47979ThailandLepidopteraKC011173KC011181KC011187KC011185KC011177Luangsa-ard et al. (2017)
M. purpureonigrumBCC89247TThailandColeoptera larvaMN781725MN781771MN781817This study
BCC89248ThailandColeoptera larvaMN781964MN781870MN781728MN781819This study
BCC89249ThailandColeoptera larvaMN781963MN781869MN781726MN781772MN781818This study
M. purpureumBCC82642TThailandColeoptera larvaMN781867MN781723MN781769MN781816MN781918This study
BCC83548ThailandColeoptera larvaMN781868MN781724MN781770MN781920This study
BCC82173ThailandColeoptera larvaMN781866MN781722MN781768MN781815MN781919This study
M. robertsiiARSEF 6472USAColeopteraEU248884Bischoff et al. (2009)
ARSEF 727BrazilOrthopteraDQ463994Bischoff et al. (2009)
ARSEF 7501AustraliaEU248849Bischoff et al. (2009)
ARSEF 2575USAColeopteraNR132011
ARSEF 4739AustraliaSoilEU248848EU248900EU248928EU248848Bischoff et al. (2009)
M. samlanenseBCC17091ThailandHemiptera adultHQ165665HQ165727HQ165686HQ165646HQ165707Luangsa-ard et al. (2017)
BCC39752ThailandHemiptera adultMN781939MN781840MN781695MN781794MT078880Luangsa-ard et al. (2017)
Metapochonia sp.BUM3.5ChinaSoilKY087810KY087814KY087818KY087822KY087806Chen et al. (2018c)
BUM63.4ChinaSoilKY264178KY264175KY264170KY264181KY264184KY264173Chen et al. (2018a)
CBS 64867FranceColeopteraLC126075LC125907LC125923Nishi et al. (2017)
CCTCC M 2016588ChinaSoilKY087812KY087816KY087820KY087824KY087826KY087808Chen et al. (2018c)
CCTCC M 2016589ChinaSoilKY264177KY264174KY264169KY264180KY264183KY264172Chen et al. (2018a)
CEP414ArgentinaBlaberidae: EpilamprinaeMF784813Gutierrez et al. (2019)
CG1123BrazilSoilKY007614KY007612KY007613KC520541Lopes et al. (2018)
GZAC-IFR1006ChinaLepidopteraKT166031KT961694KT166032Chen et al. (2017)
MAFF 243305JapanSoilAB700552LC126078LC125913LC125920Nishi et al. (2017)
MAFF 244762JapanSoilLC126079LC125911LC125922Nishi et al. (2017)
NBRC 112661JapanDipteraLC126076LC125908LC125924Nishi et al. (2017)
RCEF 2001ChinaAY913758Li et al. (2010)
M. sulphureumBCC36585ThailandLepidoptera larvaMN781686MN781786MT078931This study
BCC36592TThailandLepidoptera larvaMN781687MN781787This study
BCC39045ThailandLepidoptera larvaMK632120MK632095MK632066MK632147MK632037MT078930This study
M. takenseBCC30934ThailandHemipteraHQ165658HQ165720HQ165679HQ165740HQ165639HQ165698Luangsa-ard et al. (2017)
BCC30939ThailandHemipteraHQ165659HQ165721HQ165741HQ165640HQ165699Luangsa-ard et al. (2017)
M. viridulumARSEF 6927TaiwanHemipteraKJ398815KJ398681Kepler et al. (2014)
BCC36261ThailandHemiptera: CicadidaeMN781930MN781827MN781680MN781737MN781781MT078878This study
Myriogenospora atramentosaA.E.G 96–32PlantAY489701AY489733AY489628AY489665DQ522455Sung et al. (2007)
Nomuraea rileyiAF368501AF368501Driver et al. (2000)
CBS 806.71USATrichoplusia niAY526491EF468787EF468893EF468937AY624205Sung et al. (2007)
NBRC 8560JapanLepidopteraHQ165667HQ165729HQ165688Luangsa-ard et al. (2017)
Paecilomyces carneusCBS 239.32FranceSand duneEF468988EF468843EF468789EF468894EF468938AY624171Spatafora et al. (2007)
CBS 399.59USASoilEF468989EF468842EF468788EF468895EF468939MT078887Spatafora et al. (2007)
Pa. gunniiG845-19ChinaAJ309343Chan et al. (2011)
Pa. lilacinusCBS 284.36USASoilAY6526475AY624227EF468792EF468898EF468941Sung et al. (2007)
Pa. marquandiiCBS 182.27USASoilEF468990EF468845EF468793EF468899EF468942AY624193Sung et al. (2007)
Pa. reniformisARSEF 429PhilippinesOrthoptera: TettigoniidaeHQ165671HQ165733HQ165690HQ165650Luangsa-ard et al. (2017)
IndGH96PhilippinesHQ165670HQ165732HQ165649Luangsa-ard et al. (2017)
Petchia siamensisBCC68420ThailandOotheca of MantidaeMK632113MK632087MK632163MK632140Thanakitpipattana et al. (2020)
BCC73636ThailandOotheca of MantidaeMK632115MK632089MK632060MK632138Thanakitpipattana et al. (2020)
Pochonia chlamydosporiaCBS 504.66CanadaSoilAF339593AF339544EF469069EF469098EF469120AJ292398Sung et al. (2007)
Purpureocillium lavendulumFMR 10376VenezuelaSoilFR775489FR775516FR775512Perdomo et al. (2017)
Pur. lilacinumCBS 431.87PhilippinesMeloidogyne sp.HQ842812Luangsa-ard et al.(2011)
Pur. takamizusanenseNHJ 3582ThailandHemiptera: CicadidaeEU369097EU369034EU369015Johnson et al. (2009)
Purpureomyces maesotensisBCC88441ThailandLepidoptera larvaMN781877MN781734MN781779MN781824MN781916This study
BCC89300TThailandLepidoptera larvaMN781876MN781733MN781778MN781917This study
Pu. pyriformisBCC85074TThailandLepidoptera larvaMN781873MN781730MN781775MN781821MN781929This study
BCC85348ThailandLepidoptera larvaMN781871MN781728MN781773MN781820MN781927This study
BCC85349ThailandLepidoptera larvaMN781872MN781729MN781774MN781928This study
Regiocrella camerunensisARSEF 7682HemipteraDQ118735DQ118743DQ127234Chaverri et al. (2005)
Rotiferophthora angustisporaCBS 101437Bdelloid rotifersAF339584AF339535AF543776DQ522402DQ522460AJ292412Sung et al. (2007)
Shimizuomyces paradoxusEFCC 6279KoreaSmilax sieboldiiEF469131EF469084EF469071EF469100EF469117JN049847Sung et al. (2007)
S. paradoxusEFCC 6564KoreaSmilax sieboldiiEF469130EF469083EF469072EF469101EF469118Sung et al. (2007)
Torrubiella luteorostrataNHJ 11343ThailandHemiptera: scale insectEF468995EF468850EF468801EF468906JN049859Sung et al. (2007)
NHJ 12516ThailandHemiptera: scale insectEF468994EF468849EF468800EF468905EF468946JN049860Sung et al. (2007)
T. petchiiNHJ 6209ThailandHemiptera: scale insectEU369104EU369039EU369023EU369061EU369081JN049861Johnson et al. (2009)
NHJ 6240ThailandHemiptera: scale insectEU369103EU369038EU369022EU369060EU369082Johnson et al. (2009)
T. tenuisNHJ 345.01ThailandHemiptera: scale insectEU369111EU369045EU369030EU369088Johnson et al. (2009)
NHJ 6293ThailandHemiptera: scale insectEU369112EU369044EU369029EU369068EU369087JN049862Johnson et al. 2009

T = Type specimen

Results

Molecular phylogeny

We generated 135 ITS, 43 SSU, 58 LSU, 61 tef, 50 rpb1, 49 rpb2 and 12 5′tef sequences in this study from 62 living cultures (Table 1). The combined dataset of 173 taxa with concatenated multilocus sequences totalling 4 226 bp (SSU 1 014 bp, LSU 856 bp, tef 895 bp, rpb1 667 bp and rpb2 794 bp) provided 4 302 characters in the combined alignment where 2 729 were constant and 1 280 were parsimony-informative. Sequences of the genus Purpureocillium in the Ophiocordycipitaceae were used as outgroup. The maximum parsimony analyses resulted in a single most parsimonious tree which is shown in Fig. 1 (tree length, 9 736 steps; CI, 0.258; RI, 0.684; RC, 0.177; HI, 0.742). The result of MrModeltest selected the General Time Reversible (GTR) model with proportion in invariable sites (I) and gamma distribution (G) (GTR+I+G; Lanave et al. 1984) as the best-fit model by AIC in MrModeltest v. 2.2. A = 0.2216, C = 0.2876, G = 0.2744, T = 0.2164 and the rate matrix for the substitution model: [A-C] = 1.0968, [A-G] = 4.4130, [A-T] = 1.1698, [C-G] = 0.8387, [C-T] = 7.3758, [G-T] = 1.0000. For the among-site variation the proportion of invariable sites (I) was 0.5552, and the gamma distribution shape parameter was 0.6802. This model was used in MrBayes on XSEDE v. 3.2.7a and RAxML v. 8.2.12. Bayesian analyses resulted in 2 000 “burn-in” trees; the consensus of the remaining 10 000 trees resulted in identical topology (−lnL 52275.3594) as the Maximum Parsimony tree. For the ML analysis in RAxML (Stamatakis 2014), the GTRCAT model was used for the nucleotide partitions and the default setting for binary (indel) data was chosen. Phylogenetic analyses based on a combined dataset comprising SSU, LSU, tef, rpb1 and rpb2 strongly support 19 new Metarhizium species in the core Metarhizium clade (sensu Kepler et al. 2014) as a monophyletic clade with moderate support (MPBS 77 %, BPP 60 %, MLBS < 70 %). Two new species clustered with M. khaoyaiense outside the core Metarhizium clade and these species are accommodated in the new genus Purpureomyces. New combinations are proposed for Metarhizium aciculare, M. carneum and Metacordyceps neogunni in Keithomyces, M. kusanagiense in Yosiokobayasia, Metacordyceps liangshanensis and Metacordyceps shibinensis in Papiliomyces, M. marquandii in Marquandomyces and M. yongmunense in Sungia; including some genera which formed independent groups and are designated as new genera.

Fig. 1
Fig. 1

Phylogenetic reconstruction of Metarhizium and related genera in the Clavicipitaceae obtained from the combined SSU, LSU, tef, rpb1 and rpb2 sequences based on Maximum Parsimony, Bayesian analysis and RAxML. Numbers on the nodes are MP bootstrap / Bayesian posterior probability / ML bootstrap values above 70 % (MPBS-MLBS) or 0.7 (BPP). Thickened lines mean support for the three analyses was 100 % (MPBS-MLBS) or 1.0 (BPP).

Phylogeny of species in Metarhizium anisopliae complex

The concatenated alignment of 5′tef included 50 taxa, with 716 bp providing 740 characters in the alignment where 554 were constant and 27 were parsimony-uninformative. For the Bayesian inference, the HKY+I model was selected as the best-fit model by AIC in MrModeltest v. 2.2. A = 0.2234, C = 0.2612, G = 0.2384, T = 0.2770 and the rate matrix for the substitution model: Ti/tv ratio = 2.1669. For the ML analysis in RAxML v. 8.2.12, the GTRCAT model was used for the nucleotide partitions and the default setting was chosen.

Seventeen species had available 5′tef sequences and were included in analyses of the M. anisopliae species complex. Metarhizium flavoviride is used as the outgroup taxon. Based on our analyses, it is apparent that morphological characters are not reliable to delineate species in this group. The type of M. lepidiotae (ARSEF 7488) did not group with other ARSEF strains identified as such, but grouped with CBS 130.71, a M. anisopliae strain from Ukraine. Metarhizium sulphureum nested with strains of M. guizhouenze.

Taxonomic revision

The present analyses using MP, Bayesian and RAxML analyses gave similar topologies and agreed with one another, except for some of the branches where there is no support from either MP or RAxML. The multi-gene analyses identified a Metarhizium clade (77 % support on the branch) that is partly similar to previous studies (Fig. 1). Several clades comprising the Metarhizium anisopliae species complex, members of the Metarhizium flavoviride species complex, on cicada, nomuraea-like clade and a clade occurring on small planthoppers are all well-supported. The M. anisopliae and M. flavoviride species complexes both produce a candelabrum-like arrangement of the phialides from compact conidiophores that form a hymenial layer and occasionally having conidia adhering laterally to form prismatic columns, as in some species of Aspergillus. Species in these clades belong to Metarhizium s. str. The remaining basal clades constitute other well-supported clades but only in their terminal branches. What we identify as the Metarhizium clade includes green-spored species that correspond with Kepler et al.’s core Metarhizium D Clade (2014). These clades include species that produce nomuraea-like and paecilomyces-like asexual morphs. The taxonomic relationships at the base of the tree comprising Metarhizium sensu Kepler et al. (2014), despite the extensive taxon sampling is still poorly resolved. While the current classification of Metarhizium is based on multi-gene phylogenetic analyses and should only reflect relationships based on monophyletic clades, the inclusion of species outside the Metarhizium branch remains doubtful as the morphological characters of the species subtending this group do not reflect in any way our present understanding of Metarhizium. Pochonia and Rotiferophthora belong to a clade subtending Metarhizium while species previously belonging to the basal clades in Metarhizium sensu Kepler et al. (2014) are now in a clade which is also subtended by Metapochonia and is basal to the Pochonia-Rotiferophthora and Metarhizium clades. This clade comprises the six new genera proposed in this study (Fig. 1).

Taxonomy

Six new genera (Keithomyces, Marquandomyces, Papiliomyces, Purpureomyces, Sungia, Yosiokobayasia) and twenty-one new species are decribed in this study, nineteen in Metarhizium and two in Purpureomyces. Three species are combined in Keithomyces, two in Papiliomyces, and one each in Marquandomyces, Purpureomyces, Sungia and Yosiokobayasia.

Keithomyces Samson, Luangsa-ard & Houbraken, gen. nov. MycoBank MB834876.

Etymology: Named after Dr Keith A. Seifert, in recognition for his contributions to our knowledge of asexually reproducing fungi.

Description: Asexual morph paecilomyces-like, producing conidiophores with divergent whorls of 2–4 phialides; conidia echinulate to aciculate, in chains.

Type species: Keithomyces carneus (Duché & R. Heim) Samson, Luangsa-ard & Houbraken

Notes: This genus comprises species isolated mainly from soil and produce paecilomyces-like asexual morphs and echinulate or aciculate conidia. Paecilomyces sensu stricto is classified in the Eurotiales; Metarhizium produces green or brown coloured conidia in contrast to the pink-shaded conidia of Keithomyces.

Keithomyces carneus (Duché & R. Heim) Samson, Luangsa-ard & Houbraken, comb. nov. MycoBank MB834877. Fig. 3.

Fig. 3

Keithomyces carneus. Colonies after 14 d. A–B. CBS 239.32. A. On MEA. B. On OA. C–D. CBS 339.59. C. On MEA. D. On OA. E–G. Conidiophores and conidia on MEA. H–J. Conidiophores and conidia on OA. Scale bars = 10 μm.

Basionym: Spicaria carnea Duché & R. Heim, Recl. Trav. Cryptogam. Dédiés à Louis Mangin: 454. 1931.

Synonyms: Paecilomyces carneus (Duché & R. Heim) A.H.S. Br. & G. Sm., Trans. Br. Mycol. Soc. 40: 70.1957.

Metarhizium carneum (Duché & R. Heim) Kepler et al., Mycologia 106: 821. 2014.

Penicillium nopporoense [as ‘nopporoensum’] Y. Sasaki & Nakane, J. Agric. Chem. Soc. Japan: 775. 1943.

Spicaria carnosa J.H. Mill. et al., Mycologia 49: 800. 1957.

? Spicaria decumbens Oudem., Archives Néerlandaises 7: 290. 1902.

Description and illustration: See Samson (1974).

Typus: France, Hills of Vauville, sandy soil, collection date unknown, J. Duche (holotype CBS H-7449, culture ex-type CBS 239.32, type culture of Spicaria carnea).

Habitat: Dune sand, Thysanoptera (Thripidae), Coleoptera (Staphylinidae), soil.

Known distribution: China, France, Japan, Netherlands, USA.

Notes: Keithomyces carneus is a common soil fungus in temperate regions and could be easily recognized by its echinulate conidia and green reverse.

Keithomyces acicularis (H. Iwasaki et al.) Samson, Luangsa-ard & Houbraken, comb. nov. MycoBank MB834945.

Basionym: Metarhizium aciculare H. Iwasaki et al., Mycoscience 60: 315. 2019.

Description and illustration: See Iwasaki et al. (2019).

Typus: Japan, Tokyo, Izu Islands, Nii-jinma, from soil under Angelica keiskei, 13 Mar. 2013, Nonaka (holotype JCM 33284, culture ex-type FKI-7236).

Habitat: Soil.

Known distribution: Japan.

Note: Keithomyces acicularis is closely related to K. carneus and can be distinguished from it by the size and presence of aciculate conidia.

Keithomyces neogunnii (T.C. Wen & K.D. Hyde) Luangsa-ard, Thanakitpipattana & Samson, comb. nov. MycoBank MB834878.

Basionym: Metacordyceps neogunnii T.C. Wen & K.D. Hyde, Phytotaxa 302: 33. 2017.

Synonyms: ‘Paecilomyces gunnii’ sensu Z.Q. Liang, Acta Mycol. Sin. 4: 163. 1985.

Cordyceps gunnii var. minor Z.Z. Li et al., Korean J. Mycol. 27: 232. 1999.

Paecilomyces gunnii var. minor, Z.Z. Li et al., Korean J. Mycol. 27: 233. 1999.

Description and illustration: See Wen et al. (2017).

Typus: China, Guizhou Province, Shibin County, Yuntai Mountain, on larva of Lepidoptera in soil, 23 Apr. 2013, L.P. Chen (holotype GZUH SB1 3050302, culture ex-type GZUCC SB1 30503021).

Habitat: Lepidoptera larvae living in soil.

Known distribution: China.

Notes: Cordyceps gunnii (Berk.) Berk. is known from Australia and resembles C. hawkesii Gray, which has also been reported from Australia and Japan. Molecular studies by Wen et al. (2017) has shown that what had been identified as C. gunnii in China is phylogenetically different from the Australian isolate. Cordyceps gunnii from Australia has been transferred by Spatafora et al. (2015) to Drechmeria in Ophiocordycipitaceae, while C. gunnii from China was transferred to Metacordyceps by Wen et al. (2017) in Clavicipitaceae and renamed the species as M. neogunnii. This sexually reproductive species is nested with asexually reproductive isolates of what was previously identified as Paecilomyces carneus (= Metarhizium carneum).

Marquandomyces Samson, Houbraken & Luangsa-ard, gen. nov. MycoBank MB834879.

Etymology: Named after an estate in Guernsey (UK).

Type species: Verticillium marquandii Massee, Trans. Br. Mycol. Soc.1: 24. 1898.

Description (based on Samson, 1974): Macromorphology: Colonies on malt-agar growing moderately fast, attaining a diameter of 5–7 cm within 2 wk at 25 °C, consisting of a dense felt with a floccose overgrowth of aerial mycelium, in fresh isolates sometimes producing short erect loose synnemata; at first white, becoming pale vinaceous to vinaceous near dark vinaceous brown, changing with age to brown shades. Colony reverse usually bright yellow to orange-yellow, exudate usually diffusing into the surrounding agar, with age becoming yellow-brown.

Micromorphology: Vegetative hyphae hyaline, smooth-walled, 2.5–3.2 μm wide. Conidial structures variable, mostly verticillate, sometimes loosely synnematous, especially in fresh isolates. Conidiophores hyaline, smooth-walled, 50–300 × 2.5–3 μm, arising from submerged hyphae or formed as side branches on the aerial hyphae, consisting of verticillate branches with whorls of 2–4 phialides. Phialides 8–15 × 1.5–2 μm, consisting of a short cylindrical to ellipsoidal basal portion, tapering into a distinct neck, about 1 μm wide. Conidia in dry divergent chains, ellipsoidal to fusiform, smooth-walled to finely roughened, hyaline, pale vinaceous en masse, 3–3.5 × 2–2.2 μm. Chlamydospore-like structures usually present in the submerged mycelium, consisting of solitary, thin-walled, globose to ellipsoidal cells, about 3.5 μm in diameter.

Marquandomyces marquandii (Massee) Samson, Houbraken & Luangsa-ard, comb. nov. MycoBank MB834880. Fig. 4.

Fig. 4

Marquandomyces marquandii. Colonies after 14 d A–B. CBS 182.27. A. On MEA. B. On OA. C–D. CBS 282.53. C. On MEA. D. On OA. E–G. Conidiophores and conidia on MEA. H–J. Conidiophores and conidia on OA. Scale bars = 10 μm.

Basionym: Verticillium marquandii Massee, Trans. Br. Mycol. Soc. 1: 24. 1898.

Synonyms: Paecilomyces marquandii (Massee) S. Hughes, Mycol. Pap. 45: 30. 1951.

Spicaria violacea E.V. Abbott, Iowa St. Coll. J. Sci.: 15. 1926.

Metarhizium marquandii (Massee) Kepler et al., Mycologia 106: 823. 2014.

Description and illustration: See Samson (1974).

Habitat: On mushrooms, soil.

Known distribution: Brazil, Netherlands, Russia, UK, USA.

Notes: Massee (1898) found the species parasitic on the gills of Hygrophorus virgineus. To date, strains of M. marquandii are often found in soil.

Metarhizium Sorokīn, Veg. Parasitenk. Mensch Tieren: 268. 1879.

Synonyms: Chamaeleomyces Sigler, J. Clin. Microbiol. 48: 3186. 2010.

Metacordyceps G.H. Sung et al., Stud. Mycol. 57: 27. 2007.

Nomuraea Maubl., Bull. Soc. Mycol. France 19: 296. 1903.

Type species: Metarhizium anisopliae (Metschn.) Sorokīn, Plant Paras. Man Anim.: 268. 1883.

Notes: The concept of the genus Metarhizium is revised to exclude species not belonging in the Metarhizium clade in Fig. 1. Relationships between species in the Metarhizium anisopliae complex were elucidated using 5′tef sequences in Fig. 2. A list of strains used in this study and their GenBank accession numbers is found in Table 1. Table 2 lists the hosts, substrates and geographical locations of all Metarhizium species. Table 3 shows the types of conidiogenesis and Table 4 shows the differences between the sexual morphs of Metarhizium and closely related taxa. The micromorphologies and colour of most species on SDAY/4 are shown in Table 5. Conidiogenous structures and conidial shapes of known species from ARSEF (type strains) on SDAY/4 after 7 d are shown in Fig. 5, Fig. 6, Fig. 7, Fig. 8. The morphological differences of most species on OA and PDA are shown in Supplementary Table S1. The phylogenetic relationships of Metarhizium and related taxa were analysed using the ITS barcode in Supplementary Fig. S1 and using combined rpb1 and rpb2 sequences in Supplementary Fig. S2.

Fig. 2

Phylogenetic reconstruction of Metarhizium anisopliae species complex 5′tef sequences based on Maximum Parsimony, Bayesian analysis and RAxML. Number on the nodes are MP bootstrap / Bayesian posterior probability / ML bootstrap values above 70 % (MPBS-MLBS) or 0.7 (BPP). Thickened lines mean support for the three analyses was 100 % (MPBS-MLBS) or 1.0 (BPP).

Table 2

Metarhizium hosts, substrates and geographical location.

SpeciesSubstrateCountries foundReferences
Metarhizium acridumOrthoptera: Acrididae, PyrgomorphidaeAustralia, Benin, Chad, Guinea-Bissau, Madagascar, Mali, Mexico, Niger, Senegal, Tanzania, Thailand, USADriver et al. (2000), Bischoff et al. (2009), Database of ARSEF
M. albumHemiptera: CicadellidaeIndonesia, PhilippinesPetch (1931), Database of ARSEF
M. alvesiiSoilBrazilLopes et al. (2018)
M. anisopliaeColeoptera: Chrysomelidae, Curculionidae, Elateridae, Scarabaeidae, Diptera: Stratiomyidae, Hemiptera: Pentatomidae, Cercopidae, Cicadellidae, Delphacidae, Lepidoptera: Noctuidae, Pyralidae, Orthoptera: Acrididae, Gryllotalpidae, Isoptera: Mastotermitidae, Rhinotermitidae, Termitidae, SoilBrazil, Colombia, Ethiopia, France, India, Indonesia, Japan, Moldova, Myanmar, New Zealand, Papua New Guinea, Philippines, USA, Western SamoaBischoff et al. (2009), Database of ARSEF
M. argentinenseBlattodea: Blaberidae (Epilampra sp.)ArgentinaGutierrez et al. (2019)
M. atrovirensColeoptera larvaJapanKobayasi & Shimizu (1978), Kepler et al. (2014)
M. baoshanenseSoilChinaChen et al. (2018a)
M. bibionidarumDiptera: Bibionidae, Coleoptera: Scarabaeidae, SoilJapan, FranceNishi et al. (2017)
M. biotecenseHemiptera: DelphacidaeThailandThis study
M. blattodeaeBlattodea (Cockroach)Brazil, ThailandMontalva et al. (2016), This study
M. brachyspermumColeoptera (Elaterid larva)JapanYamamoto et al. (2020)
M. brasilienseHemiptera: CicadellidaeBrazilKepler et al. (2014)
M. brittlebankisoidesColeoptera: ScarabaeidaeChina, JapanLiu et al. (2001),Kepler et al. (2014), Gutierrez et al. (2019)
M. brunneumAcari: Ixodidae, Arneida, Coleoptera: Cerambycidae, Curculionidae, Elateridae, Scarabaeidae, Tenebrionidae, Diptera: Culicidae, Hemiptera: Delphacidae, Hymenoptera: Formicidae, Isoptera: Rhinotermitidae, Termitidae, Lepidoptera: Bombycidae, Hepialidae, Lyonetiidae, Noctuidae, Pyralidae, Tortricidae, Orthoptera: Acrididae, SoilArgentina, Australia, Austria, Canada, Denmark, Finland, France, Germany, Indonesia, Italy, Japan, Mexico, Myanmar, New Zealand, Norway, Philippines, Portugal, Republic of Georgia, Switzerland, Turkey, UK, USABischoff et al. (2009), Database of ARSEF
M. candelabrumHemiptera (Leafhopper)ThailandThis study
M. campsosterniColeoptera: ScarabaeidaeChinaZhang et al. (2004), Kepler et al. (2014)
M. cercopidarumHemiptera: CercopidaeThailandThis study
M. chaiyaphumenseHemiptera: Cicadidae (Cicada nymph)ThailandLuangsa-ard et al. (2017)
M. cicadaeHemiptera: CicadidaeThailandThis study
M. clavatumColeoptera (Larva of Oxynopterus sp.)ThailandThis study
M. culicidarumDiptera: CulicidaeThailandThis study
M. cylindrosporumHemiptera: Cicadidae (Adult cicada)China, Japan, TaiwanGuo et al. (1986), Tzean et al. (1993), Kepler et al. (2014), Database of ARSEF
M. dendrolimatilisLepidoptera (Dendrolimus sp.)ChinaChen et al. (2017)
M. eburneumLepidoptera pupaThailandThis study
M. ellipsoideumHemiptera (Leafhopper)ThailandThis study
M. flavovirideColeoptera: Curculionidae, Sacarabaeidae, Orthoptera: Acrididae, SoilAustralia, Czech Republic, France, Germany, Malaysia, NetherlandsGams & Rozsypal (1973), Database of ARSEF
M. flavumColeoptera larvaThailandThis study
M. frigidumColeoptera: Scarabaeidae, Isoptera: Rhinotermitidae, SoilAustraliaBischoff et al. (2009), Database of ARSEF
M. fusoideumLepidoptera, PsocopteraThailandThis study
M. gaoligongenseSoilChinaChen et al. (2018b)
M. globosumLepidoptera: PyralidaeIndiaBischoff et al. (2009), Database of ARSEF
M. granulomatisChameoleo calyptratusDenmarkSigler et al. (2010), Kepler et al. (2014)
M. gryllidicolaOrthoptera: Gryllidae (Cricket adult )ThailandThanakitpipattana et al. (2020)
M. guizhouenseLepidopteraChinaGuo et al. (1986), Bischoff et al. (2009)
M. guniujiangenseHemiptera (Cicada nymph)ChinaLi et al. (2010)
M. huainamdangenseHemiptera (Leafhopper)ThailandThis study
M. humberiColeoptera, Lepidoptera, Hemiptera, SoilBrazil, MexicoLuz et al. (2019)
M. indigoticumLepidoptera larva (Cossidae)JapanKobayasi & Shimizu (1978), Kepler et al. (2012a, 2014)
M. kalasinenseColeoptera larvaThailandLuangsa-ard et al. (2017)
M. koreanumHemiptera: Delphacidae, Fulgoromorpha, TropiduchidaeJapan, South Korea, ThailandKepler et al. (2014), Nishi & Sato (2017), This study
M. lepidiotaeColeoptera: Scarabaeidae, Isoptera: Rhinotermitidae, SoilAustralia, Japan, Papua New GuineaDriver et al. (2000), Bischoff et al. (2009), Database of ARSEF
M. majusColeoptera: Scarabaeidae, Lepidoptera: Bombycidae, Noctuidae, SoilAustralia, France, Indonesia, Japan, Malaysia, Philippines, Poland, Western SamoaBischoff et al. (2009), Database of ARSEF
M. megapomponiaeHemiptera: MegapomponiaThailandThis study
M. minusHemiptera: Cicadellidae, Delphacidae, Pentatomidae, Orthoptera: AcrididaeBenin, Ecuador, Philippines, Solomon Islands, ThailandDriver et al. (2000), Kepler et al. (2014), Database of ARSEF, This study
M. niveumHemiptera: Cicadidae (Cicada adult)ThailandThis study
M. nornnoiLepidoptera larva, Coleoptera adultThailandThis study
M. novozealandicumColeoptera, Lepidoptera, SoilAustralia, New ZealandDriver et al. (2000), Kepler et al. (2014), Database of ARSEF
M. ovoidosporumHemiptera: Cercopidae, EurybrachidaeThailandThis study
M. owarienseHemiptera: CicadidaeJapanKobayasi (1939), Kepler et al. (2014)
M. pemphigiHemiptera: Aphididae, Isoptera: Rhinotermitidae, SoilCanada, China, Georgia, Japan, UKGuo et al. (1986), Kepler et al. (2014), Database of ARSEF
M. phasmatodeaeOrthoptera: PhasmatodeaThailandThanakitpipattana et al. (2020)
M. phuwiangenseColeoptera adultThailandThis study
M. pingshaenseColeoptera: Cerambycidae, Chrysomelidae, Curculionidae, Scarabaeidae, Diptera: Stratiomyidae, Hemiptera: Cicadidae, Cydnidae, Delphacidae, Pentatomidae, Pseudococcidae, Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae, Lepidoptera: Noctuidae, Orthoptera: Gryllidae, SoilAustralia, Brazil, China, Colombia, India, Indonesia, Japan, Myanmar, New Zealand, Oman, Pakistan, Papua New Guinea, Philippines, Solomon Islands, ThailandGuo et al. (1986), Bischoff et al. (2009), Database of ARSEF
M. prachinenseLepidoptera larvaThailandLuangsa-ard et al. (2017)
M. pseudoatrovirensColeoptera larvaJapanKobayasi & Shimizu (1982), Kepler et al. (2012a, 2014)
M. purpureogenumSoilJapanNishi et al. (2017)
M. purpureonigrumColeoptera larvaThailandThis study
M. purpureumColeoptera (Oxynopterus sp.)ThailandThis study
M. reniformeOrthoptera: TettigonidaeGhana, Indonesia, Philippines, USAKalkar et al. (2006)
M. rileyiHemiptera: Cercopidae, Delphacidae, Lepidoptera: Bombycidae, Lymantriidae, Noctuidae, PyralidaeArgentina, Australia, Brazil, China, France, India, Indonesia, Japan, Mexico, Palestine, Philippines, Russian Federation, Solomon Islands, Thailand, USASamson (1974), Database of ARSEF
M. robertsiiColeoptera: Carabidae, Cerambycidae, Chrysomelidae, Curculionidae, Elateridae, Scarabaeidae, Tenebrionidae, Hemiptera: Cicadidae, Cydnidae, Hymenoptera: Formicidae, Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae, Lepidoptera: Nymphalidae, Plutellidae, Pyralidae, Orthoptera: Tettigoniidae, SoilArgentina, Australia, Brazil, Canada, Colombia, Germany, Italy, Japan, Mexico, Myanmar, Norway, Portugal, Republic of Georgia, Romania, USABischoff et al. (2009), Kepler et al. (2014), Database of ARSEF
M. samlanenseHemiptera: CicadellidaeThailandLuangsa-ard et al. (2017)
M. sulphureumLepidoptera larvaThailandThis study
M. takenseHemiptera: Cicadidae (Cicada nymph)ThailandLuangsa-ard et al. (2017)
M. virideChameoleo lateralisMadagascarSamson (1974), Kepler et al. (2014)
M. viridulumHemiptera: Cicadidae (Cryptotympana facialis adult)Taiwan, ThailandTzean et al. (1992), Kepler et al. (2014)

Database of ARSEF: U.S. Department of Agriculture, Agricultural Research Service, Biological Integrated Pest Management Research Unit. (2016). ARS Collection of Entomopathogenic Fungal Cultures (ARSEF). U.S. Department of Agriculture, Agricultural Research Service. https://doi.org/10.15482/USDA.ADC/1326695. Accessed 2019-12-12.

Table 4

Comparison between the sexual morphs in Metarhizium and closely related species.

SpeciesStromataPerithecia (μm)Asci (μm)Ascospores (μm)Asexual morph
Metarhizium atrovirensMultiple, cylindrical to clavate, 20–50 mm longObliquely immersed, ovoid, 475–550 × 240–250210–250 × 3.5Lanceolate with tapering ends, 50–52 × 2.5–3Unknown
M. brachyspermumSingle or multiple, clavate, pale green to olive green, up to 30 mm longObliquely immersed, flask-shaped, 500–795 × 190–300Cylindrical, 230–400 × 2.5–4.5Filiform, 190–270 × 1Metarhizium-like
M. brittlebankisoidesMultiple, cylindrical, pale green, 100 mm longOrdinally immersed, flask-shaped, 406–531 × 170–200Cylindrical, 188–313 × 3–3.2Cylindrical, 180–300 × 0.94, part-spores, 5.7–8.1 × 0.94Metarhizium-like
M. campsosterniSimple, cylindrical, greenish yellow, 160 mm longOrdinally immersed, pyriform, obovoid, 275–433 × 165–276Cylindrical, 175–349 × 3.9Part-spores, 2.9–5.9 × 1Metarhizium-like
M. chaiyaphumenseSolitary, cylindrical, simple, or 2–3 branched, greyish yellow, 30–35 mm longObliquely immersed, ovoid to obpyriform, 550–670 × 320–380Cylindrical, 520–650 × 3–4Filiform, 225–375 × 1Metarhizium-like
M. clavatumSingle or multiple, cylindrical to clavate, yellow to greyish green, 35 mm longObliquely immersed, flask-shaped, 600–700 × 210–290Cylindrical, up to 420 × 5–6Filiform, 224–420 × 1–1.5Metarhizium-like
M. eburneumSolitary, cylindrical, white to creamy, 10 mm longOrdinally semi-immersed, ovoid to obclavate, 603–640 × 275–300Cylindrical, 235–462.5 × 2–3Filiform, 222.5–360 × 1Unknown
M. flavumSimple, multiple, clavate, pale yellow to olive yellow, up to 45 mm long,Ordinally semi-immersed, ovoid, 500–650 × 270–330Cylindrical, 280–320 × 5–6Filiform, 200–315 × 1.5–2Metarhizium-like
M. guizhouense (M. taii)Cylindrical, tapering, yellowish, 20–35 mm long, 2–5 mm wideObliquely immersed, 267–794(–1061) × 247–354Part-spores, 17–34 × 1 –1.4Metarhizium-like
M. guniujiangenseMultiple, dark green, 40.3–42.5 mm long, confluent at base, apically subulate with acute, yellow and glabrous tip.Obliquely immersed, ampullaceous, 640–770 × 240–320Cylindrical, 310–380 × 4–4.8Filiform, 240–330 × 0.8–1Metarhizium-like
M. indigoticumMultiple, dark green elastic, irregularly, curved stroma, 40–50 mm, 3–5 mm wideObliquely immersed, 700–750 × 275–325Part-spores, 4.5–5 × 1Metarhizium-like
M. kalasinenseSimple or sparingly branched, olive green to greenish brown, 150 mm longObliquely immersed, 700–800 × 250–350Cylindrical, 500–650 × 4–5Filiform, 400–500 × 1–1.5Metarhizium-like
M. owarienseSolitary, dark brown, straight, cylindrical, 57 mm longObliquely immersed, ampullaceous, 460–530 × 200–270Part-spores, 4.2–5.6 × 1Nomuraea-like
M. phuwiangenseMultiple, clavate, orange brown, up to 15 mm long, 1.5–2 mm wideObliquely semi-immersed, ovoid, 540–700 × 200–400Cylindrical, 225–320 × 3–4Part-spores, 8–12 × 1–1.5Paecilomyces-like
M. prachinenseMultiple, cylindrical to clavate, white cream to pale brown, 50–86 mm long , 1–2 mm wideObliquely immersed, clavate to ovoid, 320–470 × 180–300Cylindrical, 100–271 × 3–5Filiform, 94–107 × 1Nomuraea-like
M. pseudoatrovirensMultiple, cylindrical, fertile part fusoid to ovoid, olive green, 14 mm longOrdinally immersed, ovoid, 520–550 × 250–320Lanceolate with tapering ends, 50 × 2.5Unknown
M. purpureonigrumMultiple, purple to dark, 100–150 mm long, up to 10 mm wideOrdinally immersed, elongate ovoid, 600–870 × 250–500Cylindrical, 245–280 × 6–8Filiform, 200–275 × 1.5–2Metarhizium-like
M. purpureumMultiple, clavate, branched, dark purple, up to 40 mm long, 2.5–3 mm wideOrdinally immersed, ovoid, 370–520 × 210–300Cylindrical, 150–250 × 5–8Filiform, 160–240 × 1.5–2Metarhizium-like
M. sulphureumSolitary, multiple, sulphur-yellow, greenish-olive, 25–45 mm long, 2–3 mm wideObliquely semi-immersed, ovoid, 600–700 × 420–450Cylindrical, 300–420 × 3–6Filiform, 200–300 × 2–3Metarhizium-like
M. takenseSimple, greyish green to dark green, 70–130 mm long, 0.6–1.8 mm wideObliquely immersed, flask-shaped, 510–550 × 250–350Cylindrical, 275– 400 × 5Filiform, 155–230 × 1.25Nomuraea-like
Purpureomyces khaoyaiensisSolitary, white to whitish-purple, 55 mm long, 3–4 mm wideObliquely semi-immersed, ovoid, 335–410 × 200–270Cylindrical, 215–340 × 5–6Filiform, 160–240 × 1Lecanicillium-like
Pu. maesotensisSolitary, cylindrical, purple, 26 mm long 1–1.5 mm wideObliquely semi-immersed, ovoid, 360–470 × 260–320Cylindrical, 100–192.5 × 3–6Filiform, 107–177.5Lecanicillium-like
Pu. pyriformisSolitary, cylindrical, purple, 18 mm long, 3 mm wideObliquely immersed, ovoid, 304–350 × 220–250Cylindrical, 100–182 × 4–5Filiform, 125–190 × 1Lecanicillium-like

Table 5

Micromorphologies and colour of Metarhizium and Purpureomyces species on SDAY/4.

SpeciesCountries foundPhialides (μm)Conidia (μm)Colony description
Metarhizium acridumAustralia, Benin, Guinea-Bissau, Madagascar, Mali, Mexico, Niger, Senegal, Tanzania, Thailand, Tschad, USACylindrical or ellipsoid, 4.5–12.5 × 2.5–4.5Ellipsoid, globose, 4–5.5 × 3–4Greyish yellow
M. albumIndonesia, PhilippinesCylindrical, 5–14 × 1.5–2Ellipsoid, cylindrical, 5–6 × 1.5–2Pale brown
M. alvesiiBrazilOvoid to broadly ellipsoid, 7.55–14.46 × 1.6–2.8Cylindrical, 3.88–6.55 × 2.16–3.25Yellow to greenish
M. anisopliaeBrazil, Colombia, Ethiopia, France, India, Indonesia, Japan, Moldova, Myanmar, New Zealand, Papua New Guinea, Philippines, USA, Western SamoaCylindrical, 8–11.5 × 2–3Cylindrical to ellipsoid, 5–7 × 2–3.5Greyish green
M. bibionidarumJapan, FranceCylindrical, 9.5–24.5 × 1.5–2Cylindrical to ellipsoid, 4.5–6 × 2–3Brownish yellow
M. biotecenseThailandCylindrical, 6–16 × 2–3Cylindrical, ellipsoid, 5–7 × 2–3White
M. blattodeaeBrazil, ThailandEllipsoid, cylindrical, 5–15 × 2–2.5Ellipsoid to cylindrical, 6–8 × 2–3Pale yellow
M. brachyspermumJapanCylindrical, 7.5–10.5 × 1.5–2.5Cylindrical, 6–8 × 2.5–3Olive green
M. brasilienseBrazilCylindrical, 7–10 × 1.5– 2Ovoid to cylindrical, 3–10 × 2–3Cream to pale yellow
M. brunneumArgentina, Australia, Austria, Canada, Denmark, Finland, France, Germany, Indonesia, Italy, Japan, Mexico, Myanmar, New Zealand, Norway, Philippines, Portugal, Republic of Geogia, Switzerland, Turkey, UK, USACylindrical, 7–22 × 1.5–2Cylindrical, ellipsoid, 4.5–9 × 2–3White cream
M. candelabrumThailandCylindrical, 5–10 × 1.5–2Cylindrical, 7–9 × 1.5–2White to pale green
M. cercopidarumThailandCylindrical to ellipsoid, 5–8 × 2–3Cylindrical, 6–10 × 1.5–3Pale yellow to pale green
M. chaiyaphumenseThailandClavate, 10–12 × 2–3Two types of conidia; ovoid, ellipsoid or subglobose, 3–6 × 2–3; cylindrical, ellipsoid, 12–15 × 3–5Leaf green
M. cicadaeThailandCylindrical, 4–7 × 2–3.5Two types of conidia; ovoid, ellipsoid, 2–6 × 2.5–4; cylindrical, 10–17 × 3–4Dark green
M. clavatumThailandCylindrical, 6–10 × 1.5–3Cylindrical, 5–6 × 2–3Pale green
M. culicidarumThailandCylindrical, 4–12 × 1.5–2.5Fusiform-elliptical, ellipsoid, 4–7 × 1–1.5White
M. cylindrosporumChina, Japan, TaiwanOvoid, 4–7 × 2–3Two types of conidia; ovoid, subglobose, 3–8 × 2–3; cylindrical, 14–22 × 3–4Pale yellow
M. eburneumThailandNANAWhite to creamy
M. ellipsoideumThailandCylindrical, 4–7 × 1.5–3Cylindrical, ellipsoid, 4–7 × 1.5–2Olive yellow, sulphur yellow
M. flavovirideAustralia, Czech Republic, France, Germany, Malaysia, NetherlandsCylindrical, 9–26 × 1.5–2Pyrifrom, renifrom, ovoid 4–10 × 1.5–3Yellowish white
M. flavumThailandCylindrical, 7–12 × 2–3Cylindrical, 7–10 × 2–3Pale yellow
M. frigidumAustraliaCylindrical to ellipsoid, 6–12 × 2–3Cylindrical, 4–8 × 2–4Dark green
M. fusoideumThailandCylindrical, 6–10 × 2–3Ellipsoid to cylindrical, 6–10 × 2–3White to pale cream
M. globosumIndiaClavate, ovoid 5–12 × 3–4Globose, 4–5 × 4–5Greyish green
M. gryllidicolaThailandCylindrical, utriform, 6–11 × 2–3Cylindrical to ovoid, obclavate, 4–7 × 2–3Sulphur yellow
M. guizhouenseChina7–12 × 2–37–10 × 2–3Olive
M. huainamdangenseThailandNANAGrey pink
M. humberiBrazil, MexicoOvoid to broadly ellipsoid, 6.6–12.85 × 1.77–2.45Cylindrical, 4.14–6.05 × 1.69–2.59Grey green
M. kalasinenseThailandClavate, 8–12 × 2–3Cylindrical, 6–8 × 2–3Greenish olive with spectrum yellow
M. koreanumJapan, South Korea, ThailandCylindrical, 5–13 × 2–2.5Cylindrical, ellipsoid, 4–7.5 × 1.5–2.5White to yellow
M. lepidiotaeAustralia, Japan, Papua New GuineaCylindrical, 8–15 × 2–3Ovoid to ellipsoid, cylindrical, 5–7.5 × 3–4White
M. majusAustralia, France, Indonesia, Japan, Malaysia, Philippines, Poland, Western SamoaCylindrical to ellipsoid, 11–22 × 2–3Oblong-elliptical, 10–14 × 2–4Yellowish orange to green
M. megapomponiaeThailandCylindrical, 5–11 × 2–4Cylindrical, ellipsoid, 7–11 × 3–4Cream to yellow brown
M. minusBenin, Ecuador, Philippines, Solomon Islands, ThailandCylindrical, 6–14 × 2.5–4Cylindrical, ellipsoid, 4–6 × 2.5–3White
M. niveumThailandCylindrical, 4 × 2Ovoid, ellipsoid, 2–5 × 2–3White to cream
M. nornnoiThailandCylindrical, 4–9 × 2–3Cylindrical, 4–7 × 1.5–2Sulphur yellow
M. novozealandicumAustralia, New ZealandCylindrical, 6–19 × 2–3Cylindrical, ellipsoid, 5–7.5 × 2–3White to pale yellow
M. ovoidosporumThailandObpyriform, ovoid, 3–7 × 2–4Ovoid, ellipsoid, subglobose, 3–5 × 2–4Olive yellow
M. owarienseJapanOvoid, 5–8 × 3–4Ovoid, ellipsoid, 7–10 × 4–5Greenish yellow
M. pemphigiCanada, China, Japan, Republic of Georgia, UKCylindrical, ellipsoid, 6–12 × 2–3Cylindrical, 3–8 × 1.5–2Pale yellow
M. phasmatodeaeThailandCylindrical, utriform, 5–11 × 2–3Cylindrical, ovoid, obclavate, 5.5–8 × 2–3Sulphur yellow
M. phuwiangenseThailandPaecilomyces-like, swollen globose, 5–12 × 2–3, with distinct necks, 2–5 × 1Ellipsoid to cylindrical, 7–8 × 2.5–4Brown orange
M. pingshaenseAustralia, Brazil, China, Colombia, India, Indonesia, Japan, Myanmar, New Zealand, Oman, Pakistan, Papua New Guinea, Philippines, Solomon Islands, ThailandCylindrical, 7–17 × 2.5–3.5Ellipsoid, 6–8 × 2.5–3.5Olive
M. prachinenseThailandOvoid to obpyriform, 2–5 × 2–2.5Subglobose, 3–5 × 2–3Sulphur yellow
M. purpureogenumJapanCylindrical, flask-shaped, 7–19 × 2–2.5Ovoid to ellipsoid, 4.5–5.5 × 3.5–4Pale ochre or tan
M. purpureonigrumThailandNANANA
M. purpureumThailandNANAPale cream
M. reniformeIndonesia, Ghana, Philippines, USASpherical to broadly ellipsoid, 2.5 ± 0.4 × 2.3 ± 0.2Reniform, 4.5 ± 0.7 × 2.2 ± 0.4Greyish green, olive, dull green
M. robertsiiArgentina, Australia, Brazil, Canada, Colombia, Germany, Italy, Japan, Mexico, Myanmar, Norway, Portugal, Republic of Georgia, Romania, USACylindrical, 7–13 × 2–2.5Cylindrical, ellipsoid, 5–9 × 2–3White to pale yellow
M. samlanenseThailandOvoid, subglobose, cylindrical, 5–7 × 2–3Globose, 3–5Sulphur yellow to straw yellow
M. sulphureumThailandCylindrical, 5–11 × 1.5–2Cylindrical, 6–9 × 2–3Olive yellow and greenish olive
M. takenseThailandFusiform to narrowly ovoid, 5–8 × 2–3Ovoid, ellipsoid, subglobose, 3–5 × 2–3Greenish olive
M. viridulumTaiwan, ThailandOval-cylindrical to ellipsoid, 5–9 × 3–5Ellipsoid, cylindrical, 7–13 × 3–4Pale yellow
Purpureomyces khaoyaiensisThailandLecanicillium-like, tapering gradually towards the apex, 7–18 × 1–3Ovoid, 2–3 × 1.5–3White to cream
Pu. maesotensisThailandLecanicillium-like, tapering gradually towards the apex, 4–21 × 1.5–2Ovoid, 3 × 1–2.5White to lilac
Pu. pyriformisThailandLecanicillium-like, tapering gradually towards the apex, 8–22 × 1–2Ovoid, 2–4 × 1.5–2White to cream

NA: Sporulation not observed.

Fig. 5

Colonies on SDAY/4 after 7 d, phialides and conidia of known Metarhizium species: A–D.M. acridum ARSEF 7486. E–H.M. album ARSEF 1942. I–K.M. anisopliae ARSEF 7487. L–O.M. blattodeae BCC 20250. P–R.M. brasiliense ARSEF 2948. S–V.M. brunneum ARSEF 2107. Scale bars = 10 μm.

Fig. 6

Colonies on SDAY/4 after 7 d, phialides and conidia of known Metarhizium species: A–D.M. cylindrosporum ARSEF 6926. E–G.M. frigidum ARSEF 4124. H–J.M. globosum ARSEF 2596. K–M.M. gryllidicola BCC 82988. NP.M. kalasinense BCC 53582. Q–S.M. koreanum AFSEF 2038. Scale bars = 10 μm.

Fig. 7

Colonies on SDAY/4 after 7 d, phialides and conidia of known Metarhizium species: A–D.M. lepidiotae ARSEF 7488. E–G.M. majus ARSEF 1914. H–J.M. minus ARSEF 2037. K−M.M. novozealandicum ARSEF 8214. N–P.M. owariense NBRC 33258. Q–T.M. pemphigi ARSEF 7491. Scale bars = 10 μm.

Fig. 8

Colonies on SDAY/4 after 7 d, phialides and conidia of known Metarhizium species: A–C.M. phasmatodeae BCC 47272. D–F.M. prachinense BCC 47979. G–J.M. robertsii ARSEF 8820. K–M.M. samlanense BCC 17091. N–P.M. takense BCC 30939. Q–T.M. viridulum ARSEF 6927. Scale bars = 10 μm.

 We recommend the use of SDAY/4 for studying the micro-morphologies and colony colour in Metarhizium. Growth on both PDA and SDAY/4 are fast as well as the sporulation, but in SDAY/4 sporulation is less compared to PDA making it is easier to observe the shapes of the phialides for a better diagnosis. The use of PDA and OA is suitable only in two species in Metarhizium, M. purpureonigrum and M. purpureum, where using SDAY/4 does not result in sporulation. OA is suitable for slow-growing species in Metarhizium.

Metarhizium anisopliae (Metsch.) Sorokīn, Plant Paras. Man Anim. 2: 268. 1883.

Basionym: Entomophthora anisopliae Metsch. Zap. Imp. Obshch. Khoz. Ross.: 45. 1879.

Synonyms: Isaria anisopliae (Metsch.) Pettit, Cornell Univ. Agric. Exp. St. Bull. 97: 356. 1895.

Penicillium anisopliae (Metsch.) Vuill., Bull. Trimest. Soc. Mycol. Fr. 20: 221. 1904.

Isaria destructor Metsch., Zool. Anz. 3: 45. 1880.

Oospora destructor (Metsch.) Delacroix, Bull. Trimest. Soc. Mycol. Fr. 9: 260. 1893.

Isaria anisopliae var. americana Pettit, Cornell Univ. Agric. Exp. St. Bull. 97: 354. 1895.

Penicillium cicadinum Höhn., Sber. Akad. Wiss. Wien 118: 405. 1909.

Metarhizium cicadinum (Höhn.) Petch, Trans. Br. Mycol. Soc. 16: 68. 1931.

Sporotrichum paranense Marchionatto, Bol. Mens. Min. Agric. Noac. Buenos Aires 34: 241. 1933.

Neotype: Ukraine, isolated from Avena sativa root, collection date unknown, collector unknown (Neotype CBS H-14432 preserved in a metabolically inactive state, culture ex-neotype CBS 130.71 = ATCC 22269 = VKM F-1490 Metarhizium anisopliae var. anisopliae, type of Myrothecium commune Pidopl.)

Habitat: Various insect hosts, soil.

Known distribution: Worldwide.

Notes: The Metarhizium anisopliae species complex comprises 21 species. Metarhizium anisopliae was first reported by Metchnikoff from Anisoplia austriaca, a cockchafer found on wheat in Russia. Four varieties were recognised by Driver et al. (2000), M. anisopliae var. acridum, M. anisopliae var. anisopliae, M. anisopliae var. lepidiotae and M. anisopliae var. majus in an ITS molecular phylogeny. Bischoff et al. (2009) elevated the varieties to species rank based on a multi-gene phylogenetic analyses that included M. guizhouense, M. pingshaense and M. taii. In the past decade, additional species were recognised using multi-gene analyses (Bischoff et al., 2009, Luangsa-ard et al., 2017, Chen et al., 2018a, Chen et al., 2018c, Lopes et al., 2018, Luz et al., 2019, Yamamoto et al., 2020, Thanakitpipattana et al., 2020) and members of the complex now include M. acridum, M. alvesii, M. anisopliae, M. baoshanense, M. brachyspermum, M. brittlebankisoides, M. brunneum, M. campsosterni, M. clavatum, M. globosum, M. guizhouense, M. humberi, M. indigoticum, M. majus, M. lepidiotae, M. kalasinense, M. pingshaense, M. robertsii, M. phasmatodeae, M. gryllidicola and M. sulphureum. Tulloch (1976) designated an isolate from a desert locust (Orthoptera, Acrididae) in Ethiopia that threatens agricultural crops as the neotype of M. anisopliae var. anisopliae while Metchnikoff (1879) described M. anisopliae from a scarab beetle from Russia, a harmful pest of cereal crops. It was during Metchnikoff’s research time at the Univ. of Odessa, which is now in present day Ukraine, when an outbreak of the pest Anisoplia austriaca and related species was reported from southern parts of Russia. He then aimed to find a method to control these scarabs (Zimmermann et al. 1995). A strain from Ukraine, CBS 130.71, isolated from Avena sativa root, a cereal crop, is considered the closest strain to Metchnikoff’s Metarhizium anisopliae in terms of geography which is nested with M. lepidiotae, and not with the Ethiopian neotype strain (Fig. 1, Fig. 2). We therefore reject the neotype (ARSEF 7487 = CSIRO FI-1029 = IMI (168777ii) proposed by Tulloch (1976) and followed by Driver et al., 2000, Bischoff et al., 2009, Kepler et al., 2014 and papers resulting thereafter, because it is isolated from a different locality and substrate. Our phylogenetic analyses clearly demonstrated it is different from the isolate originating from Ukraine and therefore we propose CBS 130.71 as the neotype.

Metarhizium acridum (Driver & Milner) J.F. Bisch. et al., Mycologia 101: 519. 2009.

Basionym: Metarhizium anisopliae var. acridum Driver & Milner, Mycol. Res. 104: 144. 2000.

Description and illustration: See Driver et al. (2000).

Typus: Niger, West Africa, isolated from Ornithacris cavroisi (Orthoptera: Acrididae), 29 Aug. 1992, collector unknown, (holotype Locusta migratoria laboratory infected with FI-987 dried over silica gel, DAR 74297; paratype DAR 74298-74301, culture ex-type ARSEF 7486 = FI-0987 = IMI 330189 used by Driver et al. (2000) to describe M. anisopliae var. acridum, culture ex-paratype ARSEF 324, ARSEF 3391).

Habitat: Orthoptera: Acrididae, soil.

Known distribution: Australia, Benin, Chad, Madagascar, Mali, Mexico, Niger, Senegal, Tanzania, Thailand (Orthoptera: Acrididae: Patanga succincta).

Notes: Strains forming M. anisopliae var. acridum were originally identified as M. anisopliae var. minus and M. anisopliae var. anisopliae (Driver et al. 2000) and were only known from grasshoppers and locusts in Africa, Asia, South America and Australia. Unlike most species in the M. anisopliae complex having cylindrical conidia, M. acridum produces ovoid conidia.

Metarhizium album Petch, Trans. Br. Mycol. Soc. 16: 71. 1931.

Description and illustration: See Petch, 1931, Rombach et al., 1987.

Typus: Sri Lanka, southern province, on leafhopper (Tettigoniella spectra) on rice, Jan. 1928, J.C. Hutson.

Habitat: Hemiptera: Cicadellidae: Tettigoniella spectra (Cofana spectra).

Known distribution: Indonesia, Philippines, Sri Lanka, Thailand.

Notes: Petch (1931) noted that this species on planthoppers produces conidiophores from a basal stroma that forms a continuous palisade layer and that conidia in chains form prismatic columns. Tulloch (1976) considered this species only an immature specimen of M. anisopliae. Rombach et al. (1986) restored M. album for a pathogen of homopterans from Asia that form clavate phialides with conidia that do not form prismatic columns. The conidia of the Sri Lankan specimen on OA are ovoid to oblong oval (3–4 × 1.8 μm), shorter that those found in Thailand, which are cylindrical to ellipsoidal. Within the M. anisopliae group, the conidia in M. album are not as long as in M. majus.

Metarhizium alvesii R.B. Lopes et al., J. Invert. Path. 151: 166. 2018.

Description and illustration: See Lopes et al. (2018).

Typus: Brazil, isolated from soil in banana plantation, 2 Feb. 2009, R.B. Lopes (holotype UFG 50750, culture ex-type CG1123 = ARSEF 13308).

Habitat: Soil.

Known distribution: Brazil.

Notes: Metarhizium alvesii is difficult to be distinguished from other species in the M. anisopliae complex based on the shape of conidia (cylindrical) and phialides. It is closely related to other species also found in soil, such as M. acridum and is closest to M. lepidiotae. Both M. acridum and M. lepidiotae have ellipsoidal conidia while M. alvesii produces cylindrical conidia.

Metarhizium argentinense A.C. Gutierrez et al., Fungal Biol. 123: 368. 2019.

Description and illustration: See Gutierrez et al. (2019).

Typus: Argentina, on Epilampra sp. (Blaberidae: Epilamprinae), 14 Aug. 2013, A.G. Gutierrez (holotype LPS 49098, culture ex-type CEP424 = ARSEF 13510).

Habitat: Cockroaches in the genus Epilampra (Blaberidae, Epilamprinae).

Known distribution: Argentina.

Notes: Our multi-gene phylogeny shows M. argentinense is closely related to another cockroach pathogen, M. blattodeae. It is a member of the M. flavoviride complex of 13 species comprising M. argentinense, M. bibionidarum, M. biotecense, M. blattodeae, M. culicidarum, M. flavoviride, M. frigidum, M. gaoligongense, M. koreanum, M. fusoideum, M. minus, M. nornnoi, and M. pemphigi. Contrary to the notion that members of the M. flavoviride complex produces ovoid to ellipsoidal conidia as opposed to the cylindrical conidia of species in the M. anisopliae complex, M. argentinense produces cylindrical, olive to dull green conidia in parallel chains forming columns or plate-like masses. Its conidial sizes are similar to M. blattodeae and M. frigidum but can be distinguished by its cylindrical phialides and conidia.

Metarhizium atrovirens (Kobayasi & Shimizu) Kepler et al., Mycologia 106: 821. 2014.

Basionym: Cordyceps atrovirens Kobayasi & Shimizu, Bull. Nat. Sci. Mus. Tokyo 4: 52. 1978.

Synonym: Metacordyceps atrovirens (Kobayasi & Shimizu) Kepler et al., Mycologia 104: 185. 2012.

Description and illustration: See Kobayasi & Shimizu (1978).

Typus: Japan, Tsugawa, Yamagata Prefecture, on Coleoptera larva, 21 Aug. 1960, Y. Kobayasi & D. Shimizu (holotype in TNS).

Habitat: Coleoptera larva.

Known distribution: Japan.

Notes: Kobayasi & Shimizu (1978) noted the production of ellipsoidal conidia (microcyclic sporulation) on the germinating ascospores. This is a phenomenon often seen in discharged ascospores in Cordyceps nelumboides, Purpureomyces khaoyaiensis, Metarhizium phuwiangense, and some species of Ophiocordyceps (Ophiocordyceps unilateralis sensu stricto, Ophiocordyceps pseudocommunis). Metarhizium atrovirens differs from M. pseudoatrovirens in the oblique arrangement of the perithecia and protruding ostioles. Metarhizium pseudoatrovirens has ordinally arranged, completely immersed perithecia.

Metarhizium baoshanense Z.H. Chen et al., Pakist. J. Zool. 50: 1745. 2018.

Description and illustration: See Chen et al. (2018a).

Typus: China, Yunnan Province, Taibao mountain, isolated from soil of mid-montane of humid evergreen broad-leaved forest, 3 May 2015, Z.H. Chen (holotype CCTCC M2016589, culture ex-type BUM 63.4).

Habitat: Soil.

Known distribution: China.

Notes: Metarhizium baoshanense is a member of the M. anisopliae complex and is close to M. brittlebankisoides, M. clavatum and M. gryllidicola. However, the conidia of M. baoshanense are shorter than those reported for M. clavatum and M. gryllidicola although the shapes and sizes of the conidia do not differ significantly and seem to be all a part of a continuum in this complex.

Metarhizium bibionidarum O. Nishi & H. Sato, Mycol. Prog. 16: 993. 2017.

Description and illustration: See Nishi et al. (2017).

Typus: Japan, woods on Hongo campus of Univ. of Tokyo, on cadaver of March fly larva (Bibionidae), 1993, K. Nijima (holotype TNS-F-53529, culture ex-type NBRC 112661).

Habitat: Diptera: Bibionidae, Coleoptera: Scarabaeidae, soil.

Known distribution: France, Japan.

Notes: Metarhizium bibionidarum is a member of the M. flavoviride complex and is closely related to M. pemphigi, M. gaoligongense and M. nornnoi. Metarhizium gaoligongense was isolated from soil, M. pemphigi was found predominantly on Hemiptera while M. nornnoi was found on larva of Lepidoptera. It can be distinguished from M. pemphigi by its larger conidia (Nishi et al. 2017).

Metarhizium biotecense Luangsa-ard, Khonsanit, Thanakitpipattana & Samson, sp. nov. MycoBank MB834881. Fig. 9.

Fig. 9

Metarhizium biotecense (BBH 32704, culture ex-type BCC 51812). A–C. Fungus on adult brown planthopper (Nilaparvata lugens). D. Phialides and conidia on host. E. Conidia on insect host. F. Colonies on OA after 14 d. G–H. Conidiophores bearing phialides and conidia on OA. I. Conidia on OA. J. Colonies on PDA after 20 d. K–L. Conidiophores bearing phialides and conidia on PDA. M. Conidia on PDA. N. Colonies on SDAY/4 after 20 d. O–P. Conidiophores bearing phialides and conidia on SDAY/4. Q. Conidia on SDAY/4. Scale bars: A−C = 1 mm; D, G, H, K, L, O, P = 10 μm; E, I, M, Q = 5 μm.

Etymology: In reference to the BIOTEC Greenhouse, National Science and Technology Development Agency (NSTDA), Pathum Thani Province, where the type specimen was collected.

Specimens were found on brown planthoppers (Nilaparvata lugens, Delphacidae, Hemiptera) on the underside of rice leaves. The host’s body was covered with white to smoke grey (No.44–45) mycelium and powdery cream to smoke grey conidia. Phialides smooth-walled, cylindrical with semi-papillate apices, (5.5–)7–10.5(–12) × 2–3 μm. Conidia smooth-walled, cylindrical with rounded apices or ellipsoidal, (4–)5–6.5(–9) × 2–3 μm.

Cultural characteristics: Colonies on OA attaining a diam of 21 mm in 14 d, mycelium closely appressed, flat, white at the margins turning to peacock-green (No.162C), powdery while sporulating. Sporulation starts 5 d after inoculation, reverse olive-yellow (No.52). Conidiophores arising from aerial mycelium, erect, smooth-walled. Phialides smooth-walled, cylindrical with semi-papillate apices, (6.5–)7–10(–12) × 2–3 μm. Conidia smooth-walled, peacock-green (No.162C), cylindrical with rounded apices or ellipsoidal, (5–)5.5–7.5(–9) × 2–3 μm.

 Colonies on PDA attaining a diam of 21–22 mm in 20 d, mycelium dense, floccose, cottony, slightly convex to the agar surface, white turning to peacock-green (No.162C), powdery while sporulating. Sporulation starts at 12 d after inoculation, reverse verona brown (No.223B) in the middle of colony and straw yellow (No.56) with white cream at the margin. Conidiophores arising from aerial mycelia, erect, smooth-walled. Phialides smooth-walled, cylindrical with semi-papillate apices, (6–)6.5–9.5(–14) × 2–3 μm. Conidia smooth-walled, peacock-green (No.162C), ellipsoidal, 5–6(–7) × 2–3 μm.

 Colonies on SDAY/4 attaining a diam of 25–28 mm in 20 d, mycelium dense, floccose, cottony, slightly convex to the agar surface, white. Sporulation starts 14 d after inoculation, reverse citrine (No.51) in the middle of colony and olive yellow (No. 52) with white cream at the margin. Conidiophores arising from aerial mycelia, erect, smooth-walled. Phialides smooth-walled, cylindrical with semi-papillate apices, (6–)8–12(–16) × 2–3 μm. Conidia smooth-walled, white, cylindrical with rounded apices and ellipsoidal, 5–6(–7) × 2–3 μm.

Typus: Thailand, Pathum Thani Province, Klong Luang, National Science and Technology Development Agency, BIOTEC Greenhouse, on Nilaparvata lugens on the underside of rice leaves, 2 Mar. 2012, C. Suriyachadkun (holotype BBH 32704 preserved in a metabolically inactive state, culture ex-type BCC 51812).

Habitat: On adult brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) on the underside of rice leaves.

Known distribution: Thailand, found in BIOTEC Greenhouse, National Science and Technology Development Agency, Klong Luang, Pathum Thani Province.

Additional materials examined: Thailand, Pathum Thani Province, Klong Luang, National Science and Technology Development Agency, BIOTEC Greenhouse, 14.078383 N, 100.601442 E, on adult of Nilaparvata lugens, 2 Mar. 2012, C. Suriyachadkun (BBH 32705, BCC 51813).

Notes: Metarhizium biotecense is a member of the M. anisopliae species complex and is closely related to M. minus and M. culicidarum. The micro-morphologies of the conidiophores, phialides and conidia of M. biotecense are indistinguishable from M. minus (Supplementary Table S1) but could be differentiated by its growth on PDA. The colony colour of M. biotecense on PDA is pale yellow, and white in M. minus.

Metarhizium blattodeae Montalva et al., Fungal Biol. 120: 660. 2016.

Description and illustration: See Montalva et al. (2016). The description below is based on specimens collected in Thailand.

Description from the asexual morph. Host’s head and thorax are covered with pale green mycelium and by sporulating conidiophores. Phialides ellipsoidal to cylindrical with semi-papillate apices, (5–)7–10 × (2–)2.5–3 μm. Conidia smooth-walled, Paris green (No.63), ellipsoidal to cylindrical, (5–)7–10 × (2–)2.5–3(–4) μm.

Cultural characteristics: Colonies on OA attaining a diam of 15–18 mm in 14 d, white, flat, floccose, entire edge, reverse uncoloured. Conidia and reproductive structures not observed.

 Colonies on PDA attaining a diam of 20–22 mm in 14 d, white to pale yellow, abundant aerial mycelium, fluffy, entire edge, poor sporulation with dark green conidia produced on aerial mycelium. Sporulation starts at 12 d after inoculation, reverse uncoloured. Conidiophores terminating in branches, with 1–4 phialides per branch. Phialides ellipsoidal to cylindrical with semi-papillate apices, (5–)6.5–9.5(–10) × 2–3 μm. Conidia smooth-walled, dark green (No.262), ellipsoidal to cylindrical with rounded apices, (6–)6.5–7.5(–8) × 2–2.5(–3) μm.

 Colonies on SDAY/4 attaining a diam of 15 mm in 14 d, pale yellow, flat, floccose, undulate edge, white margin. Sporulation starts at 12 d after inoculation, reverse uncoloured. Conidiophores unbranched. Phialides solitary along the hyphae, ellipsoidal to cylindrical with semi-papillate apices, (5–)6.5–12(–15) × 2–2.5 μm. Conidia smooth-walled, hyaline, ellipsoidal to cylindrical with rounded apices, (6–)7–8 × 2–3 μm.

Typus: Brazil, Bacupari Reserve, Calvante, Goias, on undetermined species of Dictyoptera: Blattodea: Ectobiidae, 4 Feb. 2015, C. Montalva (holotype UFG 49886, culture ex-type ARSEF 12850 = IP 414).

Habitat: On Dictyoptera: Blattodea: Ectobiidae in South America and on Blattaria, Blattidae in Thailand; all forest cockroaches.

Known distribution: Brazil, Thailand; known from Khlong Nakha Wildlife Sanctuary and Kaeng Krachan National Park.

Additional materials examined: Thailand, Ranong Province, Khlong Nakha Wildlife Sanctuary, 9.459589 N, 98.504486 E, on adult cockroach (Blattodea: Blattellidae), 11 Jan. 2006, K. Tasanathai, W. Chaygate, S. Mongkolsamrit, P. Srikitikulchai, B. Thongnuch, Le Tan Hung & Lam Ngu Yen (BBH 16548, BCC 20255); Phetchaburi Province, Kaeng Krachan National Park, 12.866756 N 99.400444 E, on adult cockroach (Blattodea: Blattellidae), 24 Aug. 2001, R. Nasit, G. Samuels & R. Reblova (NHJ 11597).

Notes: Metarhizium blattodeae (Montalva et al. 2016) is a member of the M. flavoviride species complex and was isolated from an infected forest cockroach from Brazil as well as in Thailand. Metarhizium blattodeae is closely related to M. argentinense (Gutierrez et al. 2019) occurring on forest cockroaches. Metarhizium blattodeae is rarely reported in Thailand. The colony colour on PDA and SDAY/4 of M. blattodeae from the Thai strain is white to pale yellow with poor sporulation while no sporulation can be observed on OA. The micro-morphology of M. blattodeae from Thailand on SDAY/4 differs from the Brazilian strain by producing solitary phialides along the hyphae and not in branches, while phialides of the Brazilian type species are produced in branches (1–5 branches). Conidial form from both countries are cylindrical and are in the same size range.

Metarhizium brachyspermum Koh. Yamam. et al., Mycoscience 61: 38. 2019.

Description and illustration: See Yamamoto et al. (2020).

Typus: Japan, Togichi Prefecture, Utsunomiya-shi, Nagaokacho, on elaterid pupa in underground pupal chamber, 2 Jul. 2017, K. Yamamoto (holotype KY170702-1, culture ex-type CM1 = IFM 65744 = TNS-F-70755).

Habitat: Coleoptera: Elaterid larva.

Known distribution: Japan.

Notes: Metarhizium brachyspermum shows similarity to M. kalasinense but produces shorter ascospores compared to the latter. The sexual morph of both species is found occurring on Coleoptera larva in nature and are members of the M. anisopliae complex. Metarhizium campsosterni also shows similarity to M. brachyspermum and M. kalasinense in infecting larva of Elateridae (Coleoptera) but differs in the colour of the stromata, which are greenish yellow, as well as in the size of the perithecia. Metarhizium kalasinense has bigger perithecia than M. brachyspermum. The perithecia in M. campsosterni are smaller than the two aforementioned species.

Metarhizium brittlebankisoides (Zuo Y. Liu et al.) Kepler et al., Mycologia 106: 821. 2014.

Basionym: Cordyceps brittlebankisoides Zuo Y. Liu et al., J. Invert. Pathol. 78: 179. 2001.

Synonym: Metacordyceps brittlebankisoides (Zuo Y. Liu et al.) G.H. Sung et al., Stud. Mycol. 57: 35. 2007.

Description and illustration: See Liu et al. (2001).

Typus: China, Wawu Mountains, Sichuan, on Coleoptera larva, Scarabaeidae, Jul. 1997, collector unknown (holotype CGAC 9728 in Guizhou University, Guiyang, Guizhou, culture ex-type CGAC 9728-C = IMI 385941 in CABI Bioscience Collection Surrey, UK).

Habitat: Coleoptera: Scarabaeidae.

Known distribution: China.

Notes: Based on the data presented by Liu et al. (2001), the asexual morph M. brittlebankisoides shares similar morphological characters such as shape of phialides and conidia as M. majus, only the conidia are shorter in M. brittlebankisoides (9–10.2 μm) than in M. majus (10–14 μm). Many species in this species complex have similar conidial sizes that seem to be in the same range or are in a continuum and is therefore difficult to use for identification. We believe more loci have to be sequenced for the type of M. brittlebankisoides to clarify its position in Metarhizium. Multi-gene sequence data is available for a M. brittlebankisoides strain from Japan (MAFF243306), which places this strain in the M. anisopliae complex (Gutierrez et al. 2019). Our ITS phylogeny using the sequence from the type material (Liu et al. 2001) shows M. brittlebankisoides nested with M. candelabrum and M. huainamdangense and not in the M. anisopliae complex (Supplementary Fig. S1). Unfortunately, no ITS sequence for the Japanese strain is provided to compare with the Chinese type material, which did not group with other members of the M. anisopliae complex in the ITS phylogeny by Gutierrez et al. (2019). Strains of M. majus were not only reported from Scarabaeidae, Coleoptera but also from other hosts/substrate such as Lepidoptera, Orthoptera (Gryllidae), Phasmatodea, and soil.

Metarhizium brasiliense Kepler et al., Mycologia 106: 821. 2014.

Description and illustration: See Kepler et al. (2014).

Typus: Brazil, Campinas, Sao Paulo, on Hemiptera: Cicadellidae, 30 Apr. 1989, L.G. Leite (holotype BPI 892884, culture ex-type ARSEF 2948).

Habitat: Hemiptera.

Known distribution: Brazil.

Notes: This species originally was considered by Driver et al. (2000) to be the M. flavoviride ‘‘Type E’’ clade. However, this species shows a sister relationship M. album and M. ellipsoideum. The latter two new species produce only one size class of conidia while M. brasiliense was reported to be producing two differing size classes, a habit observed in some species of the clade occurring on cicada adults comprising M. chaiyaphumense, M. cicadae, M. cylindrosporum, M. niveum and M. takense.

Metarhizium brunneum Petch, Trans. Br. Mycol. Soc. 19: 189. 1935 [1934].

Description and illustration: See Petch, 1934, Bischoff et al., 2009.

Typus: USA, Forest Grove, Oregon, on larva of Agriotes sp. (Coleoptera: Elateridae), 29 Jun. 1933, K.B. Raper & L.P. Rockwood (culture ex-type CBS 316.51 = IMI 014746 = NRRL 1944 = QM 191, culture ex-epitype ARSEF 2107, identified by Petch (1934), was designated when no viable ex-type culture available).

Habitat: Coleoptera: Acari (Ixodidae), Diptera, Lepidoptera, Hymenoptera, soil.

Known distribution: Argentina, Australia, Canada, Denmark, Finland, France, Indonesia, Italy, Japan, Mexico, New Zealand, Philippines, Switzerland, USA.

Notes: A member of the M. anisopliae complex, M. brunneum produces chains of brown (olivaceous) conidia that adhere to each other and form columns (Petch 1934). Petch’s description was based on a Cicadellidae (Hemiptera) from Laguna, the Philippines. As the type was not readily accessible, Bischoff et al. (2009) designated a dried culture (BPI 878293) as an epitype occurring on Elateridae larva from the USA.

Metarhizium candelabrum Luangsa-ard, Mongkolsamrit, Thanakitpipattana & Samson, sp. nov. MycoBank MB834882. Fig. 10.

Fig. 10

Metarhizium candelabrum (BBH 22654, culture ex-type BCC 29224). A. Fungus on adult leafhopper (Hemiptera). B. Conidia on insect host. C. Colonies on OA. D–F. Phialides and conidia on OA. G. Colonies on PDA. H–I. Phialides and conidia on PDA. J. Colonies on SDAY/4. K–M. Phialides and conidia on SDAY/4. Scale bars: A = 1 mm; B = 8 μm; D–F, H, I, K, L, M = 10 μm.

Etymology: Named after the arrangement of phialides looking like a candelabra.

Specimen found on leafhopper (Hemiptera). Host’s head and thorax were covered with pale green mycelium and sporulating conidiophores. Conidia smooth-walled, pale green (oac875-876), cylindrical with rounded apices, (6–)6.5–8 × 2–3 μm.

Cultural characteristics: Colonies on OA attaining a diam of 15 mm in 14 d, white mycelium, fluffy, abundant aerial hyphae, entire edge, dark green in the centre of colonies due to production of conidia. Sporulation starts at 10 d after inoculation, reverse uncoloured. Conidiophores terminating in branches, with 2–3 phialides per branch. Phialides cylindrical with semi-papillate apices, (5–)6–7.5(–8.5) × 2–2.5(–3) μm. Conidia smooth-walled, pale green (oac103-104), cylindrical with rounded apices, (6–)7–8(–8.5) × 1.5–2.5 μm.

 Colonies on PDA attaining a diam of 15 mm in 30 d, white mycelium, fluffy, abundant aerial hyphae, entire edge, dark green in the centre of colonies due to production of conidia. Sporulation starts at 30 d after inoculation, reverse uncoloured. Conidiophores terminating in branches, with 2–3 phialides per branch. Phialides cylindrical with semi-papillate apices, 5–7(–8) × 2 μm. Conidia smooth-walled, pale green (oac103-104), cylindrical with rounded apices, (6–)7–8(–9) × 1.5–2 μm.

 Colonies on SDAY/4 attaining a diam of 15 mm in 30 d, pale green, floccose, abundant aerial hyphae, white border, pale yellow in the centre of colonies. Sporulation starts at 30 d, reverse uncoloured. Conidiophores terminating in branches, with 2–3 phialides per branch. Phialides cylindrical with semi-papillate apices, (5–)6–8.5(–10) × 1.5–2 μm. Conidia pale green (oac36) and pale yellow (oac4-5), cylindrical with rounded apices, 7–8(–9) × 1.5–2 μm.

Typus: Thailand, Kamphaeng Phet Province, Khlong Lan National Park, on adult leafhopper (Hemiptera), 2 Oct. 2007, B. Thongnuch, K. Tasanathai, S. Mongkolsamrit, P. Srikitikulchai, R. Ridkaew & A. Khonsanit (holotype BBH 22654 preserved in a metabolically inactive state, culture ex-type BCC 29224).

Habitat: Adult leafhopper (Hemiptera), on the underside of dicotyledonous plants.

Known distribution: Thailand; known from Khlong Lan National Park.

Notes: Metarhizium candelabrum is closely related to M. cercopidarum and M. huainamdangense. It sporulates profusely on three kinds of media followed by M. cercopidarum and then M. huainamdangense. The micro-morphologies, especially in the size and shapes of the conidia and phialides, of these three species are almost in a continuum but their growth on three kinds of media vary from each other. No sporulation could be observed after 30 d in M. huainamdangense while in M. candelabrum a floccose overgrowth of mycelium could be found on three media with heavy sporulation in the middle of the colonies.

Metarhizium campsosterni (W.M. Zhang & T.H. Li) Kepler et al., Mycologia 106: 821. 2014.

Basionym: Cordyceps campsosterni [as ‘campsosterna’] W.M. Zhang & T.H. Li, Fungal Diversity 17: 240. 2004.

Synonym: Metacordyceps campsosterni (W.M. Zhang & T.H. Li) G.H. Sung et al., Stud. Mycol. 57: 35. 2007.

Description and illustration: See Zhang et al. (2004).

Typus: China, Huidong County, Gutian Nature Reserve, Guangdong Province, on nymph and adult of Campsosternus auratus buried in soil, 25 Jun. 2002, W.M. Zhang (holotype HMIGD 20885, deposited in Herbarium of Microbiology of Guangdong).

Habitat: Coleoptera: Scarabaeidae.

Known distribution: China.

Notes: Phylogenetic analyses of Yamamoto et al. (2020) have shown M. campsosterni as a member of the M. anisopliae species complex together with M. baoshanense, M. brachyspermum, M. guizhouense, M. indigoticum, M. kalasinense, and M. majus. It is one of the sexual morphs reported in the M. anisopliae complex together with M. taii (= M. guizhouense), M. brachyspermum, M. brittlebankisoides, M. clavatum, M. kalasinense, and M. sulphureum.

Metarhizium cercopidarum Luangsa-ard, Mongkolsamrit, Thanakitpipattana & Samson, sp. nov. MycoBank MB834883. Fig. 11.

Fig. 11

Metarhizium cercopidarum (BBH 24005, culture ex-type BCC 31660). A. Fungus on adult leafhopper (Hemiptera). B. Conidia on insect host. C. Colonies on OA. D–F. Phialides and conidia on OA. G. Colonies on PDA. H–J. Phialides and conidia on PDA. K. Colonies on SDAY/4. L–N. Phialides and conidia on SDAY/4. Scale bars: A = 1 mm; B, D, E, H, I, J, L–M = 10 μm; F = 8 μm.

Etymology: Named after the family of insect host, Cercopidae.

Specimen found on leafhopper (Hemiptera). Host’s head and thorax were covered with pale green mycelium and sporulating conidiophores. Conidia smooth-walled, pale green (oac875-876), cylindrical with rounded apices, (7–)8.5–10 × 2 μm.

Cultural characteristics: Colonies on OA attaining a diam of 18 mm in 14 d, white mycelium, floccose, abundant aerial hyphae, dark green in the centre of colonies due to production of conidia. Sporulation starts at 7 d after inoculation, reverse uncoloured. Conidiophores terminating in branches, with 2–3 phialides per branch. Phialides cylindrical to ellipsoidal with semi-papillate apices, (5–)6–9(–10) × 2–2.5 μm. Conidia smooth-walled, dark green (oac125-127), cylindrical with rounded apices, 6–8 × 1.5–2 μm.

 Colonies on PDA attaining a diam of 15 mm in 14 d, white mycelium, floccose, abundant aerial hyphae, dark green in the centre of colonies due to production of conidia. Sporulation starts at 10 d after inoculation, reverse uncoloured. Conidiophores dense, terminating in branches, with 2–3 phialides per branch. Phialides cylindrical to ellipsoidal with semi-papillate apices, 5–8(–10) × 2–2.5(–3) μm. Conidia cylindrical with rounded apices, (6–)6.5–8 × 2 μm.

 Colonies on SDAY/4 attaining a diam of 15 mm in 21 d, pale yellow mycelium, floccose, abundant aerial hyphae, with pale green border of colonies due to production of conidia. Sporulation starts at 21 d after inoculation, reverse uncoloured. Conidiophores terminating in branches, with 2–3 phialides per branch. Phialides cylindrical to ellipsoidal with semi-papillate apices, 5–6.5(–8) × 2–2.5(–3) μm. Conidia smooth-walled, pale green (oac48), cylindrical with rounded apices, (6–)7–10 × 1.5–2(–3) μm.

Typus: Thailand, Loei Province, Phu Suan Sai National Park, on adult leafhopper (Hemiptera), 15 Jul. 2008, K. Tasanathai, B. Thongnuch, S. Mongkolsamrit, P. Srikitikulchai & A. Khonsanit (holotype BBH 24005 preserved in a metabolically inactive state, culture ex-type BCC 31660).

Habitat: Adult leafhopper in the order Hemiptera: Cercopidae, on the underside of a dicotyledonous plant.

Known distribution: Thailand, known from Phu Suan Sai National Park.

Notes: Ecologically, M. cercopidarum is most similar to M. candelabrum, M. huainamdangense, M. ellipsoideum, M. brasiliense and M. album by infecting leafhoppers (Hemiptera). The conidia of M. cercopidarum on specimens and on media are of only one kind, cylindrical with rounded apices, similar to those reported in M. candelabrum and M. huainamdangense, and their conidial sizes are in the same range. The conidial shape of M. cercopidarum from the specimens differs from M. ellipsoideum, M. brasiliense and M. album. Conidia in M. ellipsoideum are ellipsoidal, occasionally ovoid, while conidia in M. cercopidarum are cylindrical with rounded apices. Additionally, M. brasiliense produces two differing size classes of conidia (short and long form) on PDA (Kepler et al. 2014) and M. album produces oval to oblong-ovoid conidia on OA (Petch 1931).

Metarhizium chaiyaphumense Tasanathai et al., Mycol. Prog. 16: 380. 2017.

Description and illustration: See Luangsa-ard et al. (2017) and this study. Description on OA is based on this study. Description on stroma, PDA and SDAY/4 were taken from Luangsa-ard et al. (2017).

Stroma arising from the head of the cicada nymphs, solitary or multiple, simple or 2–3 branched, greyish yellow (1C6) to yellowish olive green (1F7), straight, cylindrical, 30–35 mm long. Fertile area on the upper part of the stroma tapering or rounded, 10–15 mm long, 1–1.2 mm thick; terminal part mostly sterile, white to cream. Perithecia ovoid to obpyriform, immersed, 550–670 × 320–380 μm, oblique in arrangement. Asci cylindrical, 520–650 × 3–4 μm. Ascospores hyaline, filiform, 225–375 × 1 μm, smooth-walled, multi-septate with cells 9–21.5 μm long, remaining whole after discharge (non-fragmenting). Asexual morph found only on adult cicada of the genus Platypleura (Hemiptera, Cicadidae). Conidiophores arising all over the adult cicada, at first white turning green due to the production of conidia.

Cultural characteristics: Colonies on OA attaining a diam of 15–17 mm in 14 d, white to cream, floccose, entire margin, poor sporulation with green conidia produced on aerial mycelium. Sporulation starts at 14 d after inoculation, reverse uncoloured. Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical. Phialides smooth-walled, ovoid, occasionally subglobose and cylindrical, (3–)4.5–6.5(–8) × 1.5–2 μm. Conidia smooth-walled, dimorphic; microconidia formed first, ovoid, ellipsoidal, 3–5 × 2–3 μm; macroconidia formed later, cylindrical, 8–10 × 2 μm.

 Colonies on PDA attaining a diam of 18 mm in 7 d, at first white turning to parrot green (No.60) due to heavy sporulation, velvety to floccose. Colony reverse cream to pale green. Mycelium hyaline, branched, septate, smooth-walled. Conidiophores consisting of divergent, terminal, often verticillate metulae, broadly clavate, or cylindrical, 5–9 × 2–3 μm, smooth-walled. Phialides hyaline, ovoid or ellipsoidal, appressed, 5–8 × 2–3 μm. Conidia catenulate, dimorphic; microconidia formed first, ovoid, ellipsoidal or subglobose, 2–4 × 2–3 μm, macroconidia formed later, cylindrical, clavate, 4–9 × 2–3 μm.

 Colonies on SDAY/4 attaining a diam of 17 mm in 14 d, at first white becoming leaf green (No.146) at 7 d in colony centre due to the production of conidia. Vegetative hyphae smooth-walled. Conidiophores densely packed, terminating in branches with 2–5 phialides per branch. Phialides clavate, 10–12 × 2–3 μm. The colony isolated from sexual morph grown on the SDAY/4 produced catenulate, dimorphic conidia; microconidia formed first, ovoid, ellipsoidal or subglobose, 3–6 × 2–3 μm; macroconidia formed later, mostly cylindrical, ellipsoidal, 12–15 × 3–5 μm.

Typus: Thailand, Chaiyaphum Province, Phukhiao Wildlife Sanctuary, on cicada nymph (Hemiptera) underground, 13 Aug. 2015, S. Mongkolsamrit, A. Khonsanit, N. Kobmoo, D. Thanakitpipattana, W. Noisripoom, P. Srikittikulchai, S. Wongkanoun & R. Promhan (holotype BBH 41326 preserved in a metabolically inactive state, culture ex-type BCC 78198).

Habitat: Hemiptera: Cidadidae.

Known distribution: Thailand.

Notes: Metarhizium chaiyaphumense is closely related to M. takense, as well as M. cicadae, M. cylindrosporum, M. megapomponiae, M. niveum, and M. viridulum. All species in this subclade produce nomuraea-like asexual morphs and conidia that adhere laterally to produce columns. Two differing size classes of conidia (dimorphic) are produced by M. chaiyaphumense, a characteristic also seen in M. takense, M. cicadae and M. cylindrosporum.

Metarhizium cicadae Luangsa-ard, Tasanathai, Thanakitpipattana, & Samson, sp. nov. MycoBank MB834887. Fig. 12.

Fig. 12

Metarhizium cicadae (BBH 30616, culture ex-type BCC 48881). A. Fungus on adult cicada. B. Macroconidia on insect host. C. Microconidia on insect host. D. Colonies on OA. E–G. Conidiophores bearing phialides and conidia on OA. H. Macroconidia on OA. I. Colonies on PDA. J–L. Conidiophores bearing phialides and conidia on PDA. M. Macro and Microconidia on PDA. N. Colonies on SDAY/4. O–Q. Conidiophores bearing phialides and conidia on SDAY/4. R. Microconidia on SDAY/4. Scale bars: A = 10 mm; B, H = 4 μm; C, E–G, J–M, R = 5 μm; O, Q = 8 μm.

Etymology: Name refers to cicada host.

Specimens found on adult cicadas. Hosts covered by mycelium, pale green to greyish green, with heavy sporulation. Synnemata absent, mononematous. Conidia smooth-walled, dimorphic; microconidia ovoid, ellipsoidal, (3–)4–5.5(–6) × (2–)2.5–3(–4) μm; macroconidia cylindrical, (12–)16.5–20(–22) × 3–4 μm.

Cultural characteristics: Colonies on OA attaining a diam of 20 mm in 14 d, mycelium floccose, cottony, cream (oac900) to olive green (oac82), powdery while sporulating. Sporulation starts at 7 d after inoculation. Conidiophores arising from hyphae, smooth-walled. Phialides solitary or in a group of three to ten borne directly on metulae, nomuraea-like, smooth-walled, cylindrical, 4–6(–9) × 3 μm. Conidia smooth-walled, dimorphic; microconidia formed first, ovoid, ellipsoidal, (2–)3.5–5.5(–6) × (2–)2.5–4(–5) μm; macroconidia formed later, cylindrical, (10–)13–18.5(–22) × (2–)2.5–4 μm.

 Colonies on PDA attaining a diam of 15 mm in 14 d, floccose, cream to green with age (oac892-oac39). Sporulation starts at 7 d after inoculation, reverse uncoloured. Conidiophores arising from hyphae, smooth-walled. Phialides solitary or in a group of three to ten borne directly on metulae, nomuraea-like, smooth-walled, cylindrical, (4.5–)5–7(–10) × 2–3 μm. Conidia smooth-walled, dimorphic; microconidia formed first, ovoid, ellipsoidal, 4–5.5(–7) × 2–3.5 μm; macroconidia formed later, cylindrical, (10–)15.5–22(–24) × 3–3.5(–4) μm.

 Colonies on SDAY/4 attaining a diam of 12 mm in 14 d, powdery, dark green (oac38). Sporulation starts at 7 d after inoculation, reverse uncoloured. Conidiophores arising from hyphae, smooth-walled. Phialides solitary or in a group of three to ten borne directly on metulae, nomuraea-like, smooth-walled, cylindrical, 4–6(–7) × 2–3.5 μm. Conidia smooth-walled, dimorphic; microconidia formed first, ovoid, ellipsoidal, (2–)3.5–5(–6) × 2.5–4 μm; macroconidia formed later, cylindrical, (10–)11.5–17 × 3–4 μm.

Typus: Thailand, Nakhon Phanom Province, Ban Don Sala, on adult cicada (Hemiptera), 15 Jun. 2011, K. Tasanathai, P. Srikitikulchai, A. Khonsanit, K. Sansatchanon & W. Noisripoom (holotype BBH 30616 preserved in a metabolically inactive state, culture ex-type BCC 48881).

Habitat: Adult cicada (Hemiptera).

Known distribution: Thailand, found at Ban Don Sala, Nakhon Phanom Province.

Additional material examined: Thailand, Nakhon Phanom Province, Ban Don Sala, 17.581925 N, 104.1285 E, on adult cicada (Hemiptera), 15 Jun. 2011, K. Tasanathai, P. Srikitikulchai, A. Khonsanit, K. Sansatchanon & W. Noisripoom (BCC 48696).

Notes: This species is morphologically similar to M. chaiyaphumense and M. takense but differs in the life stage of the infected host. Metarhizium cicadae occurs on adult cicadas while M. chaiyaphumense and M. takense parasitize cicada nymphs. In M. cicadae the sizes of phialides and conidia on OA and PDA are bigger than in M. chaiyaphumense and M. takense (Supplementary Table S1).

Metarhizium clavatum Luangsa-ard, Mongkolsamrit, Lamlertthon, Thanakitpipattana & Samson, sp. nov. MycoBank MB834888. Fig. 13.

Fig. 13

Metarhizium clavatum (BBH 43330, culture ex-type BCC 84543). A–B. Stromata arising from host. C–D. Oblique perithecial orientation. E. Asci. F. Ascus tip. G. Ascospore. H. Whole ascospore showing septa (arrows). I. Colonies on OA. J–L. Phialides and conidia on OA. M. Colonies on PDA. N–P. Phialides and conidia on PDA. Q. Colonies on SDAY/4. R–T. Phialides and conidia on SDAY/4. Scale bars: A, B = 10 mm; C = 350 μm; D, E = 150 μm; F–H, J–L, N, O, R, S = 10 μm; P, T = 5 μm.

Etymology: Named after the clavate shape of the stromata.

Stromata two to several, simple, cylindrical to clavate, branched, up to 3.5 cm long, 3–5 mm wide. Rhizoids flexuous, arising from the region between head and thorax of Coleoptera larva buried ca. 6–7 cm deep under the ground. Upper part of the stromata fertile, yellow to greyish green (oac106-107), 2.5 cm long, 3–5 mm wide. Perithecia immersed, oblique in arrangement with slightly protuberant ostioles, flask-shaped, (600–)625–685(–700) × (210–)240–280(–290) μm. Asci cylindrical, 8-spored, up to 420 μm long, 5–6 μm wide, apical cap prominent, 3–4 × 4 μm. Ascospores filiform, with septa but do not dissociate into part-spores, (224–)280–405(–420) × 1–1.5 μm. Asexual morph not seen in nature.

Cultural characteristics: Colonies on OA attaining a diam of 15 mm in 14 d, leaf green mycelium with white border, floccose, entire edge, velvety to woolly. Sporulation starts at 14 d after inoculation, reverse uncoloured. Conidiophores dense, terminating in branches, with 2–3 phialides per branch, forming a palisade-like layer. Phialides cylindrical with semi-papillate apices, (5–)6–9.5(–10) × 2–3 μm. Conidia smooth-walled, leaf green (No.146), cylindrical with rounded apices, 5–8(–10) × 2–2.5(–3) μm.

 Colonies on PDA attaining a diam of 15 mm in 21 d, dense white mycelium, fluffy, entire edge, white turning to leaf green (No.146) in the centre of colonies due to production of conidia. Sporulation starts at 21 d after inoculation, reverse uncoloured. Conidiophores terminating in branches, with 2–3 phialides per branch, forming a palisade-like layer. Phialides cylindrical with semi-papillate apices, (5–)6–8(–9) × (1.5–)2–3 μm. Conidia smooth-walled, leaf green (No.146), cylindrical with rounded apices, (4–)5–6.5(–7) × 2–3 μm.

 Colonies on SDAY/4 attaining a diam of 15 mm in 21 d, pale green mycelium dense, fluffy with abundant aerial hyphae, circular, pulvinate, entire edge, grey border. Sporulation starts at 21 d after inoculation, reverse uncoloured. Conidiophores dense, terminating in branches, with 2–3 phialides per branch. Phialides cylindrical with semi-papillate apices, (6–)7–9(–10) × 1.5–2.5(–3) μm. Conidia smooth-walled, pale green (No.150), cylindrical with rounded apices, 5–6 × 2–3 μm.

Typus: Thailand, Phitsanulok Province, Ban Phaothai Community Forest, on larva of Oxynopterus sp. (Coleoptera), 30 May 2017, S. Mongkolsamrit, W. Noisripoom & S. Lamlertthon (holotype BBH 43330 preserved in a metabolically inactive state, culture ex-type BCC 84543).

Habitat: Larva of Oxynopterus sp. (Coleoptera), buried in the ground.

Known distribution: Thailand, known from Ban Phaothai Community Forest, Phitsanulok Province.

Additional materials examined: Thailand, Phitsanulok Province, Ban Phaothai Community Forest, 16.735031 N, 100.659606 E, on larva of Oxynopterus sp. (Coleoptera), 25 Jun. 2017, K. Tasanathai, S. Mongkolsamrit, W. Noisripoom, U. Pinruan & S. Lamlertthon (BBH 42806, BCC 84558).

Notes: The macromorphologies of the natural samples of M. clavatum are most similar to M. kalasinense (Luangsa-ard et al. 2017) by having yellow to greyish green stromata and oblique perithecial arrangement. It differs significantly from M. kalasinense in the size of the perithecia and asci. In M. clavatum, perithecia and asci are smaller and shorter than those reported for M. kalasinense (700–800 × 250–350 μm; 500–650 × 4–5 μm). In addition, based on the multi-gene phylogeny (Fig. 1) M. clavatum is closest to M. gryllidicola on Orthoptera producing an asexual morph and to the Japanese M. brittlebankisoides strain Hn1. On SDAY/4, the conidia of M. clavatum are cylindrical while in M. gryllidicola they could be cylindrical, ovoid to obclavate. Metarhizium clavatum produces pale green colonies in contrast to the spectrum yellow to sulphur yellow colonies in M. gryllidicola. Members of the M. anisopliae species complex occurs on various insect hosts and can be isolated from the soil.

Metarhizium culicidarum Luangsa-ard, Khonsanit, Thanakitpipattana & Samson, sp. nov. MycoBank MB834889. Fig. 14.

Fig. 14

Metarhizium culicidarum (BBH 8129, culture ex-type BCC 7600). A. Fungus on adult mosquito (Diptera: Culicidae). B. Phialides and conidia on insect host. C. Conidia on host. D. Colonies on OA. E. Conidiophores bearing phialides and conidia on OA. F. Conidia on OA. G. Colonies on PDA. H. Conidiophores bearing phialides and conidia on PDA. I. Conidia on PDA. J. Colonies on SDAY/4. K. Conidiophores bearing phialides and conidia on SDAY/4. L. Conidia on SDAY/4. Scale bars: A = 1 mm; B = 10 μm; C, E, F, H, I, K, L = 5 μm.

Etymology: In reference to the family of the host, Culicidae (Diptera).

Specimens found only on adult mosquitoes (Diptera, Culicidae) on the underside of leaves. The thorax and wings of the hosts were covered with lime-green (No.59) powdery conidia. Phialides smooth-walled, ovoid with semi-papillate apices, 6–11 × 2–3 μm. Conidia smooth-walled, lime-green (No.59), fusiform-elliptical, (5–)6–7.5(–8) × 1.5–2 μm.

Cultural characteristics: Colonies on OA attaining a diam of 26 mm in 20 d, flat, closely appressed and slightly convex in the middle of agar surface, white to olive green (No.46), powdery while sporulating. Sporulation starts at 14 d after inoculation, reverse tawny olive (No.223D). Conidiophores arising from aerial mycelium, erect, smooth-walled, cylindrical. Phialides smooth-walled, cylindrical with semi-papillate apices, (5–)6–7.5(–9) × 2–3 μm. Conidia smooth-walled, olive green (No.46), fusiform-elliptical, ellipsoidal, (4–)6–7.5(–8) × 1.5–2 μm.

 Colonies on PDA attaining a diam of 22–24 mm in 20 d, dense mycelium, floccose, slightly convex to the agar surface, white turning to parrot-green (No.60), powdery while sporulating. Sporulation starts at 7 d after inoculation, reverse tawny olive (No.223D) in the middle of colony and white cream at the margin. Conidiophores arising from aerial mycelium, erect, smooth-walled, cylindrical. Phialides smooth-walled, cylindrical with semi-papillate apices, 6–8(–10) × 2–3 μm. Conidia smooth-walled, parrot-green (No.60), fusiform-elliptical, (5–)6.5–8 × 1.5–2 μm.

 Colonies on SDAY/4 attaining a diam of 18–19 mm in 20 d, mycelium floccose, cottony, closely appressed to the agar surface, white. Sporulation starts at 5 d after inoculation, reverse smoke grey (No.45) in the middle of colony and white cream at the margin. Conidiophores arising from aerial mycelium, erect, smooth-walled, cylindrical. Phialides smooth-walled, cylindrical with semi-papillate apices, (4–)7–10(–12) × 1.5–2(–2.5) μm. Conidia smooth-walled, white, fusiform-elliptical, ellipsoidal, (4–)5–6.5(–7) × 1–1.5 μm.

Typus: Thailand, Phetchaburi Province, Kaeng Krachan National Park, on adult mosquitoes (Diptera, Culicidae), 28 Sep. 2000, A. Lathisungnoen, R. Nasit & W. Chaygate (holotype BBH 8129 preserved in a metabolically inactive state, culture ex-type BCC 7600).

Habitat: Adult mosquitoes (Diptera: Culicidae).

Known distribution: Thailand, found at Kaeng Krachan National Park.

Additional materials examined: Thailand, Phetchaburi Province, Kaeng Krachan National Park, 12.866756 N, 99.400444 E, on adult mosquitoes (Diptera, Culicidae), 28 Sep. 2000, A. Lathisungnoen, R. Nasit & W. Chaygate (BBH 8121, BCC 7625), (BBH 8142, BCC 12764), (BBH 8140, BCC 7601), (BBH 8742, BCC 12749).

Notes: Metarhizium culicidarum occurs on mosquitoes (Diptera), while M. minus and M. biotecense are found on brown planthoppers (Hemiptera). Metarhizium culicidarum shares similarities with M. biotecense in the cylindrical shape and size of the phialides with semi-papillate apices, which are 4–12 × 1.5–2.5 μm in M. culicidarum and 6–16 × 2–3 μm in M. biotecense. Both species differ from M. minus in the shape of the phialides, which is clavate in M. minus, 8.4 ± 1.2 × 2.8 ± 0.3 μm on Sabouraud dextrose agar+1 % yeast extract (Rombach et al. 1986). The conidia of M. culicidarum are fusiform-elliptical (4–7 × 1–1.5 μm), while in M. minus it is ellipsoidal, 4.5–7 × 2–3 μm, and in M. biotecense cylindrical with rounded apices or ellipsoidal, 4–7 × 2–3 μm. The colonies on SDAY/4 of M. culicidarum and M. biotecense are white, while in M. minus they are grey-green.

Metarhizium cylindrosporum [as ‘cylindrosporae’] Q.T. Chen & H.L. Guo, Acta Mycol. Sin. 5: 180. 1986.

Synonym: Nomuraea cylindrospora (Q.T. Chen & H.L. Guo) Tzean et al., Mycologia 85: 514. 1993.

Description and illustration: See Guo et al., 1986, Tzean et al., 1993.

Typus: China, Guizhou, unknown tea tree insect pest, collection date and collector unknown (holotype ACCC 30114).

Habitat: Adult cicada (Hemiptera).

Known distribution: China, Japan, Taiwan.

Notes: Metarhizium cylindrosporum is one of the cicada pathogens that produces dimorphic conidia (two different size classes). Other dimorphic species in this subclade include M. cicadae, M. chaiyaphumense, M. cylindrosporum, M. niveum and M. takense. Three species in this subclade occurring on cicadas, M. owariense, M. viridulum and M. megapompaniae, produce only one size class of conidia (monomorphic). Tzean et al. (1993) transferred M. cylindrosporum (Guo et al. 1986) based on the nature of the metulae and phialides growing along the length of the conidiophores to Nomuraea. Molecular phylogenetic studies done by Kepler et al. (2014), however, did not result in a well-supported clade for Nomuraea and green-spored Nomuraea were subsequently transferred to Metarhizium and henceforth synonymized Nomuraea with Metarhizium.

Metarhizium dendrolimatilis Z.Q. Liang et al., Mycosphere 8: 33. 2017.

Description and illustration: See Chen et al. (2017).

Typus: China, Guizhou Province, Guiyang, Tongmuling, on Dendrolimus sp. in pine wood, 6 Oct. 2013, W.H. Chen (holotype HXDX.1006, culture ex-type GZAC IFR1006).

Habitat: Lepidoptera larva.

Known distribution: China.

Notes: On the natural substrate, the fungus produces nomuraea-like conidiophores consisting of whorls of flask-shaped phialides. It is closely related to M. eburneum occurring on Lepidoptera pupae and to M. rileyi predominantly found on Lepidoptera larvae. These three species produce nomuraea-like conidiophores in culture.

Metarhizium eburneum Luangsa-ard, Noisripoom, Thanakitpipattana & Samson, sp. nov. MycoBank MB834890. Fig. 15.

Fig. 15

Metarhizium eburneum (BBH 42744, culture ex-type BCC79252). A. Fungus on Lepidoptera pupa. B. Part of stroma showing semi-immersed perithecia. C. Perithecia. D–F. Asci. G–I. Germination and microcyclic sporulation of the ascospores on slide. J. Colonies on OA. K. Colonies on PDA. L. Colonies on SDAY/4. Scale bars: A = 5 mm; B = 1 mm; C = 200 μm; D = 50 μm; E, I = 10 μm; F = 5 μm; G = 30 μm; H = 20 μm.

Etymology: Named after the Latin “eburneus”, meaning white as ivory. Refers to the colour of the stroma and the colonies in culture.

Stroma on Lepidoptera pupa cylindrical, solitary, simple, 10 mm long, 1–2 mm wide, white to cream. Rhizoids flexuous, arising from the pupa of Lepidoptera, ca. 8 mm long under the ground. Fertile part terminal, discoid, ovoid, 2 mm long, 2 mm wide, white to creamy. Perithecia semi-immersed, ordinal in arrangement, ovoid to obclavate with protruding apices, (603–)610–637(–640) × (275–)280–298(–300) μm. Asci cylindrical, (235–)270–344(–462.5) × (2–)2.5–3 μm, apical cap prominent, 2–2.5 μm wide. Ascospores hyaline, filiform, whole, multi-septate, (222.5–)251–298.5(–360) × 1 μm. Conidia cylindrical, 2.5–3(–4) × 1 μm, seen as microcyclic sporulation of the ascospores on glass slide. Asexual morph not seen in nature.

Cultural characteristics: Colonies on OA attaining a diam of 30 mm in 14 d, white, floccose, dense mycelium, reverse cream. Hyphae smooth-walled, hyaline, 1–1.5 μm in diam, conidia and reproductive structure not observed.

 Colonies on PDA attaining a diam of 25 mm in 14 d, white, cottony, high mycelial density, reverse cream. Hyphae smooth-walled, hyaline, 1–1.5 μm diam, conidia and reproductive structure not observed.

 Colonies on SDAY/4 attaining a diam of 25 mm in 14 d, white to creamy, cottony, high mycelial density, reverse pale yellow to cream. Hyphae smooth-walled, hyaline, 1–1.5 μm diam, conidia and reproductive structure not observed.

Typus: Thailand, Phitsanulok Province, Ban Phaothai Community Forest, on Lepidoptera pupa buried in the ground, 5 Nov. 2015, K. Tasanathai, S. Mongkolsamrit, A. Khonsanit, W. Noisripoom & D. Thanakitpipattana (holotype BBH 42744 preserved in a metabolically inactive state, culture ex-type BCC 79252).

Habitat: Lepidoptera pupa underground.

Known distribution: Thailand, known from Ban Phaothai Community Forest.

Additional materials examined: Thailand, Phitsanulok Province, Ban Phaothai Community Forest, on Lepidoptera pupa, buried in the ground, 5 Nov. 2015, K. Tasanathai, S. Mongkolsamrit, A. Khonsanit, W. Noisripoom & D. Thanakitpipattana (BBH 42748, BCC 79266), (BBH 42749, BCC 79267).

Notes: In our phylogenetic reconstruction Metarhizium eburneum is closely related to M. viride and M. granulomatis (Sigler et al. 2010), basal to M. rileyi and M. dendromatilis (Chen et al. 2017). Metarhizium eburneum produces the sexual morph only on Lepidoptera pupa, with cylindrical stipe, solitary, simple, white to creamy, no conidiogenous structures on cultures after 14 d. The next clade above it comprises species on Coleoptera. Metarhizium eburneum differs from species on Coleoptera such as M. atrovirens, M. flavum, M. phuwiangense, M. pseudoatrovirens, M. purpureonigrum, and M. purpureum in the host, size and shape of the stroma, and perithecia. Most of these species that parasitize Coleoptera produce immersed perithecia and only M. flavum, like M. eburneum, produces semi-immersed perithecia.

Metarhizium ellipsoideum Luangsa-ard, Khonsanit, Thanakitpipattana & Samson, sp. nov. MycoBank MB834891. Fig. 16.

Fig. 16

Metarhizium ellipsoideum (BBH 30724, culture ex-type BCC 49285). A. Fungus on adult leafhoppers (Hemiptera). B. Conidia on insect host. C. Colonies on OA. D. Conidiophores bearing phialides and conidia on OA. E. Conidia on OA. F. Colonies on PDA. G. Conidiophores bearing phialides and conidia on PDA. H. Conidia on PDA. I. Colonies on SDAY/4. J. Conidiophores bearing phialides and conidia on SDAY/4. K. Conidia on SDAY/4. Scale bars: A = 1 mm; B, D, E, G, H, J, K = 5 μm.

Etymology: In reference to the conidial shape on the host and on OA, PDA and SDAY/4 media.

Specimens found only on leafhoppers (Hemiptera) on the underside of leaves. Host’s body was covered with parrot-green (No.60) powdery conidia. Conidia smooth-walled, parrot-green (No.60), ellipsoidal, occasionally ovoid, (3–)4–5(–5.5) × 2–2.5 μm.

Cultural characteristics: Colonies on OA attaining a diam of 19–21 mm in 14 d, flat, closely appressed to the agar surface, white, with parrot-green (No.60), powdery conidia while sporulating. Sporulation starts at 3 d after inoculation, reverse pale horn colour (No.92). Conidiophores arising from aerial mycelia, erect, smooth-walled. Phialides smooth-walled, cylindrical with semi-papillate apices, 4–5.5(–6) × 1.5–3 μm. Conidia smooth-walled, parrot-green (No.60), cylindrical with rounded apices or ellipsoidal, 5–6.5(–7) × 1.5–2 μm.

 Colonies on PDA attaining a diam of 14–15 mm in 14 d, mycelium closely appressed to the agar surface, flat, white at the margins, white turning to parrot-green (No.60) with powdery conidia while sporulating. Sporulation starts at 3 d after inoculation, reverse white cream. Conidiophores arising from aerial mycelia, erect, smooth-walled. Phialides smooth-walled, cylindrical with semi-papillate apices, 4–5.5(–6) × 2–3 μm. Conidia smooth-walled, parrot-green (No.60), cylindrical with rounded apices or ellipsoidal, 5–6.5(–7) × 1.5–2 μm.

 Colonies on SDAY/4 attaining a diam of 16–18 mm in 20 d, mycelium closely appressed to the agar surface, white turning to olive-yellow (No.52) to sulphur yellow (No.57). Sporulation starts 3 d after inoculation, reverse tawny olive (No.223D). Conidiophores arising from aerial mycelium, erect, smooth-walled. Phialides smooth-walled, cylindrical with semi-papillate apices, 4–5.5(–7) × 1.5–3 μm. Conidia smooth-walled, sulphur yellow (No.57), cylindrical with rounded apices or ellipsoidal, (4–)4.5–6(–7) × 1.5–2 μm.

Typus: Thailand, Chiang Mai Province, Chiang Dao Wildlife Sanctuary, on adult leafhopper (Hemiptera), 17 Aug. 2011, A. Khonsanit, K. Sansatchanon, K. Tasanathai, P. Srikitikulchai & S. Mongkolsamrit (holotype BBH 30724 preserved in a metabolically inactive state, culture ex-type BCC 49285).

Habitat: Adult leafhoppers (Hemiptera) on the underside of monocotyledonous and dicotyledonous leaves.

Known distribution: Thailand, found from Chiang Dao Wildlife Sanctuary, Khao Soi Dao Wildlife Sanctuary, Khao Yai National Park and Phlu Kaeng Waterfall.

Additional materials examined: Thailand, Chanthaburi Province, Khao Soi Dao Wildlife Sanctuary, 13.103906 N, 102.194322 E, on adult leafhopper (Hemiptera), 26 Mar. 2000, R. Nasit (BBH 2566, BCC 7590); Nakhon Ratchasima Province, Khao Yai National Park, 14.439089 N, 101.372228 E, on adult leafhopper (Hemiptera), 5 Sep. 2001, R. Nasit (BBH 9730, BCC 8516); on adult leafhopper (Hemiptera), 1 Oct. 2002, R. Nasit & W. Chaygate (BBH 12847, BCC 8687); on adult leafhopper (Hemiptera), 10 Dec. 2009, A. Khonsanit, K. Tasanathai, M. Sudhadham, P. Srikitikulchai, R. Ridkaew, S. Mongkolsamrit & T. Chohmee (BBH 27327, BCC 40161); on adult leafhopper (Hemiptera), 16 May 2012, A. Khonsanit, K. Tasanathai, M. Sudhadham, P. Srikitikulchai, R. Ridkaew, S. Mongkolsamrit & T. Chohmee (BBH 32448, BCC 53509); Chiang Rai Province, Phlu Kaeng Waterfall nature trail, on adult leafhopper (Hemiptera), 17 Jan. 2009, A. Khonsanit, K. Tasanathai, P. Srikitikulchai, R. Promharn, S. Mongkolsamrit & T. Chohmee (BBH 26421, BCC 34770).

Notes: Metarhizium ellipsoideum shares similarity with M. album, M. brasiliense, M. candelabrum, M. cercopidarum, and M. huainamdangense in the production of cylindrical phialides with rounded ends. It differs in the size, which is shorter than those from the above-mentioned species (Table 5 and Supplementary Table S1). Metarhizium ellipsoideum also produces cylindrical conidia with rounded apices but the conidia are shorter than in M. candelabrum, M. cercopidarum and M. huainamdangense. Metarhizium brasiliense produces two differing size classes of conidia, ellipsoidal and cylindrical, and M. album produces oval to oblong-ovoid conidia (Petch, 1931, Kepler et al., 2014). The colony colour of these species also vary. In M. ellipsoideum it is white to parrot green while in M. cercopidarum and M. candelabrum they are pale green to pale yellow. Metarhizium huainamdangense produces grey pink colonies while M. brasiliense produces white to cream, dark green, bluish green colonies (Kepler et al. 2014).

Metarhizium flavoviride [as 'Metarrhizium flavoviride'] W. Gams & Rozsypal, Acta Bot. Neerl. 22: 519. 1973.

Description and illustration: See Gams & Rozsypal (1973).

Typus: Czech Republic, on larvae & pupae of Ceutorhynchus macula-alba (Coleoptera, Curculionidae), 1956, J. Rozsypal (culture ex-type ARSEF 2133 = CBS 218.56 = IMI 170146 = ATCC 32969).

Habitat: Coleoptera, soil.

Known distribution: Australia, Czech Republic, Germany.

Notes: Metarhizium flavoviride was separated from M. anisopliae by Gams & Rozsypal (1973) based on the yellow-green colonies on larvae and pupae of curculionids and broadly ellipsoidal conidia with faintly differentiated basal end in fresh strains and cylindrical with a rounded upper and a tapering truncate basal end in older strains. Molecular phylogenetic studies by Driver et al. (2000) and Bischoff et al. (2009) have shown it as a species complex distinct from M. anisopliae. Strains of M. flavoviride seem to be cold-active, germinating and sporulating at low temperatures (Driver et al. 2000).

Metarhizium flavum Luangsa-ard, Mongkolsamrit, Thanakitpipattana & Samson, sp. nov. MycoBank MB834892. Fig. 17.

Fig. 17

Metarhizium flavum (BBH 47499, culture ex-type BCC 90870). A–B. Stromata arising from host. C–E. Ordinal perithecial orientation. F. Asci. G. Ascus tip. H. Ascospores. I. Whole ascospore showing septa (arrows). J. Conidia on insect host. K. Colonies on OA. L–M. Phialides and conidia on OA. O. Colonies on PDA. P–R. Phialides and conidia on PDA. S. Colonies on SDAY/4. T–U. Phialides and conidia on SDAY/4. V. Chlamydospores. W. Conidia. Scale bars: A = 10 mm; B = 20 mm; C = 4 mm; D, F = 100 μm; E = 350 μm; G, L = 5 μm; H = 20 μm; I, M, N, P, Q, R, T–W = 10 μm.

Etymology: Name refers to the yellow colour of stromata.

Stromata two to several, simple, clavate to irregularly shaped, branched, up to 4.5 cm long, 1.5–2 mm wide. Rhizoids flexuous, arising from region between head, thorax, and abdomen of Coleoptera larvae, ca. 2–3 cm buried in the ground. Upper part of the stromata fertile, pale yellow to olive yellow (No. 52), 0.5–3 cm long, 2–4 mm wide. Perithecia semi-immersed, ordinal in arrangement with slightly protuberant ostioles, ovoid, (500–)545–640(–650) × (270–)280–320(–330) μm. Asci cylindrical, 8-spored, 280–320 × 5–6 μm, apical cap prominent, 5–6 × 5–6 μm. Ascospores filiform, with septa but do not dissociate into part-spores, hyaline, (200–)225–295(–315) × 1.5–2 μm. The asexual morph was seen only on one sample in nature. The sporulating conidiophores are produced on the body and on rhizoids from the insect host which are buried in the ground, dark green (oac104). Conidia smooth-walled, cylindrical with rounded apices, (8–)8.5–11(–12) × 3 μm.

Cultural characteristics: Colonies on OA attaining a diam of 10 mm in 14 d, white mycelium with low density, flat, entire edge, turning to pale green (oac104-105) in the centre of colonies due to production of conidia. Sporulation starts at 7 d after inoculation, reverse uncoloured. Conidiophores terminating in branches, with 2–3 phialides per branch, single phialides produced along the hyphae. Phialides cylindrical with semi-papillate apices, (5–)6.5–9(–10) × 2–3 μm. Conidia smooth-walled, pale green (oac104-105), cylindrical with rounded apices, (6–)6.5–9(–10) × 2–3 μm.

 Colonies on PDA attaining a diam of 8 mm in 14 d, white mycelium, low density, fluffy, irregular edge, turning to dark green in the centre of colonies due to production of conidia. Sporulation starts at 14 d after inoculation, reverse dark brown. Conidiophores terminating in branches, with 2–3 phialides per branch, single phialides produced along the hyphae. Phialides cylindrical with semi-papillate apices, (7–)8–10 × (2–)2.5–3 μm. Conidia smooth-walled, dark green (oac104-105), cylindrical with rounded apices, (7–)7.5–9.5(–10) × 2–3 μm.

 Colonies on SDAY/4 attaining a diam of 3 mm in 14 d, pale yellow mycelium, less dense, fluffy, irregular edge. Sporulation starts at 14 d after inoculation, reverse uncoloured. Conidiophores terminating in branches, with 2–3 phialides per branch, single phialides produced along the hyphae. Phialides cylindrical with semi-papillate apices, (7–)8–10.5(–12) × 2–2.5(–3) μm. Chlamydospores present, singly or in short chains, subglobose, up to 10 μm in diameter. Conidia smooth-walled, hyaline, cylindrical with rounded apices, 7–9(–10) × 2–2.5(–3) μm.

Typus: Thailand, Chiang Mai Province, San Buak Wai Community Forest, on Coleoptera larva, 20 Aug. 2019, S. Mongkolsamrit, N. Kobmoo, P. Srikitikulchai, U. Pinruan, P. Khamsuntorn & S. Sommai (holotype BBH 47499 preserved in a metabolically inactive state, culture ex-type BCC 90870).

Habitat: Coleoptera larva, buried in the ground.

Known distribution: Thailand, found at San Pa Pao Community Forest and San Buak Wai Community Forest, Chiang Mai Province.

Additional materials examined: Thailand, Chiang Mai Province, San Pa Pao Community Forest, 19.005714 N, 98.813153 E, on Coleoptera larva, 20 Aug. 2019, S. Mongkolsamrit, N. Kobmoo, P. Srikitikulchai, U. Pinruan, P. Khamsuntorn & S. Sommai (BBH 47502, BCC 90874).

Notes: Phylogenetically, M. flavum is closely related to M. purpureum and M. purpureonigrum but differs in the colour of its stromata. Metarhizium flavum has pale yellow to olive yellow stromata while M. purpureum and M. purpureonigrum have purple stromata. The perithecia of M. flavum are semi-immersed but in M. purpureum and M. purpureonigrum the perithecia are immersed. However, M. flavum shares similarity to M. purpureum and M. purpureonigrum by having perithecia in ordinal arrangement. The sporulation of M. flavum can be observed on three media while in M. purpureum and M. purpureonigrum the sporulation can be observed only on OA. On OA these three species produce cylindrical conidia that are all in the same size range.

Metarhizium frigidum J. Bisch. & S.A. Rehner, Mycologia 98: 741. 2006.

Description and illustration: See Bischoff et al. (2006).

Typus: Australia, Victoria, Ballarat, on larva of Adoryphorus sp. (Coleoptera, Scarabaeidae), 10 Jun. 1994, Reinganum (holotype BPI 872114, culture ex-type ARSEF 4124).

Habitat: Coleoptera, Isoptera, soil.

Known distribution: Australia.

Notes: Metarhizium frigidum and M. flavoviride are closely related in the M. flavoviride clade. The colour of the conidia of M. frigidum is reminiscent of those of M. anisopliae, while the conidia of M. flavoviride are bright yellow green on SDAY/4.

Metarhizium fusoideum Luangsa-ard, Mongkolsamrit, Thanakitpipattana & Samson, sp. nov. MycoBank MB834893. Fig. 18.

Fig. 18

Metarhizium fusoideum (BBH 22698, culture ex-type BCC 28246). A. Fungus on adult leaf moth (Lepidoptera). B. Conidia on insect host. C. Colonies on OA. D–F. Phialides and conidia on OA. G. Colonies on PDA. H–J. Phialides and conidia on PDA. K. Colonies on SDAY/4. L–O. Phialides and conidia on SDAY/4. Scale bars: A = 1 mm; B, D, E, F, H, J, L–O = 10 μm; I = 5 μm.

Etymology: In reference to the fusoid shape of conidia in natural specimens.

Specimen found on adult moth (Lepidoptera). Hosts’ head and thorax were covered with pale green mycelium and sporulating conidiophores. Conidia smooth-walled, parrot green (No.260), broadly fusoid, 5–6 × 2–3 μm.

Cultural characteristics: Colonies on OA attaining a diam of 22 mm in 14 d, dark green, flat, entire edge, white border, dark green of colonies due to production of conidia. Sporulation starts at 5 d after inoculation, reverse uncoloured. Conidiophores terminating in branches, with 2–3 phialides per branch. Phialides cylindrical with semi-papillate apices, (7–)7.5–10 × 2 μm. Conidia smooth-walled, parrot green (No.260), ellipsoidal to cylindrical with rounded apices, (5–)7–10 × 2–3 μm.

 Colonies on PDA attaining a diam of 22 mm in 14 d, dark green, flat, entire edge, white border, dark green of colonies due to production of conidia. Sporulation starts at 5 d after inoculation, reverse uncoloured. Conidiophores terminating in branches, with 2–3 phialides per branch. Phialides cylindrical with semi-papillate apices, (5–)7–10 × 2–3 μm. Conidia smooth-walled, parrot green (No.260), ellipsoidal to cylindrical with rounded apices, (5–)6.5–9.5(–10) × 2–2.5(–3) μm.

 Colonies on SDAY/4 attaining a diam of 15 mm in 14 d, white to pale cream, abundant aerial mycelium, fluffy, undulate edge, pale brown margin (oac776), brown due to production of conidia. Sporulation starts at 10 d after inoculation, reverse uncoloured. Conidiophores terminating in branches, with 2–3 phialides per branch. Phialides cylindrical with semi-papillate apices, (6–)7.5–9.5(–10) × 2–2.5(–3) μm. Conidia smooth-walled, hyaline, ellipsoidal to cylindrical with rounded apices, (6–)7–9.5(–10) × 2–2.5(–3) μm.

Typus: Thailand, Chaiyaphum Province, Phu Khiao Wildlife Sanctuary, on moth (Lepidoptera) on underside of a dicot leaf, 24 Oct. 2007, K. Tasanathai, S. Mongkolsamrit, P. Srikitikulchai, B. Thongnuch, R. Ridkaew & A. Khonsanit (holotype BBH 22698 preserved in a metabolically inactive state, culture ex-type BCC 28246).

Habitat: On moth (Lepidoptera) and on barklice (Psocoptera), on the underside of dicotyledonous plants.

Known distribution: Thailand, known from Phu Khiao Wildlife Sanctuary and Khao Yai National Park.

Additional materials examined: Thailand, Nakhon Ratchasima Province, Khao Yai National Park, 14.439089 N, 101.372228 E, on Psocoptera, 22 Sep. 2012, K. Tasanathai, S. Mongkolsamrit, A. Khonsanit & W. Noisripoom (BBH 32443, BCC 53130); idem., on Psocoptera, 7 Apr. 2010, K. Tasanathai, S. Mongkolsamrit, T. Chohme, A. Khonsanit & R. Ridkaew (BBH 28541, BCC 41242).

Notes: Metarhizium fusoideum is a member of the M. flavoviride species complex and is closely related to M. koreanum (Kepler et al. 2014). Based on natural specimens from Thailand, the conidia of M. fusoideum are distinguishable from M. koreanum. Conidia in M. fusoideum are broadly fusoid while conidia in M. koreanum are cylindrical, ellipsoidal, or ovoid. The colony colour of M. fusoideum and M. koreanum on OA and PDA are green with conidial mass. The phialides are cylindrical and conidia are ellipsoidal to cylindrical with rounded apices. However, on SDAY/4 M. fusoideum produces white to cream colonies with brown border while the colony of M. koreanum is brownish yellow. Both species have similar micro-morphologies – the phialides are cylindrical and conidia are ellipsoidal to cylindrical with rounded apices.

Metarhizium gaoligongense Z.H. Chen & L. Xu, Int. J. Agric. Biol. 20: 2272. 2018.

Description and illustration: See Chen et al. (2018c).

Typus: China, Yunnan Province: Gaoligong Mountains, soil of a coffee farmland, 12 May 2015, Z.H. Chen (culture ex-type CCTCC M 2016588).

Habitat: Soil.

Known distribution: China.

Notes: Metarhizium gaoligongense, found in soil, is closely related to M. nornnoi, M. pemphigi and M. bibiniodarum occurring on insects.

Metarhizium globosum J.F. Bisch et al., Mycologia 101: 520. 2009.

Description and illustration: See Bischoff et al. (2009).

Typus: India, on Pyrausta machaeralis (Lepidoptera, Pyralidae) on teak, Tectona grandis, 12 Sep. 1988, R.C. Rajak (holotype BPI 878294, culture ex-type ARSEF 2596).

Habitat: Lepidoptera.

Known distribution: India.

Notes: The globose conidia of M. globosum is a distinguishing character that is not found in any other species in the M. anisopliae complex. It forms a close relationship with M. acridum and can both be distinguished by conidial shape. Metarhizium acridum produces ovoid conidia.

Metarhizium granulomatis (Sigler) Kepler et al., Mycologia 106: 822. 2014.

Basionym: Chamaeleomyces granulomatis Sigler, J. Clin. Microbiol. 48: 3188. 2010.

Description and illustration: See Sigler et al. (2010).

Typus: Denmark, Copenhagen, from liver of a chameleon, collection date and collector unknown (culture ex-type UAMH 11028).

Habitat: Chamaeleo calyptratus.

Known distribution: Denmark.

Notes: Metarhizium granulomatis and M. viride belong to the basal-most subclade in Metarhizium. Both species were isolated from diseased Chamaeleo species. It shares similarity with M. viride in producing yeast-like cells as well as the curved phialide necks. These two species produce paecilomyces-like phialides.

Metarhizium gryllidicola Khons. et al., Persoonia 44: 150. 2020.

Description and illustration: See Thanakitpipattana et al. (2020). The following descriptions are based on other specimens examined from Thailand.

Specimens found only on adult of crickets (Gryllidae) on the leaf litter on the forest floor. The host body was covered with leaf green (No.146), bunting green (No.150) and dark green (28F8) powdery conidia. Phialides smooth-walled, ovoid with semi-papillate apices, occasionally cylindrical, 5–10 × 2–3 μm. Conidia smooth-walled, ellipsoidal, cylindrical, 5–6.5(–7) × 2–3 μm.

Cultural characteristics: Colonies on OA attaining a diam of 26–27 mm in 14 d, flat, closely appressed to the agar surface, at first white turning bunting green (No.150) and leaf green (No.146), powdery while sporulating, white at the margins. Sporulation starts at 3 d after inoculation, reverse pale horn (No.92). Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical. Phialides smooth-walled, cylindrical, (5–)6.5–9(–11) × 2–3 μm. Conidia smooth-walled, bunting green (No.150), leaf green (No.146), ovoid to ellipsoidal, occasionally cylindrical, (4.5–)5–6.5(–7) × 2–3 μm.

 Colonies on PDA attaining a diam of 25–27 mm in 14 d, flat, closely appressed to the agar surface, at first white turning leaf green (No.146), white at the margins, powdery while sporulating. Sporulation starts at 5 d after inoculation, reverse white. Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical. Phialides smooth-walled, cylindrical, utriform, without a distinct neck, (5–)6–9(–12) × 2–3 μm. Conidia smooth-walled, leaf green (No.146), cylindrical, ovoid, (5–)5.5–7 × 2–3 μm.

 Colonies on SDAY/4 attaining a diam of 25–26 mm in 20 d, mycelium dense, floccose, cottony, white turning to sulphur yellow (No.57) and chamois (No.123D), powdery while sporulating. Sporulation starts at 15 d after inoculation, reverse white. Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical. Phialides smooth-walled, cylindrical, utriform, without a distinct neck, (6–)7–9.5(–11) × 2–3 μm. Conidia smooth-walled, sulphur yellow (No.57) and chamois (No.123D), cylindrical to ovoid to obclavate, (4–)5–6(–7) × 2–3 μm.

Typus: Thailand, Nakhon Ratchasima Province, Khao Yai National Park, on adult crickets, 1 Nov. 2016, D. Thanakitpipattana, N. Kobmoo & R. Somnuk (holotype BBH 44436 preserved in a metabolically inactive state, culture ex-type BCC 82988).

Habitat: On adult crickets (Gryllidae) on the leaf litter in the forest.

Known distribution: Thailand, Khao Yai National Park.

Additional materials examined: Thailand, Nakhon Ratchasima Province, Khao Yai National Park, 14.439089 N, 101.372228 E, on adult of crickets, 18 Jun. 2008, B. Thongnuch, J. Luangsa-ard, K. Tasanathai, P. Srikitikulchai, R. Promharn, R. Ridkaew, S. Mongkolsamrit & W. Chaygate (BBH 23876, BCC 30917); idem., 14 Aug. 2009, K. Tasanathai, P. Srikitikulchai, R. Ridkaew, S. Mongkolsamrit & T. Chohmee (BBH 26529, BCC 37915), (BBH 26533, BCC 37918); idem., 11 Jul. 2012, A. Khonsanit, K. Sansatchanon, K. Tasanathai, P. Srikitikulchai, R. Somnuk, S. Mongkolsamrit & W. Noisripoom (BBH 32733, BCC 53857); Nakhon Nayok Province, Khao Yai National Park, 14.439089 N, 101.372228 E, on adult of cricket, 5 Jul. 2006, B. Thongnuch, J. Luangsa-ard, K. Tasanathai, P. Srikitikulchai, S. Mongkolsamrit & W. Chaygate (BBH 18647, BCC 22353).

Notes: Metarhizium gryllidicola is a member of the M. anisopliae complex and is close to M. brittlebankisoides and M. clavatum. It is only found occurring on adult crickets (Gryllidae), while M. brittlebankisoides and M. clavatum are from Coleoptera. Both M. clavatum and M. gryllidicola produce cylindrical conidia that are of the same size range and shape on SDAY/4 and PDA. However, on OA M. gryllidicola produces ovoid to ellipsoidal, occasionally cylindrical conidia while M. clavatum produces only cylindrical conidia.

Metarhizium guizhouense Q.T. Chen & H.L. Guo, Acta Mycol. Sin. 5: 181. 1986.

Synonyms: Metarhizium taii Z.Q. Liang & A. Y. Liu, Acta Mycol. Sin. 10: 260. 1991.

Metacordyceps taii (Z.Q. Liang & A.Y. Liu) G.H. Sung et al., Acta Mycol. Sin. 10: 257. 1991.

Description and illustration: See Guo et al. (1986) and Liang et al. (1991).

Typus: China, Guizhou Province, on Hepialis, Lepidoptera, 30 Oct.1980, Z.Q. Liang (holotype ACCC 30115 (asexual morph), SGA-C88-601 (M. taii, sexual morph), culture ex-type CBS 258.90).

Habitat: Lepidoptera.

Known distribution: China.

Notes: Metacordyceps taii was recognised by Bischoff et al. (2009) to be the sexual morph of Metarhizium guizhouense and therefore Mc. taii is considered a synonym of M. guizhouense. It is closely related to M. sulphureum which also occurs on Lepidoptera larva. Both M. sulphureum and the sexual state of M. guizhouense have obliquely arranged perithecia. However, M. guizhouense (= Mc. taii) has distinctly bigger perithecia, 267–794(–1061) × 247–354 μm, which are curved, ampullaceous and completely immersed in the stroma than M. sulphureum, which has semi-immersed, ovoid perithecia, 600–700 × 420–450 μm. Metarhizium guizhouense produces ascospores that break into part-spores while M. sulphureum produces whole, filiform ascospores.

Metarhizium guniujiangense (C.R. Li et al.) Kepler et al., Mycologia 106: 822. 2014.

Basionym: Metacordyceps guniujiangensis C.R. Li et al., Mycotaxon 111: 223. 2010.

Description and illustration: See Li et al. (2010).

Typus: China, southern Anhui, Shitai county, National Natural Reserve of Guniujiang, on nymph of cicada (Hemiptera, Cicadidae), 27 May 2002, C.R. Li (holotype RCEF, Li GNJ020527-04).

Habitat: Cicada nymph (Hemiptera).

Known distribution: China.

Notes: This species is placed in Metarhizium based on morphological and molecular data presented in Li et al. (2010). The ITS phylogeny (Supplementary Fig. S1) shows it is closely related to M. cylindrosporum, M. niveum and M. viridulum. Metarhizium guniujiangense produces the largest conidia followed by M. cylindrosporum and M. viridulum (Li et al. 2010). Morphologically, it is similar to M. owariense f. viridescens in occurring on cicada nymphs but differs in the colour of the stromata. Furthermore, the sizes of perithecia and asci of M. guniujiangense (640–770 × 240–320 μm and 310–380 × 4–4.8 μm) are longer than those of M. owariense f. viridiscens (440–640 × 180–320 μm and 180–300 × 5–6.5 μm, respectively).

Metarhizium huainamdangense Luangsa-ard, Mongkolsamrit, Thanakitpipattana & Samson, sp. nov. MycoBank MB834894. Fig. 19.

Fig. 19

Metarhizium huainamdangense (BBH 29715, culture ex-type BCC 44270). A. Fungus on adult leafhopper (Hemiptera). B. Conidia on insect host. C. Colonies on OA. D–F. Phialides and conidia on OA. G. Colonies on PDA. H–J. Phialides and conidia on PDA. Scale bars: A = 1 mm; B = 8 μm; D, E, I = 5 μm; F, H, J = 10 μm.

Etymology: Named after Huai Nam Dang National Park, the type location of the specimen.

Specimens found on the adult leafhoppers (Hemiptera) attached to the underside of dicotyledonous and monocotyledonous leaves in the forest. Hosts’ head and thorax were covered with pale green mycelium and sporulating conidiophores. Conidia smooth-walled, pale green (oac875-876), cylindrical with rounded apices, 5–7(–8) × 2–2.5(–3) μm.

Cultural characteristics: Colonies on OA attaining a diam of 18 mm in 14 d, pale cream, floccose, entire edge, velvety to woolly, dark green in the centre of colonies due to production of conidia. Sporulation starts at 14 d after inoculation, reverse uncoloured. Conidiophores terminating in branches, with 2–3 phialides per branch. Phialides cylindrical with semi-papillate apices, 5–7.5(–10) × 2–2.5 μm. Conidia smooth-walled, dark green (162A), cylindrical with rounded apices, (5–)6–9.5(–10) × 2–3 μm.

 Colonies on PDA attaining a diam of 15 mm in 14 d, pale cream, floccose, irregular edge, velvety to woolly, pale yellow to dark green in the centre of colonies due to production of conidia. Sporulation starts at 14 d after inoculation, reverse uncoloured. Conidiophores terminating in branches, with 2–3 phialides per branch. Phialides cylindrical with semi-papillate apices, 5–8(–10) × 2–3 μm. Conidia smooth-walled, dark green (162A), cylindrical with rounded apices, (5–)5.5–8.5(–10) × 2–3 μm.

 Colonies on SDAY/4 attaining a diam of 10 mm in 14 d, grey pink, fluffy, entire edge, reverse uncoloured. Conidia and reproductive structures not observed.

Typus: Thailand, Chiang Mai Province, Huai Nam Dang National Park, on leafhopper (Hemiptera), 22 Sep. 2010, K. Tasanathai, P. Srikitikulchai & A. Khonsanit (holotype BBH 29715 preserved in a metabolically inactive state, culture ex-type BCC 44270).

Habitat: On leafhopper (Hemiptera), on the underside of dicotyledonous plants and bamboos in the forest.

Known distribution: Thailand, known from Huai Nam Dang National Park and Namtok Samlan National Park.

Additional materials examined: Thailand, Chiang Mai Province, Huai Nam Dang National Park, 19.303919 N, 98.598831 E, on leafhopper (Hemiptera), 22 Sep. 2010, K. Tasanathai, P. Srikitikulchai & A. Khonsanit, (BBH 29368, BCC 44271); idem., 25 Sep. 2008, K. Tasanathai, W. Chaygate, P. Srikitikulchai, A. Khonsanit & S. Mongkolsamrit (BBH 24622, BCC 32190); Saraburi Province, Namtok Samlan National Park, 14.440100 N, 100.960308 E, on leafhopper (Hemiptera), 30 Aug. 2000, N. Hywel-Jones, S. Sivichai & K. Tasanathai (BBH 8064, BCC 7672).

Notes: Metarhizium huainamdangense is closely related to M. candelabrum and M. cercopidarum that are known to infect leafhoppers (Hemiptera) and the production of cylindrical conidia with rounded apices but differs in its growth on SDAY/4. In M. huainamdangense, no sporulation could be observed but is abundant in both M. candelabrum and M. cercopidarum.

Metarhizium humberi Luz et al., J. Invertebr. Pathol. 166: 107216. 2019.

Description and illustration: See Luz et al. (2019).

Typus: Brazil, on soil, 14 Sep. 2001, C. Luz, L.F.N. Rocha, R.O. Silva, M. Unterseher (holotype UFG 50751, culture ex-type IP 46 = CG620 = ARSEF 12874).

Habitat: Coleoptera, Lepidoptera, Hemiptera, soil.

Known distribution: Brazil, Mexico.

Notes: Multi-gene phylogenetic analyses supported the recognition of this species in the M. anisopliae complex, close to M. anisoplae, M. pingshaense and M. robertsii. First reported from soil, M. humberi was also found occurring on various insect orders and have proven to be a favorable candidate to be used in biological control of insect pests.

Metarhizium indigoticum (Kobayasi & Shimizu) Kepler et al., Mycologia 106: 823. 2014.

Basionym: Cordyceps indigotica Kobayasi & Shimiz, Bull. Nat. Sci. Mus. Tokyo, Ser. B. 4: 52. 1978.

Synonym: Metacordyceps indigotica (Kobayasi & Shimizu) Kepler et al., Mycologia 104: 85. 2012.

Description and illustration: See Kobayasi & Shimizu (1978).

Typus: Japan, Mt. Osuzu-yama, Koyu,gun, Miyazaki Prefecture, on larva of Holcocerus vicarious, (Cossidae, Lepidoptera), 20 Mar. 1955, G. Imoto & D. Shimizu (holotype in TNS).

Habitat: Lepidoptera larva (Cossidae).

Known distribution: Japan.

Notes: Metarhizium indigoticum is one of the sexually reproductive species in the Metarhizium anisopliae complex and is closely related to M. majus and M. phasmatodeae.

Metarhizium kalasinense Tasanathai et al., Mycol. Prog. 16: 382. 2017.

Description and illustration: See Luangsa-ard et al. (2017) and this study. Description on OA is based on this study. Description on stroma, PDA and SDAY/4 were taken from Luangsa-ard et al. (2017).

Stromata simple to sparingly branched, yellow brown (5D8) when young turning olive green (1F7) to greenish brown (8F3) with age, dark green (30F3) ostioles. Rhizoids flexuous, up to 30 cm buried deep in the ground. Stipe of the stroma brownish yellow (5C8) to olive green (1F7), up to 0.5 cm broad. Sterile stipe emerging from the ground, cylindrical, mustard yellow (4B7) to olive green (1F7), 3–5 cm long, 0.5 cm wide. Fertile part clavate, 25–30 × 3–5 mm. Perithecia flask-shaped, immersed, oblique in arrangement, 700–800 × 250–350 μm, each wall with a layer of closely arranged parallel hyphae, 20–30 μm thick. Asci hyaline, cylindrical, 500–650 × 4–5 μm, with a prominent apical cap, 5–8 × 3–5 μm. Ascospores filiform, hyaline, without septations and not fragmenting into part-spores, 400–500 × 1–1.5 μm.

Cultural characteristics: Colonies on OA attaining a diam of 15 mm in 14 d, green black to black. Sporulation starts at 7 d after inoculation, reverse uncoloured. Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical. Phialides smooth-walled, ovoid, occasionally cylindrical, (6–)7–9(–10) × 2 μm. Conidia smooth-walled, globose, (4–)5–6(–7) × 2.5–3(–4) μm.

 Colonies on PDA attaining a diam of 10 mm in 14 d, at first white turning pale yellow green (No.58) with the production of conidia, velvety to funiculose, reverse cream to yellow. Phialides cylindrical, narrowing at the tip, to lanceolate. Conidia cylindrical with rounded ends, forming long chains, 6–7 × 2–3 μm.

 Colonies on SDAY/4, attaining a diam of 10 mm in 14 d, at first white becoming greenly pigmented after 5 d (Greenish Olive, No.49) turning yellow (No.55) in the middle and surrounding the colonies. Colonies floccose, with areas appearing powdery due to production of conidia. Conidiophores dense, terminating in branches, with 2–3 phialides per branch. Phialides clavate, 8–12 × 2–3 μm. Conidia cylindrical with rounded ends, 6–8 × 2–3 μm.

Typus: Thailand, Kalasin Province, Khok Pa Si Community forest, on Coleoptera larva, 15 Jun. 2012, K. Tasanathai, S. Mongkolsamrit, P. Srikittikulchai, A. Khonsanit & W. Noisripoom (holotype BBH 34585 preserved in a metabolically inactive state, culture ex-type BCC 53582).

Habitat: Coleoptera larva.

Known distribution: Thailand, known from Kalasin Province.

Additional materials examined: Thailand, Kalasin Province, Khok Pa Si Community forest, 16.562794 N, 104.103092 E, on Coleoptera larva, 15 Jun. 2012, K. Tasanathai, S. Mongkolsamrit, P. Srikittikulchai, A. Khonsanit & W. Noisripoom (BBH 34584, BCC 53581); idem., 26 Jun. 2012, A. Khonsanit & W. Noisripoom (BBH 32209, BCC 53629); idem., 19 Jul. 2012, K. Tasanathai, A. Khonsanit & W. Noisripoom (BBH 34586, BCC 53874), (BBH 34590, BCC 53876), (BBH 34592, BCC 53877).

Notes: This species is morphologically very similar to M. campsosterni but differs not only in having 8-spored asci but also in the size of the perithecia, asci and ascospores.

Metarhizium koreanum Kepler et al., Mycologia 106: 823. 2014.

Description and illustration: See Kepler et al. (2014). The description below is based on specimens collected in Thailand.

Specimens found on planthopper (Fulgoromorpha, Hemiptera) on the underside of leaves. Host’s head and thorax were covered with Paris green (No.63) powdery conidia. Conidia smooth-walled, cylindrical, ellipsoidal, ovoid, (4–)4.5–5.5(–6) × 2–2.5 μm.

Cultural characteristics: Colonies on OA attaining a diam of 24 mm in 14 d, flat, closely appressed to the agar surface, at first white turning olive-green (No.47) and powdery while sporulating, white at the margins, producing bunting green (No.150) pigmentation in agar culture. Sporulation starts 4 d after inoculation, reverse light drab (No.119C) in the middle of colony and lime green (No.59) at the margin. Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical. Phialides smooth, cylindrical, (5–)6.5–8.5(–11) × 2–2.5(–3) μm. Conidia smooth-walled, olive-green (No.47), cylindrical with rounded apices, ellipsoidal, (6–)6.5–10(–13) × 2–3 μm.

 Colonies on PDA attaining a diam of 16 mm in 14 d, flat, closely appressed to the agar surface, at first white turning to olive-green (No.47) with olive-grey (No.42), powdery while sporulating, smoke grey (No. 42) with white mycelia at the margin. Sporulation starts at 5 d after inoculation, reverse olive yellow (No.52), sulphur yellow (No.57) in the middle of colony and white cream at the margin. Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical. Phialides smooth-walled, cylindrical, (5–)6–7.5(–8) × 2–2.5 μm. Conidia smooth-walled, olive-green (No.47) with olive-grey (No.42), cylindrical with rounded apices, ellipsoidal, (5–)6–7(–8) × 1.5–2.5(–3) μm.

 Colonies on SDAY/4 attaining a diam of 19–20 mm in 14 d, flat, closely appressed to the agar surface, at first white turning to buff (No.24) and spectrum yellow (No.55), powdery while sporulating, white at the margin. Sporulation starts at 5 d after inoculation, reverse citrine (No.51), olive yellow (No.52) in the middle of colony and white cream at the margin. Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical. Phialides smooth-walled, cylindrical, (5–)8–11.5(–13) × 2–2.5 μm. Conidia smooth-walled, buff (No.24), cylindrical with rounded apices, ellipsoidal, (4–)5.5–7(–7.5) × 1.5–2(–2.5) μm.

Typus: Republic of Korea, on Nilaparvata lugens (Hemiptera: Delphacidae) on rice, 16 Oct. 1985, S.B. Ahn (culture ex-type ARSEF 2038).

Habitat: On adult planthoppers (Hemiptera: Fulgoromorpha and Delphacidae) on the underside of leaves.

Known distribution: Japan, South Korea, Thailand - found from Khlong Lan National Park, Thung Yai Naresuan Wildlife Sanctuary and Namtok Samlan National Park.

Additional materials examined: Thailand, Kamphaeng Phet Province, Khlong Lan National Park, 16.129661 N, 99.278694 E, on adult planthopper, 2 Oct. 2007, A. Khonsanit, B. Thongnuch, K. Tasanathai, P. Srikitikulchai, R. Ridkaew & S. Mongkolsamrit (BBH 22655, BCC 27998); Saraburi Province, Namtok Samlan National Park, 14.440100 N, 100.960308 E, on adult planthopper, 15 Jul. 2004, K. Tasanathai, N. Boonyuen, P. Puyngain, S. Sivichai & V. D. Khanh (BBH 10087, BCC 16762); Kanchanaburi Province, Thung Yai Naresuan Wildlife Sanctuary, 15.333364 N, 98.916483 E, on adult planthopper, 11 Dec. 2007, B. Thongnuch, K. Tasanathai, R. Ridkaew & S. Mongkolsamrit (BBH 23160, BCC 30455).

Notes: This species is a member of the M. flavoviride species complex, however the green pigmentation of conidia en masse is considerably darker than in other species of this complex. Conidial and phialidic morphology is apparently variable between isolates.

Metarhizium lepidiotae (Driver & Milner) J.F. Bisch. et al., Mycologia 101: 520. 2009.

Basionym: Metarhizium anisopliae var. lepidiotae Driver & Milner [as Metarhizium anisopliae var. lepidiotum], Mycol. Res. 104: 145. 2000.

Description and illustration: See Driver et al., 2000, Bischoff et al., 2009.

Typus: Australia, Queensland, near Cairns, on Lepidiota consobrina (Coleoptera, Scarabaeidae), 5 Mar. 1994, collector unknown (holotype DAR 74302, culture ex-type ARSEF 7488 = ARSEF 7453 = CSIRO FI-1042 used by Driver et al. (2000) to describe Metarhiziun anisopliae var. lepidiotum, paratypes DAR 74303–74306).

Habitat: Coleoptera, Isoptera, soil.

Known distribution: Australia, Japan, Papua New Guinea.

Notes: Metarhizium lepidiotae is morphologically indistinguishable from M. anisopliae except in molecular data (Bischoff et al. 2009). Our multi-gene analyses show M. lepidiotae nested together with M. anisopliae CBS 130.71 from Ukraine but not with M. anisopliae ARSEF 7487, which was Tulloch’s neotype (1979). Our 5′tef analysis (Fig. 2) supports this result but also shows other species identified as M. lepidiotae (ARSEF 7412, ARSEF 4628) distinct from the type strain and forming the second basal-most clade in the complex, suggesting that we could be dealing with a different species.

Metarhizium majus (J.R. Johnst.) J.F. Bisch. et al., Mycologia 101: 520. 2009.

Basionym: Metarhizium anisopliae f. major J.R. Johnst., Entomogenous Fungi of Porto Rico: 27. 1915.

Synonyms: Metarhizium anisopliae f. oryctophagum Friederichs, Die Grundfragen und Gesetzmassigkeiten der Land-und Forstwirtschäflichen Zoologie: 199. 1930.

Metarhizium anisopliae var. major (J.R. Johnst.) M.C. Tulloch, Trans. Br. Mycol. Soc. 66: 409. 1976.

Description and illustration: See Tulloch (1976), Bischoff et al. (2009).

Habitat: Coleoptera: Scarabaeidae, Isoptera, Lepidoptera, Orthoptera,Gryllidae, Phasmatodea, soil.

Known distribution: Australia, France, Japan, Malaysia, Philippines, Poland, Puerto Rico, USA.

Typus: In the absence of a useful type for Metarhizium majus, Bischoff et al. (2009) designated a dried culture stored at the US National Fungus Collection (epitype BPI 878297). This epitype was prepared from a plate of the isolate ARSEF 1914.

Note: Metarhizium majus is a member of the M. anisopliae complex that is closely related to M. phasmatodeae and M. indigoticum.

Metarhizium megapomponiae Luangsa-ard, Tasanathai, Thanakitpipattana & Samson, sp. nov. MycoBank MB834895. Fig. 20.

Fig. 20

Metarhizium megapomponiae (BBH 19860, culture ex-type BCC 25100). A–B. Fungus on adult cicada. C. Phialides and conidia on host. D–E. Conidium on insect host. F. Colonies on OA. G–H. Phialides and conidia on OA. I. Conidia on OA. J. Colonies on PDA. K–L. Phialides and conidia on PDA. M. Conidia on PDA. N. Colonies on SDAY/4. O–P. Phialides and conidia on SDAY/4. Q. Conidia on SDAY/4. Scale bars: A, B = 10 mm; C = 8 μm; D–Q = 5 μm.

Etymology: Named after cicada host in the genus Megapomponia.

Specimens found on adult cicada (Hemiptera). Host was covered by mycelium, initially white, then turning pale green to greyish green, with heavy sporulation. Synnemata absent. Conidiophores borne on hyphae, erect, septate, smooth-walled, hyaline, bearing divergent, terminal, verticillate metulae or phialides. Metulae broadly clavate or cylindrical. Phialides oval-cylindrical, ellipsoidal, (4–)5–7(–8) × 3–4 μm. Conidia aseptate, smooth-walled, cylindrical, ellipsoidal, usually slightly curved or allantoid, (6–)7–10(–11) × 3–4(–5) μm.

Cultural characteristics: Colonies on OA attaining a diam of 15 mm in 14 d, mycelium floccose, cottony, cream (oac900) in the middle of agar surface, margin floccose, olive green (oac38), powdery while sporulating, reverse uncoloured. Sporulation starts at 7 d after inoculation. Conidiophores arising from hyphae, erect, smooth-walled. Phialides solitary borne directly on the hyphae or on conidiophores, nomuraea-like, smooth-walled, cylindrical, (5–)5.5–7.5(–9) × 3–4 μm. Conidia aseptate, smooth-walled, cylindrical, ellipsoidal, usually slightly curved or allantoid, (6–)7–9(–10) × 2–3 μm.

 Colonies on PDA attaining a diam of 15 mm in 14 d, mycelium floccose, cottony greyish green to dark green, margin floccose, white, reverse centre yellow to yellow brown, sporulation starts at 7 d after inoculation. Conidiophores arising from hyphae, erect, smooth-walled, metulae broadly clavate. Phialides solitary or in groups of three to eight per metula, borne directly on the conidiophores, smooth-walled, oval-cylindrical, 5–7.5(–10) × 3–4 μm. Conidia smooth-walled, hyaline, cylindrical to ellipsoidal, (7–)9–11(–13) × 3–4 μm.

 Colonies on SDAY/4 attaining a diam of 15 mm in 14 d, cream to yellow brown, margin floccose, white, reverse uncoloured. Sporulation starts at 7 d after inoculation. Conidiophores arising from hyphae, erect, smooth-walled, cylindrical. Phialides solitary or in groups of three to eight per metula, borne directly on the conidiophores, smooth-walled, cylindrical, (5–)5.5–8.5(–11) × (2–)2.5–4 μm. Conidia smooth-walled, cylindrical, ellipsoidal, usually slightly curved or allantoid, (7–)7.5–9.5(–11) × 3–4 μm.

Typus: Thailand, Trang Province, Khao Ban That Wildlife Sanctuary, on adult cicada, Megapomponia sp., 19 Mar. 2007, K. Tasanathai, S. Mongkolsamrit, P. Srikitikulchai, R. Promharn & T. Chohmee (holotype BBH 19860 preserved in a metabolically inactive state, culture ex-type BCC 25100).

Habitat: On adult cicada (Hemiptera, Megapomponia).

Known distribution: Thailand, found at Khao Ban That Wildlife Sanctuary.

Notes: Phylogenetically M. megapomponiae is closely related to M. viridulum and M. owariense, producing monomorphic conidia. Like M. viridulum it produces curved or allantoid conidia. Tzean et al. (1992) reported monomorphic conidia for M. viridulum on MEA but it produced larger conidia (14.4–19.4 × 3.8–4.4 μm) than M. megapomponiae.

Metarhizium minus (Rombach et al.) Kepler et al., Mycologia 106: 823. 2014.

Basionym: Metarhizium flavoviride var. minus Rombach et al., Mycotaxon 27: 89. 1986.

Description and illustration: See Rombach et al. (1986).

Typus: Philippines, IRRI, Los Banos, Manila, on Nilaparvata lugens, Hemiptera: Delphacidae, 5 Nov. 1985, MC Rombach (culture ex-type ARSEF 2037).

Habitat: Hemiptera.

Known distribution: Benin, Ecuador, Philippines, Solomon Islands, Thailand.

Notes: This species seems to have a narrow host range, only found occurring on leafhoppers. It is closely related to M. biotecense, also found on leafhoppers, but they differ in the colony growth and colour on PDA.

Metarhizium niveum Luangsa-ard, Tasanathai, Thanakitpipattana & Samson, sp. nov. MycoBank MB834896. Fig. 21.

Fig. 21

Metarhizium niveum (BBH 35742, culture ex-type BCC 52400). A. Fungus on adult cicada. B. Macroconidia on insect host. C–D. Microconidia on insect host. E. Colonies on OA. F. Phialides and conidia on OA. G. Macroconidia on OA. H. Microconidia on OA. I. Colonies on PDA. J–K. Phialides and conidia on PDA. L. Conidia on PDA. M. Colonies on SDAY/4. N–O. Phialides and conidia on SDAY/4. P. Conidia on SDAY/4. Scale bars: A = 10 mm; B−D = 3 μm; F = 8 μm; G, H, K, N−P = 4 μm; J = 5 μm; L = 3 μm.

Etymology: In reference to the colour of colony on OA, PDA and SDAY/4.

Specimens found on adult cicadas (Hemiptera). Hosts covered by mycelium, pale green to greyish green, with heavy sporulation. Synnemata absent. Conidia smooth-walled, dimorphic; microconidia ovoid, ellipsoidal, (3–)3.5–5(–6) × 2–3 μm; macroconidia cylindrical, (16–)17.5–20 × 3.5–4 μm.

Cultural characteristics: Colonies on OA attaining a diam of 20 mm in 14 d, mycelium floccose, cottony, white to cream, green edge due to production of conidia. Sporulation starts at 20 d after inoculation, reverse uncoloured. Phialides solitary or in a group of three borne directly on the metulae, smooth-walled, cylindrical, 6–7 × 2 μm. Conidiophores nomuraea-like, hyaline, smooth-walled. Conidia smooth-walled, dimorphic: microconidia ovoid, ellipsoidal, (3–)3.5–5(–6) × 2–3 μm; macroconidia cylindrical, (10–)12.5–18.5(–25) × 3–4 μm.

 Colonies on PDA attaining a diam of 18 mm in 14 d, floccose, cottony, white to cream, green edge due to production of conidia. Sporulation starts at 20 d after inoculation, reverse uncoloured. Phialides solitary or in a group of three borne directly on the metulae, smooth-walled, cylindrical, 5 × 2 μm. Conidia smooth-walled, ovoid, ellipsoidal, 2–4(–5) × 2–3 μm.

 Colonies on SDAY/4 attaining a diam of 15 mm in 14 d, floccose, cottony, white to cream, green edge due to production of conidia. Sporulation starts at 20 d after inoculation, reverse uncoloured. Phialides solitary borne directly on the conidiophores, smooth-walled, cylindrical, 4 × 2 μm. Conidia smooth-walled, ovoid, ellipsoidal, (2–)2.5–4(–5) × 2–3 μm.

Typus:Thailand, Narathiwat Province, Hala Bala Wildlife Sanctuary, on adult cicada (Hemiptera, Cicadidae), 9 Apr. 2012, K. Tasanathai, A. Khonsanit & W. Noisripoom (holotype BBH 35742 preserved in a metabolically inactive state, culture ex-type BCC 52400).

Habitat: On adult cicada (Hemiptera).

Known distribution: Thailand, found at Hala Bala Wildlife Sanctuary, Narathiwat Province.

Notes: Metarhizium niveum is closely related to M. cylindrosporum occurring on adult cicada and are in a cicada clade comprising M. chaiyaphumense, M. cicadae, M. megapomponiae, M. owariense, M. takense and M. viridulum.

Metarhizium nornnoi Luangsa-ard, Khonsanit, Thanakitpipattana & Samson, sp. nov. MycoBank MB834897. Fig. 22.

Fig. 22

Metarhizium nornnoi (BBH 14938, culture ex-type BCC 19364). A. Fungus on Lepidoptera larva. B. Phialides and conidia on insect host. C. Conidia on insect host. D. Colonies on OA. E–F. Conidiophores bearing phialides and conidia on OA. G. Conidia on OA. H. Colonies on PDA. I. Conidiophores bearing phialides and conidia on PDA. J. Conidia on PDA. K. Colonies on SDAY/4. L–M. Conidiophores bearing phialides and conidia on SDAY/4. N. Conidia on SDAY/4. Scale bars: A = 1 mm; B, C, F, G, J, M, N = 5 μm; E, I, L = 10 μm.

Etymology: Refers to the character of the host, from the Thai “nornnoi”, meaning small worm.

Specimens found on Lepidoptera larva and Coleoptera adult on the leaf litter. The host’s body was covered with parrot-green (No.60) powdery conidia. Phialides smooth-walled, cylindrical, 6–12 × 1.5–2.5 μm. Conidia smooth-walled, parrot-green (No.60), cylindrical, occasionally ellipsoidal, (4–)5–6.5(–8) × 1.5–2 μm.

Cultural characteristics: Colonies on OA attaining a diam of 24–27 mm in 14 d, mycelium closely appressed to the agar surface, flat, white in the margin with parrot-green (No.60), powdery while sporulating. Sporulation starts at 3 d after inoculation, reverse pale horn (No.92). Conidiophores arising from aerial mycelia, erect, smooth-walled. Phialides smooth-walled, cylindrical with semi-papillate apices, (5–)5.5–8(–10) × 1.5–2 μm. Conidia smooth-walled, parrot-green (No.60), cylindrical with rounded apices, (4–)4.5–6(–7) × 1.5–2 μm.

 Colonies on PDA attaining a diam of 21–24 mm in 14 d, mycelium closely appressed to the agar surface, flat, white at the margins turning to parrot-green (No.60), powdery while sporulating. Sporulation starts at 3 d after inoculation, reverse white cream. Conidiophores arising from aerial mycelia, erect, smooth-walled. Phialides smooth-walled, cylindrical with semi-papillate apices, (5–)6.5–9(–10) × 2–3 μm. Conidia smooth-walled, parrot-green (No.60), cylindrical with rounded apices, (4–)4.5–6 × 1.5–2 μm.

 Colonies on SDAY/4 attaining a diam of 20–21 mm in 14 d, mycelium closely appressed and slightly convex to the agar surface, white at the margins turning to sulphur-yellow (No.57), powdery while sporulating in the middle of colony. Sporulation starts at 5 d after inoculation, reverse sulphur yellow (No.57) in the middle of colony and white cream at the margin. Conidiophores arising from aerial mycelia, erect, smooth-walled. Phialides smooth-walled, cylindrical with semi-papillate apices, (4–)5–7(–9) × 2–3 μm. Conidia smooth-walled, sulphur-yellow (No.57), cylindrical with rounded apices, (4–)4.5–6(–7) × 1.5–2 μm.

Typus: Thailand, Chaiyaphum Province, Phu Khiao Wildlife Sanctuary, on Lepidoptera larva, 13 Oct. 2005, B. Thongnuch, K. Tasanathai, P. Srikitikulchai, R. Choeyklin, R. Ridkaew, S. Mongkolsamrit & W. Chaygate (holotype BBH 14938 preserved in a metabolically inactive state, culture ex-type BCC 19364).

Habitat: Lepidoptera larva and Coleoptera adult on the leaf litter.

Known distribution: Thailand, found in Phu Khiao Wildlife Sanctuary and Khao Yai National Park.

Additional material examined: Thailand, Nakhon Ratchasima Province, Khao Yai National Park, 14.439089 N, 101.372228 E, on adult of beetle (Coleoptera), 12 Jun. 2007, C. Chuaseeharonnachai, J. Luangsa-ard, J. Sakayaroj & S. Mongkolsamrit (BBH 24540, BCC 25948).

Notes: Three species in the M. flavoviride complex are closely related to each other – M. gaoligongense, M. nornnoi, and M. pemphigi. This clade is subtended by M. bibionidarum. On PDA M. gaoligonense, M. nornnoi and M. pemphigi produce cylindrical conidia (5.4–7.7 × 1.9–2.8 μm, 4–6 × 1.5–2 μm and 5–8 × 1.5–2 μm, respectively). There is no clear distinction on the morphological characters on other media. The only difference between each of the species is their host. Metarhizium nornnoi occurs on Lepidoptera and Coleoptera while M. pemphigi is found on Hemiptera, M. bibionidarum on Diptera. Metarhizium gaoligongense was isolated from soil.

Metarhizium novozealandicum Kepler et al., Mycologia 106: 823. 2014.

Basionym: Metarhizium flavoviride var. novozealandicum Driver & R.J. Milner, Mycol. Res. 104: 143. 2000.

Description: See Driver et al. (2000).

Typus: New Zealand, on Lepidoptera larva, Hepialidae, (holotype DAR 74293: FI-698, paratype DAR 74294).

Habitat: Coleoptera: Platypus sp., soil.

Known distribution: Australia, New Zealand.

Notes: All isolates studied by Driver et al. (2000) are cold-active and grow well at low temperatures (<10 °C). It is closely related to M. purpureogenum isolated from soil in Japan. It differs from M. purpureogenum in the shape of the conidia, which is ovoid to ellipsoidal in M. purpureogenum and cylindrical to ellipsoidal, often waisted conidia in M. novozealandicum.

Metarhizium ovoidosporum Luangsa-ard, Khonsanit, Thanakitpipattana & Samson, sp. nov. MycoBank MB834898. Fig. 23.

Fig. 23

Metarhizium ovoidosporum (BBH 25358, culture ex-type BCC 32600). A. Fungus on adult Lophopid planthopper. B. Phialides and conidia on insect host. C. Conidia on insect host. D. Colonies on OA in 14 d. E. Conidiophores bearing phialides and conidia on OA. F. Conidia on OA. G. Colonies on PDA in 20 d. H. Conidiophores bearing phialides and conidia on PDA. I. Conidia on PDA. J. Colonies on SDAY/4 in 20 d. K. Conidiophores bearing phialides and conidia on SDAY/4. L. Conidia on SDAY/4. Scale bars: A = 5 mm; B, C, E, F, H, I, K, L = 5 μm.

Etymology: In reference to the predominantly ovoid shape of conidia.

Specimens found on Lophopid planthopper and froghopper (Hemiptera) on the underside of leaves. Host’s body was covered with olive-grey (No.42) powdery conidia. Phialides smooth-walled, globose to subglobose 2.5–3 × 3–5 μm. Conidia smooth-walled, olive-grey (No.42), subglobose, occasionally ovoid, 3–3.5(–4) × 2–3 μm.

Cultural characteristics: Colonies on OA attaining a diam of 22–23 mm in 14 d, mycelium dense, floccose, at first white turning to olive-grey (No.42) or olive green (No.46), powdery texture while sporulating, white and cottony at the margins, slightly convex to the agar surface, producing olive-yellow (No.52) pigmentation around the margin of colony. Sporulation starts at 7 d after inoculation, reverse olive yellow (No. 52). Conidiophores arising from aerial mycelium, erect, smooth-walled, cylindrical. Phialides smooth-walled, obpyriform, ovoid, 4–5.5(–6) × 2–3 μm. Conidia smooth-walled, olive green (No.46), ovoid, occasionally ellipsoidal, (3.5–)4–5(–5.5) × 2–2.5(–3) μm.

 Colonies on PDA attaining a diam of 20 mm in 20 d, mycelium dense, floccose, cottony, slightly convex to the agar surface, white turning to olive-grey (No.42). Sporulation starts at 6 d after inoculation, reverse citrine (No.52) with olive yellow (No. 52) in the middle of colony and white cream at the margin. Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical. Phialides smooth-walled, obpyriform, ovoid, 3–5 × 1.5–2 μm. Conidia smooth-walled, olive-grey (No.42), ovoid, occasionally ellipsoidal, 3–4.5(–5) × 2–3 μm.

 Colonies on SDAY/4 attaining a diam of 21–23 mm in 20 d, mycelium dense, floccose, cottony, slightly convex to the agar surface, white. Sporulation starts at 3 d after inoculation, reverse citrine (No.52) with yellowish olive-green (No.50) and olive yellow (No.52) in the middle of colony and white cream at the margin. Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical. Phialides obpyriform, ovoid, (3–)3.5–5.5(–7) × 2–2.5(–4) μm. Conidia smooth-walled, white, ovoid, occasionally ellipsoidal, subglobose, 3–4(–5) × (2–)2.5–4 μm.

Typus: Thailand, Kamphaeng Phet Province, Khlong Lan National Park, 16.129661 N, 99.278694 E, on adult of Lophopid planthopper (Eurybrachidae), 26 Sep. 2008, A. Khonsanit, K. Tasanathai, P. Srikitikulchai, R. Ridkaew & W. Chaygate (holotype BBH 25358 preserved in a metabolically inactive state, culture ex-type BCC 32600).

Habitat: On adult of lophopid planthopper and froghopper (Hemiptera: Lophopidae, Cercopidae) on the underside of leaves.

Known distribution: Thailand, found in Khlong Lan National Park.

Additional materials examined: Thailand, Phetchaburi Province, Kaeng Krachan National Park, 12.866756 N, 99.400444 E, on adult of leafhopper, 29 Sep. 2000, P. Lutthisungneon, R. Nasit & W. Chaygate (BBH8126, BCC7634); Kamphaeng Phet Province, Khlong Lan National Park, 16.129661 N, 99.278694 E, on adult of froghoppers (Cercopidae), 2 Oct. 2007, B. Thongnuch, A. Khonsanit, K. Tasanathai, P. Srikitikulchai, R. Ridkaew & S. Mongkolsamrit (BBH 22653, BCC 29223).

Notes: Metarhizium ovoidosporum shares similarity with M. prachinense and M. samlanense in producing nomuraea-like phialides in culture. These three species are found in different localities in Thailand, M. ovoidosporum is found in Khong Lan National Park, M. prachinense is from Khao Yai National Park while M. samlanense was found in Namtok Samlan National Park. Metarhizium ovoidosporum occurs on lophopid planthoppers (Eurybrachidae) and froghoppers (Cercopidae) while M. prachinense is found on Lepidoptera larva and M. samlanense is found on planthoppers. Both M. ovoidosporum and M. samlanense were found with their asexual morphic states while M. prachinense was found in its sexual morph state. Metarhizium ovoidosporum produces ovoid, occasionally subglobose conidia, 3–5 × 2–4 μm, while M. prachinense produces subglobose conidia, 3–5 × 2–3 μm. The conidia of M. samlanense are globose, 3–5 μm in diam.

Metarhizium owariense (Kobayasi) Kepler et al., Mycologia 106: 823. 2014.

Basionym: Cordyceps owariensis Kobayasi, Bull. Biogeogr. Soc. Jpn. 9: 166. 1939.

Synonyms: Ophiocordyceps owariensis (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, Stud. Mycol. 57: 45. 2007.

Cordyceps owariensis f. viridescens Uchiy. & Udagawa, Mycoscience 43: 136. 2002.

Ophiocordyceps owariensis f. viridescens (Uchiy. & Udagawa) G.H. Sung et al., Stud. Mycol. 57: 45. 2007.

Metacordyceps owariensis f. viridescens (Uchiy. & Udagawa) Kepler et al., Mycologia, 104: 185. 2012.

Nomuraea owariensis Uchiy. & Udagawa, Mycoscience 43: 136. 2002.

Metarhizium owariense f. viridescens (Uchiy. & Udagawa) Kepler et al., Mycologia 106: 823. 2014.

Description and illustration: See Kobayasi, 1939, Uchiyama and Udagawa, 2002.

Typus: Japan, Owari Prov. On Platypleura kaempferi (Hemiptera, Cicadidae), Aug 1938, Y. Kobayasi, (holotype in Kato’s Cicadidae Museum).

Habitat: Hemiptera: Cicadidae.

Known distribution: Japan.

Notes: Metarhizium owariense is in the same clade as M. viridulum and M. megapomponiae. All three species produce only one kind of conidial size and shape (monomorphic) and nomuraea-like phialides. Metarhizium owariense is pathogenic to cicada nymphs while M. viridulum and M. megapomponiae occur on adult cicadas. Other species occurring on cicada are usually dimorphic. Metarhizium owariense f. viridescens on cicada nymph (Platypleura kuroiwae) differs from Metarhizium owariense in the coloration of its stroma, which is green, as opposed to the pale yellow stroma of the latter. It is similar to M. owariense in the size and morphology of stromata, asci and ascospores. However, the ascospores of M. owariense dissociate into part-spores while those reported for Metarhizium owariense f. viridescens are whole. More collections and sequenced loci for M. owariense f. viridescens are necessary to transfer it to species rank.

Metarhizium pemphigi (Driver & R.J. Milner) Kepler et al., Mycologia 106: 824. 2014.

Basionym: Metarhizium flavoviride var. pemphigum Driver & R.J. Milner, Mycol. Res. 104: 144. 2000.

Typus: UK, Norfolk, 1975, Foster (holotype laboratory infected Pemphigus bursarius DAR 74295, culture ex-type Fl-72, paratype DAR 74296).

Habitat: Hemiptera, Homoptera: Melanotus cribicollis.

Known distribution: China, UK.

Notes: Initially known only from the UK where it occurs on root aphids (Pemphigus trehernei), the conidia of M. pemphigi resemble M. anisopliae but it is a member of the M. flavoviride complex and is closely related to M. bibionidarum, M. gaoligongense and M. nornnoi.

Metarhizium phasmatodeae Khons. et al., Persoonia 44: 151. 2020.

Description: See Thanakitpipattana et al. (2020). The following descriptions and illustrations are from other specimens examined from Thailand.

Specimens found on stick insects (Phasmatodea) on the leaf litter of the forest floor. Hosts’ bodies were covered with opaline green (No.162D) and peacock green (No. 162C) powdery conidia. Phialides smooth-walled, ovoid with semi-papillate apices, cylindrical, (8–)8.3–10.2(–12) × (2.5–)3–4(–5) μm. Conidia smooth-walled, ovoid, occasionally cylindrical, (6–)6.6–8.6(–9.5) × (2–)2.6–3(–3.5) μm.

Cultural characteristics: Colonies on OA attaining a diam 20–21 mm in 8 d, flat, closely appressed to the agar surface, at first white turning to bunting green (No.150), leaf green (No.146), white at the margins, powdery while sporulating. Sporulation starts at 5 d after inoculation, reverse sulphur yellow (No.57). Conidiophores arising from aerial mycelia, erect, smooth-walled. Phialides smooth-walled, cylindrical, utriform, without a distinct neck, (5–)7.8–11.2(–15) × 3 μm. Conidia smooth-walled, bunting green (No.150), leaf green (No.146), cylindrical, oblong-elliptical, obovoid, (7–)7.6–9.2(–10) × 2–3 μm.

 Colonies on PDA attaining a diam 26–27 mm in 14 d, flat, closely appressed to the agar surface, floccose, at first white turning to dark green (No.162A), white cream at the margins, powdery while sporulating. Sporulation starts at 5 d after inoculation, reverse raw umber (No.123), sulphur yellow (No.57) in the middle of colony and pearl gray (No.81) at the margin. Conidiophores arising from aerial mycelia, erect, smooth-walled. Phialides smooth-walled, cylindrical, utriform, without a distinct neck, (6–)7.7–10.6(–12) × 2–2.5(–3) μm. Conidia smooth-walled, dark green (No. 162A), cylindrical, ovoid, obclavate, (7–)7.6–9.2(–10) × 2–2.7(–3) μm.

 Colonies on SDAY/4 attaining a diam of 24–25 mm in 14 d, flat, closely appressed to the agar surface, at first white turning to greenish olive (No.49) in the middle of colony, straw yellow (No.56), olive yellow (No.52) and pearl gray (No.81) in the margin, powdery while sporulating, white mycelium at the margin, producing olive-yellow (No.52) pigmentation in the agar medium. Sporulation starts at 5 d after inoculation, reverse greenish olive (No.49) and yellowish olive-green (No.50). Conidiophores arising from aerial mycelia, erect, smooth-walled. Phialides smooth-walled, cylindrical, utriform, without a distinct neck, (5–)6.8–9.8(–11) × (2–)2.6–3(–3.2) μm. Conidia smooth-walled, straw yellow (No.56), olive yellow (No.52) cylindrical, ovoid, obclavate (5.5–)6.6–7.7(–8) × 2–2.5(–3) μm.

Typus: Thailand, Chiang Mai Province, Ban Hua Thung Community Forest, on stick insects (Phasmatodea) on the leaf litter, 16 Aug. 2011, A. Khonsanit, J. Kumsao, K. Tasanathai, P. Srikitikulchai & S. Mongkolsamrit (holotype BBH 32532 preserved in a metabolically inactive state, culture ex-type BCC 49272).

Habitat: On stick insects (Phasmatodea) on the leaf litter on the forest floor.

Known distribution: Thailand, known from Ban Hua Thung Community Forest, Wat Hin Mak Peng, Chet Kot Waterfall National Park.

Additional materials examined: Thailand, Chiang Mai Province, Ban Hua Thung Community Forest, 19.367814 N, 98.964903 E, on stick insects, on the leaf litter, 25 Oct. 2013, A. Khonsanit, D. Thanakitpipattana, K. Tasanathai, P. Srikitikulchai, S. Watcharapayungkit & W. Noisripoom (BBH 37785, BCC 68409); Nong Khai Province, Wat Hin Mak Peng, 17.983328 N, 102.428481 E, on stick insects, on the leaf litter, 30 Aug. 2009, K. Tasanathai, N.T. Thanh, N.T. Toan, P. Srikitikulchai & T. Chohmee (BBH 27078); Saraburi Province, Khao Yai National Park, 14.439089 N, 101.372228 E, on stick insects, on the leaf litter, 27 Aug. 2012, A. Khonsanit, D. Thanakitpipattana, J. Luangsa-ard, S. Mongkolsamrit & W. Noisripoom (BBH 32525, BCC 55003).

Notes: Metarhizium phasmatodeae is in a clade with M. brachyspermum, M. indigoticum and M. majus. Metarhizium phasmatodeae has cylindrical, obclavate, ovoid conidia, 5.5–8 × 2–3 μm, which are shorter than those reported for M. majus (10.5–13 × 2.5–4 μm). Both species were found in their asexual states.

Metarhizium phuwiangense Luangsa-ard, Mongkolsamrit, Himaman, Thanakitpipattana & Samson, sp. nov. MycoBank MB834899. Fig. 24.

Fig. 24

Metarhizium phuwiangense (BBH 47443, culture ex-type BCC 85069). A. Stromata arising from host. B–D. Oblique perithecial orientation. E. Asci. F. Ascus. G. Asci tips. H–J. Ascospores showing part ascospores. K. microcyclic sporulation of ascospores. L. Colonies on OA. M–P. Phialides and conidia on OA. Q. Colonies on PDA. R–U. Phialides and conidia on PDA. V. Colonies on SDAY/4. W–Z. Phialides and conidia on SDAY/4. Scale bars: A = 10 mm; B = 5 mm C = 120 μm; D = 300 μm; E = 60 μm; F, G, I−K = 8 μm; H = 50 μm; M, O, R = 5 μm; N, P, S–U, W, X = 10 μm; Y, Z = 7 μm.

Etymology: Named after Phu Wiang National Park, where the type specimen was found.

Stromata two to three, clavate, branched. 1–1.5 cm long, 1.5–2 mm wide, becoming purple in 3 % potassium hydroxide (KOH). Rhizoids flexuous, arising from region between head and thorax of Coleoptera adults, ca. 3.5 cm buried deep under the ground in the leaf litter. Upper part of the stromata fertile, orange brown (oac686-687), 0.5–1 cm long, 1.5–2.5 mm wide. Perithecia semi-immersed, oblique in arrangement with slightly protuberant ostiole, ovoid, (540–)575–695(–700) × (200–)295–375(–400) μm. Asci cylindrical, 8-spored, 225–320 × 3–4 μm, apical cap prominent, 3 μm wide with thin ascus tip, 1–2 μm. Ascospores filiform with septa that dissociate into 16 cylindrical part-spores, hyaline, 8–12 × 1–1.5 μm. Secondary conidia produced within 24 h directly on ascospores, cylindrical with rounded apices, 3–5 × 1.5–3 μm.

Cultural characteristics: Colonies on OA attaining a diam of 20 mm in 14 d, pale green (oac874-875) with slightly white mycelium, floccose, pale red pigmented (oac668-669) in media. Sporulation starts at 14 d after inoculation. Phialides produced singly along the hyphae, not in whorls, with swollen globose basal portion, paecilomyces-like, 5–7.5(–10) × 2–3 μm, and distinct necks, (1–)1.5–3(–4) × 1 μm. Conidia smooth-walled, hyaline, ellipsoidal to cylindrical with rounded apices, in imbricate chains, 6–7.5(–8) × 3–3.5 μm.

 Colonies on PDA attaining a diam of 20 mm in 14 d, pale green (oac874-875) to white mycelium, abundant aerial mycelium, floccose, reverse uncoloured, sporulation starts 14 d after inoculation. Phialides produced singly along the hyphae, not in whorls, paecilomyces-like, with swollen globose basal portion, 5–7(–10) × (2–)2.5–3(–4) μm, and distinct necks, (1–)2–3.5(–4) × 1 μm. Conidia smooth-walled, hyaline, ellipsoidal to cylindrical with rounded apices, in imbricate chains, (6–)6.5–8(–10) × 3–4 μm.

 Colonies on SDAY/4 attaining a diam of 15 mm in 14 d, brown-orange (oac790-791) mycelium with slightly white, abundant aerial mycelium, fluffy, flat, reverse uncoloured. Phialides produced singly along on hyphae, not in whorls, paecilomyces-like, swollen globose basal portion, 5–8(–12) × (2–)2.5–3 μm, and distinct necks, (2–)2.5–4(–5) × 1 μm. Conidia smooth-walled, hyaline, ellipsoidal to cylindrical with rounded apices, in imbricate chains, 7–8 × (2.5–)3–3.5(–4) μm.

Typus: Thailand, Khon Kaen Province, Phu Wiang National Park, on Coleoptera adult, 19 Jul. 2017, K. Tasanathai, S. Mongkolsamrit, W. Noisripoom, W. Himaman, P. Jangsantear & B. Sakolrak (holotype BBH 47443 preserved in a metabolically inactive state, culture ex-type BCC 85069).

Habitat: Coleoptera adult, buried in the ground.

Known distribution: Thailand, known from Phu Wiang National Park, Phu Khiao Wildlife Sanctuary.

Additional materials examined: Thailand, Khon Kaen Province, Phu Wiang National Park, 16.681017 N, 102.237089 E, on Coleoptera adult, 19 Jul. 2017, K. Tasanathai, S. Mongkolsamrit, W. Noisripoom, W. Himaman, P. Jangsantear & B. Sakolrak (BBH 47442, BCC 85068); Chaiyaphum Province, Phu Khiao Wildlife Sanctuary, 16.335569 N, 101.550539 E, on Coleoptera adult, 14 Aug. 2015, S. Mongkolsamrit, A. Khonsanit, W. Noisripoom, D. Thanakitpipattana, N. Kobmoo, P. Srikitikulchai, S. Wongkanoun & R. Promharn (BBH 41190, BCC 78206).

Notes: Based on the multi-gene phylogenetic analyses, Metarhizium phuwiangense is closely related to M. reniforme. It shares similarity with M. reniforme in the production of spherical to broadly ellipsoidal phialides with distinct necks. It differs distinctly from M. reniforme in the arrangement of conidia as well as its shape. In M. phuwiangense the conidia are cylindrical to ellipsoidal with rounded apices while in M. reniforme the conidia are kidney-shaped. Metarhizium reniforme is only known to occur on tettigoniid grasshoppers while M. phuwiangense occurs on Coleoptera adults. We never found the asexual morph in nature so comparisons with the morphology on the host with M. reniforme could not be made. In culture, the phialides of M. reniforme are in whorls of 2–3 but in M. phuwiangense they occur singly along the mycelium. It produces a unique form of conidiogenesis and resembles that of Chloridium virescens (Cole & Samson, 1979) in being phialidic with a sympodial sequence of conidial succession.

Metarhizium pingshaense Q.T. Chen & H.L. Guo, Acta Mycol. Sin. 5: 181. 1986.

Description and iIllustration: see Guo et al. (1986).

Typus: China, on pupa of Alissonotum, (Coleoptera, Scarabaeidae), collection date and collector unknown (culture ex-type CBS 257.90).

Habitat: Coleoptera, Diptera, Hemiptera, Homoptera, Hymenoptera, Isoptera, Orthoptera, soil.

Known distribution: Australia, Brazil, China, India, Indonesia, Japan, Papua New Guinea, Philippines, Solomon Islands, Thailand.

Notes: Metarhizium pingshaense is a member of the pingshaense, anisopliae, robertsii, brunneum – PARB clade – of the M. anisopliae complex that now includes M. humberi to the original four species (Fig. 2). However, members of M. anisopliae in this PARB clade are considered different species to the M. anisopliae neotype from Ukraine.

Metarhizium prachinense Tasanathai et al., Mycol. Prog. 16: 382. 2017.

Description and illustration: See Luangsa-ard et al. (2017) and this study. Description on OA is based on this study. Description of stroma, on PDA and SDAY/4, were taken from Luangsa-ard et al. (2017).

Stromata usually branched, on Lepidoptera larva, 50–86 × 1–2 mm, broad; stipe cylindrical, somewhat flat, pale yellow (1A3) to greyish yellow (4C6); fertile area cylindrical with pointed ends, white, pale yellow to greyish yellow, 0.8–1.7 × 1 mm. Rhizoids flexuous, up to 7 cm underground. Perithecia scattered or crowded, greyish yellow (4C6) to brown (6E5), oblique in arrangement, clavate to ovoid with slightly protruding, bent ostioles, 320–470 × 180–300 μm. Asci hyaline, cylindrical, 100–271 × 3–5 μm, apical cap prominent, 1 × 2 μm. Ascospores filiform, hyaline, whole, 94–107 × 1 μm.

Cultural characteristics: Colonies on OA attaining a diam of 15 mm in 14 d, white to cream, floccose, entire margin, poor sporulation with green conidia produce on aerial mycelium. Sporulation starts at 14 d after inoculation, reverse uncoloured, Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical. Phialides smooth-walled, cylindrical, (5–)6–10 × 2–3 μm. Conidia smooth-walled, globose, (2–)2.6–3.7(–4) × 2–3 μm.

 Colonies on PDA initially colourless, turning green due to the production of green conidia after 7 d. Vegetative hyphae smooth walled. Conidiophores erect, resembling Isaria but not having tapering long necks, bearing dense whorls of branches, each bearing 3–5 conidiogenous cells. Phialides ovoid to obpyriform with short distinct neck, 3–5 × 2 μm. Conidia subglobose, green, 3–5 × 1.5–2.5 μm.

 Colonies on SDAY/4 attaining a diam of 10 mm in 10 d, at first white turning sulphur yellow (No.57) in center of colony due to the production of conidia. Vegetative hyphae smooth-walled. Conidiophores erect, resembling Isaria but not having tapering long necks, bearing dense whorls of branches, each bearing 2–5 conidiogenous cells. Phialides ovoid to obpyriform with short distinct neck, 2–5 × 2–2.5 μm. Conidia hyaline, subglobose, 3–5 × 2–3 μm.

Typus: Thailand, Prachin Buri Province, Khao Yai National Park, on Lepidoptera larva, 2 Jun. 2011, K. Tasanathai, S. Mongkolsamrit, P. Srikittikulchai, A. Khonsanit & W. Noisripoom (holotype BBH 30607 preserved in a metabolically inactive state, culture ex-type BCC 47979).

Habitat: Lepidoptera larva.

Known distribution: Thailand.

Additional material examined: Thailand, Prachin Buri Province, Khao Yai National Park, 14.439089 N, 101.372228 E, on Lepidoptera larva, 12 May 2011, J. Luangsa-ard, K. Tasanathai, S. Mongkolsamrit & A. Khonsanit (BBH 30600, BCC 47950).

Notes: Metarhizium prachinense shares similarity with M. ovoidosporum and M. samlanense in producing nomuraea-like phialides in culture. Metarhizium prachinense was found in sexual morph state while M. ovoidosporum and M. samlanense were found with their asexual morph states. Metarhizium prachinense and M. samlanense produce subglobose conidia (3–5 × 2–3 μm and 3–5 μm, respectively) but M. ovoidosporum produces ovoid, occasionally subglobose conidia, 3–5 × 2–4 μm.

Metarhizium pseudoatrovirens (Kobayasi & Shimizu) Kepler et al., Mycologia 106: 824. 2014.

Basionym: Cordyceps pseudoatrovirens Kobayasi & Shimizu, Bull. Nat. Sc. Mus. Tokyo 8: 111. 1982.

Synonym: Metacordyceps pseudoatrovirens (Kobayasi & Shimizu) Kepler et al., Mycologia 104: 190. 2012.

Typus: Japan, Aomori Prefecture, Towada, Oirase, on larva of Coleoptera, 13 Sep. 1979, D. Shimizu (holotype TA 225, deposited in TNS).

Habitat: Coleoptera larva.

Known distribution: Japan.

Notes: This species differs from M. atrovirens in the ordinal arrangement of the perithecia that are completely immersed, including the ostioles.

Metarhizium purpureogenum O. Nishi et al., Mycol. Prog. 16: 994. 2017.

Description and illustration: See Nishi et al. (2017).

Typus:Japan, Nagasaki, isolated from soil in grass lawn, 2008, collector unknown (holotype NIAES 20610, culture ex-type MAFF 243305 = ARSEF 12571).

Habitat: Soil.

Known distribution: Japan.

Notes: Metarhizium purpureogenum, found in soil samples, is closely related to M. novozealandicum which was isolated from Lepidoptera, Coleoptera larva and from soil. Metarhizium purpureogenum excretes a red-purple pigment into the agar which is characteristic of this species.

Metarhizium purpureonigrum Luangsa-ard, Tasanathai, Thanakitpipattana & Samson, sp. nov. MycoBank MB834913. Fig. 25.

Fig. 25

Metarhizium purpureonigrum (BBH 47504, culture ex-type BCC 89247). A–B. Stromata arising from host. C. Part of perithecial. D. Immerse perithecium. Ascus. E–G. Ascospores. H. Synnemata arising from host. I. Green spores on synnemata. J. Phialides and conidia on host. K. Conidia on host. L. Colonies on OA. M. SEM of phialides and conidia. N–O. Conidia on OA. P–Q. Colonies on PDA. R–S. Colonies on SDAY/4. Scale bars: D = 70 μm; E−G = 25 μm; J, K, M, O = 5 μm; N = 10 μm.

Etymology: Named after colour of the fresh stromata, from the Latin ‘purpura’ meaning purple and ‘nigrum’ meaning black.

Stromata protruding from the ground with several loosely connected stromata emerging from the host, 10–15 cm long, up to 10 mm wide. Fertile part on the terminal end ca. one-third of the stroma, purple to black. Perithecia crowded, ordinal in arrangement, completely immersed, elongate ovoid, (600–)685–846(–870) × (250–)275–420(–500) μm. Asci cylindrical, 8-spored, (245–)250–275(–280) × 6–8 μm. Ascospores hyaline, filiform, multi-septate (200–)228–270(–275) × 1.5–2 μm. From the asexual morph, conidiophores consisting of verticillate branches with whorls of phialides. Phialides cylindrical, 5–7.2(–8) × 2–3 μm. Conidia smooth-walled, hyaline, fusiform, (4–)5.4–7.7(–10) × 2–3 μm.

Cultural characteristics: Colonies on OA attaining a diam of 20 mm in 20 d, mycelium floccose, cottony, closely appressed and slightly convex in the middle of agar surface, cream (oac486) to olive green (oac873), powdery while sporulating. Sporulation starts at 14 d after inoculation. Conidiophores arising from aerial mycelia, erect, smooth-walled. Phialides smooth-walled, cylindrical, 10–12 × 3–4 μm. Conidia smooth-walled, hyaline, cylindrical, (6–)7–9.2(–10) × 2–3 μm.

 Colonies on PDA extremely slow growing. Conidia and reproductive structures not observed.

 Colonies on SDAY/4 extremely slow growing. Conidia and reproductive structures not observed.

Typus: Thailand, Nakhon Ratchasima Province, Khao Yai National Park, on Coleoptera larva, 19 Sep. 2018, J. Luangsa-ard, K. Tasanathai, D. Thanakitpipattana, B. Sakolrak, R. Somnuk, S. Mongkolsamrit, W. Noisripoom & W. Himaman (holotype BBH 47504 preserved in a metabolically inactive state, culture ex-type BCC 89247).

Habitat: Coleoptera larva.

Known distribution: Thailand, from at Khao Yai National Park.

Additional materials examined: Thailand, Nakhon Ratchasima Province, Khao Yai National Park, 14.439089 N, 101.372228 E, on Coleoptera larva, 19 Sep. 2018, J. Luangsa-ard, K. Tasanathai, D. Thanakitpipattana, B. Sakolrak, R. Somnuk, S. Mongkolsamrit, W. Noisripoom & W. Himaman (BBH 44518, BCC 89248), (BBH 47505, BCC 89324), (BBH 43816, BCC 89249), (BBH 43814, BCC 89250).

Notes: Phylogenetically M. purpureonigrum is closely related to M. purpureum and M. flavum but differs in the colour of its stromata in specimens producing the sexual morph. Metarhizium purpureonigrum and M. purpureum have purple to dark stromata while M. flavum has pale yellow to olive yellow stromata. The perithecia of M. purpureonigrum and M. purpureum are immersed but in M. flavum they are semi-immersed. These three species share similarity in having perithecia in ordinal arrangement.

Metarhizium purpureum Luangsa-ard, Mongkolsamrit, Lamlertthon, Thanakitpipattana & Samson, sp. nov. MycoBank MB834900. Fig. 26.

Fig. 26

Metarhizium purpureum (BBH 42769, culture ex-type BCC 82642). A. Stromata arising from Coleoptera larva. B–C Ordinal perithecial orientation. D. Asci. E. Ascus tip. F. Ascospores. G. Whole ascospore showing septa (arrows). H. Synnema arising from Coleoptera larva. I–J. Phialides and conidia on insect host. K. Colonies on OA. L–O. Phialides and conidia on OA. Scale bars: A, H = 2 cm; B = 2.5 mm; C = 200 μm; D = 12 μm; E, G, J, M−O = 10 μm; F = 40 μm; I, L = 5 μm.

Etymology: Refers to the purple colour of stromata on the host.

Stromata two to eight, clavate, branched, up to 4 cm long, 2.5–3 mm wide. Rhizoids flexuous, arising from region between head and thorax of Coleoptera larva, up to 3 cm buried deep underground. Upper part of the stromata fertile, dark purple (oac524-525), 1–2.5 cm long, 2.5–5 mm wide. Perithecia immersed, ordinal in arrangement with slightly protuberant ostiole, ovoid, (370–)412–495(–520) × (210–)230–285(–300) μm. Asci cylindrical, 8-spored, 150–250 × 5–8 μm, prominent apical cap, 5 × 5 μm. Ascospores filiform, with septa but do not dissociate into part-spores, hyaline, (160–)200–240 × 1.5–2 μm. Asexual morph seen in nature. Stipe erect, clavate, unbranched, flattened, covered with pale blue greenish (oac175-176) to dark green (oac159-160) mycelium covered by sporulating conidiophores. Terminal part of stroma purple. Conidiophores dense, consisting of 1–3 phialides in whorls, nomuraea-like. Phialides cylindrical or subglobose and blunt at the ends, 5–10 × 3–3.5 μm. Conidia cylindrical with rounded apices, (5–)5.5–8 × (2–)2.5–3 μm.

Cultural characteristics: Colonies on OA attaining a diam of 10 mm in 21 d, pale green with slightly, flat, floccose, velvety to woolly, reverse uncoloured. Sporulation starts at 21 d after inoculation. Conidiophores terminating in single phialides or branches with 2–3 phialides. Phialides cylindrical, 5–8(–10) × 2–2.5(–3) μm. Conidia smooth-walled, pale green (oac101), cylindrical with rounded apices, (7–)7.5–10 × 2 μm.

 Colonies on PDA attaining a diam of 5 mm in 14 d, pale cream mycelium, fluffy, reverse colorless. Conidia and reproductive structures not observed.

 Colonies on SDAY/4 attaining a diam of 5 mm in 14 d, pale cream mycelium, fluffy, reverse colorless. Conidia and reproductive structures not observed.

Typus: Thailand, Phitsanulok Province, Ban Phaothai Community Forest, on Coleoptera larva, 4 Sep. 2016, K. Tasanathai, S. Mongkolsamrit, D. Thanakitpipattana, W. Noisripoom, R. Somnuk, P. Srikitikulchai, S. Wongkanoun & S. Lamlertthon (holotype BBH 42769 preserved in a metabolically inactive state, culture ex-type BCC 82642).

Habitat: On larva of Oxynopterus sp. (Coleoptera), underground.

Known distribution: Thailand, known from Ban Phaothai Community Forest.

Additional materials examined: Thailand, Phitsanulok Province, Ban Phaothai Community Forest, 16.735031 N, 100.659606 E, on Coleoptera larva, 2 Aug. 2016, K. Tasanathai, S. Mongkolsamrit, D. Thanakitpipattana, W. Noisripoom, R. Somnuk, P. Srikitikulchai, S. Wongkanoun & S. Lamlertthon (BBH 42769, BCC 82642), (BBH 41293, BCC 82173); idem., 27 Sep. 2016, J. Luangsa-ard, S. Mongkolsamrit, D. Thanakitpipattana, R. Somnuk, W. Noisripoom & S. Lamlertthon (BBH 41815, BCC 83548).

Notes: In sexual morph specimens found in nature, M. purpureum is mostly similar to M. purpureonigrum by producing multiple purple stromata and perithecia that are ordinal in arrangement. The perithecia and asci in M. purpureum are smaller and shorter than those reported in M. purpureonigrum (600–870 × 250–500 μm; 245–280 × 6–8 μm). The asexual morph of these two species in nature differ significantly, in M. purpureum only a single flattened stroma is produced and the apex of the stroma is purple while M. purpureonigrum has branched, multiple stromata with attenuated tips. These two species sporulate only on OA. Additionally, M. purpureum and M. purpureonigrum are sibling species to M. flavum. The sexual morphs of these three species differ in the colour of their stromata. Metarhizium purpureum and M. purpureonigrum have purple stromata while M. flavum has pale yellow to olive yellow stromata.

Metarhizium reniforme (Samson & Evans) Luangsa-ard et al., Mycol. Prog. 16: 386. 2017.

Basionym: Paecilomyces reniformis Samson & Evans, Stud. Mycol. 6: 43. 1974.

Typus: No type has been designated for this species. An Indonesian strain was sequenced but was not deposited in a culture collection

Habitat: Seems specific only to Orthoptera: Tettigoniidae.

Known distribution: Ghana, Indonesia, Philippines, USA.

Notes: The conidiogenous structures of Metarhizium reniforme are reminiscent of M. rileyi consisting of a globose basal portion with a short neck and less compact conidiophores. It produces pale green conidia that are kidney-shaped, reminiscent of those of Isaria tenuipes (Paecilomyces tenuipes), hence the previous placement in Paecilomyces section Isarioidea by Samson (1974). Metarhizium reniforme appears to have a specificity for Tettigoniidae grasshoppers and the conidial shape of M. reniforme remains reniform (kidney-shaped) after culture.

Metarhizium rileyi (Farl.) Kepler et al., Mycologia 106: 824. 2014.

Basionym: Botrytis rileyi Farl., Riley, Rep. U.S. Dep. Agric.: 121. 1883.

Synonyms: Spicaria rileyi (Farl.) Charles, Mycologia 28: 398.1936.

Beauveria rileyi (Farl.) Gösswald, Arb. biol. BundAnst. Land- u. Forstw.: 434. 1939

Nomuraea rileyi (Farl.) Samson, Stud. Mycol. 6: 81. 1974

Nomuraea prasina Maubl., Bull. Soc. Mycol.France 19: 296. 1903.

Description and illustration: See Samson (1974).

Typus: USA, Washington D.C., on Plusia brassicae, collection date unknown, R. Thaxter.

Habitat: Lepidoptera, Hemiptera.

Known distribution: Argentina, Brazil, China, France, Indonesia, Japan, Philippines, Solomon Islands, Thailand, USA.

Notes: Metarhizium rileyi is more common in agricultural ecosystems than in the forest and is used in biological control of certain Lepidoptera species especially the larva in cabbage farms.

Metarhizium robertsii J.F. Bisch. et al., Mycologia 101: 520. 2009.

Description and illustration: See Bischoff et al. (2009).

Typus: USA, South Carolina, on Curculio caryae (Coleoptera, Curculionidae), 21 Jul. 1988, R.J. St. Leger, (holotype BPI 878819, culture ex-type ARSEF 2575 = ATCC MYA-3093 = IMI I91-613).

Habitat: Coleoptera, Hemiptera, Hymenoptera, Isoptera, Lepidoptera, soil.

Known distribution: Argentina, Australia, Brazil, Canada, Italy, Japan, Portugal, USA.

Notes: Metarhizium robertsii is morphologically indistinguishable from M. anisopliae, and is also a member of the PARB clade together with M. alvesii, M. humberi and M. lepidiotae. It was diagnosed from other members of the M. anisopliae complex by unique fixed nucleotide characters in the tef alignment which can be evaluated by downloading the alignment S2169 from www.TreeBase.org (Bischoff et al. 2009). Like most species in this species complex, the best method to use to identify the species is to sequence multiple loci and run a phylogenetic analysis to have a better idea of its placement and relationships with other species.

Metarhizium samlanense Luangsa-ard et al., Mycol. Prog. 16: 387. 2017.

Description and illustration: See Luangsa-ard et al. (2017). The description below is based on specimens collected in Thailand.

Specimens found only on leafhoppers (Hemiptera, Cicadellidae) on the underside of leaves. The host body was covered with bunting-green (No.150) powdery globose conidia, 3–4 μm.

Cultural characteristics: Colonies on OA attaining a diam of 20–22 mm in 14 d, flat, closely appressed to the agar surface, at first white turning peacock-green (No.162C) and powdery while sporulating, white at the margins, produced olive-yellow (No.52) pigmentation in agar culture. Sporulation starts at 3 d after inoculation, reverse olive yellow (No.52). Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical. Phialides smooth-walled, ovoid, occasionally subglobose and cylindrical, (4–)4.2–6(–8) × 2–3.5 μm. Conidia smooth-walled, peacock-green (No.162C), globose, (3–)3.4–4(–4.5) μm.

 Colonies on PDA attaining a diam of 23–24 mm in 14 d, flat, closely appressed to the agar surface, at first white turning Paris green (No.63), powdery while sporulating, forming a basal felt bearing densely packed, floccose at the margin. Sporulation starts at 3 d after inoculation, reverse yellowish olive-green (No.50), olive yellow (No.52) in the middle of colony and lime green (No.59) at the margin. Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical, nomuraea-like in forming of branches. Phialides smooth-walled, ovoid, occasionally subglobose and cylindrical, 5–7 × 2–3 μm. Conidia smooth-walled, Paris green (No.63), globose, 3–4 μm.

 Colonies on SDAY/4 attaining a diam of 18 mm in 14 d, flat, closely appressed to the agar surface, at first white turning to sulfur yellow (No.157) to straw yellow (No.56), powdery while sporulating, white mycelium at the margin. Sporulation starts at 3 d after inoculation, reverse olive-brown (No.28), olive yellow (No.52) in the middle of colony and white cream at the margin. Conidiophores arising from aerial mycelia, erect, smooth-walled, cylindrical, nomuraea-like in forming of branches. Phialides smooth-walled, ovoid, occasionally subglobose and cylindrical, 5–7 × 2–3 μm. Conidia smooth-walled, straw yellow (No.56), globose, 3–5 μm.

Typus: Thailand, Saraburi Province, Namtok Samlan National Park, 14.440100 N, 100.960308 E, on adult leafhopper, 2 Feb. 2005, J. Luangsa-ard & S. Mongkolsamrit (holotype BBH 14640 preserved in a metabolically inactive state, culture ex-type BCC 17091).

Habitat: Adult leafhopper (Hemiptera: Cicadellidae), on the underside of monocotyledonous leaves.

Known distribution: Thailand, only from Namtok Samlan National Park.

Additional materials examined: Thailand, Saraburi Province, Namtok Samlan National Park, 14.440100 N, 100.960308 E, on adult leafhopper, 25 Oct. 2006, K. Tasanathai (MY01747, BCC 23818), 8 Sep. 2009, D. Thanakitpipattana, J. Luangsa-ard & R. Ridkaew (BBH 27086, BCC 39752), (BBH 27087, BCC 39753), (BBH 27089, BCC 39755).

Notes: Metarhizium samlanense, M. ovoidosporum and M. prachinense share similarity in producing nomuraea-like conidiophores in culture. All three species were found in different localities in Thailand. Metarhizium samlanense was found only in Namtok Samlan National Park, M. prachinense in Khao Yai National Park and M. ovoidosporum in Khlong Lan National Park. Metarhizium samlanense and M. ovoidosporum were both found in their asexual states while M. prachinense was found in its sexual state. Both M. ovoidosporum and M. samlanense were found occurring on Hemiptera on the underside of leaves while M. prachinense was found occurring on Lepidoptera larva buried in the ground. On SDAY/4, the conidial shape of M. samlanense is globose while it is ovoid, occasionally ellipsoidal or subglobose in M. ovoidosporum and only subglobose in M. prachinense.

Metarhizium sulphureum Luangsa-ard, Khonsanit, Thanakitpipattana & Samson, sp. nov. MycoBank MB834901. Fig. 27.

Fig. 27

Metarhizium sulphureum (BBH 29463, culture ex-type BCC 36592). A. Immature stroma (arrow) with developing and mature stromata on Lepidoptera larvae. B. Fertile head. C. Perithecia. D. Ascus and ascus cap showing ascospores inside. E. Ascospores. F. Colonies on OA in 20 d. G. Conidiophores bearing phialides and conidia on OA. H. Conidia on OA. I. Colonies on PDA. J. Conidiophores bearing phialides and conidia on PDA. K. Conidia on PDA. L. Colonies on SDAY/4. M. Conidiophores bearing phialides and conidia on SDAY/4. N. Conidia on SDAY/4. Scale bars: A = 10 mm; B = 1 mm; C = 200 μm; D, G, J, M = 10 μm; E = 50 μm; H, K, N = 5 μm.

Etymology: In reference to the colour of stromata on the host.

Specimens were found on Lepidoptera larva, mostly buried in the soil, seldom in the leaf litter. Stromata solitary to several, 25–45 × 2–3 mm, arising from head of infected Lepidoptera larva, sulphur-yellow (No.57) to greenish-olive (No.49), the hosts’ bodies were covered with apple-green (No.61), Paris-green (No.63) mycelium. Perithecia semi-immersed, oblique in arrangement, ovoid, dark ostioles, 600–700 × 420–450 μm. Asci cylindrical, 300–420 × 3–6 μm. Asci caps rounded, 5 × 5 μm. Ascospores hyaline, filiform, 200–300 × 2–3 μm.

Cultural characteristics: Colonies on OA attaining a diam of 20–21 mm in 14 d, mycelium closely appressed and white, slightly convex in the middle of agar surface, olive-yellow (No.52) at the margins, powdery while sporulating. Sporulation starts at 3 d after inoculation, reverse olive-yellow (No.52). Conidiophores arising from aerial mycelium, erect, smooth-walled, cylindrical. Phialides smooth-walled, cylindrical with semi-papillate apices, 7–10(–12) × 1.5–2 μm. Conidia smooth-walled, greenish-olive (No.49), cylindrical with rounded apices or ellipsoidal, (5–)6–7.5(–8) × 2–2.5 μm.

 Colonies on PDA attaining a diam of 18–21 mm in 14 d, mycelium closely appressed and slightly convex in the middle of agar surface, flat, white at the margins turning greenish-olive (No.49) and powdery while sporulating. Sporulation starts at 3 d after inoculation, reverse olive yellow (No.52) in the middle of colony and white cream at the margin. Conidiophores arising from aerial mycelium, erect, smooth-walled, cylindrical. Phialides smooth-walled, cylindrical with semi-papillate apices, 7–8.5(–10) × 1.5–2 μm. Conidia smooth-walled, greenish-olive (No.49), cylindrical with rounded apices or ellipsoidal, (5–)6–7(–9) × 2–2.5 μm.

 Colonies on SDAY/4 attaining a diam of 14–17 mm in 14 d, mycelium closely appressed and slightly convex to the agar surface, white at the margins turning olive-yellow (No.52) and greenish-olive (No.49), powdery while sporulating around the middle of colony. Sporulation starts at 3 d after inoculation, reverse buff in the middle of colony and white cream at the margin. Conidiophores arising from aerial mycelium, erect, smooth-walled, cylindrical. Phialides smooth-walled, cylindrical with semi-papillate apices, (5–)6.5–9.5(–11) × 1.5–2 μm. Conidia smooth-walled, greenish-olive (No.49), cylindrical with rounded apices, 6–7.5(–9) × 2–3 μm.

Typus: Thailand, Nakhon Ratchasima Province, Khao Yai National Park, on Lepidoptera larva, 21 May 2009, K. Tasanathai, P. Puyngain, P. Srikitikulchai, R. Ridkaew, S. Mongkolsamrit & T. Chohmee (holotype BBH 29463 preserved in a metabolically inactive state, culture ex-type BCC 36592).

Habitat: Lepidoptera larva buried in the soil or lying in the leaf litter.

Known distribution: Thailand, found only in Khao Yai National Park.

Additional materials examined: Thailand, Nakhon Ratchasima Province, Khao Yai National Park, Mo Sing To Nature Trail, 14.439089 N, 101.372228 E, on Lepidoptera larva, 19 May 2009, K. Tasanathai, P. Puyngain, P. Srikitikulchai, R. Ridkaew, S. Mongkolsamrit & T. Chohmee (BBH 26200, BCC 36568); idem., 20 May 2009, K. Tasanathai, P. Puyngain, P. Srikitikulchai, R. Ridkaew, S. Mongkolsamrit & T. Chohmee (BBH 26213, BCC 36585); idem., 13 Sep. 2009, K. Tasanathai, P. Srikitikulchai, R. Ridkaew, S. Mongkolsamrit & T. Chohmee (BBH 27261, BCC 39045).

Notes: Metarhizium sulphureum was found occurring on Lepidoptera larva and both sexual and asexual states were collected. Only eight species with sexual morphic states are known in the Metarhizium anisopliae complex including M. brachyspermum, M. brittlebankisoides, M. campsosterni, M. clavatum, M. guizhouense (M. taii), M. indigoticum, M. kalasinense and M. sulphureum. All eight species differ in the size and shape of the perithecia, asci, and ascospores (Table 4). Metarhizium indigoticum and M. sulphureum were found occurring on Lepidoptera larva, while M. brachyspermum, M. brittlebankisoides, M. campsosterni, M. clavatum and M. kalasinense were found on Coleoptera larva. Metarhizium guizhouense was found occurring on various insect orders including Coleoptera, Diptera, Lepidoptera, and is also found in the soil.

Metarhizium takense Tasanathai et al., Mycol. Prog. 16: 388. 2017.

Description and illustration: See Luangsa-ard et al. (2017) and this study. Description on OA is based on this study. Description on stroma, PDA and SDAY/4 were taken from Luangsa-ard et al. (2017).

Stromata simple, cylindrical, greyish green (27D5) to almost dark green (29F5) arising from the head of the cicada nymphs, 70–130 × 0.6–1.8 mm. Terminal part of the stroma fertile, cylindrical. Perithecia flask-shaped, oblique in arrangement, 510–550 × 250–350 μm. Asci hyaline, cylindrical, 275–400 × 5 μm. Ascospores filiform, hyaline, not fragmenting into part-spores, 155–230 × 1.25 μm.

Cultural characteristics: Colonies on OA attaining a diam of 15 mm in 14 d, floccose, cream to green with age (oac892-oac39). Sporulation starts at 7 d after inoculation, reverse uncoloured. Conidiophores arising from hyphae, smooth-walled, cylindrical. Phialides, smooth-walled, cylindrical, (3–)4–5(–6) × 2–3 μm. Conidia smooth-walled, ovoid, ellipsoidal, (2–)3–5 × 2–3 μm.

 Colonies on PDA attaining a diam of 10 mm in 10 d, at first white turning greenish olive (No.49) due to the production of conidia in the middle of colony. Phialides fusiform to narrowly ovoid, 3–5 × 2 μm. Conidia catenulate, dimorphic; microconidia formed first, ovoid, ellipsoidal or subglobose, 3–5 × 2–3 μm, macroconidia formed later, cylindrical, clavate, 8–16 × 3–4 μm.

 Colonies on SDAY/4 attaining a diam of 10 mm in 14 d, at first white becoming greenish olive (No.49) at 7 d due to the production of conidia. Vegetative hyphae smooth walled. Conidiophores dense, terminating in branches with 2–3 phialides per branch. Phialides fusiform to narrowly ovoid, 5–8 × 2–3 μm. Conidia catenulate, ovoid, ellipsoidal or subglobose, 3–5 × 2–3 μm.

Typus: Thailand, Tak Province, Umphang Wildlife Sanctuary, on cicada nymph (Hemiptera), 24 Jun. 2008, J. Luangsa-ard, K. Tasanathai, S. Mongkolsamrit, P. Srikittikulchai, A. Khonsanit & B. Thongnuch (holotype BBH 25192 preserved in a metabolically inactive state, culture ex-type BCC 30939).

Habitat: Cicada nymph (Hemiptera).

Known distribution: Thailand.

Additional materials examined: Thailand, Tak Province, Umphang Wildlife Sanctuary, on cicada nymph (Hemiptera), 24 Jun. 2008, J. Luangsa-ard, K. Tasanathai, S. Mongkolsamrit, P. Srikittikulchai, A. Khonsanit & B. Thongnuch (BBH 23893, BCC 30934), (BBH 23898, BCC 30940).

Notes: Metarhizium takense closely related to M. chaiyaphumense but they differ in the shape of the perithecia as well as in the length of their asci and ascospores. Metarhizium chaiyaphumense has longer asci than in M. takense. The colour of the stroma in M. takense is greenish brown to dark green while in M. chaiyaphumense the stroma is grayish yellow to yellowish olive green. The stroma in M. takense is significantly bigger (70–130 mm) than in M. chaiyaphumense, measuring only 30–35 mm (Luangsa-ard et al. 2017).

Metarhizium viride (Segretain et al. ex Samson) Kepler et al., Mycologia 106: 824. 2014.

Basionym: Paecilomyces viridis Segretain et al. ex Samson, Stud. Mycol. 6: 64. 1974.

Synonym: Chamaeleomyces viridis (Segretain et al. ex Samson) Sigler, J. Clin. Microbiol. 48: 3188. 2010.

Description and illustration: See Samson (1974).

Typus: Madagascar, from Chamaeleo lateralis (holotype IP 850, culture ex-type CBS 348.65 = ATCC 28695 = IHEM 3281, isotype IP 850.64).

Habitat: Chamaeleo lateralis (Reptilia: Chamaeleonidae).

Known distribution: Expected in countries with Chamaeleo spp.

Notes: As pathogens of reptiles, M. viride and M. granulomatis occupy the basal most position of the Metarhizium clade producing pale green to greenish-grey colonies. Both species produce paecilomyces-like phialides consisting of a globose or flask-shaped basal portion and a distinct thin, sometimes long neck, globose to subglobose conidia, and a yeast-like fragmentation in culture. Both species are rare but seem to be aggressive pathogens of chameleons (Sigler et al. 2010).

Metarhizium viridulum (Tzean et. al.) B. Huang & Z.Z. Li, Mycosystema 23: 36. 2004.

Basionym: Nomuraea viridula Tzean et al., Mycologia 84: 781. 1992.

Description and illustration: See Tzean et al. (1992). The description below is based on specimens in Thailand.

Description from the asexual morph. Specimens found on adult cicadas. Hosts covered with pale green mycelium and sporulating conidiophores. Conidia smooth-walled, ellipsoidal to cylindrical, allantoid, (9–)10–12(–14) × 3–4(–5) μm.

Cultural characteristics: Colonies on OA attaining a diam of 18 mm in 14 d, white to cream, floccose, entire margin, poor sporulation with green conidia produced on aerial mycelium. Sporulation starts at 14 d after inoculation, reverse uncoloured, Conidia smooth-walled, ellipsoidal to cylindrical, allantoid, (6–)8–10(–12) × 3–4 μm.

 Colonies on PDA attaining a diam of 15 mm in 14 d, white to pale yellow, green in the middle, margin floccose, white. Sporulation starts at 12 d after inoculation, reverse uncoloured. Conidia smooth-walled, ellipsoidal to cylindrical, (7–)8–10(–11) × 3–4 μm.

 Colonies on SDAY/4 attaining a diam of 15 mm in 14 d, pale yellow, flat, floccose, undulate edge. Sporulation starts at 12 d after inoculation, reverse uncoloured. Phialides one to three borne directly on metulae, oval-cylindrical to ellipsoidal, 5–7.5(–9) × 3–4(–5) μm. Conidia smooth-walled, hyaline, ellipsoidal to cylindrical, (7–)8.5–11(–13) × 3–4 μm.

Typus: Taiwan, Hsientien, Taipei, on Cryptotympana facialis (Hemiptera), 22 Jun. 1989, collector unknown (holotype PPH14, culture ex-type PPH 14E = CCRC 32589, isotype in IMI).

Habitat: Cryptotympana facialis (Hemiptera) in Taiwan and on adult cicada (Hemiptera) in Thailand.

Known distribution: Taiwan, Thailand, known from Khao Luang National Park.

Additional material examined: Thailand, Nakhon Si Thammarat Province, Khao Luang National Park, 8.376111 N, 99.734842 E, on adult cicada, 18 Feb. 2009, K. Tasanathai, S. Mongkolsamrit, P. Srikitikulchai, R. Promharn & T. Chohmee (BBH 26010, BCC 36261).

Notes: Metarhizium viridulum is closely related to M. megapomponiae occurring on adult cicada but differs in the size of conidia. Based on specimens from Thailand, the conidia of M. viridulum are longer (9–14 × 3–5 μm) than those of M. megapomponiae (6–11 × 3–5 μm). This is the first report of M. viridulum in Thailand.

Papiliomyces Luangsa-ard, Samson & Thanakitpipattana, gen. nov. MycoBank MB834902.

Etymology: From the Latin “papilio”, meaning butterfly or moth.

Description: Lepidoptera larva buried in the ground. Stromata solitary to multiple (branched), robust to wiry. Perithecia superficial to completely immersed in the stroma, ampulliform, ellipsoid to ovoid. Asci cylindrical, ascospores whole with septation or breaking into cylindrical part-spores. There are no similarities between the two species in this genus except for the lepidopteran host buried in the ground.

Type species: Papiliomyces liangshanensis (M. Zang et al.) Luangsa-ard, Samson & Thanakitpipattana.

Notes: This genus is phylogenetically distinct from Metarhizium. It can morphologically be differentiated from Metarhizium in the production of superficial perithecia and wiry, branched stromata in Papiliomyces liangshanensis and the white to faint yellow robust stroma in P. shibinensis. Sexual morphs of Metarhizium produce semi-immersed to completely immersed perithecia on robust, almost fleshy dark green or purplish stromata. Phylogenetically, it is closely related to Purpureomyces. However, in Purpureomyces, the stromata are fleshy, purple and the perithecia are obliquely immersed in the stroma while perithecia in P. shibinensis are ordinal in arrangement.

Papiliomyces liangshanensis (M. Zang et al.) Luangsa-ard, Samson & Thanakitpipattana, comb. nov. MycoBank MB834903.

Basionym: Cordyceps liangshanensis M. Zang et al., Acta Bot. Yunn. 4: 174. 1982.

Synonym: Metacordyceps liangshanensis (M. Zang et al.) G.H. Sung et al., Stud. Mycol. 57: 35. 2007.

Description and illustration: See Zang et al. (1982).

Typus: China, Sichuan, Liangshan, on Lepidoptera larva in a bamboo forest Phyllostachydis pubescentibus var. heterocyclae, 10 Nov. 1980, Liu Dao-qing (holotype KUN 7723).

Habitat: Lepidoptera larva.

Known distribution: China.

Notes: Papiliomyces liangshanensis is one of the few species of entomopathogenic fungi with superficial perithecia and wiry stromata that have been reported with aboveground branched stromata. Ophiocordyceps petchii (Mains) G.H. Sung et al. (≡ Cordyceps ramosa Petch, non-Teng 1936) on Lepidoptera larva has similar morphological features as P. liangshanensis but differs from O. petchii in the production of cylindrical part-spores while the latter produces whole filiform ascospores. The gross morphology of P. liangshanensis could easily be assigned to Ophiocordyceps in the production of dark wiry stromata and superficial perithecia like in the O. acicularis group (Luangsa-ard et al. 2018). A recollection of O. petchii in Trinidad would help elucidate if this species belongs to Ophiocordyceps or Papiliomyces. Another species producing branched stromata in the Clavicipitaceae is Sungia yongmunensis (≡ Metacordyceps yongmunensis, fig. 5B in Sung et al. 2007) on Lepidoptera pupa, but differs in the character of the stroma, which is not wiry but robust and the fertile part is not differentiated from the stroma.

Papiliomyces shibinensis (T.C. Wen et al.) Luangsa-ard Samson & Thanakitpipattana, comb. nov. MycoBank MB834904.

Basionym: Metacordyceps shibinensis T.C. Wen et al., Phytotaxa 226: 57. 2015.

Description and illustration: See Wen et al. (2015).

Typus: China, Shibin County, Yuntai mountains, Guizhou province, on Lepidoptera larva, in the soil, 3 May 2013, L.P. Chen (holotype GZUH SB 13050311, culture ex-type SB13050311).

Habitat: Lepidoptera larva.

Known distribution: China.

Notes: This species is closely related to Papiliomyces liangshanensis (Metacordyceps liangshanensis) but differs significantly in their morphologies. Papiliomyces liangshanensis produces branched, wiry stromata with superficial perithecia and ascospores that dissociate into part-spores while P. shibinensis produces robust stroma with completely immersed perithecia and multi-septate, whole ascospores.

Purpureomyces Luangsa-ard, Samson & Thanakitpipattana gen. nov. MycoBank MB834905.

Etymology: Named after the colour of the stromata in nature.

Description: Stroma solitary, white at the tip when young (immature) to purple, especially around the ostioles, cylindrical to clavate with tapering end, flexuous. Hosts are Lepidoptera larva or pupa underground. Perithecia immersed to semi-immersed, ovoid, oblique in arrangement. Asci cylindrical, 8-spored; ascospores hyaline, filiform, whole, septate, not breaking into part-spores. Asexual morph lecanicillium-like.

Type species: Purpureomyces khaoyaiensis (Hywel-Jones) Luangsa-ard, Samson & Thanakitpipattana.

Notes: Three species are recognised in this genus that all produce purple stromata and obliquely immersed perithecia. Phylogenetically, it is closely related to Marquandomyces and Papiliomyces. The asexual morph in Marquandomyces is paecilomyces-like and in Purpureomyces it is lecanicillium-like. There is no record of the asexual morph in Papiliomyces.

Purpureomyces khaoyaiensis (Hywel-Jones) Luangsa-ard, Samson & Thanakitpipattana, comb. nov. MycoBank MB834906. Fig. 28.

Fig. 28

Purpureomyces khaoyaiensis (NHJ00855.01, BCC1376). A. Stroma arising from Lepidoptera larva. B. Oblique perithecial. C. Section through the stroma showing perithecia. D. Whole ascospore. E. Germination and microcyclic sporulation of the ascospores on slide. F. Colonies on OA. G–I. Phialides and conidia on OA. J. Colonies on PDA. K–M. Phialides and conidia on PDA. N. Colonies on SDAY/4. O–Q. Phialides and conidia on SDAY/4. Scale bars: A = 5 mm; B = 4 mm; C = 200 μm; D, E = 20 μm; G−I, K−M, O−Q = 10 μm.

Basionym: Cordyceps khaoyaiensis Hywel-Jones, Mycol. Res. 98: 939. 1994.

Synonyms: Metacordyceps khaoyaiensis (Hywel-Jones) Kepler et al., Mycologia 104: 185. 2012.

Metarhizium khaoyaiense (Hywel-Jones) Kepler et al., Mycologia 106: 823. 2014.

Description and illustration: See Hywel-Jones (1994).

Cultural characteristics: Colonies on OA attaining a diam of 25 mm in 7 d, white, cottony, floccose, dense mycelium, reverse verona brown (223B). Hyphae septate, smooth-walled, hyaline, 1–2 μm wide. Phialides lecanicillium-like, arising from aerial hyphae, cylindrical, tapering gradually towards the apex, hyaline, solitary or more often 2 or 4 in whorls on each node, (3–)5.5–14(–20) × 1–2 μm. Conidia in long chains, hyaline, ovoid, 2–3 × 1.5–2(–3) μm.

 Colonies on PDA attaining a diam of 15–17 mm in 7 d, white to creamy, cottony, dense mycelium, reverse tawny olive (223D). Hyphae septate, smooth-walled, hyaline, 1–2 μm diam. Phialides lecanicillium-like, arising from aerial hyphae, cylindrical, tapering gradually towards the apex, hyaline, solitary or more often 2 or 4 in whorls on each node, (3–)6–13.5(–18) × 1–2 μm. Conidia in long chains, hyaline, ovoid, 2–3(–3.5) × (1–)1.5–2 μm.

 Colonies on SDAY/4 attaining a diam of 16–20 mm in 7 d, white to creamy, cottony, dense mycelium. Colonies reverse robin rufous (340). Hyphae septate, smooth-walled, hyaline, 1–2 μm diam. Phialides lecanicillium-like, arising from aerial hyphae, cylindrical, tapering gradually towards the apex, hyaline, solitary or more often 2 or 4 in whorls on each node, (7–)9.5–14.5(–18) × (1–)1.5–2(–3) μm. Conidia in long chains, hyaline, ovoid, 2–3 × 1.5–2(–3) μm.

Typus: Thailand, Nakhon Nayok Province, Khao Yai National Park, on Lepidoptera larva, in leaf litter, 14 Apr. 1997, N.L. Hywel-Jones (holotype NHJ 00885 preserved in metabolically inactive state, culture ex-type BCC 1376).

Habitat: Lepidoptera larva.

Known distribution: Thailand.

Additional materials examined: Thailand, Chiang Mai Province, Ban Hua Thung Community forest, 19.367814 N, 98.964903 E, on Lepidoptera larva, in leaf litter, 23 Sep. 2010, K. Tasanathai, P. Srikitikulchai & A. Khonsanit (BBH 30160, BCC 44287); idem., 5 Oct. 2012, K. Tasanathai, A. Khonsanit, W. Noisripoom, P. Srikitikulchai & R. Promharn (BBH 32908, BCC 55765), (BBH 32909, BCC 55766); idem., 29 Oct. 2012, K. Tasanathai, A. Khonsanit, W. Noisripoom, D. Thanakitpipattana, P. Srikitikulchai & S. Wongkanoun (BBH 40315, BCC 75721), (BBH 40208, BCC 75753), (BBH 40319, BCC 76485).

Notes: Purpureomyces khaoyaiensis is similar to P. pyriformis in having the same host and colour of the stroma. Both species occur on Lepidoptera larvae and produce purple stromata. They differ in the size and shape of perithecia, asci and ascospores. In culture, the asexual morph of P. khaoyaiensis and P. pyriformis is lecanicillium-like. Both P. khaoyaiensis and P. pyriformis produce white to cream mycelium on OA, PDA and SDAY/4, with similar sizes and shapes of the phialides and conidia.

Purpureomyces maesotensis Luangsa-ard, Noisripoom Thanakitpipattana & Samson, sp. nov. MycoBank MB834907. Fig. 29.

Fig. 29

Purpureomyces maesotensis (BBH 44500, culture ex-type BCC 89300). A–B. Stroma arising from Lepidoptera larva. C. Perithecia. D. Asci. E. Whole ascospores. F. Colonies on OA. G–I. Phialides and conidia on OA. J. Colonies on PDA. K–M. Phialides and conidia on PDA. N. Colonies on SDAY/4. O–Q. Phialides and conidia on SDAY/4. Scale bars: A = 5 mm; B = 1 mm; C = 200 μm; D, E = 20 μm; G−I, K, L, O, P = 10 μm; M, Q = 5 μm.

Etymology: Name after the type locality.

Stroma arising from the middle joints of the Lepidoptera larvae, solitary, cylindrical, 26 mm long, 1–1.5 mm wide. Stipe cylindrical, club-shaped, purple base (No.1) to whitish-purple, fertile part deep vinaceous (No.4). Perithecia semi-immersed, oblique in arrangement, ovoid, hyaline wall, (360–)373–445(–470) × (260–)264–308(–320) μm. Asci hyaline, cylindrical, (100–)110.5–160(–192.5) × (3–)4–5(–6) μm. Ascospores smooth, filiform, hyaline, whole, multi-septate, (107–)127–160(–177.5) × 1 μm. Asexual morph not seen in nature.

Cultural characteristics: Colonies on OA attaining a diam of 25 mm in 7 d, white, cottony, floccose, high mycelial density, reverse white. Hyphae septate, rough-walled, hyaline, 1–2 μm wide. Phialides arising from aerial hyphae, lecanicillium-like, hyaline, solitary or up to 2–3 per branch, cylindrical, tapering gradually towards the apex, (10–)11–19.5(–32) × 1.5–2 μm. Conidia in long chains, hyaline, ovoid to globose, 2–3 × 1.5–2(–3) μm.

 Colonies on PDA attaining a diam of 15 mm in 7 d, white to creamy, cottony, reverse tawny (No.38) to yellow ochre (No.123C). Hyphae septate, rough-walled, hyaline, 1–2 μm wide. Phialides arising from aerial hyphae, lecanicillium-like, hyaline, solitary or up to 2 per branch, narrow, cylindrical, tapering gradually towards the apex, (7–)9.5–17(–22) × 1–2 μm. Conidia in long chains, hyaline, ovoid to globose, 2–3(–4) × 1.5–2 μm.

 Colonies on SDAY/4 attaining a diam of 20 mm in 7 d, white to lilac (No.76), high mycelial density, reverse deep vinaceous (No.4) to flesh (No.5). Hyphae septate, rough-walled, hyaline, 1–2 μm wide. Phialides arising from aerial hyphae, lecanicillium-like, hyaline, solitary or up to 2–3 per branch, narrow, cylindrical, tapering gradually towards the apex, (4–)9–17.5(–21) × 1.5–2 μm. Conidia in long chains, hyaline, ovoid, 3 × (1–)1.5–2(–2.5) μm.

Typus: Thailand, Tak Province, Mae Sot District, Pha Daeng Waterfall Nature Trail, on Lepidoptera larva, on the leaf litter, 6 Sep. 2018, K. Tasanathai, S. Mongkolsamrit, W. Noisripoom & D. Thanakitpipattana (holotype BBH 44500 preserved in metabolically inactive state, culture ex-type BCC 89300).

Habitat: Lepidoptera larva.

Known distribution: Thailand, known from Pha Daeng Waterfall Nature Trail, Mae Sot District, Tak Province.

Additional material examined:Thailand, Tak Province, Mae Sot District, Pha Daeng Waterfall Nature Trail, 16.667367 N, 98.657300 E, on Lepidoptera larva, on the leaf litter, 6 Sep. 2018, K. Tasanathai, S. Mongkolsamrit, W. Noisripoom & D. Thanakitpipattana (BBH 44501, BCC 88441).

Notes: Purpureomyces maesotensis is similar to P. khaoyaiensis in producing a purple stroma arising from the middle joints of the Lepidoptera. It differs from P. khaoyaiensis in the size of the stroma, perithecia, asci and ascospores. In P. khaoyaiensis these characters are longer than in P. maesotensis (stroma 55 mm long, cylindrical asci 200–350 × 5–6 μm, ascospores filiform, whole, 160–250 × 1 μm). Additionally, P. maesotensis shares similarity with P. khaoyaiensis in producing a lecanicillium-like asexual morph in culture. The colony of both species have white to cream mycelium in obverse on OA and PDA, conidia in long chains, ovoid to globose. It differs from P. khaoyaiensis in the colony on SDAY/4, which is cream in P. khaoyaiensis and lilac in P. maesotensis.

Purpureomyces pyriformis Luangsa-ard, Noisripoom, Himaman, Mongkolsamrit, Thanakitpipattana & Samson, sp. nov. MycoBank MB834908. Fig. 30.

Fig. 30

Purpureomyces pyriformis (BBH 43364, culture ex-type BCC 85074). A–B. Stroma arising from Lepidoptera pupa. C. Perithecia. D. Asci. E. Whole ascospore. F. Colonies on OA. G–I. Phialides and conidia on OA. J. Colonies on PDA. K–M. Phialides and conidia on PDA. N. Colonies on SDAY/4. O–Q. Phialides and conidia on SDAY/4. Scale bars: A = 5 mm; B = 2 mm; C = 150 μm; D, E, H, L = 20 μm; G, I, K, M, O–Q = 10 μm.

Etymology: Named after the pear-shaped perithecia on the stroma.

Stroma arising from the head of Lepidoptera pupa, cylindrical, solitary, simple, 18 mm long, 3 mm wide, purple (C1). Upper part of the stroma fertile, fleshy, expanded, parted, 11 mm long, 3 mm wide, white to purple (C1). Perithecia immersed, oblique in arrangement, ovoid, (304–)310–341(–350) × (212.5–)220–242.5(–250) μm. Asci cylindrical, (100–)109–159(–182) × 4–5 μm, apical cap prominent, 4–5 μm wide. Ascospores smooth-walled, hyaline, filiform, (125–)143–178(–190) × 1 μm, whole, multi-septate. Asexual morph not seen in nature.

Cultural characteristics: Colonies on OA attaining a diam of 25 mm in 7 d, white, cottony, floccose, dense mycelium, reverse cream. Hyphae septate, smooth-walled, hyaline, 1–2.5 μm wide. Phialides arising from aerial hyphae, lecanicillium-like, hyaline, solitary or more often 2–4 in whorls on each branch, cylindrical, tapering gradually towards the apex, (10–)11–20(–32) × 1–2(–3) μm. Conidia in long chains, hyaline, ovoid, (2–)2.5–3.5(–4) × 1.5–2(–2.5) μm.

 Colonies on PDA attaining a diam of 15–17 mm in 7 d, white to cream, cottony, high mycelial density, reverse cream. Hyphae septate, smooth-walled, hyaline, 1–2 μm diam. Phialides arising from aerial hyphae, lecanicillium-like, hyaline, solitary or more often 2–4 in whorls on each branch, cylindrical, tapering gradually towards the apex, (5–)8.5–14(–17) × 1–2(–3) μm. Conidia in long chains, hyaline, ovoid, (2–)2.5–3.5(–4) × 1.5–2 μm.

 Colonies on SDAY/4 attaining a diam of 16–20 mm in 7 d, white to cream, cottony, high mycelial density, reverse pale yellow to cream. Hyphae septate, smooth-walled, hyaline, 1–2 μm diam. Phialides arising from aerial hyphae, lecanicillium-like, hyaline, solitary or more often 2–4 in whorls on each branch, cylindrical, tapering gradually towards the apex (8–)10–16(–22) × 1–2 μm. Conidia in long chains, hyaline, ovoid, (2–)2.5–4 × 1.5–2 μm.

Typus: Thailand, Khon Kaen Province, Phu Wiang National Park, on Lepidoptera pupa, underground, 19 Jul. 2017, K. Tasanathai, S. Mongkolsamrit, W. Noisripoom; W. Himaman, P. Jangsantear & B. Sakolrak (holotype BBH 43364 preserved in metabolically inactive state, culture ex-type BCC 85074).

Habitat: Lepidoptera pupa.

Known distribution: Thailand, known from Phu Wiang National Park.

Additional materials examined: Thailand, Khon Kaen Province, Phu Wiang National Park, 16.681017 N, 102.237089 E, on Lepidoptera pupa, buried in the ground, 19 Jul. 2017, K. Tasanathai, S. Mongkolsamrit, W. Noisripoom, W. Himaman, P. Jangsantear & B. Sakolrak (MY11732, BCC 85348), (BBH 43359, BCC 85349).

Notes: Purpureomyces pyriformis is similar to P. khaoyaiensis in parasitizing small Lepidoptera larva and producing purple stroma. Both species produce ovoid perithecia and whole ascospores. It differs from P. khaoyaiensis in the larger size and shape of its stroma. Purpureomyces pyriformis produces white to cream mycelium in obverse and reverse of PDA plate, while P. khaoyaiensis produces a tawny olive pigment in obverse of the plate. Additionally, P. pyriformis shares similarity to P. khaoyaiensis and P. maesotensis by having a lecanicillium-like asexual morph in culture. It is similar to P. khaoyaiensis in producing white to cream mycelium in obverse on OA, PDA and SDAY/4 as well as in size and shape of the phialides and conidia. It differs from P. khaoyaiensis in the size and shape of the stroma, perithecia, asci and ascospores. In P. khaoyaiensis the perithecia are semi-immersed, oblique in arrangement and have larger perithecia measuring, 300–420 × 200–270 μm compared to the ordinal, immersed perithecia, measuring 304–350 × 212.5–250 μm in P. pyriformis. Similarly, the asci in P. pyriformis (100–182 × 4–5 μm) and ascospores (125–190 × 1 μm) are shorter than those reported for P. khaoyaiensis, 200–350 × 5–6 μm for the asci and 160–250 × 1 μm for the ascospores.

Sungia Luangsa-ard, Samson & Thanakitpipattana, gen. nov. MycoBank MB834909.

Etymology: Named after Prof. Jae-Mo Sung in recognition for his work on entomopathogenic fungi in South Korea.

Description: Stromata erect, cylindrical to clavate, robust, multiple, predominantly branched or simple, gregarious, on large Lepidoptera pupa. Fertile part white to pale yellow, not differentiated from stipe. Perithecia fusiform to clavate, oblique in arrangement, immersed, loosely scattered or crowded. Asci 8-spored, hyaline, cylindrical with a prominent cap. Ascospores filiform, hyaline, multi-septate, whole. Conidiophores erect with solitary, awl-shaped phialides, pochonia-like. Conidia in slimy heads, elliptical to oblong, hyaline. Chlamydospores present, cylindrical to subglobose, submerged in agar.

Type species: Sungia yongmunensis (G.H. Sung et al.) Samson, Luangsa-ard & Thanakipipattana.

Notes: This genus is phylogenetically close to Yosiokobayasia. Both genera produce pallid stromata – white to pale yellow in Sungia and white in Yosiokobayasia which is not observed in any sexual morph of Metarhizium.

Sungia yongmunensis (G.H. Sung et al.) Luangsa-ard, Thanakitpipattana & Samson, comb. nov. MycoBank MB834910.

Basionym: Metacordyceps yongmunensis G.H. Sung et al., Stud. Mycol. 57: 27. 2007.

Synonym: Metarhizium yongmunense (G.H. Sung et al.) Kepler et al., Mycologia 106: 824. 2014.

Description and illustration: See Sung et al., 2007, Sung et al., 2010.

Habitat: Lepidoptera pupa.

Known distribution: South Korea.

Notes: This species was originally erected in Metacordyceps and transferred to Metarhizium but our multi-gene phylogenetic analyses have shown that it belonged to one of the least supported clades subtending the Metarhizium clade and is therefore transferred to a new genus Sungia. Sungia yongmunensis is reminiscent of Pochonia chlamydosporia in the shape of perithecia and the pochonia-like asexual morph.

Typus:South Korea, Mt. Yongmun, Gyunggi Province, on Lepidoptera pupa, 13 Jun. 1998, J.M. Sung (holotype EFCC 2131, culture ex-type EFCC 2131).

Yosiokobayasia Samson, Luangsa-ard & Thanakitpipattana, gen. nov. MycoBank MB834911.

Etymology: Named after Prof. Yosio Kobayasi in recognition for his work on entomopathogenic fungi in Japan.

Description: Stroma white, erect with terminal oblong fertile part. Perithecia superficial, ovoid, ordinal in arrangement, on pupa of Lepidoptera underground. Ascospores hyaline, filiform, breaking into part-spores.

Type species: Yosiokobayasia kusanagiensis (Kobayasi & Shimizu) Samson, Luangsa-ard & Thanakitpipattana

Habitat: Lepidoptera pupa.

Known distribution: Japan.

Notes: Yosiokobayasia is an entomopathogenic genus proposed from a single lineage as shown in Fig. 1. This genus belongs to one of the basal lineages in a supported clade that includes Rotiferophthora, Pochonia, Metapochonia, Papiliomyces, Sungia, Keithomyces and Metarhizium.

Yosiokobayasia kusanagiensis (Kobayasi & Shimizu) Samson, Luangsa-ard & Thanakitpipattana, comb. nov. MycoBank MB834912.

Basionym: Cordyceps kusanagiensis Kobayasi & Shimizu, Bull. Nat. Sci. Mus. Tokyo, Ser. B, 9: 7. 1983.

Synonyms: Metacordyceps kusanagiensis (Kobayasi & Shimizu) Kepler et al., Mycologia 104: 185. 2012.

Metarhizium kusanagiense (Kobayasi & Shimizu) Kepler et al., Mycologia 106: 823. 2014.

Description and illustration: See Kobayasi & Shimizu (1983).

Typus: Japan, Yamagata Prefecture, Kusanagi Spa, on pupa of Lepidoptera, 5 Jul. 1981, Y. Kobayasi & S. Shimizu (holotype TY 93 in TNS).

Note: This monotypic genus is the one of the basal lineages in a supported clade that is separated from plant-associated genera as well as scale insect and whitefly pathogens of the Clavicipitaceae.

Discussion

Many new species were added to Metarhizium in the last five years (Montalva et al., 2016, Chen et al., 2017, Luangsa-ard et al., 2017, Chen et al., 2018a, Chen et al., 2018c, Luz et al., 2019, Yamamoto et al., 2020), including the discovery of 19 new Metarhizium species and two new Purpureomyces species in this study. Despite all the works on Metarhizium and the increase in the number of species studied the support of the clades separating Metarhizium, Pochonia, Metapochonia and other related genera did not improve. However, this study has shed light on the relationships of basal species previously considered in the Metarhizium clade by past authors, such as M. carneum which is now in Keithomyces, M. khaoyaiense in Purpureomyces, M. kusanagiense in Yosiokobayasia, M. marquandii in Marquandomyces, Mc. liangshanens and Mc. shibinensis in Papiliomyces, and M. yongmunense in Sungia.

How do we recognise Metarhizium?

From natural materials

It is not so simple to recognise if a specimen belongs to Metarhizium or not, but there are characteristics that one could look for to facilitate classification.

The sexual morphs have predominantly cylindrical or clavate stromata, either solitary or multiple and irregularly branched in shades of pale yellow, green to greenish brown or dark purple. Hosts are mostly insect larvae or nymphs buried in the ground ranging from 2–5 cm deep (e.g. M. chaiyaphumense, M. prachinense, M. takense) to 30 cm (e.g. M. kalasinense), rarely on adults buried in the ground (e.g. M. phuwiangense). Rhizoids that connect the host to the stromata emerging from the ground are sometimes covered with green conidia. Perithecial orientation varies from oblique to ordinal arrangement. The majority of the ascospores are filiform and whole with septation while in a few species they dissociate into part-spores, such as M. campsosterni (Zhang et al. 2004) and M. phuwiangense (this study).

Species in Purpureomyces whose type species Purpureomyces khaoyaiensis was previously transferred by Kepler et al. (2014) to Metarhizium, have purple stroma but are mostly solitary and produce semi-immersed perithecia that are oblique in orientation while species in Metarhizium with purple stromata have immersed perithecia in ordinal arrangement.

Other species in Metarhizium were transferred to other genera such as Mc. liangshanensis and Mc. shibinensis to Papiliomyces; M. yongmunense to Sungia; M. kusanagiense to Yosiokobayasia. The sexual morphs in these genera do not produce green or dark stromata but are rather in shades of white, cream and pallid yellow or orange. Species known mainly from soil such as M. carneum, M. aciculare were transferred to Keithomyces and M. marquandii to Marquandomyces have only been seen in the asexual states.

In some species the asexual morph develops first on the surface of the stroma while the sexual morph development progresses later. On other species the sexual morph develops on the stroma but the asexual morph develops on the rhizoids in the soil and on the cuticle of the insect (M. flavum, M. kalasinense).

The asexual morphs are mostly found on the underside of leaves and barks of trees or plants. Metarhizium could easily be mistaken for a Penicillium in producing abundant green conidia. Normally if an insect dies of other reasons apart from being killed by an entomopathogen, ubiquitous soil and saprobic fungi such as Penicillium will use the insect as a substrate to grow on. Slide preparations, even just a simple cellophane tape method (Harris 2000), can be made to see important morphological characters such as the phialides and conidia. Penicillium produces a penicillate, brush-like appearance of flask-shaped or lanceolate phialides with distinct necks while Metarhizium produces a palisade layer of cylindrical or flask-shaped phialides. So far, there have been no reports of Penicillium species occurring as pathogens on insects.

Habitats

Metarhizium species are well-known entomopathogens but are also reported as endophytes or soil and rhizosphere inhabitants (Keyser et al., 2014, Vega et al., 2009, Clifton et al., 2018, Luz et al., 2019), resulting in increased plant growth and providing increased tolerance against pests and diseases (Liao et al., 2017, Liu et al., 2017). In Asia (China, Japan and Thailand), reports of Metarhizium are mainly from insects and only few studies focus on its presence in soils and roots of plants.

Recently, studies on Metarhizium from soils in China were made but only two new species were found, namely M. baoshanense and M. gaoligongense (Chen et al., 2018a, Chen et al., 2018b). In Japan, two new species, M. bibionidarum and M. purpureogenum, were isolated from forest soils (Nishi et al. 2017) although M. bibionidarum was originally isolated from a March fly larva in Japan as well as from the fruit beetle Cetonia aurata (Coleoptera: Scarabaeidae) in France (CBS 648.67), formerly assigned to the M. flavoviride species complex. Abundance and diversity of Metarhizium associated with plant roots were also investigated (Nishi & Sato 2019). In Thailand, despite the enormous diversity of Metarhizium species found on insects, common global species such as M. anisopliae, M. flavoviride, etc. were never encountered. This could be due to the lack of study on the diversity of these fungi in soil, especially in agricultural ecosystems, or rhizosphere and plant endophytic fungi.

Phylogeny-based re-evaluation of Metarhizium

It is a real challenge to distinguish species of Metarhizium using only morphological characters, as several species in the genus are morphologically cryptic species (Bischoff et al., 2009, Luangsa-ard et al., 2017). The defining concept of Metarhizium in this study lies only in the production of conidia that are predominantly in various shades of green, could also be white or in shades of brown or yellow, and not only in the production of a palisade layer of conidiophores with cylindrical phialides that form a hymenium-like layer on an arthropod host. Presence of nomuraea-like, paecilomyces-like phialides in certain species are found dispersed along the tree and do not form monophyletic subclades (Fig.1, Table 3). The systematics of Metarhizium which is predominantly asexual, has to rely heavily on multi-gene approaches to study cryptic speciation among closely related species. The genealogical concordance phylogenetic species recognition (GCPSR) which focuses on multi-gene genealogies allows us to recognise and identify phylogenetically distinct lineages suggesting the formation of new species even though morphologically they are still not recognisable. Our phylogenetic analyses using multi-gene sequences identified 19 new species in Metarhizium and the segregation of species such as M. carneum, M. khaoyaiense, M. kusanagiense, M. liangshanense, M. marquandii and M. yongmunense to other genera in Clavicipitaceae. We have demonstrated that in sequencing more gene regions, even when not using the same molecular markers as used in previous reports (Bischoff et al., 2009, Kepler et al., 2014), identification and inferring boundaries between species could also be achieved. We have also demonstrated that while ITS as a barcode marker will not aid in proper identification of the species (Supplementary Fig. S1), results of the ITS phylogeny give insights about the presence of species complexes that enables one to make a review of the species by making a thorough morphological examination and additional gene sequencing to achieve an accurate identification.

Diversity of the Metarhizium anisopliae species complex

Twenty-one species are accepted in this complex although only 19 species were included in the multi-gene phylogenetic analyses (Fig. 1) due to incomplete sequences of various loci in some reported taxa. Kepler et al. (2014) accepted M. brittlebankisoides, and M. campsosterni, as members of the M. anisopliae complex on the basis of their asexual morph morphologies described by Liu et al. (2001) and Sung et al. (2007), respectively. Metarhizium brachyspermum was recently published by Yamamoto et al. (2020) as another member of this complex based on morphology and molecular phylogeny but whose molecular data, only ITS and tef, are insufficient to be added to our analyses. Members of the M. anisopliae complex comprise M. acridum, M. alvesii, M. anisopliae, M. baoshanense, M. brachyspermum, M. brittlebankisoides, M. brunneum, M. campsosterni, M. clavatum, M. globosum, M. gryllidicola, M. guizhouense, M. humberi, M. indigoticum, M. kalasinense, M. lepidiotae, M. majus, M. phasmatodeae, M. pingshaense, M. robertsii and M. sulphureum. The sexual morphs of eight species were found in nature – M. brachyspermum, M. brittlebankisoides, M. campsosterni, M. clavatum, M. guizhouense, M. indigoticum, M. kalasinense and M. sulphureum while it is the asexual morphs that are predominantly encountered. Members of this complex have usually dark green colonies and cylindrical phialides packed in a hymenium-like layer or palisade, with cylindrical conidia, except in M. globosum with globose conidia that adhere laterally to form prismatic columns. Our understanding of what Metchnikoff’s M. anisopliae could be was enhanced by the inclusion of an Ukrainian strain of M. anisopliae in our analyses. Three ARSEF strains were also included in the 5′tef analyses of the M. anisopliae complex including the neotype of M. anisopliae var. anisopliae from Ethiopia, and which has shown them to be distantly related to M. anisopliae from a previous Soviet Republic.

Diversity of the Metarhizium flavoviride species complex

All species in this complex are found in their asexual states in nature. No sexual state was observed. There are thirteen species recognised in this complex including M. argentinense, M. bibionidarum, M. biotecense, M. blattodeae, M. culicidarum, M. flavoviride, M. frigidum, M. fusoideum, M. gaoligongense, M. koreanum, M. minus, M. nornnoi and M. pemphigi. While some species seem to have a global distribution (e.g. M. bibionidarum, M. flavoviride, M. pemphigi), others have been reported only from the tropics (e.g. M. minus and new species in this study).

Diversity in the conidiogenesis of the taxa in Metarhizium

Different kinds of conidiogenesis were observed in Metarhizium. All forms are phialidic and the most predominant phialide morphology is the production of cylindrical phialides with short necks as is understood of Metarhizium in the last century. Most importantly, most of the species identified morphologically as Metarhizium possess these characters having a candelabrum-like arrangement of cylindrical phialides forming a compact hymenium. These types of conidiogenesis are shown in Table 3 and in Fig. 1 belonging to the M. anisopliae, M. flavoviride species complexes, pathogens of Coleoptera in the Coleoptera clade, and those occurring on small hoppers comprising M. album, M. brasiliense, M. candelabrum, C. cercopidae, M. ellipsoideum and M. huainamdangense. Nomuraea-like and paecilomyces-like phialides are found interspersed in the basal branches of the Metarhizium clade. Species on cicada produce nomuraea-like phialides with two differing classes of conidial shapes, while nomuraea-like species belonging to M. dendromatilis, M. ovaspora, M. prachinense, M. rileyi and M. samlanense form only one kind of conidia. Metarhizium granulomatis, M. phuwiangense, M. reniforme, and M. viride produce paecilomyces-like phialides. All species in Metarhizium form mononematous conidiophores except for M. dendromatilis that is synnematous.

Generalists and specialists in Metarhizium

Metarhizium species can have either broad or narrow insect host ranges. Several studies revealed that some species of Metarhizium, especially in the M. anisopliae and M. flavoviride species complexes, have broad insect host ranges, such as M. brunneum, M. flavoviride, M. minus, M. pingshaense and M. robertsii. However, an increasing number of fungal pathogens initially reported as dispersed generalists are now described as collections of populations or sister species undergoing speciation or have adapted to new habitats or new hosts (Burnett, 2003, Giraud et al., 2008, Bischoff et al., 2009, Kobmoo et al., 2019, Thanakitpipattana et al., 2020).

Nishi & Sato (2017) revealed that isolates of M. pingshaense in Japan have a broad insect host ranges. They came from six orders (14 families) of insects (Lepidoptera: Noctuidae, Geometridae; Coleoptera: Scarabaeidae, Cerambycidae, Curculionoidea, Lucanidae; Orthoptera: Gryllidae; Diptera: Tabanidae; Hymenoptera: Formicidae, Vespidae; Hemiptera, Cydnidae, Dinidoridae, Pentatomidae, Largidae). New records of insect hosts (crickets and stick insects) were seen in M. majus, while previously, M. majus was reported only from scarabaeid insects (Ferron et al., 1972, Nishi et al., 2015).

In the case of species with narrow insect hosts ranges, M. koreanum, which was originally described from Korea (Kepler et al. 2014) and reported from Japan (Nishi & Sato, 2017) and Thailand (this study) were all found occurring on planthoppers belonging to Delphacidae, Tropiduchidae and Fulgoromorpha, respectively. The results from these studies suggests that M. koreanum has a narrow insect host range and is only specific to planthoppers. Additionally, M. acridum is another species known as a specialist with a narrow insect host range found only on certain locusts and grasshoppers (Driver et al., 2000, Wang et al., 2011) as are M. blattodeae and M. argentinense that only occur on forest cockroaches (Montalva et al., 2016, Gutierrez et al., 2019).

Several species in Metarhizium from Asia are found in their sexual states. These species are members of the M. anisopliae species complex as well cicadicolous species. Cordycipitoid fungi has been known for repeated inter-kingkom host jumps (Nikoh and Fukatsu, 2000, Sung et al., 2007). In the Clavipitaceae the mode of nutrition varies from insects, plants or animals. However, in Metarhizium alone, these shifts in nutritional mode are clearly manifested. The highest diversity for Metarhizium is now recorded for SE Asia, although no studies of their presence in soil or rhizosphere has been made. In Thailand, for instance, the ubiquitous M. anisopliae or M. flavoviride were never found, as they were never looked for in the soil. Only few records were made from Africa, South and Central America (Samson, 1974, Montalva et al., 2016, Lopes et al., 2018, Gutierrez et al., 2019). While most of the species discovered in Metarhizium are considered entomopathogenic, studies of their plant-growth promoting and endophytic, rhizosphere or soil-dwelling properties have been increasing (Hu and St Leger, 2002, Chad et al., 2014, Iwanicki et al., 2019). As they continue to promote plant health by increasing nutrient absorption through the roots and killing insect pests (Sasan and Bidochka, 2012, Liao et al., 2014, Liao et al., 2017) and being used for biological control, reports have also showed Metarhizium implicated in human infections (Nourrisson et al. 2017). The first infection caused by Metarhizium was reported almost two decades ago (Roberts & St Leger 2004) and since then reports of human infection have been made, especially in immunocompromised patients (Revankar et al., 1999, Osorio et al., 2007, Marsh et al., 2008, Eguchi et al., 2015). These reports have serious consequences for those who use Metarhizium in agriculture. More studies on these tripartite interactions between plants, fungus and insects, as well as their interactions with humans, will enable us to have a better understanding of the role of these fungi in the natural habitat.

Key to Metarhizium species

Below are two different keys to help identify species in Metarhizium. Most species are members of species complexes and are therefore very difficult to find diagnostic characters to separate the species. It is recommended, however, that after a strain has been narrowed down to a certain species, multi-gene sequencing should also be done.

Synoptic key for sexually reproductive species in Metarhizium

List of sexually reproductive species in Metarhizium.

  • 1.

    M. atrovirens

  • 2.

    M. brachyspermum

  • 3.

    M. brittlebankisoides

  • 4.

    M. campsosterni

  • 5.

    M. chaiyaphumense

  • 6.

    M. clavatum

  • 7.

    M. eburneum

  • 8.

    M. flavum

  • 9.

    M. guizhouense (M. taii)

  • 10.

    M. guniujiangense

  • 11.

    M. indigoticum

  • 12.

    M. kalasinense

  • 13.

    M. owariense

  • 14.

    M. phuwiangense

  • 15.

    M. prachinense

  • 16.

    M. pseudoatrovirens

  • 17.

    M. purpureonigrum

  • 18.

    M. purpureum

  • 19.

    M. sulphureum

  • 20.

    M. takense

Description: Stromata single or multiple, solitary, cylindrical, branched. Ascospores lanceolate with tapering ends, filiform, part-spores.

Insect host

  • 1.

    Coleoptera (larva, adult)...............1–4, 6, 8, 12, 14, 16–18

  • 2.

    Lepidoptera (pupa, larva)............................7, 9, 11, 15, 19

  • 3.

    Hemiptera (cicada nymph)..............................5, 10, 13, 20

Stromata (length)

  • 10–50 mm...........................................1, 2, 5–11, 14–16, 18, 19

  • >50–100 mm.............................................................3, 13, 15, 20

  • >100 mm....................................................................4, 12, 17, 20

Perithecial arrangement with position

  • 1.

    Obliquely with immersed...............1, 2, 5, 6, 9–13, 15, 20

  • 2.

    Obliquely with semi-immersed...................................14, 19

  • 3.

    Ordinally with immersed..................................3, 4, 16–180

  • 4.

    Ordinally with semi-immersed........................................7, 8

Ascospores

  • 1.

    Lanceolate with tapering ends.....................................1, 16

  • 2.

    Filiform........................................2, 5–8, 10, 12, 15, 17–20

  • 3.

    Part-spores...............................................3, 4, 9, 11, 13, 14

Phialide characteristics of asexual morph

  • 1.

    Unknown...................................................................1, 7, 16

  • 2.

    Metarhizium-like......................................2–6, 8–12,17–19

  • 3.

    Nomuraea-like......................................................13, 15, 20

  • 4.

    Paecilomyces-like.............................................................14

Known geographical distribution

  • 1.

    China....................................................................3, 4, 9, 10

  • 2.

    Japan...........................................................1–3, 11, 13, 16

  • 3.

    Thailand.........................................5–8, 12, 14, 15, 17–20

Key to Metarhizium species

Sexual state present…………………………………………………………………………………………………………………………………...1

Sexual state not observed……………………………………………………………………………………………………………………………..6

  • 1a.

    Ascospores not dissociating in part-spores………………………………………………………………………………………………2

  • 1b.

    Ascospores dissociate into part-spores…………………………………………………………………………………………………..5

  • 2a.

    Ascospores lanceolate with tapering ends………………………………………………………………………………………………3

  • 2b.

    Ascospores filiform………………………………………………………………………………………………………………………….4

  • 3a.

    Ascospores 50–52 × 2.5–3 μm, obliquely immersed perithecia, on Coleoptera larva, stromata 20–50 mm long……………………………………………………………………………………………………………………………M. atrovirens

  • 3b.

    Ascospores 50 × 2.5 μm, ordinally immersed perithecia, on Coleoptera larva, stromata 14 mm long…………………………………………………………………………………………………………………..M. pseudoatrovirens

  • 4a.

    Ascospores 94–107 × 1 μm, obliquely immersed perithecia, nomuraea-like phialides, on Lepidoptera larva, stromata 50–86 mm long……………………………………………………………………………………………………………M. prachinense

  • 4b.

    Ascospores 155–230 × 1.25 μm, obliquely immersed perithecia, nomuraea-like phialides, on cicada nymph, stromata 70–130 mm long………………………………………………………………………………………………………………..M. takense

  • 4c.

    Ascospores 200–275 × 1.5–2 μm, ordinally immersed perithecia, metarhizium-like phialides, on Coleoptera larva, stromata 100 –150 mm long…………………………………………………………………………………….M. purpureonigrum

  • 4d.

    Ascospores 160–240 × 1.5–2 μm, ordinally immersed perithecia, metarhizium-like phialides, on Coleoptera larva, stromata 40 mm long…………………………………………………………………………………………………………………M. purpureum

  • 4e.

    Ascospores 190–270 × 1 μm, obliquely immersed perithecia, metarhizium-like phialides, on Coleoptera larva, stromata up to 30 mm long………………………………………………………………………………M. brachyspermum

  • 4f.

    Ascospores 200–300 × 2–3 μm, obliquely semi-immersed perithecia, metarhizium-like phialides, on Lepidoptera larva, stromata 25–45 mm long……………………………………………………………………………….M. sulphureum

  • 4g.

    Ascospores 200–315 × 1.5–2 μm, ordinally semi-immersed perithecia, metarhizium-like phialides, on Coleoptera larva, stromata up to 45 mm long……………………………………………………………………………………...M. flavum

  • 4h.

    Ascospores 222.5–360 × 1 μm, ordinally semi-immersed perithecia, no sporulation in culture, on Lepidoptera pupa, stromata 10 mm long…………………………………………………………….…M. eburneum

  • 4i.

    Ascospores 225–375 × 1 μm, obliquely immersed perithecia, nomuraea-like phialides, on cicada nymph (Hemiptera), stromata 30–35 mm long……………………………………………………………….…M. chaiyaphumense

  • 4j.

    Ascospores 240–330 × 0.8–1 μm, obliquely immersed perithecia, metarhizium-like phialides, on cicada nymph (Hemiptera), stromata 40–42.5 mm long………………………………………………………………...M. guniujiangense

  • 4k.

    Ascospores 400–500 × 1–1.5 μm, obliquely immersed perithecia, metarhizium-like phialides, on Coleoptera larva, stromata 150 mm long……………………………………………………………………………………………………………….M. kalasinense

  • 4l.

    Ascospores 224–420 × 1–1.5, obliquely immersed perithecia, metarhizium-like phialides, on Coleoptera larva, stromata 35 mm long……………………………………………………………………………………………………………………M. clavatum

  • 5a.

    Part-spores cylindrical, 2.9–5.9 × 1 μm, ordinally immersed perithecia, metarhizium-like phialides, on Coleoptera larva (Scarabaeidae), stromata 160 mm long……………………………………………………………………………....M. campsosterni

  • 5b.

    Part-spores cylindrical, 4.5–5 × 1 μm, obliquely immersed, metarhizium-like phialides, on Lepidoptera larva, stromata 40–50 mm long……………………………………………………………………………………………………………M. indigoticum

  • 5c.

    Part-spores cylindrical, 4.2–5.6 × 1 μm, obliquely immersed perithecia, nomuraea-like phialides on cicada nymph (Hemiptera), stromata 57 mm long…………………………………………………………………………………M. owariense

  • 5d.

    Part-spores cylindrical, 5.7–8.1 × 0.94 μm, ordinally immersed perithecia, metarhizium-like phialides, on Coleoptera larva (Scarabaeidae), stromata 100 mm long…………………………………………………………………………M. brittlebankisoides

  • 5e.

    Part-spores cylindrical, 8–12 × 1–1.5 μm, obliquely semi-immersed perithecia, paecilomyces-like phialides, on adult Coleoptera, stromata up to 15 mm long…………………………………………………………………………M. phuwiangense

  • 5f.

    Part-spores cylindrical, 17–34 × 1–1.4 μm, obliquely immersed perithecia, metarhizium-like phialides, on Lepidoptera larva, stromata 20–35 mm long………………………………………………………………………M. guizhouense

  • 6a.

    Metarhizium-like phialides………………………………………………………………………………………………………………….7

  • (M. acridum, M. album, M. alvesii, M. anisopliae, M. argentinense, M. baoshanense, M. bibionidarum, M. biotecense, M. blattodeae, M. brasiliense, M. brunneum, M. candelabrum, M. cercopidarum, M. culicidarum, M. ellipsoideum, M. flavoviride, M. frigidum, M. fusoideum, M. gaoligongense, M. globosum, M. gryllidicola, M. huainamdangense, M. humberi, M. koreanum, M. lepidiotae, M. majus, M. minus, M. nornnoi, M. novozealandicum, M. pemphigi, M. phasmatodeae, M. pingshaense, M. purpureogenum, M. robertsii)

  • 6b.

    Nomuraea-like phialides…………………………………………………………………………………………………………………....8

  • (M. cicadae, M. cylindrosporum, M. dendrolimatilis, M. megapomponiae, M. niveum, M. ovoidosporum, M. rileyi, M. samlanense, M. viridulum)

  • 6c.

    Paecilomyces-like phialides………………………………………………………………………………………………………………..9

  • (M. granulomatis, M. reniforme, M. viride)

  • 7a.

    on multiple hosts…………………………………………………………………………………………………………………………..10

  • (M. anisopliae, M. bibionidarum, M. brunneum, M. flavoviride, M. frigidum, M. fusoideum, M. humberi, M. lepidiotae, M. majus, M. minus, M. nornnoi, M. novozealandicum, M. pemphigi, M. pingshaense, M. robertsii)

  • 7b.

    on cockroaches (Blattodea)………………………………………………………………………………………………………………11

  • (M. argentinense, M. blattodeae)

  • 7c.

    on Diptera…………………………………………………………………………………………………………………………………..12

  • (M. culicidarum)

  • 7d.

    on Hemiptera (small hoppers: Cicadellidae, Cercopidae, Delphacidae)……………………………………………………………13

  • (M. album, M. biotecense, M. brasiliense, M. candelabrum, M. cercopidarum, M. ellipsoideum, M. huainamdangense, M. koreanum)

  • 7e.

    on Lepidoptera larva and pupa…………………………………………………………………………………………………………..14

  • (M. globosum)

  • 7f.

    on Orthoptera………………………………………………………………………………………………………………………………15

  • (M. acridum, M. gryllidicola on adult crickets, M. phasmatodeae on stick insects)

  • 7g.

    on soil……………………………………………………………………………………………………………………………………….16

  • (M. alvesii, M. baoshanense, M. gaoligongense, M. purpureogenum)

  • 8a.

    on Lepidoptera larva………………………………………………………………………………………………………………………17

  • (M. dendrolimatilis)

  • 8b.

    on Hemiptera (cicada nymphs and adults)……………………………………………………………………………………………..18

  • (M. cicadae, M. cylindrosporum, M. megapomponiae, M. niveum, M. viridulum)

  • 8c.

    on Hemiptera (small hoppers)……………………………………………………………………………………………………………19

  • (M. ovoidosporum, M. samlanense)

  • 8d.

    on Lepidoptera larva, mostly from agricultural plots, not from forests…………………………………………………………M. rileyi

  • 9a.

    Conidia dimorphic, host chameleon………………………………………………………………………M. granulomatis, M. viride

  • 9b.

    Conidia reniform, 4–5.5 × 1.5–2.5 μm, greyish green, olive, dull green colony…………………………………….M. reniforme

  • 10a.

    Conidia cylindrical to ellipsoid, 5–7 × 2–3.5 μm, greyish green colony………………………………………………..M. anisopliae

  • 10b.

    Conidia cylindrical to ellipsoid, 4.5–6 × 2–3 μm, brownish yellow colony………………………………………….M. bibionidarum

  • 10c.

    Conidia cylindrical to ellipsoid, 4.5–9 × 2–3 μm, white cream colony……………………………………………….M. brunneum

  • 10d.

    Conidia pyriform, reniform, ovoid, 4–10 × 1.5–3 μm, yellowish white colony…………………………………………M. flavoviride

  • 10e.

    Conidia cylindrical, 4–8 × 2–4 μm, dark green colony…………………………………………………………………...M. frigidum

  • 10f.

    Conidia ellipsoid to cylindrical, 6–10 × 2–3 μm, white to pale cream………………………………………………….M. fusoideum

  • 10g.

    Conidia cylindrical, 4.14–6.05 × 1.69–2.59 μm, grey green colony………………………………………………………M. humberi

  • 10h.

    Conidia ovoid to ellipsoid cylindrical, 5–7.5 × 3–4 μm, white colony………………………………………………...M. lepidiotae

  • 10i.

    Conidia oblong-elliptical, 10–14 × 2–4 μm, yellowish orange to green…………………………………………………….M. majus

  • 10j.

    Conidia cylindrical, ellipsoid, 4–6 × 2.5–3 μm, white………………………………………………………………………….M. minus

  • 10k.

    Conidia cylindrical, 4–7 × 1.5–2 μm, sulphur yellow……………………………………………………………………….M. nornnoi

  • 10l.

    Conidia cylindrical, ellipsoid, 5–7.5 × 2–3, white to pale yellow colony……………………………………...M. novozealandicum

  • 10m.

    Conidia cylindrical, 3–8 × 1.5–2 μm, pale yellow colony……………………………………………………………….M. pemphigi

  • 10n.

    Conidia ellipsoid, 6–8 × 2.5–3.5 μm, olive colony…………………………………………………………………..M. pingshaense

  • 10o.

    Conidia cylindrical, ellipsoid, 5–9 × 2–3 μm, white to pale yellow colony……………………………………………….M. robertsii

  • 11a.

    Conidia ellipsoid to cylindrical, 6–8 × 2–3 μm, pale yellow colony (on SDAY/4)……………………………………...M. blattodeae

  • 11b.

    Conidia cylindrical, 5.1–7.7 × 1.7–2.9 μm, olivaceus green colony (on PDA)……………………………………M. argentinense

  • 12.

    Conidia fusiform-elliptical, ellipsoid, 4–7 × 1–1.5 μm, white colony…………………………………………………..M. culicidarum

  • 13a.

    Conidia ellipsoid, cylindrical, 5–6 × 1.5–2 μm, pale brown colony…………………………………………………………M. album

  • 13b.

    Conidia cylindrical, ellipsoid, 5–7 × 2–3 μm, white colony…………………………………………………………….M. biotecense

  • 13c.

    Conidia ovoid to cylindrical, 3–10 × 2–3 μm, cream to pale yellow colony………………………………………..M. brasiliense

  • 13d.

    Conidia cylindrical, 7–9 × 1.5–2 μm, white to pale green colony…………………………………………………..M. candelabrum

  • 13e.

    Conidia cylindrical, 6–10 × 1.5–3 μm, pale yellow to pale green colony………………………………………….M. cercopidarum

  • 13f.

    Conidia cylindrical, ellipsoid, 4–7 × 1.5–2 μm, olive yellow, sulphur yellow colony……………………………...M. ellipsoideum

  • 13g.

    Conidia cylindrical, 5–10 × 2–3, pale yellow to dark green colony (on PDA)……………………………..M. huainamdangense

  • 13h.

    Conidia cylindrical, ellipsoid, 4–7.5 × 1.5–2.5 μm, white to yellow colony……………………………………………M. koreanum

  • 14.

    Conidia globose, 4–5 μm, greyish green colony…………………………………………………………………………M. globosum

  • 15a.

    Conidia ellipsoid, globose, 4–5.5 × 3–4 μm, greyish yellow colony……………………………………………………..M. acridum

  • 15b.

    Conidia cylindrical to ovoid, obclavate, 4–7 × 2–3 μm, sulphur yellow colony……………………………………...M. gryllidicola

  • 15c.

    Conidia cylindrical, ovoid, obclavate, 5.5–8 × 2–3 μm, sulphur yellow colony………………………………….M. phasmatodeae

  • 16a.

    Conidia cylindrical, 3.88–6.55 × 2.16–3.25 μm, yellow to greenish colony……………………………………………….M. alvesii

  • 16b.

    Conidia long oval, cylindrical, 6.7–8.5 × 2.6–3.3 μm, greyish green colony (on PDA)………………………….M. baoshanense

  • 16c.

    Conidia cylindrical, 5.4–7.7 × 1.9–2.8 μm, green colony (on PDA)………………………………………………..M. gaoligongense

  • 16d.

    Conidia ovoid to ellipsoid, 4.5–5.5 × 3.5–4 μm, pale ochre or tan colony…………………………………….M. purpureogenum

  • 17.

    Conidia ellipsoid, 3.8–10 × 2–2.5 μm, light yellow green colony (on PDA)…………………………………….M. dendrolimatilis

  • 18a.

    Conidia two types of conidia; ovoid, ellipsoid, 2–6 × 2.5–4 μm; cylindrical, 10–17 × 3–4 μm, dark green colony…M. cicadae

  • 18b.

    Conidia two types of conidia; ovoid, subglobose, 3–8 × 2–3 μm; cylindrical, 14–22 × 3–4 μm, pale yellow colony………………………………………………………………………………………………………………….M. cylindrosporum

  • 18c.

    Conidia cylindrical, ellipsoid, 7–11 × 3–4 μm, cream to yellow brown colony…………………….………..M. megapomponiae

  • 18d.

    Conidia ovoid, ellipsoid, 2–5 × 2–3 μm, white to cream colony…………………………………………………………..M. niveum

  • 18e.

    Conidia cylindrical, 10–16 × 3–4 μm, pale yellow colony…………………………………………………..…………….M. viridulum

  • 19a.

    Conidia ovoid, ellipsoid, subglobose, 3–5 × 2–4 μm, olive yellow colony……………………………………….M. ovoidosporum

  • 19b.

    Conidia globose, 3–5 μm, sulphur yellow to straw yellow colony……………………………………………………M. samlanense

Acknowledgements

This work is dedicated to Keith A. Seifert for his invaluable contributions to mycology and the IMA on the occasion of his retirement from Ottawa Research and Development Centre, Agriculture and Agri-Food Canada (Biodiversity: Mycology and Microbiology). Thanks to Bart Kraak and Martin Meijer for their help sequencing of CBS strains. This study was supported by National Science and Technology Development Agency (NSTDA). The authors are grateful to the Platform Technology Management Section, National Center for Genetic Engineering and Biotechnology (BIOTEC), Grant No. P19-50231 for their support of the biodiversity studies of invertebrate-pathogenic fungi in Thailand. Thanks to the Department of National Parks for their kind support and permission to collect fungi in the national parks. We thank Samret Phusaensri (Head of Phu Wiang National Park), Sangaon Veeraping (Village headman of Banphao Thai community forest, Phitsanulok Province) for their cooperation and support of our project research. We thank Thayarat Chaitika, Aundaman Moulchoo for their help in generating molecular data and Kewarin Klamchao for insect identification. We thank USDA ARSEF (Louela Castrillo) for providing known strains of Metarhizium for this study. We thank Konstanze Bensch for her help in species names. We are grateful to the two anonymous reviewers whose comments and suggestions helped improve the manuscript.

Footnotes

Peer review under responsibility of Westerdijk Fungal Biodiversity Institute.

Appendix ASupplementary data to this article can be found online at https://doi.org/10.1016/j.simyco.2020.04.001.

Appendix A. Supplementary data

The following are the Supplementary data to this article:

Multimedia component 1:
Click here to view.(16K, xlsx)Multimedia component 1

Supplementary Fig. S1

Supplementary Fig. S1

Phylogenetic reconstruction of Metarhizium and related genera in the Clavicipitaceae obtained from ITS rDNA sequences based on Maximum Parsimony, Bayesian analysis and RAxML. Number on the nodes are MP bootstrap / Bayesian posterior probability / ML bootstrap values above 70 %. Thickened lines mean support for the three analyses were 100 %.

Supplementary Fig. S2

Supplementary Fig. S2

Phylogenetic reconstruction of Metarhizium and related genera in the Clavicipitaceae obtained from the combined rpb1 and rpb2 sequences based on Maximum Parsimony, Bayesian analysis and RAxML. Number on the nodes are MP bootstrap/Bayesian posterior probability/ ML bootstrap values above 70 %. Thickened lines mean support for the three analyses were 100 %.

References

  • Ban S., Azuma Y., Sato H., et al. Isaria takamizusanensis is the anamorph of Cordyceps ryogamimontana, warranting a new combination, Purpureocillium takamizusanense comb. nov. International Journal of Systematic and Evolutionary Microbiology. 2015;65:2459–2465. [Abstract] [Google Scholar]
  • Beys-da-Silva W.O., Rosa R.L., Berger M., et al. Updating the application of Metarhizium anisopliae to control cattle tick Rhipicephalus microplus (Acari: Ixodidae) Experimental Parasitology. 2020;208:107812. [Abstract] [Google Scholar]
  • Bischoff J.F., Rehner S.A., Humber R.A. Metarhizium frigidum sp. nov.: a cryptic species of M. anisopliae and a member of the M. flavoviride complex. Mycologia. 2006;98:737–745. [Abstract] [Google Scholar]
  • Bischoff J.F., Rehner S.A., Humber R.A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia. 2009;101:512–530. [Abstract] [Google Scholar]
  • Burnett J. Oxford University Press; Oxford, UK: 2003. [Google Scholar]
  • Castlebury L.A., Rossman A.Y., Sung G.H., et al. Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycological Research. 2004;108:864–872. [Abstract] [Google Scholar]
  • Chad K., Kristian T.K., Nicolai M. Metarhizium seed treatment mediates fungal dispersal via roots and induces infections in insects. Fungal Ecology. 2014;11:122–131. [Google Scholar]
  • Chan W.H., Ling K.H., Chiu S.W., et al. Molecular analyses of Cordyceps gunnii in China. Journal of Food and Drug Analysis. 2011;19:18–25. [Google Scholar]
  • Chaverri P., Bischoff J.F., Evans H.C., et al. Regiocrella, a new entomopathogenic genus with a pycnidial anamorph and its phylogenetic placement in the Clavicipitaceae. Mycologia. 2005;97:1225–1237. [Abstract] [Google Scholar]
  • Chen W.H., Han Y.F., Liang J.D., et al. Metarhizium dendrolimatilis, a novel Metarhizium species parasitic on Dendrolimus sp. larvae. Mycosphere. 2017;8:31–37. [Google Scholar]
  • Chen Z., Xu L., Yang X., et al. Metarhizium baoshanense sp. nov., a new entomopathogen fungus from southwestern China. Pakistan Journal of Zoology. 2018;50:1739–1746. [Google Scholar]
  • Chen Z., Yang X., Sun N., et al. Species diversity and vertical distribution characteristics of Metarhizium in Gaoligong Mountains, southwestern China. Biodiversity Science. 2018;26:1308–1317. [Google Scholar]
  • Chen Z.H., Zhang Y.G., Yang X.N., et al. A new fungus Metarhizium gaoligongense from China. International Journal of Agriculture and Biology. 2018;20:2271‒2276. [Google Scholar]
  • Clifton E.H., Jaronski S.T., Coates B.S., et al. Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. PLoS ONE. 2018;13 [Europe PMC free article] [Abstract] [Google Scholar]
  • Cole G.T., Samson R.A. Pitman Publishing Ltd.; London, San Francisco, Melbourne: 1979. pp. 68–69. [Google Scholar]
  • Doyle J.J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 1987;19:11–15. [Google Scholar]
  • Driver F., Milner R.J., Trueman J.W.H. A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycological Research. 2000;104:134–150. [Google Scholar]
  • Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004;32:1792–1797. [Europe PMC free article] [Abstract] [Google Scholar]
  • Eguchi H., Toibana T., Hotta F., et al. Severe fungal sclerokeratitis caused by Metarhizium anisopliae: a case report and literature review. Mycoses. 2015;58:88–92. [Abstract] [Google Scholar]
  • Ferron P., Hurpin B., Robert P.H. Sur la specificité de Metarhizium anisopliae (Metschn.) Sorok. Entomophaga. 1972;17:165–178. [Google Scholar]
  • Gams W., Rozsypal J. Metarhizium flavoviride nov. sp. isolated from insects and the soil. Acta Botanica Neerlandica. 1973;2:518–521. [Google Scholar]
  • Ghayedi S., Abdollahi M. Biocontrol potential of Metarhizium anisopliae (Hypocreales, Clavicipitaceae) isolated from suppressive soils of the Boyer-Ahman region, Iran, against J2s of Heterodera avenae. Journal of Plant Protection Research. 2013;53:165–171. [Google Scholar]
  • Giraud T., Refregier G., Le Gac M., et al. Speciation in Fungi. Fungal Genetics and Biology. 2008;45:791–802. [Abstract] [Google Scholar]
  • Guo H.L., Ye B.L., Yue Y.Y., et al. Three new species of Metarhizium. Acta Mycologia Sinica. 1986;5:185–190. [Google Scholar]
  • Gutierrez A.C., Leclerque A., Manfrino R.G., et al. Natural occurrence in Argentina of a new fungal pathogen of cockroaches, Metarhizium argentinense sp. nov. Fungal Biology. 2019;123:364–372. [Abstract] [Google Scholar]
  • Hall B. 2003. http://faculty.washington.edu/ benhall/ [Google Scholar]
  • Hall T. Department of Microbiology, North Carolina State University; 2004. [Google Scholar]
  • Harris J.L. Safe, low-distortion tape touch method for fungal slide mounts. Journal of Clinical Microbiology. 2000;38:4683–4684. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hu G., St Leger R.J. Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Applied and Environmental Microbiology. 2002;68:6383–6387. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hu X., Xiao G., Zheng P., et al. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:16796–16801. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hywel-Jones N.L. Cordyceps khaoyaiensis and C. pseudomilitaris, two new pathogens of lepidopteran larvae from Thailand. Mycological Research. 1994;98:939–942. [Google Scholar]
  • Iwanicki N.S.A., Pereira A.A., Botelho A.B.R.Z., et al. Monitoring of the field application of Metarhizium anisopliae in Brazil revealed high molecular diversity of Metarhizium spp. in insects, soil and sugarcane roots. Scientific Reports. 2019;9:4443. [Europe PMC free article] [Abstract] [Google Scholar]
  • Iwasaki H., Tokiwa T., Shiina M., et al. Metarhizium aciculare sp. nov. for euvesperins A and B producing Metarhizium strains. Mycoscience. 2019;60:313–318. [Google Scholar]
  • Jackson M.A., Jaronski S.T. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycological Research. 2008;113:842–850. [Abstract] [Google Scholar]
  • Johnson D., Sung G.H., Hywel-Jones N.L., et al. Systematics and evolution of the genus Torrubiella (Hypocreales, Ascomycota) Mycological Research. 2009;113:279–289. [Abstract] [Google Scholar]
  • Kalkar Ö., Carner G.R., Scharf D., et al. Characterization of an Indonesian isolate of Paecilomyces reniformis. Mycopathologia. 2006;161:109–118. [Abstract] [Google Scholar]
  • Kepler R.M., Humber R.A., Bischoff J.F., et al. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia. 2014;106:811–829. [Abstract] [Google Scholar]
  • Kepler R.M., Sung G.H., Ban S., et al. New teleomorph combinations in the entomopathogenic genus Metacordyceps. Mycologia. 2012;104:182–197. [Abstract] [Google Scholar]
  • Kepler R.M., Sung G.H., Harada Y., et al. Host jumping onto close relatives and across kingdoms by Tyrannicordyceps (Clavicipitaceae) gen. nov. and Ustilaginoidea (Clavicipitaceae) American Journal of Botany. 2012;99:552–561. [Abstract] [Google Scholar]
  • Keyser C.A., Thorup-Kristensen K., Meyking N.V. Metarhizium seed treatment mediates fungal dispersal via roots and induces infections in insects. Fungal Ecology. 2014;11:122–131. [Google Scholar]
  • Kim J.C., Baek S., Park S.E., et al. Colonization of Metarhizium anisopliae on the surface of pine tree logs: a promising biocontrol strategy for the Japanese pine sawyer, Monochamus alternatus. Fungal Biology. 2020;124:125–134. [Abstract] [Google Scholar]
  • Kim J.C., Lee S.J., Kim S., et al. Management of pine wilt disease vectoring Monochamus alternatus adults using spray and soil application of Metarhizium anisopliae JEF isolates. Journal of Asia-Pacific Entomology. 2020;23:224–233. [Google Scholar]
  • Kobayasi Y. On the genus Cordyceps and its allies on cicadae from Japan. Bulletin of the Biogeographical Society of Japan. 1939;9:145–176. [Google Scholar]
  • Kobayasi Y., Shimizu D. Cordyceps species from Japan. Bulletin of the National Science Museum, Tokyo Ser.B. 1978;4:43–63. [Google Scholar]
  • Kobayasi Y., Shimizu D. Cordyceps species from Japan. Bulletin of the National Science Museum, Tokyo Ser. B. 1982;8:111–123. [Google Scholar]
  • Kobayasi Y., Shimizu D. Cordyceps species from Japan. Bulletin of the National Science Museum, Tokyo Ser. B. 1983;9:1–21. [Google Scholar]
  • Kobmoo N., Mongkolsamrit S., Arnamnart N., et al. Population genomics revealed cryptic species within host-specific zombie-ant fungi (Ophiocordyceps unilateralis) Molecular Phylogenetics and Evolution. 2019;140:106580. [Abstract] [Google Scholar]
  • Kornerup A., Wanscher J.H. Methuen & Co. Ltd.; London: 1963. [Google Scholar]
  • Lanave C., Preparata G., Saccone C., et al. A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution. 1984;20:86–93. [Abstract] [Google Scholar]
  • Li C., Huang B., Fan M.Z. Metarcordyceps guniujiangensis and its Metarhizium anamorph: a new pathogen on cicada nymph. Mycotaxon. 2010;111:221–231. [Google Scholar]
  • Liang Z.-Q., Liu A.-Y., Liu J.-L. A new species of the genus Cordyceps and its Metarhizium asexual morph. Acta Sinica. 1991;10:257–262. [Google Scholar]
  • Liao X., Lovett B., Fang W., et al. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology. 2017;163:980–991. [Abstract] [Google Scholar]
  • Liao X., O’Brien T.R., Fang W., et al. The plant beneficial effects of Metarhizium species correlate with their association with roots. Applied Microbiology and Biotechnology. 2014;98:7089–7096. [Abstract] [Google Scholar]
  • Liu Z.Y., Liang Z.Q., Whalley A.J.S., et al. Cordyceps brittlebankisoides, a new pathogen of grubs and its asexual morph, Metarhizium anisopliae var. majus. Journal of Invertebrate Pathology. 2001;78:178–182. [Abstract] [Google Scholar]
  • Liu S.F., Wang G.-J., Nong X.-Q., et al. Entomopathogen Metarhizium anisopliae promotes the early development of peanut root. Plant Protection Science. 2017;53:101–107. [Google Scholar]
  • Liu Y.J., Whelen S., Hall B.D. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution. 1999;16:1799–1808. [Abstract] [Google Scholar]
  • Lopes R.B., Faria M., Souza D.A., et al. MALDI-TOF mass spectrometry applied to identifying species of insect-pathogenic fungi from the Metarhizium anisopliae complex. Mycologia. 2014;106:865–878. [Abstract] [Google Scholar]
  • Lopes R.B., Souza D.A., Oliveira C.M., et al. Genetic diversity and pathogenicity of Metarhizium spp. associated with the white grub Phyllophaga capillata (Blanchard) (Coleoptera: Melolonthidae) in a soybean field. Neotropical Entomology. 2013;42:436–438. [Abstract] [Google Scholar]
  • Lopes R.B., Souza D.A., Rocha L.F.N., et al. Metarhizium alvesii sp. nov.: a new member of the Metarhizium anisopliae species complex. Journal of Invertebrate Pathology. 2018;151:165–168. [Abstract] [Google Scholar]
  • Luangsa-ard J., Houbraken J., van Doorn T., et al. Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiology. 2011;321:141–149. [Abstract] [Google Scholar]
  • Luangsa-ard J., Hywel-Jones N.L., Manoch L., et al. On the relationships of Paecilomyces sect. Isarioidea species. Mycological Research. 2005;109:581–589. [Abstract] [Google Scholar]
  • Luangsa-ard J., Mongkolsamrit S., Thanakitpipattana D., et al. Clavicipitaceous entomopathogens: new species in Metarhizium and a new genus Nigelia. Mycological Progress. 2017;16:369–391. [Google Scholar]
  • Luangsa-ard J., Tasanathai K., Thanakitpipattana D., et al. Novel and interesting Ophiocordyceps spp. (Ophiocordycipitaceae, Hypocreales) with superficial perithecia from Thailand. Studies in Mycology. 2018;89:125–142. [Europe PMC free article] [Abstract] [Google Scholar]
  • Luz C., Rocha L.F.N., Montalva C., et al. Metarhizium humberi sp. nov. (Hypocreales: Clavicipitaceae), a new member of the PARB clade in the Metarhizium anisopliae complex from Latin America. Journal of Invertebrate Pathology. 2019;166:107216. [Abstract] [Google Scholar]
  • Maliyakal E.J. An efficient method for isolation of RNA and DNA from plants containing polyphenolics. Nucleic Acids Research. 1992;20:2381. [Europe PMC free article] [Abstract] [Google Scholar]
  • Marsh R.A., Lucky A.W., Walsh T.J., et al. Cutaneous infection with Metarhizium anisopliae in a patient with hypohidrotic ectodermal dysplasia and immune deficiency. Pediatric Infectious Disease Journal. 2008;27:283–284. [Abstract] [Google Scholar]
  • Mayerhofer J., Lutz A., Dennert F., et al. A species-specific multiplexed PCR amplicon assay for distinguishing between Metarhizium anisopliae, M. brunneum, M. pingshaense and M. robertsii. Journal of Invertebrate Pathology. 2019;161:23–28. [Abstract] [Google Scholar]
  • Massee G. British Mycology. Transactions of the British Mycological Society. 1898;1:20–24. [Google Scholar]
  • Metchnikoff E. Maladies des hannetons duble. Zapiski imperatorskogo obshchestua sel’skago Khozyaĭstra yuzhnoĭ rossii. 1879:17–50. [Google Scholar]
  • Mongkolsamrit S., Noisripoom W., Arnamnart N., et al. Resurrection of Paraisaria in the Ophiocordycipitaceae with three new species from Thailand. Mycological Progress. 2019;18:1213–1230. [Google Scholar]
  • Mongkolsamrit S., Noisripoom W., Thanakitpipattana D., et al. Disentangling cryptic species with isaria-like morphs in Cordycipitaceae. Mycologia. 2018;110:230–257. [Abstract] [Google Scholar]
  • Montalva C., Collier K., Rocha L.F.N., et al. A natural fungal infection of a sylvatic cockroach with Metarhizium blattodeae sp. nov., a member of the M. flavoviride species complex. Fungal Biology. 2016;120:655–665. [Abstract] [Google Scholar]
  • Nikoh N., Fukatsu T. Interkingdom host jumping underground: phylogenetic analysis of entomoparasitic fungi of the genus Cordyceps. Molecular Biology and Evolution. 2000;17:629–638. [Abstract] [Google Scholar]
  • Nishi O., Iiyama K., Yasunaga-Aoki C., et al. Phylogenetic status and pathogenicity of Metarhizium majus isolated from a fruit beetle larva in Japan. Mycological Progress. 2015;14:58. [Google Scholar]
  • Nishi O., Sato H. Species diversity of the entomopathogenic fungi Metarhizium anisopliae and M. flavoviride species complexes isolated from insects in Japan. Mycoscience. 2017;58:472–479. [Google Scholar]
  • Nishi O., Sato H. Isolation of Metarhizium spp. from rhizosphere soils of wild plants reflects fungal diversity in soil but not plant specificity. Mycology. 2019;10:22–31. [Europe PMC free article] [Abstract] [Google Scholar]
  • Nishi O., Shimizu S., Sato H. Metarhizium bibionidarum and M. purpureogenum: new species from Japan. Mycological Progress. 2017;16:987–998. [Google Scholar]
  • Nourrisson C., Dupont D., Lavergne R.A., et al. Species of Metarhizium anisopliae complex implicated in human infections: retrospective sequencing study. Clinical Microbiology and Infection. 2017;23:994–999. [Abstract] [Google Scholar]
  • Nylander J.A.A. Evolutionary Biology Centre, Uppsala University; 2004. [Google Scholar]
  • O’Donnell K., Sarver B.A., Brandt M., et al. Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. Journal of Clinical Microbiology. 2007;45:2235–2248. [Europe PMC free article] [Abstract] [Google Scholar]
  • Osorio S., de la Cámara R., Monteserin M.C., et al. Recurrent disseminated skin lesions due to Metarrhizium anisopliae in an adult patient with acute myelogenous leukemia. Journal of Clinical Microbiology. 2007;45:651–655. [Europe PMC free article] [Abstract] [Google Scholar]
  • Perdomo H., Cano J., Gene J., et al. Polyphasic analysis of Purpureocillium lilacinum isolates from different origins and proposal of the new species Purpureocillium lavendulum. Mycologia. 2017;105:151–161. [Abstract] [Google Scholar]
  • Petch T. Notes on entomogenous fungi. Transactions of the British Mycological Society. 1931;16:55–75. [Google Scholar]
  • Petch T. Notes on entomogenous fungi. Transactions of the British Mycological Society. 1934;19:160–194. [Google Scholar]
  • Rehner S.A., Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia. 2005;97:84–98. [Abstract] [Google Scholar]
  • Rehner S.A., Samuels G.J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research. 1994;98:625–634. [Google Scholar]
  • Revankar S.G., Sutton D.A., Sanche S.E., et al. Metarrhizium anisopliae as a cause of sinusitis in immunocompetent hosts. Journal of Clinical Microbiology. 1999;37:195–198. [Europe PMC free article] [Abstract] [Google Scholar]
  • Roberts D.W., St Leger R.J. Metarhizium spp., cosmopolitan insect pathogenic fungi: mycological aspects. Advances in Applied Microbiology. 2004;54:1–70. [Abstract] [Google Scholar]
  • Rocha L.F., Inglis P.W., Humber R.A., et al. Occurrence of Metarhizium spp. in Central Brazilian soils. Journal of Basic Microbiology. 2013;53:251–259. [Abstract] [Google Scholar]
  • Rombach M.C., Humber R.A., Roberts D.W. Metarhizium flavoviride var. minus, var. nov., a pathogen of plant and leafhoppers on rice in Philippines and Solomon Islands. Mycotaxon. 1986;27:87–92. [Google Scholar]
  • Rombach M.C., Humber R.A., Evans H.C. Metarhizium album, a fungal pathogen of leaf and planthoppers of rice. Transactions of the British Mycological Society. 1987;88:451–459. [Google Scholar]
  • Ronquist F., Teslenko M., van der Mark P., et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systems Biology. 2012;61:539–542. [Europe PMC free article] [Abstract] [Google Scholar]
  • Samson R.A. Paecilomyces and some allied hyphomycetes. Studies in Mycology. 1974;6:1–119. [Google Scholar]
  • Sasan P.K., Bidochka M.J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany. 2012;99:101–107. [Abstract] [Google Scholar]
  • Sharma S.K., Gautam N. Metacordyceps dhauladharensis sp. nov., a new entomopathogenic fungus from India. Turkish Journal of Botany. 2015;39:520–526. [Google Scholar]
  • Shimazu M. Metarhizium cylindrosporae Chen et Guo (Deuteromycotina: Hyphomycetes), the causative agent of an epizootic on Graptopsaltria nigrofuscata Motchulski (Homoptera: Cicadidae) Applied Entomology and Zoology. 1989;24:430–434. [Google Scholar]
  • Sigler L., Gibas C.F.C., Kokotovic B., et al. Disseminated mycosis in veiled Chameleons (Chamaeleo calypratus) caused by Chamaeleomyces granulomatis, a new fungus related to Paecilomyces viridis. Journal of Clinical Microbiology. 2010;48:3182–3192. [Europe PMC free article] [Abstract] [Google Scholar]
  • Smithe F.B. The American Museum of Natural History; New York: 1975. [Google Scholar]
  • Spatafora J.W., Quandt C.A., Kepler R.M., et al. New 1F1N species combinations in Ophiocordycipitaceae (Hypocreales) IMA Fungus. 2015;6:357–362. [Europe PMC free article] [Abstract] [Google Scholar]
  • Spatafora J.W., Sung G.H., Sung J.M., et al. Phylogenetic evidence for an animal pathogen origin for ergot and the grass endophytes. Molecular Ecology. 2007;16:1701–1711. [Abstract] [Google Scholar]
  • Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. [Abstract] [Google Scholar]
  • Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sung G.H., Hywel-Jones N.L., Sung J.M., et al. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology. 2007;57:5–59. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sung G.H., Shrestha B., Sung J.M. Characteristics of Metacordyceps youngmunensis, a new species from Korea. Mycobiology. 2010;38:171–715. [Europe PMC free article] [Abstract] [Google Scholar]
  • Swofford D.L. Sinauer Associates; Sunderland, Massachusetts: 2019. Version 4.0a165. [Google Scholar]
  • Thanakitpipattana D., Tasanathai K., Mongkolsamrit S., et al. Fungal pathogens occurring on Orthopterida in Thailand. Persoonia. 2020;44:140–160. [Europe PMC free article] [Abstract] [Google Scholar]
  • Thongkaewyuan A., Chairin T. Biocontrol of Meloidogyne incognita by Metarhizium guizhouense and its protease. Biological Control. 2018;126:142–146. [Google Scholar]
  • Tulloch M. The genus Metarhizium. Transactions of the British Mycological Society. 1976;66:407–411. [Google Scholar]
  • Tzean S.S., Hsieh L.S., Chen J.L., et al. Nomuraea viridulus, a new entomogenous fungus from Taiwan. Mycologia. 1992;84:781–786. [Google Scholar]
  • Tzean S.S., Hsieh L.S., Chen J.L., et al. Nomuraea cylindrospora comb. nov. Mycologia. 1993;85:514–519. [Google Scholar]
  • Uchiyama S., Udagawa S. Cordyceps owariensis f. viridescens and its new Nomuraea anamorph. Mycoscience. 2002;43:135–141. [Google Scholar]
  • Vega F.E., Goettel M.S., Blackwell M., et al. Fungal entomopathogens: new insights on their ecology. Fungal Ecology. 2009;2:149–159. [Google Scholar]
  • Vega F.E., Meyling N.V., Luangsa-Ard J.J., et al. In: Insect pathology. 2nd ed. Vega F., Kaya H.K., editors. Academic Press; San Diego: 2012. pp. 171–220. [Google Scholar]
  • Vilgalys R., Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cyptococcus species. Journal of Bacteriology. 1990;172:4238–4246. [Europe PMC free article] [Abstract] [Google Scholar]
  • Wang S., Weiguo F., Chengshu F., et al. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. PLoS Pathogens. 2011;7 [Europe PMC free article] [Abstract] [Google Scholar]
  • Wen T.C., Xiao Y.P., Han Y.F., et al. Multigene phylogeny and morphology reveal that the Chinese medicinal mushroom ‘Cordyceps gunnii’ is Metacordyceps neogunnii sp. nov. Phytotaxa. 2017;302:027–039. [Google Scholar]
  • Wen T.C., Zha L.S., Xiao Y.P., et al. Metacordyceps shibinensis sp. nov. from larvae of Lepidoptera in Guizhou Province, southwest China. Phytotaxa. 2015;226:51–62. [Google Scholar]
  • White T.J., Bruns T., Lee S., et al. In: PCR protocols: a guide to methods and applications. Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. Academic Press; San Diego: 1990. pp. 315–322. [Google Scholar]
  • Yamamoto K., Ohmae M., Orihara T. Metarhizium brachyspermum sp. nov. (Clavicipitaceae), a new species parasitic on Elateridae from Japan. Mycoscience. 2020;61:37–42. [Google Scholar]
  • Zang M., Liu D., Hu R. Notes concerning the subdivisions of Cordyceps and a new species from China. Acta Botanica Yunnanica. 1982;4:173–176. [Google Scholar]
  • Zhang Q., Chen X., Xu C., et al. Horizontal gene transfer allowed the emergence of broad host range entomopathogens. Proceeding of the National Academy of Science of the United States of America. 2019;116:7982–7989. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zhang W.N., Li T.H., Chen Y.Q., et al. Cordyceps campsosterma, a new pathogen of Campsostermus auratus. Fungal Diversity. 2004;17:239–242. [Google Scholar]
  • Zimmermann G. Review of safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology. 2007;17:879–920. [Google Scholar]
  • Zimmermann G., Papierok B., Glare T. Elias Metschnikoff, Elie Metchnikoff or Ilya Ilich Mechnikov (1845–1916): a pioneer in insect pathology, the first describer of the entomopathogenic fungus Metarhizium anisopliae and how to translate a Russian name. Biocontrol Science and Technology. 1995;5:527–530. [Google Scholar]

Articles from Studies in Mycology are provided here courtesy of Westerdijk Fungal Biodiversity Institute

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/81819276
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/81819276

Article citations


Go to all (31) article citations

Data 


Data behind the article

This data has been text mined from the article, or deposited into data resources.

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


Funding 


Funders who supported this work.

National Center for Genetic Engineering and Biotechnology (1)

National Science and Technology Development Agency