
Dept. of Math and Statistics Sung E. Kim

 1

Applied Statistics using S-PLUS: Short course

Sung Eun Kim, PhD

Department of Mathematics and Statistics

California State University, Long Beach

Long Beach, CA 90840

sung.kim@csulb.edu

Revised 2010

mailto:sung.kim@csulb.edu

Dept. of Math and Statistics Sung E. Kim

 2

Introduction

What is S-PLUS?

 S is a language and an interactive programming environment for data analysis and graphics. The S

language is a very high-level language for specifying computations. The language is part of an

interactive environment: S encourages you to compute, look at the data, and program interactively,

with quick feedback to enable you to learn and understand. Refer to Becker et al., 1988 for more

details.

The best way to learn to use the S-PLUS language is to just using it! It is possible to use S-PLUS with the

same techniques used in other programming language such as FORTRAN (though this may not be the most

efficient way to use S-PLUS).

Newer version of S-PLUS for Windows (user friendly interface) was designed for easy (“click-and-see”),

intuitive analysis and visualization of data. This allows you to import and export data from many sources

including spreadsheets like Excel and Lotus, analytical software such as SAS and SPSS, and databases. The

software is quite expensive but cheaper student versions are always available. In this note, we will discuss

using S-PLUS in Windows that is available in Math department (we have the newest version, V6.0).

Before you start
You are in several projects or studies and you may want to have separate S+ workspaces. It is very

convenient to have different S+ shortcut incons on your desktop so that you can directly get on the project

without further configuration. For this make another S+ shortcut icon on the desktop and right-click then

property. On the Target window add the folder name you are working on (usually where data are at) as

follows;

"C:\Program Files\Insightful\splus6\cmd\SPLUS.exe" S_PROJ=C:\Research\OzoneStudy

Than change the icon name (this might be done beforehand).

Once it has been done, double-click on the icon and do your work in S+ system. Your work will be saved

on the folder you specified above and next time when you open the workspace everything you have done

late time will be there, unless you delete them on purpose.

Basics

Getting Started

To begin S-PLUS under Windows, double click the S-plus icon on your desktop. The layout might have

two windows (Object Explorer and Commands Windows). Object Explorer does the same work as the

Windows Explorer and the Commands Window is where you type your commands. Many commands can

be executed via user interface menus, but yet some functions run only in the Commands Window. To

receive help while in S-PLUS on various commands, use

> help(“command”)

Note that S-PLUS is case-sensitive; that is, “s” and “S” are different in S-PLUS.

Prompt

The S-PLUS Commands Window prompt is:

Dept. of Math and Statistics Sung E. Kim

 3

 >
A

 +

prompt means that S-PLUS is waiting for you to finish your command: for example, you may have

forgotten to close a function with a right parenthesis. Type

 > 3*(2+4

and see what happens.

Saving and Script File

You can type your commands here one-by-one or you may execute a series of S-Plus commands from a file

(with an extension .ssc) using source command:

> source(“filename”)

or choosing Run button for running commands in a Script Window. Confusing?? Well, here’s how to do.

First, open a Script Window by choosing New, Script File, and then OK. Now you have the Script Window.

In upper pane type

 x<- 1:10 # this will create a vector x with the element 1,2,3,…,10

 mean(x) # this will return the mean value of the vector x

 stdev(x) # this will return the standard deviation of the vector x

Now click on the Run button (the right triangular arrow). You will see the calculated result in the lower

pane. If you want to save the codes into a file, choose File from main menu then Save As.

More examples for using a Script Window will be discussed in class. If you type commands one-by-one in

the Commands Window, you may want to record the resulted output and/or the commands you just typed

into a file. For this we use sink command:

> sink(“filename”)
>……. # all the commands you want to
>……. # save of the outputs here
> sink()

The record function in place of sink will also save the commands into the specified file. The outputs and

graphs will also appear in the Object Explorer (Reports and Graphs folders), so that you can display on the

screen and save into a file (by choosing File-Save As).

In-line Data Creation and Some Fun

Now, let’s have some fun.

S-PLUS is primarily meant to be an interactive data analysis system. When you create data vectors and

functions in an S-PLUS session, they stay in your .Data directory. For example, if you make the

assignment

> x <- 1:10 # you may also type > x_1:10
 [1] 1 2 3 4 5 6 7 8 9 10

to create a vector x with length 10 and the elements 1 through 10, and then leave S-PLUS, next time you

start S-PLUS you could type

 > x
 [1] 1 2 3 4 5 6 7 8 9 10

and x will still be there!

Dept. of Math and Statistics Sung E. Kim

 4

You may either make a data frame objective (in vector or matrix) by typing within S-PLUS environment or

reading from an external data file. Unless the data is very small, the second case is more common. Let’s

make a data vector x (you can name the vector as you like) of size 9 with the element 1,2,…,9.

> x<-c(1,2,3,4,5,6,7,8,9)
> x
[1] 1 2 3 4 5 6 7 8 9

Then x will return the data you typed. Let’s now make a matrix xx (again, any name) of dimension 5x3

> xx<-matrix(nrow=5,ncol=3)

5 by 3 matrix format is assigned to xx. Since we didn’t type in any data, if you type xx you will see

> xx
 [,1] [,2] [,3]
[1,] NA NA NA
[2,] NA NA NA
[3,] NA NA NA
[4,] NA NA NA
[5,] NA NA NA

Let’s type the data for each column. Note that xx[,n] means the n
th

 column of the matrix xx. Similarly,

xx[k,] means the k
th

 row.

> xx[,1]<-c(1,2,3,4,5)
> xx[,2]<-c(6,7,8,9,10)
> xx[,3]<-c(11,12,13,14,15)
> xx
 [,1] [,2] [,3]
[1,] 1 6 11
[2,] 2 7 12
[3,] 3 8 13
[4,] 4 9 14
[5,] 5 10 15

The same result can be obtained by:

> xx<-1:15
> xx<-matrix(xx, nrow=5, ncol=3, byrow=F)
> xx

Reading Data from a Text File (Example)

More commonly, we import data from an external data file. Note in S-PLUS Windows version we can

import data in other formats as mentioned in Introduction. The following ASCII file called Sta131.txt

contains name of 28 students, two midterm scores, final, and total score of a graduate statistics course that I

taught before.

Name HW MT.I MT.II Final Total

Al-Mefleh, N 93.75 51 38 27 41.6

Bennett, T 91.75 80 52 33 53.7

Buyuktas, D 98.25 79 84 49 68.6

Cao, Zh 69.75 93 82 55 71.1

Chen, J 99.375 89 91 83 87.8

Choi, J 98.75 90 78 41 66.1

Dept. of Math and Statistics Sung E. Kim

 5

The read.table command provides a method to bring this data into the current data frame as a data frame

objective. An object has intrinsic which give its structure. The data will be read into the data frame

objective grade.data. You may also easily import the data file by choosing File, Import Data, From File,

then choosing ASCII Text File format. We will discuss more in class. I believe that, these days, many of

data files have Formatted ASCII forms and so we will discuss these formats in details.

> grade.data<- read.table(“C:/…./Sta131.txt”,header=T)
 > grade.data

 Name HW MT.I MT.II Final Total

 1 Al-Mefleh, N 93.750 51 38 27 41.6

 2 Bennett, T 91.750 80 52 33 53.7

 3 Buyuktas, D 98.250 79 84 49 68.6

 4 Cao, Z 69.750 93 82 55 71.1

 5 Chen, J 99.375 89 91 83 87.8

 6 Choi, J 98.750 90 78 41 66.1

 7 Corberl, T 32.500 53 46 14 31.8

 8 Dubin, J 99.750 98 74 86 87.4

 9 Habbas, Y 74.500 88 62 39 58.8

10 Hope, T 81.125 67 61 57 62.6

11 Kang, S 97.375 77 77 67 74.5

12 Knight, K 96.250 39 36 12 31.9

13 Lam, T 96.750 33 67 17 39.8

14 Li, B 98.125 100 74 82 85.9

15 Lin, D 99.250 90 98 95 95.0

16 Love, B 99.750 96 98 88 93.2

17 Peck, L 98.625 97 92 94 94.7

18 Pham, H 97.000 86 97 53 74.7

19 Quian, P 98.625 95 87 55 75.6

20 Singh, R 99.750 100 98 90 95.0

21 Smith, J 78.000 74 68 50 62.3

22 Su, X 97.250 95 100 99 98.2

23 Sundstrom, K 99.250 57 61 80 72.5

24 Wai, N 98.875 87 100 99 96.5

25 White, J 99.250 70 70 57 67.1

26 Wong, G 95.375 88 65 68 74.6

27 Zhang, L 93.500 64 72 66 69.7

28 McConville, L 91.125 93 100 63 80.9

More detailed discussions on Importing and Exporting data are in the following section.

We can examine some of the properties of grade.data. It is a list object, made up of other objects. Objects

can be atomic (with mode “logical”, “numerical”, “complex”, or “character”) or non-atomic (comprising

other objects). The object grade.data is a recursive; that is, it is a list made up of several component objects.

Let see several ways of accessing the parts of grade.data.

> mode(grade.data)

[1] "list"

> length(grade.data)

[1] 6

> grade.data[5]

 Final

 1 27

 2 33

 … …

27 66

28 63

> grade.data[1,]

 Name HW MT.I MT.II Final Total

1 Al-Mefleh,N 93.75 51 38 27 41.6

Dept. of Math and Statistics Sung E. Kim

 6

> grade.data[,"Final"]

 [1] 27 33 49 55 83 41 14 86 39 57 67 12 17 82 95 88 94

[18] 53 55 90 50 99 80 99 57 68 66 63

> grade.data[1,1]

[1] Al-Mefleh,N

> grade.data[1,5]

[1] 27

> grade.data[grade.data[,"Final"]>80,]

 Name HW... MT.I MT.II Final Total....

 X5 Chen, J 99.375 89 91 83 87.8

 X8 Dubin, J 99.750 98 74 86 87.4

X14 Li, B 98.125 100 74 82 85.9

X15 Lin, D 99.250 90 98 95 95.0

X16 Love, B 99.750 96 98 88 93.2

X17 Peck, L 98.625 97 92 94 94.7

X20 Singh, R 99.750 100 98 90 95.0

X22 Su, X 97.250 95 100 99 98.2

X24 Wai, N 98.875 87 100 99 96.5

> summary(grade.data[,"Final"])

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 12 47 60 61.39 83.75 99

Simple Linear Regression

Suppose that we are interested in relating the first midterm (MT.I) to the final score (Final). We can use the

lm function to do the linear regression analysis. What returns from lm is a recursive object from which

information about the regression can be extracted. Those information will be included in the object

grade.fit (you name it).

The summary function can be used to print out the contents of the object. In the formula, the response

variable will be placed on the left of a ~ operator and explanatory variable on the right. In case of multiple

regression, the + sign will be placed between the explanatory variables. The constant term is in the model

by default. na.action is a function to filter missing data. na.omit will delete observations that contain one or

more missing values.

> grade.fit<-lm(formula = Final ~ MT.I, data = grade.data, na.action

+ = na.omit)

> summary(grade.fit)

Call: lm(formula = Final ~ MT.I, data = grade.data, na.a

ction

 = na.omit)

Residuals:

 Min 1Q Median 3Q Max

 -30.58 -12.51 0.8994 11.07 40.67

Coefficients:

 Value Std. Error t value Pr(>|t|)

(Intercept) -16.3021 15.9951 -1.0192 0.3175

 MT.I 0.9760 0.1958 4.9858 0.0000

Residual standard error: 19.09 on 26 degrees of freedom

Multiple R-Squared: 0.4888

F-statistic: 24.86 on 1 and 26 degrees of freedom, the p

-value is 0.00003488

Dept. of Math and Statistics Sung E. Kim

 7

Correlation of Coefficients:

 (Intercept)

MT.I -0.9742

Following is to obtain Analysis of Variance table. The input to anova are the objects resulting from model-

fitting function lm.

> anova(grade.fit)

Analysis of Variance Table

Response: Final

Terms added sequentially (first to last)

 Df Sum of Sq Mean Sq F Value Pr(F)

 MT.I 1 9055.450 9055.450 24.85862 0.00003488384

Residuals 26 9471.229 364.278

Plotting

> xval<-grade.data[,"MT.I"]

> yval<-grade.data[,"Final"]

> grade.res<-residuals(grade.fit)

> grade.pre<-fitted.values(grade.fit)

> plot(xval,yval,xlab="MT.I",ylab="Final")

> plot(xval,grade.res,xlab="MT.I",ylab="Residuals")

Fitted : MT.I

F
in

al

20 30 40 50 60 70 80

20
40

60
80

10
0

Fitted : MT.I

Residuals

20304050607080

-20
0

20
40

69

23

Dept. of Math and Statistics Sung E. Kim

 8

It is important to note that you may make a command file (a file with list of commands separated by line)

and execute the file in the S-PLUS environment. For exam, for the above regression work suppose you

made a file (named, say, “grade.ssc”) with contents

grade.data<- read.table(“Sta131.dat”,header=T)

grade.fit<-lm(formula = Final ~ MT.I, data = grade.data, na.action

+ = na.omit)

summary(grade.fit)

anova(grade.fit)

xval<-grade.data[,"MT.I"]

yval<-grade.data[,"Final"]

grade.res<-residuals(grade.fit)

grade.pre<-fitted.values(grade.fit)

plot(xval,yval,xlab="MT.I",ylab="Final")

plot(xval,grade.res,xlab="MT.I",ylab="Residuals")

Then,

 >source(“grade.ssc”)

will execute the external command file (grade.ssc). To save the results, simply type

sink(“filename”) and sink() at the beginning and the end. For example,

> sink(“grade.out”)
> source(“grade.s”)
> sink()

Of course, it also can be done via Script Windows as discussed earlier.

References

Becker, R.A., Chambers, J.M., and Wilks, A.R. (1988). The New S Language. Wadsworth and Books.

Everitt, B.S. (1994). A Handbook of Statistical Analysis using S-PLUS. Champman and Hall.

Krause, A and Melvin Olson (2000) The Basics of S and S-PLUS, Second ed., Springer

Dept. of Math and Statistics Sung E. Kim

 9

DATA STRUCTURE

VECTOR
 > x_c(4,3,5,7,12) #”c” stands for “concatenate” command

> x

[1] 4 3 5 7 12

> mean(x)

[1] 6.2

> stdev(x)

[1] 3.563706

> y_c(12,13,11,10)

> x_c(x,y)

> x

[1] 4 3 5 7 12 12 13 11 10

There are two useful commands for creating vectors (sequence, replication):

> a_seq(0,15,2) # seq(lower, upper, increment)

> a

[1] 0 2 4 6 8 10 12 14

> b_rep(0,5) # rep(pattern, number of times)

> b

[1] 0 0 0 0 0

> rep(7,5)

[1] 7 7 7 7 7

> rep(c(1,2,3),4)

[1] 1 2 3 1 2 3 1 2 3 1 2 3

> rep(c(4,5,6),c(1,2,3))

[1] 4 5 5 6 6 6

> rep(c(4,5,6),length=7)

[1] 4 5 6 4 5 6 4

MATRIX

Some basics for matrix have been discussed from the last handout. Here, we will discuss how to modify a

matrix and some matrix calculations. We can easily add extra columns and rows by using:

cbind(matrix1,matrix2) and rbind(matrix1,matrix2). Try the followings;

 > x_matrix(1:15,nrow=3,ncol=5,byrow=T)

> x

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

[3,] 11 12 13 14 15

> x_cbind(x,c(6,11,16))

> x

 [,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 2 3 4 5 6

[2,] 6 7 8 9 10 11

[3,] 11 12 13 14 15 16

> x_rbind(x,17:22)

> x

 [,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 2 3 4 5 6

[2,] 6 7 8 9 10 11

[3,] 11 12 13 14 15 16

[4,] 17 18 19 20 21 22

Dept. of Math and Statistics Sung E. Kim

 10

Of course, this also can be done easily using the data spreadsheet in S-Plus. Most of discussion using

window interface will be discussed in class. If you have a numeric ASCII data file, using the scan function

you can create a matrix. For example,

 > x_matrix(scan(“filename”), ncol=5,byrow=T)

will create a matrix x out of the file with five columns.

For a cross product, xx, of the matrix x we use either

 > crossprod(x)

or

 > t(x) %*% x #t(x) means the transpose of x

Note that a function “>t(x) * x” will return a element-by-element multiplication. If the matrix is a

nonsingular square matrix, a function solve will return the inverse matrix. For the singular value

decomposition svd function can be used.

For some more discussion in matrix modification, let’s revisit our STA131.dat data. Suppose that before

assigning the final grade Sung decided to modify the distribution of proportion to be 20% HW, 25% MT.I,

25% MT.II, and 30% Final. Then, he wanted to recalculate the Total score using these new proportions (I

don’t know what proportions I used originally, but that might be different than above).

> attach(grade.data) #this function will allow you to use the simple variable names (without the

#messy grade.data$Final or messier grade.data[,”Final”]

> grade.data$Total_HW*.2+MT.I*.25+MT.II*.25+Final

> detach()

Above code will replace the Total score. You may want to record the new score as another name and keep

the old one in the same data object. Try this out

> attach(grade.data)

> Total.New_HW*.2+MT.I*.25+MT.II*.25+Final

> grade.data_cbind(grade.data, Total.New)

> detach()

Now, you will have another column named Total.New in grade.data. You may want to change some of

values in the data. For example, suppose that I want to change the Final score of the student named Kang, S

to 78 (was 67).

 > grade.data[11,"Final"]_78

Note that this change will not automatically recalculate the Total.New score of the student (Excel does it!).

Now I’d like to calculate the mean and the standard deviation of each of the scores . For this we use the

apply function.

> apply(grade.data[,2:6], 2, mean) #the number 2 in the middle means apply the function mean to

#columns. You may use 1 to refer to the rows

> apply(grade.data[,2:6], 2, stdev)

You may also “> colMeans(grade.data[,2:6])” and “> colStdevs(grade.data[,2:6])”. The functions colVars,

colSums, rowMeans, rowStdevs, rowVars, and rowSums are also available.

Dept. of Math and Statistics Sung E. Kim

 11

ARRAY

Array is the extension of the matrix in dimension. That is, if the dimension of data is 2, we call it “matrix”

and more than 2 then “array”. Assume that in an opinion poll we obtained the following results from the

two states, California and Ohio.

California Ohio

 Yes No Don’t

know

Male 100 70 10

Female 50 60 20

Try this out

poll_array(c(100,50,70,60,10,20,120,40,50,30,20,30),c(2,3,2))
gender_c("Male","Female")
opinion_c("Yes","No","don't know")
state_c("California","Ohio")
dimnames(poll)_list(gender,opinion,state)
poll

> poll

, , California
 Yes no Don't know
 Male 100 70 10
Female 50 60 20

, , Ohio
 Yes no Don't know
 Male 120 50 20
Female 40 30 30

> poll[,,"California"]

 Yes no Don't know
 Male 100 70 10
Female 50 60 20

> poll["Male",,]

 California Ohio
 Yes 100 120
 no 70 50
Don't know 10 20

Note that each of poll[,,”California”], poll[“Male”,,], and etc. is treated as matrices. Hence, all functions we

used for matrix can be used. For example,

> apply(poll["Male",,],1,sum)

 Yes no Don't know
 220 120 30

> apply(poll["Female",,],1,sum)

 Yes no Don't know

90 90 50

 Yes No Don’t

know

Male 120 50 20

Female 40 30 30

Dept. of Math and Statistics Sung E. Kim

 12

DATA FRAME

Data Frame is a generalized version of the matrix in the sense that the data frames allow you to mix data of

different types (numeric, character, etc) into a single data object. The data frame is the most common data

structure in S-Plus.

Data frame can be created via several ways. To create a data frame from an external file, read.table

command can be used as we discussed before. You may also import the data file directly from the File

menu.

>your.frame.name_ read.table(“filename”,header=T) #use header=F if your data

#doesn’t contain a header row.

You may want to bind S-Plus data objects of various kinds into a data frame. In the case use data.frame

command.

 > your.frame.name_data.frame(object1,object2,….)

Consider the following simple example.

> rdm_rnorm(10) #this wiil generate random sample of size 10 from N(0,1)

> assgn <- rep(NA, 10)

> assgn[rdm > 0] <- "A"

> assgn[rdm <= 0] <- "B"

> assgn1 <- cbind(rdm, assgn)

> assgn1

 rdm assgn

 [1,] "0.049086461868886" "A"

 [2,] "0.918544752343534" "A"

 [3,] "-0.126559993056653" "B"

 [4,] "0.33915786263237" "A"

 [5,] "1.43901265660863" "A"

 [6,] "0.0279969566945071" "A"

 [7,] "-1.47322223095435" "B"

 [8,] "-0.668673135299956" "B"

 [9,] "-0.345348406178856" "B"

[10,] "0.0884835844457507" "A"

> max(assgn1[, 1])

Problem in max(assgn1[, 1]): Numeric summary undefined for mode "character"

This will create a matrix using cbind command. By binding numeric with character variable, the variable

rdm is no longer numeric. Hence, some numeric calculations, like max and min, are no longer possible. It is

interesting to note that some numeric calculations, like mean and stdev, are still working.

> mean(assgn1[, 1])

[1] 0.02484785

Now, let create a data frame, which will keep the original mode of the variables.

> assgn2 <- data.frame(rdm, assgn)

> assgn2

 rdm assgn

 1 -0.7615447 B

 2 -0.4632235 B

 3 1.8197463 A

 4 -0.1927243 B

 5 -0.1923333 B

 6 -0.1962358 B

Dept. of Math and Statistics Sung E. Kim

 13

 7 -1.5823391 B

 8 -0.6647673 B

 9 -0.4132076 B

10 2.0184172 A

> max(assgn2$rdm)

[1] 2.018417

Any functions we used for matrix, like apply, also works for data frames. To combine data frames, use

data.frame, cbind, rbind. You can merge two or more data frames using merge function.

 > merge(dataframe1,dataframe2,…)

It can be explained by the following example. Consider that we have two data frames: the first one is

general information about students in a class (provided from the university) and the second is their test

scores and the final grade (prepared by the professor). We want to merge the two data from different

sources.

> example.list

 Name Class College

1 Chen Senior AS

2 Choi Master AS

3 Jackson Master Eng

4 Johnson Master AS

5 Lu Senior Edu

6 Mueller Junior Eng

7 Park Master Edu

8 Xiao Senior AS

> example.grade

 Name MT Final Grade

1 Jackson 85 79 A

2 Mueller 70 98 A

3 Lu 92 91 A

4 Choi 78 68 B

5 Johnson 69 66 B

6 Park 62 80 B

7 Xiao 75 78 B

8 Chen 54 66 C

> merge(example.list, example.grade, by=1) #by=1 means merging by the first col.

 Name Class College MT Final Grade

1 Chen Senior AS 54 66 C

2 Choi Master AS 78 68 B

3 Jackson Master Eng 85 79 A

4 Johnson Master AS 69 66 B

5 Lu Senior Edu 92 91 A

6 Mueller Junior Eng 70 98 A

7 Park Master Edu 62 80 B

8 Xiao Senior AS 75 78 B

More discussion on Data Frames will be given later.

LIST

List is a collection of vectors or matrices of arbitrary structures. List is useful when you want to collect

related data with different structures into a big list object. Note that while both data frame and matrix

require rectangular, list allows different structures. Consider the following example:

> a_rnorm(5) #random sample of size 5 from N(0,1)

> b_a>0

> ab_data.frame(a,b)

Dept. of Math and Statistics Sung E. Kim

 14

> c_rt(10,29) #random sample of size 10 from t(df=20)

> d_rchisq(15,29) #random sample of size 10 from chisquare(df=20)

> x_list(ab,c,d)

> x

[[1]]:

 a b

1 " 0.5284931" "T"

2 "-0.5783929" "F"

3 "-0.7104860" "F"

4 " 0.1749112" "T"

5 " 0.8443500" "T"

[[2]]:

 [1] 0.1661215 -0.2214252 0.8668092 -0.1193410 -0.6454605 0.5767275

 [7] 0.7018636 0.8049501 1.1132858 0.4405738

[[3]]:

 [1] 22.74985 32.81265 47.81313 23.51771 31.96326 17.26032 31.40059

 [8] 39.21596 27.57610 23.56536 32.28030 24.04670 28.70105 37.20586

[15] 35.17972

To call the data frame ab use either x[1] or x[[1]]. Either x[[1]]$a or x[[1]][[1]] will return the vector a

(random sample from N(0,1)).

> x[[1]]$a

[1] 0.5284931 -0.5783929 -0.7104860 0.1749112 0.8443500

> x[[1]][[1]]

[1] 0.5284931 -0.5783929 -0.7104860 0.1749112 0.8443500

> mean(x[[1]]$a)

[1] 0.05177509

WRITING FUNCTIONS

This note discusses the basic techniques for writing functions in S+ (like macro in SAS). S+ provides a

number of built-in functions (over 3800) and writing your own functions can extend it. The basic syntax of

a function declaration is as follows:

 Your-function-name <- function (arguments)

 { function body

 return (output arguments) }

To call the function, type

 > your-function-name (arguments).

As a simple example consider writing a function to calculate the two-sided p-value of a t statistic (text p3).

 t.test.p_function (x, mu=0, alpha=0.05)

 { n_length(x)

 t_sqrt(n) * (mean(x) - mu) /stdev(x)

 p_2 * (1-pt(abs(t), n-1))

 if (p<alpha) result_"Reject Ho" else result_"Do Not Reject Ho"

 return(t,p, result) }

Here, x is data, mu is the mean under the null hypothesis, and alpha is the level of significance. To call this

function for a t-test for Ho: =1 at =.01,

 t.test.p(data, 1, 0.01)

Dept. of Math and Statistics Sung E. Kim

 15

If you don’t specify the last two arguments, S+ will use the default values of mu=0 and alpha=0.05. Let’s

use the function to test if the mean Final score of STA131 class is 67 (the mean from last year) or not.

 > z_grade.dat$Final

 > t.test.p(z,67)

 $t:

 [1] -1.11745

 $p:

 [1] 0.2736473

 $result:

 [1] "Do Not Reject Ho"

The calculated t statistic and the corresponding p-value and the test result are printed above. Since we

didn’t specify the level of significance, the test is performed with the default value of 0.05. Since the p-

value of the test is not less than 0.05, we do not reject the null hypothesis, Ho: =67, at =.05. In deed, S+

has a built-in function for a t-test, for both one and two sample.

 > t.test(z, mu=67)

 One-sample t-Test

data: z

t = -1.1174, df = 27, p-value = 0.2736

alternative hypothesis: true mean is not equal to 67

95 percent confidence interval:

51.29976 71.62881

sample estimates:

 mean of x

 61.46429

Functions also can be used to define your own function name of a built-in function. For example, suppose

you use the logarithm function with a base 2 very often. The built-in function expression is logb(x, 2). You

want to simplify the expression.

 > log2 <- function(x) { return (logb(x, 2)) }

> log2(16)

[1] 4

To get the on-line help for the argument names and default values for S-function, type

 > args(function-name).

For example,

 > args(t.test)

function(x, y = NULL, alternative = "two.sided", mu = 0, paired = F,

var.equal = T, conf.level = 0.95)

If you want to perform one-sided (left) two-sample t-test for non-paired and unequal variances, type

 > t.test(x,y, alternative=”less”, paired=F, var.equal=F)

Elementary Functions: See handout

is and as functions

Dept. of Math and Statistics Sung E. Kim

 16

Before applying functions to our data, we may want to check if our data has the particular type that the

function argument required. Doing so, you can protect against unexpected error message.

 > is(x,”numeric”)

Consider the following function, which returns mean for number variable.

Just.fun_function(x)

 { if(!is(x,”numeric”)) stop (“Oops! The variable must be numeric.”)

else return(mean(x)) {

is(x,”numeric”) is a logical function that will return T if x is numeric. The complementary expression

is !is(x,”numeric”) that will return T if x is not numeric. Now the variable gender is a factor with elements

“Male” and “Female”.

 > Just.fun(gender)

 Problem in Just.fun(gender): Oops! The variable must be numeric.

You can use the function to test for “array”, “character”, “complex”, “data.frame”, “double”, “factor”,

“integer”, “list”, “logical”, “matrix”, “numeric”, “single”, and “vector”.

as function is used to coerce the variable to have the specified data type. For example,

 > as (x, “character”)

will coerce the variable x to have a character data type. Consider the data with 12-hour pollutant volume at

a certain day with code “9999” for a missing value.

> pollut

 [1] 8 3 4 5 2 6 9999 6 7 5 4 3

> pollut[pollut==9999]_"Missing"

> pollut

 [1] "8" "3" "4" "5" "2" "6"

 [7] "Missing" "6" "7" "5" "4" "3"

Of course, you could use the NA for the missing value (replace “Missing” with NA) keeping the variable

numeric. We just assigned the character “Missing” to explain the use of as function. Since the pollut

variable converts to character we use the as function to covert the variable back to numeric.

> pollut_as(pollut,"numeric")

Warning messages:

 1 missing values generated coercing from character to numeric

> pollut

 [1] 8 3 4 5 2 6 NA 6 7 5 4 3

Now, we want to calculate the mean omitting the missing values.

> mean(pollut[!is.na(pollut)])

[1] 4.818182

We have used the is.na function to determine which values are missing and to exclude the missing values

from the mean calculation.

Dept. of Math and Statistics Sung E. Kim

 17

ITERATION

It is extremely important to note that S-Plus is vector or matrix oriented (Fortran and C are not!), and hence,

we can mostly avoid complicated loops in iterative computations. For example we can simply use x %*% x

for uncorrected sum of squares for variable x instead of using the for loop. We will briefly discuss for,

while, and repeat. These loops can be used independently or in the body of a function.

The for loop

 > for(i in invalues) {commands}

Consider the calculation of a uncorrected sum of square of a variable x

> x_c(2,1,3,4,2,3,1,5)

> y_0

> for (i in 1:length(x)) {y_x[i]^2+y; print(y)}

[1] 4

[1] 5

[1] 14

[1] 30

[1] 34

[1] 43

[1] 44

[1] 69

> y

[1] 69

The while loop

The while loop is used when the total number of iteration is unknown.

 > while(condition) { commands }

For an example of the use of the while loop, we consider the maximum likelihood estimation for the

parameter  of the zero-truncated Poisson distribution as in the text p95. The probability distribution and

the iterative estimation via Newton’s method is in the test.
 yp_rpois(100, 1) #random sample of size 100 from Poisson(1)

 y_yp[yp>0] #truncate the zeros

 ybar_mean(y) #mean of the zero truncated Poisson r.v.

 lam_ybar #initial value of lambda

 it_0 #iteration count

 del_1 #tolerance

 while(abs(del) > .000001 && (it_it+1)<10)

 {del_(lam-ybar*(1-exp(-lam)))/(1-ybar*exp(-lam))

 lam_lam-del

 cat("The estimated lambda after", it, "th iteration is", lam, "\n")

 }

The estimated lambda after 1 th iteration is 1.148994930761

The estimated lambda after 2 th iteration is 1.06264898980154

The estimated lambda after 3 th iteration is 1.0581687548983

The estimated lambda after 4 th iteration is 1.05815588823481

The estimated lambda after 5 th iteration is 1.05815588812837

In the above example, the condition of the while loop states that the iteration continues until the tolerance

limit of 0.00001 and the number of iteration of 10. To print the variable’s values we use cat function, which

is analogy to the cat function from the C language.

The repeat loop

 > repeat {commands

Dept. of Math and Statistics Sung E. Kim

 18

 stop criterion }

The repeat function repeats the commands until the stop criterion meets. We may rewrite the above code

using repeat loop as follows;

yp_rpois(100, 1)

y_yp[yp>0]

ybar_mean(y)

lam_ybar

it_1

del_1

repeat

 {del_(lam-ybar*(1-exp(-lam)))/(1-ybar*exp(-lam))

 lam_lam-del

 cat("The estimated lambda after", it, "th iteration is", lam, "\n")

 if(abs(del) < .00001 || (it_it+1)>10) break

 }

The estimated lambda after 1 th iteration is 1.148994930761

The estimated lambda after 2 th iteration is 1.06264898980154

The estimated lambda after 3 th iteration is 1.0581687548983

The estimated lambda after 4 th iteration is 1.05815588823481

The estimated lambda after 5 th iteration is 1.05815588812837

Dept. of Math and Statistics Sung E. Kim

 19

GRAPHICS

Getting Started: plot(), hist() functions, and more.

Scatter plot

Let’s revisit our grade.data data.

 > attach(grade.data)

 > plot(MT.I,Final)

MT.I

F
in

al

40 60 80 100

20
40

60
80

10
0

We can change the character for the point by using pch parameter. For example,

> plot(MT.I, Final, pch=”*”)

will replace the points in the plot with *. S+ has a number of numeric assignments for special symbols. Of

these, commonly used seven are;

> plot (MT.I, Final, pch=2)

can be used to have triangular points, etc. Numbers 7 to 14 are composite symbols formed by overprinting

these symbols, and 15 to 19 are solid-filled versions of 0, 1, 2, 5, and 6.

We can also change the type of the plot. For example,

> plot (x, y, type=”l”)

will have line plot connecting the data. The default is type=”p”, the point plot. Other available types are “b”,

“h”, “o”, “s”, and “n”. I will leave you to explore these types. For complete list of useful options for

plotting functions type > help (par). Some of the most commonly used are:

axes=T T for with axes, F for without axes

main=”Title” Title string

sub=”Subtitle” Subtitle string

xlab=”x axis label” x axis label,

ylab= “y axis label” y axis label,

xlim= c(xmin, xmax) range for x axis,

ylim= c(ymin, ymax) range for y axis.

Dept. of Math and Statistics Sung E. Kim

 20

pch=”*” point character (see above)

type=”l” plot type (see above)

lty= 1 1 for default solid line, 2 for dashed line

lwd=1 1 for default line width, 2 for twice thick, etc

We can also simply change the layout of the plot via interface (right click on the plot).

The function abline() will superimpose a line on the scatter plot. For example, the least square line for

regressing Final on MT.I has the intercept and slope estimates of –16.187 and 0.9754, respectively.

> abline(-16.187,0.9754) # abline (intercept, slope)

MT.I

F
in

al

40 60 80 100

20
40

60
80

10
0

Fitting and plotting the least square line can be done easily by using lm (linear model) function. The

following code will return the same plot as above.

> fit_lm(Final~MT.I)

> abline(fit)

More detailed discussion on the lm() function will follow.

Let put them together.

> plot(MT.I,Final, main="Fitted Regression line for Grade data",

+ xlab="Midterm I", ylab="Final", xlim=c(0,100), ylim=c(0,100), pch=16)

> abline(fit, lty=2,lwd=2)

> text(50, 90, "Final = -16.187 + 0.9754 * MT.I", cex=2)

The text function will add a text at the specified location; text(xlocation, ylocation,” text”). The option

cex=2 draws characters twice as big. You can rotate the character using the option crt=counterclockwise

degree. The text adjustment option is adj= 0 (0 for left justified, 1 for right justified and 0.5 for centered).

If you forgot to add title option in the plot function, you can add the title in the existing plot.

 > title (“title”,”subtitle”)

Dept. of Math and Statistics Sung E. Kim

 21

Fitted Regression line for Grade data

Midterm I

F
in

al

0 20 40 60 80 100

0
20

40
60

80
10

0

Final = -16.187 + 0.9754 * MT.I

Histogram

The hist() function plots a histogram.

 > hist(Final)

0 20 40 60 80 100

0
2

4
6

8

Final

To change the number of class we use nclass option. For example,

 >hist (Final, nclass=10)

will return

Dept. of Math and Statistics Sung E. Kim

 22

20 40 60 80 100

0
1

2
3

4
5

Final

Check >help(hist) for more options.

Multiple Plots: par() function

You can display several small plots as a table or matrix format. Use the par(mfrow=c(nrow,ncol))
function. A 23 matrix of plot can be created by

> par(mfrow=c(2,3))

Try this out.

 > par(mfrow=c(1,3))

> hist(MT.I, break=c(0,20,40,60,80,100))

> hist(MT.II, break=c(0,20,40,60,80,100))

> hist(Final, break=c(0,20,40,60,80,100))

0 20 40 60 80 100

0
5

10
15

MT.I

0 20 40 60 80 100

0
2

4
6

8
10

12

MT.II

0 20 40 60 80 100

0
2

4
6

8

Final

To restore the default setting type > par(mfrow=c(1,1)).

Dept. of Math and Statistics Sung E. Kim

 23

We may want customize the display of the multiple plots. It can be done using

 >par(fig=c(x1,x2,y1,y2)

where the parameter x1, x2 are the plot location of left corner and right corner of x axis. Similarly for y axis.

Note that the coordinate of the plot are set to (0,0) for the lower left corner and (1,1) for the top right corner.

Let’s consider the following example.

frame() #opening new graph

par(fig=c(0,0.7,0,0.6))

plot(MT.I,Final, main="Fitted Regression line for Grade data", xlab="Midterm

I", ylab="Final", xlim=c(0,100), ylim=c(0,100), pch=16)

fit_lm(Final~MT.I)

abline(fit, lty=2,lwd=4)

par(fig=c(0,0.7,0.55,1))

hist(Final,main="Histogram of Final")

par(fig=c(0.65,1,0.15,0.85))

boxplot(Final,main="Boxplot of Final")

Fitted Regression line for Grade data

Midterm I

F
in

al

0 20 40 60 80 100

0
20

40
60

80
10

0

0 20 40 60 80 100

0
2

4
6

8

Histogram of Final

Final

20
40

60
80

10
0

Boxplot of Final

More example…

Following example demonstrates the approximate normality of the sum of continuous uniform r.v.’s.

par(mfrow=c(2,3))

x_runif(1000) # random number of size 1000 from Unif(0,1)

hist(x,nclass=20,main="n=1")

x_runif(1000)+x

hist(x,nclass=20,main="n=2")

Dept. of Math and Statistics Sung E. Kim

 24

x_runif(1000)+x

hist(x,nclass=20,main="n=3")

x_runif(1000)+x

hist(x,nclass=20,main="n=4")

x_runif(1000)+x

hist(x,nclass=20,main="n=5")

x_runif(1000)+x

hist(x,nclass=20,main="n=6")

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0

2
0

3
0

4
0

5
0

6
0

n=1

x

0.0 0.5 1.0 1.5 2.0

0
2
0

4
0

6
0

8
0

1
0
0

n=2

x

0.5 1.0 1.5 2.0 2.5 3.0

0
2
0

4
0

6
0

8
0

n=3

x

1 2 3

0
5
0

1
0
0

1
5
0

n=4

x

1 2 3 4

0
2
0

4
0

6
0

8
0

1
0
0

1
4
0

n=5

x

1 2 3 4 5

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

n=6

x

Dept. of Math and Statistics Sung E. Kim

 25

TRELLIS GRAPHICS

Once data is categorized by one or more factors, we might want to have separated graphs conditioned on

one or more factors. Let’s consider an example of drawing a Trellis histogram.

Example.

An experiment is designed to study the effects of treatment duration (factor A) and weight gain between

treatment (factor B) on the number of days hospitalized (response, named days) for kidney failure patients.

The factor A has two levels (1.short, 2.long) and the factor B has three levels (1.Mild, 2.Moderate,

3.Severe). A random sample of 10 patients per each of the 6 groups is collected. You can download the

data from the class web site (kidney.dat).

First, we would like to see the distribution of days conditioned on the duration.

> histogram(~days|duration, data=kidney)

0

10

20

30

40

50

60

0 5 10 15 20 25 30

1

0 5 10 15 20 25 30

2

days

P
er

ce
nt

 o
f T

ot
al

This also can be easily done using the user interface. First, open the data object, then mark the first two

columns (days and duration). Then, choose the Plots 2D button on the menu bar then Set Conditioning

Model button. You may see small yellow bars appeared on the Plots 2D palette. Then choose 1 for the # of

conditioning columns. Then, choose Histogram on the Plots 2D palette. Once you have the Trellis plot via

the interface you can easily change the conditioning column by just interacting between the Data Window

and the Graph Window. To change the conditioning columns mark the columns in the Data Window and

drag to the top of the Graph Window. You may choose multiple columns. We will discuss more in class.

Trellis Histogram conditioning on factor B (weight gain) using the user interface.

Dept. of Math and Statistics Sung E. Kim

 26

0 3 6 9 12 15 18 21 24 27 30

days

0
2
4
6
8

10
12

0
2
4
6
8

10
12

0
2
4
6
8

10
12

wtgain: 1.00

wtgain: 2.00

wtgain: 3.00

To change the number of class right-click on any bar of the histogram, then Options, then type the number

you want for the Number of Bars. Click OK.

0 3 6 9 12 15 18 21 24 27 30

days

0
2
4
6
8

10
12

0
2
4
6
8

10
12

0
2
4
6
8

10
12

wtgain: 1.00

wtgain: 2.00

wtgain: 3.00

Now, let choose both factors as conditioning factors. Choose both columns in the Data Window and press

and hold the mouse and drag the cursor to the top of the graph.

Dept. of Math and Statistics Sung E. Kim

 27

0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33

days

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

duration: 1.00 duration: 2.00

duration: 1.00 duration: 2.00

duration: 1.00 duration: 2.00

wtgain: 1.00 wtgain: 1.00

wtgain: 2.00 wtgain: 2.00

wtgain: 3.00 wtgain: 3.00

Example Trellis Histogram conditioning on two factors

Note that the above Trellis graph has the order as

(1,3) (2,3)

(1,2) (2,2)

(1,1) (2,1)

Here (1,2) means (factor A level 1, factor B level 2).

To reverse the order right-click on any white space in the graph then choose Multipanel then change the

Panel Order (bottom of the menu) to Table Order. To add the title of the graph choose Insert then Title.

Data Preparation to Use for Trellis

If data consists of several columns and if we want to generate a Trellis graph conditioning on the column

variables, we can use make.groups to make a group data and to ready for a Trellis graph. For better

understanding let’s revisit our STA131 grade data. The data has five numeric columns (HW, MT.I, MT.II,

Final, Total) and we would like to generate scatter plots of Final versus each of HW, MT.I and MT.II.

> grp_make.groups(HW,MT.I,MT.II)

> final_rep(Final,3)

> grp.trel_data.frame(final,grp)

> grp.trel

 final data which

 1 27 93.750 HW

 2 33 91.750 HW

..

29 27 51.000 MT.I

30 33 80.000 MT.I

Dept. of Math and Statistics Sung E. Kim

 28

..

57 27 38.000 MT.II

58 33 52.000 MT.II

..

84 63 100.000 MT.II

> xyplot(final~data|which, pch=16, col=1, data=grp.trel)

20

40

60

80

100

40 60 80 100

HW MT.I

20

40

60

80

100
MT.II

data

fin
al

Final vs. other Scores

We have generated a Trellis scatter plot using the user interface or

 > xyplot (y~x | z)

where x and y are the two variable for the scatter plot and z is the conditioning variable.

We can obtain better layout using Interface.

Dept. of Math and Statistics Sung E. Kim

 29

20 40 60 80 100

data

0

50

100

0

50

100

0

50

100
fin

al

which: 1

which: 2

which: 3

Dept. of Math and Statistics Sung E. Kim

 30

DESCRIPTIVE STATISTICS

The summary function provides some basic statistics of the data or variables. Consider the grade data.

> summary(grade.data)

 Name HW MT.I

 Zhang, Li: 1 Min.:32.50 Min.: 33.00

 Wong, Gildas: 1 1st Qu.:93.06 1st Qu.: 69.25

 White, Jennifer: 1 Median:97.31 Median: 87.50

 Wai, Newton: 1 Mean:91.92 Mean: 79.61

 Sundstrom, Kurt: 1 3rd Qu.:98.97 3rd Qu.: 93.50

 Su, Xiao-Gang: 1 Max.:99.75 Max.:100.00

 (Other):22

 MT.II Final Total

 Min.: 36.00 Min.:12.00 Min.:31.80

 1st Qu.: 64.25 1st Qu.:47.00 1st Qu.:62.53

 Median: 75.50 Median:60.00 Median:73.50

 Mean: 76.00 Mean:61.46 Mean:71.86

 3rd Qu.: 93.25 3rd Qu.:83.75 3rd Qu.:87.50

 Max.:100.00 Max.:99.00 Max.:98.20

The stem function gives the stem-and-leaf display of a variable and the quantile function gives the quantiles

of the variable at the specified values.

> attach(grade.data)

> stem(Total)

N = 28 Median = 76.4125

Quartiles = 65.7125, 89.2625

Decimal point is 1 place to the right of the colon

 3 : 5

 4 : 299

 5 :

 6 : 1456

 7 : 22344589

 8 : 12589

9 : 0555668

> quantile(Final, c(0.25, 0.5, 0.95))

 25% 50% 95%

47 60 97.6

> grade.data[Total>=90,]

 Name HW MT.I MT.II Final Total

15 Lin, Dongqing 99.250 90 98 95 95.0

16 Love, Brad 99.750 96 98 88 93.2

17 Peck, Laura 98.625 97 92 94 94.7

20 Singh, Ramanpreet 99.750 100 98 90 95.0

22 Su, Xiao-Gang 97.250 95 100 99 98.2

24 Wai, Newton 98.875 87 100 99 96.5

> apply(grade.data,2,mean)

 Name HW MT.I MT.II Final Total

NA 91.91518 79.60714 76 61.46429 71.86429

Now, consider the kidney data. The data is categorized by two factors and we can have the summary of the

response variable conditioning on factors.

Dept. of Math and Statistics Sung E. Kim

 31

> attach(kidney)

> summary(days[duration==1])

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 0.00 2.25 5.00 8.20 11.50 30.00

> summary(days[duration==1 & wtgain==2])

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.00 3.25 4.50 7.30 10.75 20.00

> tapply(days,list(duration,wtgain),mean)

 1 2 3

1 2.7 7.3 14.6

2 2.2 3.7 7.5

The tapply (t stands for table) splits the data by the given factors and apply the function (mean this case) to

each subgroup. Another useful function for a categorized data is by. The by function is very convenient to

obtain numerical summaries of the categorized data.

> by(days, duration, summary)

INDICES:1

 x

 Min.: 0.00

 1st Qu.: 2.25

 Median: 5.00

 Mean: 8.20

 3rd Qu.:11.50

 Max.:30.00

--

INDICES:2

 x

 Min.: 0.000

 1st Qu.: 1.000

 Median: 3.500

 Mean: 4.467

 3rd Qu.: 7.000

 Max.:15.000

Similarly,

> by(days,wtgain, summary)

> by(days,list(duration,wtgain), summary)

:1

:1

 x

 Min.:0.00

 1st Qu.:0.25

 Median:2.00

 Mean:2.70

 3rd Qu.:4.50

 Max.:8.00

--

:2

:1

 x

 Min.:0.00

 1st Qu.:0.25

 Median:1.50

 Mean:2.20

 3rd Qu.:3.75

Dept. of Math and Statistics Sung E. Kim

 32

 Max.:7.00

--

:1

:2

 x

 Min.: 1.00

 1st Qu.: 3.25

 Median: 4.50

 Mean: 7.30

 3rd Qu.:10.75

 Max.:20.00

--

:2

:2

 x

 Min.:0.00

 1st Qu.:1.25

 Median:3.00

 Mean:3.70

 3rd Qu.:5.75

 Max.:9.00

--

:1

:3

 x

 Min.: 3.00

 1st Qu.: 7.25

 Median:12.50

 Mean:14.60

 3rd Qu.:22.75

 Max.:30.00

--

:2

:3

 x

 Min.: 1.00

 1st Qu.: 4.50

 Median: 7.50

 Mean: 7.50

 3rd Qu.: 9.75

 Max.:15.00

>

Dept. of Math and Statistics Sung E. Kim

 33

DISTRIBUTION RELATED FUNCTIONS
Example:

> z_qnorm(.95) # 95% quantiles under N(0,1)

> z

[1] 1.644854

> pnorm(z) # cumulated density at the 95% quantile

[1] 0.95

> qnorm(c(.05,.95)) # 5% and 95% quantiles under N(0,1)

[1] -1.644854 1.644854

> qt(.95,10) # 95% quantile under t(10)

[1] 1.812461

> pt(2.0,10) # cumulated density

[1] 0.963306

Character Type

d : Distribution Function

p : Cumulated Density Function

q : Quantile

r : Random number generation

The distribution names suffix one of the character types to define the S+ functions. For the list of names

and necessary parameters see the handout in class.

Let’s consider the following S+ code to compare the normal distribution and t with 5 df.

pts_seq(-5,5,length=1000)

pts.nor_dnorm(pts)

pts.t_dt(pts,4)

yrange_range(pts.nor,pts.t)

plot(0,0,type="n",xlim=c(-5,5), ylim=yrange,ylab="Density")

lines(pts,pts.nor,col=1,lty=1,lwd=2)

lines(pts,pts.t,col=2,lty=2,lwd=4)

key(lines=list(lty=1:2, col=1:2),text=list(paste(c("Standard Normal","t(4)"))))

title("Standard Normal vs t(4)",cex=1.5)

0

D
en

si
ty

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4 Standard Normal

t(4)

Standard Normal vs t(4)

Dept. of Math and Statistics Sung E. Kim

 34

For another example of using the distribution related functions, let’s consider a graphical display of the

normal approximation to the binomial distribution. Let X be binomial with n=50 and p=.3. The density of

the Binomial distribution and the normal distribution with mean of n*p=15 and the sd of sqrt(n*p*(1-

p))=3.24 are given in the following graph.

n_50; p_0.3; x_0:n

y_dbinom(x,n,p)

plot(x,y,type="h")

x_seq(0,n,length=100)

m=n*p;s=sqrt(n*p*(1-p))

f_dnorm(x,m,s)

lines(x,f)

title("Normal Approximation to Binomial")

text(25,.12,"n=50, p=0.3",cex=1.5)

x

y

0 10 20 30 40 50

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Normal Approximation to Binomial

n=50, p=0.3

To calculate P(X  20) we use either pbinom (exact prob.) or pnorm (normal approx.). First, the exact

probability from the Binomial distribution is;

> 1 - pbinom(19, n, p)

[1] 0.0848026

The exact probability can be compared with a Normal approximation;

> z <- (19.5 - n * p)/sqrt(n * p * (1 - p))

> 1 - pnorm(z)

[1] 0.08245741

A list of the distributions and their S+ function names can be found in the text p114.

Dept. of Math and Statistics Sung E. Kim

 35

HYPOTHESIS TESTING

We have discussed one sample t-test earlier. S+ provides many functions for hypothesis testing. The names

of functions are self-explanatory. To see the necessary arguments, for example t-test, type

 > args(t.test)

function(x, y = NULL, alternative = "two.sided", mu = 0, paired = F,

 var.equal = T, conf.level = 0.95)

We may also type >help(t.test) for more details.

Let’s consider the two sample t-test comparing the two different durations in the kidney data. If the data is

paired (not this case), we need to specified paired=T and do the paired t test.

> my.ttest_t.test(days[duration==1], days[duration==2], conf.level = .90)

> my.ttest

 Standard Two-Sample t-Test

data: days[duration == 1] and days[duration == 2]

t = 2.2319, df = 58, p-value = 0.0295

alternative hypothesis: true difference in means is not equal to 0

90 percent confidence interval:

 0.9372859 6.5293808

sample estimates:

 mean of x mean of y

8.2 4.466667

The resulted p-value of the test is .0295, which is compared with the specified significance level of 0.1.

Since the p-value is less than the significance level, the test for equal means is rejected.

Note that the function t.test returns a list type of object with some statistics and information for the test. To

see the available information;

> summary(my.ttest)

 Length Class Mode

 statistic 1 numeric

 parameters 1 numeric

 p.value 1 numeric

 conf.int 2 numeric

 estimate 2 numeric

 null.value 1 numeric

alternative 1 character

 method 1 character

 data.name 1 character

We now try to access some specific information.

> my.ttest$statistic

 t

 2.231888

> my.ttest$p.value

[1] 0.02950016
> my.ttest$conf.int

[1] 0.9372859 6.5293808

attr(, "conf.level"):

[1] 0.9

> my.ttest$data.name

[1] "days[duration == 1] and days[duration == 2]"

Dept. of Math and Statistics Sung E. Kim

 36

> my.ttest$null.value

 difference in means

0

> ttest$alternative

[1] "two.sided"

The testing procedure and the result are well demonstrated in the following graph. The S+ code generating

the graph is copied from the recommended text by Krause and Olson. I found it very useful for writing

report for non-statisticians. We will discuss the S+ code in class.

xaxis

t d
en

si
ty

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

test statistic
rejection
 region

rejection
 region

acceptance region

attach(kidney)

x_days[duration==1]

y_days[duration==2]

df_length(x)+length(y)-2

alpha_.1

bound.left_-3

bound.right_3

xaxis_seq(bound.left, bound.right, length=1000)

yaxis_dt(xaxis,df)

plot(xaxis,yaxis,type="l", ylab="t density")

critical.left_qt(alpha/2,df)

critical.right_qt(1-alpha/2,df)

xaxis_seq(bound.left,critical.left,length=100)

yaxis_c(dt(xaxis,df),0,0)

xaxis_c(xaxis,critical.left,bound.left)

polygon(xaxis,yaxis,density=25)

xaxis_seq(critical.right, bound.right,length=100)

yaxis_c(dt(xaxis,df),0,0)

xaxis_c(xaxis,bound.right,critical.right)

polygon(xaxis,yaxis,density=25)

test.stat_t.test(x, y, conf.level = 1-alpha)$statistic

Dept. of Math and Statistics Sung E. Kim

 37

points(test.stat,.01,cex=2,adj=0.5, pch=16)

arrows(test.stat-1,.05,test.stat-.1,.01,open=T,rel=T)

text(test.stat-1,.07,"test statistic",adj=.5,cex=1.5)

text(bound.left, 0.08, "rejection \n region", adj=0)

text(bound.right, 0.08, "rejection \n region", adj=1)

text((bound.left + bound.right)/2, 0.16, "acceptance region")

xaxis_c(rep(critical.left,2),rep(critical.right,2))

yaxis_c(0.12,0.14,0.14,0.12)

Other statistical test in S+: binom.test, chisq.gof, chisq.test, cor.test, var.test, wilcox.test, etc.

Dept. of Math and Statistics Sung E. Kim

 38

REGRESSION

In this section we will discuss fitting a regression model using the lm (linear model) function. As we have

discussed earlier, the syntax of the model is

 lm(response~predictor1+predictor2+…, options)

For a detailed discussion let’s consider the Real Estate data that we used for MATH 532 class.

Data

A real estate expert is interested in developing a regression model that relates the selling price of suburban

residential properties to characteristics of properties. Her interest lies in new, large residential property

development on the outskirts of a major city for which she has data on 30 properties that were sold recently.

X1 Property taxes (annual taxes, in dollars)

X2 House size (floor area, in square feet)

X3 Lot size (in acres)

X4 Lot size squared

X5 Attractiveness index

X6 Style (E, S, or M)

Data for the property selling prices

Property Property

Taxes

House

Size

Lot

Size

Lot Size

Squared

Attrac-

tiveness

Style Selling Price

(in $1000)

1

2

3

4

5

…

…

27

28

29

30

6337

3204

4574

4924

4182

…

…

3917

4068

4068

3612

3000

2300

3300

2100

3900

…

…

3100

2200

2500

2900

3.6

1.2

1.3

3.2

1.1

…

…

1.8

2.1

3.9

1.1

12.96

1.44

1.69

10.24

1.21

…

…

3.24

4.41

15.21

1.21

64

69

72

71

40

…

…

54

75

61

74

M

E

S

E

S

…

…

E

S

E

E

350

261

301

255

303

…

…

244

294

279

277

For the full data click on realestate.dat

For multivariate data, it is good idea to start the analysis with the pairwise scatterplots.

> pairs(realestate[,2:8])

http://math.uc.edu/~kim/math532/realestate.dat

Dept. of Math and Statistics Sung E. Kim

 39

tax

2000 3000 5 10 15 20 E M S

40
00

60
00

20
00

30
00

Hsize

Lsize

1
2

3
4

5
10

15
20

Lsize.sq

attrac

40
60

80

E
M

S

style

4000 6000 1 2 3 4 40 50 60 70 80 250 350 450

25
0

35
0

45
0

price

Using the cor function, we can calculate the correlation matrix among variables.

> cor(realestate[,c(2:6,8)],realestate[,c(2:6,8)])

 tax Hsize Lsize Lsize.sq attrac price

 tax 1.0000000 0.2812810 0.73968353 0.72108667 0.02879220 0.4693318

 Hsize 0.2812810 1.0000000 -0.28982630 -0.26804966 -0.12844139 0.6258176

 Lsize 0.7396835 -0.2898263 1.00000000 0.98477889 -0.01889162 0.1206351

Lsize.sq 0.7210867 -0.2680497 0.98477889 1.00000000 -0.06571432 0.1181183

 attrac 0.0287922 -0.1284414 -0.01889162 -0.06571432 1.00000000 0.3610034

 price 0.4693318 0.6258176 0.12063505 0.11811831 0.36100336 1.0000000

Note that the predictor style is qualitative and omitted from the correlation calculation. The pairwise

scatterplot and the correlation suggest that Hsize has the strongest linear association with price. The

variables tax and attrac also show moderately high correlation with the response.

Before we go any further, we need to note that we have a qualitative predictor, style, in the data. Many

different codings of indicator variables are available. Here, we use the simple dummy coding (0,1 coding);

Style Sty1 Sty2

E 1 0

M 0 1

S 0 0

Dept. of Math and Statistics Sung E. Kim

 40

Let add the two indicator variables in the data frame.

> sty1_rep(NA,30)

> sty2_rep(NA,30)

> sty1[style=="E"]_1

> sty1[style!="E"]_0

> sty2[style=="M"]_1

> sty2[style!="M"]_0

> realestate_data.frame(realestate,sty1,sty2)

At this moment you may want to recalculate the correlation matrix.

Simple Regression

First, consider a simple regression with the response variable, price, and the predictor, Hsize.

> fit1_lm(price~Hsize,data=realestate)

> summary(fit1)

Call: lm(formula = price ~ Hsize, data = realestate)

Residuals:

 Min 1Q Median 3Q Max

 -81.44 -27.09 -2.379 30.81 114.7

Coefficients:

 Value Std. Error t value Pr(>|t|)

(Intercept) 115.7431 46.9759 2.4639 0.0201

 Hsize 0.0676 0.0159 4.2457 0.0002

Residual standard error: 44.86 on 28 degrees of freedom

Multiple R-Squared: 0.3916

F-statistic: 18.03 on 1 and 28 degrees of freedom, the p-value

is 0.0002167

Correlation of Coefficients:

 (Intercept)

Hsize -0.9847

Specific information contained in the modeling can be accessed as before; object$values.

> fit1$coefficients

 (Intercept) Hsize

 115.7431 0.06764303

> resid_fit1$residuals

> fitted_fit1$fitted.values

For the full list of available values see the help file for lm.object.

We can also access the residuals and the fitted values by resid(fit1) and fitted(fit1). Let’s plot the residuals

versus the fitted values.

> plot(fitted(fit1),resid(fit1),pch=16)

> abline(h=0)

abline(h=0) will draw the horizontal line at 0.

Dept. of Math and Statistics Sung E. Kim

 41

Residual vs. Fitted

fitted(fit1)

re
si

d(
fit

1)

260 280 300 320 340 360 380

-5
0

0
50

10
0

As discussed earlier,

 > attach(realestate); plot(Hsize,price); abline(fit1)

will draw a scatterplot with the fitted line superimposed on.

For a QQ plot

 > qqnorm(resid(fit2),main="QQ Plot with Line")

> qqline(resid(fit2))

Dept. of Math and Statistics Sung E. Kim

 42

QQ Plot with Line

Quantiles of Standard Normal

re
si

d(
fit

2)

-2 -1 0 1 2

-5
0

0
50

10
0

Let’s put them together.

attach(realestate)

fit1_lm(price~Hsize,data=realestate)

par(mfrow=c(2,2))

plot(Hsize,price,pch=16,sub="Scatterplot with Fitted Line"); abline(fit1)

plot(fitted(fit1),resid(fit1),pch=16,sub="Residual vs Fitted"); abline(h=0)

hist(resid(fit1),sub="Histogram of Residual",nclass=10)

qqnorm(resid(fit1),sub="QQ Plot with Line",pch=16); qqline(resid(fit1))

Dept. of Math and Statistics Sung E. Kim

 43

Scatterplot with Fitted Line
Hsize

pr
ic

e

2000 2500 3000 3500

25
0

30
0

35
0

40
0

45
0

Residual vs Fitted
fitted(fit1)

re
si

d(
fit

1)

260 280 300 320 340 360 380

-5
0

0
50

10
0

-100 -50 0 50 100

0
2

4
6

Histogram of Residual
resid(fit1)

QQ Plot with Line
Quantiles of Standard Normal

re
si

d(
fit

1)

-2 -1 0 1 2

-5
0

0
50

10
0

We can also examine the S+ default plots:

 > plot(fit1)

Fitted : Hsize

R
e
si

d
u
a
ls

260 280 300 320 340 360 380

-5
0

0
5
0

1
0
0

727

20

fits

sq
rt
(a

b
s(

R
e
si

d
u
a
ls

))

260 280 300 320 340 360 380

2
4

6
8

1
0

727

20

Fitted : Hsize

p
ri
ce

260 280 300 320 340 360 380

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

Quantiles of Standard Normal

R
e
si

d
u
a
ls

-2 -1 0 1 2

-5
0

0
5
0

1
0
0

727

20

Fitted Values

0.0 0.4 0.8

-5
0

0
5
0

1
0
0

Residuals

0.0 0.4 0.8

-5
0

0
5
0

1
0
0

f-value

p
ri
ce

C
o
o
k'
s

D
is

ta
n
ce

0 5 10 15 20 25 30

0
.0

0
.1

0
.2

0
.3

7

5

20

Dept. of Math and Statistics Sung E. Kim

 44

You can specify your choice of the plots to display by using the ask option:

 > plot(fit1, ask=T)

Multiple Regression

Now, consider a multiple regression with two predictors. The predictor Hsize is in the model and we want

to figure out which predictor should be considered for the second predictor in the model. From the pairwise

scatterplot and the correlation matrix suggest tax or attrac. We may fit models with all possible multiple

models of two predictors with Hsize already in the model. This can be done easily in S+:

> add1(fit1, .~. +tax+Lsize+Lsize.sq+attrac+sty1+sty2)

Single term additions

Model:

price ~ Hsize

 Df Sum of Sq RSS Cp

 <none> 56358.65 64409.88

 tax 1 8654.25 47704.39 59781.25

 Lsize 1 9224.91 47133.74 59210.59

Lsize.sq 1 8156.81 48201.84 60278.69

 attrac 1 18351.16 38007.49 50084.34

 sty1 1 20842.36 35516.29 47593.14

 sty2 1 32570.78 23787.87 35864.72

We see that the style variable (sty1 and sty2) has the largest sums of squares (and the lowest Cp) and thus

these predictors should be considered in the model.

> fit2_lm(price~Hsize+sty1+sty2)

> summary(fit2)

Call: lm(formula = price ~ Hsize + sty1 + sty2)

Residuals:

 Min 1Q Median 3Q Max

 -42.12 -14.61 -0.7273 14.55 87.48

Coefficients:

 Value Std. Error t value Pr(>|t|)

(Intercept) 219.9120 34.2463 6.4215 0.0000

 Hsize 0.0290 0.0112 2.5929 0.0154

 sty1 -31.8181 12.9440 -2.4581 0.0209

 sty2 62.1801 13.3051 4.6734 0.0001

Residual standard error: 27.25 on 26 degrees of freedom

Multiple R-Squared: 0.7916

F-statistic: 32.93 on 3 and 26 degrees of freedom, the p-value is 5.24e-009

Correlation of Coefficients:

 (Intercept) Hsize sty1

Hsize -0.9596

 sty1 -0.4754 0.2773

 sty2 0.0243 -0.2375 0.4730

For the hypothesis testing for no style effect, we do the test for both coefficients of sty1 and sty2.

> by(price,style,mean)

INDICES:E

[1] 264

--

INDICES:M

[1] 375.5

--

Dept. of Math and Statistics Sung E. Kim

 45

INDICES:S

[1] 305.125

The model syntax

response~predictor1 + predictor2

 will fit a multiple regression with the two main effects only and

response~predictor1 + predictor2+predictor1:predictor2

or

response~predictor1* predictor2

will fit the model with two main effects and the interaction between the two predictors.

Note that for the qualitative variable with three levels, we may assign three indicator variables (one for

each level) and drop the intercept in the regression model. This coding of indicator also has widely used in

application. The model statement with –1 at the end will drop the intercept in the model

 > lm(y~x1+x2+…-1)

More will come……

REGRESSION (con’t)

CODING OF FACTORS

Last time we have discussed how to create dummy variables for the qualitative predictors in a regression

model. We extend the discussion to the use of a convenient S+ function to create our own coding of factors.

Let’s consider the style variable in the realestate data.

> levels(style)

[1] "E" "M" "S"

We generate a matrix for the two dummy variables.

> my.cotr_matrix(c(1,0,0,0,1,0),ncol=2)

> my.cotr

 [,1] [,2]

[1,] 1 0

[2,] 0 1

[3,] 0 0

Now, use the C function in the model statement of the lm function. Note that C stands for “contrasts”, a

linear combination of the dummy variables.

> summary(lm(price~C(style,my.cotr)))

Call: lm(formula = price ~ C(style, my.cotr))

Residuals:

 Min 1Q Median 3Q Max

 -48.5 -13.87 -4.812 13.75 98.5

Coefficients:

 Value Std. Error t value Pr(>|t|)

 (Intercept) 305.1250 10.6052 28.7714 0.0000

C(style, my.cotr)1 -41.1250 13.6912 -3.0038 0.0057

C(style, my.cotr)2 70.3750 14.2283 4.9461 0.0000

Dept. of Math and Statistics Sung E. Kim

 46

Residual standard error: 30 on 27 degrees of freedom

Multiple R-Squared: 0.7378

F-statistic: 37.98 on 2 and 27 degrees of freedom, the p-value is 1.42e-008

Correlation of Coefficients:

 (Intercept) C(style, my.cotr)1

C(style, my.cotr)1 -0.7746

C(style, my.cotr)2 -0.7454 0.5774

S+ provide four different built-in contrast functions; Helmert (default), Orthogonal polynomial, Sum, and

Treatment. To see the matrix form for these function, for example, for a factor with three levels

 > contr.helmert(3)

 [,1] [,2]

1 -1 -1

2 1 -1

3 0 2

> contr.treatment(3)

 2 3

1 0 0

2 1 0

3 0 1

If you want to use one of the built-in contrasts, use the name of the contrast in the second argument of the C

function. For example

 lm(price~C(style,treatment))

will use the treatment contrast for the variable style. Note that the default contrast is the Helmert. So if you

call

lm(price~style)

it will return the result with the Helmert contrast.

Another possibility is the use of I (indicator) function. For example,

> lm(price~I(style=="E")+I(style=="M"),data=realestate)

The I function is very useful to assign indicator variables for a quantitative predictor. For example, if you

are looking at the effect of “high” (attrac>75) attractiveness index versus “lower” (attrac<=75) instead of

the effect of the attractiveness on a continuous scale,

 > lm(price~I(attrac>75),data=realestate).

Model Selection: Stepwise Regression

Model selection procedure via Stepwise regression can be easily done using the user interface. We will

discuss the procedure in details during the class and will not be illustrated in this note.

In the procedure we need to specify the full model (upper). We look at the correlation matrix to guess

which interaction terms we need to consider for the full model.

 > cor(realestate[,c(2:6,9,10)],realestate[,c(2:6,9,10)])
 tax Hsize Lsize Lsize.sq attrac sty1 sty2

 tax 1.0000000 0.2812810 0.73968353 0.72108667 0.02879220 -0.37758018 0.4872225

 Hsize 0.2812810 1.0000000 -0.28982630 -0.26804966 -0.12844139 -0.45526549 0.4355324

 Lsize 0.7396835 -0.2898263 1.00000000 0.98477889 -0.01889162 -0.07395935 0.3030090

Lsize.sq 0.7210867 -0.2680497 0.98477889 1.00000000 -0.06571432 -0.07975938 0.3186872

 attrac 0.0287922 -0.1284414 -0.01889162 -0.06571432 1.00000000 -0.13282487 0.3093021

Dept. of Math and Statistics Sung E. Kim

 47

 sty1 -0.3775802 -0.4552655 -0.07395935 -0.07975938 -0.13282487 1.00000000 -0.5773503

 sty2 0.4872225 0.4355324 0.30300898 0.31868722 0.30930212 -0.57735027 1.0000000

The highlighted correlations seem to be high and important. We use all the main effects and the five

interactions (we only considered two way interactions) for the upper model. Be sure to save the output

object. For this example, the object was saved as step.real.

The resulted model from the stepwise procedure is

> summary(step.real)

Call: lm(formula = price ~ Hsize + attrac + sty1 + sty2 + Hsize:sty2, da

ta =

 realestate, na.action = na.exclude)

Residuals:

 Min 1Q Median 3Q Max

 -36.67 -13.77 3.668 11.33 48.82

Coefficients:

 Value Std. Error t value Pr(>|t|)

(Intercept) 140.5705 52.0276 2.7018 0.0125

 Hsize 0.0272 0.0102 2.6562 0.0138

 attrac 1.2488 0.4854 2.5728 0.0167

 sty1 -34.0227 10.4913 -3.2429 0.0035

 sty2 -180.8893 87.0854 -2.0771 0.0487

 Hsize:sty2 0.0730 0.0273 2.6740 0.0133

Residual standard error: 21.94 on 24 degrees of freedom

Multiple R-Squared: 0.8753

F-statistic: 33.69 on 5 and 24 degrees of freedom, the p-value is 4.266e

-010

Correlation of Coefficients:

 (Intercept) Hsize attrac sty1 sty2

 Hsize -0.7882

 attrac -0.8254 0.3328

 sty1 -0.3074 0.2929 0.0443

 sty2 -0.2706 0.3391 0.0972 0.1661

Hsize:sty2 0.3119 -0.3813 -0.1449 -0.1106 -0.9913

You need to make interpretations of the parameter estimates. I will leave it to you. For the summary of the

ANOVA is

> summary(aov(step.real))

 Df Sum of Sq Mean Sq F Value Pr(F)

 Hsize 1 36282.82 36282.82 75.37984 0.00000001

 attrac 1 18351.16 18351.16 38.12569 0.00000222

 sty1 1 13881.09 13881.09 28.83884 0.00001633

 sty2 1 9132.76 9132.76 18.97388 0.00021368

Hsize:sty2 1 3441.64 3441.64 7.15023 0.01327372

 Residuals 24 11552.00 481.33

Estimating Mean Response

To estimate the mean response with the final model
> prd1_predict.lm(step.real,data.frame(Hsize=2000,attrac=70,sty1=1,sty2=0),

se.fit=T,ci.fit=T,pi.fit=T)

> prd1

$fit:

 1

 248.2893

Dept. of Math and Statistics Sung E. Kim

 48

$se.fit:

 1

 8.851564

$residual.scale:

[1] 21.93931

$df:

[1] 24

$ci.fit:

 lower upper

1 230.0205 266.558

attr(, "conf.level"):

[1] 0.95

$pi.fit:

 lower upper

1 199.4623 297.1162

attr(, "conf.level"):

[1] 0.95

It is important to note that the option ci.fit=T is used to obtain the interval estimation of the mean response

at the values of predictors occurred in the data and pi.fit=T will give us the prediction interval of new

observation. The prediction interval is always wider than the confidence interval because the variation in

prediction has an extra source of variation due to fact that the response at the new point will not equal to its

expectation. For more detailed discussion see your note for MATH 532 or Chapter 2 of the text by Neter

et.al. Both intervals are pointwise and based on t distribution.

Graphical Summary

For the graphical summary of the final model

> par(mfrow=c(2,3))

> plot(step.real)

Dept. of Math and Statistics Sung E. Kim

 49

Fitted : Hsize + attrac + sty1 + sty2 + Hsize:sty2

R
e
si

d
u
a
ls

250 300 350 400

-4
0

-2
0

0
2
0

4
0

9
10

20

fits

sq
rt
(a

b
s(

R
e
si

d
u
a
ls

))

250 300 350 400

0
2

4
6

9
10

20

Fitted : Hsize + attrac + sty1 + sty2 + Hsize:sty2

p
ri
ce

250 300 350 400

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

Quantiles of Standard Normal

R
e
si

d
u
a
ls

-2 -1 0 1 2

-4
0

-2
0

0
2
0

4
0

9
10

20

Fitted Values

0.0 0.4 0.8

-5
0

0
5
0

1
0
0

Residuals

0.0 0.4 0.8

-5
0

0
5
0

1
0
0

f-value

p
ri
ce

C
o
o
k'
s

D
is

ta
n
ce

0 5 10 15 20 25 30

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

14

10

20

Simultaneous Confidence Band: Working-Hotelling

For simultaneous 1- confidence intervals for entire responses in the data, we use the Working-Hetelling

confidence band based on F distribution (see p234, Neter et.al.).

The code below can be used to create a simultaneous confidence interval for the mean response.

"confint.lm"_function(object,alpha=.05,plot.it=T,...)

 {

 f_predict(object,se.fit=T)

 p_length(coef(object))

 fit_f$fit

 adjust_(p*qf(1-alpha,p,length(fit)-p))^0.5*f$se.fit

 lower_fit-adjust

 upper_fit+adjust

 if(plot.it){

 y_fit+resid(object)

 plot(fit,y)

 abline(0,1,lty=2)

 ord_order(fit)

 lines(fit[ord],lower[ord])

 lines(fit[ord],upper[ord])

 invisible(list(lower=lower,upper=upper))

 }

 else list(lower=lower,upper=upper)

}

Dept. of Math and Statistics Sung E. Kim

 50

We use the function confint.lm to plot the simultaneous confidence intervals for the mean response from the

simple regression model relating the price with Hsize.

> fit.Hsize_lm(price~Hsize)

> confint.lm(fit.Hsize)

fit

y

260 280 300 320 340 360 380

25
0

30
0

35
0

40
0

45
0

Identifying Outliers in predictors

The hat matrix, XXXX  1)(, has been used to identify the outliers. The elements of the hat matrix,

leverages, have the mean of np/ where p is the number of the parameters in the model and n is the sample

size. The leverages larger than np/2 are considered as an evidence of outliers. Bonferroni test may be

used for formal test for outliers in response (see Neter et.al. p374), but most of the cases they can be well

identified via residual plot.

We can identify the outliers in predictors via leverage as follows;

> rule_2*length(coef(step.real))/length(fitted(step.real))

> rule

[1] 0.4

> influ.real_lm.influence(step.real)

> cbind(realestate,lev=influ.real$hat)[influ.real$hat>rule,]

property tax Hsize Lsize Lsize.sq attrac style price lev

5 5 4182 3900 1.1 1.21 40 S 303 0.5224226

If we exam the fifth property, we can see that the property has the largest Hsize and the lowest

attractiveness.

We may want fit the model without the outlier.

> step.new <- lm(price ~ Hsize + attrac + sty1 + sty2 + Hsize:sty2, data =

realestate[-5,], na.action = na.exclude)

> summary(step.new)

Call: lm(formula = price ~ Hsize + attrac + sty1 + sty2 + Hsize:sty2, data =

Dept. of Math and Statistics Sung E. Kim

 51

realestate[-5,], na.action = na.exclude)

Residuals:

 Min 1Q Median 3Q Max

 -36.53 -12.56 1.683 12.18 47.57

Coefficients:

 Value Std. Error t value Pr(>|t|)

(Intercept) 133.8143 55.2885 2.4203 0.0238

 Hsize 0.0256 0.0110 2.3213 0.0295

 attrac 1.3903 0.5962 2.3318 0.0288

 sty1 -32.9926 10.9486 -3.0134 0.0062

 sty2 -184.1886 88.9544 -2.0706 0.0498

 Hsize:sty2 0.0744 0.0280 2.6595 0.0140

Residual standard error: 22.32 on 23 degrees of freedom

Multiple R-Squared: 0.8762

F-statistic: 32.54 on 5 and 23 degrees of freedom, the p-value is 1.056e-009

Correlation of Coefficients:

 (Intercept) Hsize attrac sty1 sty2

 Hsize -0.6161

 attrac -0.8162 0.0739

 sty1 -0.3510 0.1956 0.1602

 sty2 -0.2329 0.3477 0.0312 0.1419

Hsize:sty2 0.2628 -0.3962 -0.0534 -0.0810 -0.9909

The Cock’s distance provided in the graph above can be used to identify influential observations.

Correlated error terms

Durbin-Watson statistic (DW) can be employed to test for first-order correlation (autocorrelation) in error

terms. The test is useful when the data is observed over a systematic manner, like time or space. S+ provide

the function, durbinWatson(x). The argument x can be either data vector or a object from fitting lm. The

statistic is bounded between 0 and 4, and for independent residuals we expect the value around 2. If the

value is close to 0, it indicates positive correlation in error terms and if close to 4, it means possible

negative correlation. Neter et.al provides the critical values of the statistic (see Table B.7).

Let’s check the DW statistics for the residuals from the final model of realestate data. Note that since the

data was not collected over time or space, we expect the value close to 2.

> durbinWatson(step.real)

Durbin-Watson Statistic: 1.960674

It is interesting to calculate the DW statistic for our Ozone data, since the data is collected over time. Note

the variable volume is a column vector of ozone volume stacked over time.

> durbinWatson(volume[!is.na(volume)])

Durbin-Watson Statistic: 0.1490061

Number of observations: 1455

As we expected the DW value is very close to 0, which indicates strong positive correlation in the raw

volume data.

Multicollinearity: Variance Inflation Factor (VIF)

Variance Inflation Factor has been widely used to measure the presence of multicollinearity in the model.

Muticollinearity and its effect have been discussed in MATH 532 class. We will briefly discuss the concept

of the VIF in class.

Dept. of Math and Statistics Sung E. Kim

 52

Following code will calculate the VIF.

vif_function(y,x){

 n=length(y);p=ncol(x)

 x.std_matrix(nrow=n,ncol=p)

 y.std_(y-mean(y))/(stdev(y)*sqrt(n-1))

 for (i in 1:p){

 x.std[,i]_(x[,i]-mean(x[,i]))/(stdev(x[,i])*sqrt(n-1))

 }

 VIF_ginverse(crossprod(x.std))

 varif_matrix(nrow=p,ncol=1)

 for (i in 1:p){

 varif[i,]_VIF[i,i]

 }

varif

}

>attach(realestate)

> y_price

> x_data.frame(Hsize,attrac,sty1,sty2,Hsize*sty2)

> vif(y,x)

 [,1]

[1,] 1.723070

[2,] 1.248420

[3,] 1.646438

[4,] 105.039685

[5,] 108.206302

The VIF values considerably larger than 1 indicate muticollinearity problems.

Dept. of Math and Statistics Sung E. Kim

 53

ANALYSIS OF VARIANCE

Looking at the data: Kidney data revisited

Trellis boxplot conditioning on duration and on wtgain, respectively.

0

6

12

18

24

30

da
ys

duration: 1.00 duration: 2.00

0

6

12

18

24

30

da
ys

wtgain: 1.00 wtgain: 2.00 wtgain: 3.00

Other useful plots by plot.design and interaction.plot.

Dept. of Math and Statistics Sung E. Kim

 54

> plot.design(kidney[,1:3])

Factors

m
ea

n
of

 d
ay

s

4
6

8
10

1

2

1

2

3

duration wtgain

Main factor effects are evident.

> interaction.plot(wtgain,duration,days,data=kidney)

wtgain

m
ea

n
of

 d
ay

s

2
4

6
8

10
12

14

1 2 3

 duration

1
2

Interaction effect does not seem to significant.

Dept. of Math and Statistics Sung E. Kim

 55

Before applying the aov function, be sure that the data types of two factors, duration and wtgain, are

“factor”. If they are recorded as “factor”, use as function or Data  Change Data Type on the menu bar.

One factor fixed effect ANOVA

Using aov function
> duration.anova_aov(days~duration,data=kidney)

> summary(duration.anova)

 Df Sum of Sq Mean Sq F Value Pr(F)

 duration 1 209.067 209.0667 4.981322 0.02950016

Residuals 58 2434.267 41.9701

> dummy.coef(duration.anova)

$"(Intercept)":

 (Intercept)

 6.333333

$duration:

 1 2

 1.866667 -1.866667

> contr.helmert(2)

 [,1]

1 -1

2 1

> duration.lm_lm(days~duration,data=kidney)

> summary(duration.lm)

Call: lm(formula = days ~ duration, data = kidney)

Residuals:

 Min 1Q Median 3Q Max

 -8.2 -4.267 -1.467 2.533 21.8

Coefficients:

 Value Std. Error t value Pr(>|t|)

(Intercept) 6.3333 0.8364 7.5725 0.0000

 duration -1.8667 0.8364 -2.2319 0.0295

Residual standard error: 6.478 on 58 degrees of freedom

Multiple R-Squared: 0.07909

F-statistic: 4.981 on 1 and 58 degrees of freedom, the p-value is 0.0295

Correlation of Coefficients:

 (Intercept)

duration 0

> model.tables(duration.anova)

Tables of effects

 duration

 1 2

 1.8667 -1.8667

> model.tables(duration.anova,"means")

Dept. of Math and Statistics Sung E. Kim

 56

Tables of means

Grand mean

 6.3333

 duration

 1 2

 8.2000 4.4667

Using my cotrast

> my.cotr.l2_matrix(c(1,0),ncol=1)

> my.cotr.l2

 [,1]

[1,] 1

[2,] 0

> duration.anova.new_aov(days~C(duration,my.cotr.l2),data=kidney)

> summary(duration.anova.new)

 Df Sum of Sq Mean Sq F Value Pr(F)

C(duration, my.cotr.l2) 1 209.067 209.0667 4.981322 0.02950016

Residuals 58 2434.267 41.9701

> dummy.coef(duration.anova.new)

$"(Intercept)":

 (Intercept)

 4.466667

$"C(duration, my.cotr.l2)":

 1 2

 3.733333 0

> wtgain.anova_aov(days~wtgain,data=kidney)

> summary(wtgain.anova)

 Df Sum of Sq Mean Sq F Value Pr(F)

 wtgain 2 760.433 380.2167 11.51009 0.00006327712

Residuals 57 1882.900 33.0333

> summary(wtgain.anova,split=list(wtgain=list(L=1,Q=2)))

 Df Sum of Sq Mean Sq F Value Pr(F)

 wtgain 2 760.433 380.2167 11.51009 0.00006328

 wtgain: L 1 93.025 93.0250 2.81609 0.09879855

 wtgain: Q 1 667.408 667.4083 20.20409 0.00003460

 Residuals 57 1882.900 33.0333

Two-factor fixed effects ANOVA

> kidney.anova_aov(days~duration*wtgain,data=kidney)

> summary(kidney.anova)

 Df Sum of Sq Mean Sq F Value Pr(F)

 duration 1 209.067 209.0667 7.21472 0.0095871

 wtgain 2 760.433 380.2167 13.12097 0.0000227

duration:wtgain 2 109.033 54.5167 1.88133 0.1622404

Residuals 54 1564.800 28.9778

> model.tables(kidney.anova,"means")

Dept. of Math and Statistics Sung E. Kim

 57

Tables of means

Grand mean

 6.3333

 duration

 1 2

 8.2000 4.4667

 wtgain

 1 2 3

 2.45 5.50 11.05

duration:wtgain

Dim 1 : duration

Dim 2 : wtgain

 1 2 3

1 2.7 7.3 14.6

2 2.2 3.7 7.5

> par(mfrow=c(2,3))

> plot(kidney.anova)

> par(mfrow=c(1,1))

Fitted : duration * wtgain

R
e
si

d
u
a
ls

2 4 6 8 10 12 14

-1
0

-5
0

5
1
0

1
5

3020

28

fits

sq
rt
(a

b
s(

R
e
si

d
u
a
ls

))

2 4 6 8 10 12 14

1
2

3
4

3020

28

Fitted : duration * wtgain

d
a
ys

2 4 6 8 10 12 14

0
5

1
0

1
5

2
0

2
5

3
0

Quantiles of Standard Normal

R
e
si

d
u
a
ls

-2 -1 0 1 2

-1
0

-5
0

5
1
0

1
5

3020

28

Fitted Values

0.0 0.4 0.8

-1
0

-5
0

5
1
0

1
5

Residuals

0.0 0.4 0.8

-1
0

-5
0

5
1
0

1
5

f-value

d
a
ys

C
o
o
k'
s

D
is

ta
n
ce

0 10 20 30 40 50 60

0
.0

0
.0

5
0
.1

0
0
.1

5

3020

28

The residual plot shows a strong evidence of non-constant variance. As the fitted values increase the

residuals increase. From the QQ plot we also suspect a skewness of the error distribution. This recommends

a proper transformation of the response.

Dept. of Math and Statistics Sung E. Kim

 58

Transformation

A variance stabilizing transformation also corrects a non-normality in the error distribution. To suggest a

appropriate transformation of the response we look at the relation between the treatment mean and the

variance. Suggested transformations are

Relation Transformation

ii k 2
 YY 

22
ii k )log(YY 

2
ii k  YY /1

)(,/)1(2 levelithprn iiiii  )arcsin(YY 

Let’s check which relation is most suitable for our kidney data.

> std.kidney_tapply(days,list(duration,wtgain),stdev)

> std.kidney

 1 2 3

1 2.790858 6.290204 9.720540

2 2.299758 2.945807 4.249183

> mean.kidney_tapply(days,list(duration,wtgain),mean)

> mean.kidney

 1 2 3

1 2.7 7.3 14.6

2 2.2 3.7 7.5

> sd.to.m_std.kidney/mean.kidney

> sd.to.m

 1 2 3

1 1.033651 0.8616718 0.6657904

2 1.045345 0.7961640 0.5665577

> sdsq.to.m_std.kidney^2/mean.kidney

> sdsq.to.m

 1 2 3

1 2.884774 5.420091 6.471842

2 2.404040 2.345345 2.407407

> sd.to.msq_std.kidney/mean.kidney^2

> sd.to.msq

 1 2 3

1 0.3828338 0.1180372 0.04560208

2 0.4751567 0.2151795 0.07554103

The ration ii  / is the most stable, and this suggests a log transformation. Note that the response, days, is

a count with some zero counts. The square root transformation also looks OK and thus we try the square

root transformation below.

For more details, we may also consider a power transformation of the form (Box-Cox transformation):

YY 

To find the power,  , we regress ilog on ilog , that is we fit

iiE  logˆˆ)(log 10 

We estimate  by 1̂1ˆ   . The basic concept will be discussed in class.

Dept. of Math and Statistics Sung E. Kim

 59

> std.kidney_as(std.kidney,"vector")

> mean.kidney_as(mean.kidney,"vector")

> std.kidney

[1] 2.790858 2.299758 6.290204 2.945807 9.720540 4.249183

> plot(log(mean.kidney),log(std.kidney))

> log.fit_lsfit(log(mean.kidney),log(std.kidney))

> par(mfrow=c(1,1))

> plot(log(mean.kidney),log(std.kidney))

> abline(log.fit)

> log.fit$coef

 Intercept X

 0.2176716 0.7359919

From above we estimate 264.ˆ  . The value is about in the middle of 0 and 0.5 and this suggests that we

may use either square root or log transformation. Note the 0 means log transformation by definition.

For the same reason mentioned above, we take a square root transformation of the response, days. You may

also consider)1log( YY .

> sqrt.kidney.anova_aov(sqrt(days)~duration*wtgain)

> summary(sqrt.kidney.anova)

 Df Sum of Sq Mean Sq F Value Pr(F)

 duration 1 5.95727 5.95727 5.48996 0.0228395

 wtgain 2 35.12196 17.56098 16.18343 0.0000031

duration:wtgain 2 2.02990 1.01495 0.93533 0.3987204

 Residuals 54 58.59654 1.08512

Fitted : duration * wtgain

R
e
si

d
u
a
ls

1.5 2.0 2.5 3.0 3.5

-2
-1

0
1

2

28

29

20

fits

sq
rt
(a

b
s(

R
e
si

d
u
a
ls

))

1.5 2.0 2.5 3.0 3.5

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

282920

Fitted : duration * wtgain

sq
rt
(d

a
ys

)

1.5 2.0 2.5 3.0 3.5

0
1

2
3

4
5

Quantiles of Standard Normal

R
e
si

d
u
a
ls

-2 -1 0 1 2

-2
-1

0
1

2

28

29

20

Fitted Values

0.0 0.4 0.8

-2
-1

0
1

2

Residuals

0.0 0.4 0.8

-2
-1

0
1

2

f-value

sq
rt
(d

a
ys

)

C
o
o
k'
s

D
is

ta
n
ce

0 10 20 30 40 50 60

0
.0

0
.0

2
0
.0

4
0
.0

6 2829

20

The interaction effect is not significant and thus we may fit the model without the interaction. Next time we

will discuss Multiple comparison procedure and random and mix effect model.

Dept. of Math and Statistics Sung E. Kim

 60

Multiple Comparisons: all pairwise comparison

> multicomp(sqrt.fit,focus="duration",plot=T)

95 % non-simultaneous confidence intervals for specified

linear combinations, by the Fisher LSD method

critical point: 2.0049

response variable: sqrt(days)

intervals excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound Upper Bound

1-2 0.62 0.257 0.105 1.13 ****

> multicomp(sqrt.fit,focus="wtgain",plot=T)

95 % simultaneous confidence intervals for specified

linear combinations, by the Tukey method

critical point: 2.41

response variable: sqrt(days)

intervals excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound Upper Bound

1-2 -0.780 0.314 -1.54 -0.0228 ****

1-3 -1.780 0.314 -2.53 -1.0200 ****

2-3 -0.997 0.314 -1.75 -0.2400 ****

> multicomp(sqrt.fit,focus="duration",adjust=list(wtgain=seq(3)),plot=T)

95 % simultaneous confidence intervals for specified

linear combinations, by the Tukey method

critical point: 2.41

response variable: sqrt(days)

Dept. of Math and Statistics Sung E. Kim

 61

intervals excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound Upper Bound

1.adj1-2.adj1 0.128 0.444 -0.9430 1.20

1.adj2-2.adj2 0.731 0.444 -0.3400 1.80

1.adj3-2.adj3 1.000 0.444 -0.0712 2.07

> multicomp(sqrt.fit,focus="wtgain",adjust=list(duration=seq(2)),plot=T)

95 % simultaneous confidence intervals for specified

linear combinations, by the Tukey method

critical point: 2.6509

response variable: sqrt(days)

intervals excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound Upper Bound

1.adj1-2.adj1 -1.080 0.444 -2.26 0.0964

1.adj1-3.adj1 -2.210 0.444 -3.39 -1.0300 ****

2.adj1-3.adj1 -1.130 0.444 -2.31 0.0464

1.adj2-2.adj2 -0.479 0.444 -1.66 0.6990

1.adj2-3.adj2 -1.340 0.444 -2.52 -0.1640 ****

2.adj2-3.adj2 -0.863 0.444 -2.04 0.3150

S+ uses the Tukey’s pairwise comparison as default. If you want to specify other methods (like Scheffe,

Bonferroni, etc) use the option method=”scheffe” for Scheffe method and method=”bon” for Bonferroni

method, etc.

 > multicomp(sqrt.fit,focus="wtgain",method="scheffe",plot=T)

Inference for Linear Combinations of factor levels

Dept. of Math and Statistics Sung E. Kim

 62

We might want to construct a confidence interval for a linear combination of factor levels. Here, we will

consider the interval for wtgain2- (wtgain1+wtgain3)/2. We have seen that the interaction is not significant

and thus we fit the model with the two main effects only. Note that with the full model the linear

combination is not estimable.

> main.fit_aov(sqrt(days)~duration+wtgain)

> summary(main.fit)

 Df Sum of Sq Mean Sq F Value Pr(F)

 duration 1 5.75965 5.75965 5.83347 0.01901321

 wtgain 2 31.73837 15.86919 16.07258 0.00000305

Residuals 56 55.29134 0.98735

> lmat_matrix(c(0,0,0,-.5,1,-.5),ncol=1,dimnames=list(NULL,"wt2-(wt1+wt3)/2"))

> lmat

 wt2-(wt1+wt3)/2

[1,] 0.0

[2,] 0.0

[3,] 0.0

[4,] -0.5

[5,] 1.0

[6,] -0.5

> multicomp(main.fit,lmat=lmat,method="bon")

95 % non-simultaneous confidence intervals for specified

linear combinations, by the Fisher LSD method

critical point: 2.0032

response variable: sqrt(days)

intervals excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound Upper Bound

wt2-(wt1+wt3)/2 -0.109 0.272 -0.654 0.437

One case per treatment (no interaction model)

> premium_c(140,100,210,180,220,200)

> city_c("Small","Small","Med","Med","Large","Large")

> region_c("East","West","East","West","East","West")

> insur_data.frame(premium,city,region)

> insur

 premium city region

1 140 Small East

2 100 Small West

3 210 Med East

4 180 Med West

5 220 Large East

6 200 Large West

> attach(insur)

> insur.anova_aov(premium~city+region)

> summary(insur.anova)

 Df Sum of Sq Mean Sq F Value Pr(F)

 city 2 9300 4650 93 0.01063830

 region 1 1350 1350 27 0.03509872

Residuals 2 100 50

> model.tables(insur.anova,"means")

Tables of means

Grand mean

Dept. of Math and Statistics Sung E. Kim

 63

 175

 city

 Large Med Small

 210 195 120

 region

 East West

190 160

Test for Interaction effect

> interaction.plot(city,region,premium,lwd=2)

city

m
ea

n
of

 p
re

m
iu

m

10
0

12
0

14
0

16
0

18
0

20
0

22
0

Large Med Small

 region

East
West

Tukey’s 1df Test for no-interaction

Random and Mixed effects Models

Single-factor Random effect model

Model: njriY ijiij ,...,1,,...,1,.  

 . is a constant, i are iid),0(2
N , ij are iid),0(2N , i and ij are independent.

As an example, we adopt the Apex Enterprises Example in Neter, et.al., chapter 24 on the evaluating

ratings of potential employees by its personnel officers. Five personnel officers were randomly selected and

four prospective employees were assigned at random to each officer.

> apex$officer_as.factor(apex$officer)

Dept. of Math and Statistics Sung E. Kim

 64

> apex$employee_as.factor(apex$employee)

> attach(apex)

> dotplot(officer~rating,pch=16,col=1)

1

2

3

4

5

50 60 70 80 90

rating

Test for the factor effect

For the random effect to test for the main effect we formulate the hypothesis in terms of the variance, 2
 ;

 0: 2
0 H vs 0: 2

1 H

For this single-factor random effect ANOVA model, testing procedure for the main effect is identical to

that for the fixed effect. The different between the random and fixed effect appears in the expected mean

square. The traditional ANOVA model is

Source df Sum of Squares Mean Squares E(MS)

Treatment r-1 SSTR MSTR
22
 n

Residuals r(n-1) SSE MSE 2

Total rn-1 SSTO

We use the function raov, instead of aov, for the random effect model. From the ANOVA table below we

have the estimated variances (E(MS) in the table above). Note that to use the raov function the design must

be balance. For unbalance design we may use varcomp function that will be discussed later in this section.

> random.fit_raov(rating~officer)

> summary(random.fit)

 Df Sum of Sq Mean Sq Est. Var.

 officer 4 1579.70 394.9250 80.41042

Residuals 15 1099.25 73.2833 73.28333

The calculated value of the test statistic is : 39.5
2833.73

925.394* 
MSE

MSTR
F . Under the null hypothesis this

statistic follows an F(r-1,n(r-1)).

> qf(.95,4,15)

[1] 3.055568

Dept. of Math and Statistics Sung E. Kim

 65

Since F* is larger than the critical value we reject the null hypothesis and conclude that at 0.05 level of

significance the mean ratings of the personnel officers are different. The p-value of the test is 0.0068.

> 1-pf(5.39,4,15)

[1] 0.006797778

Inference for .

We may want to construct a confidence interval for the overall mean, . The 95% CI is

rn

MSTR
rtY *)1,975(... 

> model.tables(random.fit,"means")

Tables of means

Grand mean

 71.45

 officer

 1 2 3 4 5

 75.00 70.50 54.75 79.75 77.25

For this example, the 95% CI for the overall mean is:)81,62()44.4(132.245.71  .

CI for
22

2











For the random effect model the above ratio is in interest as it measures the proportion of the total

variability of the response that is accounted for by the variability of the level means. The lower and upper

bound of the CI based on F distribution is;

L

L
L




1
* and

U

U
U




1
*

where

   





  1))1(,1;2/1(

1 1nrrF
MSE

MSTR

n
L 

and

   





  1))1(,1;2/(

1 1nrrF
MSE

MSTR

n
U 

For the above example, MSTR=394.925, MSE=73.2833, r=5, n=4, F(.025,4,15)=3.804, F(.975,4,15)=0.116,

then L=0.104 and U=11.36. The calculated 95% CI is (0.104/1.104, 11.36/12.36) = (0.09, 0.92).

You may want to construct CI’s for
2 and

2
 . Both intervals base on chi-square distribution and I will

leave it to you (see Chapter 24, Neter, et.al.).

Two-factor Model : Model II(both random) and Model III (mixed)

Model II (balanced design)

Model: nkbjaiY ijkijjiijk ,...,1,,...,1,,...,1,)(..  

Dept. of Math and Statistics Sung E. Kim

 66

 . is a constant, i are iid),0(2
N , j are iid),0(2

N , ij)( are iid),0(2
N ,

ijk are iid),0(2N , ijji)(,,  and ij are pairwise independent.

Model III (balanced design, factor A fixed, factor B random)

Model: nkbjaiY ijkijjiijk ,...,1,,...,1,,...,1,)(..  

 . is a constant, i are constant with  0i , j are iid),0(2
N , ij)( are iid

)
1

,0(2


a

a
N


 with  

i
ij 0)( , ijk are iid),0(2N , ijji)(,,  and ij are pairwise

independent.

The expected mean squares and the test statistics are given in the following table.

Source df MS E(MS)(M II) E(MS)(M III) F* (M II) F* (M III)

A a-1 MSA

222
  nnb 

2
2

2

1 


 n
a

nb i 





MSAB

MSA

MSAB

MSA

B b-1 MSB

222
  nna 

22
 na

MSAB

MSB

MSE

MSB

AB (a-1)(b-1) MSAB
22
 n

22
 n

MSE

MSAB

MSE

MSAB

Residual ab(n-1) MSE 2
2

Total abn-1

For the balanced Model II we can use raov function as before.

Mixed effects

For mixed effects ANOVA we use varcomp function. The varcomp function is also used for unbalanced

designs. Note that for the balanced mixed effects designs the estimated mean squares and corresponding

degrees of freedom are identical to that of the fixed effects. However, the testing procedures vary as in the

table above. Hence, for testing hypothesis for factor effects we can simply use aov function and recalculate

the test statistics. For the mixed effects we also interested in the variance structures for further analyses. We

use varcomp function for this purpose. We discuss the use of varcomp function using an unbalanced mixed

effects example. Note that for the unbalanced design (either fixed, random, or mixed) the ANOVA

modeling is difficult. We used the general linear test approach based on the maximum likelihood method.

Example: (Unbalanced Mixed effect)

We used the data in Table 24.11 of Neter, et.al. The milkfat contents of a company’s yogurt product are

measured using two different measurement methods (a=1) and randomly selected four laboratories (b=4).

This is unbalanced mixed effect model; the factor Method is fixed and the factor Laboratory is random.

> fat.data$method_as.factor(fat.data$method)

> fat.data$lab_as.factor(fat.data$lab)

> fat.data$method[fat.data$method==1]_"Goverment"

> fat.data$method[fat.data$method==2]_"Sheffield"

> dotplot(lab~fat|method,ylab="Laboratory",xlab="Fat",main="method1 vs

method2",pch=16,col=1,data=fat.data)

Dept. of Math and Statistics Sung E. Kim

 67

1

2

3

4

3.0 3.5 4.0 4.5 5.0

Goverment

3.0 3.5 4.0 4.5 5.0

Sheffield

Fat

La
bo

ra
to

ry

method1 vs method2

The following procedure is necessary to define which factor is random and which is fixed.

> is.random(fat.data$lab)_T

> is.random(fat.data$method)_F

> is.random(fat.data)

 method lab

F T

> summary(varcomp(fat~method*lab,method="ml",data=fat.data))

Call:

varcomp(formula = fat ~ method * lab, data = fat.data, method = "ml")

Variance Estimates:

 Variance

 lab 0.05443933

method:lab 0.08570636

 Residuals 0.02325424

Method: ml

Approximate Covariance Matrix of Variance Estimates:

 lab method:lab Residuals (Intercept) method

 lab 0.00595752 -0.00194176 -0.00000400 0.00000255 -0.00000171

 method:lab -0.00194176 0.00420470 -0.00001463 -0.00000070 -0.00000515

 Residuals -0.00000400 -0.00001463 0.00003545 -0.00000015 0.00000618

(Intercept) 0.00000255 -0.00000070 -0.00000015 0.00058123 -0.00000445

 method -0.00000171 -0.00000515 0.00000618 -0.00000445 0.01138762

Coefficients:

 (Intercept) method

 3.694149 -0.632899

Approximate Covariance Matrix of Coefficients:

 (Intercept) method

Dept. of Math and Statistics Sung E. Kim

 68

(Intercept) 0.0000135161 -0.0000001028

 method -0.0000001028 0.0002647853

Note that other possible methods in the estimation option of varcomp function are “reml”, “minque0”, and

“winsor”. Refer the text for the description of each method. From the output we can summary the results as

Parameter MLE SE z* p-value

.. 3.694 0.024 large 0.00

1 0.633 0.107 5.916 0.00

2
 0.054 0.077 0.701 0.483

2
 0.086 0.065 1.32 0.187

2 0.023 0.006 3.83 0.00

From the table, we see that the method effect is significant and the interaction effect between the factors is

not quite significant.

Now let’s consider the subset of the fat.data to study the balanced mixed effects. We used the data with the

count 1 and 2 so that each treatment has two observarions.

> summary(varcomp(fat~method*lab,method="ml",subset=(count<3),data=fat.data))

Call:

varcomp(formula = fat ~ method * lab, data = fat.data, method = "ml", subset =

(count < 3))

Variance Estimates:

 Variance

 lab 0.06845940

method:lab 0.06776157

 Residuals 0.01849374

Method: ml

Approximate Covariance Matrix of Variance Estimates:

 lab method:lab Residuals (Intercept) method

 lab 0.006461886 -0.001482569 0.000000000 0.000000000 0.000000000

 method:lab -0.001482569 0.002986884 -0.000043493 0.000000000 0.000000000

 Residuals 0.000000000 -0.000043493 0.000086986 0.000000000 0.000000000

(Intercept) 0.000000000 0.000000000 0.000000000 0.000494539 0.000000000

 method 0.000000000 0.000000000 0.000000000 0.000000000 0.009626054

Coefficients:

 (Intercept) method

 3.740625 -0.618125

Approximate Covariance Matrix of Coefficients:

 (Intercept) method

(Intercept) 9.1459e-006 0.0000000000

 method 0.0000e+000 0.0001780217

Using the output we may make inferences on the variances.

Analysis of Covariance (ANCOVA)

Covariance Model (Single factor) : iijijiij njrixY ,...,1,,...,1,.   ,

where . is a constant (overall mean), i is a fixed treatment effect,  is a regression coefficient relating

Y with x, ijx is a mean-adjusted continuous predictor variable (concomitant variable), and ij are iid

),0(2N .

Dept. of Math and Statistics Sung E. Kim

 69

Example(Neter, et.al. Table 25.1): To study the effects of three types of promotions (treatments, r=3)) on

sales (response) of crackers. The concomitant variable is sales from preceding period.

First to verify the model assumption of the equal regression coefficient,  , over treatment, we need to plot

Y versus X for each treatment level. Before further analysis it is convenient to make a groupedData data

frame.

> cracker$period_cracker$period-mean(cracker$period)

> period.adj_cracker$period-mean(cracker$period)

> cracker_data.frame(cracker,period.adj)

> cracker.group_groupedData(sales~period.adj|treatment,data=cracker)

Now the object cracker.group is a groupedData object. The groupedData object can be summarized by

using gsummary function.

> gsummary(cracker.group)

 sales period treatment count period.adj

3 27.2 25.4 3 3 0.4

2 36.0 26.4 2 3 1.4

1 38.2 23.2 1 3 -1.8

To make a scatterplot by group (treatment) simply type

> plot(cracker.group)

From the plot we see that there is a clear linear relation between Y and x and we don’t see any evidence of

changing slopes over treatment. For a formal test of parallel slopes we fit a regression model with

interactions and test for the zero interaction coefficients.

Dept. of Math and Statistics Sung E. Kim

 70

25

30

35

40

45

-5 0 5

3

-5 0 5

2

-5 0 5

1

period.adj

sa
le

s

Before the model fitting we assign a contrast variable (dummy) for the treatment.

> my.cotr_matrix(c(1,0,-1,0,1,-1),ncol=2)

> my.cotr

 [,1] [,2]

[1,] 1 0

[2,] 0 1

[3,] -1 -1

> anova(lm(sales~C(treatment,my.cotr)*period.adj,data=cracker.group))

Analysis of Variance Table

Response: sales

Terms added sequentially (first to last)

 Df Sum of Sq Mean Sq F Value Pr(F)

 C(treatment, my.cotr) 2 338.8000 169.4000 48.36801 0.0000153

 period.adj 1 269.0287 269.0287 76.81453 0.0000106

C(treatment, my.cotr):period.adj 2 7.0505 3.5252 1.00654 0.4031810

 Residuals 9 31.5208 3.5023

The p-value for the no interactions test is very high (.4), and this implies that the parallel slopes are evident.

Now ANCOVA can be done using regression approach. Indeed, the ANCOVA model is a special case of

regression model.

> cracker.lm_lm(sales~C(treatment,my.cotr)+period.adj,data=cracker.group)

> summary(cracker.lm)

Call: lm(formula = sales ~ C(treatment, my.cotr) + period.adj, data =

cracker.group)

Residuals:

 Min 1Q Median 3Q Max

 -2.435 -1.274 -0.3363 1.671 2.487

Dept. of Math and Statistics Sung E. Kim

 71

Coefficients:

 Value Std. Error t value Pr(>|t|)

 (Intercept) 33.8000 0.4835 69.9079 0.0000

C(treatment, my.cotr)1 -6.9594 0.6850 -10.1599 0.0000

C(treatment, my.cotr)2 0.9420 0.6987 1.3483 0.2047

 period.adj 0.8986 0.1026 8.7592 0.0000

Residual standard error: 1.873 on 11 degrees of freedom

Multiple R-Squared: 0.9403

F-statistic: 57.78 on 3 and 11 degrees of freedom, the p-value is 5.082e-007

Correlation of Coefficients:

 (Intercept) C(treatment, my.cotr)1 C(treatment, my.cotr)2

C(treatment, my.cotr)1 0.0000

C(treatment, my.cotr)2 0.0000 -0.4761

 period.adj 0.0000 -0.0599 -0.2056

> anova(cracker.lm)

Analysis of Variance Table

Response: sales

Terms added sequentially (first to last)

 Df Sum of Sq Mean Sq F Value Pr(F)

C(treatment, my.cotr) 2 338.8000 169.4000 48.31052 3.566360e-006

 period.adj 1 269.0287 269.0287 76.72324 2.731033e-006

 Residuals 11 38.5713 3.5065

The result will be discussed in class.

We may fit a reduced model without the treatment effect and do a generalized F-test (reduced vs. full) to

test for the treatment effect.

SIMPLE LOGISTIC REGRESSION

In many studies, the response variable may be a binary r.v. taking on the value 0 (failure) and 1 (success).

Example: In a longitudinal study of coronary heart disease as a function of age, gender, cholesterol level,

etc. The response (Y) can be coded as 0 (no disease) and 1 (disease)

Simple Regression?

iii xY   10

Let






""0

""1

failurefor

successfor
Yi

Assumption ???),0(~ 2 Ni

Note that for the binary response i can take only two values

.0

11

10

10





iii

iii

Yifx

Yifx





Dept. of Math and Statistics Sung E. Kim

 72

Therefore i can NOT be normally distributed!! The simple regression model can NOT be used for the

binary response.

Logistic Response Function

Let’s denote i to be the probability of success for the ith observation, that is iiYP )1(, and

iiYP  1)0(. We want to relate i to a linear combination of the independent variables, ix .

Note that generally for extremely large (or small) value of ix the probability i is expected to be either 1

or 0.

Example :






""0

""1
,

deathfor

alivefor
yagex ii

For extremely large value of age, we expect the probability of survival to be 0.

What about the relationship between i and ix for intermediate value of ix ? Can we expect a linear

relationship? Pretty close

General relation: S-shape configuration

These shapes are very common in application.

Logistic Response Function :

)exp(1

)exp(

10

10

i

i
i x

x











formulates the S-shape relationship.

Logistic Transformation

Logistic Regression Model:

i
i

i x101
log 
















-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty















-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty















Dept. of Math and Statistics Sung E. Kim

 73

We use the logistic transformation 








 i

i





1
log as a response in simple regression.

Note that since i is unknown, the response is unobservable. The parameters can be estimated via

maximum likelihood method. We use glm (generalized linear model) function to fit the model with

binomial family option.

The fitted response function is:
)exp(1

)exp(
ˆ

10

10

i

i
i xbb

xbb




 .

Example (Neter, Table 14.1) We are interested in the effect of the experience on the ability to a complex

programming task. For each of 25 individuals months of experience and the task result (1 for success, 0 for

failure)

exp

ta
sk

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

> fit.log_glm(task~exp,family=binomial,data=logist.data)

> summary(fit.log)

Call: glm(formula = task ~ exp, family = binomial, data = logist.data)

Deviance Residuals:

 Min 1Q Median 3Q Max

 -1.89916 -0.7508921 -0.4140038 0.7992195 1.962354

Coefficients:

 Value Std. Error t value

(Intercept) -3.0596954 1.2589852 -2.430287

 exp 0.1614859 0.0649625 2.485833

(Dispersion Parameter for Binomial family taken to be 1)

 Null Deviance: 34.29649 on 24 degrees of freedom

Residual Deviance: 25.42457 on 23 degrees of freedom

Number of Fisher Scoring Iterations: 4

Dept. of Math and Statistics Sung E. Kim

 74

Correlation of Coefficients:

 (Intercept)

exp -0.9214001

> 2*(1-pt(2.4858,23))

[1] 0.02062955

The p-value of 0.02 from a partial t-test testing the effect of the experience effect indicates that the effect is

significant

We may do a chi-square test using the deviances (known as Person test) in the output. Again the null

hypothesis is 0: 1 Ho . The null deviance is the value of the test statistic under the null hypothesis,

reduced model with intercept only, and the residual deviance is the value of the test statistic under the full

model, with intercept and slope. The subtraction of the two statistics will follow a chi-square distribution

with one degree of freedom. For this example

 G
2
 = 34.29649 – 25.42457 = 8.872

The corresponding p-value of the test is 0.003, which is much less than the p-value for the t-test. The chi-

square test is preferred to the t-test. More example will be discuss later.

> 1-pchisq(8.872,1)

[1] 0.002895777

> par(mfrow=c(2,2))

> plot(fit.log)

Fitted : exp

D
e
vi

a
n
ce

 R
e
si

d
u
a
ls

0.2 0.4 0.6 0.8

-2
-1

0
1

2

Predicted : exp

sq
rt
(a

b
s(

D
e
vi

a
n
ce

 R
e
si

d
u
a
ls

))

-2 -1 0 1 2

0
.8

1
.0

1
.2

1
.4

Fitted : exp

ta
sk

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Quantiles of Standard Normal

P
e
a
rs

o
n
 R

e
si

d
u
a
ls

-2 -1 0 1 2

-2
-1

0
1

2

Note that unlike usual regression models, for the binary response the residuals are not normally distributed

and the usual residual analyses are not applicable. The diagnostic plots above are not quite informative for

Dept. of Math and Statistics Sung E. Kim

 75

the logistic regression. To detect outliers or/and influential observations we can use leverages as before.

Refer the example in the next section.

The fitted response function is
)1615.06.3exp(1

)1615.06.3exp(
ˆ

i

i
i x

x




 .

We use the fitted response function to estimate the mean response at a given value of x. For example

substituting 14 into x can obtain the estimated probability of successful performance for a person with 14

months experience. The estimated probability is 0.31.

The estimated odd ratio .175.1)1615exp(.)exp(1  bOR So, with each additional month of

experience increases the odds of completing the task by 17.5%.

Multiple Logistic Regression

In this section we will discuss the logistic regression with two or more predictors.

Example (Christensen 1997, Example 4.1.1)

200 men are taken from the LA Heart Study to study the relations between the Coronary incident (CNT, 1

if an incident occurred, 0 otherwise) and six explanatory variables: age, Systolic blood pressure, Diastolic

blood pressure, Cholesterol, Height, and Weight. The data can be downloaded from the class web

(chapman.dat). We consider the logistic regression model:

iiiiii

i

i WHChDSage 54322101
log 
















> summary(chapman.logist)

Call: glm(formula = CNT ~ age + S + D + Ch + H + W, family = binomial, d

ata

 = chapman)

Deviance Residuals:

 Min 1Q Median 3Q Max

 -1.112958 -0.5541206 -0.3906878 -0.2527301 2.681136

Coefficients:

 Value Std. Error t value

(Intercept) -4.517319021 7.479489249 -0.6039609

 age 0.045899976 0.023529058 1.9507783

 S 0.006855721 0.020194525 0.3394842

 D -0.006936751 0.038343820 -0.1809092

 Ch 0.006306448 0.003631292 1.7366953

 H -0.074001542 0.106189623 -0.6968811

 W 0.020141537 0.009868974 2.0408948

(Dispersion Parameter for Binomial family taken to be 1)

 Null Deviance: 154.5547 on 199 degrees of freedom

Residual Deviance: 134.8515 on 193 degrees of freedom

Number of Fisher Scoring Iterations: 5

Dept. of Math and Statistics Sung E. Kim

 76

Correlation of Coefficients:

 (Intercept) age S D Ch H

age -0.2071983

 S 0.0130841 -0.2675552

 D -0.2094813 0.0126957 -0.7730439

 Ch -0.1406628 -0.1641129 0.0292113 -0.1133042

 H -0.9534236 0.1719066 -0.0194712 0.1426191 0.0203800

W 0.2837116 -0.0023497 0.1522709 -0.3637363 0.1463836 -0.4411074

Based on the t-value, age, cholesterol, and weight effects seem to exist. The multiple scatterplot below also

supports the result.

age

fit
te

d
(c

h
a
p
m

a
n
.lo

g
is

t)

30 40 50 60 70

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

S

fit
te

d
(c

h
a
p
m

a
n
.lo

g
is

t)

100 120 140 160 180

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

D

fit
te

d
(c

h
a
p
m

a
n
.lo

g
is

t)

60 70 80 90 100 110

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Ch

fit
te

d
(c

h
a
p
m

a
n
.lo

g
is

t)

200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

H

fit
te

d
(c

h
a
p
m

a
n
.lo

g
is

t)

62 64 66 68 70 72 74

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

W

fit
te

d
(c

h
a
p
m

a
n
.lo

g
is

t)

150 200 250

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

We want to fit the model with the three variables only.

> chapman.logist.reduced_glm(CNT~age+Ch+W,family=binomial,data=chapman)

> summary(chapman.logist.reduced)

Call: glm(formula = CNT ~ age + Ch + W, family = binomial, data = chapma

n)

Deviance Residuals:

 Min 1Q Median 3Q Max

 -1.104901 -0.5541154 -0.3776944 -0.2510398 2.700912

Coefficients:

 Value Std. Error t value

(Intercept) -9.255888319 2.070916857 -4.469464

 age 0.053003641 0.020821917 2.545570

Dept. of Math and Statistics Sung E. Kim

 77

 Ch 0.006517925 0.003587892 1.816645

 W 0.017538629 0.008270296 2.120677

(Dispersion Parameter for Binomial family taken to be 1)

 Null Deviance: 154.5547 on 199 degrees of freedom

Residual Deviance: 135.5233 on 196 degrees of freedom

Number of Fisher Scoring Iterations: 5

Correlation of Coefficients:

 (Intercept) age Ch

age -0.3660495

 Ch -0.5167738 -0.2383809

 W -0.7669655 0.0100841 0.1319159

We may compare the model with the full model. For the test statistic, we use the difference between the

residual deviances of the full model and the reduced model.

 G
2
= 135.5233 – 134.8515 = 0.6718 with the degrees of freedom of 196-193=3

The p-valued of the test is 0.88 and we conclude that the reduced model with three predictors only is an

adequate substitute of for the full model. From the above output the variable Ch does not seem significant.

We can repeat the above testing procedure for the Ch effect. A measure analogy to R
2
 can be obtained by

deviancenull

devianceresidualdeviancenull
R


2 .

For the above model with age, Ch, and W, R
2
 = (154.55-135.52)/154.55 = 0.12. Only about 12% of

variability can be explained by the model. This is not surprising for the binary data. Unless the probability

i is very close to 1 or 0, the R
2
 will be much lower than you expected. The low R

2
 does not necessary

mean a poor fit. So, the direct interpretation of the R
2
 value should not be suggested. We can use the R

2

value for a tool of model comparisons.

Formal model selection procedure using AIC or Cp can be conveyed, but will not be discussed in this class.

S+ does not provide the automatic search procedure, but SAS does via Proc Logistic.

Fitted response function:
)0175.0065.053.26.9exp(1

)0175.0065.053.26.9exp(
ˆ

iii

iii
i WChage

WChage






For example, for 60 years old man with cholesterol reading of 300 and the weights 200 pounds, the

estimated probability of a coronary incident is

 35.0
))200(0175.)300(0065.)60(053.26.9exp(1

))200(0175.)300(0065.)60(053.26.9exp(
ˆ 




 .

We can identify the outliers and/or influential observations using leverages as follows;

>rule_2*length(coef(chapman.logist.reduced))/length(fitted(chapman.logis

t.reduced))

> rule

[1] 0.04

Dept. of Math and Statistics Sung E. Kim

 78

> influ.chapman_lm.influence(chapman.logist.reduced)

> cbind(age,Ch,W,leverage=influ.chapman$hat)[influ.chapman$hat>rule,]

 age Ch W leverage

 18 40 302 225 0.04554945

 19 51 302 247 0.10435819

 38 52 474 145 0.08053879

 41 40 520 169 0.14885485

 44 56 428 171 0.04979886

 48 64 243 171 0.04341317

 51 65 370 153 0.04235409

 55 67 365 190 0.05636015

 60 68 268 138 0.05473981

 61 64 261 108 0.04480911

 64 58 416 188 0.05418758

 81 47 341 218 0.04645482

 84 41 259 245 0.07883004

 96 67 320 134 0.04994716

108 51 269 262 0.14683385

111 69 370 185 0.06171088

113 64 244 187 0.05093838

114 70 353 163 0.05816883

116 53 453 170 0.06694622

121 53 420 141 0.04030119

123 63 420 160 0.05607527

126 28 386 189 0.04183048

153 58 187 224 0.08980256

157 49 273 245 0.09279471

193 60 317 206 0.04371181

>

Observations with high leverages are highlighted. We need to exam those observations closely. For

example, the 41th observation (the highest leverage) has an extremely high cholesterol value, etc.

BOOTSTRAPING, the basic

The bootstrap is a powerful computer-based tool for statistical inference in case standard approximations

are not applicable. Suppose for example, we want to compare two groups by their medians. Unfortunately

we do not have an explicit formula to calculate the standard errors of the median estimates (we do have it

for means). For another example, for the inference about population means, the standard inferences rely on

the large sample central limit theorem. Then, we may simply ask, “What if the sample size is very small

with an unknown underline sampling distribution?” Theses questions can be answered by computer-based

techniques, like bootstrap.

To illustrate the basic concept of the bootstrap, let’s consider a simple example (I will do my best to avoid

mathematical notations). Suppose we observed data with size eight: x = (23, 34, 12, 9, 42, 17, 8, 29). We

are interested in the reciprocal of mean,  /1 . We can simply estimate it by x/1ˆ  , where x is the

sample mean. Now, our question is how to calculate the standard error of the estimate. Intuitively thinking,

if we have many estimates of the parameter, 1̂ , 2̂ , …, B̂ , with B large enough positive integer, we

could approximate it by the sample standard deviation of the B estimates; ie,

(1)

2/12

)1/(ˆˆ














  

B

i
i Bse  , where ̂ is the sample mean of the si '̂ .

Dept. of Math and Statistics Sung E. Kim

 79

To have the B estimates we need B samples of size eight each. Since we don’t have any other data source

we generate each sample by randomly sampling eight times with replacement from the original data point

and name it
*x . We do the sampling B times to generate

Bxxx *2*1* ,...,, (this is called bootstrap

samples). From each of the B samples we estimate the parameter and using the B estimates we calculate the

sample standard deviation in (1). The following bootstrap algorithm for estimating standard errors is

adopted from An Introduction to the Bootstrap, by E. Efron and R. Tibshirani, Chapman & Hall.

Bootstrap standard error estimation

Consider a random sample x=(x1, x2,…,xn) from an unknown probability distribution. We are

interested in a parameter  . We calculate an estimate ̂ from x.

1. Select B independent bootstrap sample x
*1

, x
*2

,…,x
*B

 each consisting of n data points randomly

selected for the original data with replacement. S+ recommend at least 250 to estimate standard

errors and 1000 to estimate percentiles.

2. From each bootstrap sample calculate the parameter estimates, 1̂ , 2̂ , …, B̂ , called bootstrap

replication

3. Evaluate the standard error by the sample standard deviation of the B replications as in (1).

In S+ we use the function bootstrap for the calculation. For the example we used B = 100.

> x_c(23, 34, 12, 9, 42, 17, 8, 29)

> boot1_bootstrap(x,1/mean(x),B=100)

Forming replications 1 to 100

> summary(boot1)

Call:

bootstrap(data = x, statistic = 1/mean(x), B = 100)

Number of Replications: 100

Summary Statistics:

 Observed Bias Mean SE

Param 0.04598 0.0007052 0.04668 0.008573

Empirical Percentiles:

 2.5% 5% 95% 97.5%

Param 0.03455 0.03568 0.0646 0.06787

BCa Confidence Limits:

 2.5% 5% 95% 97.5%

Param 0.03463 0.03625 0.06615 0.06878

The estimated parameter is 0.04598 with the bootstrap standard error of 0.008573. The empirical

percentiles from 100 bootstrap estimates are given. A better confidence interval, named BCa (bias-

corrected and accelerated), is given. The BCa CI is better in terms of accuracy of the interval estimates and

accurate coverage probability. Other possible CIs are bootstrap-t interval, ABC interval, and parametric

approach via normal theory. For more detailed discussion on the bootstrap CI, consult An Introduction to

the Bootstrap, by E. Efron and R. Tibshirani.

We will close this section with an interesting example. Note that the following example is just to give you

the basic idea of the use of bootstrap. This is not a complete analysis and should not refer to other purpose.

Example: Bootstrap Bioequivalence

A drug company has separately applied each of three hormone supplement medicinal patches, ‘Approved

(by FDA)’, ‘Placebo’, and ‘New’, to eight patients who suffer from a hormone deficiency. Measurements

Dept. of Math and Statistics Sung E. Kim

 80

are blood pressure level after each patch wearing. The FDA requires proof of bioequivalence before it will

approve for sale a previously approved product manufactured at a new facility. Data is give below;

patient placebo approved new

1 9243 17649 16449

2 9671 12013 14614

3 11792 19979 17274

4 13357 21816 23798

5 9055 13850 12560

6 6290 9806 10157

7 12412 17208 16570

8 18806 29044 26325

Let x = approved – placebo, y = new-approved. Define  / , where)(xE and)(YE . The

FDA bioequivalence requirement is that a 90% CI for  lie within [-0.2, 0.2]. Here the parameter estimate

for r is -0.0713.

> mean(y)/mean(x)

[1] -0.0713061

Following plot shows the data. The wedge in the plot indicates the FDA requirement region and we see that

four of them are outside of the region.

> plot(x,y,xlab="New-Approved",ylab="Approved-Placebo")

> plot(x,y,xlab="New-Approved",ylab="Approved-Placebo",xlim=c(0,12000),ylim=c(-6000,6000))

> xx_seq(0,12000,100)

> yy_0.2*xx

> lines(xx,yy,type="l")

> lines(xx,-yy,type="l")

> abline(h=0)

New-Approved

A
pp

ro
ve

d-
P

la
ce

bo

0 2000 4000 6000 8000 10000 12000

-6
00

0
-4

00
0

-2
00

0
0

20
00

40
00

60
00

Are the FDA bioequivalence criteria satisfied by the data? To answer this question we use the bootstrap CIs.

> bot_bootstrap(data,mean(data[,"y"])/mean(data[,"x"]),2000)

> summary(bot)

Dept. of Math and Statistics Sung E. Kim

 81

Call:

bootstrap(data = data, statistic = mean(data[, "y"])/mean(data[, "x"]), B = 2000)

Number of Replications: 2000

Summary Statistics:

 Observed Bias Mean SE

Param -0.07131 0.008381 -0.06292 0.1037

Empirical Percentiles:

 2.5% 5% 95% 97.5%

Param -0.2321 -0.2135 0.1245 0.1709

BCa Confidence Limits:

 2.5% 5% 95% 97.5%

Param -0.2257 -0.2046 0.1382 0.1906

The estimated parameter is –0.07131 with a bootstrap standard error of 0.1037. Neither of the lower bounds

of the CIs do not quite satisfy the FDA criteria.

Then, the next question would be how many patients should be measured in a future experiments so that the

FDA requirement will have a good chance of being satisfied. This question related to power or sample size

question and we will not discuss in this class.

Following is the histogram of the 2000 bootstrap estimates.

> plot(bot)

-0.2 0.0 0.2 0.4

0
1

2
3

4

Value

D
en

si
ty

Param

Next time we will discuss the use of bootstrap in regression analysis.

Dept. of Math and Statistics Sung E. Kim

 82

BOOTSTRAP REGEESION

Bootstrap regression is very useful when the regression function is non-linear in the parameters. In this

section we will discuss how the bootstrap regression works in a simple regression model.

There are two different ways of bootstrap regression

1. Bootstrapping pairs: Random sample pairs (x,y) with replacement. For each bootstrap sample,

we fit regression model and the based on the B estimates we make inferences.

2. Bootstrapping residuals: We replace the response using the fitted and resampled residuals. That

is, we create a new data set by
*

10
*

iii exbby 

 where
*
ie are resampled with replacement from the residuals ie .

Example

Hormone data: n =27

Response: amount (amount of milligrams of anti-inflammatory hormone remaining in 27 devices)

Predictor: hour (Number of hours of wear)

Group : lot (3 different manufacturing lots)

Regression model fit

> fit.lm_lm(amount~hour,data=hormone)

> summary(fit.lm)

Call: lm(formula = amount ~ hour, data = hormone)

Residuals:

 Min 1Q Median 3Q Max

 -4.936 -1.728 -0.02287 1.739 3.732

Coefficients:

 Value Std. Error t value Pr(>|t|)

(Intercept) 34.1675 0.8672 39.3999 0.0000

 hour -0.0574 0.0045 -12.8683 0.0000

Residual standard error: 2.378 on 25 degrees of freedom

Multiple R-Squared: 0.8688

F-statistic: 165.6 on 1 and 25 degrees of freedom, the p-value is 1.584e

-012

Correlation of Coefficients:

 (Intercept)

hour -0.8494

#Bootstrap regression by bootstrapping paris

> hor.boot_bootstrap(hormone,coef(eval(lm.fit$call)),B=200)

Forming replications 1 to 100

Forming replications 101 to 200

> hor.boot

Call:

bootstrap(data = hormone, statistic = coef(eval(lm.fit$call)), B = 200)

Number of Replications: 200

Summary Statistics:

 Observed Bias Mean SE

Dept. of Math and Statistics Sung E. Kim

 83

(Intercept) 34.16753 0.0057033 34.17323 0.770618

 hour -0.05745 -0.0003323 -0.05778 0.004131

> plot(hor.boot)

32 33 34 35 36

0
.0

0
.2

0
.4

0
.6

0
.8

Value

D
e
n
si

ty

(Intercept)

-0.070 -0.065 -0.060 -0.055 -0.050 -0.045

0
2
0

4
0

6
0

8
0

1
0
0

Value

D
e
n
si

ty

hour

Bootstrap regression by bootstrapping residuals

> library(boot)

> hormone2_data.frame(hormone,resid=resid(lm.fit),fitted=fitted(lm.fit))

> hormone.fun_function(data,i){

+ d_data

+ d$amount_d$fitted+d$resid[i]

+ coef(update(fit.lm,data=d))

+ }

> hor.lm.boot_boot(hormone2,hormone.fun,R=200)

> hor.lm

Problem: Object "hor.lm" not found

Use traceback() to see the call stack

> hor.lm.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = hormone2, statistic = hormone.fun, R = 200)

Bootstrap Statistics :

Dept. of Math and Statistics Sung E. Kim

 84

 original bias std. error

t1* 34.1675282 0.0414358271 0.782883776

t2* -0.0574463 -0.0002944581 0.004160554

> plot(hor.lm.boot)

31 32 33 34 35 36

0.
0

0.
1

0.
2

0.
3

0.
4

t* Quantiles of Standard Normal

t*

-2 -1 0 1 2

32
33

34
35

36

COMPARING TWO SAMPLE: BOOTSTRAP CI for the mean difference

We use our grade.data to compare the means of MT.I and MT.II.

> attach(grade.data)

> t.test(MT.I-MT.II)

 One-sample t-Test

data: MT.I - MT.II

t = 1.3713, df = 27, p-value = 0.1816

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

 -1.789946 9.004232

sample estimates:

 mean of x

 3.607143

> grade.boot_boot(MT.I-MT.II,function(x,i) mean(x[i]),R=200)

> boot.ci(grade.boot,type=c("norm","basic","perc","bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 200 bootstrap replicates

CALL :

Dept. of Math and Statistics Sung E. Kim

 85

boot.ci(boot.out = grade.boot, type = c("norm", "basic", "perc", "bca")

)

Intervals :

Level Normal Basic

95% (-1.609, 8.347) (-2.061, 8.436)

Level Percentile BCa

95% (-1.222, 9.275) (-1.641, 8.870)

Calculations and Intervals on Original Scale

Some basic intervals may be unstable

Some percentile intervals may be unstable

Some BCa intervals may be unstable

> plot(grade.boot)

-5 0 5 10 15

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

t* Quantiles of Standard Normal

t*

-2 -1 0 1 2

0
5

10

Another possible CI is the studentized CI which based on the studentized statistics. This CI is known as the

most reliable. To calculate the studentized CI we need a variance estimate of the parameter estimate from

each bootstrap sample.

> mean.fun_function(d,i){n_length(i);c(mean(d[i]),(n-1)*var(d[i])/n^2)}

> grade.boot.stud_boot(MT.I-MT.II,mean.fun,R=200)

> boot.ci(grade.boot.stud,type="stud")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 200 bootstrap replicates

CALL :

boot.ci(boot.out = grade.boot.stud, type = "stud")

Intervals :

Level Studentized

95% (-2.157, 8.808)

Calculations and Intervals on Original Scale

Some studentized intervals may be unstable

> plot(grade.boot.stud)

Dept. of Math and Statistics Sung E. Kim

 86

-5 0 5 10

0.
0

0.
05

0.
10

0.
15

t* Quantiles of Standard Normal

t*

-2 -1 0 1 2

-2
0

2
4

6
8

10

Comparing medians

> grade.boot_boot(MT.I-MT.II,function(x,i) median(x[i]),R=200)

> boot.ci(grade.boot,type=c("norm","basic","perc","bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 200 bootstrap replicates

CALL :

boot.ci(boot.out = grade.boot, type = c("norm", "basic", "perc", "bca")

)

Intervals :

Level Normal Basic

95% (-3.606, 7.966) (-3.000, 8.000)

Level Percentile BCa

95% (-3.00, 8.00) (-4.50, 6.38)

Calculations and Intervals on Original Scale

Some basic intervals may be unstable

Some percentile intervals may be unstable

Some BCa intervals may be unstable

> truehist(grade.boot$t,h=1)

Dept. of Math and Statistics Sung E. Kim

 87

grade.boot$t

-5 0 5 10

0.
0

0.
05

0.
10

0.
15

The Studentized CI can be obtained as follows;

> median.fun_function(d,i){n_length(i);c(median(d[i]),(n-1)*var(d[i])/n^2)}

> grade.boot.stud_boot(MT.I-MT.II,median.fun,R=200)

> boot.ci(grade.boot.stud,type="stud")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 200 bootstrap replicates

CALL :

boot.ci(boot.out = grade.boot.stud, type = "stud")

Intervals :

Level Studentized

95% (-1.785, 8.520)

Calculations and Intervals on Original Scale

Some studentized intervals may be unstable

> truehist(grade.boot.stud$t,h=1)

grade.boot.stud$t

-5 0 5 10

0.
0

0.
05

0.
10

0.
15

Dept. of Math and Statistics Sung E. Kim

 88

SMOOTH REGRESSION (Brief note)

Data: Random sample of size 100 to predict Life Span by the length of one’s lifeline (left hand). Source:

Newrick et.al. (1990) Journal of the Royal Society of Medicine and Modern Regression Methods, T.P. Ryan,

Wiley Interscience.

Kernel Regression

> plot(lifeline,lifespan,pch=16)

> lines(ksmooth(lifeline,lifespan,kernel="normal",bandwidth=10),lty=3)

> lines(ksmooth(lifeline,lifespan,kernel="normal",bandwidth=3),lty=4)

> legend(65,65,c("kernel bw=10","kernel bw=3"),lty=c(3,4))

The larger the bandwidth, the smoother the fit. For the more option of the kernel functions, refer the S+

help note.

lifeline

lif
es

pa
n

30 40 50 60 70 80 90

60
70

80
90

kernel bw=10
kernel bw=3

> yhat_approx(kernel.fit,xout=lifeline)$y

> resid <- lifespan-yhat

> plot(yhat,resid)

> lines(lowess(yhat,resid))

Dept. of Math and Statistics Sung E. Kim

 89

yhat

re
si

d

60 65 70 75 80 85 90

-1
5

-1
0

-5
0

5
10

Locally weighted regression (Cleveland 1979)

> plot(lifeline,lifespan,pch=16)

> abline(lm(lifespan~lifeline))

> lines(lowess(lifeline,lifespan),lty=3)

> lines(lowess(lifeline,lifespan,0.1),lty=4)

> legend(60,65,c("simple regression","lowess f=default (.67)","lowess

f=0.1"),lty=c(1,3,4))

Dept. of Math and Statistics Sung E. Kim

 90

lifeline

lif
es

pa
n

30 40 50 60 70 80 90

60
70

80
90

simple regression
lowess f=default (.67)
lowess f=0.1

Using interface,

Statistics Smoothing  Loess  specify the data, x, and y  change the options for symbols and lines

as you wish  Smooth/Sort option  Span: type in the smoothing parameter f (default is 0.75). The

larger the value, the smoother the fit  Degree: 1 for linear 2 for quadratic fit  Family: Gauss for

default, Symmetric for robust fitting

> yhat_approx(Lowess.fit,xout=lifeline)$y

> resid <- lifespan-yhat

> plot(yhat,resid)

> lines(lowess(yhat,resid))

Dept. of Math and Statistics Sung E. Kim

 91

yhat

re
si

d

70 75 80 85 90

-2
0

-1
0

0
10

20

Using the Interface: Statistics  Regression  Local (loess)  etc

Natural Spline

> plot(lifeline,lifespan,pch=16)

> lines(lifeline, fitted(lm(lifespan~ns(lifeline,df=20))),lty=3)

> lines(lifeline, fitted(lm(lifespan~ns(lifeline,df=5))),lty=4)

> legend(65,65,c("Natural Spline df=20","Natural Spline df=5"),lty=c(3,4))

lifeline

lif
es

pa
n

30 40 50 60 70 80 90

60
70

80
90

Natural Spline df=20
Natural Spline df=5

Dept. of Math and Statistics Sung E. Kim

 92

