
Dept. of Math and Statistics  Sung E. Kim 

 

 

 1 

 

 

 

Applied Statistics using S-PLUS: Short course 
 

 

 

 

 

 

 

 

Sung Eun Kim, PhD 

Department of Mathematics and Statistics 

California State University, Long Beach 

Long Beach, CA 90840 

 

sung.kim@csulb.edu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Revised 2010

mailto:sung.kim@csulb.edu


Dept. of Math and Statistics  Sung E. Kim 

 

 

 2 

 

 

Introduction 
 

What is S-PLUS? 

 

 S is a language and an interactive programming environment for data analysis and graphics. The S 

language is a very high-level language for specifying computations. The language is part of an 

interactive environment: S encourages you to compute, look at the data, and program interactively, 

with quick feedback to enable you to learn and understand. Refer to Becker et al., 1988 for more 

details. 

 

The best way to learn to use the S-PLUS language is to just using it! It is possible to use S-PLUS with the 

same techniques used in other programming language such as FORTRAN (though this may not be the most 

efficient way to use S-PLUS).  

 

Newer version of S-PLUS for Windows (user friendly interface) was designed for easy (“click-and-see”), 

intuitive analysis and visualization of data. This allows you to import and export data from many sources 

including spreadsheets like Excel and Lotus, analytical software such as SAS and SPSS, and databases. The 

software is quite expensive but cheaper student versions are always available. In this note, we will discuss 

using S-PLUS in Windows that is available in Math department (we have the newest version, V6.0). 

 

 

Before you start 
You are in several projects or studies and you may want to have separate S+ workspaces. It is very 

convenient to have different S+ shortcut incons on your desktop so that you can directly get on the project 

without further configuration. For this make another S+ shortcut icon on the desktop and right-click then 

property. On the Target window add the folder name you are working on (usually where data are at) as 

follows; 

 

"C:\Program Files\Insightful\splus6\cmd\SPLUS.exe" S_PROJ=C:\Research\OzoneStudy 

 

Than change the icon name (this might be done beforehand). 

 

Once it has been done, double-click on the icon and do your work in S+ system. Your work will be saved 

on the folder you specified above and next time when you open the workspace everything you have done 

late time will be there, unless you delete them on purpose. 

 

Basics 
 

Getting Started 

To begin S-PLUS under Windows, double click the S-plus icon on your desktop. The layout might have 

two windows (Object Explorer and Commands Windows). Object Explorer does the same work as the 

Windows Explorer and the Commands Window is where you type your commands. Many commands can 

be executed via user interface menus, but yet some functions run only in the Commands Window. To 

receive help while in S-PLUS on various commands, use 

 

> help(“command”) 
 

Note that S-PLUS is case-sensitive; that is, “s” and “S” are different in S-PLUS. 

 

Prompt 

The S-PLUS Commands Window prompt is: 
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 > 
A 

 + 

 

prompt means that S-PLUS is waiting for you to finish your command: for example, you may have 

forgotten to close a function with a right parenthesis. Type  

 > 3*(2+4 

and see what happens. 

 

Saving and Script File 

You can type your commands here one-by-one or you may execute a series of S-Plus commands from a file 

(with an extension .ssc) using source command: 

 

> source(“filename”) 
 

or choosing Run button for running commands in a Script Window. Confusing?? Well, here’s how to do. 

First, open a Script Window by choosing New, Script File, and then OK. Now you have the Script Window. 

In upper pane type 

 

 x<- 1:10     # this will create a vector x with the element 1,2,3,…,10 

 mean(x)     # this will return the mean value of the vector x 

 stdev(x)     # this will return the standard deviation of the vector x 

 

Now click on the Run button (the right triangular arrow). You will see the calculated result in the lower 

pane. If you want to save the codes into a file, choose File from main menu then Save As. 

More examples for using a Script Window will be discussed in class. If you type commands one-by-one in 

the Commands Window, you may want to record the resulted output and/or the commands you just typed 

into a file. For this we use sink command: 

 

> sink(“filename”) 
>…….  # all the commands you want to  
>…….  # save of the outputs here 
> sink( ) 

 

The record function in place of sink will also save the commands into the specified file. The outputs and 

graphs will also appear in the Object Explorer (Reports and Graphs folders), so that you can display on the 

screen and save into a file (by choosing File-Save As).  

 

In-line Data Creation and Some Fun 

Now, let’s have some fun.  

 

S-PLUS is primarily meant to be an interactive data analysis system. When you create data vectors and 

functions in an S-PLUS session, they stay in your .Data directory. For example, if you make the 

assignment 

 

> x <- 1:10  # you may also type > x_1:10 
 [1] 1 2 3 4 5 6 7 8 9 10 
 
to create a vector x with length 10 and the elements 1 through 10, and then leave S-PLUS, next time you 

start S-PLUS you could type 

 > x 
 [1] 1 2 3 4 5 6 7 8 9 10 
 

and x will still be there! 
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You may either make a data frame objective (in vector or matrix) by typing within S-PLUS environment or 

reading from an external data file. Unless the data is very small, the second case is more common. Let’s 

make a data vector x (you can name the vector as you like) of size 9 with the element 1,2,…,9. 

 

> x<-c(1,2,3,4,5,6,7,8,9) 
> x 
[1] 1 2 3 4 5 6 7 8 9 
 

Then x  will return the data you typed. Let’s now make a matrix xx (again, any name) of dimension 5x3 

 

> xx<-matrix(nrow=5,ncol=3) 
 
5 by 3 matrix format is assigned to xx. Since we didn’t type in any data, if you type xx you will see 

 
> xx 
     [,1] [,2] [,3]  
[1,]   NA   NA   NA 
[2,]   NA   NA   NA 
[3,]   NA   NA   NA 
[4,]   NA   NA   NA 
[5,]   NA   NA   NA 
 

Let’s type the data for each column. Note that xx[,n] means the n
th

  column of the matrix xx. Similarly, 

xx[k,] means the k
th

 row. 

 

> xx[,1]<-c(1,2,3,4,5) 
> xx[,2]<-c(6,7,8,9,10) 
> xx[,3]<-c(11,12,13,14,15) 
> xx 
     [,1] [,2] [,3]  
[1,]    1    6   11 
[2,]    2    7   12 
[3,]    3    8   13 
[4,]    4    9   14 
[5,]    5   10   15 

 

The same result can be obtained by: 

 

> xx<-1:15 
> xx<-matrix(xx, nrow=5, ncol=3, byrow=F) 
> xx 

 

Reading Data from a Text File (Example) 

More commonly, we import data from an external data file. Note in S-PLUS Windows version we can 

import data in other formats as mentioned in Introduction. The following ASCII file called Sta131.txt 

contains name of 28 students, two midterm scores, final, and total score of a graduate statistics course that I 

taught before. 

 
Name                    HW MT.I MT.II Final  Total 

Al-Mefleh, N         93.75   51   38    27    41.6 

Bennett, T           91.75   80   52    33    53.7 

Buyuktas, D          98.25   79   84    49    68.6 

Cao, Zh              69.75   93   82    55    71.1 

Chen, J             99.375   89   91    83    87.8 

Choi, J              98.75   90   78    41    66.1 

  ..                    ..       ..   ..     ..      .. 



Dept. of Math and Statistics  Sung E. Kim 

 

 

 5 

  ..                    ..       ..   ..     ..      ..   

The read.table command provides a method to bring this data into the current data frame as a data frame 

objective. An object has intrinsic which give its structure. The data will be read into the data frame 

objective grade.data. You may also easily import the data file by choosing File, Import Data, From File, 

then choosing ASCII Text File format. We will discuss more in class. I believe that, these days, many of 

data files have Formatted ASCII forms and so we will discuss these formats in details. 

 

> grade.data<- read.table(“C:/…./Sta131.txt”,header=T) 
 > grade.data 
 

         Name        HW MT.I MT.II Final Total  

 1  Al-Mefleh, N 93.750   51    38    27  41.6 

 2    Bennett, T 91.750   80    52    33  53.7 

 3   Buyuktas, D 98.250   79    84    49  68.6 

 4        Cao, Z 69.750   93    82    55  71.1 

 5       Chen, J 99.375   89    91    83  87.8 

 6       Choi, J 98.750   90    78    41  66.1 

 7    Corberl, T 32.500   53    46    14  31.8 

 8      Dubin, J 99.750   98    74    86  87.4 

 9     Habbas, Y 74.500   88    62    39  58.8 

10       Hope, T 81.125   67    61    57  62.6 

11       Kang, S 97.375   77    77    67  74.5 

12     Knight, K 96.250   39    36    12  31.9 

13        Lam, T 96.750   33    67    17  39.8 

14         Li, B 98.125  100    74    82  85.9 

15        Lin, D 99.250   90    98    95  95.0 

16       Love, B 99.750   96    98    88  93.2 

17       Peck, L 98.625   97    92    94  94.7 

18       Pham, H 97.000   86    97    53  74.7 

19      Quian, P 98.625   95    87    55  75.6 

20      Singh, R 99.750  100    98    90  95.0 

21      Smith, J 78.000   74    68    50  62.3 

22         Su, X 97.250   95   100    99  98.2 

23  Sundstrom, K 99.250   57    61    80  72.5 

24        Wai, N 98.875   87   100    99  96.5 

25      White, J 99.250   70    70    57  67.1 

26       Wong, G 95.375   88    65    68  74.6 

27      Zhang, L 93.500   64    72    66  69.7 

28 McConville, L 91.125   93   100    63  80.9 

 

More detailed discussions on Importing and Exporting data are in the following section. 

We can examine some of the properties of grade.data. It is a list object, made up of other objects. Objects 

can be atomic (with mode “logical”, “numerical”, “complex”, or “character”) or non-atomic (comprising 

other objects). The object grade.data is a recursive; that is, it is a list made up of several component objects. 

Let see several ways of accessing the parts of grade.data. 
 

> mode(grade.data) 

[1] "list" 

> length(grade.data) 

[1] 6 

> grade.data[5] 

   Final  

 1    27 

 2    33 

  … … 

27    66 

28    63 

 

> grade.data[1,] 

          Name    HW MT.I MT.II Final     Total  

1  Al-Mefleh,N 93.75   51    38    27      41.6 
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> grade.data[,"Final"] 

 [1] 27 33 49 55 83 41 14 86 39 57 67 12 17 82 95 88 94 

[18] 53 55 90 50 99 80 99 57 68 66 63  

 

> grade.data[1,1] 

[1] Al-Mefleh,N 

 

> grade.data[1,5] 

[1] 27 

 

> grade.data[grade.data[,"Final"]>80,] 

        Name  HW... MT.I MT.II Final Total....  

 X5  Chen, J 99.375   89    91    83      87.8 

 X8 Dubin, J 99.750   98    74    86      87.4 

X14    Li, B 98.125  100    74    82      85.9 

X15   Lin, D 99.250   90    98    95      95.0 

X16  Love, B 99.750   96    98    88      93.2 

X17  Peck, L 98.625   97    92    94      94.7 

X20 Singh, R 99.750  100    98    90      95.0 

X22    Su, X 97.250   95   100    99      98.2 

X24   Wai, N 98.875   87   100    99      96.5 

> summary(grade.data[,"Final"]) 

 Min. 1st Qu. Median  Mean 3rd Qu. Max.  

   12      47     60 61.39   83.75   99  

 

Simple Linear Regression 

 
Suppose that we are interested in relating the first midterm (MT.I) to the final score (Final). We can use the 

lm function to do the linear regression analysis. What returns from lm is a recursive object from which 

information about the regression can be extracted. Those information will be included in the object 

grade.fit (you name it).  

 

The summary function can be used to print out the contents of the object. In the formula, the response 

variable will be placed on the left of a ~ operator and explanatory variable on the right. In case of multiple 

regression, the + sign will be placed between the explanatory variables. The constant term is in the model 

by default. na.action is a function to filter missing data. na.omit will delete observations that contain one or 

more missing values. 

  
> grade.fit<-lm(formula = Final ~ MT.I, data = grade.data, na.action 

+   = na.omit) 

> summary(grade.fit) 

 

Call: lm(formula = Final ~ MT.I, data = grade.data, na.a 

ction 

  = na.omit) 

Residuals: 

    Min     1Q Median    3Q   Max  

 -30.58 -12.51 0.8994 11.07 40.67 

 

Coefficients: 

               Value Std. Error  t value Pr(>|t|)  

(Intercept) -16.3021  15.9951    -1.0192   0.3175 

       MT.I   0.9760   0.1958     4.9858   0.0000 

 

Residual standard error: 19.09 on 26 degrees of freedom 

Multiple R-Squared: 0.4888  

F-statistic: 24.86 on 1 and 26 degrees of freedom, the p 

-value is 0.00003488  
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Correlation of Coefficients: 

     (Intercept)  

MT.I -0.9742     

 

Following is to obtain Analysis of Variance table. The input to anova are the objects resulting from model-

fitting function lm. 
 

> anova(grade.fit) 

 

Analysis of Variance Table 

 

Response: Final 

 

Terms added sequentially (first to last) 

          Df Sum of Sq  Mean Sq  F Value         Pr(F)  

     MT.I  1  9055.450 9055.450 24.85862 0.00003488384 

Residuals 26  9471.229  364.278 

 

 

Plotting 
 

> xval<-grade.data[,"MT.I"] 

> yval<-grade.data[,"Final"] 

> grade.res<-residuals(grade.fit) 

> grade.pre<-fitted.values(grade.fit) 

> plot(xval,yval,xlab="MT.I",ylab="Final") 

> plot(xval,grade.res,xlab="MT.I",ylab="Residuals") 
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It is important to note that you may make a command file (a file with list of commands separated by line) 

and execute the file in the S-PLUS environment. For exam, for the above regression work suppose you 

made a file (named, say,  “grade.ssc”) with contents 

 
grade.data<- read.table(“Sta131.dat”,header=T) 

grade.fit<-lm(formula = Final ~ MT.I, data = grade.data, na.action 

+   = na.omit) 

summary(grade.fit) 

 

anova(grade.fit) 

 

xval<-grade.data[,"MT.I"] 

yval<-grade.data[,"Final"] 

grade.res<-residuals(grade.fit) 

grade.pre<-fitted.values(grade.fit) 

 

plot(xval,yval,xlab="MT.I",ylab="Final") 

plot(xval,grade.res,xlab="MT.I",ylab="Residuals") 

 

Then,  

 >source(“grade.ssc”) 
 
will execute the external command file (grade.ssc). To save the results, simply type 

sink(“filename”) and sink() at the beginning and the end. For example,  

 

> sink(“grade.out”) 
> source(“grade.s”) 
> sink( ) 
 

Of course, it also can be done via Script Windows as discussed earlier. 

 

References 
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DATA STRUCTURE 
 

VECTOR 
 > x_c(4,3,5,7,12) #”c” stands for “concatenate” command 

> x 

[1]  4  3  5  7 12 

> mean(x) 

[1] 6.2 

> stdev(x) 

[1] 3.563706 

> y_c(12,13,11,10) 

> x_c(x,y) 

> x 

[1]  4  3  5  7 12 12 13 11 10 

 

There are two useful commands for creating vectors (sequence, replication): 

  
> a_seq(0,15,2)  # seq(lower, upper, increment) 

> a 

[1]  0  2  4  6  8 10 12 14 

 

> b_rep(0,5)  # rep(pattern, number of times) 

> b 

[1] 0 0 0 0 0 

> rep(7,5) 

[1] 7 7 7 7 7 

> rep(c(1,2,3),4) 

[1] 1 2 3 1 2 3 1 2 3 1 2 3 

> rep(c(4,5,6),c(1,2,3)) 

[1] 4 5 5 6 6 6 

> rep(c(4,5,6),length=7) 

[1] 4 5 6 4 5 6 4 

 

MATRIX 

 

Some basics for matrix have been discussed from the last handout. Here, we will discuss how to modify a 

matrix and some matrix calculations.  We can easily add extra columns and rows by using: 

cbind(matrix1,matrix2) and rbind(matrix1,matrix2). Try the followings; 

 
 > x_matrix(1:15,nrow=3,ncol=5,byrow=T) 

> x 

     [,1] [,2] [,3] [,4] [,5]  

[1,]    1    2    3    4    5 

[2,]    6    7    8    9   10 

[3,]   11   12   13   14   15 

> x_cbind(x,c(6,11,16)) 

> x 

     [,1] [,2] [,3] [,4] [,5] [,6]  

[1,]    1    2    3    4    5    6 

[2,]    6    7    8    9   10   11 

[3,]   11   12   13   14   15   16 

> x_rbind(x,17:22) 

> x 

     [,1] [,2] [,3] [,4] [,5] [,6]  

[1,]    1    2    3    4    5    6 

[2,]    6    7    8    9   10   11 

[3,]   11   12   13   14   15   16 

[4,]   17   18   19   20   21   22 
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Of course, this also can be done easily using the data spreadsheet in S-Plus. Most of discussion using 

window interface will be discussed in class. If you have a numeric ASCII data file, using the scan function 

you can create a matrix. For example, 

 

 > x_matrix(scan(“filename”), ncol=5,byrow=T) 

 

will create a matrix x out of the file with five columns. 

For a cross product, xx, of the matrix x we use either 

 > crossprod(x) 

or 

  > t(x) %*% x #t(x) means the transpose of x 

 

Note that a function “>t(x) * x” will return a element-by-element multiplication. If the matrix is a 

nonsingular square matrix, a function solve will return the inverse matrix. For the singular value 

decomposition svd function can be used. 

 

For some more discussion in matrix modification, let’s revisit our STA131.dat data. Suppose that before 

assigning the final grade Sung decided to modify the distribution of proportion to be 20% HW, 25% MT.I, 

25% MT.II, and 30% Final. Then, he wanted to recalculate the Total score using these new proportions (I 

don’t know what proportions I used originally, but that might be different than above).  

 

  

> attach(grade.data) #this function will allow you to use the simple variable names (without the 

#messy grade.data$Final or messier grade.data[,”Final”] 

 

> grade.data$Total_HW*.2+MT.I*.25+MT.II*.25+Final 

> detach( ) 

 

Above code will replace the Total score. You may want to record the new score as another name and keep 

the old one in the same data object. Try this out  

 

> attach(grade.data)  

> Total.New_HW*.2+MT.I*.25+MT.II*.25+Final 

> grade.data_cbind(grade.data, Total.New) 

> detach( ) 

 

Now, you will have another column named Total.New in grade.data. You may want to change some of 

values in the data. For example, suppose that I want to change the Final score of the student named Kang, S 

to 78 (was 67).  

  > grade.data[11,"Final"]_78 

 

Note that this change will not automatically recalculate the Total.New score of the student (Excel does it!).  

 

Now I’d like to calculate the mean and the standard deviation of each of the scores . For this we use  the 

apply function. 

 

> apply(grade.data[,2:6], 2, mean) #the number 2 in the middle means apply the function mean to 

#columns. You may use 1 to refer to the rows 

> apply(grade.data[,2:6], 2, stdev) 

 

You may also “> colMeans(grade.data[,2:6])” and “> colStdevs(grade.data[,2:6])”. The functions colVars, 

colSums, rowMeans, rowStdevs, rowVars, and rowSums are also available.  
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ARRAY 

 

Array is the extension of the matrix in dimension. That is, if the dimension of data is 2, we call it “matrix” 

and more than 2 then “array”. Assume that in an opinion poll we obtained the following results from the 

two states, California and Ohio. 

 

California     Ohio 

 Yes No Don’t 

know 

Male 100 70 10 

Female 50 60 20 

  

Try this out 

 
poll_array(c(100,50,70,60,10,20,120,40,50,30,20,30),c(2,3,2)) 
gender_c("Male","Female") 
opinion_c("Yes","No","don't know") 
state_c("California","Ohio") 
dimnames(poll)_list(gender,opinion,state) 
poll 

 
> poll 
 
, , California 
         Yes  no  Don't know  
  Male  100   70         10 
Female    50  60         20 
 
, , Ohio 
         Yes  no  Don't know  
  Male  120  50         20 
Female    40   30         30 

 
> poll[,,"California"] 
 
        Yes  no  Don't know  
  Male  100  70         10 
Female    50  60         20 
 
> poll["Male",,] 
 
             California  Ohio  
       Yes         100    120 
        no            70       50 
Don't know           10       20 
 

Note that each of poll[,,”California”], poll[“Male”,,], and etc. is treated as matrices. Hence, all functions we 

used for matrix can be used. For example, 

 

> apply(poll["Male",,],1,sum) 
 
 Yes   no  Don't know  
 220  120        30 
 
> apply(poll["Female",,],1,sum) 
 
 Yes  no  Don't know  

90  90          50 

 Yes No Don’t 

know 

Male 120 50 20 

Female 40 30 30 
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DATA FRAME 

 

Data Frame is a generalized version of the matrix in the sense that the data frames allow you to mix data of 

different types (numeric, character, etc) into a single data object. The data frame is the most common data 

structure in S-Plus.  

Data frame can be created via several ways. To create a data frame from an external file, read.table 

command can be used as we discussed before. You may also import the data file directly from the File 

menu.  

 
>your.frame.name_ read.table(“filename”,header=T) #use header=F if your data 

#doesn’t contain a header row.  

 

You may want to bind S-Plus data objects of various kinds into a data frame. In the case use data.frame 

command. 

 
 > your.frame.name_data.frame(object1,object2,….) 

 

Consider the following simple example. 

 
> rdm_rnorm(10) #this wiil generate random sample of size 10 from N(0,1) 

> assgn <- rep(NA, 10) 

> assgn[rdm > 0] <- "A" 

> assgn[rdm <= 0] <- "B" 

> assgn1 <- cbind(rdm, assgn) 

> assgn1 

                       rdm assgn  

 [1,] "0.049086461868886"  "A"   

 [2,] "0.918544752343534"  "A"   

 [3,] "-0.126559993056653" "B"   

 [4,] "0.33915786263237"   "A"   

 [5,] "1.43901265660863"   "A"   

 [6,] "0.0279969566945071" "A"   

 [7,] "-1.47322223095435"  "B"   

 [8,] "-0.668673135299956" "B"   

 [9,] "-0.345348406178856" "B"   

[10,] "0.0884835844457507" "A"   

 

> max(assgn1[, 1]) 

Problem in max(assgn1[, 1]): Numeric summary undefined for mode "character"  

 

This will create a matrix using cbind command. By binding numeric with character variable, the variable 

rdm is no longer numeric. Hence, some numeric calculations, like max and min, are no longer possible. It is 

interesting to note that some numeric calculations, like mean and stdev, are still working.  

 
> mean(assgn1[, 1]) 

[1] 0.02484785 

 

 

Now, let create a data frame, which will keep the original mode of the variables. 
 

> assgn2 <- data.frame(rdm, assgn) 

> assgn2 

          rdm assgn  

 1 -0.7615447     B 

 2 -0.4632235     B 

 3  1.8197463     A 

 4 -0.1927243     B 

 5 -0.1923333     B 

 6 -0.1962358     B 
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 7 -1.5823391     B 

 8 -0.6647673     B 

 9 -0.4132076     B 

10  2.0184172     A 

> max(assgn2$rdm) 

[1] 2.018417 

 

Any functions we used for matrix, like apply, also works for data frames. To combine data frames, use 

data.frame, cbind, rbind. You can merge two or more data frames using merge function. 

 

 > merge(dataframe1,dataframe2,…) 

 

It can be explained by the following example. Consider that we have two data frames: the first one is 

general information about students in a class  (provided from the university) and the second is their test 

scores and the final grade (prepared by the professor). We want to merge the two data from different 

sources.  

 
> example.list 

     Name  Class College  

1    Chen Senior      AS 

2    Choi Master      AS 

3 Jackson Master     Eng 

4 Johnson Master      AS 

5      Lu Senior     Edu 

6 Mueller Junior     Eng 

7    Park Master     Edu 

8    Xiao Senior      AS 

 

> example.grade 

     Name MT Final Grade  

1 Jackson 85    79     A 

2 Mueller 70    98     A 

3      Lu 92    91     A 

4    Choi 78    68     B 

5 Johnson 69    66     B 

6    Park 62    80     B 

7    Xiao 75    78     B 

8    Chen 54    66     C 

 

> merge(example.list, example.grade, by=1) #by=1 means merging by the first col. 

     Name  Class College MT Final Grade  

1    Chen Senior      AS 54    66     C 

2    Choi Master      AS 78    68     B 

3 Jackson Master     Eng 85    79     A 

4 Johnson Master      AS 69    66     B 

5      Lu Senior     Edu 92    91     A 

6 Mueller Junior     Eng 70    98     A 

7    Park Master     Edu 62    80     B 

8    Xiao Senior      AS 75    78     B 

 

More discussion on Data Frames will be given later. 

 

LIST 

 

List is a collection of vectors or matrices of arbitrary structures. List is useful when you want to collect 

related data with different structures into a big list object. Note that while both data frame and matrix 

require rectangular, list allows different structures. Consider the following example:  

 
> a_rnorm(5) #random sample of size 5 from N(0,1) 

> b_a>0 

> ab_data.frame(a,b) 



Dept. of Math and Statistics  Sung E. Kim 

 

 

 14 

> c_rt(10,29)  #random sample of size 10 from t(df=20) 

> d_rchisq(15,29) #random sample of size 10 from chisquare(df=20) 

> x_list(ab,c,d) 

> x 

[[1]]: 

             a   b  

1 " 0.5284931" "T" 

2 "-0.5783929" "F" 

3 "-0.7104860" "F" 

4 " 0.1749112" "T" 

5 " 0.8443500" "T" 

 

[[2]]: 

 [1]  0.1661215 -0.2214252  0.8668092 -0.1193410 -0.6454605  0.5767275 

 [7]  0.7018636  0.8049501  1.1132858  0.4405738 

 

[[3]]: 

 [1] 22.74985 32.81265 47.81313 23.51771 31.96326 17.26032 31.40059 

 [8] 39.21596 27.57610 23.56536 32.28030 24.04670 28.70105 37.20586 

[15] 35.17972 

 

To call the data frame ab use either x[1] or x[[1]]. Either x[[1]]$a or x[[1]][[1]] will return the vector a 

(random sample from N(0,1)). 

 
> x[[1]]$a 

[1]  0.5284931 -0.5783929 -0.7104860  0.1749112  0.8443500 

> x[[1]][[1]] 

[1]  0.5284931 -0.5783929 -0.7104860  0.1749112  0.8443500 

> mean(x[[1]]$a) 

[1] 0.05177509 

 

 

WRITING FUNCTIONS 

 

This note discusses the basic techniques for writing functions in S+ (like macro in SAS). S+ provides a 

number of built-in functions (over 3800) and writing your own functions can extend it. The basic syntax of 

a function declaration is as follows: 

 

 Your-function-name <- function (arguments) 

 { function body 

   return (output arguments) } 

 

To call the function, type  

 > your-function-name (arguments). 

 

As a simple example consider writing a function to calculate the two-sided p-value of a t statistic (text p3). 

 
 t.test.p_function (x, mu=0, alpha=0.05)  

 { n_length(x)  

      t_sqrt(n) * (mean(x) - mu) /stdev(x) 

     p_2 * (1-pt(abs(t), n-1)) 

   if (p<alpha) result_"Reject Ho" else result_"Do Not Reject Ho" 

      return(t,p, result) }  

 

Here, x is data, mu is the mean under the null hypothesis, and alpha is the level of significance. To call this 

function for a t-test for Ho: =1 at =.01, 

 
 t.test.p(data, 1, 0.01) 
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If you don’t specify the last two arguments, S+ will use the default values of mu=0 and alpha=0.05. Let’s 

use the function to test if the mean Final score of STA131 class is 67 (the mean from last year) or not.  

 

 > z_grade.dat$Final 

 > t.test.p(z,67) 
 

  $t: 

  [1] -1.11745 

 

  $p: 

  [1] 0.2736473 

 

  $result: 

  [1] "Do Not Reject Ho" 

 

The calculated t statistic and the corresponding p-value and the test result are printed above. Since we 

didn’t specify the level of significance, the test is performed with the default value of 0.05. Since the p-

value of the test is not less than 0.05, we do not reject the null hypothesis, Ho: =67, at =.05. In deed, S+ 

has a built-in function for a t-test, for both one and two sample.  

 
 > t.test(z, mu=67) 

 

 One-sample t-Test 

 

data:  z  

t = -1.1174, df = 27, p-value = 0.2736  

alternative hypothesis: true mean is not equal to 67  

95 percent confidence interval: 

51.29976 71.62881  

sample estimates: 

  mean of x  

   61.46429 

  

Functions also can be used to define your own function name of a built-in function. For example, suppose 

you use the logarithm function with a base 2 very often. The built-in function expression is logb(x, 2). You 

want to simplify the expression. 

 
 > log2 <- function(x) { return (logb(x, 2)) } 

> log2(16) 

[1] 4 

 

To get the on-line help for the argument names and default values for S-function, type 

 

 > args(function-name). 

 

For example, 

 
 > args(t.test) 

function(x, y = NULL, alternative = "two.sided", mu = 0, paired = F, 

var.equal = T, conf.level = 0.95) 

 

If you want to perform one-sided (left) two-sample t-test for non-paired and unequal variances, type 

 
 > t.test(x,y, alternative=”less”, paired=F, var.equal=F) 

 

Elementary Functions: See handout 

 

is and as functions 
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Before applying functions to our data, we may want to check if our data has the particular type that the 

function argument required. Doing so, you can protect against unexpected error message.  

 

 > is(x,”numeric”) 

 

Consider the following function, which returns mean for number variable. 

 
Just.fun_function(x) 

 { if(!is(x,”numeric”)) stop (“Oops! The variable must be numeric.”) 

else return(mean(x)) { 

 

is(x,”numeric”) is a logical function that will return T if x is numeric. The complementary expression 

is !is(x,”numeric”) that will return T if x is not numeric. Now the variable gender is a factor with elements 

“Male” and “Female”. 

 
 > Just.fun(gender) 

  

 Problem in Just.fun(gender): Oops! The variable must be numeric. 

 

You can use the function to test for “array”, “character”, “complex”, “data.frame”, “double”, “factor”, 

“integer”, “list”, “logical”, “matrix”, “numeric”, “single”, and “vector”. 

 

as function is used to coerce the variable to have the specified data type. For example, 

 
 > as (x, “character”) 

 

will coerce the variable x to have a character data type. Consider the data with 12-hour pollutant volume at 

a certain day with code “9999” for a missing value. 

 
> pollut 

  [1]    8    3    4    5    2    6 9999    6    7    5    4    3 

> pollut[pollut==9999]_"Missing" 

> pollut 

  [1] "8"       "3"       "4"       "5"       "2"       "6"       

  [7] "Missing" "6"       "7"       "5"       "4"       "3" 

 

Of course, you could use the NA for the missing value (replace “Missing” with NA) keeping the variable 

numeric. We just assigned the character “Missing” to explain the use of as function. Since the pollut 

variable converts to character we use the as function to covert the variable back to numeric. 

 
> pollut_as(pollut,"numeric") 

Warning messages: 

     1 missing values generated coercing from character to numeric 

 

> pollut 

  [1]  8  3  4  5  2  6 NA  6  7  5  4  3 

 

Now, we want to calculate the mean omitting the missing values. 

 
> mean(pollut[!is.na(pollut)]) 

[1] 4.818182 

 

We have used the is.na function to determine which values are missing and to exclude the missing values 

from the mean calculation. 
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ITERATION 

It is extremely important to note that S-Plus is vector or matrix oriented (Fortran and C are not!), and hence, 

we can mostly avoid complicated loops in iterative computations. For example we can simply use x %*% x 

for uncorrected sum of squares for variable x instead of using the for loop. We will briefly discuss for, 

while, and repeat. These loops can be used independently or in the body of a function.  

 

The for loop 

 

 > for(i in invalues) {commands} 

 

Consider the calculation of a uncorrected sum of square of a variable x 

 
> x_c(2,1,3,4,2,3,1,5) 

> y_0 

> for (i in 1:length(x)) {y_x[i]^2+y; print(y)} 

[1] 4 

[1] 5 

[1] 14 

[1] 30 

[1] 34 

[1] 43 

[1] 44 

[1] 69 

> y 

[1] 69 

 

The while loop 

The while loop is used when the total number of iteration is unknown.  

 

 > while(condition) { commands } 

 

For an example of the use of the while loop, we consider the maximum likelihood estimation for the 

parameter  of the zero-truncated Poisson distribution as in the text p95. The probability distribution and 

the iterative estimation via Newton’s method is in the test.  
 yp_rpois(100, 1)  #random sample of size 100 from Poisson(1) 

 y_yp[yp>0]   #truncate the zeros 

 ybar_mean(y)   #mean of the zero truncated Poisson r.v. 

 lam_ybar    #initial value of lambda 

 it_0     #iteration count 

 del_1     #tolerance 

 while(abs(del) > .000001 && (it_it+1)<10) 

   {del_(lam-ybar*(1-exp(-lam)))/(1-ybar*exp(-lam)) 

  lam_lam-del 

  cat("The estimated lambda after", it, "th iteration is", lam, "\n") 

  } 

 
The estimated lambda after 1 th iteration is 1.148994930761  

The estimated lambda after 2 th iteration is 1.06264898980154  

The estimated lambda after 3 th iteration is 1.0581687548983  

The estimated lambda after 4 th iteration is 1.05815588823481  

The estimated lambda after 5 th iteration is 1.05815588812837  

 

In the above example, the condition of the while loop states that the iteration continues until the tolerance 

limit of 0.00001 and the number of iteration of 10. To print the variable’s values we use cat function, which 

is analogy to the cat function from the C language.  

 

The repeat loop 

 

 > repeat {commands 
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  stop criterion }  

The repeat function repeats the commands until the stop criterion meets. We may rewrite the above code 

using repeat loop as follows; 

 
yp_rpois(100, 1) 

y_yp[yp>0] 

ybar_mean(y) 

lam_ybar 

it_1 

del_1 

repeat 

  {del_(lam-ybar*(1-exp(-lam)))/(1-ybar*exp(-lam)) 

 lam_lam-del 

 cat("The estimated lambda after", it, "th iteration is", lam, "\n") 

 if(abs(del) < .00001 || (it_it+1)>10) break 

 } 

 

The estimated lambda after 1 th iteration is 1.148994930761  

The estimated lambda after 2 th iteration is 1.06264898980154  

The estimated lambda after 3 th iteration is 1.0581687548983  

The estimated lambda after 4 th iteration is 1.05815588823481  

The estimated lambda after 5 th iteration is 1.05815588812837  
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GRAPHICS 

Getting Started: plot( ), hist( ) functions, and more. 

 

Scatter plot 

Let’s revisit our grade.data data.  

 
 > attach(grade.data) 

 > plot(MT.I,Final) 
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We can change the character for the point by using pch parameter. For example, 

  

> plot(MT.I, Final, pch=”*”)   

will replace the points in the plot with *. S+ has a number of numeric assignments for special symbols. Of 

these, commonly used seven are; 

 

 
 

> plot (MT.I, Final, pch=2)  

can be used to have triangular points, etc. Numbers 7 to 14 are composite symbols formed by overprinting 

these symbols, and 15 to 19 are solid-filled versions of 0, 1, 2, 5, and 6.  

 

We can also change the type of the plot. For example,  

 

> plot (x, y, type=”l”)  

will have line plot connecting the data. The default is type=”p”, the point plot. Other available types are “b”, 

“h”, “o”, “s”, and “n”. I will leave you to explore these types. For complete list of useful options for 

plotting functions type > help (par). Some of the most commonly used are:  

 

axes=T   T for with axes, F for without axes 

main=”Title”  Title string 

sub=”Subtitle”  Subtitle string 

xlab=”x axis label”  x axis label,  

ylab= “y axis label”  y axis label,  

xlim= c(xmin, xmax) range for x axis,  

ylim= c(ymin, ymax) range for y axis. 
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pch=”*”   point character (see above) 

type=”l”   plot type (see above) 

lty= 1   1 for default solid line, 2 for dashed line   

lwd=1   1 for default line width, 2 for twice thick, etc 

 

We can also simply change the layout of the plot via interface (right click on the plot).  

 

The function abline( ) will superimpose a line on the scatter plot. For example, the least square line for 

regressing Final on MT.I has the intercept and slope estimates of –16.187 and 0.9754, respectively. 

 

> abline(-16.187,0.9754)  # abline (intercept, slope) 
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Fitting and plotting the least square line can be done easily by using lm (linear model) function. The 

following code will return the same plot as above. 

 
> fit_lm(Final~MT.I) 

> abline(fit) 

 

More detailed discussion on the lm(  ) function will follow.  

 

Let put them together. 

 
> plot(MT.I,Final, main="Fitted Regression line for Grade data",  

+ xlab="Midterm I", ylab="Final", xlim=c(0,100), ylim=c(0,100), pch=16) 

> abline(fit, lty=2,lwd=2) 

> text(50, 90, "Final = -16.187 + 0.9754 * MT.I", cex=2) 

 

The text function will add a text at the specified location; text(xlocation, ylocation,” text”). The option 

cex=2 draws characters twice as big. You can rotate the character using the option crt=counterclockwise 

degree. The text adjustment option is adj= 0 (0 for left justified, 1 for right justified and 0.5 for centered).  

If you forgot to add title option in the plot function, you can add the title in the existing plot. 

 
 > title (“title”,”subtitle”)  
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Fitted Regression line for Grade data
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Final = -16.187 + 0.9754 * MT.I

 
 

Histogram 

The hist( ) function plots a histogram. 

 

 > hist(Final) 
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To change the number of class we use nclass option. For example, 

 

 >hist (Final, nclass=10) 

 

will return 
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Check >help(hist) for more options.  

 

Multiple Plots: par( ) function 

You can display several small plots as a table or matrix format. Use the par(mfrow=c(nrow,ncol)) 
function. A 23 matrix of plot can be created by 

 
> par(mfrow=c(2,3))  

 

Try this out. 

 
 > par(mfrow=c(1,3)) 

> hist(MT.I, break=c(0,20,40,60,80,100)) 

> hist(MT.II, break=c(0,20,40,60,80,100)) 

> hist(Final, break=c(0,20,40,60,80,100)) 
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To restore the default setting type > par(mfrow=c(1,1)).  
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We may want customize the display of the multiple plots. It can be done using 

 

 >par(fig=c(x1,x2,y1,y2)  

 

where the parameter x1, x2 are the plot location of left corner and right corner of x axis. Similarly for y axis. 

Note that the coordinate of the plot are set to (0,0) for the lower left corner and (1,1) for the top right corner. 

Let’s consider the following example. 

 
frame()  #opening new graph 

par(fig=c(0,0.7,0,0.6)) 

plot(MT.I,Final, main="Fitted Regression line for Grade data", xlab="Midterm 

I", ylab="Final", xlim=c(0,100), ylim=c(0,100), pch=16) 

fit_lm(Final~MT.I) 

abline(fit, lty=2,lwd=4) 

par(fig=c(0,0.7,0.55,1)) 

hist(Final,main="Histogram of Final") 

par(fig=c(0.65,1,0.15,0.85)) 

boxplot(Final,main="Boxplot of Final") 
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More example… 

 

Following example demonstrates the approximate normality of the sum of continuous uniform r.v.’s.  

 
par(mfrow=c(2,3)) 

x_runif(1000)   # random number of size 1000 from Unif(0,1) 

hist(x,nclass=20,main="n=1") 

x_runif(1000)+x 

hist(x,nclass=20,main="n=2") 
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x_runif(1000)+x 

hist(x,nclass=20,main="n=3") 

x_runif(1000)+x 

hist(x,nclass=20,main="n=4") 

x_runif(1000)+x 

hist(x,nclass=20,main="n=5") 

x_runif(1000)+x 

hist(x,nclass=20,main="n=6") 
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TRELLIS GRAPHICS 

 

Once data is categorized by one or more factors, we might want to have separated graphs conditioned on 

one or more factors. Let’s consider an example of drawing a Trellis histogram. 

 

Example. 

 

An experiment is designed to study the effects of treatment duration (factor A) and weight gain between 

treatment (factor B) on the number of days hospitalized (response, named days) for kidney failure patients. 

The factor A has two levels (1.short, 2.long) and the factor B has three levels (1.Mild, 2.Moderate, 

3.Severe). A random sample of 10 patients per each of the 6 groups is collected. You can download the 

data from the class web site (kidney.dat). 

 

First, we would like to see the distribution of days conditioned on the duration.  

 
> histogram(~days|duration, data=kidney) 
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This also can be easily done using the user interface. First, open the data object, then mark the first two 

columns (days and duration). Then, choose the Plots 2D button on the menu bar then Set Conditioning 

Model button. You may see small yellow bars appeared on the Plots 2D palette. Then choose 1 for the # of 

conditioning columns. Then, choose Histogram on the Plots 2D palette. Once you have the Trellis plot via 

the interface you can easily change the conditioning column by just interacting between the Data Window 

and the Graph Window. To change the conditioning columns mark the columns in the Data Window and 

drag to the top of the Graph Window. You may choose multiple columns. We will discuss more in class.  

 

Trellis Histogram conditioning on factor B (weight gain) using the user interface. 
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To change the number of class right-click on any bar of the histogram, then Options, then type the number 

you want for the Number of Bars.  Click OK. 
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Now, let choose both factors as conditioning factors. Choose both columns in the Data Window and press 

and hold the mouse and drag the cursor to the top of the graph. 
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Example Trellis Histogram conditioning on two factors

 
Note that the above Trellis graph has the order as 

 

(1,3) (2,3) 

(1,2) (2,2) 

(1,1) (2,1) 

 

Here (1,2) means (factor A level 1, factor B level 2). 

To reverse the order right-click on any white space in the graph then choose Multipanel then change the 

Panel Order (bottom of the menu) to Table Order. To add the title of the graph choose Insert then Title. 

 

Data Preparation to Use for Trellis 

 

If data consists of several columns and if we want to generate a Trellis graph conditioning on the column 

variables, we can use make.groups to make a group data and to ready for a Trellis graph. For better 

understanding let’s revisit our STA131 grade data. The data has five numeric columns (HW, MT.I, MT.II, 

Final, Total) and we would like to generate scatter plots of Final versus each of HW, MT.I and MT.II. 

 
> grp_make.groups(HW,MT.I,MT.II) 

> final_rep(Final,3) 

> grp.trel_data.frame(final,grp) 

> grp.trel 

   final    data which  

 1    27  93.750    HW 

 2    33  91.750    HW 

.. ..     .. 

29    27  51.000  MT.I 

30    33  80.000  MT.I 
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..  ..  .. 

57    27  38.000 MT.II 

58    33  52.000 MT.II 

..  .. .. 

84    63 100.000 MT.II 

 

> xyplot(final~data|which, pch=16, col=1, data=grp.trel) 
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We have generated a Trellis scatter plot using the user interface or  

 

 > xyplot (y~x | z) 

 

where x and y are the two variable for the scatter plot and z is the conditioning variable.  

 

We can obtain better layout using Interface. 
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DESCRIPTIVE STATISTICS 
 

The summary function provides some basic statistics of the data or variables. Consider the grade data.  

 
> summary(grade.data) 

               Name          HW             MT.I        

       Zhang, Li: 1      Min.:32.50      Min.: 33.00   

    Wong, Gildas: 1   1st Qu.:93.06   1st Qu.: 69.25   

 White, Jennifer: 1    Median:97.31    Median: 87.50   

     Wai, Newton: 1      Mean:91.92      Mean: 79.61   

 Sundstrom, Kurt: 1   3rd Qu.:98.97   3rd Qu.: 93.50   

   Su, Xiao-Gang: 1      Max.:99.75      Max.:100.00   

         (Other):22                                    

      MT.II            Final           Total       

    Min.: 36.00      Min.:12.00      Min.:31.80   

 1st Qu.: 64.25   1st Qu.:47.00   1st Qu.:62.53   

  Median: 75.50    Median:60.00    Median:73.50   

    Mean: 76.00      Mean:61.46      Mean:71.86   

 3rd Qu.: 93.25   3rd Qu.:83.75   3rd Qu.:87.50   

    Max.:100.00      Max.:99.00      Max.:98.20   

                                                  

 

The stem function gives the stem-and-leaf display of a variable and the quantile function gives the quantiles 

of the variable at the specified values. 
 

> attach(grade.data) 

> stem(Total) 

 

N = 28   Median = 76.4125 

Quartiles = 65.7125, 89.2625 

 

Decimal point is 1 place to the right of the colon 

 

   3 : 5 

   4 : 299 

   5 : 

   6 : 1456 

   7 : 22344589 

   8 : 12589 

9 : 0555668 

 

> quantile(Final, c(0.25, 0.5, 0.95)) 

 25% 50%  95%  

47 60 97.6 
 

> grade.data[Total>=90,] 

                Name     HW MT.I MT.II Final Total  

15     Lin, Dongqing 99.250   90    98    95  95.0 

16        Love, Brad 99.750   96    98    88  93.2 

17       Peck, Laura 98.625   97    92    94  94.7 

20 Singh, Ramanpreet 99.750  100    98    90  95.0 

22     Su, Xiao-Gang 97.250   95   100    99  98.2 

24       Wai, Newton 98.875   87   100    99  96.5 

 

> apply(grade.data,2,mean) 

 Name       HW     MT.I MT.II    Final    Total  

NA 91.91518 79.60714    76 61.46429 71.86429 

 

 

Now, consider the kidney data. The data is categorized by two factors and we can have the summary of the 

response variable conditioning on factors. 
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> attach(kidney) 

> summary(days[duration==1]) 

  Min. 1st Qu. Median  Mean 3rd Qu.  Max.  

  0.00  2.25    5.00   8.20 11.50   30.00 

 

> summary(days[duration==1 & wtgain==2]) 

  Min. 1st Qu. Median  Mean 3rd Qu.  Max.  

  1.00  3.25    4.50   7.30 10.75   20.00 

 

> tapply(days,list(duration,wtgain),mean) 

    1   2    3  

1 2.7 7.3 14.6 

2 2.2 3.7  7.5 

 

The tapply (t stands for table) splits the data by the given factors and apply the function (mean this case) to 

each subgroup.  Another useful function for a categorized data is by. The by function is very convenient to 

obtain numerical summaries of the categorized data. 
 

> by(days, duration, summary) 

INDICES:1 

         x        

    Min.: 0.00   

 1st Qu.: 2.25   

  Median: 5.00   

    Mean: 8.20   

 3rd Qu.:11.50   

    Max.:30.00   

------------------------------------------------------ 

INDICES:2 

         x         

    Min.: 0.000   

 1st Qu.: 1.000   

  Median: 3.500   

    Mean: 4.467   

 3rd Qu.: 7.000   

    Max.:15.000   

 

Similarly,  

 
> by(days,wtgain, summary) 

 

 

> by(days,list(duration,wtgain), summary) 

:1 

:1 

         x       

    Min.:0.00   

 1st Qu.:0.25   

  Median:2.00   

    Mean:2.70   

 3rd Qu.:4.50   

    Max.:8.00   

------------------------------------------------------ 

:2 

:1 

         x       

    Min.:0.00   

 1st Qu.:0.25   

  Median:1.50   

    Mean:2.20   

 3rd Qu.:3.75   
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    Max.:7.00   

------------------------------------------------------ 

:1 

:2 

         x        

    Min.: 1.00   

 1st Qu.: 3.25   

  Median: 4.50   

    Mean: 7.30   

 3rd Qu.:10.75   

    Max.:20.00   

------------------------------------------------------ 

:2 

:2 

         x       

    Min.:0.00   

 1st Qu.:1.25   

  Median:3.00   

    Mean:3.70   

 3rd Qu.:5.75   

    Max.:9.00   

------------------------------------------------------ 

:1 

:3 

         x        

    Min.: 3.00   

 1st Qu.: 7.25   

  Median:12.50   

    Mean:14.60   

 3rd Qu.:22.75   

    Max.:30.00   

------------------------------------------------------ 

:2 

:3 

         x        

    Min.: 1.00   

 1st Qu.: 4.50   

  Median: 7.50   

    Mean: 7.50   

 3rd Qu.: 9.75   

    Max.:15.00   

> 
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DISTRIBUTION RELATED FUNCTIONS 
Example:  

 
> z_qnorm(.95)  # 95% quantiles under N(0,1) 

> z     

[1] 1.644854 

> pnorm(z)   # cumulated density at the 95% quantile 

[1] 0.95 

> qnorm(c(.05,.95))  # 5% and 95% quantiles under N(0,1) 

[1] -1.644854  1.644854 

 

> qt(.95,10)   # 95% quantile under t(10) 

[1] 1.812461 

> pt(2.0,10)   # cumulated density 

[1] 0.963306 

 

Character Type 

d : Distribution Function 

p : Cumulated Density Function 

q : Quantile 

r : Random number generation 

The distribution names suffix one of the character types to define the S+ functions. For the list of names 

and necessary parameters see the handout in class.     

Let’s consider the following S+ code to compare the normal distribution and t with 5 df.  

 
pts_seq(-5,5,length=1000) 

pts.nor_dnorm(pts) 

pts.t_dt(pts,4) 

yrange_range(pts.nor,pts.t) 

plot(0,0,type="n",xlim=c(-5,5), ylim=yrange,ylab="Density") 

lines(pts,pts.nor,col=1,lty=1,lwd=2) 

lines(pts,pts.t,col=2,lty=2,lwd=4) 

 

key(lines=list(lty=1:2, col=1:2),text=list(paste(c("Standard Normal","t(4)")))) 

title("Standard Normal vs t(4)",cex=1.5) 

 

0

D
en

si
ty

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4 Standard Normal

t(4)

Standard Normal vs t(4)
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For another example of using the distribution related functions, let’s consider a graphical display of the 

normal approximation to the binomial distribution. Let X be binomial with n=50 and p=.3. The density of 

the Binomial distribution and the normal distribution with mean of n*p=15 and the sd of sqrt(n*p*(1-

p))=3.24 are given in the following graph.  

 
n_50; p_0.3; x_0:n 

y_dbinom(x,n,p) 

plot(x,y,type="h") 

 

x_seq(0,n,length=100) 

m=n*p;s=sqrt(n*p*(1-p)) 

f_dnorm(x,m,s) 

lines(x,f) 

title("Normal Approximation to Binomial") 

text(25,.12,"n=50, p=0.3",cex=1.5) 

 

x

y

0 10 20 30 40 50

0.
0

0.
02

0.
04

0.
06
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08

0.
10

0.
12

Normal Approximation to Binomial

n=50, p=0.3

 
To calculate P(X  20) we use either pbinom (exact prob.) or pnorm (normal approx.). First, the exact 

probability from the Binomial distribution is; 

 
> 1 - pbinom(19, n, p) 

[1] 0.0848026 

 

The exact probability can be compared with a Normal approximation; 
 

> z <- (19.5 - n * p)/sqrt(n * p * (1 - p)) 

> 1 - pnorm(z) 

[1] 0.08245741 

 

A list of the distributions and their S+ function names can be found in the text p114. 
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HYPOTHESIS TESTING 
 

We have discussed one sample t-test earlier. S+ provides many functions for hypothesis testing. The names 

of functions are self-explanatory. To see the necessary arguments, for example t-test, type 

 
 > args(t.test) 

function(x, y = NULL, alternative = "two.sided", mu = 0, paired = F, 

 var.equal = T, conf.level = 0.95) 

  

We may also type >help(t.test) for more details.  

 

Let’s consider the two sample t-test comparing the two different durations in the kidney data. If the data is 

paired (not this case), we need to specified paired=T and do the paired t test. 

 
> my.ttest_t.test(days[duration==1], days[duration==2], conf.level = .90) 

> my.ttest 

 

 Standard Two-Sample t-Test 

 

data:  days[duration == 1] and days[duration == 2]  

t = 2.2319, df = 58, p-value = 0.0295  

alternative hypothesis: true difference in means is not equal to 0  

90 percent confidence interval: 

 0.9372859 6.5293808  

sample estimates: 

 mean of x mean of y  

8.2  4.466667 

 

The resulted p-value of the test is .0295, which is compared with the specified significance level of 0.1. 

Since the p-value is less than the significance level, the test for equal means is rejected.  

 

Note that the function t.test returns a list type of object with some statistics and information for the test. To 

see the available information; 

 
> summary(my.ttest) 

 

            Length Class      Mode  

  statistic 1            numeric   

 parameters 1            numeric   

    p.value 1            numeric   

   conf.int 2            numeric   

   estimate 2            numeric   

 null.value 1            numeric   

alternative 1            character 

     method 1            character 

  data.name 1            character 

 

We now try to access some specific information. 

 
> my.ttest$statistic 

        t  

 2.231888 

> my.ttest$p.value 

[1] 0.02950016 
> my.ttest$conf.int 

[1] 0.9372859 6.5293808 

attr(, "conf.level"): 

[1] 0.9 

> my.ttest$data.name 

[1] "days[duration == 1] and days[duration == 2]" 
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> my.ttest$null.value 

 difference in means  

0 

 

> ttest$alternative 

[1] "two.sided" 

 

The testing procedure and the result are well demonstrated in the following graph. The S+ code generating 

the graph is copied from the recommended text by Krause and Olson. I found it very useful for writing 

report for non-statisticians. We will discuss the S+ code in class. 

xaxis

t d
en

si
ty

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

test statistic
rejection 
 region

rejection 
 region

acceptance region

 
attach(kidney) 

x_days[duration==1] 

y_days[duration==2] 

df_length(x)+length(y)-2 

alpha_.1 

 

bound.left_-3 

bound.right_3 

xaxis_seq(bound.left, bound.right, length=1000) 

yaxis_dt(xaxis,df) 

plot(xaxis,yaxis,type="l", ylab="t density") 

 

critical.left_qt(alpha/2,df) 

critical.right_qt(1-alpha/2,df) 

xaxis_seq(bound.left,critical.left,length=100) 

yaxis_c(dt(xaxis,df),0,0) 

xaxis_c(xaxis,critical.left,bound.left) 

polygon(xaxis,yaxis,density=25) 

 

xaxis_seq(critical.right, bound.right,length=100) 

yaxis_c(dt(xaxis,df),0,0) 

xaxis_c(xaxis,bound.right,critical.right) 

polygon(xaxis,yaxis,density=25) 

 

test.stat_t.test(x, y, conf.level = 1-alpha)$statistic 
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points(test.stat,.01,cex=2,adj=0.5, pch=16) 

arrows(test.stat-1,.05,test.stat-.1,.01,open=T,rel=T) 

text(test.stat-1,.07,"test statistic",adj=.5,cex=1.5) 

 

text(bound.left, 0.08, "rejection \n region", adj=0) 

text(bound.right, 0.08, "rejection \n region", adj=1) 

text((bound.left + bound.right)/2, 0.16, "acceptance region") 

xaxis_c(rep(critical.left,2),rep(critical.right,2)) 

yaxis_c(0.12,0.14,0.14,0.12) 

 

Other statistical test in S+: binom.test, chisq.gof, chisq.test, cor.test, var.test, wilcox.test, etc. 



Dept. of Math and Statistics  Sung E. Kim 

 

 

 38 

 

REGRESSION 

 

In this section we will discuss fitting a regression model using the lm (linear model) function. As we have 

discussed earlier, the syntax of the model is 

 
 lm(response~predictor1+predictor2+…, options) 

 

For a detailed discussion let’s consider the Real Estate data that we used for MATH 532 class.  

 

Data 

A real estate expert is interested in developing a regression model that relates the selling price of suburban 

residential properties to characteristics of properties. Her interest lies in new, large residential property 

development on the outskirts of a major city for which she has data on 30 properties that were sold recently. 

  

X1 Property taxes (annual taxes, in dollars) 

X2 House size (floor area, in square feet) 

X3 Lot size (in acres) 

X4 Lot size squared 

X5 Attractiveness index 

X6 Style (E, S, or M) 

 

Data for the property selling prices 

 

Property Property 

Taxes 

House 

Size 

Lot 

Size 

Lot Size 

Squared 

Attrac- 

tiveness 

Style Selling Price  

(in $1000) 

1 

2 

3 

4 

5 

… 

… 

27 

28 

29 

30 

6337 

3204 

4574 

4924 

4182 

… 

… 

3917 

4068 

4068 

3612 

3000 

2300 

3300 

2100 

3900 

… 

… 

3100 

2200 

2500 

2900 

3.6 

1.2 

1.3 

3.2 

1.1 

… 

… 

1.8 

2.1 

3.9 

1.1 

12.96 

1.44 

1.69 

10.24 

1.21 

… 

… 

3.24 

4.41 

15.21 

1.21 

64 

69 

72 

71 

40 

… 

… 

54 

75 

61 

74 

M 

E 

S 

E 

S 

… 

… 

E 

S 

E 

E 

350 

261 

301 

255 

303 

… 

… 

244 

294 

279 

277 

 

For the full data click on realestate.dat 

 

For multivariate data, it is good idea to start the analysis with the pairwise scatterplots.  

 
> pairs(realestate[,2:8]) 

http://math.uc.edu/~kim/math532/realestate.dat
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Using the cor function, we can calculate the correlation matrix among variables. 

 
> cor(realestate[,c(2:6,8)],realestate[,c(2:6,8)]) 

 

               tax      Hsize       Lsize    Lsize.sq      attrac     price  

     tax 1.0000000  0.2812810  0.73968353  0.72108667  0.02879220 0.4693318 

   Hsize 0.2812810  1.0000000 -0.28982630 -0.26804966 -0.12844139 0.6258176 

   Lsize 0.7396835 -0.2898263  1.00000000  0.98477889 -0.01889162 0.1206351 

Lsize.sq 0.7210867 -0.2680497  0.98477889  1.00000000 -0.06571432 0.1181183 

  attrac 0.0287922 -0.1284414 -0.01889162 -0.06571432  1.00000000 0.3610034 

   price 0.4693318  0.6258176  0.12063505  0.11811831  0.36100336 1.0000000 

 

Note that the predictor style is qualitative and omitted from the correlation calculation. The pairwise 

scatterplot and the correlation suggest that Hsize has the strongest linear association with price. The 

variables tax and attrac also show moderately high correlation with the response. 

 

Before we go any further, we need to note that we have a qualitative predictor, style, in the data. Many 

different codings of indicator variables are available. Here, we use the simple dummy coding (0,1 coding); 

 

 

 

 

 

Style Sty1 Sty2 

E 1 0 

M 0 1 

S 0 0 
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Let add the two indicator variables in the data frame. 

 
> sty1_rep(NA,30) 

> sty2_rep(NA,30) 

> sty1[style=="E"]_1 

> sty1[style!="E"]_0 

> sty2[style=="M"]_1 

> sty2[style!="M"]_0 

> realestate_data.frame(realestate,sty1,sty2) 

 

At this moment you may want to recalculate the correlation matrix. 

 

Simple Regression 

First, consider a simple regression with the response variable, price, and the predictor, Hsize. 

 
> fit1_lm(price~Hsize,data=realestate) 

> summary(fit1) 

 

Call: lm(formula = price ~ Hsize, data = realestate) 

Residuals: 

    Min     1Q Median    3Q   Max  

 -81.44 -27.09 -2.379 30.81 114.7 

 

Coefficients: 

               Value Std. Error  t value Pr(>|t|)  

(Intercept) 115.7431  46.9759     2.4639   0.0201 

      Hsize   0.0676   0.0159     4.2457   0.0002 

 

Residual standard error: 44.86 on 28 degrees of freedom 

Multiple R-Squared: 0.3916  

F-statistic: 18.03 on 1 and 28 degrees of freedom, the p-value  

is 0.0002167  

 

Correlation of Coefficients: 

      (Intercept)  

Hsize -0.9847 

 

Specific information contained in the modeling can be accessed as before; object$values. 

 
> fit1$coefficients 

 (Intercept)      Hsize  

    115.7431 0.06764303 

> resid_fit1$residuals 

> fitted_fit1$fitted.values 

 

For the full list of available values see the help file for lm.object. 

 

We can also access the residuals and the fitted values by resid(fit1) and fitted(fit1). Let’s plot the residuals 

versus the fitted values. 
 

> plot(fitted(fit1),resid(fit1),pch=16) 

> abline(h=0) 

 

abline(h=0) will draw the horizontal line at 0. 
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Residual vs. Fitted
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As discussed earlier, 

 
 > attach(realestate); plot(Hsize,price); abline(fit1)   

 

will draw a scatterplot with the fitted line superimposed on.    

 

For a QQ plot  

 
 > qqnorm(resid(fit2),main="QQ Plot with Line") 

> qqline(resid(fit2)) 
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QQ Plot with Line
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Let’s put them together. 

 
attach(realestate) 

fit1_lm(price~Hsize,data=realestate) 

par(mfrow=c(2,2)) 

plot(Hsize,price,pch=16,sub="Scatterplot with Fitted Line"); abline(fit1) 

plot(fitted(fit1),resid(fit1),pch=16,sub="Residual vs Fitted"); abline(h=0) 

hist(resid(fit1),sub="Histogram of Residual",nclass=10) 

qqnorm(resid(fit1),sub="QQ Plot with Line",pch=16); qqline(resid(fit1)) 
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We can also examine the S+ default plots: 

 
 > plot(fit1) 
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You can specify your choice of the plots to display by using the ask option:  

 
 > plot(fit1, ask=T) 

 

Multiple Regression 

Now, consider a multiple regression with two predictors. The predictor Hsize is in the model and we want 

to figure out which predictor should be considered for the second predictor in the model. From the pairwise 

scatterplot and the correlation matrix suggest tax or attrac. We may fit models with all possible multiple 

models of two predictors with Hsize already in the model. This can be done easily in S+: 

 
> add1(fit1, .~. +tax+Lsize+Lsize.sq+attrac+sty1+sty2) 

Single term additions 

 

Model: 

price ~ Hsize 

         Df Sum of Sq      RSS       Cp  

  <none>              56358.65 64409.88 

     tax  1   8654.25 47704.39 59781.25 

   Lsize  1   9224.91 47133.74 59210.59 

Lsize.sq  1   8156.81 48201.84 60278.69 

  attrac  1  18351.16 38007.49 50084.34 

    sty1  1  20842.36 35516.29 47593.14 

    sty2  1  32570.78 23787.87 35864.72 

 

We see that the style variable (sty1 and sty2) has the largest sums of squares (and the lowest Cp) and thus 

these predictors should be considered in the model. 

 
> fit2_lm(price~Hsize+sty1+sty2) 

> summary(fit2) 

 

Call: lm(formula = price ~ Hsize + sty1 + sty2) 

Residuals: 

    Min     1Q  Median    3Q   Max  

 -42.12 -14.61 -0.7273 14.55 87.48 

 

Coefficients: 

                Value Std. Error   t value  Pr(>|t|)  

(Intercept)  219.9120   34.2463     6.4215    0.0000 

      Hsize    0.0290    0.0112     2.5929    0.0154 

       sty1  -31.8181   12.9440    -2.4581    0.0209 

       sty2   62.1801   13.3051     4.6734    0.0001 

 

Residual standard error: 27.25 on 26 degrees of freedom 

Multiple R-Squared: 0.7916  

F-statistic: 32.93 on 3 and 26 degrees of freedom, the p-value is 5.24e-009  

 

Correlation of Coefficients: 

      (Intercept)   Hsize    sty1  

Hsize -0.9596                     

 sty1 -0.4754      0.2773         

 sty2  0.0243     -0.2375  0.4730 

 

For the hypothesis testing for no style effect, we do the test for both coefficients of sty1 and sty2.  
 

> by(price,style,mean) 

INDICES:E 

[1] 264 

---------------------------------------------------------------------------- 

INDICES:M 

[1] 375.5 

---------------------------------------------------------------------------- 
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INDICES:S 

[1] 305.125 

 

The model syntax 

  

response~predictor1 + predictor2 

 

 will fit a multiple regression with the two main effects only and  

 

response~predictor1 + predictor2+predictor1:predictor2  

or  

response~predictor1* predictor2 

 

will fit the model with two main effects and the interaction between the two predictors.  

 

Note that for the qualitative variable with three levels, we may assign three indicator variables (one for 

each level) and drop the intercept in the regression model. This coding of indicator also has widely used in 

application. The model statement with –1 at the end will drop the intercept in the model 

 
 > lm(y~x1+x2+…-1) 

 

More will come…… 

 

 

REGRESSION (con’t) 
 

CODING OF FACTORS 

Last time we have discussed how to create dummy variables for the qualitative predictors in a regression 

model. We extend the discussion to the use of a convenient S+ function to create our own coding of factors. 

Let’s consider the style variable in the realestate data. 

 
> levels(style) 

[1] "E" "M" "S" 

 

We generate a matrix for the two dummy variables. 

 
> my.cotr_matrix(c(1,0,0,0,1,0),ncol=2) 

> my.cotr 

     [,1] [,2]  

[1,]    1    0 

[2,]    0    1 

[3,]    0    0 

 

Now, use the C function in the model statement of the lm function. Note that C stands for “contrasts”, a 

linear combination of the dummy variables. 

 
> summary(lm(price~C(style,my.cotr))) 

 

Call: lm(formula = price ~ C(style, my.cotr)) 

Residuals: 

   Min     1Q Median    3Q  Max  

 -48.5 -13.87 -4.812 13.75 98.5 

 

Coefficients: 

                       Value Std. Error   t value  Pr(>|t|)  

       (Intercept)  305.1250   10.6052    28.7714    0.0000 

C(style, my.cotr)1  -41.1250   13.6912    -3.0038    0.0057 

C(style, my.cotr)2   70.3750   14.2283     4.9461    0.0000 
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Residual standard error: 30 on 27 degrees of freedom 

Multiple R-Squared: 0.7378  

F-statistic: 37.98 on 2 and 27 degrees of freedom, the p-value is 1.42e-008  

 

Correlation of Coefficients: 

                   (Intercept) C(style, my.cotr)1  

C(style, my.cotr)1 -0.7746                        

C(style, my.cotr)2 -0.7454      0.5774 

 

S+ provide four different built-in contrast functions; Helmert (default), Orthogonal polynomial, Sum, and 

Treatment. To see the matrix form for these function, for example, for a factor with three levels 

 
 > contr.helmert(3) 

  [,1] [,2]  

1   -1   -1 

2    1   -1 

3    0    2 

 

> contr.treatment(3) 

  2 3  

1 0 0 

2 1 0 

3 0 1 

If you want to use one of the built-in contrasts, use the name of the contrast in the second argument of the C 

function. For example 

 
 lm(price~C(style,treatment)) 

 

will use the treatment contrast for the variable style. Note that the default contrast is the Helmert. So if you 

call 

 
lm(price~style) 

 

it will return the result with the Helmert contrast. 

 

Another possibility is the use of I (indicator) function. For example, 

 
> lm(price~I(style=="E")+I(style=="M"),data=realestate) 

 

The I function is very useful to assign indicator variables for a quantitative predictor. For example, if you 

are looking at the effect of “high” (attrac>75) attractiveness index versus “lower” (attrac<=75) instead of 

the effect of the attractiveness on a continuous scale,  

 
 > lm(price~I(attrac>75),data=realestate). 

 

 

Model Selection: Stepwise Regression 

 

Model selection procedure via Stepwise regression can be easily done using the user interface. We will 

discuss the procedure in details during the class and will not be illustrated in this note. 

 

In the procedure we need to specify the full model (upper). We look at the correlation matrix to guess 

which interaction terms we need to consider for the full model. 

 
 > cor(realestate[,c(2:6,9,10)],realestate[,c(2:6,9,10)]) 
                tax      Hsize       Lsize    Lsize.sq      attrac        sty1       sty2  

     tax  1.0000000  0.2812810  0.73968353  0.72108667  0.02879220 -0.37758018  0.4872225 

   Hsize  0.2812810  1.0000000 -0.28982630 -0.26804966 -0.12844139 -0.45526549  0.4355324 

   Lsize  0.7396835 -0.2898263  1.00000000  0.98477889 -0.01889162 -0.07395935  0.3030090 

Lsize.sq  0.7210867 -0.2680497  0.98477889  1.00000000 -0.06571432 -0.07975938  0.3186872 

  attrac  0.0287922 -0.1284414 -0.01889162 -0.06571432  1.00000000 -0.13282487  0.3093021 
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    sty1 -0.3775802 -0.4552655 -0.07395935 -0.07975938 -0.13282487  1.00000000 -0.5773503 

    sty2  0.4872225  0.4355324  0.30300898  0.31868722  0.30930212 -0.57735027  1.0000000 

 

The highlighted correlations seem to be high and important. We use all the main effects and the five 

interactions (we only considered two way interactions) for the upper model. Be sure to save the output 

object. For this example, the object was saved as step.real. 

 

The resulted model from the stepwise procedure is  

 
> summary(step.real) 

 

Call: lm(formula = price ~ Hsize + attrac + sty1 + sty2 + Hsize:sty2, da 

ta =  

 realestate, na.action = na.exclude) 

Residuals: 

    Min     1Q Median    3Q   Max  

 -36.67 -13.77  3.668 11.33 48.82 

 

Coefficients: 

                Value Std. Error   t value  Pr(>|t|)  

(Intercept)  140.5705   52.0276     2.7018    0.0125 

      Hsize    0.0272    0.0102     2.6562    0.0138 

     attrac    1.2488    0.4854     2.5728    0.0167 

       sty1  -34.0227   10.4913    -3.2429    0.0035 

       sty2 -180.8893   87.0854    -2.0771    0.0487 

 Hsize:sty2    0.0730    0.0273     2.6740    0.0133 

 

Residual standard error: 21.94 on 24 degrees of freedom 

Multiple R-Squared: 0.8753  

F-statistic: 33.69 on 5 and 24 degrees of freedom, the p-value is 4.266e 

-010  

 

Correlation of Coefficients: 

           (Intercept)   Hsize  attrac    sty1    sty2  

     Hsize -0.7882                                     

    attrac -0.8254      0.3328                         

      sty1 -0.3074      0.2929  0.0443                 

      sty2 -0.2706      0.3391  0.0972  0.1661         

Hsize:sty2  0.3119     -0.3813 -0.1449 -0.1106 -0.9913 

 

You need to make interpretations of the parameter estimates. I will leave it to you. For the summary of the 

ANOVA is 

 
> summary(aov(step.real)) 

           Df Sum of Sq  Mean Sq  F Value      Pr(F)  

     Hsize  1  36282.82 36282.82 75.37984 0.00000001 

    attrac  1  18351.16 18351.16 38.12569 0.00000222 

      sty1  1  13881.09 13881.09 28.83884 0.00001633 

      sty2  1   9132.76  9132.76 18.97388 0.00021368 

Hsize:sty2  1   3441.64  3441.64  7.15023 0.01327372 

 Residuals 24  11552.00   481.33        

 

Estimating Mean Response 

 

To estimate the mean response with the final model 
> prd1_predict.lm(step.real,data.frame(Hsize=2000,attrac=70,sty1=1,sty2=0), 

se.fit=T,ci.fit=T,pi.fit=T) 

> prd1 

$fit: 

        1  

 248.2893 
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$se.fit: 

        1  

 8.851564 

 

$residual.scale: 

[1] 21.93931 

 

$df: 

[1] 24 

 

$ci.fit: 

     lower   upper  

1 230.0205 266.558 

attr(, "conf.level"): 

[1] 0.95 

 

$pi.fit: 

     lower    upper  

1 199.4623 297.1162 

attr(, "conf.level"): 

[1] 0.95 

 

It is important to note that the option ci.fit=T is used to obtain the interval estimation of the mean response 

at the values of predictors occurred in the data and pi.fit=T will give us the prediction interval of new 

observation. The prediction interval is always wider than the confidence interval because the variation in 

prediction has an extra source of variation due to fact that the response at the new point will not equal to its 

expectation.  For more detailed discussion see your note for MATH 532 or Chapter 2 of the text by Neter 

et.al. Both intervals are pointwise and based on t distribution.   

 

Graphical Summary 

For the graphical summary of the final model 

 
> par(mfrow=c(2,3)) 

> plot(step.real) 
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Fitted : Hsize + attrac + sty1 + sty2 + Hsize:sty2
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Simultaneous Confidence Band: Working-Hotelling 

 

For simultaneous 1- confidence intervals for entire responses in the data, we use the Working-Hetelling 

confidence band based on F distribution (see p234, Neter et.al.). 

  

The code below can be used to create a simultaneous confidence interval for the mean response. 

  
"confint.lm"_function(object,alpha=.05,plot.it=T,...) 

 {    

 f_predict(object,se.fit=T) 

 p_length(coef(object)) 

 fit_f$fit 

 adjust_(p*qf(1-alpha,p,length(fit)-p))^0.5*f$se.fit 

 lower_fit-adjust 

 upper_fit+adjust 

 if(plot.it){ 

  y_fit+resid(object) 

  plot(fit,y) 

  abline(0,1,lty=2) 

  ord_order(fit) 

  lines(fit[ord],lower[ord]) 

  lines(fit[ord],upper[ord]) 

  invisible(list(lower=lower,upper=upper))  

  } 

 else list(lower=lower,upper=upper) 

} 
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We use the function confint.lm to plot the simultaneous confidence intervals for the mean response from the 

simple regression model relating the price with Hsize. 

 
> fit.Hsize_lm(price~Hsize) 

> confint.lm(fit.Hsize) 

fit

y

260 280 300 320 340 360 380

25
0

30
0
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0
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Identifying Outliers in predictors 

 

The hat matrix, XXXX  1)( , has been used to identify the outliers. The elements of the hat matrix, 

leverages, have the mean of np/ where p is the number of the parameters in the model and n is the sample 

size. The leverages larger than np/2  are considered as an evidence of outliers. Bonferroni test may be 

used for formal test for outliers in response (see Neter et.al. p374), but most of the cases they can be well 

identified via residual plot.  

 

We can identify the outliers in predictors via leverage as follows; 

 
> rule_2*length(coef(step.real))/length(fitted(step.real)) 

> rule 

[1] 0.4 

> influ.real_lm.influence(step.real) 

> cbind(realestate,lev=influ.real$hat)[influ.real$hat>rule,] 

property  tax Hsize Lsize Lsize.sq attrac style   price        lev  

5        5 4182  3900   1.1     1.21     40     S   303    0.5224226 

 

If we exam the fifth property, we can see that the property has the largest Hsize and the lowest 

attractiveness.  

 

We may want fit the model without the outlier. 

 
> step.new <- lm(price ~ Hsize + attrac + sty1 + sty2 + Hsize:sty2, data = 

realestate[-5,  ], na.action = na.exclude) 

> summary(step.new) 

 

Call: lm(formula = price ~ Hsize + attrac + sty1 + sty2 + Hsize:sty2, data = 
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realestate[-5,  ], na.action = na.exclude) 

Residuals: 

    Min     1Q Median    3Q   Max  

 -36.53 -12.56  1.683 12.18 47.57 

 

Coefficients: 

                Value Std. Error   t value  Pr(>|t|)  

(Intercept)  133.8143   55.2885     2.4203    0.0238 

      Hsize    0.0256    0.0110     2.3213    0.0295 

     attrac    1.3903    0.5962     2.3318    0.0288 

       sty1  -32.9926   10.9486    -3.0134    0.0062 

       sty2 -184.1886   88.9544    -2.0706    0.0498 

 Hsize:sty2    0.0744    0.0280     2.6595    0.0140 

 

Residual standard error: 22.32 on 23 degrees of freedom 

Multiple R-Squared: 0.8762  

F-statistic: 32.54 on 5 and 23 degrees of freedom, the p-value is 1.056e-009  

 

Correlation of Coefficients: 

           (Intercept)   Hsize  attrac    sty1    sty2  

     Hsize -0.6161                                     

    attrac -0.8162      0.0739                         

      sty1 -0.3510      0.1956  0.1602                 

      sty2 -0.2329      0.3477  0.0312  0.1419         

Hsize:sty2  0.2628     -0.3962 -0.0534 -0.0810 -0.9909 

 

 

The Cock’s distance provided in the graph above can be used to identify influential observations. 

 

Correlated error terms 

Durbin-Watson statistic (DW) can be employed to test for first-order correlation (autocorrelation) in error 

terms. The test is useful when the data is observed over a systematic manner, like time or space. S+ provide 

the function, durbinWatson(x). The argument x can be either data vector or a object from fitting lm. The 

statistic is bounded between 0 and 4, and for independent residuals we expect the value around 2. If the 

value is close to 0, it indicates positive correlation in error terms and if close to 4, it means possible 

negative correlation. Neter et.al provides the critical values of the statistic (see Table B.7).  

 

Let’s check the DW statistics for the residuals from the final model of realestate data. Note that since the 

data was not collected over time or space, we expect the value close to 2. 

 

> durbinWatson(step.real) 

Durbin-Watson Statistic: 1.960674 

 

It is interesting to calculate the DW statistic for our Ozone data, since the data is collected over time. Note 

the variable volume is a column vector of ozone volume stacked over time. 

 

> durbinWatson(volume[!is.na(volume)]) 

Durbin-Watson Statistic: 0.1490061  

Number of observations: 1455 

 

As we expected the DW value is very close to 0, which indicates strong positive correlation in the raw 

volume data.  

 

Multicollinearity: Variance Inflation Factor (VIF) 

Variance Inflation Factor has been widely used to measure the presence of multicollinearity in the model. 

Muticollinearity and its effect have been discussed in MATH 532 class. We will briefly discuss the concept 

of the VIF in class. 
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Following code will calculate the VIF.  

 
vif_function(y,x){ 

 n=length(y);p=ncol(x) 

 x.std_matrix(nrow=n,ncol=p) 

 y.std_(y-mean(y))/(stdev(y)*sqrt(n-1)) 

 for (i in 1:p){ 

  x.std[,i]_(x[,i]-mean(x[,i]))/(stdev(x[,i])*sqrt(n-1)) 

 } 

 VIF_ginverse(crossprod(x.std)) 

 varif_matrix(nrow=p,ncol=1) 

 for (i in 1:p){ 

  varif[i,]_VIF[i,i] 

 }  

varif 

} 

 

 

>attach(realestate) 

> y_price 

> x_data.frame(Hsize,attrac,sty1,sty2,Hsize*sty2) 

> vif(y,x) 

           [,1]  

[1,]   1.723070 

[2,]   1.248420 

[3,]   1.646438 

[4,] 105.039685 

[5,] 108.206302 

 

The VIF values considerably larger than 1 indicate muticollinearity problems. 
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ANALYSIS OF VARIANCE 

 

Looking at the data: Kidney data revisited 

 

Trellis boxplot conditioning on duration and on wtgain, respectively. 
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Other useful plots by plot.design and interaction.plot. 
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> plot.design(kidney[,1:3]) 
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Main factor effects are evident. 

 
> interaction.plot(wtgain,duration,days,data=kidney) 
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Interaction effect does not seem to significant. 
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Before applying the aov function, be sure that the data types of two factors, duration and wtgain, are 

“factor”. If they are recorded as “factor”, use as function or Data  Change Data Type on the menu bar.  

 

One factor fixed effect ANOVA 

 

Using aov function 
> duration.anova_aov(days~duration,data=kidney) 

> summary(duration.anova) 

 

          Df Sum of Sq  Mean Sq  F Value      Pr(F)  

 duration  1   209.067 209.0667 4.981322 0.02950016 

Residuals 58  2434.267  41.9701   

 

 
> dummy.coef(duration.anova) 

$"(Intercept)": 

 (Intercept)  

    6.333333 

 

$duration: 

        1         2  

 1.866667 -1.866667 

 

> contr.helmert(2) 

  [,1]  

1   -1 

2    1 

 

 

> duration.lm_lm(days~duration,data=kidney) 

> summary(duration.lm) 

 

Call: lm(formula = days ~ duration, data = kidney) 

Residuals: 

  Min     1Q Median    3Q  Max  

 -8.2 -4.267 -1.467 2.533 21.8 

 

Coefficients: 

              Value Std. Error t value Pr(>|t|)  

(Intercept)  6.3333  0.8364     7.5725  0.0000  

   duration -1.8667  0.8364    -2.2319  0.0295  

 

Residual standard error: 6.478 on 58 degrees of freedom 

Multiple R-Squared: 0.07909  

F-statistic: 4.981 on 1 and 58 degrees of freedom, the p-value is 0.0295 

  

 

Correlation of Coefficients: 

         (Intercept)  

duration 0 

 

 

> model.tables(duration.anova) 

 

Tables of effects 

 

 duration  

       1       2  

  1.8667 -1.8667 

 

> model.tables(duration.anova,"means") 
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Tables of means 

Grand mean 

         

 6.3333 

 

 duration  

      1      2  

 8.2000 4.4667 

 

Using my cotrast 

 

> my.cotr.l2_matrix(c(1,0),ncol=1) 

> my.cotr.l2 

     [,1]  

[1,]    1 

[2,]    0 

 

 

> duration.anova.new_aov(days~C(duration,my.cotr.l2),data=kidney) 

> summary(duration.anova.new) 

                        Df Sum of Sq  Mean Sq  F Value      Pr(F)  

C(duration, my.cotr.l2)  1   209.067 209.0667 4.981322 0.02950016 

Residuals 58  2434.267  41.9701 

 

> dummy.coef(duration.anova.new) 

$"(Intercept)": 

 (Intercept)  

    4.466667 

 

$"C(duration, my.cotr.l2)": 

        1 2  

 3.733333 0 

 

 

 

> wtgain.anova_aov(days~wtgain,data=kidney)  

> summary(wtgain.anova) 

 

          Df Sum of Sq  Mean Sq  F Value         Pr(F)  

   wtgain  2   760.433 380.2167 11.51009 0.00006327712 

Residuals 57  1882.900  33.0333                        

 

> summary(wtgain.anova,split=list(wtgain=list(L=1,Q=2))) 

 

            Df Sum of Sq  Mean Sq  F Value      Pr(F)  

     wtgain  2   760.433 380.2167 11.51009 0.00006328 

  wtgain: L  1    93.025  93.0250  2.81609 0.09879855 

  wtgain: Q  1   667.408 667.4083 20.20409 0.00003460 

  Residuals 57  1882.900  33.0333                     

 

 

Two-factor fixed effects ANOVA  
 

> kidney.anova_aov(days~duration*wtgain,data=kidney) 

> summary(kidney.anova) 

 

                Df Sum of Sq  Mean Sq  F Value     Pr(F)  

       duration  1   209.067 209.0667  7.21472 0.0095871 

         wtgain  2   760.433 380.2167 13.12097 0.0000227 

duration:wtgain  2   109.033  54.5167  1.88133 0.1622404 

Residuals 54  1564.800  28.9778 

 

> model.tables(kidney.anova,"means") 
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Tables of means 

Grand mean 

         

 6.3333 

 

 duration  

      1      2  

 8.2000 4.4667 

 

 wtgain  

     1     2     3  

  2.45  5.50 11.05 

 

duration:wtgain  

Dim 1 : duration 

Dim 2 : wtgain  

     1    2    3  

1  2.7  7.3 14.6 

2  2.2  3.7  7.5 

 

> par(mfrow=c(2,3)) 

> plot(kidney.anova) 

> par(mfrow=c(1,1)) 

Fitted : duration * wtgain
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The residual plot shows a strong evidence of non-constant variance. As the fitted values increase the 

residuals increase. From the QQ plot we also suspect a skewness of the error distribution. This recommends 

a proper transformation of the response. 
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Transformation 

A variance stabilizing transformation also corrects a non-normality in the error distribution. To suggest a 

appropriate transformation of the response we look at the relation between the treatment mean and the 

variance. Suggested transformations are 

 

Relation Transformation 

ii k 2
 YY   

22
ii k   )log(YY   

2
ii k   YY /1  

)(,/)1(2 levelithprn iiiii    )arcsin( YY   

 

Let’s check which relation is most suitable for our kidney data. 

 
> std.kidney_tapply(days,list(duration,wtgain),stdev) 

> std.kidney 

         1        2        3  

1 2.790858 6.290204 9.720540 

2 2.299758 2.945807 4.249183 

 

> mean.kidney_tapply(days,list(duration,wtgain),mean) 

> mean.kidney 

    1   2    3  

1 2.7 7.3 14.6 

2 2.2 3.7  7.5 

 

> sd.to.m_std.kidney/mean.kidney 

> sd.to.m 

         1         2         3  

1 1.033651 0.8616718 0.6657904 

2 1.045345 0.7961640 0.5665577 

 

> sdsq.to.m_std.kidney^2/mean.kidney 

> sdsq.to.m 

         1        2        3  

1 2.884774 5.420091 6.471842 

2 2.404040 2.345345 2.407407 

 

> sd.to.msq_std.kidney/mean.kidney^2 

> sd.to.msq 

          1         2          3  

1 0.3828338 0.1180372 0.04560208 

2 0.4751567 0.2151795 0.07554103 

 

The ration ii  /  is the most stable, and this suggests a log transformation. Note that the response, days, is 

a count with some zero counts. The square root transformation also looks OK and thus we try the square 

root transformation below. 

For more details, we may also consider a power transformation of the form (Box-Cox transformation): 

 

 
YY   

 

To find the power,  , we regress ilog  on ilog , that is we fit 

 

 
iiE  logˆˆ)(log 10   

We estimate   by 1̂1ˆ   . The basic concept will be discussed in class. 
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> std.kidney_as(std.kidney,"vector") 

> mean.kidney_as(mean.kidney,"vector") 

> std.kidney 

[1] 2.790858 2.299758 6.290204 2.945807 9.720540 4.249183 

> plot(log(mean.kidney),log(std.kidney)) 

> log.fit_lsfit(log(mean.kidney),log(std.kidney)) 

> par(mfrow=c(1,1)) 

> plot(log(mean.kidney),log(std.kidney)) 

> abline(log.fit) 

> log.fit$coef 

 Intercept         X  

 0.2176716 0.7359919 

 

From above we estimate 264.ˆ  . The value is about in the middle of 0 and 0.5 and this suggests that we 

may use either square root or log transformation. Note the 0  means log transformation by definition. 

For the same reason mentioned above, we take a square root transformation of the response, days. You may 

also consider )1log(  YY . 

 

> sqrt.kidney.anova_aov(sqrt(days)~duration*wtgain) 

> summary(sqrt.kidney.anova) 

                Df Sum of Sq  Mean Sq  F Value     Pr(F)  

       duration  1   5.95727  5.95727  5.48996 0.0228395 

         wtgain  2  35.12196 17.56098 16.18343 0.0000031 

duration:wtgain  2   2.02990  1.01495  0.93533 0.3987204 

      Residuals 54  58.59654  1.08512 

Fitted : duration * wtgain
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The interaction effect is not significant and thus we may fit the model without the interaction. Next time we 

will discuss Multiple comparison procedure and random and mix effect model. 
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Multiple Comparisons: all pairwise comparison 

 
> multicomp(sqrt.fit,focus="duration",plot=T) 

 

95 % non-simultaneous confidence intervals for specified  

linear combinations, by the Fisher LSD method  

 

critical point: 2.0049  

response variable: sqrt(days)  

 

intervals excluding 0 are flagged by '****'  

 

    Estimate Std.Error Lower Bound Upper Bound       

1-2     0.62     0.257       0.105        1.13 **** 

 

 
 

> multicomp(sqrt.fit,focus="wtgain",plot=T) 

 

95 % simultaneous confidence intervals for specified  

linear combinations, by the Tukey method  

 

critical point: 2.41  

response variable: sqrt(days)  

 

intervals excluding 0 are flagged by '****'  

 

    Estimate Std.Error Lower Bound Upper Bound       

1-2   -0.780     0.314       -1.54     -0.0228 **** 

1-3   -1.780     0.314       -2.53     -1.0200 **** 

2-3   -0.997     0.314       -1.75     -0.2400 **** 

 

 
 

> multicomp(sqrt.fit,focus="duration",adjust=list(wtgain=seq(3)),plot=T) 

 

95 % simultaneous confidence intervals for specified  

linear combinations, by the Tukey method  

 

critical point: 2.41  

response variable: sqrt(days)  
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intervals excluding 0 are flagged by '****'  

 

              Estimate Std.Error Lower Bound Upper Bound       

1.adj1-2.adj1    0.128     0.444     -0.9430        1.20      

1.adj2-2.adj2    0.731     0.444     -0.3400        1.80      

1.adj3-2.adj3    1.000     0.444     -0.0712        2.07      

 

 
 

> multicomp(sqrt.fit,focus="wtgain",adjust=list(duration=seq(2)),plot=T) 

 

95 % simultaneous confidence intervals for specified  

linear combinations, by the Tukey method  

 

critical point: 2.6509  

response variable: sqrt(days)  

 

intervals excluding 0 are flagged by '****'  

 

              Estimate Std.Error Lower Bound Upper Bound       

1.adj1-2.adj1   -1.080     0.444       -2.26      0.0964      

1.adj1-3.adj1   -2.210     0.444       -3.39     -1.0300 **** 

2.adj1-3.adj1   -1.130     0.444       -2.31      0.0464      

1.adj2-2.adj2   -0.479     0.444       -1.66      0.6990      

1.adj2-3.adj2   -1.340     0.444       -2.52     -0.1640 **** 

2.adj2-3.adj2   -0.863     0.444       -2.04      0.3150      

 

 
 

S+ uses the Tukey’s pairwise comparison as default. If you want to specify other methods (like Scheffe, 

Bonferroni, etc) use the option method=”scheffe” for Scheffe method and method=”bon” for Bonferroni 

method, etc. 

 
 > multicomp(sqrt.fit,focus="wtgain",method="scheffe",plot=T) 

 

 

 

Inference for Linear Combinations of factor levels 
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We might want to construct a confidence interval for a linear combination of factor levels. Here, we will 

consider the interval for wtgain2- (wtgain1+wtgain3)/2. We have seen that the interaction is not significant 

and thus we fit the model with the two main effects only. Note that with the full model the linear 

combination is not estimable. 

 
> main.fit_aov(sqrt(days)~duration+wtgain) 

> summary(main.fit) 

          Df Sum of Sq  Mean Sq  F Value      Pr(F)  

 duration  1   5.75965  5.75965  5.83347 0.01901321 

   wtgain  2  31.73837 15.86919 16.07258 0.00000305 

Residuals 56  55.29134  0.98735 

 
> lmat_matrix(c(0,0,0,-.5,1,-.5),ncol=1,dimnames=list(NULL,"wt2-(wt1+wt3)/2")) 

> lmat 

     wt2-(wt1+wt3)/2  

[1,]             0.0 

[2,]             0.0 

[3,]             0.0 

[4,]            -0.5 

[5,]             1.0 

[6,]            -0.5 

 

> multicomp(main.fit,lmat=lmat,method="bon") 

 

95 % non-simultaneous confidence intervals for specified  

linear combinations, by the Fisher LSD method  

 

critical point: 2.0032  

response variable: sqrt(days)  

 

intervals excluding 0 are flagged by '****'  

 

                Estimate Std.Error Lower Bound Upper Bound       

wt2-(wt1+wt3)/2   -0.109     0.272      -0.654       0.437 

 

One case per treatment (no interaction model) 

 
> premium_c(140,100,210,180,220,200) 

> city_c("Small","Small","Med","Med","Large","Large") 

> region_c("East","West","East","West","East","West") 

> insur_data.frame(premium,city,region) 

> insur 

  premium  city region  

1     140 Small   East 

2     100 Small   West 

3     210   Med   East 

4     180   Med   West 

5     220 Large   East 

6     200 Large   West 

 

> attach(insur) 

> insur.anova_aov(premium~city+region) 

> summary(insur.anova) 

          Df Sum of Sq Mean Sq F Value      Pr(F)  

     city  2      9300    4650      93 0.01063830 

   region  1      1350    1350      27 0.03509872 

Residuals  2       100      50 

 

> model.tables(insur.anova,"means") 

 

Tables of means 

Grand mean 
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Test for Interaction effect 

 
> interaction.plot(city,region,premium,lwd=2) 
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Tukey’s 1df Test for no-interaction 

 

 

 

Random and Mixed effects Models 

 
Single-factor Random effect model 

 

Model:  njriY ijiij ,...,1,,...,1,.    

 . is a constant, i  are iid ),0( 2
N , ij are iid  ),0( 2N , i  and ij  are independent. 

 

As an example, we adopt the Apex Enterprises Example in Neter, et.al., chapter 24 on the evaluating 

ratings of potential employees by its personnel officers. Five personnel officers were randomly selected and 

four prospective employees were assigned at random to each officer.  

 
> apex$officer_as.factor(apex$officer) 
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> apex$employee_as.factor(apex$employee) 

> attach(apex) 

 

> dotplot(officer~rating,pch=16,col=1) 

 

1
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5

50 60 70 80 90

rating

 
Test for the factor effect 

 

For the random effect to test for the main effect we formulate the hypothesis in terms of the variance, 2
 ;

 0: 2
0 H  vs 0: 2

1 H  

For this single-factor random effect ANOVA model, testing procedure for the main effect is identical to 

that for the fixed effect. The different between the random and fixed effect appears in the expected mean 

square. The traditional ANOVA model is  

 

Source df Sum of Squares Mean Squares E(MS) 

Treatment r-1 SSTR MSTR 
22
 n  

Residuals r(n-1) SSE MSE 2  

Total rn-1 SSTO   

We use the function raov, instead of aov, for the random effect model. From the ANOVA table below we 

have the estimated variances (E(MS) in the table above). Note that to use the raov function the design must 

be balance. For unbalance design we may use varcomp function that will be discussed later in this section.  

 
> random.fit_raov(rating~officer) 

> summary(random.fit) 

          Df Sum of Sq  Mean Sq Est. Var.  

  officer  4   1579.70 394.9250  80.41042 

Residuals 15   1099.25  73.2833  73.28333 

 

The calculated value of the test statistic is : 39.5
2833.73

925.394* 
MSE

MSTR
F . Under the null hypothesis this 

statistic follows an F(r-1,n(r-1)).   

 
> qf(.95,4,15) 

[1] 3.055568 
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Since F* is larger than the critical value we reject the null hypothesis and conclude that at 0.05 level of 

significance the mean ratings of the personnel officers are different. The p-value of the test is 0.0068. 

 
> 1-pf(5.39,4,15) 

[1] 0.006797778 

 

Inference for .  

We may want to construct a confidence interval for the overall mean, .  The 95% CI is 

rn

MSTR
rtY *)1,975(...   

 
> model.tables(random.fit,"means") 

 

Tables of means 

Grand mean 

        

 71.45 

 

 officer  

     1     2     3     4     5  

 75.00 70.50 54.75 79.75 77.25 

 

For this example, the 95% CI for the overall mean is: )81,62()44.4(132.245.71  . 

 

CI for 
22

2










 

For the random effect model the above ratio is in interest as it measures the proportion of the total 

variability of the response that is accounted for by the variability of the level means. The lower and upper 

bound of the CI based on F distribution is; 

 

 
L

L
L




1
*  and 

U

U
U




1
*  

where 

   





  1))1(,1;2/1(

1 1nrrF
MSE

MSTR

n
L   

and  

   





  1))1(,1;2/(

1 1nrrF
MSE

MSTR

n
U   

 

For the above example, MSTR=394.925, MSE=73.2833, r=5, n=4, F(.025,4,15)=3.804, F(.975,4,15)=0.116, 

then L=0.104 and U=11.36. The calculated 95% CI is (0.104/1.104, 11.36/12.36) = (0.09, 0.92). 

 

You may want to construct CI’s for 
2 and 

2
 . Both intervals base on chi-square distribution and I will 

leave it to you (see Chapter 24, Neter, et.al.). 

 

Two-factor Model : Model II(both random) and Model III (mixed) 

 

Model II (balanced design) 

Model:  nkbjaiY ijkijjiijk ,...,1,,...,1,,...,1,)(..    
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 . is a constant, i  are iid ),0( 2
N , j  are iid ),0( 2

N , ij)(  are iid ),0( 2
N , 

ijk are iid  ),0( 2N , ijji )(,,   and ij are pairwise independent. 

 

Model III (balanced design, factor A fixed, factor B random) 

Model:  nkbjaiY ijkijjiijk ,...,1,,...,1,,...,1,)(..    

 . is a constant, i  are constant with  0i , j  are iid ),0( 2
N , ij)(  are iid 

)
1

,0( 2


a

a
N


 with  

i
ij 0)( , ijk are iid  ),0( 2N , ijji )(,,   and ij are pairwise 

independent. 

 

The expected mean squares and the test statistics are given in the following table. 

 

Source df MS E(MS)( M II) E(MS)( M III) F* (M II) F* (M III) 

A a-1 MSA 

222
  nnb 

 

2
2

2

1 


 n
a

nb i 





 

MSAB

MSA
 

MSAB

MSA
 

B b-1 MSB 

222
  nna 

 

22
 na  

MSAB

MSB
 

MSE

MSB
 

AB (a-1)(b-1) MSAB 
22
 n  

22
 n  

MSE

MSAB
 

MSE

MSAB
 

Residual ab(n-1) MSE 2  
2  

  

Total abn-1      

 

For the balanced Model II we can use raov function as before. 

 

Mixed effects 

 

For mixed effects ANOVA we use varcomp function. The varcomp function is also used for unbalanced 

designs. Note that for the balanced mixed effects designs the estimated mean squares and corresponding 

degrees of freedom are identical to that of the fixed effects. However, the testing procedures vary as in the 

table above. Hence, for testing hypothesis for factor effects we can simply use aov function and recalculate 

the test statistics. For the mixed effects we also interested in the variance structures for further analyses. We 

use varcomp function for this purpose. We discuss the use of varcomp function using an unbalanced mixed 

effects example. Note that for the unbalanced design (either fixed, random, or mixed) the ANOVA 

modeling is difficult. We used the general linear test approach based on the maximum likelihood method.  

Example: (Unbalanced Mixed effect) 

 

We used the data in Table 24.11 of Neter, et.al. The milkfat contents of a company’s yogurt product are 

measured using two different measurement methods (a=1) and randomly selected four laboratories (b=4). 

This is unbalanced mixed effect model; the factor Method is fixed and the factor Laboratory is random.  

 

 
> fat.data$method_as.factor(fat.data$method) 

> fat.data$lab_as.factor(fat.data$lab) 

> fat.data$method[fat.data$method==1]_"Goverment" 

> fat.data$method[fat.data$method==2]_"Sheffield" 

 

> dotplot(lab~fat|method,ylab="Laboratory",xlab="Fat",main="method1 vs 

method2",pch=16,col=1,data=fat.data) 
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The following procedure is necessary to define which factor is random and which is fixed. 

 
> is.random(fat.data$lab)_T 

> is.random(fat.data$method)_F 

> is.random(fat.data) 

 method lab  

F   T 

 

> summary(varcomp(fat~method*lab,method="ml",data=fat.data)) 

Call: 

varcomp(formula = fat ~ method * lab, data = fat.data, method = "ml") 

Variance Estimates: 

             Variance  

       lab 0.05443933 

method:lab 0.08570636 

 Residuals 0.02325424 

Method:  ml  

Approximate Covariance Matrix of Variance Estimates: 

                    lab  method:lab   Residuals (Intercept)      method  

        lab  0.00595752 -0.00194176 -0.00000400  0.00000255 -0.00000171 

 method:lab -0.00194176  0.00420470 -0.00001463 -0.00000070 -0.00000515 

  Residuals -0.00000400 -0.00001463  0.00003545 -0.00000015  0.00000618 

(Intercept)  0.00000255 -0.00000070 -0.00000015  0.00058123 -0.00000445 

     method -0.00000171 -0.00000515  0.00000618 -0.00000445  0.01138762 

 

Coefficients: 

 (Intercept)    method  

    3.694149 -0.632899 

Approximate Covariance Matrix of Coefficients: 

              (Intercept)        method  
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(Intercept)  0.0000135161 -0.0000001028 

     method -0.0000001028  0.0002647853 

 

Note that other possible methods in the estimation option of varcomp function are “reml”, “minque0”, and 

“winsor”. Refer the text for the description of each method. From the output we can summary the results as 

 

Parameter MLE SE z* p-value 

..  3.694 0.024 large 0.00 

1  0.633 0.107 5.916 0.00 

2
  0.054 0.077 0.701 0.483 

2
  0.086 0.065 1.32 0.187 

2  0.023 0.006 3.83 0.00 

 

From the table, we see that the method effect is significant and the interaction effect between the factors is 

not quite significant.  

  

Now let’s consider the subset of the fat.data to study the balanced mixed effects. We used the data with the 

count 1 and 2 so that each treatment has two observarions. 
 
> summary(varcomp(fat~method*lab,method="ml",subset=(count<3),data=fat.data)) 

Call: 

varcomp(formula = fat ~ method * lab, data = fat.data, method = "ml", subset = 

(count < 3)) 

Variance Estimates: 

             Variance  

       lab 0.06845940 

method:lab 0.06776157 

 Residuals 0.01849374 

Method:  ml  

Approximate Covariance Matrix of Variance Estimates: 

                     lab   method:lab    Residuals (Intercept)      method  

        lab  0.006461886 -0.001482569  0.000000000 0.000000000 0.000000000 

 method:lab -0.001482569  0.002986884 -0.000043493 0.000000000 0.000000000 

  Residuals  0.000000000 -0.000043493  0.000086986 0.000000000 0.000000000 

(Intercept)  0.000000000  0.000000000  0.000000000 0.000494539 0.000000000 

     method  0.000000000  0.000000000  0.000000000 0.000000000 0.009626054 

 

Coefficients: 

 (Intercept)    method  

    3.740625 -0.618125 

Approximate Covariance Matrix of Coefficients: 

            (Intercept)       method  

(Intercept) 9.1459e-006 0.0000000000 

     method 0.0000e+000 0.0001780217 

 

Using the output we may make inferences on the variances.  

 

Analysis of Covariance (ANCOVA) 

 

Covariance Model (Single factor) : iijijiij njrixY ,...,1,,...,1,.   , 

where .  is a constant (overall mean), i  is a fixed treatment effect,   is a regression coefficient relating 

Y with x, ijx  is a mean-adjusted continuous predictor variable (concomitant variable), and ij are iid  

),0( 2N . 
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Example(Neter, et.al. Table 25.1): To study the effects of three types of promotions (treatments, r=3)) on 

sales (response) of crackers. The concomitant variable is sales from preceding period.  

 

First to verify the model assumption of the equal regression coefficient,  , over treatment, we need to plot 

Y versus X for each treatment level. Before further analysis it is convenient to make a groupedData data 

frame. 

 
> cracker$period_cracker$period-mean(cracker$period) 

> period.adj_cracker$period-mean(cracker$period) 

> cracker_data.frame(cracker,period.adj) 

 

> cracker.group_groupedData(sales~period.adj|treatment,data=cracker) 

 

Now the object cracker.group is a groupedData object. The groupedData object can be summarized by 

using gsummary function. 

 
> gsummary(cracker.group) 

  sales period treatment count period.adj  

3  27.2   25.4         3     3        0.4 

2  36.0   26.4         2     3        1.4 

1  38.2   23.2         1     3       -1.8 

 

To make a scatterplot by group (treatment) simply type 

 
> plot(cracker.group) 

 

From the plot we see that there is a clear linear relation between Y and x and we don’t see any evidence of 

changing slopes over treatment. For a formal test of parallel slopes we fit a regression model with 

interactions and test for the zero interaction coefficients. 
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Before the model fitting we assign a contrast variable (dummy) for the treatment. 

 

> my.cotr_matrix(c(1,0,-1,0,1,-1),ncol=2) 

> my.cotr 

     [,1] [,2]  

[1,]    1    0 

[2,]    0    1 

[3,]   -1   -1 

 
> anova(lm(sales~C(treatment,my.cotr)*period.adj,data=cracker.group)) 

Analysis of Variance Table 

 

Response: sales 

 

Terms added sequentially (first to last) 

                                 Df Sum of Sq  Mean Sq  F Value     Pr(F)  

           C(treatment, my.cotr)  2  338.8000 169.4000 48.36801 0.0000153 

                      period.adj  1  269.0287 269.0287 76.81453 0.0000106 

C(treatment, my.cotr):period.adj  2    7.0505   3.5252  1.00654 0.4031810 

                       Residuals  9   31.5208   3.5023 

 

The p-value for the no interactions test is very high (.4), and this implies that the parallel slopes are evident. 

 

Now ANCOVA can be done using regression approach. Indeed, the ANCOVA model is a special case of 

regression model.  

 
> cracker.lm_lm(sales~C(treatment,my.cotr)+period.adj,data=cracker.group) 

> summary(cracker.lm) 

 

Call: lm(formula = sales ~ C(treatment, my.cotr) + period.adj, data = 

cracker.group) 

Residuals: 

    Min     1Q  Median    3Q   Max  

 -2.435 -1.274 -0.3363 1.671 2.487 
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Coefficients: 

                          Value Std. Error  t value Pr(>|t|)  

           (Intercept)  33.8000   0.4835    69.9079   0.0000 

C(treatment, my.cotr)1  -6.9594   0.6850   -10.1599   0.0000 

C(treatment, my.cotr)2   0.9420   0.6987     1.3483   0.2047 

            period.adj   0.8986   0.1026     8.7592   0.0000 

 

Residual standard error: 1.873 on 11 degrees of freedom 

Multiple R-Squared: 0.9403  

F-statistic: 57.78 on 3 and 11 degrees of freedom, the p-value is 5.082e-007  

 

Correlation of Coefficients: 

                       (Intercept) C(treatment, my.cotr)1 C(treatment, my.cotr)2  

C(treatment, my.cotr)1  0.0000                                                   

C(treatment, my.cotr)2  0.0000     -0.4761                                       

            period.adj  0.0000     -0.0599                -0.2056 

 

> anova(cracker.lm) 

Analysis of Variance Table 

 

Response: sales 

 

Terms added sequentially (first to last) 

                      Df Sum of Sq  Mean Sq  F Value         Pr(F)  

C(treatment, my.cotr)  2  338.8000 169.4000 48.31052 3.566360e-006 

           period.adj  1  269.0287 269.0287 76.72324 2.731033e-006 

            Residuals 11   38.5713   3.5065 

 

The result will be discussed in class.  

 

We may fit a reduced model without the treatment effect and do a generalized F-test (reduced vs. full) to 

test for the treatment effect.  

 

 

SIMPLE LOGISTIC REGRESSION 

 

In many studies, the response variable may be a binary r.v. taking on the value 0 (failure) and 1 (success).  

 

Example: In a longitudinal study of coronary heart disease as a function of age, gender, cholesterol level, 

etc. The response (Y) can be coded as 0 (no disease) and 1 (disease) 

 

Simple Regression? 

 

iii xY   10   

 

Let 


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Assumption ???),0(~ 2 Ni  

 

Note that for the binary response i  can take only two values 
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Therefore i  can NOT be normally distributed!! The simple regression model can NOT be used for the 

binary response. 

 

Logistic Response Function 

Let’s denote i  to be the probability of success for the ith observation, that is iiYP  )1( , and 

iiYP  1)0( . We want to relate i  to a linear combination of the independent variables, ix .  

Note that generally for extremely large (or small) value of ix  the probability i  is expected to be either 1 

or 0.  

 

Example : 






""0

""1
,

deathfor

alivefor
yagex ii

 

 

For extremely large value of age, we expect the probability of survival to be 0. 

 

What about the relationship between i  and ix  for intermediate value of ix ? Can we expect a linear 

relationship? Pretty close 

 

General relation: S-shape configuration 

 
 

These shapes are very common in application. 

 

Logistic Response Function : 

  

)exp(1
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i
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formulates the S-shape relationship.  

 

Logistic Transformation 

 

Logistic Regression Model: 
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We use the logistic transformation 








 i

i





1
log  as a response in simple regression.  

Note that since i  is unknown, the response is unobservable. The parameters can be estimated via 

maximum likelihood method. We use glm (generalized linear model) function to fit the model with 

binomial family option. 

 

The fitted response function is: 
)exp(1

)exp(
ˆ

10

10

i

i
i xbb

xbb




 . 

 

 

Example (Neter, Table 14.1) We are interested in the effect of the experience on the ability to a complex 

programming task. For each of 25 individuals months of experience and the task result (1 for success, 0 for 

failure) 

exp

ta
sk
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0

 
> fit.log_glm(task~exp,family=binomial,data=logist.data) 

> summary(fit.log) 

 

Call: glm(formula = task ~ exp, family = binomial, data = logist.data) 

Deviance Residuals: 

      Min         1Q     Median        3Q      Max  

 -1.89916 -0.7508921 -0.4140038 0.7992195 1.962354 

 

Coefficients: 

                 Value Std. Error   t value  

(Intercept) -3.0596954  1.2589852 -2.430287 

        exp  0.1614859  0.0649625  2.485833 

(Dispersion Parameter for Binomial family taken to be 1 ) 

 

    Null Deviance: 34.29649 on 24 degrees of freedom 

Residual Deviance: 25.42457 on 23 degrees of freedom 

 

Number of Fisher Scoring Iterations: 4  
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Correlation of Coefficients: 

    (Intercept)  

exp -0.9214001 

 

> 2*(1-pt(2.4858,23)) 

[1] 0.02062955 

 

The p-value of 0.02 from a partial t-test testing the effect of the experience effect indicates that the effect is 

significant 

 

We may do a chi-square test using the deviances (known as Person test) in the output. Again the null 

hypothesis is 0: 1 Ho . The null deviance is the value of the test statistic under the null hypothesis, 

reduced model with intercept only, and the residual deviance is the value of the test statistic under the full 

model, with intercept and slope. The subtraction of the two statistics will follow a chi-square distribution 

with one degree of freedom. For this example 

 

 G
2
 = 34.29649 – 25.42457 = 8.872 

 

The corresponding p-value of the test is 0.003, which is much less than the p-value for the t-test. The chi-

square test is preferred to the t-test. More example will be discuss later. 

 
> 1-pchisq(8.872,1) 

[1] 0.002895777 

> par(mfrow=c(2,2)) 

> plot(fit.log)  
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Note that unlike usual regression models, for the binary response the residuals are not normally distributed 

and the usual residual analyses are not applicable. The diagnostic plots above are not quite informative for 
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the logistic regression. To detect outliers or/and influential observations we can use leverages as before. 

Refer the example in the next section. 

 

The fitted response function is 
)1615.06.3exp(1

)1615.06.3exp(
ˆ

i

i
i x

x




  . 

We use the fitted response function to estimate the mean response at a given value of x. For example 

substituting 14 into x can obtain the estimated probability of successful performance for a person with 14 

months experience. The estimated probability is 0.31. 

 

The estimated odd ratio .175.1)1615exp(.)exp( 1  bOR  So, with each additional month of 

experience increases the odds of completing the task by 17.5%. 

 

Multiple Logistic Regression 

 

In this section we will discuss the logistic regression with two or more predictors.  

 

Example (Christensen 1997, Example 4.1.1) 

 

200 men are taken from the LA Heart Study to study the relations between the Coronary incident (CNT, 1 

if an incident occurred, 0 otherwise) and six explanatory variables: age, Systolic blood pressure, Diastolic 

blood pressure, Cholesterol, Height, and Weight. The data can be downloaded from the class web 

(chapman.dat). We consider the logistic regression model: 

 

 
iiiiii
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> summary(chapman.logist) 

 

Call: glm(formula = CNT ~ age + S + D + Ch + H + W, family = binomial, d 

ata 

  = chapman) 

Deviance Residuals: 

       Min         1Q     Median         3Q      Max  

 -1.112958 -0.5541206 -0.3906878 -0.2527301 2.681136 

 

Coefficients: 

                   Value  Std. Error    t value  

(Intercept) -4.517319021 7.479489249 -0.6039609 

        age  0.045899976 0.023529058  1.9507783 

          S  0.006855721 0.020194525  0.3394842 

          D -0.006936751 0.038343820 -0.1809092 

         Ch  0.006306448 0.003631292  1.7366953 

          H -0.074001542 0.106189623 -0.6968811 

          W  0.020141537 0.009868974  2.0408948 

 

(Dispersion Parameter for Binomial family taken to be 1 ) 

 

    Null Deviance: 154.5547 on 199 degrees of freedom 

 

Residual Deviance: 134.8515 on 193 degrees of freedom 

 

Number of Fisher Scoring Iterations: 5  
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Correlation of Coefficients: 

    (Intercept)        age          S          D         Ch          H  

age -0.2071983                                                         

  S  0.0130841  -0.2675552                                             

  D -0.2094813   0.0126957 -0.7730439                                  

 Ch -0.1406628  -0.1641129  0.0292113 -0.1133042                       

  H -0.9534236   0.1719066 -0.0194712  0.1426191  0.0203800            

W  0.2837116  -0.0023497  0.1522709 -0.3637363  0.1463836 -0.4411074 

 

Based on the t-value, age, cholesterol, and weight effects seem to exist. The multiple scatterplot below also 

supports the result. 
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We want to fit the model with the three variables only. 

 
> chapman.logist.reduced_glm(CNT~age+Ch+W,family=binomial,data=chapman) 

> summary(chapman.logist.reduced) 

 

Call: glm(formula = CNT ~ age + Ch + W, family = binomial, data = chapma 

n) 

Deviance Residuals: 

       Min         1Q     Median         3Q      Max  

 -1.104901 -0.5541154 -0.3776944 -0.2510398 2.700912 

 

Coefficients: 

                   Value  Std. Error   t value  

(Intercept) -9.255888319 2.070916857 -4.469464 

        age  0.053003641 0.020821917  2.545570 
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         Ch  0.006517925 0.003587892  1.816645 

          W  0.017538629 0.008270296  2.120677 

 

(Dispersion Parameter for Binomial family taken to be 1 ) 

 

    Null Deviance: 154.5547 on 199 degrees of freedom 

 

Residual Deviance: 135.5233 on 196 degrees of freedom 

 

Number of Fisher Scoring Iterations: 5  

 

Correlation of Coefficients: 

    (Intercept)        age         Ch  

age -0.3660495                        

 Ch -0.5167738  -0.2383809            

  W -0.7669655   0.0100841  0.1319159 

 

We may compare the model with the full model. For the test statistic, we use the difference between the 

residual deviances of the full model and the reduced model. 

 

 G
2
= 135.5233 – 134.8515 = 0.6718 with the degrees of freedom of 196-193=3 

 

The p-valued of the test is 0.88 and we conclude that the reduced model with three predictors only is an 

adequate substitute of for the full model. From the above output the variable Ch does not seem significant. 

We can repeat the above testing procedure for the Ch effect. A measure analogy to R
2
 can be obtained by  

 

 
deviancenull

devianceresidualdeviancenull
R


2 . 

 

For the above model with age, Ch, and W, R
2
 = (154.55-135.52)/154.55 = 0.12. Only about 12% of 

variability can be explained by the model. This is not surprising for the binary data. Unless the probability 

i  is very close to 1 or 0, the R
2
 will be much lower than you expected. The low R

2
 does not necessary 

mean a poor fit. So, the direct interpretation of the R
2
 value should not be suggested. We can use the R

2
 

value for a tool of model comparisons.   

  

Formal model selection procedure using AIC or Cp can be conveyed, but will not be discussed in this class. 

S+ does not provide the automatic search procedure, but SAS does via Proc Logistic. 

 

Fitted response function: 
)0175.0065.053.26.9exp(1
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ˆ
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For example, for 60 years old man with cholesterol reading of 300 and the weights 200 pounds, the 

estimated probability of a coronary incident is  

 

  35.0
))200(0175.)300(0065.)60(053.26.9exp(1

))200(0175.)300(0065.)60(053.26.9exp(
ˆ 




 . 

 

We can identify the outliers and/or influential observations using leverages as follows; 

 
>rule_2*length(coef(chapman.logist.reduced))/length(fitted(chapman.logis

t.reduced)) 

> rule 

[1] 0.04 
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> influ.chapman_lm.influence(chapman.logist.reduced) 

> cbind(age,Ch,W,leverage=influ.chapman$hat)[influ.chapman$hat>rule,] 

    age  Ch   W   leverage  

 18  40 302 225 0.04554945 

 19  51 302 247 0.10435819 

 38  52 474 145 0.08053879 

 41  40 520 169 0.14885485 

 44  56 428 171 0.04979886 

 48  64 243 171 0.04341317 

 51  65 370 153 0.04235409 

 55  67 365 190 0.05636015 

 60  68 268 138 0.05473981 

 61  64 261 108 0.04480911 

 64  58 416 188 0.05418758 

 81  47 341 218 0.04645482 

 84  41 259 245 0.07883004 

 96  67 320 134 0.04994716 

108  51 269 262 0.14683385 

111  69 370 185 0.06171088 

113  64 244 187 0.05093838 

114  70 353 163 0.05816883 

116  53 453 170 0.06694622 

121  53 420 141 0.04030119 

123  63 420 160 0.05607527 

126  28 386 189 0.04183048 

153  58 187 224 0.08980256 

157  49 273 245 0.09279471 

193  60 317 206 0.04371181 

> 

 

Observations with high leverages are highlighted. We need to exam those observations closely. For 

example, the 41th observation (the highest leverage) has an extremely high cholesterol value, etc.  

 

BOOTSTRAPING, the basic 

 

The bootstrap is a powerful computer-based tool for statistical inference in case standard approximations 

are not applicable. Suppose for example, we want to compare two groups by their medians. Unfortunately 

we do not have an explicit formula to calculate the standard errors of the median estimates (we do have it 

for means). For another example, for the inference about population means, the standard inferences rely on 

the large sample central limit theorem. Then, we may simply ask,  “What if the sample size is very small 

with an unknown underline sampling distribution?” Theses questions can be answered by computer-based 

techniques, like bootstrap.  

 

To illustrate the basic concept of the bootstrap, let’s consider a simple example (I will do my best to avoid 

mathematical notations). Suppose we observed data with size eight: x = (23, 34, 12, 9, 42, 17, 8, 29). We 

are interested in the reciprocal of mean,  /1 . We can simply estimate it by x/1ˆ  , where x  is the 

sample mean. Now, our question is how to calculate the standard error of the estimate. Intuitively thinking, 

if we have many estimates of the parameter, 1̂  , 2̂  , …, B̂ , with B large enough positive integer, we 

could approximate it by the sample standard deviation of the B estimates; ie,  

 

(1) 
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i
i Bse  , where ̂ is the sample mean of the si '̂ .    
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To have the B estimates we need B samples of size eight each. Since we don’t have any other data source 

we generate each sample by randomly sampling eight times with replacement from the original data point 

and name it 
*x .  We do the sampling B times to generate 

Bxxx *2*1* ,...,,  (this is called bootstrap 

samples). From each of the B samples we estimate the parameter and using the B estimates we calculate the 

sample standard deviation in (1). The following bootstrap algorithm for estimating standard errors is 

adopted from An Introduction to the Bootstrap, by E. Efron and R. Tibshirani, Chapman & Hall. 

 

Bootstrap standard error estimation  

 

Consider a random sample x=(x1, x2,…,xn) from an unknown probability distribution. We are 

interested in a parameter  . We calculate an estimate ̂  from x. 

 

1. Select B independent bootstrap sample x
*1

, x
*2 

,…,x
*B

 each consisting of n data points randomly 

selected for the original data with replacement. S+ recommend at least 250 to estimate standard 

errors and 1000 to estimate percentiles. 

2. From each bootstrap sample calculate the parameter estimates, 1̂  , 2̂  , …, B̂ , called bootstrap 

replication 

3. Evaluate the standard error by the sample standard deviation of the B replications as in (1). 

 

In S+ we use the function bootstrap for the calculation. For the example we used B = 100. 

 
> x_c(23, 34, 12, 9, 42, 17, 8, 29) 

> boot1_bootstrap(x,1/mean(x),B=100) 

Forming replications  1  to  100  

 

> summary(boot1) 

Call: 

bootstrap(data = x, statistic = 1/mean(x), B = 100) 

 

Number of Replications: 100  

 

Summary Statistics: 

      Observed      Bias    Mean       SE  

Param  0.04598 0.0007052 0.04668 0.008573 

 

Empirical Percentiles: 

         2.5%      5%    95%   97.5%  

Param 0.03455 0.03568 0.0646 0.06787 

 

BCa Confidence Limits: 

         2.5%      5%     95%   97.5%  

Param 0.03463 0.03625 0.06615 0.06878 

 

The estimated parameter is 0.04598 with the bootstrap standard error of 0.008573. The empirical 

percentiles from 100 bootstrap estimates are given. A better confidence interval, named BCa (bias-

corrected and accelerated), is given. The BCa CI is better in terms of accuracy of the interval estimates and 

accurate coverage probability. Other possible CIs are bootstrap-t interval, ABC interval, and parametric 

approach via normal theory. For more detailed discussion on the bootstrap CI, consult An Introduction to 

the Bootstrap, by E. Efron and R. Tibshirani. 

 

We will close this section with an interesting example. Note that the following example is just to give you 

the basic idea of the use of bootstrap. This is not a complete analysis and should not refer to other purpose.  

 

Example: Bootstrap Bioequivalence 

 

A drug company has separately applied each of three hormone supplement medicinal patches, ‘Approved 

(by FDA)’, ‘Placebo’, and ‘New’, to eight patients who suffer from a hormone deficiency. Measurements 
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are blood pressure level after each patch wearing. The FDA requires proof of bioequivalence before it will 

approve for sale a previously approved product manufactured at a new facility. Data is give below; 

 
patient placebo approved new 

1  9243  17649  16449 

2  9671  12013  14614 

3  11792  19979  17274 

4  13357  21816  23798 

5  9055  13850  12560 

6  6290  9806  10157 

7  12412  17208  16570 

8  18806  29044  26325 

 

Let x = approved – placebo, y = new-approved. Define  / , where )(xE  and )(YE . The 

FDA bioequivalence requirement is that a 90% CI for   lie within [-0.2, 0.2].  Here the parameter estimate 

for r is -0.0713.  

 

> mean(y)/mean(x) 

[1] -0.0713061 

 

Following plot shows the data. The wedge in the plot indicates the FDA requirement region and we see that 

four of them are outside of the region. 

 

> plot(x,y,xlab="New-Approved",ylab="Approved-Placebo") 

> plot(x,y,xlab="New-Approved",ylab="Approved-Placebo",xlim=c(0,12000),ylim=c(-6000,6000)) 

> xx_seq(0,12000,100) 

> yy_0.2*xx 

> lines(xx,yy,type="l") 

> lines(xx,-yy,type="l") 

> abline(h=0) 
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Are the FDA bioequivalence criteria satisfied by the data? To answer this question we use the bootstrap CIs.  

 

> bot_bootstrap(data,mean(data[,"y"])/mean(data[,"x"]),2000) 

 

> summary(bot) 
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Call: 

bootstrap(data = data, statistic = mean(data[, "y"])/mean(data[ , "x"]), B = 2000) 

 

Number of Replications: 2000  

 

Summary Statistics: 

            Observed     Bias     Mean     SE  

Param -0.07131 0.008381 -0.06292 0.1037 

 

Empirical Percentiles: 

         2.5%      5%    95%  97.5%  

Param -0.2321 -0.2135 0.1245 0.1709 

 

BCa Confidence Limits: 

         2.5%      5%    95%  97.5%  

Param -0.2257 -0.2046 0.1382 0.1906 

 

The estimated parameter is –0.07131 with a bootstrap standard error of 0.1037. Neither of the lower bounds 

of the CIs do not quite satisfy the FDA criteria.  

 

Then, the next question would be how many patients should be measured in a future experiments so that the 

FDA requirement will have a good chance of being satisfied. This question related to power or sample size 

question and we will not discuss in this class.  

 

Following is the histogram of the 2000 bootstrap estimates. 

 

> plot(bot) 
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Next time we will discuss the use of bootstrap in regression analysis. 
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BOOTSTRAP REGEESION 

 

Bootstrap regression is very useful when the regression function is non-linear in the parameters. In this 

section we will discuss how the bootstrap regression works in a simple regression model. 

 

There are two different ways of bootstrap regression 

 

1. Bootstrapping pairs: Random sample pairs (x,y) with replacement. For each bootstrap sample, 

we fit regression model and the based on the B estimates we make inferences. 

2. Bootstrapping residuals: We replace the response using the fitted and resampled residuals. That 

is, we create a new data set by  
*

10
*

iii exbby   

 where 
*
ie  are resampled with replacement from the residuals ie . 

 

Example 

 

Hormone data: n =27 

Response: amount (amount of milligrams of anti-inflammatory hormone remaining in 27 devices) 

Predictor: hour (Number of hours of wear) 

Group : lot (3 different manufacturing lots) 

 

# Regression model fit 

 
> fit.lm_lm(amount~hour,data=hormone) 

> summary(fit.lm) 

 

Call: lm(formula = amount ~ hour, data = hormone) 

Residuals: 

    Min     1Q   Median    3Q   Max  

 -4.936 -1.728 -0.02287 1.739 3.732 

 

Coefficients: 

               Value Std. Error  t value Pr(>|t|)  

(Intercept)  34.1675   0.8672    39.3999   0.0000 

       hour  -0.0574   0.0045   -12.8683   0.0000 

 

Residual standard error: 2.378 on 25 degrees of freedom 

Multiple R-Squared: 0.8688  

F-statistic: 165.6 on 1 and 25 degrees of freedom, the p-value is 1.584e 

-012  

 

Correlation of Coefficients: 

     (Intercept)  

hour -0.8494     

 
#Bootstrap regression by bootstrapping paris 

 

> hor.boot_bootstrap(hormone,coef(eval(lm.fit$call)),B=200)  

Forming replications  1  to  100  

Forming replications  101  to  200  

> hor.boot 

 

Call: 

bootstrap(data = hormone, statistic = coef(eval(lm.fit$call)), B = 200) 

 

Number of Replications: 200  

 

Summary Statistics: 

             Observed       Bias      Mean       SE  
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(Intercept)  34.16753  0.0057033  34.17323 0.770618 

       hour  -0.05745 -0.0003323  -0.05778 0.004131 

 

> plot(hor.boot) 
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# Bootstrap regression by bootstrapping residuals 

 

> library(boot) 

> hormone2_data.frame(hormone,resid=resid(lm.fit),fitted=fitted(lm.fit)) 

> hormone.fun_function(data,i){ 

+ d_data 

+ d$amount_d$fitted+d$resid[i] 

+ coef(update(fit.lm,data=d)) 

+ } 

 

> hor.lm.boot_boot(hormone2,hormone.fun,R=200) 

> hor.lm 

Problem: Object "hor.lm" not found  

Use traceback() to see the call stack 

> hor.lm.boot 

 

ORDINARY NONPARAMETRIC BOOTSTRAP 

 

 

Call: 

boot(data = hormone2, statistic = hormone.fun, R = 200) 

 

 

Bootstrap Statistics : 
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       original        bias    std. error  

t1*  34.1675282  0.0414358271 0.782883776 

t2*  -0.0574463 -0.0002944581 0.004160554 

 

> plot(hor.lm.boot) 
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COMPARING TWO SAMPLE: BOOTSTRAP CI for the mean difference 

 

We use our grade.data to compare the means of MT.I and MT.II. 

 
> attach(grade.data) 

> t.test(MT.I-MT.II) 

 

 One-sample t-Test 

 

data:  MT.I - MT.II  

t = 1.3713, df = 27, p-value = 0.1816  

alternative hypothesis: true mean is not equal to 0  

95 percent confidence interval: 

 -1.789946  9.004232  

sample estimates: 

 mean of x  

  3.607143 

 

> grade.boot_boot(MT.I-MT.II,function(x,i) mean(x[i]),R=200) 

> boot.ci(grade.boot,type=c("norm","basic","perc","bca")) 

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 

Based on 200 bootstrap replicates 

 

CALL :  
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boot.ci(boot.out = grade.boot, type = c("norm", "basic", "perc", "bca") 

 ) 

 

Intervals :  

Level      Normal              Basic          

95%   ( -1.609,   8.347 )   ( -2.061,   8.436 )   

 

Level     Percentile            BCa           

95%   ( -1.222,   9.275 )   ( -1.641,   8.870 )   

Calculations and Intervals on Original Scale 

Some basic intervals may be unstable 

Some percentile intervals may be unstable 

Some BCa intervals may be unstable 

> plot(grade.boot) 
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Another possible CI is the studentized CI which based on the studentized statistics. This CI is known as the 

most reliable. To calculate the studentized CI we need a variance estimate of the parameter estimate from 

each bootstrap sample. 

 
> mean.fun_function(d,i){n_length(i);c(mean(d[i]),(n-1)*var(d[i])/n^2)} 

> grade.boot.stud_boot(MT.I-MT.II,mean.fun,R=200) 

> boot.ci(grade.boot.stud,type="stud") 

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 

Based on 200 bootstrap replicates 

 

CALL :  

boot.ci(boot.out = grade.boot.stud, type = "stud") 

 

Intervals :  

Level    Studentized      

95%   ( -2.157,   8.808 )   

Calculations and Intervals on Original Scale 

Some studentized intervals may be unstable 

> plot(grade.boot.stud) 
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Comparing medians 
 

> grade.boot_boot(MT.I-MT.II,function(x,i) median(x[i]),R=200) 

> boot.ci(grade.boot,type=c("norm","basic","perc","bca")) 

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 

Based on 200 bootstrap replicates 

 

CALL :  

boot.ci(boot.out = grade.boot, type = c("norm", "basic", "perc", "bca") 

 ) 

 

Intervals :  

Level      Normal              Basic          

95%   ( -3.606,   7.966 )   ( -3.000,   8.000 )   

 

Level     Percentile            BCa           

95%   ( -3.00,   8.00 )   ( -4.50,   6.38 )   

Calculations and Intervals on Original Scale 

Some basic intervals may be unstable 

Some percentile intervals may be unstable 

Some BCa intervals may be unstable 

 

> truehist(grade.boot$t,h=1) 
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The Studentized CI can be obtained as follows; 

 
> median.fun_function(d,i){n_length(i);c(median(d[i]),(n-1)*var(d[i])/n^2)} 

> grade.boot.stud_boot(MT.I-MT.II,median.fun,R=200) 

> boot.ci(grade.boot.stud,type="stud") 

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 

Based on 200 bootstrap replicates 

 

CALL :  

boot.ci(boot.out = grade.boot.stud, type = "stud") 

 

Intervals :  

Level    Studentized      

95%   ( -1.785,   8.520 )   

Calculations and Intervals on Original Scale 

Some studentized intervals may be unstable 

> truehist(grade.boot.stud$t,h=1) 
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SMOOTH REGRESSION (Brief note) 

 

Data: Random sample of size 100 to predict Life Span by the length of one’s lifeline (left hand). Source: 

Newrick et.al. (1990) Journal of the Royal Society of Medicine and Modern Regression Methods, T.P. Ryan, 

Wiley Interscience. 

  

Kernel Regression 

 
> plot(lifeline,lifespan,pch=16) 

> lines(ksmooth(lifeline,lifespan,kernel="normal",bandwidth=10),lty=3) 

> lines(ksmooth(lifeline,lifespan,kernel="normal",bandwidth=3),lty=4) 

> legend(65,65,c("kernel bw=10","kernel bw=3"),lty=c(3,4)) 

 

The larger the bandwidth, the smoother the fit. For the more option of the kernel functions, refer the S+ 

help note. 
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> yhat_approx(kernel.fit,xout=lifeline)$y  

> resid <- lifespan-yhat  

> plot(yhat,resid) 

> lines(lowess(yhat,resid)) 
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Locally weighted regression (Cleveland 1979) 

 
> plot(lifeline,lifespan,pch=16) 

> abline(lm(lifespan~lifeline)) 

> lines(lowess(lifeline,lifespan),lty=3) 

> lines(lowess(lifeline,lifespan,0.1),lty=4) 

> legend(60,65,c("simple regression","lowess f=default (.67)","lowess 

f=0.1"),lty=c(1,3,4)) 
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Using interface,  

 

Statistics Smoothing  Loess  specify the data, x, and y  change the options for symbols and lines 

as you wish  Smooth/Sort option  Span: type in the smoothing parameter f (default is 0.75). The 

larger the value, the smoother the fit  Degree: 1 for linear 2 for quadratic fit  Family: Gauss for 

default, Symmetric for robust fitting 

 
> yhat_approx(Lowess.fit,xout=lifeline)$y  

> resid <- lifespan-yhat  

> plot(yhat,resid) 

> lines(lowess(yhat,resid)) 
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Using the Interface: Statistics  Regression  Local (loess)  etc 

 

Natural Spline 

 
>  plot(lifeline,lifespan,pch=16) 

> lines(lifeline, fitted(lm(lifespan~ns(lifeline,df=20))),lty=3) 

> lines(lifeline, fitted(lm(lifespan~ns(lifeline,df=5))),lty=4) 

> legend(65,65,c("Natural Spline df=20","Natural Spline df=5"),lty=c(3,4)) 
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