Skip to main content

Bioactive Compounds and Biological Activities of Tuber Fleeceflower Root (Polygonum multiflorum Thunb.)

  • Living reference work entry
  • First Online:
Bioactive Compounds in the Storage Organs of Plants

Abstract

Polygonum multiflorum Thunb. is an important medicinal plant in North America and East and Southeast Asia. Its tuberous roots contain numerous bioactive compounds, including anthraquinones, stilbenes, tannin, and phospholipids with pharmaceutical properties, and were used as a traditional folk for a thousand years. The root extracts of this herb, as well as isolated compounds, have been demonstrated to possess several medicinal properties which have been widely employed such as coronary heart disease, hyperlipidemia, neurosis, other diseases, etc. In this chapter, we presented the nutritional status, chemical compounds isolated from tuberous roots, and pharmacological properties of this medicinal plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Thiruvengadam M, Nagella P, Kim EH, Kim SH, Chung IM (2014) Production of anthraquinones, phenolic compounds and biological activities from hairy root cutlurs of Polygonum multiflorum Thunb. Protoplasma 251:555–566

    Article  CAS  PubMed  Google Scholar 

  2. Ho TT, Murthy HN, Dalawai D, Bhat MA, Paek KY, Park SY (2019) Attributes of Polygonum multiflorum to transfigure red biotechnology. App Microbiol Biotechnol 103:3317–3326

    Article  CAS  Google Scholar 

  3. Han MN, Lu JM, Zhang GY, Yu J, Zhao RH (2015) Mechanistic studies on the use of Polygonum multiflorum for the treatment of hair graying. Biomed Res Int 2015:1–8

    Google Scholar 

  4. Yi T, Leung KS, Lu GH, Zhang H, Chan K (2007) Identification and determination of the major constituents in traditional Chinese medicinal plant Polygonum multiflorum thunb by HPLC coupled with PAD and ESI/MS. Phytochem Anal 18:181–187

    Article  CAS  PubMed  Google Scholar 

  5. Lin L, Ni B, Lin H, Zhang M, Li X, Yin X, Qu C, Ni J (2015) Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: a review. J Ethnopharmacol 159:158–183

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Wang Q, Yang J, Guo X, Liu W, Ma S, Li S (2018) Polygonum multiflorum Thunb.: a review on chemical analysis, processing mechanism, quality evaluation, and hepatotoxicity. Front Pharmacol 9:1–16

    Google Scholar 

  7. Teka T, Wang L, Gao J, Mou J, Pan G, Yu H, Gao X, Han L (2021) Polygonum multiflorum: recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. J Ethnopharmacol 271:113864

    Article  CAS  PubMed  Google Scholar 

  8. Chen Z (2015) Heshouwu. In: Chen Z (ed) Commission of Chinese Pharmacopeia 2015. Pharmacopeia of People’s Republic of China. 1. Zongguo Yiyao Keji Chubanshe, Beijing, pp 175–177

    Google Scholar 

  9. Kim GY, Komakech R, Jeong DH, Jeon K, Park Y, Lee TK, Kim KH, Moon BC, Kang Y (2020) Verification of the field productivity and bioequivalence of a medicinal plant (Polygonum multiflorum) developed using an in vitro culture method. Plant 9:1280

    Article  CAS  Google Scholar 

  10. Choi JW, Lee HS, Kim YE, Kim BM, Kim IH, Lee CH (2012) Effect of Polygoni multiflori Thunberg extract on lipid metabolism in rats fed high-cholesterol diet. J Korean Soc Food Sci Nutr 41:957–962

    Article  CAS  Google Scholar 

  11. Yim TK, Wu WK, Mak DH, Ko MW (1998) Myocardial protective effect of an anthraquinone-containing extract of Polygonum multiflorum ex vivo. Planta Med 64:607–611

    Article  CAS  PubMed  Google Scholar 

  12. Song HB, Du XX, Guo XX, Ren JT, Yang L Pang Y (2015) Safety and risk factor analysis of Polygonum mutiflori Radix base on ancient traditional Chinese medicine literatures. Zhongguo Zhong Yao Za Zhi 40: 985–988

    Google Scholar 

  13. Zhang L, Yang X, Deng Y (2009) Evaluation and consideration on safety information abroad of Polygonum multiflorum and its preparations. Chin J Chin Mater Med 34:2414–2418

    Google Scholar 

  14. Kang Y, Lee K, Choi J, Komakech R, Min J, Ju S, Kim S, Youn C, Kim YG, Moon BC (2018) Maximizing seedling and root tuber production in Polygonummultiflorum for use in ethnomedicine. S Afr J Bot 119:119–131

    Article  Google Scholar 

  15. Li R, Gao H (2015) Polygonum multiflorum Thunb. (Heshouwu, Tuber fleeceflower root). In: Liu Y, Wang Z, Zhang J (eds) Dietary Chinese herbs 2015. Springer, Vienna, pp 227–234

    Google Scholar 

  16. Sun QX, Bai MM, Yao H, Guo LJ, Li MM, Hang YY (2013) DNA barcoding of populations of Fallopia multiflora, an indigenous herb in China. Genet Mol Biol 12:4078–4089

    CAS  Google Scholar 

  17. Thang DN, Diep NP, Lien HTP, Lien TL (2017) Polygonum multiflorum root extract as a potential candidate for treatment of early graying hair. J Adv Pharm Technol Res 8:8–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bounda GA, Feng YU (2015) Review of clinical studies of Polygonum multiflorum Thunb. and its isolated bioactive compounds. Pharm Res 7:225–236

    CAS  Google Scholar 

  19. Lv L, Cheng Y, Zheng T, Xiao L, Zhai R (2014) Purification, antioxidant activity and antiglycation of polysaccharides from Polygonum multiflorum Thunb. Carbohydr Polym 99:765–773

    Article  CAS  PubMed  Google Scholar 

  20. Na MK, Park JY, An RB, Lee SM, Kim YH, Lee JP, Seong RS, Lee KS, Bae KH (2000) Quality evaluation of Polygonum multiflorum Radix. Kor J Pharmacogn 31:335–339

    Google Scholar 

  21. Liu Z, Zhong G, Yan S, Xue F, Zha Z (2008) Study on the change of content of monosaccharides and disaccharides in the process of processing of Polygoni multiflori Radix by HPLC–ELSD. Chin J Exp Tradit Med Form 14(5):6–8

    CAS  Google Scholar 

  22. Lee HY, Hwang CE, Hwa KF, Cho DY, Jung JG, Kim MJ, Jeong JB, Jang MY, Cho KM (2022) Comprehensive comparison of the primary and secondary metabolites and antioxidant activity of Polygoni multiflori Radix by processing methods. J App Biol Chem 65:287–298

    Article  Google Scholar 

  23. Huang B, Lin H, Yan C, Qiu H, Qiu L, Yu R (2014) Optimal inductive and cultural conditions of Polygonum multiflorum transgenic hairy roots mediated with Agrobacterium rhizogenes R1601 and analysis of their anthraquinone constituents. Phrmacog Mag 10:77–82

    Article  CAS  Google Scholar 

  24. Jiao Y, Zuo Y (2009) Ultrasonic extraction and HPLC determination of anthraquinones, aloe-emodine, emodine, rheine, chrysophanol and physcion, in roots of Polygoni multiflori. Phytochem Anal 20:272–278

    Article  CAS  PubMed  Google Scholar 

  25. Liang ZT, Shi YX, Chen HB, Zhao ZZ (2011) Histochemical analysis of the root tuber of Polygonum multiflorum Thunb. (Fam. Polygonaceae). Microsc Res Tech 74:488–49523

    Article  CAS  PubMed  Google Scholar 

  26. Zhu ZW, Li J, Gao XM, Amponsem E, Kang L, Hu L, Zhang B, Chang Y (2012) Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in radix Polygoni multiflori by LC-MS/MS. J Pharm Biomed Anal 62:162–166

    Article  CAS  PubMed  Google Scholar 

  27. Ho TT, Lee JD, Jeong CS, Paek KY, Park SY (2018) Improvement of biosynthesis and accumulation of bioactive compounds by elicitation in adventitious root cultures of Polygonum multiflorum. Appl Microbiol Biotechnol 102:199–209

    Article  CAS  PubMed  Google Scholar 

  28. Qiu XH, Zhang J, Huang ZH, Zhu DY, Xu W (2013) Profiling of phenolic constituents in Polygonum multiflorum Thunb by combination of ultra-high pressure liquid chromatography with linear ion trap-Orbitrap mass spectrometry. J Chromatogr A 1292:121–131

    Article  CAS  PubMed  Google Scholar 

  29. Han LF, Wu B, Pan GX, Wang YF, Song XB, Gao XM (2009) UPLC-PDA analysis for simultaneous quantification of four active compounds in crude and processed rhizome of Polygonum multiflorum Thunb. Chromatographia 70:657–659

    Article  CAS  Google Scholar 

  30. Han DQ, Zhao J, Xu J, Peng HS, Chen XJ, Li SP (2013) Quality evaluation of Polygonum multiflorum in China based on HPLC analysis of hydrophilic bioactive compounds and chemometrics. J Pharmaceut Biomed 72:223–230

    Article  CAS  Google Scholar 

  31. Sun JL, Huang XL, Wu HQ, Huang F (2009) Determination of content and light stability of cis- and trans-2,3,5,4′-tetrahydroxystilbene-2-O-b-glucoside in radix Polygoni multiflori by HPLC/DAD/MS. Chin Pharm J 44:541–544

    CAS  Google Scholar 

  32. Zhang ZG, Lv TS, Yao QQ (2006) Studies on the anthraquinone chemical constituents of radix Polygoni multiflori. Chin Trad Herb Drug 37:1311–1313

    CAS  Google Scholar 

  33. Li JB, Lin M (1993) Study on the chemical constituents of Polygonum multiflorum Thunb. Chin Trad Herb Drug 3:115–118

    Google Scholar 

  34. Zhang JX, Cui YM (2016) Chemical constituents from Polygonum multiflorum. Zhongguo Zhongyao Zazhi 41:3252–3255

    PubMed  Google Scholar 

  35. Nonaka GI, Miwa N, Nishioka I (1982) Stilbene glycoside gallates and proantho-cyanidins from Polygonum multiflorum. Phytochemistry 21:429–432

    Article  CAS  Google Scholar 

  36. Zhou LX, Lin M, Li JB, Li SZ (1994) Chemical studies on the ethyl acetate insoluble fraction of the roots of Polygonum mutifloum Thunb. Acta Pharma Sin 29:107–110

    CAS  Google Scholar 

  37. Yan SL, Su YF, Chen L, Que M, Gao XM, Chang JB (2014) Polygonumosides A-D, stilbene derivatives from processed roots of Polygonum multiflorum. J Nat Prod 77:397–401

    Article  CAS  PubMed  Google Scholar 

  38. Zhao ZQ, Su YF, Yan SL, Li TX, Li J, Gao XM (2016) Chromenone derivatives from processed roots of Polygonum multiflorum. Chem Nat Compd 52:838–840

    Article  CAS  Google Scholar 

  39. Xu YL, Dong Q, Hu FZ (2009) Simultaneous quantitative determination of eight active components in Polygonum multiflorum Thunb by RPHPLC. J Chin Pharm Sci 18:358–361

    CAS  Google Scholar 

  40. Li SG, Huang XJ, Li MM, Liu Q, Liu H, Wang Y (2018) Multiflorumisides A-G, dimeric stilbene glucosides with rare coupling patterns from the roots of Polygonum multiflorum. J Nat Prod 81:254–263

    Article  CAS  PubMed  Google Scholar 

  41. Nguyen TTA, Ha MT, Park SE, Choi JS, Min BS, Kim JA (2020) Stilbenes with potent protein tyrosine phosphatase-1B inhibitory activity from the roots of Polygonum multiflorum. J Nat Prod 83:323–332

    Article  CAS  PubMed  Google Scholar 

  42. Xu ML, Zheng MS, Lee YK, Moon DC, Lee CS, Woo MH, Jeong BS, Lee ES, Jahng Y, Chang HW, Lee SH, Son JK (2006) A new stilbene glucoside from the roots of Polygonum multiflorum Thunb. Arch Pharm Res 29:946–951

    Article  CAS  PubMed  Google Scholar 

  43. Chen WS, Zhang WD, Qiao C (2001) Analysis of the constituents of essential oil from radix Polygoni multiflori preparata. J Chin Med Mater 23:684–685

    Google Scholar 

  44. Luo YY, Liu JX, Liu T, Liu XH, Lan CW, Wang SN (2016) Simultaneous determination of stilbenes, anthraquinones, flavonoids and phenolic acids in Polygoni multiflori radix by UPLC-MS/MS. Zhipu Xuebao 37:327–335

    CAS  Google Scholar 

  45. Lee BJ, Lee KJ (2015) Discrimination and proper use of Polygoni multiflori radix, Cynanchi wilfordii radix, and Cynanchi auriculati radix in Korea: a descriptive review. Roy Soc Med Int Cong 2015:1–7

    Google Scholar 

  46. Chen LL, Huang XJ, Li MM, Ou GM, Zhao BX, Chen MF, Zhang QW, Wang Y, Ye WC (2012) Polygonflavanol A, a novel flavonostilbene glycoside from the roots of Polygonum multiflorum. Phytochem Lett 5:756–760

    Article  CAS  Google Scholar 

  47. Reddy MVB (2016) A new naphthoquinone isolated from Polygonum multiflorum (Polygonaceae). Int J Pharm Pharmaceut Sci 8:387–389

    CAS  Google Scholar 

  48. Yuan W, Gao ZP, Yan JB, Wang AG (2017) Chemical constituents from Polygonum multiflorum. Chin Tradit Herb Drug 48:631–634

    Google Scholar 

  49. Dong X, Fu J, Yin X, Li X, Wang B, Cao S, Ni J (2014) Pharmacological and other bioactivities of the genus Polygonum-A review. Trop J Pharm Res 13(10):1749–1759

    Google Scholar 

  50. Narasimhulu G, Reddy K, Mohamed J (2014) The genus Polygonum (Polygonaceae): an ethnopharmacological and phytochemical perspectives – review. Int J Pharm Pharmaceut Sci 6(2):21–45

    Google Scholar 

  51. Shen BB, Yang YP, Yasamin S, Liang N, Su W, Chen SH, Wang XJ, Wang W (2018) Analysis of the phytochemistry and bioactivity of the genus Polygonum of Polygonaceae. Digit Chin Med 1(1):19–36

    Article  Google Scholar 

  52. Kimura Y, Ohminami H, Okuda H, Baba K, Kozawa M, Arichi S (1983) Effects of stilbene components of roots of Polygonum ssp. on liver injury in peroxidized oil-fed rats. Planta Med 49(9):51–54

    Article  CAS  PubMed  Google Scholar 

  53. Siu PI, Tse ASM, Poon MKT, Ko KM, Ma CY (1997) Antioxidant activities of Polygonum multiflorum Thunb, in vivo and in vitro. Phytother Res 11:42–44

    Article  Google Scholar 

  54. Chen Y, Wang M, Rosen RT, Ho CT (1999) 2,2-Diphenyl-1-picrylhydrazyl radical-scavenging active components from Polygonum multiflorum Thunb. J Agric Food Chem 47:2226–2228

    Article  CAS  PubMed  Google Scholar 

  55. Lv L, Gu X, Ho CT, Tang J (2005) Stilbene glycoside from the roots of Polygonum multiflorum Thunb and their in vitro antioxidant activities. J Food Lipids 13:131–144

    Google Scholar 

  56. Hwang IK, Yoo KY, Kim DW, Jeong SJ, Won CK, Moon WK, Kim YS, Kwon DY, Won MH, Kim DW (2006) An extract of Polygonum multiflorum protects against free radical damage induced by ultraviolet B irradiation of the skin. Braz J Med Biol Res 39(9):1181–1188

    Article  CAS  PubMed  Google Scholar 

  57. Zhu Y, Li C, Li H, Wang X (2019) Anti-cancer effect of anthraquinones in Polygoni multiflori Radix. Chin J Exp Tradit Med Form 24:196–205

    Google Scholar 

  58. Cavalcante GC, Schaan AP, Cabral GF, Santana-da-Silva MN, Pinto P, Vidal AF, Ribeiro-Dos-Santos A (2019) A cell’s fate: an overview of the molecular biology and genetics of apoptosis. Int J Mol Sci 20(17):4133

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chan YC, Cheng FC, Wang MF (2002) Beneficial effects of different Polygonum multiflorum Thunb. extracts on memory and hippocampus morphology. J Nutr Sci Vitaminol (Tokyo) 48(6):491–497

    Article  CAS  PubMed  Google Scholar 

  60. Akkol EK, Tatlı II, Karatoprak GŞ, Ağar OT, Yücel Ç, Sobarzo-Sánchez E, Capasso R (2021) Is emodin with anticancer effects completely innocent? Two sides of the coin. Cancers 13(11):2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang X, Qin J (2021) Progress on the study of the anti-tumor effect of emodin. J Biosci Med 9:207–218

    CAS  Google Scholar 

  62. McDonald SJ, VanderVeen BN, Velazquez KT, Enos RT, Fairman CM, Cardaci TD, Fan D, Murphy EA (2022) Therapeutic potential of emodin for gastrointestinal cancers. Integr Cancer Ther 21:15347354211067469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin SZ, Xu JB, Ji X (2015) Emodin inhibits angiogenesis in pancreatic cancer by regulating the transforming growth factor-β/drosophila mothers against decapentaplegic path-way and angiogenesis-associated microRNAs. Mol Med Rep 12:5865–5871

    Article  CAS  PubMed  Google Scholar 

  64. Carver W, Fix E, Fix C, Fan D, Chakrabarti M, Azhar M (2021) Effects of emodin, a plant-derived anthraquinone, on TGF-β1-induced cardiac fibroblast activation and function. J Cell Physiol 236:7440–7449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bai J, Wu J, Tang R et al (2020) Emodin, a natural anthraquinone, suppresses liver cancer in vitro and in vivo by regulating VEGFR2 and miR-34a. Investig New Drugs 38:229–245

    Article  CAS  Google Scholar 

  66. Gu J, Cui CF, Yang L, Wang L, Jiang XH (2019) Emodin inhib-its colon cancer cell invasion and migration by suppressing epithelial-mesenchymal transition via the Wnt/β-Catenin pathway. Oncol Res 27:193–202

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yang N, Li C, Li H, Liu M, Cai X, Cao F, Feng Y, Li M, Wang X (2019) Emodin induced SREBP1-dependent and SREBP1-independent apoptosis in hepatocellular carcinoma cells. Front Pharmacol 10:709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dong H, Wu G, Xu H (2018) N-acetylaminogalactosyl-decorated biodegradable PLGA-TPGS copolymer nanoparticles containing emodin for the active targeting therapy of liver cancer. Artif Cells Nanomed Biotechnol 46:260–272

    Article  CAS  PubMed  Google Scholar 

  69. Khan H, Jia W, Yu Z, Zaib T, Feng J, Jiang Y, Song H, Bai Y, Yang B, Feng H (2020) Emodin succinyl ester inhibits malignant proliferation and migration of hepatocellular carcinoma by suppressing the interaction of AR and EZH2. Biomed Pharmacother 128:110244

    Article  CAS  PubMed  Google Scholar 

  70. Yang K, Jin MJ, Quan ZS, Piao HR (2019) Design and synthesis of novel anti-proliferative emodin derivatives and studies on their cell cycle arrest, apoptosis pathway and migration. Molecules 24:E884

    Article  Google Scholar 

  71. Li C, Gao S, Yang WS, Jin GZ, Sun S (2019) β-Dihydroartemisinin-Emodin promotes apoptosis by activating extrinsic and intrinsic pathways in human liver cancer cells. Ann Clin Lab Sci 49:281–290

    CAS  PubMed  Google Scholar 

  72. Sanders B, Ray AM, Goldberg S, Clark T, McDaniel HR, Atlas SE, Farooqi A, Konefal J, Lages LC, Lopez J, Rasul A, Tiozzo E, Woolger JM, Lewis JE (2017) Anti-cancer effects of aloe-emodin: a systematic review. J Clin Transl Res 3(3):283–296

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen YY, Chiang SY, Lin JG, Ma YS, Liao CL, Weng SW, Lai TY, Chung JG (2010) Emodin, aloe-emodin and rhein inhibit migration and invasion in human tongue cancer scc-4 cells through the inhibition of gene expression of matrix metalloproteinase-9. Int J Oncol 36:1113–1120

    CAS  PubMed  Google Scholar 

  74. Radovic J, Maksimovic-Ivanic D, Timotijevic G, Popadic S, Ramic Z, Trajkovic V, Miljkovic D, Stosic-Grujicic S, Mija-tovic S (2012) Cell-type dependent response of melanoma cells to aloe emodin. Food Chem Toxicol 50:3181–3189

    Article  CAS  PubMed  Google Scholar 

  75. Henamayee S, Banik K, Sailo BL, Shabnam B, Harsha C, Srilakshmi S, Vgm N, Baek SH, Ahn KS, Kunnumakkara AB (2020) Therapeutic emergence of rhein as a potential anticancer drug: a review of its molecular targets and anticancer properties. Molecules 25(10):2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Long X, Tang H, Song J, Zhang L, Li X (2019) Chrysophanol: a review of its pharmacology, toxicity and pharmacokinetics. J Pharm Pharmacol 71(10):1475–1487

    Article  PubMed  Google Scholar 

  77. Shi GH, Zhou L (2018) Emodin suppresses angiogenesis and metastasis in anaplastic thyroid cancer by affecting TRAF6-mediated pathways in vivo and in vitro. Mol Med Rep 18(6):5191–5197

    CAS  PubMed  Google Scholar 

  78. Song X, Zhou X, Qin Y, Yang J, Wang Y, Sun Z, Yu K, Zhang S, Liu S (2018) Emodin inhibits epithelial-mesenchymal transition and metastasis of triple negative breast cancer via antagonism of CC-chemokine ligand 5 secreted from adipocytes. Int J Mol Med 42(1):579–588

    CAS  PubMed  Google Scholar 

  79. Zhang Y, Pu W, Bousquenaud M, Cattin S, Zaric J, Sun LK, Rüegg C (2021) Emodin inhibits inflammation, carcinogenesis, and cancer progression in the AOM/DSS model of colitis-associated intestinal tumorigenesis. Front Oncol 10:564674

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lee KH, Lee MS, Cha EY, Sul JY, Lee JS, Kim JS, Park JB, Kim JY (2017) Inhibitory effect of emodin on fatty acid synthase, colon cancer proliferation and apoptosis. Mol Med Rep 15(4):2163–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sougiannis AT, VanderVeen B, Chatzistamou I, Kubinak JL, Nagarkatti M, Fan D, Murphy EA (2022) Emodin reduces tumor burden by diminishing M2-like macrophages in colorectal cancer. Am J Physiol Gastrointest Liver Physiol 322(3):G383–G395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Saunders IT, Mir H, Kapur N, Singh S (2019) Emodin inhibits colon cancer by altering BCL-2 family proteins and cell survival pathways. Cancer Cell Int 98

    Google Scholar 

  83. Li Z, Lin Y, Zhang S, Zhou L, Yan G, Wang Y, Zhang M, Wang M, Lin H, Tong Q, Duan Y, Du G (2019) Emodin regulates neutrophil phenotypes to prevent hypercoagulation and lung carcinogenesis. J Transl Med 17(1):90

    Article  PubMed  PubMed Central  Google Scholar 

  84. Su J, Yan Y, Qu J, Xue X, Liu Z, Cai H (2017) Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway. Oncol Rep 37(3):1565–1572

    Article  PubMed  Google Scholar 

  85. Wang X, Li L, Guan R, Zhu D, Song N, Shen L (2017) Emodin inhibits ATP-induced proliferation and migration by suppressing P2Y receptors in human lung adenocarcinoma cells. Cell Physiol Biochem 44(4):1337–1351

    Article  CAS  PubMed  Google Scholar 

  86. Lin W, Zhong M, Yin H, Chen Y, Cao Q, Wang C, Ling C (2016) Emodin induces hepatocellular carcinoma cell apoptosis through MAPK and PI3K/AKT signaling pathways in vitro and in vivo. Oncol Rep 36(2):961–967

    Article  CAS  PubMed  Google Scholar 

  87. Qin B, Zeng Z, Xu J, Shangwen J, Ye ZJ, Wang S, Wu Y, Peng G, Wang Q, Gu W, Tang Y (2022) Emodin inhibits invasion and migration of hepatocellular carcinoma cells via regulating autophagy-mediated degradation of snail and β-catenin. BMC Cancer 22(1):671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Su Y, Wang QH, Wang CF, Chan K, Sun YP, Kuang HX (2014) The treatment of Alzheimer’s disease using Chinese medicinal plants: from disease models to potential clinical applications. J Ethnopharmacol 52:403–423

    Article  Google Scholar 

  89. Yang J, He Y, Zou J, Xu L, Fan F, Ge Z (2019) Effect of Polygonum multiflorum Thunb on liver fatty acid content in aging mice induced by D-galactose. Lipids Health Dis 18:128

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhou X, Yang Q, Xie Y, Sun J, Hu J, Qiu P, Cao W, Wang S (2015) Tetrahydroxystilbene glucoside extends mouse life span via upregulating neural klotho and downregulating neural insulin or insulin-like growth factor 1. Neurobiol Aging 36:1462–1470

    Article  CAS  PubMed  Google Scholar 

  91. Wu XQ, Chen XZ, Huang QC, Fang DM, Li GY, Zhang GL (2012) Toxicity of raw and processed roots of Polygonum multiflorum. Fitoterapia 83(3):469–475

    Article  CAS  PubMed  Google Scholar 

  92. Yang JB, Li WF, Liu Y, Wang Q, Cheng XL, Wei F, Wang AG, Jin HT, Ma SC (2018) Acute toxicity screening of different extractions, components and constituents of Polygonum multiflorum Thunb. on zebrafish (Danio rerio) embryos in vivo. Biomed Pharmacother 99:205–213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106.01-2021.34.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Tam Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ho, TT. et al. (2023). Bioactive Compounds and Biological Activities of Tuber Fleeceflower Root (Polygonum multiflorum Thunb.). In: Murthy, H.N., Paek, K.Y., Park, SY. (eds) Bioactive Compounds in the Storage Organs of Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-29006-0_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29006-0_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29006-0

  • Online ISBN: 978-3-031-29006-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics