Skip to main content
Log in

Growth and mycelial strand production of Rigidoporus lignosus with various nitrogen and carbon sources

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Growth and differentiation of mycelial strands in Rigidoporus lignosus have been shown to depend on suitable combinations of the pH of the media and the nature of the nitrogen and carbon sources. Amino acids as sole nitrogen sources gave rise to vegetative mycelium. At pH 4.5, growth and mycelial strand differentiation required asparagine, as the fungus failed to grow in the absence of this amino acid. However, at pH 6, differentiation of strands occurred appreciably in asparagine-deficient media, suggesting a close balance between pH and amino acid requirements. Ammonium was required for strand differentiation, while nitrate, as a sole nitrogen source, maintained the fungus undifferentiated. Of the carbohydrates tested, only glucose, fructose and mannose supported strand differentiation. Starch was found to be particularly effective in promoting growth of vegetative mycelium. Strand differentiation required more specific conditions than growth of the vegetative mycelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garraway MO, Evans RC. Fungal Nutrition and Physiology. New York: Wiley, 1984.

    Google Scholar 

  2. Fahmy FA, Yusef HM. A study on certain factors affecting synnema length in Trichurus spiralis Hasselbring. Acta Phytopathol Acad Sci Hung 1974; 9: 89–98.

    Google Scholar 

  3. Weinhold AR, Garraway MO. Nitrogen and carbon nutrition of Armillaria mellea in relation to growth-promoting effects of ethanol. Phytopathology 1966; 56: 108–112.

    CAS  Google Scholar 

  4. Wargo PM. Defoliation and secondary-action organism attack: with emphasis on Armillaria mellea. J Arbori 1981; 7: 64–69.

    Google Scholar 

  5. Moody AR, Weinhold AR. Stimulation of rhizomorph production by Armillaria mellea with lipid from tree roots. Phytopathology 1972; 62: 1347–1350.

    Article  CAS  Google Scholar 

  6. Shaw CG. In vitro responses of different Armillaria taxa to gallic acid, tannic acid, and ethanol. Plant Pathol 1985; 34: 594–602.

    Article  CAS  Google Scholar 

  7. Wargo PM. Changes in phenols affected by Armillaria mellea in bark tissue of roots of oak, Quercus spp. In: Kile GA (ed), Proc. 6th Int. Conf. Root and Butt Rots of Forest Trees; 1983 August 25–31; Melbourne, Victoria, and Gympie, Queensland, Australia. Melbourne: International Union of Forestry Research Organizations. 1984: 198–206.

    Google Scholar 

  8. Lilly VG, Barnett HL. Physiology of the Fungi. New York, McGraw-Hill, 1951.

    Google Scholar 

  9. Jacques-Félix M. Recherches morphologiques, anatomiques, morphogénétiques et physiologiques sur des rhizomorphes de champignons supérieurs et sur le déterminisme de leur formation, II. Recherches sur la morphogenèse des rhizomorphes et télopodes en culture pure. Bull Soc Mycol Fr 1968; 84: 161–307.

    Google Scholar 

  10. Hanlin RJ. Studies on the genus Nectria. I. Factors influencing perithecial formation in culture. Bull Tor Bot Club 1961; 88: 95–103.

    Article  Google Scholar 

  11. Allermann K, Sortkjaer O. Rhizomorph formation in fungi, II. The effect of twelve different alcohols on growth and rhizomorph formation in Armillaria mellea and Clitocybe geotropa. Physiol Plant 1973; 28: 51–55.

    Article  CAS  Google Scholar 

  12. Slaughter ]JC. Nitrogen metabolism. In: Berry DR (ed), Physiology of Industrial Fungi. Oxford: Blackwell Scientific Publications, 1988: 58–76.

    Google Scholar 

  13. Garrett SD. Rhizomorph behavior in Armillaria mellea (Vahl) Quél, I. Factors controlling rhizomorph initiation by A mellea in pure culture. Ann Bot 1953; 17: 63–79.

    Google Scholar 

  14. Rykowski K. Recherche sur la nutrition azotée de plusieurs souches de l' Armillaria mellea, I. L'influence de differentes concentrations du carbone et de l'azote (C:N). Eur J Forest Pathol 1976; 6: 264–274.

    Article  CAS  Google Scholar 

  15. Botton B, Dexheimer J. Ultrastructure des rhizomorphes du Sphaerostilbe repens B. et Br. Z Pflanzenphysiol 1977; 85: 429–443.

    Google Scholar 

  16. Motta JJ. Peabody DC. Rhizomorph cytology and morphogenesis in Armillaria tabescens; Mycologia 1982; 74: 671–674.

    Article  Google Scholar 

  17. Rayner ADM, Powell KA, Thompson W, Jennings DH. Morphogenesis of vegetative organs. In: Moore D, Casselton LA, Wood DA, Frankland JC (eds), Developmental Biology of Higher Fungi. Cambridge: Cambridge University Press. 1985: 249–279.

    Google Scholar 

  18. Hedger J. Fungi in the tropical forest canopy. Mycologist 1990; 4: 200–202.

    Article  Google Scholar 

  19. Geiger JP, Rio B, Nicole M, Nandris D. Biodegradation of Hevea brasiliensis wood by Rigidoporus lignosus and Phellinus noxius. Eur J For Pathol 1986; 16: 147–159.

    Article  Google Scholar 

  20. Nandris D, Nicole M, Geiger JP. Root rot diseases of rubber trees. Plant Disease 1987; 71: 298–306.

    Article  Google Scholar 

  21. Nicole M, Chamberland H, Rioux D, Lecours N, Rio B, Geiger JP, Ouellette GB. A cytochemical study of extracellular sheaths associated with Rigidoporus lignosus during wood decay. Appl Environ Microbiol 1993; 59: 2578–2588.

    CAS  PubMed  Google Scholar 

  22. Boisson C. Mise en évidence de deux phases mycéliennes successives au cours du développement du Leptoporus lignosus (Kl.) Heim. C R Acad Sc, Paris, Sér. D 1968; 266: 1112–1115.

    Google Scholar 

  23. Boisson C, Goujon M. Induction hormonale et régulation de la formation des sclérotes du Corticium rolfsii (Sacc.) Curzi et des rhizomorphes du Leptoporus lignosus (Kl.) Heim. Rev Cytol Biol Végé 1968; 37: 257–264.

    Google Scholar 

  24. Oso BA. Mycelial growth and amylase production by Talaromyces emersonii. Mycologia 1979; 71: 520–536.

    Article  CAS  Google Scholar 

  25. Botton B. Morphogenèse des organes agrégés chez l'ascomycète Sphaerostilbe repens Berk. & Br. [Dissertation]. Nancy, France: University of Nancy I, 1980, 374 pp.

    Google Scholar 

  26. Morquer R, Hubert MF. Métabolisme des glucides et rhizomorphogenèse chez le Clitocybe mellea. C R Acad Sci, Paris, sér. D 1969; 269: 2199–2204.

    CAS  Google Scholar 

  27. Weinhold AR. Rhizomorph production by Armillaria mellea induced by ethanol and related compounds. Science 1963; 142: 1065–1066.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, T., Button, B. Growth and mycelial strand production of Rigidoporus lignosus with various nitrogen and carbon sources. Mycopathologia 134, 83–89 (1996). https://doi.org/10.1007/BF00436869

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00436869

Key words

Navigation