Skip to main content
Log in

Revisiting phylogenetic diversity and cryptic species of Cenococcum geophilum sensu lato

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The fungus Cenococcum geophilum Fr. (Dothideomycetes, Ascomycota) is one of the most common ectomycorrhizal fungi in boreal to temperate regions. A series of molecular studies has demonstrated that C. geophilum is monophyletic but a heterogeneous species or a species complex. Here, we revisit the phylogenetic diversity of C. geophilum sensu lato from a regional to intercontinental scale by using new data from Florida (USA) along with existing data in GenBank from Japan, Europe, and North America. The combination of internal transcribed spacer (ITS) ribosomal DNA and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene resolved six well-supported lineages (87–100 % bootstrap values) that are closely related to each other and a seventh lineage that is phylogenetically distinct. A multi-locus analysis (small subunit (SSU), large subunit (LSU), translational elongation factor (TEF), and the largest and second-largest subunits of RNA polymerase II (RPB1 and RPB2)) revealed that the divergent lineage is the sister group to all other known Cenococcum isolates. Isolates of the divergent lineage grow fast on nutrient media and do not form ectomycorrhizas on seedlings of several pine and oak species. Our results indicate that C. geophilum sensu lato includes more phylogenetically distinct cryptic species than have previously been reported. Furthermore, the divergent lineage appears to be a non-mycorrhizal sister group. We discuss the phylogenetic diversity of C. geophilum sensu lato and argue in favor of species recognition based on phylogenetic and ecological information in addition to morphological characteristics. A new genus and species (Pseudocenococcum floridanum gen. et sp. nov.) is proposed to accommodate a divergent and putatively non-mycorrhizal lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alamouti SM, Wang V, Diguistini S, Six DL, Bohlmann J, Hamelin RC, Feau N, Breuil C (2011) Gene genealogies reveal cryptic species and host preferences for the pine fungal pathogen Grosmannia clavigera. Mol Ecol 20:2581–2602

    Article  PubMed  Google Scholar 

  • Bahram M, Põlme S, Kõljalg U, Tedersoo L (2011) A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiol Ecol 75:313–320

    Article  CAS  PubMed  Google Scholar 

  • Beiler KJ, Simard SW, LeMay V, Durall DM (2012) Vertical partitioning between sister species of Rhizopogon fungi on mesic and xeric sites in an interior Douglas–fir forest. Mol Ecol 21:6163–6174

    Article  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Chen LH, Yan W, Xu Y (2007) Identification and preliminary analysis of the genetic diversity of Cenococcum geophilum Fr. Agric Sci China 6:956–963

    Article  CAS  Google Scholar 

  • Courty PE, Franc A, Garbaye J (2010) Temporal and functional pattern of secreted enzyme activities in an ectomycorrhizal community. Soil Biol Biochem 42:2022–2025

    Article  CAS  Google Scholar 

  • Dalong M, Luhe W, Guoting Y, Liqiang M, Chun L (2011) Growth response of Pinus densiflora seedlings inoculated with three indigenous ectomycorrhizal fungi in combination. Braz J Microbiol 42:1197–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douhan GW, Rizzo DM (2005) Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum. New Phytol 166:263–271

    Article  CAS  PubMed  Google Scholar 

  • Douhan GW, Huryn KL, Douhan LI (2007a) Significant diversity and potential problems associated with inferring population structure within the Cenococcum geophilum species complex. Mycologia 99:812–819

    Article  CAS  PubMed  Google Scholar 

  • Douhan GW, Martin DP, Rizzo DM (2007b) Using the putative asexual fungus Cenococcum geophilum as a model to test how species concepts influence recombination analyses using sequence data from multiple loci. Curr Genet 52:191–201

    Article  CAS  PubMed  Google Scholar 

  • Douhan GW, Smith ME, Huyrn KL, Westbrook A, Beerli P, Fisher AJ (2008) Multigene analysis suggests ecological speciation in the fungal pathogen Claviceps purpurea. Mol Ecol 17:2276–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez CW, McCormack ML, Hill JM, Pritchard SG, Koide RT (2013) On the persistence of Cenococcum geophilum ectomycorrhizas and its implications for forest carbon and nutrient cycles. Soil Biol Biochem 65:141–143

    Article  CAS  Google Scholar 

  • Fernández-Toirán LM, Águeda B (2007) Fruitbodies of Cenococcum geophilum. Mycotaxon 100:109–114

    Google Scholar 

  • Fries E (1825) Systema orbis vegetabilis I. Typographia academica, Lundae

  • Gazis R, Rehner S, Chaverri P (2011) Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol Ecol 20:3001–3013

    Article  PubMed  Google Scholar 

  • Gonçalves SC, Portugal A, Gonçalves MT, Vieira R, Martins-Loução MA, Freitas H (2007) Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza 17:677–686

    Article  PubMed  Google Scholar 

  • Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucl Acids Res: gkt1183

  • Ingleby K, Mason PA, Last FT, Fleming LV (1990) Identification of ectomycorrhizas. ITE Research Publication, London

    Google Scholar 

  • Jany JL, Garbaye J, Martin F (2002) Cenococcum geophilum populations show a high degree of genetic diversity in beech forests. New Phytol 154:651–659

    Article  CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kipfer T, Wohlgemuth T, van der Heijden MG, Ghazoul J, Egli S (2012) Growth response of drought-stressed Pinus sylvestris seedlings to single-and multi-species inoculation with ectomycorrhizal fungi. PLoS One 7:e35275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Högberg N, Johansson T, Khouja HR, LaButti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Consortium MGI, Tunlid A, Grigoriev IV, Hibbett DS, Martin F (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415

    Article  CAS  PubMed  Google Scholar 

  • LoBuglio KF (1999) Cenococcum. In: Cairney JWG, John WG, Chambers SM (eds) Ectomycorrhizal Fungi Key Genera in Profile. Springer Berlin, Heidelberg, pp 287–309

    Chapter  Google Scholar 

  • LoBuglio KF, Rogers SO, Wang CJK (1991) Variation in ribosomal DNA among isolates of the mycorrhizal fungus Cenococcum geophilum. Can J Bot 69:2331–2343

    Article  CAS  Google Scholar 

  • LoBuglio KF, Berbee ML, Taylor JW (1996) Phylogenetic origins of the asexual mycorrhizal symbiont Cenococcum geophilum Fr. and other mycorrhizal fungi among the Ascomycetes. Mol Phylogenet Evol 6:287–294

    Article  CAS  PubMed  Google Scholar 

  • Loopstra EM, Shaw CG III, Sidle RC (1988) Ectomycorrhizal inoculation fails to improve performance of Sitka spruce seedlings on clearcuts in southeastern Alaska. West J Appl Forest 3:110–112

    Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Massicotte HB, Trappe JM, Peterson RL, Melville LH (1992) Studies on Cenococcum geophilum. II. Sclerotium morphology, germination, and formation in pure culture and growth pouches. Can J Bot 70:125–132

    Article  Google Scholar 

  • Matsuda Y, Hayakawa N, Ito S (2009a) Local and microscale distributions of Cenococcum geophilum in soils of coastal pine forests. Fungal Ecol 2:31–35

    Article  Google Scholar 

  • Matsuda Y, Noguchi Y, Ito S (2009b) Ectomycorrhizal fungal community of naturally regenerated Pinus thunbergii seedlings in a coastal pine forest. J For Res 14:335–341

    Article  CAS  Google Scholar 

  • Matsuda Y, Takeuchi K, Obase K, Ito S (2015) Spatial distribution and genetic structure of Cenococcum geophilum in coastal pine forests in Japan. FEMS Microbiol Ecol 91:fiv108

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, Louisiana, pp 1–8

  • Obase K, Cha JY, Lee JK, Lee SY, Lee JH, Chun KW (2009) Ectomycorrhizal fungal communities associated with Pinus thunbergii in the eastern coastal pine forests of Korea. Mycorrhiza 20:39–49

    Article  PubMed  Google Scholar 

  • Obase K, Lee JK, Lee SK, Lee SY, Chun KW (2010) Variation in sodium chloride resistance of Cenococcum geophilum and Suillus granulatus isolates in liquid culture. Mycobiology 38:225–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Obase K, Lee JK, Lee SY, Chun KW (2011a) Diversity and community structure of ectomycorrhizal fungi in Pinus thunbergii coastal forests in the eastern region of Korea. Mycoscience 52:383–391

    Article  Google Scholar 

  • Obase K, Lee SY, Chun KW, Lee JK (2011b) Enzyme activity of Cenococcum geophilum isolates on enzyme-specific solid media. Mycobiology 39:125–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obase K, Douhan GW, Matsuda Y, Smith ME (2014) Culturable fungal assemblages growing within Cenococcum sclerotia in forest soils. FEMS Microbiol Ecol 90:708–717

    Article  CAS  PubMed  Google Scholar 

  • Panaccione DG, Sheets NL, Miller SP, Cumming JR (2001) Diversity of Cenococcum geophilum isolates from serpentine and non-serpentine soils. Mycologia 93:645–652

    Article  CAS  Google Scholar 

  • Portugal A, Martinho P, Vieira R, Freitas H (2001) Molecular characterization of Cenococcum geophilum isolates from an ultramafic soil in Portugal. S Afr J Sci 97:617–619

    CAS  Google Scholar 

  • Sato H, Yumoto T, Murakami N (2007) Cryptic species and host specificity in the ectomycorrhizal genus Strobilomyces (Strobilomycetaceae). Am J Bot 94:1630–1641

    Article  CAS  PubMed  Google Scholar 

  • Shah TA, Zargar MY, Dar GH, Dar GH, Beigh GM, Khan MA (1998) In vitro physiological studies of Pisolithus tinctorius and Cenococcum geophilum and their comparative efficiency on the growth of deodar (Cedrus deodara). J Hill Res 11:86–92

    Google Scholar 

  • Shinohara ML, LoBuglio KF, Rogers SO (1996) Group-I intron family in the nuclear ribosomal RNA small subunit genes of Cenococcum geophilum isolates. Curr Genet 29:377–387

    Article  CAS  PubMed  Google Scholar 

  • Shinohara ML, LoBuglio KF, Rogers SO (1999) Comparison of ribosomal DNA ITS regions among geographic isolates of Cenococcum geophilum. Curr Genet 35:527–535

    Article  CAS  PubMed  Google Scholar 

  • Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174:847–863

    Article  CAS  PubMed  Google Scholar 

  • Spatafora JW, Owensby CA, Douhan GW, Boehm EWA, Schoch CL (2012) Phylogenetic placement of the ectomycorrhizal genus Cenococcum in Gloniaceae (Dothideomycetes). Mycologia 104:758–765

    Article  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trappe JM (1962) Cenococcum graniforme – its distribution, ecology, mycorrhiza formation, and inherent variation. Dissertation, University of Washington

  • Trappe JM (1964) Mycorrhizal host and distribution of Cenococcum graniforme. Lloydia 27:100–106

    Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wu B, Nara K, Hogetsu T (2005) Genetic structure of Cenococcum geophilum populations in primary successional volcanic deserts on Mount Fuji as revealed by microsatellite markers. New Phytol 165:285–293

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellow for Research Abroad (to K. Obase) with additional funding from the University of Florida Institute for Food and Agricultural Sciences (IFAS) (to M. E. Smith). We thank the Interdisciplinary Center for Biotechnology Research (ICBR) at the University of Florida for performing DNA sequencing, the Ordway-Swisher Biological station, the City of Gainesville, and the Austin Cary Memorial Forest for providing study sites. We also thank collaborators at the Smith Mycology Lab at the University of Florida for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Obase.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

ESM 2

(DOCX 23 kb)

ESM 3

(DOCX 14 kb)

ESM 4

(DOCX 18 kb)

ESM 5

(DOCX 14 kb)

Fig. S1

ITS and GAPDH phylogenetic tree constructed using the Maximum Likelihood method. Clade numbers correspond to those detailed in Figure 2. Bootstrap values higher than 70 % are indicated at the nodes (1000 replications). (GIF 5777 kb)

High resolution image (TIF 939 kb)

Fig. S2ᅟ

Phylogenetic trees of Dothideomycetes based on each of five different loci highlighting the placement of Cenococcum geophilum sensu lato (Cg), Pseudocenococcum floridanum (Pf) and members of Glonium (Gl). Phylogenetic placement was inferred using the Maximum Likelihood method based on the SSU, LSU, TEF, RPB1 and RPB2 regions. Bootstrap values higher than 80 % are indicated at the nodes (1000 replications). (GIF 6134 kb)

(GIF 1092 kb)

High resolution image-1 (TIF 1164 kb)

High resolution image-2 (TIF 247 kb)

Fig. S3ᅟ

Operational taxonomic units (OTUs) partitioned by PTP analysis. (GIF 5686 kb)

(GIF 1791 kb)

High resolution image-1 (TIF 733 kb)

High resolution image-2 (TIF 196 kb)

Fig. S4

Mycelial growth of Cenococcum geophilum sensu lato and Pseudocenococcum floridanum isolates after four weeks incubation on MMN agar media. Data are presented as mean values from three replicates with standard deviations. The clade number is shown for each C. geophilum isolate. (GIF 1666 kb)

High resolution image (TIF 752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obase, K., Douhan, G.W., Matsuda, Y. et al. Revisiting phylogenetic diversity and cryptic species of Cenococcum geophilum sensu lato. Mycorrhiza 26, 529–540 (2016). https://doi.org/10.1007/s00572-016-0690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-016-0690-7

Keywords

Navigation