Skip to main content
Log in

Suppression of Sclerotinia sclerotiorum by antifungal substances produced by the mycoparasite Coniothyrium minitans

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A study was conducted to investigate production of antifungal substances (AFS) by Coniothyrium minitans (Cm), a mycoparasite of Sclerotinia sclerotiorum (Ss), in modified Czapek-Dox (MCD) broth and potato dextrose broth (PDB), and effects of AFS of Cm on mycelial growth and germination of sclerotia and ascospores of Ss and incidence of leaf blight of oilseed rape caused by Ss. Results showed that mycelial growth of Ss was reduced by 41.6 and 84.5% on 3 day-old cultures grown on potato dextrose agar (PDA) amended with 10% (v v−1) of cultural filtrates of Cm grown in MCD (MCDcm) after incubation for 6 and 15 days, respectively, and by 2.7 and 15.7% on PDA amended with 10% (v v−1) of cultural filtrates of Cm grown in PDB for 6 and 15 days, respectively. In addition to retardation of mycelial growth, morphological abnormality of Ss such as hyphal swellings and cytoplasm granulation were also observed in colonies grown on PDA amended with cultural filtrates of MCDcm. Sclerotia of Ss soaked in the filtrates of MCDcm for 24 h remained viable, but their ability to undergo myceliogenic germination on PDA was delayed, compared to sclerotia treated with MCD. Germination of ascospores of Ss was unaffected on PDA amended with 10% of the filtrates of MCDcm. However, germ tubes of Ss were shortened and deformed by the formation of hyphal swellings in the treatment of MCDcm. Treatment of leaves of oilseed rape with cultural filtrates of MCDcm reduced incidence of leaf blight caused by Ss, compared to the controls (water or MCD). This study suggests that AFS produced by Cm plays an important role in the suppression of mycelial growth and germ-tube development of ascospores of Ss and that there is potential for using AFS of Cm to control leaf blight of oilseed rape caused by ascospores of Ss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed, A. H. M., & Tribe, H. T. (1977). Biological control of white rot of onion (Sclerotium cepivorum) by Coniothyrium minitans. Plant Pathology, 26, 75–78.

    Article  Google Scholar 

  • Bremer, E., Huang, H. C., Selinger, L. J., Davis, J. S. (2000). Competence of Coniothyrium minitans in preventing infection of bean leaves by Sclerotinia sclerotiorum. Plant Pathology Bulletin, 9, 69–74.

    Google Scholar 

  • Bogdanova, V. N., Karadzhova, L. V., & Klimenko, T. F. (1986). Use of Coniothyrium minitans Campbell as a hyperparasite in controlling the pathogen of white rot of sunflower. Sel’skokhozyaistvenaya Biologiya. (Agricultural Biology), 5, 80–84.

    Google Scholar 

  • Budge, S. P., McQuilken, M. P., Fenlon, J. S., & Whipps, J. M. (1995). Use of Coniothyrium minitans and Trichoderma species for control of Sclerotinia sclerotiorum in celery and lettuce. Plant Pathology, 40, 59–66.

    Article  Google Scholar 

  • Campbell, W. A. (1947). A new species of Coniothyrium parasitic on sclerotia. Mycologia, 39, 190–195.

    Article  Google Scholar 

  • de Vrije, T., Antoine, N., Buitelaar, R. M., Bruckner, S., Dissevelt, M., Durand, A., Gerlagh, M., Jones, E. E., Lüth, P., Oostra, J., Ravensberg, W. J., Renaud, R., Rinzema, A., Weber, F. J., & Whipps, J. M. (2001). The fungal biocontrol agent Coniothyrium minitans: Production by solid-state fermentation, application and marketing. Applied Microbiology and Biotechnology, 56, 58–68.

    Article  PubMed  Google Scholar 

  • Fang, Z. D. (1998). Research methodology for plant diseases (3rd ed., pp. 8–12). Beijing: Chinese Agriculture Press.

    Google Scholar 

  • Gerlagh, M., Goossen-van de Gejin, H. M., Fokkema, N. J., & Verreijken, P. F. G. (1999). Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum-infected crops. Phytopathology, 89, 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Gerlagh, M., Goossen-van de Gejin, H. M., Hoogland, A. E., & Verreijken, P. F. G. (2003). Quantitative aspects of infection of Sclerotinia sclerotiorum sclerotia by Coniothyrium minitans-timing of application, concentration and quantity of spore suspension of the mycoparasite. European Journal of Plant Pathology, 109, 489–502.

    Article  Google Scholar 

  • Hegedus, D. D., & Rimmer, S. R. (2005). Sclerotinia sclerotiorum: when “to be or not to be” a pathogen? FEMS Microbiology Letters, 251, 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H. C. (1980). Control of sclerotinia wilt of sunflower by hyperparasites. Canadian Journal of Plant Pathology, 2, 26–32.

    Article  Google Scholar 

  • Huang, H. C., & Kokko, E. G. (1987). Ultra-structure of hyperparasitism of Coniothyrium minitans on sclerotia of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 65, 2483–2489.

    Google Scholar 

  • Huang, H. C., & Kokko, E. G. (1988). Penetration of hyphae of Sclerotinia sclerotiorum by Coniothyrium minitans without the formation of appressoria. Journal of Phytopathology, 123, 133–139.

    Google Scholar 

  • Huang, H. C., & Kozub, G. C. (1989). A simple method for production of apothecia from sclerotia of Sclerotinia sclerotiorum. Plant Protection Buletin, 31, 333–345.

    Google Scholar 

  • Huang, H. C., & Kokko, E. G. (1992). Pod rot of dry peas due to infection by ascospores of Sclerotinia sclerotiorum. Plant Disease, 76, 597–600.

    Article  Google Scholar 

  • Huang, H. C., Bremer, E., Hynes, R. K., & Erickson, R. S. (2000). Foliar application of fungal biocontrol agents for the control of white mold of dry beans caused by Sclerotinia sclerotiorum. Biological Control, 18, 270–276.

    Article  Google Scholar 

  • Jones, E. E., Mead, A., & Whipps, J. M. (2004). Effect of inoculum type and timing of application of Coniothyrium minitans on Sclerotinia sclerotiorum: Control of sclerotinia disease in glasshouse lettuce. Plant Pathology, 53, 611–620.

    Article  Google Scholar 

  • Li, G. Q., Wang, D. B., Zhang, S. H., & Dan, H. H. (1995). Studies on the mycoparasite Coniothyrium minitans I: Characterization of biological properties and natural distribution in Hubei Province. Journal of Huazhong Agricultural University, 14, 125–129.

    Google Scholar 

  • Li, G. Q., Huang, H. C., & Acharya, S. N. (2003). Antagonism and biocontrol potential of Ulocladium atrum on Sclerotinia sclerotiorum. Biological Control, 28, 11–18.

    Article  Google Scholar 

  • Li, G. Q., Huang, H. C., Acharya, S. N., & Erickson, R. S. (2005). Effectiveness of Coniothyrium minitans and Trichoderma atroviride in suppression of Sclerotinia blossom blight of alfalfa. Plant Pathology, 54, 204–211.

    Article  Google Scholar 

  • Li, G. Q., Huang, H. C., Miao, H. J., Erickson, R. S., Jiang, D. H., & Xiao, Y. N. (2006). Biological control of sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans. European Journal of Plant Pathology, 114, 345–355.

    Article  Google Scholar 

  • McLaren, D. L., Huang, H. C., Kozub, G. C., & Rimmer, S. R. (1994). Biological control of sclerotinia wilt of sunflower by Talaromyces flavus and Coniothyrium minitans. Plant Disease, 78, 231–235.

    Article  Google Scholar 

  • McQuilken, M. P., Gemmell, J., & Whipps, J. M. (2002). Some nutritional factors affecting production of biomass and antifungal metabolites of Coniothyrium minitans. Biocontrol Science Technology, 12, 443–454.

    Article  Google Scholar 

  • McQuilken, M. P., Gemmell, J., Hill, R. A., & Whipps, J. M. (2003). Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiology Letters, 219, 27–31.

    Article  PubMed  CAS  Google Scholar 

  • Partridge, D. E., Sutton, T. B., Jordan, D. L., Curtis, V. L., & Bailey, J. E. (2006). Management of sclerotinia blight of peanut with the biological control agent Coniothyrium minitans. Plant Disease, 90, 957–963.

    Article  Google Scholar 

  • Rabeendran, N., Jones, E. E., Moot, D. J., & Stewart, A. (2006). Biocontrol of Sclerotinia lettuce drop by Coniothyrium minitans and Trichoderma hamatum. Biological Control, 39, 352–362.

    Article  Google Scholar 

  • Turner, G. J., & Tribe, H. T. (1975). Preliminary field plot trials on biological control of Sclerotinia trifoliorum by Coniothyrium minitans. Plant Pathology, 24, 109–113.

    Article  Google Scholar 

  • Whipps, J. M., & Gerlagh, M. (1992). Biology of Coniothyrium minitans and its potential in disease control. Mycological Research, 96, 897–907.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of China (Grant No: 30471165), the “863” High-Tech Programme of China (Grant No. 2006AA10A211 and the Doctoral-Programme Foundation of Ministry of Education of China (Grant No: 20060504018). We thank Miss Erin Cadieu of Lethbridge Research Centre, Agriculture and Agri-Food Canada, Alberta, Canada, for graphic preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Qing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, R., Han, Y.C., Li, G.Q. et al. Suppression of Sclerotinia sclerotiorum by antifungal substances produced by the mycoparasite Coniothyrium minitans . Eur J Plant Pathol 119, 411–420 (2007). https://doi.org/10.1007/s10658-007-9174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9174-0

Keywords

Navigation