Skip to main content
Log in

Formulated Ampelomyces quisqualis CPA-9 applied on zucchini leaves: influence of abiotic factors and powdery mildew mycoparasitization

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Even though the potential of the fungus Ampelomyces quisqualis against powdery mildew has been largely demonstrated, the efficacy of the commercialised product AQ10 Biofungicide is not consistent. Recently, a solid formulation of A. quisqualis strain CPA-9 that included biodegradable coatings on its composition was developed to overcome the major shortcomings of the biocontrol agents applied under practical conditions. The aims of the present study were to show the compatibility of CPA-9 with different phytosanitary products, and to confirm the potential of this novel formulation in different approaches: (i) under different conditions of temperature (20 and 30 °C) and relative humidity (40, 60 and 85%) on different surfaces (glass and zucchini leaves), (ii) after different rainfall episodes, and (iii) verifying Podosphaera xanthii parasitization by dried conidia of CPA-9. It was demonstrated that CPA-9 was compatible with several phytosanitary products, so it might be included in integrated management programmes. Moreover, the solid formulation showed better resilience than non-formulated conidia, both applied on a glass surface and on zucchini leaves. Adherence of both treatments on zucchini leaves did not show significant differences after simulated rainfall and all tested concentrations of dried conidia were able to produce pycnidia in P. xanthii hyphae. Therefore, the developed fluidised-bed spray-dried formulation of A. quisqualis CPA-9 together with coatings compounds has all the makings of becoming a biocontrol product, although their efficacy under practical conditions should be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aloui, H., Licciardello, F., Khwaldia, K., Hamdi, M., & Restuccia, C. (2015). Physical properties and antifungal activity of bioactive films containing Wickerhamomyces anomalus killer yeast and their application for preservation of oranges and control of postharvest green mold caused by Penicillium digitatum. International Journal of Food Microbiology, 200, 22–30. https://doi.org/10.1016/j.ijfoodmicro.2015.01.015.

    Article  CAS  PubMed  Google Scholar 

  • Angeli, D. (2013). New insights into host specialization and mycoparasitic interaction between powdery mildew fungi and Ampelomyces quisqualis. Swiss Federal Institute of Technology, Zurich. https://doi.org/10.3929/ethz-a-009939831.

  • Angeli, D., Puopolo, G., Maurhofer, M., Gessler, C., & Pertot, I. (2012). Is the mycoparasitic activity of Ampelomyces quisqualis biocontrol strains related to phylogeny and hydrolytic enzyme production? Biological Control, 63, 348–358. https://doi.org/10.1016/j.biocontrol.2012.08.010.

    Article  Google Scholar 

  • Angeli, D., Saharan, K., Segarra, G., Sicher, C., & Pertot, I. (2017). Production of Ampelomyces quisqualis conidia in submerged fermentation and improvements in the formulation for increased shelf-life. Crop Protection, 97, 135–144. https://doi.org/10.1016/j.cropro.2016.11.012.

    Article  CAS  Google Scholar 

  • Brand, M., Messika, Y., Elad, Y., Rav, D., & Sztejnberg, A. (2009). Spray treatments combined with climate modification for the management of Leveillula taurica in sweet pepper. European Journal of Plant Pathology, 124, 309–329. https://doi.org/10.1007/s10658-008-9421-z.

    Article  Google Scholar 

  • Caffi, T., Legler, S. E., Bugiano, R., & Rossi, V. (2013). Combining sanitation and disease modelling for control of grapevine powdery mildew. European Journal of Plant Pathology, 135, 817–829. https://doi.org/10.1007/s10658-012-0124-0.

    Article  Google Scholar 

  • Calvo-Garrido, C., Elmer, P., Viñas, I., Usall, J., Bartra, E., & Teixidó, N. (2013). Biological control of botrytis bunch rot in organic wine grapes with the yeast antagonist Candida sake CPA-1. Plant Patholology, 62, 510–519. https://doi.org/10.1111/j.1365-3059.2012.02684.x.

    Article  Google Scholar 

  • Calvo-Garrido, C., Usall, J., Torres, R., & Teixidó, N. (2017). Effective control of Botrytis bunch rot in commercial vineyards by large-scale application of Candida sake CPA-1. BioControl, 62, 161–173. https://doi.org/10.1007/s10526-017-9789-9.

    Article  Google Scholar 

  • Calvo-Garrido, C., Viñas, I., Usall, J., Rodríguez-Romera, M., Ramos, M. C., & Teixidó, N. (2014). Survival of the biological control agent Candida sake CPA-1 on grapes under the influence of abiotic factors. Journal of Applied Microbiology, 117, 800–811. https://doi.org/10.1111/jam.12570.

    Article  CAS  PubMed  Google Scholar 

  • Cañamás, T. P., Viñas, I., Torres, R., Usall, J., Solsona, C., & Teixidó, N. (2011). Field applications of improved formulations of Candida sake CPA-1 for control of Botrytis cinerea in grapes. Biological Control, 56, 150–158. https://doi.org/10.1016/j.biocontrol.2010.11.007.

    Article  Google Scholar 

  • Carbó, A., Torres, R., Usall, J., Ballesta, J., & Teixidó, N. (2020). Biocontrol potential of Ampelomyces quisqualis strain CPA-9 against powdery mildew: Conidia production in liquid medium and efficacy on zucchini leaves. Scientia Horticulturae, 267(1), 109337. https://doi.org/10.1016/j.scienta.2020.109337.

    Article  CAS  Google Scholar 

  • Carbó, A., Torres, R., Usall, J., Marín, A., Chiralt, A., & Teixidó, N. (2019). Novel film-forming formulations of the biocontrol agent Candida sake CPA-1: Biocontrol efficacy and performance at field conditions in organic wine grapes. Pest Management Science, 75(4), 959–968. https://doi.org/10.1002/ps.5200.

    Article  CAS  PubMed  Google Scholar 

  • Carbó, A., Torres, R., Usall, J., Solsona, C., & Teixidó, N. (2017). Fluidised-bed spray-drying formulations of Candida sake CPA-1 by adding biodegradable coatings to enhance their survival under stress conditions. Applied Microbiology and Biotechnology, 101, 7865–7876. https://doi.org/10.1007/s00253-017-8529-5.

    Article  CAS  PubMed  Google Scholar 

  • Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52, 137–145. https://doi.org/10.1016/j.postharvbio.2008.11.009.

    Article  Google Scholar 

  • Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., & Vishwakarma, R. K. (2018). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Critical Reviews in Food Science and Nutrition, 59(9), 1498–1513. https://doi.org/10.1080/10408398.2017.1417235.

    Article  CAS  PubMed  Google Scholar 

  • Elad, Y., Kirshner, B., Yehuda, N., & Sztejnberg, A. (1998). Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. BioControl, 43, 241–251. https://doi.org/10.1023/A:1009919417481.

    Article  Google Scholar 

  • Fu, N., & Chen, X.D, (2011), Towards a maximal cell survival in convective thermal drying processes. Food Research International, 44, 1127–1149. https://doi.org/10.1016/j.foodres.2011.03.053.

  • Garriga, J., Ballesta, J., & Vilaplana, R. (2014). Composición para el control biológico del oídio en cultivos vegetales a base de una cepa de Ampelomyces. Patente ES 2 470 490 B2. ES 2 470 490 B2.

  • Gautam, A. K., & Avasthi, S. (2016). Ampelomyces quisqualis - a remarkable mycoparasite on Xanthium strumarium powdery mildew from Himachal Pradesh India. Journal of Phytopathology and Pest management, 3(2), 64–70.

    Google Scholar 

  • Gilardi, G., Baudino, M., Garibaldi, A., & Gullino, M. L. (2012). Efficacy of biocontrol agents and natural compounds against powdery mildew of zucchini. Phytoparasitica, 40, 147–155. https://doi.org/10.1007/s12600-011-0206-0.

    Article  CAS  Google Scholar 

  • Gilardi, G., Gisi, U., Garibaldi, A., & Gullino, M. L. (2017). Effect of elevated atmospheric CO2 and temperature on the chemical and biological control of powdery mildew of zucchini and the Phoma leaf spot of leaf beet. European Journal of Plant Pathology, 148, 229–236. https://doi.org/10.1007/s10658-016-1078-4.

    Article  CAS  Google Scholar 

  • Gilardi, G., Manker, D. C., Garibaldi, A., & Gullino, M. L. (2008). Efficacy of the biocontrol agents Bacillus subtilis and Ampelomyces quisqualis applied in combination with fungicides against powdery mildew of zucchini. Journal of Plant Disease and Protection, 115, 208–213.

    Article  Google Scholar 

  • Gotor-Vila, A., Usall, J., Torres, R., Ramos, M. C., & Teixidó, N. (2017). Environmental stress responses of the Bacillus amyloliquefaciens CPA-8-formulated products on nectarines and peaches. Scientia Horticulturae, 225, 359–365. https://doi.org/10.1016/j.scienta.2017.07.015.

    Article  CAS  Google Scholar 

  • Greaves, M. P., Holloway, P. J., & Auld, B. A. (1998). Formulation of microbial herbicides. In H. D. Burges (Ed.), Formulation of Microbial Pesticides - Beneficial Microorganisms, Nematodes and Seed Treatments (pp 203–233). Kluwer Academic Publishers.

  • Ippolito, A., & Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19, 715–723. https://doi.org/10.1016/S0261-2194(00)00095-8.

    Article  Google Scholar 

  • Kiss, L. (2003). A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Management Science, 59, 475–483. https://doi.org/10.1002/ps.689.

    Article  CAS  PubMed  Google Scholar 

  • Legler, S. E., Pintye, A., Caffi, T., Gulyás, S., Bohár, G., Rossi, V., & Kiss.L. (2016). Sporulation rate in culture and mycoparasitic activity, but not mycohost specificity, are the key factors for selecting Ampelomyces strains for biocontrol of grapevine powdery mildew (Erysiphe necator). European Journal of Plant Pathology, 144, 723–736. https://doi.org/10.1007/s10658-015-0834-1.

    Article  Google Scholar 

  • Marín, A., Cháfer, M., Atarés, L., Chiralt, A., Torres, R., Usall, J., & Teixidó, N. (2016). Effect of different coating-forming agents on the efficacy of the biocontrol agent Candida sake CPA-1 for control of Botrytis cinerea on grapes. Biological Control, 96, 108–119. https://doi.org/10.1016/j.biocontrol.2016.02.012.

    Article  CAS  Google Scholar 

  • Parafati, L., Vitale, A., Restuccia, C., & Cirvilleri, G. (2016). The effect of locust bean gum (LBG)-based edible coatings carrying biocontrol yeasts against Penicillium digitatum and Penicillium italicum causal agents of postharvest decay of mandarin fruit. Food Microbiology, 58, 87–94. https://doi.org/10.1016/j.fm.2016.03.014.

    Article  CAS  PubMed  Google Scholar 

  • Pertot, I., Caffi, T., Rossi, V., Mugnai, L., Hoffmann, C., Grando, M. S., Gary, C., Lafond, D., Duso, C., Thiery, D., Mazzoni, V., & Anfora, G. (2017). A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Protection, 97, 70–84. https://doi.org/10.1016/j.cropro.2016.11.025.

    Article  CAS  Google Scholar 

  • Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44, 63–70. https://doi.org/10.1016/j.postharvbio.2006.11.015.

    Article  CAS  Google Scholar 

  • Rodríguez, M., Osés, J., Ziani, K., & Maté, J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39, 840–846. https://doi.org/10.1016/j.foodres.2006.04.002.

    Article  CAS  Google Scholar 

  • Romero, D., De Vicente, A., Zeriouh, H., Cazorla, F. M., Fernández-Ortuño, D., Torés, J. A., & Pérez-García, A. (2007). Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathology, 56, 976–986. https://doi.org/10.1111/j.1365-3059.2007.01684.x.

    Article  Google Scholar 

  • Schweigkofler, W. (2006). Effects of fungicides on the germination of Ampelomyces quisqualis AQ10, a biological antagonist of the powdery mildew of the grapevine. Integrated Protection in Viticulture. IOBC/wprs Bull, 29, 79–82.

    Google Scholar 

  • Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50, 205–221. https://doi.org/10.1016/j.biocontrol.2009.05.001.

    Article  Google Scholar 

  • Shishkoff, N., & McGrath, M. T. (2002). AQ10 biofungicide combined with chemical fungicides or AddQ spray adjuvant for control of cucurbit powdery mildew in detached leaf culture. Plant Disease, 86, 915–918. https://doi.org/10.1094/PDIS.2002.86.8.915.

    Article  CAS  PubMed  Google Scholar 

  • Slininger, P. J., Behle, R. W., Jackson, M. A., & Schisler, D. A. (2003). Discovery and development of biological agents to control crop pests. Neotropical Entomology, 32, 183–195. https://doi.org/10.1590/S1519-566X2003000200001.

    Article  Google Scholar 

  • Spadaro, D., & Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science and Technology, 47, 39–49. https://doi.org/10.1016/j.tifs.2015.11.003.

    Article  CAS  Google Scholar 

  • Sucharzewska, E., Dynowska, M., Kubiak, D., Ejdys, E., & Biedunkiewicz, A. (2012). Ampelomyces hyperparasites - occurrence and effect on the development of ascomata of Erysiphales species under conditions of anthropopressure. Acta Societatis Botanicorum Poloniae, 81, 147–152. https://doi.org/10.5586/asbp.2012.023.

    Article  Google Scholar 

  • Sztejnberg, A. (1993). Ampelomyces quisqualis AQ10, CNCM I-807, for biological control of powdery mildew. US 5.190.754. 5.190.754.

  • Sztejnberg, A. (1991). Use of Ampelomyces quisqualis and a pure culture thereof. US 0 353 662 A3. 0 353 662 A3.

  • Usall, J., Torres, R., & Teixidó, N. (2016). Biological control of postharvest diseases on fruit: A suitable alternative? Current Opinion in Food Science, 11, 51–55. https://doi.org/10.1016/j.cofs.2016.09.002.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria) and FEDER (Fondo Europeo de Desarrollo Regional) through national project RTA2012-00067-C02-01. The research was also supported by the INIA and FSE (Fondo Social Europeo) for the PhD grant awarded to A. Carbó. The authors are also grateful to the CERCA Programme/Generalitat de Catalunya and the technical support provided by Celia Sánchez and Andrea Berge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Torres.

Ethics declarations

Ethical statement

The research presented in this manuscript did not involve any animal or human participants.

Conflict of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbó, A., Teixidó, N., Usall, J. et al. Formulated Ampelomyces quisqualis CPA-9 applied on zucchini leaves: influence of abiotic factors and powdery mildew mycoparasitization. Eur J Plant Pathol 161, 37–48 (2021). https://doi.org/10.1007/s10658-021-02302-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02302-y

Keywords

Navigation