Skip to main content

Advertisement

Log in

Parasites in peril: abundance of batflies (Diptera: Nycteribiidae) declines along an urbanisation gradient

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Urbanisation has a wide range of impacts on biodiversity, but its effects on parasitic arthropods, particularly those of bats, remain poorly studied. Ectoparasites of the large-footed myotis (Myotis macropus) in eastern Australia were sampled from 10 roost sites across an urban gradient. In total, 265 bats were examined and 447 ectoparasites were collected, comprising three species of Hippoboscoidea: Basilia hamsmithi (Nycteribiidae), Penicillidia setosala (Nycteribiidae), Brachytarsina amboinensis (Streblidae), and an acarine, Spinturnix novaehollandiae (Mesostigmata, Spinturnicidae). Degree of urbanisation was found to have a significant effect on the abundance of the batfly B. hamsmithi but had no significant effect on the abundance of the wing mite S. novaehollandiae. We hypothesise that this is due to differences in the life history of these two species and the advantage components of these differences confer in exploiting variations in host roost habits. The prevalence of the batfly B. hamsmithi was high in urban sites but comparatively low in suburban and non-urban sites. Mass, sex, and body condition were found to have no significant impact on either the parasite load or the chance of infestation. Both P. setosala and B. amboinensis were recorded from M. macropus for the first time, though only in small numbers. They were associated with mixed-species roosts in a suburban site and are evidence of parasite spillover between sympatric bat species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

data may be requested by emailing the corresponding author.

Code Availability

N/A.

References

  • ABARES (2016) The Australian Land Use and Management Classification Version 8. Australian Bureau of Agricultural and Resource Economics and Science

  • Bennett FM, Loeb SC, Bunch MS, Bowerman WW (2008) Use and Selection of Bridges as Day Roosts by Rafinesque’s Big-Eared Bats. Am Midl Nat 160:386–399

    Article  Google Scholar 

  • Bolívar-Cimé B, Cuxim‐Koyoc A, Reyes‐Novelo E, Morales‐Malacara JB, Laborde J, Flores‐Peredo R (2018) Habitat fragmentation and the prevalence of parasites (Diptera, Streblidae) on three Phyllostomid bat species. Biotropica 50(1):90–97

    Article  Google Scholar 

  • Brigham RM (1991) Flexibility in foraging and roosting behaviour by the big brown bat (Eptesicus fuscus). Can J Zool 69:117–121

    Article  Google Scholar 

  • Campbell S (2009) So long as it’s near water: variable roosting behaviour of the large-footed myotis (Myotis macropus). Aust J Zool 57(2):89–98

    Article  Google Scholar 

  • Cardoso P, Barton PS, Birkhofer K, Chichorro F, Deacon C, Fartmann T, Fukushima CS, Gaigher R, Habel JC, Hallmann CA, Hill MJ et al (2020) Scientists’ warning to humanity on insect extinctions. Biol Conserv 242:e108426

    Article  Google Scholar 

  • Christe P, Arlettaz R, Vogel P (2000) Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecol Lett 3(3):207–212

    Article  Google Scholar 

  • Clarke-Wood BK, Jenkins KM, Law BS, Blakey RV (2016) The ecological response of insectivorous bats to coastal lagoon degradation. Biol Conserv 202:10–19

    Article  Google Scholar 

  • Concepción ED, Moretti M, Altermatt F, Nobis MP, Obrist MK (2015) Impacts of urbanisation on biodiversity: the role of species mobility, degree of specialisation and spatial scale. Oikos 124(12):1571–1582

    Article  Google Scholar 

  • Coulson G, Cripps JK, Garnick S, Bristow V, Beveridge I (2018) Parasite insight: assessing fitness costs, infection risks and foraging benefits relating to gastrointestinal nematodes in wild mammalian herbivores. Philos Trans R Soc Lond B Biol Sci 373(1751):e20170197

    Article  CAS  Google Scholar 

  • Davis A, Major RE, Taylor CE (2013) Housing shortages in urban regions: aggressive interactions at tree hollows in forest remnants. PLoS ONE 8(3):e59332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado-V CA, French K (2015) Differential influence of urbanisation on Coccidian infection in two passerine birds. Parasitol Res 114(6):2231–2235

    Article  PubMed  Google Scholar 

  • Dick CW, Patterson BD (2008) An excess of males: skewed sex ratios in bat flies (Diptera: Streblidae). Evo Ecol 22(6):757–769

    Article  Google Scholar 

  • Dietrich M, Tjale MA, Weyer J, Kearney T, Seamark EC, Nel LH, Monadjem A, Markotter W (2016) Diversity of Bartonella and Rickettsia spp. in bats and their blood-feeding ectoparasites from South Africa and Swaziland. PLoS ONE 11(3):e0152077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Domrow R (1987) Acari Mesostigmata parasitic on Australian vertebrates: an annotated checklist, keys and bibliography. Invert Syst 1(7):817–948

    Article  Google Scholar 

  • Dunnet GM, Mardon DK (1974) A monograph of Australian fleas (Siphonaptera). Aust J Zool Supplementary Series 22(30):1–273

    Article  Google Scholar 

  • Evelyn MJ, Stiles DA, Young RA (2004) Conservation of bats in suburban landscapes: roost selection by Myotis yumanensis in a residential area in California. Biol Conserv 115:463–473

    Article  Google Scholar 

  • Frick WF, Kingston T, Flanders J (2019) A review of the major threats and challenges to global bat conservation. Ann NY Acad Sci 1469(1):5–25

    Article  PubMed  Google Scholar 

  • Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, Butchkoski CM, Kunz TH (2010) An emerging disease causes regional population collapse of a common North American bat species. Science 329(5992):679–682

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves L, Law B (2017) Distribution and key foraging habitat of the Large-footed Myotis Myotis macropus in the highly modified Port Jackson estuary, Sydney, Australia: an overlooked, but vulnerable bat. Aust Zool 38(4):629–642

    Article  Google Scholar 

  • Gorecki V (2020) The ecology and conservation of the large-footed Myotis (Myotis macropus) in an urban environment. Dissertation, Queensland University of Technology

  • Gorecki V, Rhodes M, Parsons S (2020) Roost selection in concrete culverts by the large-footed myotis (Myotis macropus) is limited by the availability of microhabitat. Aust J Zool 67(6):281–289

    Article  Google Scholar 

  • Goulson D, Whitehorn P, Fowley M (2012) Influence of urbanisation on the prevalence of protozoan parasites of bumblebees. Ecol Entomol 37(1):83–89

    Article  Google Scholar 

  • Hayman DTS, Bowen RA, Cryan PM, McCracken GF, O’shea TJ, Peel AJ, Gilbert A, Webb CT, Wood JLN (2013) Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Hlth 60(1):2–21

    Article  CAS  Google Scholar 

  • Hillman AE, Lymbery AJ, Elliot AD, Thompson RA (2017) Urban environments alter parasite fauna, weight and reproductive activity in the quenda (Isoodon obesulus). Sci Total Environ 607:1466–1478

    Article  PubMed  CAS  Google Scholar 

  • IBM Corp (2019) IBM SPSS Statistics for Windows, Version 26.0. IBM Corp, Armonk, NY

    Google Scholar 

  • Kitchener DJ, Cooper N, Maryanto I (1995) The Myotis adversus (Chiroptera: Vespertilionidae) species complex in Eastern Indonesia, Australia, Papua New Guinea and the Solomon Islands. Rec West Aust Mus 17(2):191–212

    Google Scholar 

  • Kwak ML (2017) The first record of the introduced flea Spilopsyllus cuniculi (Dale, 1878) (Siphonaptera: Pulicidae) from the invasive red fox in Australia, with a review of the fleas associated with the red fox in Australia. Australian Entomol 44(4):289–292

    Google Scholar 

  • Kwak ML (2018) Australia’s vanishing fleas (Insecta: Siphonaptera): a case study in methods for the assessment and conservation of threatened flea species. J Insect Conserv 22:545–550

    Article  Google Scholar 

  • Kwak ML, Hastriter MW (2020) The Australian giant fleas Macropsylla Rothschild, 1905 (Siphonaptera: Macropsyllidae: Macropsyllinae), their identification, evolution, ecology, and conservation biology. Syst Parasitol 97:107–118

    Article  PubMed  Google Scholar 

  • Kwak ML, Heath AC (2018) Redescription of the kiwi tick Ixodes anatis (Acari: Ixodidae) from New Zealand, with notes on its biology. Exp Appl Acarol 74(2):207–223

    Article  PubMed  Google Scholar 

  • Kwak ML, Heath AC, Palma RL (2019) Saving the Manx shearwater flea Ceratophyllus (Emmareus) fionnus (Insecta: Siphonaptera): The road to developing a recovery plan for a threatened ectoparasite. Acta Parasitol 64(4):903–910

    Article  PubMed  Google Scholar 

  • Kwak ML, Heath ACG, Cardoso P (2020) Methods for the assessment and conservation of threatened animal parasites. Biol Conserv 248:e108696

    Article  Google Scholar 

  • Lane DJ, Kingston T, Lee BPH (2006) Dramatic decline in bat species richness in Singapore, with implications for Southeast Asia. Biol Conserv 131(4):584–593

    Article  Google Scholar 

  • Law B, Chidel M, Law PR (2020) Multi-year population dynamics of a specialist trawling bat at streams with contrasting disturbance. J Mammal 101(2):433–447

    Article  Google Scholar 

  • Lewis SE (1995) Roost fidelity of bats: a review. J Mammal 76(2):481–496

    Article  Google Scholar 

  • Lintott PR, Bunnefeld N, Park KJ (2015) Opportunities for improving the foraging potential of urban waterways for bats. Biol Conserv 191:224–233

    Article  Google Scholar 

  • Lucan RK (2006) Relationships between the parasitic mite Spinturnix andegavinus (Acari: Spinturnicidae) and its bat host, Myotis daubentonii (Chiroptera: Vespertilionidae): seasonal, sex-and age-related variation in infestation and possible impact of the parasite on the host condition and roosting behaviour. Folia Parasitol 53(2):147–152

    Article  Google Scholar 

  • Luck GW, Smallbone LT (2010) Species diversity and urbanisation: patterns, drivers and implications. Urban Ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Lutsch K (2019) Assessment of Culverts and Bridges as Roosting Habitat for Perimyotis subflavus (tricolored bat) and Disease Transmission Corridors for Pseudogymnoascus destructans. Dissertation, Kennesaw state university

  • Maa TC (1971) Revision of the Australian batflies. Pac Insects Monogr 28:1–118

    Google Scholar 

  • McGuire LP, Kelly LA, Baloun DE, Boyle WA, Cheng TL, Clerc J, Fuller NW, Gerson AR, Jonasson KA, Rogers EJ, Sommers AS (2018) Common condition indices are no more effective than body mass for estimating fat stores in insectivorous bats. J Mammal 99(5):1065–1071

    Article  Google Scholar 

  • Miller MA, Kinsella JM, Snow RW, Hayes MM, Falk BG, Reed RN, Mazzotti FJ, Guyer C, Romagosa CM (2018) Parasite spillover: indirect effects of invasive Burmese pythons. Ecol Evo 8(2):830–840

    Article  Google Scholar 

  • Moretto L, Francis CM (2017) What factors limit bat abundance and diversity in temperate, North American urban environments? J Urb Ecol 3(1):1–7

    Google Scholar 

  • Morse SF, Olival KJ, Kosoy M, Billeter S, Patterson BD, Dick CW, Dittmar K (2012) Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infect Genet Evol 12(8):1717–1723

    Article  PubMed  Google Scholar 

  • Palheta LR, Urbieta GL, Brasil LS, Dias-Silva K, Da Silva JB, Graciolli G, Aguiar L, Vieira TB (2020) The effect of urbanization on bats and communities of bat flies (Diptera: Nycteribiidae and Streblidae) in the Amazon, northern Brazil. Acta Chiropterol 22(2):403–416

    Article  Google Scholar 

  • Patterson BD, Dick CW, Dittmar K (2007) Roosting habits of bats affect their parasitism by bat flies (Diptera: Streblidae). J Trop Ecol 23(2):177–189

    Article  Google Scholar 

  • Patterson BD, Dick CW, Dittmar K (2008) Sex biases in parasitism of neotropical bats by bat flies (Diptera: Streblidae). J Trop Ecol 24(4):387–396

    Article  Google Scholar 

  • Poulin R, Keeney DB (2008) Host specificity under molecular and experimental scrutiny. Trend Parasitol 24(1):24–28

    Article  CAS  Google Scholar 

  • R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Reckardt K, Kerth G (2006) The reproductive success of the parasitic bat fly Basilia nana (Diptera: Nycteribiidae) is affected by the low roost fidelity of its host, the Bechstein’s bat (Myotis bechsteinii). Parasitol Res 98(3):237–243

    Article  PubMed  Google Scholar 

  • Roberts FHS (1970) Australian ticks. CSIRO Publishing, Melbourne

    Google Scholar 

  • Rhodes M, Wardell-Johnson GW (2006) Roost tree characteristics determine use by the white-striped freetail bat (Tadarida australis. Molossidae) in suburban, Chiroptera subtropical Brisbane, Australia. Aust Ecol 31:228–239

    Google Scholar 

  • Samways MJ, Barton PS, Birkhofer K, Chichorro F, Deacon C, Fartmann T, Fukushima CS, Gaigher R, Habel JC, Hallmann CA, Hill MJ et al (2020) Solutions for humanity on how to conserve insects. Biol Conserv 242:e108427

    Article  Google Scholar 

  • Schiller SE, Webster KN, Power M (2016) Detection of Cryptosporidium hominis and novel Cryptosporidium bat genotypes in wild and captive Pteropus hosts in Australia. Infec Genet Evol 44:254–260

    Article  Google Scholar 

  • Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. PNAS 109(40):16083–16088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sih A, Spiegel O, Godfrey S, Leu S, Bull CM (2018) Integrating social networks, animal personalities, movement ecology and parasites: a framework with examples from a lizard. Anim Behav 136:195–205

    Article  Google Scholar 

  • Smith HJ, Stevensen JS (2013) Linking Conservation and Transportation: A ‘Bats in Bridges’ Report. New Mexico Department of Transportation

  • Sutherst RW (2001) The vulnerability of animal and human health to parasites under global change. Int J Parasitol 31(9):933–948

    Article  CAS  PubMed  Google Scholar 

  • Szentiványi T, Vincze O, Estók P (2017) Density-dependent sex ratio and sex-specific preference for host traits in parasitic bat flies. Parasite Vectors 10(1):e405

    Article  Google Scholar 

  • Threlfall CG, Law B, Banks P (2012) Influence of landscape structure and human modifications on insect biomass and bat foraging activity in an urban landscape. PLoS ONE 7(6):1–10

    Article  CAS  Google Scholar 

  • Urbieta GL, Torres JM, Carvalho Dos Anjos EA, Espínola Carvalho CM, Graciolli G (2018) Parasitism of bat flies (Nycteribiidae and Streblidae) on bats in urban environments: lower prevalence, infracommunities, and specificity. Acta Chiropterol 20(2):511–518

    Article  Google Scholar 

Download references

Acknowledgements

We kindly thank Dr. Allen Heath, AgResearch, New Zealand, for reading the manuscript and providing invaluable comments.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mackenzie L. Kwak.

Ethics declarations

Conflicts of interest/Competing interests:

The authors declare no conflicts of interest.

Ethics approval

This study was undertaken with the necessary ethics approval.

Consent to participate

No human subjects.

Consent for publication

The authors consent to the publication of this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

figure a

GLM showing the relationship between dependent variables and independent variables across the three urbanisation classes (A) host body mass and infestation rate of S. novaehollandiae, (B) host body condition and infestation rate of S. novaehollandiae, (C) host body condition and chance of infestation by S. novaehollandiae, (D) host body mass and chance of infestation by S. novaehollandiae, (E) host body mass and infestation rate of B. hamsmithi, (F) host body condition and infestation rate of B. hamsmithi, (G) host body condition and chance of infestation by B. hamsmithi, (H) host body mass and chance of infestation by B. hamsmithi. (Solid black for females and dashed red for males)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, M.L., Gorecki, V. & Markowsky, G. Parasites in peril: abundance of batflies (Diptera: Nycteribiidae) declines along an urbanisation gradient. J Insect Conserv 26, 627–638 (2022). https://doi.org/10.1007/s10841-022-00409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-022-00409-z

Keywords

Navigation