Skip to main content
Log in

Taxonomy and molecular phylogeny of Diatrypaceae (Ascomycota, Xylariales) species from the Brazilian semi-arid region, including four new species

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Members of the Diatrypaceae are predominantly saprotrophic on the decaying wood of angiosperms worldwide and the family has received little attention due to its difficult taxonomy. However, the recent detection of several pathogenic species, once considered saprotrophic, associated with the wood of diseased grapevines has increased interest in this family. The diversity of tropical species is less well known and more poorly sampled in phylogenetic studies than temperate species. In the present study, we investigated the diversity of diatrypaceous fungi from three areas in the Brazilian semi-arid region and performed phylogenetic analyses of the family based on the entire internal transcribed spacer (ITS) region and partial ß-tubulin gene. Twenty-eight new ITS and 19 new ß-tubulin sequences were generated, representing eight species distributed in five clades. Diatrypella atlantica, Eutypa guttulata, Eutypella cearensis, and Peroneutypa diminutispora are proposed here as new species, while Eutypella microtheca and P. curvispora are new records for Brazil. All eight species are described, illustrated, and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acero FJ, Gonzalez V, Sanchez-Ballesteros J, Rubio V, Checa J, Bills GF, Salazar O, Platas G, Pelaez F (2004) Molecular phylogenetic studies on the Diatrypaceae based on rDNA-ITS sequences. Mycologia 96(2):249–259. doi:10.2307/3762061

    Article  CAS  PubMed  Google Scholar 

  • Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20(2):255–266. doi:10.1093/molbev/msg028

    Article  CAS  PubMed  Google Scholar 

  • Almeida DAC, Gusmão LFP, Miller AN (2014) A new genus and three new species of hysteriaceous ascomycetes from the semiarid region of Brazil. Phytotaxa 176(1):298–308. doi:10.11646/phytotaxa.176.1.28

    Article  Google Scholar 

  • Arhipova N, Gaitnieks T, Donis J, Stenlid J, Vasaitis R (2012) Heart-rot and associated fungi in Alnus glutinosa stands in Latvia. Scand J For Res 27(4):327–336. doi:10.1080/02827581.2012.670727

    Article  Google Scholar 

  • Barrero-Canosa J, Dueñas LF, Sànchez JA (2012) Isolation of potential fungal pathogens in gorgonian corals at the Tropical Eastern Pacific. Coral Reefs 32:35–41. doi:10.1007/s00338-012-0972-2

    Article  Google Scholar 

  • Berlese AN (1900) Icones fungorum omnium hucusque cognitorum ad usum sylloges saccardianae accomodatae: Sphaeriaceae Allantosporae, vol 3. Patavii

  • Bolaños J, De León LF, Ochoa E, Darias J, Raja HA, Shearer CA, Miller AN, Vanderheyden P, Porras-Alfaro A, Caballero-George C (2015) Phylogenetic diversity of sponge-associated fungi from the Caribbean and the Pacific of Panama and their in vitro effect on angiotensin and endothelin receptors. Mar Biotechnol 17(5):533–564. doi:10.1007/s10126-015-9634-z

    Article  PubMed  Google Scholar 

  • Cantrell SA, Gunde-Cimerman N, Zalar P, Acevedo M, Báez-Félix C (2013) Fungal communities of young and mature hypersaline microbial mats. Mycologia 105(4):827–836. doi:10.3852/12-288

    Article  PubMed  Google Scholar 

  • Carmarán CC (2001) Contribucion estudio del orden Diatrypales en las zonas subtropicales de la República Argentina. Bol Soc Micol Madr 26:43–56

    Google Scholar 

  • Carmarán CC, Romero AI (1992) Problemas taxonomicos en el orden Diatrypales. Contribucion a su esclarecimiento I. Bol Soc Argent Bot 28(1–4):139–150

    Google Scholar 

  • Carmarán CC, Romero AI, Giussani LM (2006) An approach towards a new phylogenetic classification in Diatrypaceae. Fungal Divers 23:67–87

    Google Scholar 

  • Caroll FE, Müller E, Sutton BC (1977) Prelirninary studies on the incidence of needle endophytes in sorne European conifers. Sydowia 29:87–103

    Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552. doi:10.1093/oxfordjournals.molbev.a026334

    Article  CAS  PubMed  Google Scholar 

  • Catal M, Jordan SA, Butterworth SC, Schilder AMC (2007) Detection of Eutypa lata and Eutypella vitis in Grapevine by Nested Multiplex Polymerase Chain Reaction. Phytopathology 97(6):737–747. doi:10.1094/phyto-97-6-0737

    Article  CAS  PubMed  Google Scholar 

  • Chacon S, Dorge D, Weisenborn J, Piepenbring M (2013) A new species and a new record of Diatrypaceae from Panama. Mycologia 105(3):681–688. doi:10.3852/12-131

    Article  PubMed  Google Scholar 

  • Chlebicki A, Krzyzanowska J (1995) Notes on Pyrenomycetes and Coelomycetes from Poland 3. Diatrype subaffixa, a new species for Europe. Sydowia 47(1):10–30

    Google Scholar 

  • Ciavatta ML, Lopez-Gresa MP, Gavagnin M, Nicoletti R, Manzo E, Mollo E, Guo Y-W, Cimino G (2008) Cytosporin-related compounds from the marine-derived fungus Eutypella scoparia. Tetrahedron 64(22):5365–5369. doi:10.1016/j.tet.2008.03.016

    Article  CAS  Google Scholar 

  • Croxall HE (1950) Studies on British Pyrenomycetes III. The British species of the genus Diatrypella Cesati & De Notaris. Trans Br Mycol Soc 33:45–72. doi:10.1016/S0007-1536(50)80047-5

    Article  Google Scholar 

  • Da Silva M, Passarini M, Bonugli R, Sette L (2008) Cnidarian-derived filamentous fungi from Brazil: isolation, characterisation and RBBR decolourisation screening. Environ Technol 29(12):1331–1339. doi:10.1080/09593330802379466

    Article  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772. doi:10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis RWG (1978) Brithish Ascomycetes. 3 edn. Lubrecht & Cramer Ltd

  • Doidge EM (1941) Some South African Valsaceae. Bothalia 4(1):47–89

    Google Scholar 

  • Farr DF, Rossman AY, Palm ME, Mccray EB (2016) Fungal databases, systematic botany & mycology laboratory, ARS, USDA (2016) http://nt.arsgrin.gov/fungaldatabases. Accessed 20 Mar 2016

  • Gambhir SP (1979) Two new members of Diatrypaceae from India. Curr Sci 48(3):123–124

    Google Scholar 

  • Gao L, Zhang Q, Sun X, Jiang L, Zhang R, Sun G, Zha Y, Biggs AR (2013) Etiology of moldy core, core browning, and core rot of Fuji apple in China. Plant Dis 97(4):510–516. doi:10.1094/PDIS-01-12-0024-RE

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118. doi:10.1111/j.1365-294x.1993.tb00005.x

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61(4):1323–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glawe DA (1983) Observations on the anamorph of Diatrypella frostii. Mycologia 75(5):913–915. doi:10.2307/3792786

    Article  Google Scholar 

  • Glawe DA, Rogers JD (1982) Observation on the anamorphs of six species of Diatrype and Diatrypella. Can J Bot 60:245–251. doi:10.1139/b82-033

    Article  Google Scholar 

  • Glawe DA, Rogers JD (1984) Diatrypaceae in the pacific northwest. Mycotaxon 20(2):401–460

    Google Scholar 

  • Glawe DA, Rogers JD (1986) Conidial states of some species of Diatrypaceae and Xylariaceae. Can J Bot 64(7):1493–1498

    Article  Google Scholar 

  • Global Biodiversity Information Facility Data Portal (2016) http://www.gbif.org. Accessed 16 Jan 2016

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224. doi:10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  • Grassi E, Belen Pildain M, Levin L, Carmaran C (2014) Studies in Diatrypaceae: the new species Eutypa microasca and investigation of ligninolytic enzyme production. Sydowia 66(1):99–114

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704. doi:10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42(2):182–192

    Article  Google Scholar 

  • Hsieh HM, Lin CR, Fang MJ, Rogers JD, Fournier J, Lechat C, Ju YM (2010) Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Mol Phylogenet Evol 54(3):957–969. doi:10.1016/J.Ympev.2009.12.015

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi:10.1093/bioinformatics/17.8.754

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2005) Bayesian analysis of molecular evolution using Mr. Bayes. In: Nielsen R (ed) Statistical methods in molecular ecology. Springer Press, pp 186–226

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2008) Dictionary of the Fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  • Kliejunas JT, Kuntz JE (1972) Development of stromata and the imperfect state of Eutypella parasitica in maple. Can J Bot 50:1453–1456. doi:10.1139/b72-176

    Article  Google Scholar 

  • Lardner R, Stummer BE, Sosnowski MR, Scott ES (2005) Molecular identification and detection of Eutypa lata in grapevine. Mycol Res 109(7):799–808. doi:10.1017/S0953756205002893

    Article  CAS  PubMed  Google Scholar 

  • Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16(6):750–759. doi:10.1093/oxfordjournals.molbev.a026160

    Article  CAS  Google Scholar 

  • Liu JK, Hyde KD, Jones EG, Ariyawansa HA, Bhat DJ, Boonmee S, Maharachchikumbura SS, McKenzie EH, Phookamsak R, Phukhamsakda C (2015) Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Divers 72(1):1–197. doi:10.1007/s13225-015-0324-y

    Article  CAS  Google Scholar 

  • Lumbsch HT, Huhndorf SM (2010) Myconet Volume 14. Part one. Outline of Ascomycota—2009. Part two. Notes on Ascomycete Systematics. Nos. 4751–5113. Fieldiana Life Earth Sci (1):1–64. doi:10.3158/1557.1

  • Luque J, Sierra D, Torres E, Garcia F (2006) Cryptovalsa ampelina on grapevines in NE Spain: identification and pathogenicity. Phytopathol Mediterr 45(4):101–109

    Google Scholar 

  • Luque J, Garcia-Figueres F, Legorburu FJ, Muruamendiaraz A, Armengol J, Trouillas FP (2012) Species of Diatrypaceae associated with grapevine trunk diseases in Eastern Spain. Phytopathol Mediterr 51(3):528–540

    CAS  Google Scholar 

  • Lygis V, Vasiliauskas R, Larsson K-H, Stenlid J (2005) Wood-inhabiting fungi in stems of Fraxinus excelsior in declining ash stands of northern Lithuania, with particular reference to Armillaria cepistipes. Scand J For Res 20(4):337–346

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2014) Mesquite: a modular system for evolutionary analysis. Version 3.0 (2014) http://mesquiteproject.org

  • Maharachchikumbura SS, Hyde KD, Jones EG, McKenzie EH, Huang S-K, Abdel-Wahab MA, Daranagama DA, Dayarathne M, D’souza MJ, Goonasekara ID (2015) Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers 72(1):199–301

    Article  Google Scholar 

  • Mehrabi M, Hemmati R, Vasilyeva L, Trouillas F (2015) A new species and a new record of Diatrypaceae from Iran. Mycosphere 6(1):60–68. doi:10.5943/mycosphere/6/1/7

    Article  Google Scholar 

  • Menezes CB, Bonugli-Santos RC, Miqueletto PB, Passarini MR, Silva CH, Justo MR, Leal RR, Fantinatti-Garboggini F, Oliveira VM, Berlinck RG, Sette LD (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of Sao Paulo state, Brazil. Microbiol Res 165(6):466–482. doi:10.1016/j.micres.2009.09.005

    Article  PubMed  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. Paper presented at the Proceedings of the Gateway Computing Environments workshop (GCE), 14 Nov. 2010

  • Nitschke T (1867) Pyrenomycetes germanici. Die kernpilze Deutschlands, Breslau

    Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium rre nonorthologous. Mol Phylogenet Evol 7(1):103–116. doi:10.1006/mpev.1996.0376

    Article  PubMed  Google Scholar 

  • Parfitt D, Hunt J, Dockrell D, Rogers HJ, Boddy L (2010) Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol 3(4):338–346. doi:10.1016/j.funeco.2010.02.001

    Article  Google Scholar 

  • Pažoutová S, Šrůtka P, Holuša J, Chudíčková M, Kubátová A, Kolařík M (2012) Liberomyces gen. nov. with two new species of endophytic coelomycetes from broadleaf trees. Mycologia 104(1):198–210

    Article  PubMed  Google Scholar 

  • Peláez F, González V, Platas G, Sánchez-Ballesteros J, Rubio V (2008) Molecular phylogenetic studies within the Xylariaceae based on ribosomal DNA sequences. Fungal Divers 31:111–134

    Google Scholar 

  • Pildain MB, Novas MV, Carmarán CC (2005) Evaluation of anamorphic state, wood decay and production of lignin-modifying enzymes for diatrypaceous fungi from Argentina. J Agric Technol 1(1):81–96

    Google Scholar 

  • Piškur B, Ogris N, Jurc D (2007) Species-specific primers for Eutypella parasitica, the causal agent of Eutypella Canker of Maple. Plant Dis 91:1579–1584. doi:10.1094/PDIS-91-12-1579

    Article  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53(5):793–808. doi:10.1080/10635150490522304

    Article  PubMed  Google Scholar 

  • Rappaz F (1983) Typification des espéces décrites par Nitschke et rapportées actuallement au genre Eutypa (Diatrypaceae, Ascomycotina). Bull Soc Mycol France 99(2):133–155

    Google Scholar 

  • Rappaz F (1987) Taxonomie et nomenclature des Diatrypacées à asques octospores. Mycol Helv 2(3):285–648

    Google Scholar 

  • Rayner RW (1970) A mycological colour chart. A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society, Kew

  • Rehm H (1901) Beiträge zur Pilzflora von Südamerika. XII. Sphaeriales. Hedwigia 40:100–124

    Google Scholar 

  • Rehm H (1908) Ascomycetes exs. Fasc. 41. Ann Mycol 6:116–124

    Google Scholar 

  • Rehm H (1911) Ascomycetes novi. Ann Mycol 9:363–371

    Google Scholar 

  • Rick JE (1933) Monografia das Valsíneas do Rio Grande do Sul. Brotéria Série Trimestral: Ciências Naturais 2(2):83–99

    Google Scholar 

  • Rodríguez F, Oliver JL, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitutions. J Theor Biol 142:485–501. doi:10.1016/s0022-5193(05)80104-3

    Article  PubMed  Google Scholar 

  • Rolshausen PE, Trouillas F, Gubler WD (2004) Identification of Eutypa lata by PCR-RFLP. Plant Dis 88(9):925–929. doi:10.1094/Pdis.2004.88.9.925

    Article  CAS  Google Scholar 

  • Rolshausen P, Mahoney N, Molyneux R, Gubler W (2006a) A reassessment of the species concept in Eutypa lata, the causal agent of Eutypa dieback of grapevine. Phytopathology 96(4):369–377

    Article  CAS  PubMed  Google Scholar 

  • Rolshausen PE, Mahoney NE, Molyneux RJ, Gubler WD (2006b) A Reassessment of the Species Concept in Eutypa lata, the Causal Agent of Eutypa Dieback of Grapevine. Phytopathology 96(4):369–377. doi:10.1094/PHYTO-96-0369

    Article  CAS  PubMed  Google Scholar 

  • Romero AI, Carmarán CC (2003) First contribution to the study of Cryptosphaeria from Argentina. Fungal Divers 12:161–167

    Google Scholar 

  • Romero AI, Minter DW (1988) Fluorescence microscopy: an aid to the elucidation of ascomycetes structures. Trans Br Mycol Soc 90(3):457–470. doi:10.1016/s0007-1536(88)80156-6

    Article  Google Scholar 

  • Sanchez-Ballesteros J, Gonzalez V, Salazar O, Acero J, Portal MA, Julian M, Rubio V, Bills GF, Polishook JD, Platas G, Mochales S, Pelaez F (2000) Phylogenetic study of Hypoxylon and related genera based on ribosomal ITS sequences. Mycologia 92(5):964–977. doi:10.2307/3761591

    Article  CAS  Google Scholar 

  • Sônego O, Garrido LdR, Grigoletti Júnior A (2005) Principais doenças fúngicas da videira no Sul do Brasil, vol 56. Embrapa Uva e Vinho

  • Spegazzini C (1889) Fungi Puiggariani. Pugillus 1. Bol Acad Nac Cienc 11(4):381–622

    Google Scholar 

  • Spegazzini C (1898) Fungi Argentini novi v. critici. Anales Museo Nacional Buenos Aires 6:1–23

    Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57(5):758–771. doi:10.1080/10635150802429642

    Article  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP* 4.0: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Sydow H, Sydow P (1910) Fungi Paraenses. Hedwigia 49:78–84

    Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577. doi:10.1080/10635150701472164

    Article  CAS  PubMed  Google Scholar 

  • Tendulkar JS (1970) Four new species of Diatrype from India. Sydowia 24:282–285

    Google Scholar 

  • Tiffany LH, Gilman JC (1965) Iowa ascomycetes IV. Diatrypaceae. Iowa State J Sci 40(2):121–161

    Google Scholar 

  • Trouillas FP, Gubler WD (2004) Identification and characterization of Eutypa leptoplaca, a new pathogen of grapevine in Northern California. Mycol Res 108(10):1195–1204. doi:10.1017/s0953756204000863

    Article  CAS  PubMed  Google Scholar 

  • Trouillas F, Gubler W (2010) Host range, biological variation, and phylogenetic diversity of Eutypa lata in California. Phytopathology 100(10):1048–1056. doi:10.1094/PHYTO-02-10-0040

    Article  CAS  PubMed  Google Scholar 

  • Trouillas FP, Sosnowski MR, Gubler WD (2010a) Two new species of Diatrypaceae from coastal wattle in Coorong National Park, South Australia. Mycosphere 1(2):183–188

    Google Scholar 

  • Trouillas FP, Urbez-Torres JR, Gubler WD (2010b) Diversity of diatrypaceous fungi associated with grapevine canker diseases in California. Mycologia 102(2):319–336. doi:10.3852/08-185

    Article  CAS  PubMed  Google Scholar 

  • Trouillas FP, Pitt WM, Sosnowski MR, Huang R, Peduto F, Loschiavo A, Savocchia S, Scott ES, Gubler WD (2011) Taxonomy and DNA phylogeny of Diatrypaceae associated with Vitis vinifera and other woody plants in Australia. Fungal Divers 49(1):203–223. doi:10.1007/s13225-011-0094-0

    Article  Google Scholar 

  • Vasilyeva LN (1986) Two new species of the family Diatrypaceae. Nova Hedwigia 43(3–4):373–376

    Google Scholar 

  • Vasilyeva LN, Stephenson SL (2004) Pyrenomycetes of the Great Smoky Mountains National Park. I. Diatrype Fr. (Diatrypaceae). Fungal Divers 17:91–201

    Google Scholar 

  • Vasilyeva LN, Stephenson SL (2005) Pyrenomycetes of the Great Smoky Mountains National Park. II. Cryptovalsa Ces. et De Not. and Diatrypella (Ces. et De Not.) Nitschke (Diatrypaceae). Fungal Divers 19:189–200

    Google Scholar 

  • Vasilyeva LN, Stephenson SL (2006) Pyrenomycetes of the Great Smoky Mountains National Park. III. Cryptosphaeria, Eutypa and Eutypella (Diatrypaceae). Fungal Divers 22:243–254

    Google Scholar 

  • Vasilyeva LN, Stephenson SL (2009) The genus Diatrype (Ascomycota, Diatrypaceae) in Arkansas and Texas (USA). Mycotaxon 107:307–313. doi:10.5248/107.307

    Article  Google Scholar 

  • Viégas AP (1944) Alguns fungos do Brasil II. Ascomicetos. Bragantia 4(1–6):5–392

    Google Scholar 

  • Vieira MLA, Hughes AFS, Gil VB, Vaz ABM, Alves TMA, Zani CL, Rosa CA, Rosa LH (2012) Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can J Microbiol 58:54–66. doi:10.1139/W11-105

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocol: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES – proc. 071/2012), the National Council for Scientific and Technological Development (CNPq – proc. 14/2011), and the Program of Research on Biodiversity in the Brazilian Semi-arid (PPBIO Semi-arid/Ministry of Technology and Science – proc. 558317/2009-0) for financial support. The first author also thanks CAPES for the international scholarship to perform part of his doctoral research at the University of Illinois at Urbana-Champaign. ANM thanks CAPES for a Science Without Borders scholarship to visit Brazil as a Special Visiting Researcher and contribute to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davi Augusto Carneiro de Almeida.

Additional information

Section Editor: Marc Stadler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, D.A.C., Gusmão, L.F.P. & Miller, A.N. Taxonomy and molecular phylogeny of Diatrypaceae (Ascomycota, Xylariales) species from the Brazilian semi-arid region, including four new species. Mycol Progress 15, 53 (2016). https://doi.org/10.1007/s11557-016-1194-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11557-016-1194-8

Keywords

Navigation