Skip to main content
Log in

Debunking Acroconidiella

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Acroconidiella was proposed to accommodate Acroconidiella tropaeoli, a fungal species causing leaf spots on Tropaeolum majus. At the time, it was recognized as deserving to be treated as a distinct genus because, although being somewhat similar to Alternaria, it did not present muriform conidia formed in chains. More recent observations of A. tropaeoli in culture forming acropetal conidial chains, and the recognition of several non-dictioconidial species as belonging to Alternaria, prompted a reappraisal of the genus, starting with the re-examination of the type species. Samples of Acroconidiella tropaeoli, and also of Acroconidiella trisepta, were recollected in Brazil, and a study involving an analysis of their morphology, under light microscopy and SEM, and a molecular phylogenenetic analysis was performed. A multi-gene phylogeny, including the large subunit of the nrDNA (nc LSU rDNA), internal transcribed spacer (ITS) region, translation elongation factor 1-α (EF1), and polymerase II second largest subunit (RPB2), placed A. tropaeoli within Alternaria, close to A. sonchi and A. cinerariae. The ITS and nc LSU rDNA phylogenetic study of A. trisepta placed it within Dendryphiella. The new combination Dendryphiella trisepta comb. nov is proposed to accommodate A. trisepta. Nevertheless, the new name Alternaria obtusa is proposed for Acroconidiella tropaeoli since it could not be recombined into Alternaria tropaeoli because this name is already in use for another valid (and distinct) species in this genus described from India. This study showed that Acroconidiella is an artificial genus which is now rejected, since its type species belongs to Alternaria—which has nomenclatural priority over Acroconidiella. Other species placed in Acroconidiella, given below, await reappraisal in order to determine their correct taxonomic affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida AMR, Saraiva OF, Faria JRB, Gaudêncio CA, Torres E (2001) Survival of pathogens on soybean debris under no-tillage and conventional tillage systems. Pesq Agropec Bras 36:1231–1238

    Article  Google Scholar 

  • Baird RE, Mullinix BG, Peery A, Lang ML (1997) Diversity and longevity of the soybean residue mycobiota in a no-tillage system. Plant Dis 81:530–534

    Article  CAS  Google Scholar 

  • Baird RE, Watson CE, Scruggs M (2003) Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Dis 87:563–566

    Article  Google Scholar 

  • Baker KF (1947) Heterosporium disease of nasturtium and its control. Abstr en Phytopathol 37:359

    Google Scholar 

  • Berbee ML, Pirseyedi M, Hubbard S (1999) Cochliobolus phylogenetics and the origin of known, highly virulent pathogens inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91:964–977

    Article  CAS  Google Scholar 

  • Bond TET (1947) Notes on Ceylon fungi and plant diseases. Part I (1-15). Ceylon J Sci 12:171–193

    Google Scholar 

  • Boonmee S, D’souza MJ, Luo ZL, Pinruan U et al (2016) Dictyosporiaceae fam. nov. Fungal Divers 80:457–482

    Article  Google Scholar 

  • Carbone I, Kohn LM (1999) A method for designing sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

    Article  CAS  Google Scholar 

  • Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, Hoog GS, Groenewald JZ (2009) Phylogenetic lineages in the Capnodiales. Stud Mycol 64:17–47

    Article  CAS  Google Scholar 

  • Crous PW, Shivas RG, Quaedvlieg W, Van der Bank M et al (2014) Fungal Planet description sheets: 214-280. Persoonia 32:184–306

    Article  CAS  Google Scholar 

  • Crous PW, Wingfield MJ, Richardson DM, Le Roux JJ et al (2016) Fungal Planet description sheets: 400-468. Persoonia 36:316–458

    Article  CAS  Google Scholar 

  • De Vries GA (1952) Contribution to the knowledge of the genus Cladosporium link ex Fr. Thesis. Hollandia Press, Baarn

    Google Scholar 

  • Deshpande KB, Rajderkar NR (1964) New species of Alternaria from Marathwada (India). Mycopathologia 23:277–280

    Google Scholar 

  • Ellis MB (1971) Dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew

  • Ellis MB (1976) More dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew

  • Farr DF, Rossman AY (2019) Fungal Databases, U.S. National Fungus Collections, ARS, USDA. https://nt.arsgrin.gov/fungaldatabases/fungushost/fungushost.cfm. Accessed 13 Jan 2019

  • Guo YL, Zhang ZY (1999) A new species of Dendryphiella. Mycosystema 18:236–237

    Google Scholar 

  • Hyde KD, Zhang Y (2008) Epitypification: should we epitypify? J Zhejiang Univ Sci B 10:842–846

    Article  Google Scholar 

  • Lawrence DP, Park MS, Pryor BM (2012) Nimbya and Embellisia revisited, with nov. comb for Alternaria celosiae and A. perpunctulata. Mycol Prog 11:799–815

    Article  Google Scholar 

  • Lawrence DP, Gannibal PB, Peever TL, Pryor BM (2013) The sections of Alternaria: formalizing species-groups concepts. Mycologia 105:530–546

    Article  Google Scholar 

  • Lindquist JC, Alippi HE (1964) Un nuevo genero de hongo parasito de Tropaeolum majus; Acroconidiella tropaeoli (Bond) nov. comb. sinonimo Heterosporium tropaeoli Bond. Darwiniana 13:607–614

    Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    Article  CAS  Google Scholar 

  • Liu NG, Hongsanan S, Yang J, Lin CG, Bhat DJ, Liu JK, Jumpathong J, Boonmee S, Hyde KD, Liu ZY (2017) Dendryphiella fasciculata sp. nov. and notes on other Dendryphiella species. Mycosphere 8:1575–1586

    Article  Google Scholar 

  • Manamgoda DS, Cai L, McKenzie EHC, Crous PW, Madrid H et al (2012) A phylogenetic and taxonomic re-evaluation of the BipolarisCochliobolusCurvularia complex. Fungal Divers 56:131–144

    Article  Google Scholar 

  • Matsushima T (1971) Microfungi of the Solomon Islands and Papua-New Guinea. Published by the author, Kobe

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE): 1–8. New Orleans

  • Moslemi A, Ades PK, Groom T, Nicolas ME, Taylor PW (2017) Alternaria infectoria and Stemphylium herbarum, two new pathogens of pyrethrum (Tanacetum cinerariifolium) in Australia. Australas Plant Pathol 46:91–101

    Article  Google Scholar 

  • Muchovej JJ (1980) A new species of Acroconidiella from Brazil. Mycologia 72:1045–1047

    Article  Google Scholar 

  • Nees von Esenbeck CG (1816) Das System der Pilze und Schwämme. Würzburg, Germany

  • Nylander J (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University 2

  • Pinho DB, Firmino AL, Ferreira-Junior WG, Pereira OL (2012) An efficient protocol for DNA extraction from Meliolales and the description of Meliola centellae sp. nov. Mycotaxon 122:333–345

    Article  Google Scholar 

  • Prasher IB, Verma RK (2015) Two new species of Acroconidiella from India. JNBR. 4:111–114

    Google Scholar 

  • Rai AN, Kamal (1986) Fungi of Gorakhpur-XLII. Kavaka 14:31–36

    Google Scholar 

  • Rambaut A (2009) FigTree 1.2.2. Available at: http://tree.bio.ed.ac.uk/software/figtree/. Accessed on Jul 15 2018

  • Ranojevic N (1914) Dritter beitrag zur pilzflora serbiens. Annales Mycologici 12:393–421

    Google Scholar 

  • Rayner RW (1970) A mycological colour chart. CMI and British Mycological Society, Kew

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  Google Scholar 

  • Schubert K, Crous PW, Groenewald JZ (2007) Alternaria thalictrigena. Fungal Planet 12. Centraalbureau voor Schimmelcultures, Utrecht, Netherlands

  • Simmons EG (2007) Alternaria. An identification manual. CBS Biodiversity Series 6. CBS Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Sung G-H, Sung J-M, Hywel-Jones NL, Spatafora JW (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol 44:1204–1223

    Article  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Vieira BS, Barreto RW (2002) First record of leaf-spot caused by Acroconidiella tropaeoli on Tropaeolum majus in Brazil. New Dis Rep 5:12

    Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    Article  CAS  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky J, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Woudenberg JHC, Groenewald JZ, Binder M, Crous PW (2013) Alternaria redefined. Stud Mycol 75:171–212

    Article  CAS  Google Scholar 

  • Zhang TY (2000) Flora Fungorum Sinicorum. (vol 16): Alternaria. Science Press, Beijing, p 230

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support. Electron microscopy studies were performed at the Núcelo de Microscopia e Microanálise da Universidade Federal de Viçosa (NMM-UFV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Barreto.

Additional information

Section Editor: Gerhard Rambold

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, B.W., Barreto, R.W. Debunking Acroconidiella. Mycol Progress 18, 1303–1315 (2019). https://doi.org/10.1007/s11557-019-01525-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-019-01525-y

Keywords

Navigation