Skip to main content
Log in

Phylogeny of cercosporoid fungi (Mycosphaerellaceae, Mycosphaerellales) from Hawaii and New York reveals novel species within the Cercospora beticola complex

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The taxonomy of 44 specimens of cercosporoid fungi from Hawaii and New York, USA, was elucidated through multi-locus phylogenetic analyses of the LSU and ITS regions of the nrDNA as well as partial sequences of the actin, calmodulin, histone H3, and translation elongation factor 1-α genes. Sequences of four additional loci, namely, partial beta-tubulin, glyceraldehyde-3-phosphate dehydrogenase, the second largest subunit of RNA polymerase II, and the cercosporin facilitator protein-encoding gene, were used to resolve evolutionary species boundaries within the Cercospora beticola species complex using concatenated multi-locus phylogenies and the genealogical divergence index (gdi). Four novel Cercospora species, C. americana sp. nov., C. hawaiiensis sp. nov., C. manoa sp. nov., and C. tecta sp. nov. are described. Neocercospora carotae comb. nov. is made for Cercospora apii var. carotae, which is neotypified. Cercospora cf. citrulina and Pseudocercospora ocimi-basilici are reported for the first time in Hawaii. Cercospora beticola, Pluripassalora bougainvilleae, and Pseudocercospora pittospori are confirmed in Hawaii. Strelitziana africana, isolated from leaves of Ipomoea pes-caprae and Bougainvillea sp. affected by Cercospora spp., is reported for the first time in the USA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All sequence data used in this study are available on NCBI GenBank database. All alignments, trees, and analyses are available in TreeBASE. All fungal isolates are available from international culture collections.

References

  • Ayala-Escobar V, Santiago-Santiago V, Madariaga-Navarrete A, Castaneda-Vildozola A, Nava-Diaz C (2014) First report of Passalora leaf spot caused by Passalora bougainvilleae on bougainvillea in Mexico. Mycol Prog 13:483–491

    Article  Google Scholar 

  • Bakhshi M, Arzanlou M, Babai-Ahari A, Groenewald JZ, Braun U, Crous PW (2015a) Application of the consolidated species concept to Cercospora spp. from Iran. Persoonia 34:65–86

    Article  CAS  PubMed  Google Scholar 

  • Bakhshi M, Arzanlou M, Babai-Ahari A, Groenewald JZ, Crous PW (2015b) Is morphology in Cercospora a reliable reflection of generic affinity? Phytotaxa 213:22–34

    Article  Google Scholar 

  • Bakhshi M, Arzanlou M, Babai-ahari A, Groenewald JZ, Crous PW (2018) Novel primers improve species delimitation in Cercospora. IMA Fungus 9:299–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolton MD, Rivera V, Secor G (2012) Identification of the G143A mutation associated with QoI resistance in Cercospora beticola field isolates from Michigan, United States. Pest Manag Sci 69:35–39

    Article  PubMed  CAS  Google Scholar 

  • Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges LL, Ferreira TF, Lana MG, Caliman ID, Bluhm BH, Oliveira LO (2018) Multi-host species of Cercospora are associated with Cercospora leaf blight and purple seed stain of soybean. Tropical Plant Pathology 43:170–177

    Article  Google Scholar 

  • Bouckaert RR, Drummond AJ (2017) bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol Biol 17:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15:e1006650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun U, Nakashima C, Crous PW (2013) Cercosporoid fungi (Mycosphaerellaceae) 1. Species on other fungi, Pteridophyta and Gymnospermae. IMA Fungus 4:265–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruen TC, Philippe H, Bryant D (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172:2665–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

    Article  CAS  Google Scholar 

  • Crous PW, Braun U (2003) Mycosphaerella and its anamorphs: 1. Names published in Cercospora and Passalora. Centraalbureau voor Schimmelcultures, Utrecht

  • Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004a) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22

    Google Scholar 

  • Crous PW, Groenewald JZ, Risede J-M, Hywel-Jones NL (2004b) Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Stud Mycol 50:415–429

    Google Scholar 

  • Crous PW, Groenewald JZ, Shivas RG (2010) Strelitziana eucalypti. Fungal Planet 62. Persoonia 25:144–145

    Google Scholar 

  • Crous PW, Braun U, Hunter GC, Wingfield MJ, Verkley GJM, Shin HD, Nakashima C, Groenewald JZ (2013) Phylogenetic lineages in Pseudocercospora. Stud Mycol 75:37–114

    Article  CAS  PubMed  Google Scholar 

  • Darlu P, Lecointre G (2002) When does the incongruence length difference test fail? Mol. Biol. Evol. 19:432–437

    Article  CAS  PubMed  Google Scholar 

  • De Coninck BMA, Amand O, Delauré SL, Lucas S, Hias N, Weyens G, Mathys J, De Bruyne E, Cammue BPA (2012) The use of digital image analysis and real-time PCR fine-tunes bioassays for quantification of Cercospora leaf spot disease in sugar beet breeding. Plant Pathol 61:76–84

    Article  CAS  Google Scholar 

  • De Hoog GS, Gerrits Van den Ende AHG (1998) Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41:183–189

    Article  PubMed  Google Scholar 

  • Degnan JH, Rosenberg NA (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 24:332–340

    Article  PubMed  Google Scholar 

  • Farris JS, Kallersjo M, Kluge AG, Bult C (1995) testing significance of incongruence. Cladistics 10 (3):315–319

  • Flouri T, Jiao X, Rannala B, Yang Z (2018) Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol Biol Evol 35:2585–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita MK, Leaché AD, Burbrink FT, McGuire JA, Moritz C (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol Evol 27:480–488

    Article  PubMed  Google Scholar 

  • Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582

    Article  CAS  PubMed  Google Scholar 

  • Groenewald M, Groenewald JZ, Crous PW (2005) Distinct species exist within the Cercospora apii morphotype. Phytopathology 95:951–959

    Article  CAS  PubMed  Google Scholar 

  • Groenewald M, Groenewald JZ, Braun U, Crous PW (2006) Host range of Cercospora apii and C. beticola and description of C. apiicola, a novel species from celery. Mycologia 98:275–285

    Article  PubMed  Google Scholar 

  • Groenewald JZ, Nakashima C, Nishikawa J, Shin HD, Park JH, Jama AN, Groenewald M, Braun U, Crous PW (2013) Species concepts in Cercospora: spotting the weeds among the roses. Stud Mycol 75:115–170

    Article  CAS  PubMed  Google Scholar 

  • Grummer JA, Bryson RW, Reeder TW (2014) Species delimitation using Bayes factors: simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae). Syst Biol 63:119–133

    Article  PubMed  Google Scholar 

  • Guatimosim E, Schwartsburd PB, Barreto RW, Crous PW (2016) Novel fungi from an ancient niche: cercosporoid and related sexual morphs on ferns Persoonia 37:106

    CAS  PubMed  Google Scholar 

  • Guillin EA, de Oliveira LO, Grijalba PE, Gottlieb AM (2017) Genetic entanglement between Cercospora species associating soybean purple seed stain. Mycol Prog 16:593–603

    Article  Google Scholar 

  • Holmes EC, Worobey M, Rambaut A (1999) Phylogenetic evidence for recombination in dengue virus. Mol Biol Evol 16:405

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Jackson ND, Carstens BC, Morales AE, O’Meara BC (2017) Species delimitation with gene flow. Syst Biol 66:799–812

    Article  PubMed  Google Scholar 

  • Johnson EM, Valleau WD (1949) Synonymy in some common species of Cercospora. Phytopathology 39:763–770

    Google Scholar 

  • Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingman J (1982) The coalescent. Stoch Proc Appl 13:235–248

    Article  Google Scholar 

  • Kirschner R (2014) A new species and new records of cercosporoid fungi from ornamental plants in Taiwan. Mycol Prog 13:483–491

    Article  Google Scholar 

  • Knight NL, Pethybridge SJ (2020) An improved PCR assay for species-specific detection and quantification of Cercospora beticola. Can J Plant Pathol 42:72–83

    Article  CAS  Google Scholar 

  • Knight NL, Vaghefi N, Kikkert JR, Pethybridge SJ (2019) Alternative hosts of Cercospora beticola in field surveys and inoculation trials. Plant Dis 103:1983–1990

    Article  CAS  PubMed  Google Scholar 

  • Kubatko LS, Degnan JH (2007) Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol 56:17–24

    Article  CAS  PubMed  Google Scholar 

  • Leaché AD, Zhu T, Rannala B, Yang Z (2019) The spectre of too many species. Syst Biol 68:168–181

    Article  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 16:1799–1808

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wang M, Damm U, Crous PW, Cai L (2016) Species boundaries in plant pathogenic fungi: a Colletotrichum case study. BMC Evol Biol 16:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lutzoni F, Wagner P, Reeb V, Zoller S, Olmstead R (2000) Integrating Ambiguously Aligned Regions of DNA Sequences in Phylogenetic Analyses Without Violating Positional Homology. Syst Biol 49 (4):628-651

  • Martin DP, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563

    Article  CAS  PubMed  Google Scholar 

  • Martin DP, Posada D, Crandall KA, Williamson C (2005) A modified BOOTSCAN algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retrovir 21:98–102

    Article  CAS  PubMed  Google Scholar 

  • Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003

  • Maynard Smith J (1992) Analyzing the mosaic structure of genes. J Mol Evol 34:126–129

    Google Scholar 

  • Millanes AM, Truong C, Westberg M, Diederich P, Wedin M (2014) Host switching promotes diversity in host-specialized mycoparasitic fungi: uncoupled evolution in the Biatoropsis-Usnea system. Evolution 68:1576–1593

    Article  CAS  PubMed  Google Scholar 

  • Milosavljević A, Pfaf-Dolovac E, Mitrović M, Jović J, Toševski I, Duduk N, Trkulja N (2014) First Report of Cercospora carotae, causal agent of cercospora leaf spot of carrot, in Serbia. Plant Dis 98:1153

    Article  PubMed  Google Scholar 

  • Muntañola-Cvetkovic (1957) Tres especies de “Cercospora” (Deuteromycetae) de Tucúman. Revista Argentina de Agronomia 24:84

    Google Scholar 

  • Myllys L, Stenroos S, Thell A (2002) New genes for phylogenetic studies of lichenized fungi: glyceraldehyde-3-phosphate dehydrogenase and beta-tubulin genes. Lichenologist 34:237–246

    Article  Google Scholar 

  • Nakashima C, Motohashi K, Chen C-Y, Groenewald JZ, Crous PW (2016) Species diversity of Pseudocercospora from Far East Asia. Mycol Prog 15:1093–1117

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Newman AG, Townsend CA (2016) Molecular characterization of the cercosporin biosynthetic pathway in the fungal plant pathogen Cercospora nicotianae. J. Am. Chem. Soc 138:4219–4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otálora MA, Martínez I, Aragón G, Wedin M (2017) Species delimitation and phylogeography of the Pectenia species-complex: a misunderstood case of species-pairs in lichenized fungi, where reproduction mode does not delimit lineages. Fung Biol 121:222–233

    Article  CAS  Google Scholar 

  • Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225

    Article  CAS  PubMed  Google Scholar 

  • Passerini G (1890) Diagnosi di funghi nuovi. Nota IV. Atti della Reale Accademia dei Lincei Memorie di Classe di Scienze Fisiche, Matematiche e Naturale. Serie 4(6):457–470

    Google Scholar 

  • Pethybridge SJ, Kikkert JR, Hanson LE, Nelson SC (2018) Challenges and prospects for building resilient disease management strategies and tactics for the New York table beet industry. Agronomy 8:112

    Article  CAS  Google Scholar 

  • Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. PNAS 98 (24):13757–13762

  • Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, Razavi M, Mirzadi Gohari A, Mehrabi R, Crous PW (2011) Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia 26 (1):57–69

  • Raabe RD, Conners IL, Martinez AP (1981) Checklist of plant diseases in Hawaii. College of Tropical Agriculture and Human Resources, University of Hawaii. Information Text Series No. 22. Hawaii Institute of Tropical Agriculture and Human Resources

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez MJ (2006) Further problems with the incongruence length difference test: “hypercongruence” effect and multiple comparisons. Cladistics 22:289–295

    Article  Google Scholar 

  • Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98:625–634

    Article  CAS  Google Scholar 

  • Saccardo PA (1876) Fungi Veneti novi vel critici. Series V Nuovo G. Bot Ital 8:162–211

    Google Scholar 

  • Secor GA, Rivera VV (2012) Fungicide resistance assays for fungal plant pathogens. In: Bolton MD, Thomma BPHJ (eds) Plant fungal pathogens: methods and protocols. Humana Press, New York, pp 385–392

    Chapter  Google Scholar 

  • Soares APG, Guillin EA, Borges LL, Da Silva AC, De Almeida ÁM et al (2015) More Cercospora species infect soybeans across the Americas than meets the eye. PLoS One 10(8):0133495

    Article  CAS  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens FL (1925) Hawaiian fungi. Bernice P. Bishop Mus Bull 19:1–189

    Google Scholar 

  • Sukumaran J, Knowles LL (2017) Multispecies coalescent delimits structure, not species. Proc Natl Acad Sci 114:1607–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swofford DL (2003) PAUP phylogenetic analysis using parsimony (and other methods), Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123 (3):585–595

  • Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber WH, Li DZ, Marhold K, May TW (2018) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten

    Book  Google Scholar 

  • Vaghefi N, Kikkert JR, Bolton MD, Hanson LE, Secor GA, Nelson SC, Pethybridge SJ (2017) Global genotype flow in Cercospora beticola populations confirmed through genotyping by sequencing. PLoS ONE 12:e0186488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaghefi N, Kikkert JR, Hay FS, Carver GD, Koenick LB, Bolton MD, Hanson LE, Secor GS, Pethybridge SJ (2018) Cryptic diversity, pathogenicity, and evolutionary species boundaries in Cercospora populations associated with Cercospora leaf spot of Beta vulgaris. Fungal Biol 122:264–282

    Article  PubMed  Google Scholar 

  • Verkley GJM, Starink-Willemse M, van Iperen A, Alben EC (2004) Phylogenetic analyses of Septoria species based on the ITS and LSU-D2 regions of nuclear ribosomal DNA. Mycologia 96:558–571

    Article  CAS  PubMed  Google Scholar 

  • Videira SIR, Groenewald JZ, Braun U, Shin HD, Crous PW (2016) All that glitters is not Ramularia. Stud Mycol 83:49–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Videira SIR, Groenewald JZ, Nakashima C, Braun U, Barreto RW, de Wit PJ, Crous PW (2017) Mycosphaerellaceae - chaos or clarity? Stud Mycol 87:257–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiland J, Koch G (2004) Sugarbeet leaf spot disease (Cercospora beticola Sacc.). Mol Plant Pathol 5:157–166

    Article  PubMed  Google Scholar 

  • Whitehead MR, Catullo RA, Ruibal M, Dixon KW, Peakall R, Linde CC (2017) Evaluating multilocus Bayesian species delimitation for discovery of cryptic mycorrhizal diversity. Fungal Ecol 26:74–84

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungi ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Yang Z (2015) The BPP program for species tree estimation and species delimitation. Curr Zool 61:854–865

    Article  Google Scholar 

  • Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci 107:9264–9269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Carol Bowden and David Strickland for the excellent technical support. The authors would also like to thank Dr. Shaun Pennycook (Landcare NZ) for nomenclatural advice. We also thank the anonymous reviewers for their constructive comments.

Funding

This research was funded by the United States Department of Agriculture, National Institute of Food and Agriculture (USDA-NIFA) Hatch project HAW08036-H (accession no. 1010616) administered by the College of Tropical Agriculture and Human Resources, University of Hawai`i at Mānoa, HI, USA; USDA-NIFA Hatch project NYG-625424, managed by the New York State Agricultural Experiment Station, Cornell University, Geneva, NY, USA; and the Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia.

Author information

Authors and Affiliations

Authors

Contributions

Sarah Pethybridge, Scot Nelson, and Niloofar Vaghefi contributed to the study conception. Material preparation and data collection were performed by Sandeep Sharma, Roger Shivas, and Niloofar Vaghefi. All analyses were performed by Niloofar Vaghefi. The first draft of the manuscript was written by Niloofar Vaghefi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Niloofar Vaghefi.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Section Editor: Gerhard Rambold

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaghefi, N., Shivas, R.G., Sharma, S. et al. Phylogeny of cercosporoid fungi (Mycosphaerellaceae, Mycosphaerellales) from Hawaii and New York reveals novel species within the Cercospora beticola complex. Mycol Progress 20, 261–287 (2021). https://doi.org/10.1007/s11557-021-01666-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-021-01666-z

Keywords

Navigation