Skip to main content

Advertisement

Log in

Predicting the future distributions of Calomicrus apicalis Demaison, 1891 (Coleoptera: Chrysomelidae) under climate change

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Climate change is one of the main drivers of the changes in the distribution of species in the twenty-first century. Thus, the number of studies on the prediction of the effects of climate change on species is increasing day by day. Calomicrus apicalis is a pest leaf beetle (Coleoptera: Chrysomelidae) species which only distributes in Cyprus, Syria, and Turkey. The species causes important damages especially on Taurus cedar (Cedrus libani) stands of Turkish forests and also feeds on Pinus brutia, P. nigra, and P. sylvestris trees. This study aims to model the current and future (2041–2060 and 2081–2100) distribution of this pest species according to SSP2 and SSP5 emission scenarios given by the MIROC6 climate change model. Maximum entropy (MaxEnt) modeling was used to determine the current and future potential distribution of the species. Also, post-modeling analyses were performed to reveal the changes in both spatial distribution and niche suitability of the area (according to presence probability classes) between present and future distribution ranges of the species. The most important bioclimatic variables which shape the range of the species were precipitation of driest quarter, temperature seasonality, and precipitation of driest month. As a result of the study, it is determined that the current distribution of the species could be wider than its known distribution range. Most of all, the whole of the Aegean Region is a highly suitable area for the species. According to our models, the distribution of the species under climate change will expand toward the Sivas Province from the present to 2041–2060 and 2081–2100. However, the distribution of the species will shrink considerably from 2041–2060 to 2081–2100 because of changing climate. According to the change analysis, highly suitable areas for the species will decrease by around 36% and 15% by 2081–2100 according to the SSP2 and SSP5 scenarios, respectively. Although the distribution of the species will shrink in the future, the species should be observed up to 2041–2060 because it will distribute more widely in this period (current to 2041–2060) and cause damages in weakened trees due to drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arslan E, Örücü K (2019) Present and future potential distribution of the Pinus nigra Arnold. and Pinus sylvestris L. using Maxent Model. Int J Ecosyst Ecol Sci 9(4):787–798

    Google Scholar 

  • Arslan ES, Akyol A, Örücü ÖK, Sarıkaya AG (2020) Distribution of rose hip (Rosa canina L.) under current and future climate conditions. Reg Environ Change 20(3):1–13

    Google Scholar 

  • Aslan EG, Gök A, Gürbüz MF, Ayvaz Y (2009) Species composition of Chrysomelidae (Coleoptera) in Saklıkent vicinity (Antalya, Turkey) with observations on potential host plants. J Entomol Res Soc 11:7–18

    Google Scholar 

  • Aslan İ (1998) Erzurum İli Galerucinae altfamilyasi (Coleoptera: Chrysoemlidae) türleri üzerinde faunistik ve sistematik bir çalışma. Türkiye Entomoloji Dergisi 22:285–298

    Google Scholar 

  • Aslan I, Warchalowski A, Özbek H (2000) A preliminary review of the subfamily Galerucinae (Coleoptera, Chrysomelidae) in Turkey. J Entomol Res Soc 2:27–42

    Google Scholar 

  • Atalay I, Efe R, Öztürk M (2014) Ecology and classification of forests in Turkey. Procedia Soc Behav Sci 120:788–805

    Google Scholar 

  • Aytar F, Dağdaș S, Duran C (2010) A new pest of Cedrus libani A. Rich., Calomicrus apicalis Demaison, 1891 (Col.: Chrysomelidae) and control measures in Turkiye. Orman Mühendisliği 47:12–18

    Google Scholar 

  • Aytar F, Dağdaş S, Duran C (2011) Biology and control of Calomicrus apicalis Demaison, 1891 (Col.: Chrysomelidae), a new pest of Cedrus libani A. Rich. Silva Lusitana 19:33–40

    Google Scholar 

  • Bakke A (1968) Ecological Studies on Bark Beetles (Coleoptera: Scolytidae) Associated with Scots Pine (Pinus sylvestris L.) in Norway with Particular Reference to the Influence of Temperature. Meddelelser Fra Det Norske Skogforsøksvesen 83:441–602

    Google Scholar 

  • Bal N, Özdikmen H, Kıyak S (2018) Thirty new leaf beetles for the fauna of Çankırı Province in Turkey (Chrysomelidae). Mun Ent Zool 13(2):507–518

    Google Scholar 

  • Bale J, Hayward S (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994

    CAS  PubMed  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JE (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol 8(1):1–16

    Google Scholar 

  • Bezděk J (2006) Calomicrus atrocephalus (Reitter, 1895), a new synonym of Calomicrus apicalis Demaison, 1891 (Coleoptera: Chrysomelidae: Galerucinae). Genus 17:359–362

    Google Scholar 

  • Bezděk J (2007) Taxonomical changes in Palaearctic Luperini (Coleoptera: Chrysomelidae: Galerucinae). Annales Zoologici 57(2):257–266

    Google Scholar 

  • Bezděk J (2012) Taxonomic and faunistic notes on Oriental and Palaearctic Galerucinae and Cryptocephalinae (Coleoptera: Chrysomelidae). Genus 23:375–418

    Google Scholar 

  • Bieńkowski AO, Orlova-Bienkowskaja MJ (2016) Key to Holarctic species of Epitrix flea beetles (Coleoptera: Chrysomelidae: Galerucinae: Alticini) with review of their distribution, host plants and history of invasions. Zootaxa 4175(5):401–435

    PubMed  Google Scholar 

  • Bieńkowski AO, Orlova-Bienkowskaja MJ (2018) Alien leaf beetles (Coleoptera, Chrysomelidae) of European Russia and some general tendencies of leaf beetle invasions. PLOS One 13(9):e0203561

    PubMed  PubMed Central  Google Scholar 

  • Boggs CL (2016) The fingerprints of global climate change on insect populations. J Curr Opinion Insect Sci 17:69–73

    Google Scholar 

  • Bradie J, Leung B (2017) A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J Biogeogr 44(6):1344–1361

    Google Scholar 

  • Brunetti M, Magoga G, Iannella M, Biondi M, Montagna M (2019) Phylogeography and species distribution modelling of Cryptocephalus barii (Coleoptera: Chrysomelidae): is this alpine endemic species close to extinction? ZooKeys 856:3–25

    PubMed  PubMed Central  Google Scholar 

  • Cerasoli F, Thuiller W, Guéguen M, Renaud J, D’Alessandro P, Biondi M (2020) The role of climate and biotic factors in shaping current distributions and potential future shifts of European Neocrepidodera (Coleoptera, Chrysomelidae). Insect Conserv Divers 13(1):47–62

    Google Scholar 

  • Chapman AD (2009) Numbers of living species in Australia and the world. Australian Biodiversity Information Services, Report for the Australian Biological Resources Study, Canberra, Australia.

  • Ciplak B (2003) Distribution of Tettigoniinae (Orthoptera, Tettigoniidae) bush-crickets in Turkey: the importance of the Anatolian Taurus Mountains in biodiversity and implications for conservation. J Biodivers Conserv 12(1):47–64

    Google Scholar 

  • Ciplak B (2004) Biogeography of Anatolia: the marker group Orthoptera. J Mem Soc Entomol Ital 82(2003):357–372

    Google Scholar 

  • Cornelissen T (2011) Climate change and its effects on terrestrial insects and herbivory patterns. J Neotrop Entomol 40:155–163

    CAS  Google Scholar 

  • De Simone W, Iannella M, D’Alessandro P, Biondi M (2020) Assessing influence in biofuel production and ecosystem services when environmental changes affect plant–pest relationships. GCB Bioener 12(10):864–877

    Google Scholar 

  • Elith J (2000) Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. Quantitative methods for conservation biology. Springer, New York, pp 39–58

    Google Scholar 

  • Elith J, Burgman MA, Regan HM (2002) Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecol Model 157:313–329

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrer S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57

    Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958

    Google Scholar 

  • Fanning PD, Baars JR (2014) Biology of the Eucalyptus leaf beetle Paropsisterna selmani (Chrysomelidae: Paropsini): a new pest of Eucalyptus species (Myrtaceae) in Ireland. Agric For Entomol 16:45–53

    Google Scholar 

  • Feehan J, Harley M, Van Minnen J (2009) Climate change in Europe. 1. Impact on terrestrial ecosystems and biodiversity: a review. Agron Sustain Devel 29(3):409–421

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Google Scholar 

  • Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MaxEnt using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. J PloS One 9(5):e97122

    Google Scholar 

  • Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge

    Google Scholar 

  • Freeman M, Looney C, Orlova-Bienkowskaja MJ, Crowder DW (2020) Predicting the Invasion Potential of the Lily Leaf Beetle, Lilioceris lilii Scopoli (Coleoptera: Chrysomelidae) in North America. Insects 11(9):560

    PubMed Central  Google Scholar 

  • Gidden M, Riahi K, Smith S, Fujimori S, Luderer G, Kriegler E, van Vuuren DP, van den Berg M et al (2019) Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci Model Dev Discuss 12(4):1443–1475

    CAS  Google Scholar 

  • Gök A, Duran E (2004) A survey of the subfamily Galerucinae (Coleoptera: Chrysomelidae) of Isparta Province (Turkey), with two new records. J Entomol Res Soc 6:15–24

    Google Scholar 

  • Gomes VH, IJff SD, Raes N, Amaral IL, Salomão RP, de Souza Coelho L, de Almeida Matos FD, Castilho CV, de Andrade Lima Filho D, López DC, Guevara JE (2018) Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Sci Rep 8(1):1–12

    Google Scholar 

  • Guillén D, Sánchez R (2007) Expansion of the national fruit fly control programme in Argentina. Area-wide control of insect pests: from research to field implementation. Springer, Dodrecht, pp 653–660

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. J Global Change Biol 12:450-455

    Google Scholar 

  • Iannella M, D’Alessandro P, Biondi M (2020) Forecasting the spread associated with climate change in Eastern Europe of the invasive Asiatic flea beetle, Luperomorpha xanthodera (Coleoptera: Chrysomelidae). Eur J Entomol 117:130–138

    Google Scholar 

  • Iannella M, D’Alessandro P, Longo S, Biondi M (2019a) New records and potential distribution by Ecological Niche Modeling of Monoxia obesula in the Mediterranean area. Bull Insectol 72(1):135–142

    Google Scholar 

  • Iannella M, De Simone W, D’Alessandro P, Console G, Biondi M (2019b) Investigating the current and future co-occurrence of Ambrosia artemisiifolia and Ophraella communa in Europe through ecological modelling and remote sensing data analysis. Int J Environ Res Public Health 16(18):3416

    PubMed Central  Google Scholar 

  • Jamieson MA, Trowbridge AM, Raffa KF, Lindroth RL (2012) Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions J. Plant Physiol 160:1719–1727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubisz D, Magoga G, Mazur MA, Montagna M, Ścibior R, Tykarski P, Kajtoch Ł (2020) Biogeography and ecology of geographically distant populations of sibling Cryptocephalus leaf beetles. Eur Zool J 87(1):223–234

    CAS  Google Scholar 

  • Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst 41:321–350

    Google Scholar 

  • Mbow HOP, Reisinger A, Canadell J, O’Brien P (2017) Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (SR2); IPCC. Geneva, Switzerland, 41pp.

  • Medvedev L (1970) A list of Chrysomelidae collected by Dr. W. Wittmer in Turkey. (Coleoptera). Revue suisse de zoologie annales de la Societe zoologique suisse et du Museum d’histoire naturelle de Geneve 77:309–319

    CAS  Google Scholar 

  • Mirzoeva N (2000) A study of the ecofaunal complexes of the leaf-eating beetles (Coleoptera, Chrysomelidae) in Azerbaijan. Turk J Zool 25:41–52

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853

    CAS  PubMed  Google Scholar 

  • Ning H, Dai L, Fu D, Liu B, Wang H, Chen H (2019) Factors Influencing the Geographical Distribution of Dendroctonus armandi (Coleoptera: Curculionidae: Scolytidae) in China. Forests 10(5):425

    Google Scholar 

  • Örücü ÖK, Arslan ES (2020) The current distribution of Pinus brutia (Ten.) in Turkey. https://doi.org/10.13140/RG.2.2.21465.75367

  • Örücü ÖK, Şen İ, Arslan ES (2020) The current distribution of Cedrus libani (A. Rich) in Turkey. Clim Change Species Distrib. https://doi.org/10.13140/RG.2.2.31479.65443

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. J Annu Rev Ecol Evol Syst 37:637-669

    Google Scholar 

  • Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA* master site Schrankogel, Tyrol, Austria. J Global Change Biol 13:147–156

    Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Google Scholar 

  • Phillips SJ (2005) A brief tutorial on Maxent. At T Res 190:231–259

    Google Scholar 

  • Phillips SJ (2008) Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography 31:272–278

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent J. Ecography 40:887–893

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19(1):181–197

    PubMed  Google Scholar 

  • QGIS 3.14.16 Pi (2020) A free and open GIS. Available online: https://qgis.org/tr/site/forusers/download.html.

  • Qu S, Wang L, Lin A, Yu D, Yuan M (2020) Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecol Indic 108(105724):1–11

    Google Scholar 

  • Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill B, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Crespo Cuaresma J, Samir KC, Leimback M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, Da Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman J, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Change 42:153–168

    Google Scholar 

  • Sady EA, Kiełkiewicz M, Kozłowski MW (2020) The rose flea beetle (Luperomorpha xanthodera, Coleoptera: Chrysomelidae), an alien species in central Poland− from an episodic occurrence in an established population. J Plant Prot Res 60(1):86–97

    Google Scholar 

  • Sarıkaya O, Karaceylan IB, Şen I (2018) Maximum entropy modeling (maxent) of current and future distributions of Ips mannsfeldi (Wachtl, 1879) (Curculionidae: Scolytinae) in Turkey. Appl Ecol Environ Res 16(3):2527–2535

    Google Scholar 

  • Şen İ, Gök A (2009) Leaf beetle communities (Coleoptera: Chrysomelidae) of two mixed forest ecosystems dominated by pine—oak—hawthorn in Isparta Province, Turkey. Annales Zoologici Fennici 3:217–232

    Google Scholar 

  • Şen İ, Gök A (2014) Leaf beetle (Coleoptera: Chrysomelidae) communities of Kovada Lake and Kızıldağ National Parks (Isparta, Turkey). Assessing the effects of habitat types. Entomol Res 44:176–190

    Google Scholar 

  • Şen İ, Gök A (2016) Seasonal activity of adult leaf beetles (Coleoptera: Chrysomelidae, Orsodacnidae) occuring in Kovada Lake and Kızıldag National Parks in Isparta Province (Turkey). Biologia 71:593–602

    Google Scholar 

  • Shcheglovitova M, Anderson RP (2013) Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol Model 269:9–17

    Google Scholar 

  • Shiogama H, Abe M, Tatebe H (2019a) MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP ssp245. Earth System Grid Federation

  • Shiogama H, Abe M, Tatebe H (2019b) MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP ssp585. Earth System Grid Federation

  • Stewart AJ, Bantock TM, Beckmann BC, Botham MS, Hubble D, Roy DB (2015) The role of ecological interactions in determining species ranges and range changes. Biol J Lin Soc 115:647–663

    Google Scholar 

  • Strong DR, Lawton JH, Southwood SR (1984) Insects on plants. Community patterns and mechanisms. Blackwell Scientific Publications, New Jersey

    Google Scholar 

  • Swaminathan S (2019) Impact of climate change on insect pollination. J Manag Res 1:1-12

    Google Scholar 

  • Tatebe H, Ogura T, Nitta T, Komuro Y, Ogochi K, Takemura T, Sudo K, Sekiguchi M, Abe M, Saito F, Chikira M (2019) Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci Model Dev 12(7):2727–2765

    CAS  Google Scholar 

  • Tatebe H, Watanabe M (2018) MIROC MIROC6 model output prepared for CMIP6 CMIP abrupt-4xCO2. Earth Syst Grid Feder. https://doi.org/10.22033/ESGF/CMIP6.5411

    Article  Google Scholar 

  • Tomov V (1984) Cryptocephalinae and Galerucinae from Turkey (Coleoptera, Chrysomelidae). Frag Entomol 17:373–378

    Google Scholar 

  • Turchin P, Lorio PL, Taylor AD, Billings RF (1991) Why do populations of southern pine Beetles (Coleoptera: Scolytidae) fluctuate? Environ Entomol 20:401–409

    Google Scholar 

  • Ulrich W, Czarnecki A, Kruszyński T (2004) Occurrence of pest species of the genus Oulema (Coleoptera: Chrysomelidae) in cereal fields in northern Poland. Electron J Pol Agric Univ 7:4

    Google Scholar 

  • Urbani F, D’Alessandro P, Frasca R, Biondi M (2015) Maximum entropy modeling of geographic distributions of the flea beetle species endemic in Italy (Coleoptera: Chrysomelidae: Galerucinae: Alticini). Zoologischer Anzeiger-A J Compar Zool 258:99–109

    Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. J Nat 416:389

    CAS  Google Scholar 

  • Wang Y, Xie B, Wan F, Xiao Q, Dai L (2007) Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodivers Sci 15(4):365

    Google Scholar 

  • Warren R, Price J, Graham E, Forstenhaeusler N, VanDerWal J (2018) The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C. J Sci 360:791–795

    CAS  Google Scholar 

  • Wilson E (1988) Biodiversity. National Academy Press, Washington, DC

    Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Google Scholar 

  • WorldClim (2020) Available online at: www.worldclim.org/data/cmip6/cmip6_clim2.5m.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Şen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şen, İ., Sarıkaya, O. & Örücü, Ö.K. Predicting the future distributions of Calomicrus apicalis Demaison, 1891 (Coleoptera: Chrysomelidae) under climate change. J Plant Dis Prot 129, 325–337 (2022). https://doi.org/10.1007/s41348-022-00579-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-022-00579-7

Keywords

Navigation