Skip to main content
Log in

Fibronectin-binding molecules of Scedosporium apiospermum: focus on adhesive events

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Scedosporium apiospermum is a widespread, emerging, and multidrug-resistant filamentous fungus that can cause localized and disseminated infections. The initial step in the infection process involves the adhesion of the fungus to host cells and/or extracellular matrix components. However, the mechanisms of adhesion involving surface molecules in S. apiospermum are not well understood. Previous studies have suggested that the binding of fungal receptors to fibronectin enhances its ability to attach to and infect host cells. The present study investigated the effects of fibronectin on adhesion events of S. apiospermum. The results revealed that conidial cells were able to bind to both immobilized and soluble human fibronectin in a typically dose-dependent manner. Moreover, fibronectin binding was virtually abolished in trypsin-treated conidia, suggesting the proteinaceous nature of the binding site. Western blotting assay, using fibronectin and anti-fibronectin antibody, evidenced 7 polypeptides with molecular masses ranging from 55 to 17 kDa in both conidial and mycelial extracts. Fibronectin-binding molecules were localized by immunofluorescence and immunocytochemistry microscopies at the cell wall and in intracellular compartments of S. apiospermum cells. Furthermore, a possible function for the fibronectin-like molecules of S. apiospermum in the interaction with host lung cells was assessed. Conidia pre-treated with soluble fibronectin showed a significant reduction in adhesion to either epithelial or fibroblast lung cells in a classically dose-dependent manner. Similarly, the pre-treatment of the lung cells with anti-fibronectin antibodies considerably diminished the adhesion. Collectively, the results demonstrated the presence of fibronectin-binding molecules in S. apiospermum cells and their role in adhesive events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cortez KJ, Roilides E, Quiroz-Telles F, Meletiadis J, Antachopoulos C, Knudsen T, Buchanan W, Milanovich J, Sutton DA, Fothergill A, Rinaldi MG, Shea YR, Zaoutis T, Kottilil S, Walsh TJ (2017) Infections caused by Scedosporium spp. Clin Microbiol Rev 21(1):157–197. https://doi.org/10.1128/CMR.00039-07

    Article  CAS  Google Scholar 

  2. Ramirez-Garcia A, Pellon A, Rementeria A, Buldain I, Barreto-Bergter E, Rollin-Pinheiro R, de Meirelles JV, Xisto MIDS, Ranque S, Havlicek V, Vandeputte P, Govic YL, Bouchara JP, Giraud S, Chen S, Rainer J, Alastruey-Izquierdo A, Martin-Gomez MT, López-Soria LM, Peman J, Schwarz C, Bernhardt A, Tintelnot K, Capilla J, Martin-Vicente A, Cano-Lira J, Nagl M, Lackner M, Irinyi L, Meyer W, de Hoog S, Hernando FL (2018) Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med Mycol 56(suppl_1):102–125. https://doi.org/10.1093/mmy/myx113

    Article  PubMed  Google Scholar 

  3. Mello TP, Bittencourt VCB, Liporagi-Lopes LC, Aor AC, Branquinha MH, Santos ALS (2018) Insights into the social life and obscure side of Scedosporium/Lomentospora species: ubiquitous, emerging and multidrug-resistant opportunistic pathogens. Fungal Biol Rev 33:16–46. https://doi.org/10.1016/j.fbr.2018.07.002

    Article  Google Scholar 

  4. Aor AC, Mello TP, Sangenito LS, Fonseca BB, Rozental S, Lione VF, Veiga VF, Branquinha MH, Santos ALS (2018) Ultrastructural viewpoints on the interaction events of Scedosporium apiospermum conidia with lung and macrophage cells. Mem Inst Oswaldo Cruz 113(10):e180311. https://doi.org/10.1590/0074-02760180311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mello TP, Aor AC, Branquinha MH, dos Santos ALS (2019) Insights into the interaction of Scedosporium apiospermum, Scedosporium aurantiacum, Scedosporium minutisporum, and Lomentospora prolificans with lung epithelial cells. Braz J Microbiol 51(2):427–436. https://doi.org/10.1007/s42770-019-00183-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Mello TP, Aor AC, Gonçalves DDS, Seabra SH, Branquinha MH, Santos ALS (2018) Scedosporium apiospermum, Scedosporium aurantiacum, Scedosporium minutisporum and Lomentospora prolificans: a comparative study of surface molecules produced by conidial and germinated conidial cells. 113:1–8. https://doi.org/10.1590/0074-02760180102

  7. Mello TP, Aor AC, Gonçalves DS, Seabra SH, Branquinha MH, Santos ALS (2016) Assessment of biofilm formation by Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. Biofouling 32:737–749. https://doi.org/10.1080/08927014.2016.1192610

    Article  CAS  PubMed  Google Scholar 

  8. Mello TP, Oliveira SSC, Branquinha MH, Santos ALS (2022) Decoding the antifungal resistance mechanisms in biofilms of emerging, ubiquitous and multidrug-resistant species belonging to the Scedosporium/Lomentospora genera. Med Mycol 60(6):myac036. https://doi.org/10.1093/mmy/myac036

    Article  CAS  PubMed  Google Scholar 

  9. Peñalver M, O’Connor JE, Martinez JP, Gil ML (1996) Binding of human fibronectin to Aspergillus fumigatus conidia. Infect Immun 64(4):1146–1153. https://doi.org/10.1128/iai.64.4.1146-1153.1996

    Article  PubMed Central  PubMed  Google Scholar 

  10. Singh B, Fleury C, Jalalvand F, Riesbeck K (2012) Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 36(6):1122–1180. https://doi.org/10.1111/j.1574-6976.2012.00340.x

    Article  CAS  PubMed  Google Scholar 

  11. Kozik A, Karkowska-Kuleta J, Zajac D, Bochenska O, Kedracka-Krok S, Jankowska U, Rapala-Kozik M (2015) Fibronectin-, vitronectin- and laminin-binding proteins at the cell walls of Candida parapsilosis and Candida tropicalis pathogenic yeasts. BMC Microbiol 15:197. https://doi.org/10.1186/s12866-015-0531-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Dalton CJ, Lemmon CA (2021) Fibronectin: molecular structure, fibrillar structure and mechanochemical signaling. Cells 10(9):2443. https://doi.org/10.3390/cells10092443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Klotz SA, Smith RL (1991) A fibronectin receptor on Candida albicans mediates adherence of the fungus to extracellular matrix. J Infect Dis 163(3):604–610. https://doi.org/10.1093/infdis/163.3.604

    Article  CAS  PubMed  Google Scholar 

  14. Rodrigues ML, dos Reis FC, Puccia R, Travassos LR, Alviano CS (2003) Cleavage of human fibronectin and other basement membrane-associated proteins by a Cryptococcus neoformans serine proteinase. Microb Pathog 34(2):65–71. https://doi.org/10.1016/s0882-4010(02)00195-x

    Article  CAS  PubMed  Google Scholar 

  15. Lima OC, Figueiredo CC, Previato JO, Mendonça-Previato L, Morandi V, Lopes Bezerra LM (2001) Involvement of fungal cell wall components in adhesion of Sporothrix schenckii to human fibronectin. Infect Immun 69(11):6874–6880. https://doi.org/10.1128/IAI.69.11.6874-6880.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hamilton AJ, Jeavons L, Youngchim S, Vanittanakom N, Hay RJ (1998) Sialic acid-dependent recognition of laminin by Penicillium marneffei conidia. Infect Immun 66(10):6024–6026. https://doi.org/10.1128/IAI.66.12.6024-6026.1998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hamilton AJ, Jeavons L, Youngchim S, Vanittanakom N (1999) Recognition of fibronectin by Penicillium marneffei conidia via a sialic acid-dependent process and its relationship to the interaction between conidia and laminin. Infect Immun 67(10):5200–5205. https://doi.org/10.1128/IAI.67.10.5200-5205.1999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kumari A, Tripathi AH, Gautam P, Gahtori R, Pande A, Singh Y, Madan T, Upadhyay SK (2021) Adhesins in the virulence of opportunistic fungal pathogens of human. Mycology 12(4):296–324. https://doi.org/10.1080/21501203.2021.1934176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Silva BA, Pinto MR, Soares RMA, Barreto-Bergter E, Santos ALS (2006) Pseudallescheria boydii releases metallopeptidases capable of cleaving several proteinaceous compounds. Res Microbiol 157(5):425–432. https://doi.org/10.1016/j.resmic.2005.11.010

    Article  CAS  PubMed  Google Scholar 

  20. Lowry OH, Rebrough NJ, Fan AL, Randal RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  21. Brittingham A, Morrison CJ, McMaster WR, McGwire BS, Chang KP, Mosser DM (1995) Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. J Immunol 155(6):3102–3111

    Article  CAS  PubMed  Google Scholar 

  22. Dubreuil JD, Giudice GD, Rappuoli R (2002) Helicobacter pylori interactions with host serum and extracellular matrix proteins: potential role in the infectious process. Microbiol Mol Biol Rev 66(4):617–629. https://doi.org/10.1128/MMBR.66.4.617-629.2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Penn C, Klotz SA (1994) Binding of plasma fibronectin to Candida albicans occurs through the cell binding domain. Microb Pathog 17(6):387–393. https://doi.org/10.1006/mpat

    Article  CAS  PubMed  Google Scholar 

  24. DeMuri GP, Hostetter MK (1996) Evidence for a beta 1 integrin fibronectin receptor in Candida tropicalis. J Infect Dis 174(1):127–132. https://doi.org/10.1093/infdis/174.1.127

    Article  CAS  PubMed  Google Scholar 

  25. Zajac D, Karkowska-Kuleta J, Bochenska O, Rapala-Kozik M, Kozik A (2016) Interaction of human fibronectin with Candida glabrata epithelial adhesin 6 (Epa6). Acta Biochim Pol 63(3):417–26. https://doi.org/10.18388/abp.2016_1328

    Article  CAS  PubMed  Google Scholar 

  26. Gozalbo D, Gil-Navarro I, Azorín I, Renau-Piqueras J, Martínez JP, Gil ML (1998) The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect Immun 66(5):2052–2059. https://doi.org/10.1128/IAI.66.5.2052-2059.1998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hube B (2000) Extracellular proteinases of human pathogenic fungi. Contrib Microbiol 5:126–137. https://doi.org/10.1159/000060350

    Article  CAS  PubMed  Google Scholar 

  28. Lima OC, Bouchara JP, Renier G, Marot-Leblond A, Chabasse D, Lopes-Bezerra LM (2004) Immunofluorescence and flow cytometry analysis of fibronectin and laminin binding to Sporothrix schenckii yeast cells and conidia. Microb Pathog 37(3):131–140. https://doi.org/10.1016/j.micpath.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  29. Srinoulprasert Y, Kongtawelert P, Chaiyaroj SC (2006) Chondroitin sulfate B and heparin mediate adhesion of Penicillium marneffei conidia to host extracellular matrices. Microb Pathog 40(3):126–132. https://doi.org/10.1016/j.micpath.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  30. Wasylnka JA, Moore MM (2000) Adhesion of Aspergillus species to extracellular matrix proteins: evidence for involvement of negatively charged carbohydrates on the conidial surface. Infect Immun 68(6):3377–3384. https://doi.org/10.1128/IAI.68.6.3377-3384.2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Gravelat FN, Beauvais A, Liu H, Lee MJ, Snarr BD, Chen D, Xu W, Kravtsov I, Hoareau CM, Vanier G, Urb M, Campoli P, Al Abdallah Q, Lehoux M, Chabot JC, Ouimet MC, Baptista SD, Fritz JH, Nierman WC, Latgé JP, Mitchell AP, Filler SG, Fontaine T, Sheppard DC (2013) Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog 9(8):e1003575. https://doi.org/10.1371/journal.ppat.1003575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Warwas ML, Watson JN, Bennet AJ, Moore MM (2007) Structure and role of sialic acids on the surface of Aspergillus fumigatus conidiospores. Glycobiol 17(4):401–410. https://doi.org/10.1093/glycob/cwl085

    Article  CAS  Google Scholar 

  33. Pinto MR, Sá ACM, Limongi CL, Rozental S, Santos ALS, Barreto-Bergter E (2004) Involvement of peptidorhamnomannan in the interaction of Pseudallescheria boydii and HEp2 cells. Microbes Infect 6:1259–1267. https://doi.org/10.1016/j.micinf.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  34. Xisto MI, Bittencourt VC, Liporagi-Lopes LC, Haido RMT, Mendonça MSA, Sassaki G, Figueiredo RT, Romanos MT, Barreto-Bergter E (2015) O-glycosylation in cell wall proteins in Scedosporium prolificans is critical for phagocytosis and inflammatory cytokines production by macrophages. PLoS One 10(4):e0123189. https://doi.org/10.1371/journal.pone.0123189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bittencourt VCB, Figueiredo RT, Silva RB, Mourão-Sá DS, Fernandez PL, Sassaki GL, Mulloy D, Bozza MT, Barreto-Bergter E (2006) An alfa-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and Toll-like receptor activation. J Biol Chem 281:22614–22623. https://doi.org/10.1074/jbc.M511417200

    Article  CAS  PubMed  Google Scholar 

  36. González A, Caro E, Muñoz C, Restrepo A, Hamilton AJ, Cano LE (2008) Paracoccidioides brasiliensis conidia recognize fibronectin and fibrinogen which subsequently participate in adherence to human type II alveolar cells: involvement of a specific adhesin. Microb Pathog 44(5):389–401. https://doi.org/10.1016/j.micpath.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  37. Li T, Li JC, Qi Q, Li Y (2013) Dexamethasone enhances invasiveness of Aspergillus fumigatus conidia and fibronectin expression in A549 cells. Chin Med J (Engl) 126(17):3289–3294

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Denise Rocha de Souza, who is supported by FAPERJ scholarship, for her technical assistance.

Funding

This work was supported by grants from Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES – financial support 001), and Fundação Oswaldo Cruz (FIOCRUZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André L. S. Santos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 Responsible Editor: Marcio Lourenço Rodrigues

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A.L.S., Silva, B.A., da Cunha, M.M.L. et al. Fibronectin-binding molecules of Scedosporium apiospermum: focus on adhesive events. Braz J Microbiol 54, 2577–2585 (2023). https://doi.org/10.1007/s42770-023-01062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01062-7

Keywords

Navigation