Skip to main content

Xerophiles

  • Chapter
  • First Online:
Fungi and Food Spoilage

Abstract

Xerophilic fungi are distinguished by their ability to grow under conditions of reduced water activity, i.e. to complete their life cycles on substrates that have been dried or concentrated, in the presence of high levels of soluble solids such as salts or sugars. Early usage (Scott 1957) confined the word “xerophile” to filamentous fungi and used the term “osmophile” for yeasts; the term “halophile” was used rather indiscriminately for moulds, yeasts and bacteria with the ability to grow on concentrated salt solutions. Pitt (1975) clarified the situation. He considered that osmophile was an inappropriate term, because high osmotic pressures were not involved in the growth of these fungi, as they balance the outside environment with internal solutes, maintaining just sufficient osmotic pressure to enable growth. The crucial point was that they preferred to grow at reduced water activities. In the absence of a suitable term for “lovers of low water activity”, xerophile seemed the most suitable appellation, for both moulds and yeasts. This chapter describes the characteristics of species fitting the definition of xerophile used in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adebajo, L.O. et al. 1994. Mycoflora and mycotoxin production in Nigerian corn and corn-based snacks. Mycopathologia 126: 183–192.

    Google Scholar 

  • Andrews, S. and Pitt, J.I. 1987. Further studies on the water relations of xerophilic fungi, including some halophiles. J. Gen. Microbiol. 133: 233–238.

    CAS  Google Scholar 

  • Baggerman, W.I. and Samson, R.A. 1988. Heat resistance of fungal spores. In Introduction to Foodborne Fungi, 3rd edn, eds R.A. Samson and E.S. van Reenen-Hoekstra. Baarn, Netherlands: Centraalbureau voor Schimmelcultures. pp. 262–267.

    Google Scholar 

  • Barron, G.L. 1968. The Genera of Hyphomycetes from Soil. Baltimore, Maryland: Williams and Wilkins.

    Book  Google Scholar 

  • Berbee, M.L. and Taylor, J.W. 1992. Two Ascomycete classes based on fruiting-body characters and ribosomal DNA sequences. Mol. Biol. Evol. 9: 278–284.

    CAS  PubMed  Google Scholar 

  • Beuchat, L.R. and Pitt, J.I. 1990a. Influence of solute, pH and incubation temperature on recovery of heat-stressed Wallemia sebi conidia. Appl. Environ. Microbiol. 56: 2545–2550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beuchat, L.R. and Pitt, J.I. 1990b. Influence of water activity and temperature on survival of and colony formation by heat-stressed Chrysosporium farinicola aleuriospores. Appl. Environ. Microbiol. 56: 2951–2956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biango-Daniels, M.N., and Hodge, K. 2018. Sea salts as a potential source of food spoilage fungi. Food Microbiol, 69: 89–95.

    Google Scholar 

  • Cantoni, C. et al. 2007. [Moulds and ochratoxin A on dry salami surfaces]. Ind. Aliment. 46: 10–12, 19.

    Google Scholar 

  • Carmichael, J.W., 1962. Chrysosporium and some other aleuriosporic hyphomycetes. Can. J. Bot. 40: 1137–1173.

    Article  Google Scholar 

  • CBS (Centraalbureau voor Schimmelcultures). 2007. Culture collection databases, accessible at http://www.cbs.knaw.nl/databases/index.htm.

  • Christensen, C.M. 1978a. Storage fungi. In Food and Beverage Mycology, ed. L.R. Beuchat. Westport, Connecticut: AVI Publishing Co. pp. 173–190.

    Google Scholar 

  • Christensen, C.M. 1978b. Moisture and seed decay. In Water Deficits and Plant Growth, vol. 5, Water and Plant Diseases, ed. T.T. Koslowski. New York: Academic Press. pp. 199–219.

    Google Scholar 

  • Christensen, C.M. and Kaufmann, H.H. 1965. Deterioration of stored grains by fungi. Annu. Rev. Phytopathol. 3: 69–84.

    Article  Google Scholar 

  • Dallyn, H. and Everton, J.R. 1969. The xerophilic mould, Xeromyces bisporus, as a spoilage organism. J. Food Technol. 4: 399–403.

    Article  Google Scholar 

  • Desroches, T.C., McMullin, D.R. and Miller, J.D., 2014. Extrolites of Wallemia sebi, a very common fungus in the built environment. Indoor Air, 24: 533–542.

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Valderrama, J.R., Nguyen, H.D. and Aime, M.C., 2017. Wallemia peruviensis sp. nov., a new xerophilic fungus from an agricultural setting in South America. Extremophiles, 21(6), pp.1017–1025.

    Google Scholar 

  • Frank, M. and Hess, E. 1941. Studies on salt fish. V. Studies on Sporendonema epizoum from dun salt fish. J. Fish. Res. Board Can. 5: 276–286.

    Article  Google Scholar 

  • Fraser, L. 1953. A new genus of the Plectascales. Proc. Linn. Soc. N.S.W. 78: 241–246.

    Google Scholar 

  • Gock, M.A. et al. 2003. Influence of temperature, water activity and pH on growth of some xerophilic fungi. Int. J. Food Microbiol. 81: 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Greiner, K., Peršoh, D., Weig, A. and Rambold, G., 2014. Phialosimplex salinarum, a new species of Eurotiomycetes from a hypersaline habitat. IMA Fungus, 5: 161–172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrold, C.E. 1950. Studies on the genus Eremascus. I. The rediscovery of Eremascus albus Eidam and some new observations concerning its life history and cytology. Ann. Bot. (London) 14: 127–148.

    Article  Google Scholar 

  • Hill, S.T., 1974. Conidium ontogeny in the xerophilic fungus Wallemia sebi. J. Stored Prod. Res. 10: 209–215.

    Article  Google Scholar 

  • Hocking, A.D. 1981. Improved media for enumeration of fungi from foods. CSIRO Food Res. Q. 41: 7–11.

    Google Scholar 

  • Hocking, A.D. 1986. Effects of water activity and culture age on the glycerol accumulation patterns of five fungi. J. Gen. Microbiol. 132: 269–275.

    CAS  Google Scholar 

  • Hocking, A.D. and Norton, R.S. 1983. Natural-abundance 13C nuclear magnetic resonance studies on the internal solutes of xerophilic fungi. J. Gen. Microbiol. 129: 2915–2925.

    CAS  Google Scholar 

  • Hocking, A.D. and Pitt, J.I. 1980. Dichloran-glycerol medium for enumeration of xerophilic fungi from low moisture foods. Appl. Environ. Microbiol. 39: 488–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hocking, A.D. and Pitt, J.I. 1984. Food spoilage fungi. II. Heat resistant fungi. CSIRO Food Res. Q. 44: 73–82.

    Google Scholar 

  • Houbraken, J. and Samson, R.A. 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud. Mycol. 70: 1–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail, M.A. 2001. Deterioration and spoilage of peanuts and desiccated coconuts from two sub-Saharan tropical East African countries due to the associated mycobiota and their degradative enzymes. Mycopathologia 150: 67–84.

    Article  CAS  PubMed  Google Scholar 

  • Jančič, S., et al. 2015a. A taxonomic revision of the Wallemia sebi species complex. PloS one, 10(5), p.e0125933.

    Google Scholar 

  • Jančič, S., et al. 2015b. Halophily reloaded: new insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp. nov. Fungal Diversity, 76: 97–118.

    Article  Google Scholar 

  • Kinderlerer, J.L. 1984. Spoilage in desiccated coconut resulting from growth of xerophilic fungi. Food Microbiol. 1: 23–28.

    Article  Google Scholar 

  • Kinderlerer, J.L. 1987. Ethanol production in table jelly by two species of Chrysosporium. J. Appl. Bacteriol. 63: 395–399.

    CAS  PubMed  Google Scholar 

  • Kinderlerer, J.L. 1995. Czapek casein 50% glucose (CZC50G): a new medium for the identification of foodborne Chrysosporium spp. Lett. Appl. Microbiol. 21: 131–136.

    Article  CAS  PubMed  Google Scholar 

  • Kinderlerer, J.L. 1996. The effect of age on the thermal resistance of arthroconidia from Chrysosporium inops. Lett. Appl. Microbiol. 23: 359–362.

    Article  Google Scholar 

  • Kinderlerer, J.L. 1997. Chrysosporium species, potential spoilage organisms of chocolate. J. Appl. Microbiol. 83: 771–778.

    Google Scholar 

  • Kinderlerer, J.L. et al. 1988. Essential oil produced by Chrysosporium xerophilum in coconut. Phytochemistry 27: 2761–2763.

    Article  CAS  Google Scholar 

  • Leong, S-L.L, et al. 2011. The extreme xerophilic mould Xeromyces bisporus—growth and competition at various water activities. Int. J. Food Microbiol. 145: 57–63.

    Article  PubMed  Google Scholar 

  • Leong, S.-L.L., Lantz, et al. 2015. Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date. Environ. Microbiol. 17: 496–513.

    Article  CAS  PubMed  Google Scholar 

  • Matheny, P.B. et al. 2006. Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. Can. J. Bot. 84: 1794–1805.

    Article  CAS  Google Scholar 

  • McNeill, J. et al. (eds). 2012. International Code of Nomenclature for algae, fungi and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnum Vegetabile 154: i–xxx; 1–208. Königstein: Koeltz Scientific Books.

    Google Scholar 

  • Moore, R.T. 1986. A note on Wallemia sebi. Antonie van Leeuwenhoek 52: 183–187.

    Article  CAS  PubMed  Google Scholar 

  • Ormerod, J.G. 1967. The nutrition of the halophilic mold Sporendonema epizoum. Arch. Mikrobiol. 56: 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Park, H.G. and Jong, S.C. 2003. Molecular characterization of Monascus strains based on the D1/D2 regions of LSU rRNA genes. Mycoscience 44: 25–32.

    Article  CAS  Google Scholar 

  • Pettersson, O.V., Su-lin, L.L., Lantz, H., Rice, T., Dijksterhuis, J., Houbraken, J., Samson, R.A. and Schnürer, J., 2011. Phylogeny and intraspecific variation of the extreme xerophile, Xeromyces bisporus. Fungal Biol., 115: 1100–1111.

    Google Scholar 

  • Pitt, J.I. 1966. Two new species of Chrysosporium. Trans. Br. Mycol. Soc. 49: 467–470.

    Article  Google Scholar 

  • Pitt, J.I. 1975. Xerophilic fungi and the spoilage of foods of plant origin. In Water Relations of Foods, ed. R.B. Duckworth. London: Academic Press. pp. 273–307.

    Google Scholar 

  • Pitt, J.I. and Christian, J.H.B. 1968. Water relations of xerophilic fungi isolated from prunes. Appl. Microbiol. 16: 1853–1858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitt, J.I. and Christian, J.H.B. 1970. Heat resistance of xerophilic fungi based on microscopical assessment of spore survival. Appl. Microbiol. 20: 682–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1977. Influence of solute and hydrogen ion concentration on the water relations of some xerophilic fungi. J. Gen. Microbiol. 101: 35–40.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1982. Food spoilage fungi. I. Xeromyces bisporus Fraser. CSIRO Food Res. Q. 42: 1–6.

    Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1985. New species of fungi from Indonesian dried fish. Mycotaxon 22: 197–208.

    Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1997. Fungi and Food Spoilage. 2nd edn. Blackie Academic and Professional, London.

    Book  Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 2009. Fungi and Food Spoilage. 3rd edn. New York: Springer.

    Book  Google Scholar 

  • Pitt, J.I. et al. 1993. The normal mycoflora of commodities from Thailand. 1. Nuts and oilseeds. Int. J. Food Microbiol. 20: 211–226.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. et al. 1994. The normal mycoflora of commodities from Thailand. 2. Beans, rice, small grains and other commodities. Int. J. Food Microbiol. 23: 35–53.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. et al. 1998. The mycoflora of food commodities from Indonesia. J. Food Mycol. 1, 41–60.

    Google Scholar 

  • Pitt, J.I., Lantz, H., Vinnere Pettersson, O. and Leong, S.L.L., 2013. Xerochrysium gen. nov. and Bettsia, genera encompassing xerophilic species of Chrysosporium. IMA Fungus, 4(2): 229–241.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reboux, G. et al. 2001. Role of molds in farmer’s lung disease in Eastern France. Am. J. Resp. Crit. Care Med. 163: 1534–1539.

    Article  CAS  PubMed  Google Scholar 

  • Samson, R.A. and Hoekstra, E.S. 1994. Common fungi occurring in indoor environments. In Health Implications of Fungi in Indoor Environments, R.A. Samson, B. Flannigan, M.E. Flannigan, A.P. Verhoof, O.C.G. Adan and E.S. Hoekstra, eds. Amsterdam: Elsevier. pp. 541–546.

    Google Scholar 

  • Samson R.A. et al. 2014. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78: 141–173. https://doi.org/10.1016/j.simyco.2014.07.004

  • Scott, W.J. 1957. Water relations of food spoilage microorganisms. Adv. Food Res. 7: 83–127.

    Article  CAS  Google Scholar 

  • Skou, J.P. 1975. Two new species of Ascosphaera and notes on the conidial state of Bettsia alvei. Friesia 11: 62–74.

    Google Scholar 

  • Smith, G., 1961. Polypaecilum gen. nov. Trans. Brit. Mycol. Soc. 44: 437–440.

    Article  Google Scholar 

  • Stearn, W.T. 1966. Botanical Latin. History, Grammar, Syntax, Terminology and Vocabulary. Thomas Nelson and Sons, Ltd. London and Edinburgh. 566 pp.

    Google Scholar 

  • Stevenson, A. et al. 2017. Aspergillus penicillioides differentiation and cell division at 0.585 water activity. Environ. Microbiol. 19: 687–697.

    Google Scholar 

  • Sun, G. et al. 2006. Wallemia – a genus newly recorded from China. Mycotaxon 95: 277–280.

    Google Scholar 

  • Taniwaki, M.H. 1995. Growth and mycotoxin production by fungi under modified atmospheres. Ph.D. thesis. Kensington, N.S.W.: University of New South Wales.

    Google Scholar 

  • Tubaki, K. 1973. An undescribed halophilic species of Scopulariopsis. Trans. Mycol. Soc. Jpn 14: 367–369.

    Google Scholar 

  • Van Beyma, F.H. 1933. Beschreibung einiger neuer Pilzarten aus dem Centraalbureau voor Schimmelcultures - Baarn (Holland). Zentralbl. Bakteriol. Parasitenkd., Infektionskrankh. Hyg., Abt. II, 88: 134–141.

    Google Scholar 

  • Van Oorschot, C.A.N. 1980. A revision of Chrysosporium and allied genera. Stud. Mycol., Baarn 20: 1–89.

    Google Scholar 

  • Vindelov, J. and Arneborg, N. 2002. Effects of temperature, water activity, and syrup film composition on the growth of Wallemia sebi: development and assessment of a model predicting growth lags in syrup agar and crystalline sugar. Appl. Environ. Microbiol. 68: 1652–1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Arx, J.A. 1970. The Genera of Fungi Sporulating in Pure Culture. Lehre, Germany: J. Cramer.

    Google Scholar 

  • Wheeler, K.A. and Hocking, A.D. 1993. Interactions among xerophilic fungi associated with dried salted fish. J. Appl. Bacteriol. 74: 164–169.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, K.A., Hocking, A.D., Pitt, J.I. and Anggawati, A. 1986. Fungi associated with Indonesian dried fish. Food Microbiol. 3: 351–357.

    Article  Google Scholar 

  • Wheeler, K.A. et al. 1988a. Effects of temperature and water activity on germination and growth of Wallemia sebi. Trans. Br. Mycol. Soc. 90: 365–368.

    Article  Google Scholar 

  • Wheeler, K.A. et al. 1988b. Influence of temperature on the water relations of Polypaecilum pisce and Basipetospora halophila, two halophilic xerophiles. J. Gen. Microbiol. 134: 2255–2260.

    CAS  Google Scholar 

  • Wood, G.M. et al. 1990. Studies on a toxic metabolite from the mould Wallemia. Food Addit. Contam. 7: 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Wynns, A.A., 2015. Convergent evolution of highly reduced fruiting bodies in Pezizomycotina suggests key adaptations to the bee habitat. BMC Evolut. Biol. 15: 1–11.

    Article  Google Scholar 

  • Zajc, J., Kogej, T., Galinski, E.A., Ramos, J. and Gunde-Cimerman, N., 2014. Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl. Environ. Microbiol. 80: 247–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajc, J. and Gunde-Cimerman, N., 2018. The genus Wallemia—from contamination of food to health threat. Microorganisms, 6,(2): p.46. https://doi.org/10.3390/microorganisms6020046

  • Zalar, P. et al. 2005. Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie van Leeuwenhoek 87: 311–328.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitt, J.I., Hocking, A.D. (2022). Xerophiles. In: Fungi and Food Spoilage. Springer, Cham. https://doi.org/10.1007/978-3-030-85640-3_9

Download citation

Publish with us

Policies and ethics