Skip to main content

Abstract

The nematophagous fungus Pochonia chlamydosporia (Clavicipitaceae) is a facultative parasite of major plant-parasitic nematodes pests such as cyst (Globodera spp., Heterodera spp.), root-knot (Meloidogyne spp.), false root-knot (Nacobbus spp.) and reniform (Rotylenchulus reniformis) nematodes. The potential of P. chlamydosporia as a biological control agent and biopesticide has been the subject of numerous studies aimed at understanding the micro-ecological conditions that allow the fungus to thrive in the soil and rhizosphere environments. Pochonia survives in soil in the absence of plant and nematode hosts and can also behave as an endophyte. Research evidence points to a physiological ‘switch’ from the saprophytic to the parasitic stage that is triggered by nutrition. The basic biology of the fungus and sedentary endoparasitic plant nematodes is reviewed to provide insights into the fungus multitrophic behaviour, as well as its importance as a biocontrol agent within an integrated pest management approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agudelo, P., Robbins, R. T., Stewart, J. M. D., et al. (2004). Glycoproteins in the gelatinous matrix of Rotylenchulus reniformis. Nematropica, 34, 229–234.

    Google Scholar 

  • Aguinaldo, A. M., Turbeville, J. M., Linford, L. S., et al. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387, 489–493.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, R. M., & May, R. M. (1981). The population dynamics of microparasites and their invertebrate host. Philosophical Transactions of the Royal Society B, 291, 451–524.

    Article  Google Scholar 

  • Atkins, S. D., Hidalgo-Díaz, L., Kalisz, H., et al. (2003a). Development of a new management strategy for the control of root-knot nematodes (Meloidogyne spp.) in organic vegetable production. Pest Management Science, 59, 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Atkins, S. D., Hidalgo-Díaz, L., Clark, I. M., et al. (2003b). Approaches for monitoring the release of P. chlamydosporia var. catenulata, a biological control agent of root-knot nematodes. Mycological Research, 107, 206–212.

    Article  PubMed  Google Scholar 

  • Atkins, S. D., Sosnowska, D., Evans, V. J., et al. (2004). Investigation of three nematophagous fungi in two potato cyst nematode suppressive soils. Multitrophic Interactions in Soil and Integrated Control IOBC wprs Bulletin, 27, 1–8.

    Google Scholar 

  • Ayatollahy, E., Fatemy, S., & Etebarian, H. R. (2008). Potential for biological control of Heterodera schachtii by Pochonia chlamydosporia var. chlamydosporia on sugar beet. Biocontrol Science and Technology, 18, 157–167.

    Article  Google Scholar 

  • Baldwin, J. G., Nadler, S. A., & Adams, B. J. (2004). Evolution of plant parasitism among nematodes. Annual Review of Phytopathology, 42, 83–105.

    Article  CAS  PubMed  Google Scholar 

  • Bordallo, J. J., Lopez-Llorca, L. V., Hansson, H. B., et al. (2002). Colonization of plant roots by egg-parasitic and nematode trapping-fungi. The New Phytologist, 154, 491–499.

    Article  Google Scholar 

  • Bourne, J. M., & Kerry, B. R. (1999). Effect of the host plant on the efficacy of Verticillium chlamydosporium as a biological control agent of root-knot nematodes at different nematode densities and fungal application rates. Soil Biology and Biochemistry, 31, 75–84.

    Article  CAS  Google Scholar 

  • Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1996). The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus Verticillium chlamydosporium Goddard. Biocontrol Science and Technology, 6, 539–548.

    Article  Google Scholar 

  • Bruck, D. J. (2010). Fungal entomopathogens in the rhizosphere. BioControl, 55, 103–112.

    Article  Google Scholar 

  • Butt, T. M., Segers, R., Leal, S. C., et al. (1998). Variation in the subtilisins of fungal pathogens of insects and nematodes. In P. D. Bridge, Y. Couteaudier, & J. M. Clarkson (Eds.), Molecular variability of fungal pathogens (pp. 149–169). Wallingford: CABI International.

    Google Scholar 

  • Campos, H. D., & Campos, V. P. (1997). Efeito da época e forma de aplicação dos fungus Arthrobototrys conocides, Arthobotrys musiformis, Paecilomyces lilacinus e Verticillium chlamydosporium no controle de Meloidogyne exigua do cafeeiro. Fitopatologia Brasileira, 22, 361–365.

    Google Scholar 

  • Chen, S. Y., & Chen, F. J. (2003). Fungal parasitism of Heterodera glycines eggs as influenced by egg age and pre-colonization of cysts by other fungi. Journal of Nematology, 35, 271–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng-Gang, R., & Chuan-Chao, D. (2012). Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biology, 12, 128. doi:10.1186/1471-2229-12-128.

    Article  CAS  Google Scholar 

  • Clyde, J. M. F. (1993). The cyst nematode pathogen Verticillium chlamydosporium. PhD Thesis, The University of Leeds, Department of Pure and Applied Biology.

    Google Scholar 

  • Cristóbal-Alejo, J., Mora-Aguilera, G., Manzanilla-López, R. H., et al. (2006). Epidemiology and integrated control of Nacobbus aberrans on tomato (Lycopersicon esculentum mill.) in Mexico. Nematology, 8, 727–737.

    Article  Google Scholar 

  • Crump, D. H. (1991). Estimation of suppressiveness and isolation of fungal parasites of cyst nematodes. In B. R. Kerry & D. G. Crump (Eds.), Methods for studying nematophagous fungi (IOBC / WPRS Bulletin, XIV (2), pp. 18–22). Wageningen: International Union of Biological Sciences.

    Google Scholar 

  • Curtis, H. C. R., Robinson, F., & Perry, R. N. (2009). Hatch and host location. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 139–162). Wallingford: CABI.

    Chapter  Google Scholar 

  • D’Angieri, C. N. F., & Campos, V. P. (1997). Control de Meloidogyne javanica em Jaborandi (Pilocarpus microphyllus) com Arthrobotrys conoides, Paecilomyces lilacinus e Verticillium chlamydosporia. Nematologia Brasileira, 21, 23–30.

    Google Scholar 

  • De Leij, F. A. A. M., Kerry, B. R., & Dennehy, J. A. (1992a). The effect of fungal application rate and nematode density on the effectiveness of Verticillium chlamydosporium as a biological control agent for Meloidogyne incognia. Nematologica, 38, 112–122.

    Article  Google Scholar 

  • De Leij, F. A. A. M., Davies, K. G., & Kerry, B. R. (1992b). The use of Verticillium chlamydosporium and Pasteuria penetrans alone and in combination to control Meloidogyne incognita on tomato plants. Fundamental and Applied Nematology, 15, 235–242.

    Google Scholar 

  • Dunn, C. W., Hejnol, A., Matus, D. Q., et al. (2008). Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452, 745–749.

    Article  CAS  PubMed  Google Scholar 

  • Eapen, J. A., Beena, B., & Ramana, K. V. (2009). Field evaluation of Trichoderma harzianum, Pochonia chlamydosporia and Pasteuria penetrans in a root knot nematode infested black pepper (Piper nigrum L.) garden in India. Journal of Plantation Crops, 37, 196–200.

    Google Scholar 

  • Eisenback, J. D., & Hunt, D. J. (2009). General morphology. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 18–54). Wallingford: CABI.

    Chapter  Google Scholar 

  • Escudero, N., & Lopez-Llorca, L. V. (2012). Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis, 57, 33–42.

    Article  Google Scholar 

  • Esteves, I. (2007). Factors affecting the performance of Pochonia chlamydosporia as a biological control agent for nematodes. PhD Thesis, Cranfield University.

    Google Scholar 

  • Evans, A. F., & Perry, R. N. (2009). Survival mechanisms. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 201–222). Wallingford: CABI.

    Chapter  Google Scholar 

  • Filipello-Marchisio, V. (1976). Sull’attivita antibiótica di Diheterospora chlamydosporia e di Oidiodendron truncatum. Allionia, 21, 67–71.

    Google Scholar 

  • Flores-Camacho, R., Manzanilla-López, R. H., Cid del Prado-Vera, I., et al. (2007). Control of Nacobbus aberrans (Thorne, 1935) Thorne y Allen, 1944 with Pochonia chlamydosporia (= Verticillium chlamydosporium) (Goddard) Zare and W. Gams. Revista Mexicana de Fitopatología, 25, 26–34.

    Google Scholar 

  • Freitas, L. G., Dallemole-Giaretta, R., Ferraz, S., et al. (2009). Controle biológico de nematoides: Estudo de casos. In L. Zambolim & M. C. Picanço (Eds.), Controle biológico de pragas e doenças: exemplos práticos (pp. 41–82). Viçosa: UFV/DFP.

    Google Scholar 

  • Gams, W. (1988). A contribution to the knowledge of nematophagous species of Verticillium. Netherlands Journal of Plant Pathology, 94, 123–148.

    Article  Google Scholar 

  • Gaspard, J. T., Jaffee, B. A., & Ferris, H. (1990). Meloidogyne incognita survival in soil infested with Paecilomyces lilacinus and Verticillium chlamydosporium. Journal of Nematology, 22, 176–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giné, A., Carrasquilla, M., Martínez-Alonso, M., et al. (2016). Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Frontiers in Plant Science. doi:10.3389/fpls.2016.00164.

  • Hickey, P. C., Jacobson, N. D., & Glass, L. N. (2002). Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genetics and Biology, 37, 109–119.

    Article  PubMed  Google Scholar 

  • Jackson, M., & Jaronski, S. T. (2009). Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential use as a biocontrol agent for soil-inhabiting insects. Mycological Research, 113, 842–850.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, H., Gray, S. N., & Crump, D. H. (2003). Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes. Mycological Research, 107, 47–56.

    Article  PubMed  Google Scholar 

  • Jaffee, B. A., Philips, R., Muldoon, A., et al. (1992). Density-dependant host-pathogen dynamics in soil microcosms. Ecology, 73, 495–506.

    Article  Google Scholar 

  • Jaronski, S. T. (2010). Ecological factors in the inundative use of fungal entomopathogens. BioControl, 55, 159–185.

    Article  Google Scholar 

  • Jones, J. T., Haegeman, A., Danchin, E. G. T., et al. (2013). Top 10 plant-parasitic nematodes. Molecular Plant Pathology. doi:10.1111/mpp.12057.

  • Kerry, B. R. (1988) Two microorganisms for the control of plant parasitic nematodes. Proceedings of the Brighton Crop Protection Conference-Pests and diseases, pp. 603–607.

    Google Scholar 

  • Kerry, B. R. (1991). Methods for studying the growth and survival of the nematophagous fungus, Verticillium chlamydosporium Goddard, in soil. IOBC/WPRS Bulletin, 14, 34–38.

    Google Scholar 

  • Kerry, B. R. (1997). Biological control of nematodes: Prospects and opportunities. FAO corporate document repository. Plant nematode problems and their control in the Near East Region (FAO Plant Production and Protection Paper, 144). http://www.fao.docrep/V9978E00.htm. Accessed 20 Oct 2016

  • Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.

    Article  CAS  PubMed  Google Scholar 

  • Kerry, B. R., & Crump, D. H. (1977). Observations on fungal parasites of females and eggs of the cereal cyst-nematode, Heterodera avenae, and other cyst nematodes. Nematologica, 23, 193–201.

    Article  Google Scholar 

  • Kerry, B. R., Kirkwood, I. A., De Leij, F. A. A. M., et al. (1993). Growth and survival of Verticillium chlamydosporium Goddard, a parasite of nematodes in soil. Biocontrol Science and Technology, 3, 355–365.

    Article  Google Scholar 

  • Kirk, P. M., Cannon, P. F., Minter, D. W., et al. (2008). Dictionary of the fungi (10th ed.). Wallingford: CAB International.

    Google Scholar 

  • Kok, C. J., Papert, A., & Hok-A-Hin, C. H. (2001). Microflora of Meloidogyne egg masses: Species composition, population density and effect on the biocontrol agent Verticillium chlamydosporium (Goddard). Nematology, 3, 729–734.

    Article  Google Scholar 

  • Leinhos, G. M. E., & Buchenauer, H. (1992). Inhibition of rust diseases of cereals by metabolic products of Verticillium chlamydosporium. Journal of Phytopathology, 136, 177–193.

    Article  CAS  Google Scholar 

  • Lin, R., Liu, C., Shen, B., et al. (2015). Analysis of the complete mitochondrial genome of Pochonia chlamydosporia suggests a close relationship to the invertebrate-pathogenic fungi in Hypocreales. BMC Microbiology, 15, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez-Llorca, L. A., & Boag, B. (1990). Inhibition of Verticillium suchlasporium and other nematophagous fungi by bacteria colonizing Heterodera avenae females. Nematologia Mediterranea, 18, 233–237.

    Google Scholar 

  • Lopez-Llorca, L. V., & Boag, B. (1993). Biological properties of a red pigment produced by the nematophagous fungus Verticillium suchlasporium. Nematologia Mediterranea, 21, 143–149.

    Google Scholar 

  • Lopez-Llorca, L. V., & Claugher, D. (1990). Appressoria of the nematophagous fungus Verticillium suchlasporium. Micron and Microscopica Acta, 21, 125–130.

    Article  Google Scholar 

  • Lopez-Llorca, L. V., & Duncan, G. H. (1988). A study of the cereal cyst nematode (Heterodera avenae) by scanning electron microscopy. Canadian Journal of Microbiology, 34, 613–619.

    Article  Google Scholar 

  • Lopez-Llorca, L. V., & Duncan, G. H. (1991). Effects of fungal parasites on cereal cyst nematode (Heterodera avenae Woll.) from naturally infested soil – A scanning electron microscopy study. Canadian Journal of Microbiology, 37, 218–225.

    Article  Google Scholar 

  • Lopez-Llorca, L. V., & Jansson, H. B. (2007). Fungal parasites of invertebrates: Multimodal biocontrol agents? In G. D. Robson, P. van West, & G. M. Gadd (Eds.), Exploitation of fungi (pp. 310–335). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Lopez-Llorca, L. V., & Robertson, W. M. (1992). Ultrastructure of infection of cyst nematode eggs by the nematophagous fungus Verticillium suchlasporium. Nematologica, 39, 65–74.

    Article  Google Scholar 

  • Lopez-Llorca, L., Olivares-Bernabeu, C., Salinas, J., et al. (2002a). Pre-penetration events in fungal parasitism of nematode eggs. Mycological Research, 106, 499–506.

    Article  CAS  Google Scholar 

  • Lopez-Llorca, L. V., Bordallo, J. J., Monfort, E., et al. (2002b). Use of light and scanning electron microscopy to examine colonisation of barley rhizosphere by the nematophagous fungus Verticillium chlamydosporium. Micron, 3, 61–67.

    Article  Google Scholar 

  • Lopez-Llorca, L. V., Maciá-Vicente, J. G., & Jansson, H. B. (2008). Mode of action and interactions of nematophagous fungi. In A. Ciancio & K. G. Mukerji (Eds.), Integrated management and Biocontrol of vegetable and grains crops nematodes (pp. 51–76). Heidelberg: Springer.

    Google Scholar 

  • Luambano-Nyoni, N., Manzanilla-Lopez, R. H., Kimenju, J. W., et al. (2015). Effect of temperature, pH, carbon and nitrogen ratios on the parasitic activity of Pochonia chlamydosporia on Meloidogyne incognita. Biological Control, 80, 23–29.

    Article  CAS  Google Scholar 

  • Lumsden, R. D, Frias, T. G., & Gracia, E. R. et al. (1982). Biocontrol of Pythium aphanidermatum on cucumber by microbial isolates from Mexican soils. Phytopathology, 72, 1010 [Abstract].

    Google Scholar 

  • Maciá-Vicente, J. G., Jansson, H. B., Talbot, N. J., et al. (2009a). Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. The New Phytologist, 182, 213–228.

    Article  PubMed  Google Scholar 

  • Maciá-Vicente, J. G., Rosso, L. C., Ciancio, A., et al. (2009b). Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: Effects on plant growth and disease. The Annals of Applied Biology, 155, 391–401.

    Article  Google Scholar 

  • MacKintosh, G. M. C. D. (1960). The morphology of the Brassica eelworm Heterodera cruciferae, Franklin 1945. Nematologica, 5, 58–65.

    Google Scholar 

  • Manzanilla-López, R. H., & Hunt, D. J. (2008). Tropical plant and soil nematodes: Diversity and interactions. In K. Del Claro, P. S. Oliveira, V. Rico-Gray, et al. (Eds.), International Commission on Tropical Biology and Natural Resources, Encyclopaedia of Life Support Systems (EOLSS). Oxford: Eolss Publishers. [http://www.eolss.net].

    Google Scholar 

  • Manzanilla-López, R. H., Rowe, J., Gravato-Nobre, M., et al. (1998). External secretions from the false root-knot nematode, Nacobbus aberrans. Nematologica, 44, 326–330.

    Article  Google Scholar 

  • Manzanilla-López, R. H., Atkins, S. D., Clark, I. M., et al. (2009). Measuring abundance, diversity and parasitic ability in two populations of the nematophagous fungus Pochonia chlamydosporia var. chlamydosporia. Biocontrol Science and Technology, 19, 391–406.

    Article  Google Scholar 

  • Manzanilla-López, R. H., Esteves, I., Powers, S. J., et al. (2011a). Effects of crop plants on abundance of Pochonia chlamydosporia and other fungal parasites of root-knot and potato cyst nematodes. The Annals of Applied Biology, 159, 118–129.

    Article  Google Scholar 

  • Manzanilla-López, R. H., Clark, I. M., Atkins, S. D., et al. (2011b). Exploring competitiveness and variation in the nematophagous fungus Pochonia chlamydosporia var. chlamydosporia and its significance for biological control. Bulletin OILB/SROP, 63, 37–40.

    Google Scholar 

  • Manzanilla-López, R. H., Devonshire, J., Ward, E., et al. (2014). A combined cryo-scanning electron microscopy/cryoplaning approach to study the infection of Meloidogyne incognita eggs by Pochonia chlamydosporia. Nematology, 16, 1059–1067.

    Article  Google Scholar 

  • Mauchline, T. H., Kerry, B. R., & Hirsch, P. (2002). Quantification in soil and the rhizosphere of the nematophagous fungus Verticillium chlamydosporium by competitive PCR and comparison with selective plating. Applied and Environmental Microbiology, 68, 1846–1853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauchline, T. H., Kerry, B. R., & Hirsch, P. (2004). The biocontrol fungus Pochonia chlamydosporia shows nematode host preference at the infraspecific level. Mycological Research, 108, 106–169.

    Article  Google Scholar 

  • Meyer, S. L., Huettel, R. N., Liu, X. Z., et al. (2004). Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenile motility. Nematology, 6, 23–32.

    Article  Google Scholar 

  • Mi, Q., Yang, J., Ye, F., et al. (2010). Cloning and overexpression of Pochonia chlamydosporia chitinase gene pcchi44, a potential virulence factor in infection against nematodes. Process Biochemistry, 45, 810–814.

    Article  CAS  Google Scholar 

  • Mo, M., Xu, C., & Zhang, K. (2005). Effects of carbon and nitrogen sources, carbon-to-nitrogen ratio, and initial pH on the growth of nematophagous fungus Pochonia chlamydosporia in liquid culture. Mycopathologia, 159, 381–387.

    Article  CAS  PubMed  Google Scholar 

  • Monfort, E., Lopez-Llorca, L. V., Jansson, H. B., et al. (2005). Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaemannomyces graminis var. tritici and development of root-rot. Soil Biology and Biochemistry, 37, 1229–1235.

    Article  CAS  Google Scholar 

  • Morgan-Jones, G., White, J. F., & Rodriguez-Kabana, R. (1983). Phytonematode pathology: Ultrastructural studies. I. Parasitism of Meloidogyne arenaria eggs by Verticillium chlamydosporium. Nematropica, 13, 245–260.

    Google Scholar 

  • Morton, C. O., Hirsch, P. R., Peberdy, J. P., & Kerry, B. R. (2003a). Cloning of and genetic variation in protease VCP1 from the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 107, 38–46.

    Article  CAS  PubMed  Google Scholar 

  • Morton, C. O., Mauchline, T. H., Kerry, B. R., & Hirsch, P. R. (2003b). PCR-based DNA fingerprinting indicates host-related genetic variation in the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 107, 198–205.

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar, T., & Pervaz, I. (2003). In vitro evaluation of ovicidal and larvicidal effects of culture fíltrate of Verticillium chlamydosporium against Meloidogyne javanica. International Journal of Agricultural and Biology, 5, 576–579.

    Google Scholar 

  • Niblack, T. L., & Karr, A. L. (1994). Source of antimicrobial activity in the gelatinous matrix of Heterodera glycines. Journal of Nematology, 26, 561.

    Google Scholar 

  • O’Flaherty, S. M., Hirsch, P. R., & Kerry, B. R. (2003). The influence of the root-knot nematode Meloidogyne incognita, the nematicide aldicarb and the nematophagous fungus Pochonia chlamydosporia on heterotrophic bacteria in soil and the rhizosphere. European Journal of Soil Science, 54, 759–766.

    Article  Google Scholar 

  • Olivares-Bernabeu, C. M., & Lopez-Llorca, L. V. (2002). Fungal egg-parasites of plant-parasitic nematodes from Spanish soils. Revista Iberoamericana de Micología, 19, 104–110.

    Google Scholar 

  • Orion, D., & Kritzman, G. (1991). Antimicrobial activity of Meloidogyne javanica gelatinous matrix. Revue de Nématologie, 14, 481–483.

    Google Scholar 

  • Papert, A., & Kok, C. J. (2000). Population size and community metabolic profile of the bacterial population of Meloidogyne hapla egg masses. Nematology, 2, 581–584.

    Article  Google Scholar 

  • Perry, J. N. (1978). A population model for the effect of parasitic fungi on numbers of the cereal cyst-nematode, Heterodera avenae. Journal of Applied Ecology, 15, 781–787.

    Article  Google Scholar 

  • Perry, R. N. (2002). Cuticle, moulting and exsheathment. In L. D. Lee (Ed.), The biology of nematodes (p. 153). Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Puertas, A., de la Noval, B. M., Martínez, B., et al. (2006). Interacción de Pochonia chlamydosporia var. catenulata con Rhizobium sp., Trichoderma harzianum y Glomus clarum en el control de Meloidogyne incognita. Revista de Protección Vegetal, 21, 80–89.

    Google Scholar 

  • Renker, C., Otto, P., Schneider, K., et al. (2005). Oribatid mites as potential vectors for soil microfungi: Study of mite-associated fungal species. Microbial Ecology, 50, 518–528.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Kábana, R., & Morgan-Jones, G. (1988). Potential for nematode control by mycofloras endemic in the tropics. Journal of Nematology, 20, 191–203.

    PubMed  PubMed Central  Google Scholar 

  • Rosso, L. C., Finetti-Sialer, M. M., Hirsch, P. R., et al. (2011). Transcriptome analysis shows differential gene expression in the saprotrophic to parasitic transition of Pochonia chlamydosporia. Applied Microbiology and Biotechnology, 90, 1981–1994.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Moreno, S., Nicola, N. L., Ferris, H., et al. (2009). Effects of agricultural management on nematode–mite assemblages: Soil food web indices as predictors of mite community composition. Applied Soil Ecology, 41, 107–117.

    Article  Google Scholar 

  • Santana Nunes, J., Rocha de Brito, M., Cunha Zied, D., et al. (2017). Evaluation of the infection process by Lecanicillium fungicola in Agaricus bisporus by scanning microscopy. Revista Iberoamericana de Micología, 34, 36–42.

    Article  PubMed  Google Scholar 

  • Sasser, J. N., & Freckman, D. W. (1987). A world perspective on nematology: The role of the society. In J. Veech & D. W. Dickson (Eds.), Vistas on nematology (pp. 7–14). De Leon Spring: Society of Nematologists.

    Google Scholar 

  • Schomaker, C. H., & Been, T. (2013). Quantitative nematology and management. In R. N. Perry & M. Moens (Eds.), Plant nematology (2nd ed., pp. 301–330). Wallingford: CABI.

    Chapter  Google Scholar 

  • Segers, R., Butt, T. M., Keen, J. N., et al. (1995). The subtilisins of the invertebrate mycopathogens Verticillium chlamydosporium and Metarhizium anisopliae are serologically and functionally related. FEMS Microbiology Letters, 126, 227–232.

    Article  CAS  PubMed  Google Scholar 

  • Segers, R., Butt, T. M., Carder, J. H., et al. (1999). The subtilisins of the fungal pathogens of insects, nematodes and plants: Distribution, and variation. Mycological Research, 103, 395–402.

    Google Scholar 

  • Sellitto, V. M., Curto, G., DallaValle, E., et al. (2016). Effect of Pochonia chlamydosporia-based formulations and the regulation of root-knot nematodes and plant growth response. Frontiers in Life Science, 9(3), 177–181. doi:10.1080/21553769.2016.11193827.

  • Shamim, Q. A., Vicar, S., Ara, J., et al. (2012). Nematicidal potential of culture filtrates of soil fungi associated with rhizosphere and rhizoplane of cultivated and wild plants. Pakistan Journal of Botany, 44, 1041–1046.

    Google Scholar 

  • Sharma, P., Jha, A. B., Dubey, R. S., et al. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanisms under stressful conditions. Journal of Botany, 2012, 1–26.

    Article  CAS  Google Scholar 

  • Sharon, E., & Spiegel, Y. (1993). Glycoprotein characterization of the gelatinous matrix in root-knot nematode Meloidogyne javanica. Journal of Nematology, 25, 585–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharon, E., Orion, D., & Spiegel, Y. (1993). Binding of soil micro-organisms and red blood cells by the gelatinous matrix and eggs of Meloidogyne javanica and Rotylenchus reniformis. Fundamental and Applied Nematology, 16, 5–9.

    Google Scholar 

  • Siddiqui, I. A., Atkins, S. D., & Kerry, B. R. (2009). Relationship between saprotrophic growth in soil of different biotypes of Pochonia chlamydosporia and the infection of nematode eggs. The Annals of Applied Biology, 155, 131–141.

    Article  Google Scholar 

  • Song, Z., Shen, L., Zhong, Q., et al. (2016). Liquid culture production of microsclerotia of Purpureocillium lilacinum for use as a bionematicide. Nematology, 18, 719–726.

    Article  Google Scholar 

  • Spiegel, Y., & McClure, M. A. (1995). The surface-coat of plant-parasitic nematodes – Chemical composition, origin, and biological role – A review. Journal of Nematology, 27, 127–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler, M., Hans-Volker, T., Katsiou, E., et al. (2003). Chemotaxonomy of Pochonia and other conidial fungi with Verticillium-like anamorphs. Mycological Progress, 2, 95–122.

    Article  Google Scholar 

  • Stirling, G. R. (1991). Biological control of nematodes. Wallingford: CAB International.

    Google Scholar 

  • Stirling, G. R. (2014). Biological control of plant-parasitic nematodes: Soil ecosystem management in sustainable agriculture (2nd ed.). Wallingford: CABI.

    Google Scholar 

  • Stirling, G. R., & Smith, L. (1998). Field tests of formulated products containing either Verticillium chlamydosporium or Arthrobotrys dactyloides for biological control of root-knot nematodes. Biological Control, 11, 231–239.

    Article  Google Scholar 

  • Sutherland, E. D., & Papavizas, G. C. (1991). Evaluation of oospore hyperparasites for the control of Phytophthora crown rot on pepper. Journal of Phytopathology, 131, 33–39.

    Article  Google Scholar 

  • Sykes, D. (1994). The growth and sporulation of Verticillium chlamydosporium. MSc Thesis, University of Manchester.

    Google Scholar 

  • Tahseen, Q., Clark, I. M., Atkins, S. D., et al. (2005). Impact of the nematophagous fungus Pochonia chlamydosporia on nematode and microbial populations. Communications in Agricultural and Applied Biological Sciences, 70, 81–87.

    CAS  PubMed  Google Scholar 

  • Tobin, J. D., Haydock, P. P. J., Hare, M. C., et al. (2008). Effect of the fungus Pochonia chlamydosporia and fosthiazate on the multiplication rate of potato cyst nematodes (Globodera pallida and G. rostochiensis) in potato crops grown under UK field conditions. Biological Control, 46, 194–201.

    Article  Google Scholar 

  • Van Damme, V., Hoedekie, A., & Viaene, N. (2005). Long-term efficacy of Pochonia chlamydosporia for management of Meloidogyne javanica in glasshouse crops. Nematology, 7, 727–736.

    Article  Google Scholar 

  • Verdejo-Lucas, S., Sorribas, F. J., Ornat, C., et al. (2003). Evaluating Pochonia chlamydosporia in a double-cropping system of lettuce and tomato in plastic houses infested with Meloidogyne javanica. Plant Pathology, 52, 521–528.

    Article  Google Scholar 

  • Viaene, N. M., & Abawi, G. S. (2000). Hirsutella rhossiliensis and Verticillium chlamydosporium as biocontrol agents of the root-knot nematode Meloidogyne hapla on lettuce. Journal of Nematology, 32, 85–100.

    Google Scholar 

  • Vilchis-Martínez, K., Manzanilla-López, R. H., Powers, S., et al. (2013). Effect of the addition of crude plant extracts on the parasitism of Pochonia chlamydosporia var. chlamydosporia on Meloidogyne incognita. Nematropica, 43, 254–260.

    Google Scholar 

  • Wang, K., Riggs, R. D., & Crippen, D. (2005). Isolation, selection, and efficacy of Pochonia chlamydosporia for control of Rotylenchulus reniformis on cotton. Phytopathology, 95, 890–893.

    Article  PubMed  Google Scholar 

  • Ward, E., Kerry, B., Manzanilla-López, R., et al. (2012). The Pochonia chlamydosporia serine protease Gene vcp1 is subject to regulation by carbon, nitrogen and pH: Implications for nematode biocontrol. PloS One, 7(4), e35657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zare, R., & Gams, W. (2007). Pochonia globispora sp. nov. Nova Hedwigia, 84, 421–428.

    Article  Google Scholar 

  • Zare, R., Gams, W., & Evans, H. C. (2001). A revision of Verticillium section Prostrata V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia, 73, 51–86.

    Google Scholar 

  • Zou, C. S., Mo, M. H., Gu, Y. Q., et al. (2007). Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biology and Biochemistry, 39, 2371–2379.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Penny R. Hirsch (Rothamsted Research ) and Elaine Ward, (formerly at Rothamsted Research), DFID grant BB/F003994/1 and Defra Link Project LK0966. Light microscopy and SEM studies were performed at Bioimaging Rothamsted Research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa H. Manzanilla-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Manzanilla-López, R.H., Esteves, I., Devonshire, J. (2017). Biology and Management of Pochonia chlamydosporia and Plant-Parasitic Nematodes. In: Manzanilla-López, R., Lopez-Llorca, L. (eds) Perspectives in Sustainable Nematode Management Through Pochonia chlamydosporia Applications for Root and Rhizosphere Health. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-59224-4_3

Download citation

Publish with us

Policies and ethics