Skip to main content

Abstract

Cenococcum geophilum Fr. is one of the most frequently encountered ECM fungi in nature. This genus is cosmopolitan and is well recognized for its extremely wide host and habitat range. C. geophilum was originally described from its black sclerotia by J. Sowerby in 1800 under the name Lycoperdon graniforme Sow. Elias Fries introduced the genus Cenococcum and the species C. geophilum in 1825, and considered Sowerby’s L. graniforme to be a synonym of C. geophilum Fr. (Fries 1825). In their monographic study of Cenococcum Fr., Ferdinandsen and Winge (1925) made the new combination C. graniforme (Sow.) Ferd. and Winge. The isolation of a “jet-black mycelium” that formed ECM was first identified by Hatch (1934) and provisionally named Mycelium radicus nigrostrigosum Hatch. The connection of these black ECM to C. geophilum was made by Linhell (1942). This black ECM was subsequently reported by many researchers on a wide variety of tree species in different parts of the world (Mikola 1948). C. geophilum Fr. is the sanctioned name.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuzinadah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103: 481–493

    Google Scholar 

  • Antibus RK, Croxdale JG, Miller OK, Linkins AE (1981) Ectomycorrhizal fungi of Salix rotundifolia. III. Resynthesized mycorrhizal complexes and their surface phosphatase activities. Can J Bot 59: 2458–2465

    Google Scholar 

  • Antibus RK, Kroehler CJ, Linkins AE (1986) The effects of external pH, temperature, and substrate concentration on acid phosphatase activity of ectomycorrhizal fungi. Can J Bot 64: 2383–2387

    Article  CAS  Google Scholar 

  • Antibus RK, Sinsabaugh RL, Linkins AE (1992) Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can J Bot 70: 794–801

    Article  CAS  Google Scholar 

  • Bae KS, Barton L (1989) Alkaline phosphatase and other hydrolases produced by Cenococcum graniforme, an ectomycorrhizal fungus. Appl Environ Microbiol 55: 2511–2516

    PubMed  CAS  Google Scholar 

  • Bartlett EM, Lewis DH (1973) Surface phosphatase activity of mycorrhizal roots of beech. Soil Biol Biochem 5: 249–257

    Article  CAS  Google Scholar 

  • Baura G, Szaro TM, Bruns TD (1992) Gastrosuillus larcinus is a recent derivative of Suillus grevillei: molecular evidence. Mycologia 84: 592–597

    Google Scholar 

  • Berbee ML (1996) Loculoascomycete origins and evolution of filamentous ascomycete morphology from 18s rRNA gene sequence data. Mol Biol Evol 13: 462–470

    Article  PubMed  CAS  Google Scholar 

  • Berbee ML, Taylor JW (1992) 18s ribosomal RNA gene sequence characters place the human pathogen Sporothrix schenckii in the genus Ophiostoma. Exp Mycol 16: 87–91

    Google Scholar 

  • Bledsoe C, Klein P, Bliss LC (1989) A survey of mycorrhizal plants on Truelove Lowland, Devon Island, N.W.T. Can J Bot 68: 1848–1856

    Google Scholar 

  • Borchers SL, Perry DA (1989) Growth and ectomycorrhiza formation of Douglas-fir seedlings grown in soils collected at different distances from pioneering hardwoods in southwest Oregon clear-cuts. Can J For Res 20: 712–721

    Article  Google Scholar 

  • Bowen GD, Theodorou C (1967) Studies on phosphate uptake by mycorrhizas. Proc Int Union For Res Organ 5: 116

    Google Scholar 

  • Bruns TD, White TI, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22: 525–564

    Article  Google Scholar 

  • Chen W, Hoy JW, Schneider RW (1992) Species-specific polymorphisms in transcribed ribosomal DNA of five Pythium species. Exp Mycol 16: 22–34

    Article  CAS  Google Scholar 

  • Chilvers GA (1968) Some distinctive types of eucalypt mycorrhiza. Aust J Bot 16: 49–70

    Article  Google Scholar 

  • Cline ML, France RC, Reid CPP (1987) Intraspecific and interspecific variation of ectomycorrhizal fungi at different temperatures. Can J Bot 65: 869–875

    Article  Google Scholar 

  • Coleman MD, Bledsoe CS, Lopushinsky W (1989) Pure culture response of ectomycorrhizal fungi to imposed water stress. Can J Bot 67: 29–39

    Article  Google Scholar 

  • Danielson RM, Pruden M (1989) The ectomycorrhizal status of urban spruce. Mycologia 81: 335–341

    Article  Google Scholar 

  • Dominik T (1961) Badanie mikotrofizmu zespolow roslinnych w Parku Narodwym w Pieninach i na skalce nad Lysa Polona w Tatrach ze szczegolnym uwzglednieniem mikotrofizmu sosny reliktowej. Inst Badawczy Lessn Prace 208: 31–58

    Google Scholar 

  • El-Badaoui K, Botton B (1989) Production and characterization of exocellular proteases in ectomycorrhizal fungi. Ann Sci For 46: 728–730

    Article  Google Scholar 

  • Ferdinandsen C, Winge 0 (1925) Cenococcum Fr. A monographic study. Kgl Vet Landbohojsk Aarsskr 1925: 332–382

    Google Scholar 

  • Fogel R, Hunt G (1979) Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Can J For Res 9: 245–256

    Article  Google Scholar 

  • Fries E (1825) Systema Orbis Vegetablis I. Lundae. Typographia academica

    Google Scholar 

  • Frydman I (1957) Mykotrofizm roslinnosci pokrywajacej gruzy i ruiny domow Wroclawia. Acta Soc Bot Polon 26: 45–60

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol Ecol 2: 113–118

    Article  PubMed  CAS  Google Scholar 

  • Geiser DM, Timberlake WE, Arnold ML (1996) Loss of meiosis in Aspergillus. Mol Biol Evol 13: 809–817

    Article  PubMed  CAS  Google Scholar 

  • Genetet I, Martin F, Stewart GR (1984) Nitrogen assimilation in mycorrhizas Ammonium assimilation in the N-starved ectomycorrhizal fungus Cenococcum graniforme. Plant Physiol 76: 395–399

    Article  PubMed  CAS  Google Scholar 

  • Giltrap NJ, Lewis DH (1981) Phosphate inhibition of mycorrhizal fungi. New Phyto187: 669–675

    Google Scholar 

  • Graham JH, Linderman RG (1981) Inoculation of containerized Douglas-fir with the ectomycorrhizal fungus Cenococcum geophilum. For Sci 27: 27–31

    Google Scholar 

  • Guadet J, Julien J, LaFay JF, Brygoo Y (1989) Phylogeny of some Fusarium species, as determined by large-subunit rRNA sequence comparison. Mol Biol Evol 6: 227–242

    PubMed  CAS  Google Scholar 

  • Harley JL, McCready CC (1950) Uptake of phosphate by excised mycorrhizal roots of beech. New Phyto149: 388

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Harney SK, Rogers SO, Wang CJK (1997) Molecular characterization of dematiaceous root endophytes. Mycol Res 101: 1397–1404

    Article  CAS  Google Scholar 

  • Haselwandter K, Read DJ (1982) The significance of a root-fungus association in two Carex species of high alpine plant communities. Oecologia 53: 352–354

    Article  Google Scholar 

  • Hatch AB (1934) A jet-black mycelium forming ectotrophic mycorrhizae. Sven Bot Tidskr 28: 369–383

    Google Scholar 

  • Hawksworth DL (1986) The evolution and adaptation of sexual reproductive structures in the Ascomycotina. In: Rayner ADM, Brasier CM, Moore D (eds) Symposium of the British Mycological Society. Cambridge University Press, Cambridge, pp 179–189

    Google Scholar 

  • Hawksworth DL, Booth C (1974) A revision of the genus Zopfia Rabenh. Mycol Pap 135: 1–38

    Google Scholar 

  • Heinrich PA, Patrick JW (1986) Phosphorus acquisition in the soil-root system of Eucalyptus pilularis Smith seedlings. II. The effect of ectomycorrhizas on seedling phosphorus and dry weight acquisition. Aust J Bot 34: 445–54

    Google Scholar 

  • Keller HG (1952) Untersuchungen über das Wachstum von Cenococcum graniforme (Sow.) Fer. et Winge auf verschiedenen Kohlenstoffquellen. Eidg Tech Hochsch Zurich Promotionsarb 2036: 1–123

    Google Scholar 

  • Kropp BR, Castellano MA, Trappe JM (1985) Performance of outplanted western hemlock (Tsuga heterophylla (Raf.) Sarg.) seedlings inoculated with Cenococcum geophilum. Tree Plant Not 36: 13–16

    Google Scholar 

  • Krywolap GN, Casida LE (1964) An antibiotic produced by the mycorrhizal fungus Cenococcum graniforme. Can J Microbiol 10: 365–370

    Article  PubMed  CAS  Google Scholar 

  • Krywolap GN, Grand LF, Casida LE (1964) The natural occurrence of an antibiotic in the mycorrhizal fungus Cenococcum graniforme. Can J Microbiol 10: 323–328

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Taylor JW (1992) Phylogeny of five fungus-like protoctistan Phytophthora species, inferred from the internal transcribed spacers of ribosomal DNA. Mol Biol Evol 9: 636–653

    PubMed  CAS  Google Scholar 

  • Lewis DH (1985) Inter-relationships between carbon nutrition and morphogenesis in mycorrhizas. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 85–100

    Google Scholar 

  • Lihnell D (1939) Untersuchungen über die Mykorrhizen und Wurzelpilze von Juniperus communis. Symb Bot Ups 3: 3

    Google Scholar 

  • Linhell D (1942) Cenococcum graniforme als Mykorrizabildner von Waldbaumen. Symb Bot Ups 5:1–18

    Google Scholar 

  • Littke WR, Bledsoe CS, Edmonds RL (1984) Nitrogen uptake and growth in vitro by Hebeloma crustuliniforme and other Pacific Northwest mycorrhizal fungi. Can J Bot 62: 647–652

    Article  CAS  Google Scholar 

  • LoBuglio KF, Rogers SO, Wang CJK (1991) Variation in ribosomal DNA among isolates of the mycorrhizal fungus Cenococcum geophilum Fr. Can J Bot 69: 2331–2343

    Article  CAS  Google Scholar 

  • LoBuglio KF, Pitt JI, Taylor JW (1993) Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of asexual Talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 85: 592–604

    Article  CAS  Google Scholar 

  • LoBuglio KF, Berbee ML, Taylor JW (1996) Phylogenetic origins of the asexual mycorrhizal symbiont Cenococcum geophilum Fr. and other mycorrhizal fungi among the ascomycetes. Mol Phylog Evol 6: 287–294

    Article  CAS  Google Scholar 

  • Mangin F, Bonaly R, Botton, Martin F (1985) Chemical composition of hyphal walls of the ectomycorrhizal fungus Cenococcum geophilum In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 451–456

    Google Scholar 

  • Martin F (1985) 15N-NMR studies of nitrogen assimilation and amino acid biosynthesis in the ectomycorrhizal fungus Cenococcum graniforme. FEBS Lett 182:350–354

    Google Scholar 

  • Martin F, Marchal JP, Timinska A, Canet D (1985) The metabolism and physical state of polyphosphates in ectomycorrhizal fungi. A “P nuclear magnetic resonance study. New Phytol 101: 275–290

    Google Scholar 

  • Martin F, Stewart GR, Genetet I, Mourot B (1988) The involvement of glutamate dehydrogenase and glutamine synthetase in ammonia assimilation by the rapidly growing ectomycorrhizal ascomycete, Cenococcum geophilum. New Phytol 110: 541–550

    Article  CAS  Google Scholar 

  • Marx DH, Zak B (1965) Effect of pH on mycorrhizal formation of slash pine in aseptic culture. For Sci 11: 66–75

    Google Scholar 

  • Marx DH, Morris WG, Mexal JG (1978) Growth and ectomycorrhizal development of loblolly pine seedlings in fumigated and nonfumigated nursery soil infested with different fungal symbionts. For Sci 24: 193–203

    Google Scholar 

  • Massicotte HB, Trappe JM, Peterson RL, Melville LH (1992) Studies on Cenococcum geophilum. II. Sclerotium morphology, germination, and formation in pure culture and growth pouches. Can J Bot 70: 125–132

    Google Scholar 

  • Mejstrik VK, Krause HH (1973) Uptake of 32P by Pinus radiata roots inoculated with Suillus luteus and Cenococcum graniforme from different sources of available phosphate. New Phytol 72: 137–140

    Article  CAS  Google Scholar 

  • Mexal J, Reid CPP (1972) The growth of selected mycorrhizal fungi in response to induced water stress. Can J Bot 1579–1588

    Google Scholar 

  • Mikola P (1948) On the physiology and ecology of Cenococcum graniforme especially as a mycorrhizal fungus of birch. Inst For Fenn Commun 36: 1–104

    Google Scholar 

  • Miller OK, Miller SL (1983) Description and identification of selected mycorrhizal fungi in pure culture. Mycotaxon 18: 457–481

    Google Scholar 

  • Miller SL, Miller OK (1984) Synthesis of Elaphomyces muricatus + Pinus sylvestris ectomycorrhizae. Can J Bot 62: 2363–2369

    Article  Google Scholar 

  • Molina R, Trappe JM (1982) Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. For Sci 28: 423–458

    Google Scholar 

  • Molina R, Trappe JM (1984) Mycorrhiza management in nurseries. In: Duryea ML, Landis TD (eds) Forest nursery manual: production of bareroot seedlings. Martinus Nijhoff/Dr W Junk, The Hague, pp 211–223

    Chapter  Google Scholar 

  • O’Dell TE, Massicotte HB, Trappe JM (1993) Root colonization of Lupinus latifolius Agardh. and Pinus contorta Dougl. by Phialocephala fortinii Wang & Wilcox. New Phytol 124: 93–100

    Article  Google Scholar 

  • Palmer JG, Hacskaylo E (1970) Ectomycorrhizal fungi in pure culture. I. Growth on single carbon sources. Physiol Plant 23: 1187–1197

    Google Scholar 

  • Paris F, Dexheimer J, Lapeyrie F (1993) Cytochemical evidence of a fungal cell wall alteration during infection of Eucalyptus roots by the ectomycorrhizal fungus Cenococcum geophilum. Arch Microbiol 159:526–529

    Google Scholar 

  • Park JY (1970) A change in color of aging mycorrhizal roots of Tilia americana formed by Cenococcum graniforme. Can J Bot 48:1339–1341

    Google Scholar 

  • Pigott CD (1982) Fine structure of mycorrhiza formed by Cenococcum geophilum Fr. on Tilia cordata Mill. New Phytol 92:501–512

    Google Scholar 

  • Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88: 341–352

    Article  Google Scholar 

  • Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98: 625–634

    Article  CAS  Google Scholar 

  • Rodriguez RK, Klemm DJ, Barton LL (1984) Iron metabolism by an ectomycorrhizal fungus, Cenococcum graniforme. J Plant Nutr 7: 459–468

    Article  CAS  Google Scholar 

  • Rogers SO, Yan ZH, Shinohara M, LoBuglio KF, Wang CJK (1993) Messenger RNA intron in the nuclear 18s ribosomal RNA gene of deuteromycetes. Curr Genet 23: 338–342

    Article  PubMed  CAS  Google Scholar 

  • Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol 328–644

    Google Scholar 

  • Schoenberger MM, Perry DA (1982) The effect of soil disturbance on growth and ectomycorrhizae of Douglas-fir and western hemlock seedlings: a greenhouse bioassay. Can J For Res 12: 343–353

    Article  Google Scholar 

  • Seifert KA, Wingfield BD, Wingfield MJ (1995). A critique of DNA sequence analysis in the taxonomy of filamentous Ascomycetes and ascomycetous anamorphs. Can J Bot 73: S760 - S767

    Article  CAS  Google Scholar 

  • Shaw CG, Sidle RC (1982) Evaluation of planting sites common to a southeast Alaska clear-cut. II. Available inoculum of the ectomycorrhizal fungus Cenococcum geophilum. Can J For Res 13: 9–11

    Article  Google Scholar 

  • Shinohara ML (1994) Molecular evolutionary study of Cenococcum geophilum. PhD Dissertation, State University of New York, College of Environmental Science and Forestry, Syracuse, New York

    Google Scholar 

  • Shinohara ML, LoBuglio KF, Rogers SO (1996) Group-I intron family in the nuclear ribosomal RNA small subunit genes of Cenococcum geophilum isolates. Curr Genet 29: 377–387

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. 2nd edn. Academic Press, New York

    Google Scholar 

  • Stoyke G, Currah RS (1990) Endophytic fungi from the mycorrhizae of alpine ericoid plants. Can J Bot 69: 347–352

    Article  Google Scholar 

  • Stoyke G, Egger KN, Currah RS (1992) Characterization of sterile endophytic fungi from the mycorrhizae of subalpine plants. Can J Bot 70: 2009–2016

    Article  Google Scholar 

  • Szaniszlo PJ, Powell PE, Reid CPP, Cline GR (1981) Production of hydroxamate siderophore iron chelators by mycorrhizal fungi. Mycologia 73: 1158–1174

    Article  CAS  Google Scholar 

  • Theodorou C (1968) Inositol phosphates in needles of Pinus radiata D. Don and the phytase activity of mycorrhizal fungi. Trans 9th Int Congr of Soil Science, Adelaide, vol III, pp 483–490

    Google Scholar 

  • Timonen S, Tammi H, Sen R (1997) Characterization of the host genotype and fungal diversity in Scots pine ectomycorrhiza from natural humus microcosms using isozyme and PCR-RFLP analyses. New Phytol 135: 313–323

    Article  CAS  Google Scholar 

  • Trappe JM (1962a) Cenococcum graniforme - its distribution, ecology, mycorrhiza and inherent variation. PhD Diss, University of Washington, Seattle, Washington

    Google Scholar 

  • Trappe JM (1962b) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28: 538–606

    Article  Google Scholar 

  • Trappe JM (1964) Mycorrhizal host and distribution of Cenococcum graniforme. Lloydia 27: 100–106

    Google Scholar 

  • Trappe JM (1969) Studies on Cenococcum graniforme. I. An efficient method for isolation from sclerotia. Can J Bot 47: 1389–1390

    Article  Google Scholar 

  • Trappe JM (1971) Mycorrhiza-forming Ascomycetes. In: Hacskaylo E (ed) Mycorrhizae: Proceedings of the First North American Conference on Mycorrhizae. USDA Forest Service, Misc Publ 1189

    Google Scholar 

  • Trappe JM (1979) The orders, families, and genera of hypogeous ascomycotina (truffles and their relatives). Mycotaxon 9: 297–340

    Google Scholar 

  • Trappe JM (1988) Lessons from alpine fungi. Mycologia 80: 1–10

    Article  Google Scholar 

  • Trappe JM, Fogel R (1977) Ecosystematic functions of mycorrhizae. Colo State Univ Range Sci Dept Sci Ser 26: 205–214

    CAS  Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129: 389–401

    Article  Google Scholar 

  • Vogt KA, Edmonds RL, Grier CC (198la) Dynamics of ectomycorrhizae in Abies amabilis stands: the role of Cenococcum graniforme. Holarct Ecol 4: 167–173

    Google Scholar 

  • Vogt KA, Edmonds RL, Grier CC (1981b) Biomass and nutrient concentrations of sporocarps produced by mycorrhizal and decomposer fungi in Abies amabilis stands. Oecologia 50: 170–175

    Article  Google Scholar 

  • Vogt KA, Grier CC, Meier CE, Edmonds RL (1982) Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology 63: 370–380

    Article  Google Scholar 

  • Wang CJK, Wilcox HE (1985) New species of ectendomycorrhizal and pseudomycorrhizal fungi: Phialophora finlandia, Chloridium paucisporum, and Phialocephala fortinii. Mycologia 77: 951–958

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wilcox HE, Wang CJK (1987a) Ectomycorrhizal and ectendomycorrhizal associations of Phialophora finlandia with Pinus resinosa, Picea rubens, and Betula alleghaniensis. Can J For Res 17: 976–990

    Article  Google Scholar 

  • Wilcox HE, Wang CJK (1987b) Mycorrhizal and pathological associations of dematiaceous fungi in roots of 7-month-old tree seedlings. Can J For Res 17: 884–899

    Article  Google Scholar 

  • Williamson B, Alexander IJ (1975) Acid phosphatase localized in the sheath of beech mycorrhiza. Soil Biol Biochem 7: 195–198

    Article  CAS  Google Scholar 

  • Woolhouse HW (1969) Differences in the properties of the acid phosphatases of plant roots and their significance in the evolution of edaphic ecotypes. In: Rorison IH (ed) Ecological aspects of the mineral nutrition of plants. Blackwell, Oxford, pp 357–380

    Google Scholar 

  • Worley JF, Hacskaylo E (1959) The effect of available soil moisture on the mycorrhizal association of Virginia pine. For Sci 5: 267–268

    Google Scholar 

  • Wright E, Tarrant RF (1958) Occurrence of mycorrhizae after logging and slash burning in the Douglas-fir forest type. Pac Northwest For Range Exp Sta Res Note 160: 1–7

    Google Scholar 

  • Yan ZH, Rogers SO, Wang CJK (1994) Assessment of Phialophora species based on ribosomal DNA internal transcribed spacers and morphology. Mycologia 87: 72–83

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

LoBuglio, K.F. (1999). Cenococcum. In: Cairney, J.W.G., Chambers, S.M. (eds) Ectomycorrhizal Fungi Key Genera in Profile. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06827-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06827-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08490-4

  • Online ISBN: 978-3-662-06827-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics