Skip to main content

Fungal Communities of Sclerotia Grains from Forest Soils

  • Chapter
  • First Online:
Sclerotia Grains in Soils

Part of the book series: Progress in Soil Science ((PROSOIL))

  • 155 Accesses

Abstract

Sclerotia, tentatively identified as the resting bodies of Cenococcum geophilum, were obtained from cool-temperate forests on Mt. Chokai and Mt. Iwaki in northern Japan and on Mt. Ontake in central Japan, to survey sclerotia-associated fungi and attempt to identify which fungi produced the sclerotia. The sclerotia-associated fungal communities were surveyed using terminal restriction fragment length polymorphism analysis combined with construction of a clone library using the internal transcribed spacer region of ribosomal DNA. Sclerotia were also cultured, and resulting fungal colonies were identified. Fungi associated with sclerotia from Mt. Chokai and Mt. Iwaki were predominantly Arthrinium arundinis and Inonotus sp., respectively. These sclerotia-associated species either formed the sclerotia, attacked and colonized C. geophilum sclerotia, or occupied inviable sclerotia originally formed by C. geophilum. Sequencing of the clone library generated from the Mt. Ontake sclerotia suggested that C. geophilum was present among the isolated fungi, which were mostly ascomycetes. Although C. geophilum could not be cultured from the sclerotia, three dark septate endophytes, none of which could be identified, formed sclerotia in culture. Thus, the sclerotia examined in this study might have been formed either by C. geophilum or by other fungal taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amasya AF, Narisawa K, Watanabe M (2015) Analysis of sclerotia-associated fungal communities in cool-temperate forest soils in north Japan. Microbes Environ 30:113–116

    Article  Google Scholar 

  • Bååth E, Lundgren B, Söderström B (1984) Fungal populations in podzolic soil experimentally acidified to simulate acid rain. Microb Ecol 10:197–203

    Article  Google Scholar 

  • Bougoure DS, Cairney JWG (2005) Fungi associated with hair roots of Rhododendron lochiae (Ericaceae) in an Australian tropical cloud forest revealed by culturing and culture-independent molecular methods. Environ Microbiol 7:1743–1754

    Article  CAS  Google Scholar 

  • Brodie E, Edwards S, Clipson N (2003) Soil fungal community structure in a temperate upland grassland soil. FEMS Microbiol Ecol 45:105–114

    Article  CAS  Google Scholar 

  • Brundrett M (1996) Working with mycorrhizas in forestry and agriculture. ACIAR, Canberra, ACT, pp 167–168

    Google Scholar 

  • Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170:63–73

    Article  CAS  Google Scholar 

  • Chaverri P, Samuels GJ (2002) Hypocrea lixii, the teleomorph of Trichoderma harzianum. Mycol Prog 1:283–286

    Article  Google Scholar 

  • Chen L, Yan W, Xu Y (2007) Identification and preliminary analysis of the genetic diversity of Cenococcum geophilum Fr. Agric Sci China 6:956–963

    Article  CAS  Google Scholar 

  • Dahlberg A, Jonsson L, Nylund JE (1997) Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot 75:1323–1335

    Article  Google Scholar 

  • Dickie IA (2007) Host preference, niches and fungal diversity. New Phytol 174:230–233

    Article  Google Scholar 

  • Dickie IA, Fitz John RG (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17:259–270

    Article  CAS  Google Scholar 

  • Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255

    Article  Google Scholar 

  • Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535

    Article  CAS  Google Scholar 

  • Dollhopf SL, Hashsham SA, Tiedje JM (2001) Interpreting 16S rDNA T-RFLP data: application of self-organizing maps and principal component analysis to describe community dynamics and convergence. Microb Ecol 42:495–505

    Article  CAS  Google Scholar 

  • Edel-Hermann W, Dreumont C, Perez-Piqueres A, Steinberg C (2004) Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiol Ecol 47:397–404

    Article  CAS  Google Scholar 

  • Elad Y, Barak R, Chet I (1984) Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum. Soil Biol Biochem 16:381–386

    Article  CAS  Google Scholar 

  • Fogel R, Hunt G (1979) Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Can J For Res 9:245–256

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  Google Scholar 

  • Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390

    Article  Google Scholar 

  • Hattori T (1990) National Institute of Agricultural Sciences (NIAS) Genebank. http://www.gene.affrc.go.jp/databases-micro_search_detail_en.php?maff=420279

  • Homma Y (1937) Erysiphaceae of Japan. J Fac Agric Hokkaido Imp Univ 38:183–461

    Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

    Article  CAS  Google Scholar 

  • Ishii HT, Kobayashi T, Uemura S, Takahashi K, Hanba YT, Sumida A, Hara T (2008) Removal of understory dwarf bamboo (Sasa kurilensis) induces changes in water-relations characteristics of overstory Betula ermanii trees. J For Res 13:101–109

    Article  Google Scholar 

  • Jany J, Garbaye J, Martin F (2002) Cenococcum geophilum populations show a high degree of genetic diversity in beech forests. New Phytol 154:651–659

    Article  CAS  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes – are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Kim J, Lee S, Ra J, Lee H, Huh N, Kim G (2010) Fungi associated with bamboo and their decay capabilities. Holzforschung 65:271–275

    Google Scholar 

  • Kitts CL (2001) Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2:17–25

    CAS  Google Scholar 

  • Kobayashi T, Miki N, Kato K (2006) Understory removal increases carbon gain and transpiration in the overstory of birch (Betula ermanii) stands in northern Hokkaido, Japan: trends in leaf, shoot, and canopy. Proceedings of international workshop on H O and CO exchange in Siberia, pp 19–22

    Google Scholar 

  • Kowalchuk GA, De Souza FA, Van Veen JA (2002) Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol Ecol 11:571–581

    Article  CAS  Google Scholar 

  • Landeweert R, Leeflang P, Kuyper TW, Hoffland E, Rosling A, Wernars K, Smit E (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69:327–333

    Article  CAS  Google Scholar 

  • Landeweert R, Leeflang P, Smit E, Kuyper TW (2005) Diversity of an ectomycorrhizal fungal community studied by a root tip and total soil DNA approach. Mycorrhiza 15:1–6

    Article  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2006) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  CAS  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    Article  CAS  Google Scholar 

  • LoBuglio KF (1999) In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal Fungi key genera in profile. Springer-Verlag, Berlin, pp 287–309

    Chapter  Google Scholar 

  • LoBuglio KF, Berbee ML, Taylor JW (1996) Phylogenetic origins of the asexual mycorrhizal symbiont Cenococcum geophilum Fr. & other mycorrhizal fungi among the Ascomycetes. Mol Phylogenet Evol 6:287–294

    Article  CAS  Google Scholar 

  • Lukow T, Dunfield PF, Liesack W (2000) Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol Ecol 32:241–247

    Article  CAS  Google Scholar 

  • Ma WK, Siciliano SD, Germida JJ (2005) A PCR–DGGE method for detecting arbuscular mycorrhizal fungi in cultivated soils. Soil Biol Biochem 37:1589–1597

    Article  CAS  Google Scholar 

  • Marsh TL (1999) Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 2:323–327

    Article  CAS  Google Scholar 

  • Massicotte HB, Trappe JM, Peterson RL, Mel Ville LH (1992) Studies in Cenococcum geophilum. II. Sclerotium morphology, germination, and formation in pure culture and growth pouches. Can J Bot 70:125–132

    Article  Google Scholar 

  • Matsuda Y, Hayakawa N, Ito S (2009) Local and microscale distributions of Cenococcum geophilum in soils of coastal pine forests. Fungal Ecol 2:31–35

    Article  Google Scholar 

  • Matsumoto N, Tajimi A (1988) Life-history strategy in Typhula incarnate and T. Ishikariensis biotypes A, B, and C as determined by sclerotium production. Can J Bot 66:2485–2490

    Article  Google Scholar 

  • Mummey DL, Rillig MC, Holben WE (2005) Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil 271:83–90

    Article  CAS  Google Scholar 

  • Nakashizuka T (1988) Regeneration of beech (Fagus crenata) after the simultaneous death of undergrowing dwarf bamboo (Sasa kurilensis). Ecol Res 3:21–35

    Article  Google Scholar 

  • Narisawa K, Tokumasu S, Hashiba T (1998) Suppression of clubroot formation in Chinese cabbage by the root endophytic fungus, Heteroconium chaetospira. Plant Pathol 47:206–210

    Article  Google Scholar 

  • Nishizawa T, Zhaorigetu KM, Sato Y, Kaneko N, Ohta H (2010) Molecular characterization of fungal communities in non-tilled, cover-cropped upland rice field soils. Microbes Environ 25:204–210

    Article  Google Scholar 

  • Nonoyama Y, Narisawa K, Ohta H, Watanabe M (2009) Bacterial community in sclerotia of Cenococcum species and soil in sub-alpine forest, central Japan. Geophysical Research Abstracts—EGU2009, 11, EGU2009–6512-1

    Google Scholar 

  • Nonoyama Y, Sakagami N, Narisawa K, Ohta H, Watanabe M (2016) Fungal community analysis by isolation and clone library in sclerotia from forest soil in Mt. Ontake, Gifu Prefecture, Japan. Soil Microorg 70:56–59

    Google Scholar 

  • O’Dell TE, Massicotte HB, Trappe JM (1993) Root colonization of Lupinus latifolius Agardh. and Pinus contorta Dougl. by Phialocephala fortinii Wang & Wilcox. New Phytol 124:93–100

    Article  Google Scholar 

  • Obase K, Douhan GW, Matsuda Y, Smith ME (2014) Culturable fungal assemblages growing within Cenococcum sclerotia in forest soils. FEMS Microbiol Ecol:1–10

    Google Scholar 

  • Ohta H, Yagi M, Suzuki J, Fujitake N, Watanabe M (2003) Characterization of Sphingomonas spp. found as predominant members in the culturable bacteria community of a green pigment-containing sclerotium grain from Mt. Myoko (Japan) volcanic ash soil. Microbes Environ 18:126–132

    Article  Google Scholar 

  • Ohtaka N, Narisawa K (2008) Molecular characterization and endophytic nature of the root-associated fungus Meliniomyces Variabilis (LtVB3). J Gen Plant Pathol 74:24–31

    Article  CAS  Google Scholar 

  • Opik M, Moora M, Liira J, Koljalg U, Zobel M, Sen R (2003) Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol 160:581–593

    Article  Google Scholar 

  • Pan H, Zhiang T, Kong J (2009) Notes on soil dematiaceous hyphomycetes from the Yellow River source area, China. Mycosystema 28:014–019

    Google Scholar 

  • Pennanen T, Heiskanen J, Korkama U (2005) Dynamics of ectomycorrhizal fungi and growth of Norway spruce seedlings after planting on a mounded forest clear-cut. For Ecol Manag 213:243–252

    Article  Google Scholar 

  • Renker C, Weißhuhn K, Kellner H, Buscot F (2006) Rationalizing molecular analysis of field-collected roots for assessing diversity of arbuscular mycorrhizal fungi: to pool, or not to pool, that is the question. Mycorrhiza 16:525–531

    Article  CAS  Google Scholar 

  • Sakagami N (2009a) Analysis on formation factor of sclerotia of Cenococcum geophilum in Picea abies forest, Harz Mts., Germany. Geogr Rev Jpn Ser B 82:184–195

    Google Scholar 

  • Sakagami N (2009b) Distributional optimum of sclerotia, resting bodies of Cenococcum geophilum in forest soils. Geogr Rep Tokyo Metropol Univ 46:63–72

    Google Scholar 

  • Schütte UME, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LF (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80:365–380

    Article  CAS  Google Scholar 

  • Singh BK, Munro S, Reid E, Ord B, Potts JM, Paterson E, Millard P (2006) Investigating microbial community structure in soils by physiological, biochemical and molecular fingerprinting methods. Eur J Soil Sci 57:72–82

    Article  CAS  Google Scholar 

  • Smith ME, Henkel TW, Rollins JA (2015) How many fungi make sclerotia? Fungal Ecol 13:211–220

    Article  Google Scholar 

  • Stoyke G, Currah RSH (1993) Resynthesis in pure culture of a common sub-alpine fungus-root association using Phialocephala fortinii and Menziesia ferruginea (Ericaceae). Arct Alp Res 25:189–193

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Ne M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Trappe JM (1962) Cenococcum graniforme—its distribution, ecology, mycorrhiza formation, and inherent variation. Ph.D. thesis. University of Washington, Seattle, Washington, USA

    Google Scholar 

  • Trappe JM (1969) Studies on Cenococcum graniforme. I. An efficient method for isolation from sclerotia. Can J Bot 47:1389–1390

    Article  Google Scholar 

  • Wagg C, Pautler M, Massicotte HB, Peterson RL (2008) The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae. Mycorrhiza 18:103–110

    Article  Google Scholar 

  • Watanabe M, Kado T, Ohta H, Fujitake N (2002) Distribution and development of sclerotium grains as influenced by aluminum status in volcanic ash soils. Soil Sci Plant Nutr 48:569–575

    Article  CAS  Google Scholar 

  • Watanabe M, Ohishi S, Pott A, Hardenbicker U, Aoki K, Sakagami N, Ohta H, Fujitake N (2004) Soil chemical properties and distribution of sclerotium grains in forest soils, Harz Mts., Germany. Soil Sci Plant Nutr 50:863–870

    Article  CAS  Google Scholar 

  • Wells HD, Bell DK, Jaworski CA (1972) Efficacy of Trichoderma harzianum as a biocontrol for Sclerotium rolfsii. Phytopathology 62:442–447

    Article  Google Scholar 

  • Widmer F, Hartmann M, Frey B, Kölliker R (2006) A novel strategy to extract specific phylogenetic sequence information from community T-RFLP. J Microbiol Methods 66:512–529

    Article  CAS  Google Scholar 

  • Willetts HJ (1971) The survival of fungal sclerotia under adverse environmental conditions. Biol Rev 46:387–407

    Article  Google Scholar 

  • Yamaguchi T (1989) Decay of Betula platyphylla var. japonica caused by Fuscoporia obliqua. Trans Meet Hokkaido Branch Jpn For Soc 37:91–93. (in Japanese)

    Google Scholar 

  • Zachow C, Grosch R, Berg G (2011) Impact of biotic and abiotic parameters on structure and function of microbial communities living on sclerotia of the soil-borne pathogenic fungus Rhizoctonia solani. Appl Soil Ecol 48:193–200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Narisawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narisawa, K., Amasya, A., Nonoyama, Y.S., Obase, K. (2021). Fungal Communities of Sclerotia Grains from Forest Soils. In: Watanabe, M. (eds) Sclerotia Grains in Soils. Progress in Soil Science. Springer, Singapore. https://doi.org/10.1007/978-981-33-4252-1_2

Download citation

Publish with us

Policies and ethics