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Abstract: Development phases are important in maturing immune systems, intestinal functions, and
metabolism for the construction, structure, and diversity of microbiome in the intestine during the
entire life. Characterizing the gut microbiota colonization and succession based on age-dependent
effects might be crucial if a microbiota-based therapeutic or disease prevention strategy is adopted.
The purpose of this study was to reveal the dynamic distribution of intestinal bacterial and fungal
communities across all development stages in yaks. Dynamic changes (a substantial difference)
in the structure and composition ratio of the microbial community were observed in yaks that
matched the natural aging process from juvenile to natural aging. This study included a significant
shift in the abundance and proportion of bacterial phyla (Planctomycetes, Firmicutes, Bacteroidetes,
Spirochaetes, Tenericutes, Proteobacteria, and Cyanobacteria) and fungal phyla (Chytridiomycota,
Mortierellomycota, Neocallimastigomycota, Ascomycota, and Basidiomycota) across all development
stages in yaks. As yaks grew older, variation reduced, and diversity increased as compared to young
yaks. In addition, the intestine was colonized by a succession of microbiomes that coalesced into a
more mature adult, including Ruminococcaceae_UCG-005, Romboutsia, Prevotellaceae_UCG-004, Blau-
tia, Clostridium_sensu_stricto_1, Ruminococcus_1, Ruminiclostridium_5, Rikenellaceae_RC9_gut_group,
Alloprevotella, Acetitomaculum, Lachnospiraceae_NK3A20_group, Bacteroides, Treponema_2, Olsenella,
Escherichia-Shigella, Candidatus_Saccharimonas, and fungal communities Mortierella, Lomentospora,
Orpinomyces, and Saccharomyces. In addition, microorganisms that threaten health, such as Escherichia-
Shigella, Mortierella, Lomentospora and Hydrogenoanaerobacterium, Corynebacterium_1, Trichosporon, and
Coprinellus, were enriched in young and old yaks, respectively, although all yaks were healthy. The
significant shifts in microflora composition and structure might reflect adaptation of gut microbiome,
which is associated with physicochemical conditions changes and substrate availability in the gut
across all development periods of yaks.

Keywords: bacterial microbiota; fungal communities; natural aging; yaks; high-throughput sequencing

1. Introduction

Among the domesticated ruminants, yak (Bos grunniens) entered human life as a
unique and special species endemic to the plateau (>3000 m) for over 7000 years. It has
adapted to the extreme living conditions at low temperature and hypoxia [1]. This ancient
species promotes local human civilization and agriculture by providing basic resources
for survival on the plateau, e.g., transportation, warm hides, and dung for fuel [2]. In this
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context yaks may have evolved a mechanism to adapt to their tough living conditions. The
ability to adapt in yaks has been studied using the microbiota of the gastrointestinal tract.
The trillions of gut microbiota cells regulate health and act as a bridge between the diet
and the physiological performance of the host [3,4]. Furthermore, digestive anatomy and
physiology change likely distinguish cattle-like ruminants from other ruminant research
models, such as giraffes and bovines, not simply in terms of survival habitat [5,6]. Under
the same diet conditions, more predicted functions were found in yaks’ gut microbiota
than cattle species, indicating more microbiome pathways exist in yaks to adapt to the
harsh environment [7]. In addition, the propionate, butyrate, and acetate to propionate
ratios were different in donor animals of cow and sheep [8]. It could be due to various
reasons, including the microbial composition of the gastrointestinal tract, species, intestinal
histological patterns, adaptations to the natural diet, etc. Recent studies have shown
the relationship between gut microbiota and the evolution of the host ecology. The gut
microbiome can reveal evolutionary genetic changes at the host and microbial cell levels.
Numerous aspects of host physiology, such as health status, stress tolerance, and behavior,
are closely related to the gut microbiome [9–11].

The structure and composition of the initial intestinal microbes of animals originate
in the uterus [12] and is significantly affected by microbial exposures at birth, such as the
birth canal [13]. Early colonization of the intestinal microbiota is a dynamically evolving,
a non-fixed structure influenced by factors such as diet and growth environment [14,15].
Many factors, including the gut physiological environment, weaning, diet, physical activity,
and environmental conditions, can have collateral impacts on gut microbiota development
as animals grow older. Contemporary studies of the intestinal microbiome exposed a series
of novel findings and open questions. Several key components, the taxa Faecalibacterium,
Roseburia, Subdoligranulum, and Escherichia, might provide the key to disentangling the sys-
temic microbiome-linked immune diseases [16]. Several microbiome members induced the
development of Th17 cells, whereas other microbes contributed to regular the development
of T cells and intestinal immune tolerance [17]. For ruminants, digestive properties drove
unique microbial groups to adapt to high-fiber content foods [18].

In animal husbandry, juvenile ruminants are susceptible to diarrhea, which is mostly
related to gastrointestinal dysfunction. Changes in the structure and composition of the
intestinal flora during this period have long-term physiological effects on the host [19].
Several studies have shown that the animal’s gut microbiota fluctuates during early devel-
opment and reaches stability after maturity [20,21]. The diversity of the gastrointestinal
micro-ecology increases with age and helps in the maturation of the composition and
structure of gut microbiota [22]. Additionally, it evolves into a more restricted ecological
niche [23]. Therefore, there might be some unavoidable associations between changes in
age and the tolerance against diseases of ruminants. Still, the specific associations and
characteristics are unclear. Besides, some potential connections might be present between
the age factor and gut microbiota change. However, a report on the potential law between
the age-related factor and the changes in the intestinal micro-ecology of the yak is rare.

Based on fungal-bacterial correlation studies, bacterial and fungal populations share a
similar intestinal environment. It indicates the integral ecological interactions across entire
development stages [24–26]. The significant links between intestinal fungal populations
and host health have been revealed in recent years [26,27]. Diarrhea was previously re-
ported in yak associated with dysbiosis of intestinal fungi [28]. The eukaryotic community
(the mycobiome) coexists with various bacteria and virus in the gut, substantially expand-
ing the repertoire of organisms. Interactions between this commensal and intestinal im-
mune systems have emerged as key for establishing an intestinal balance condition [29,30].
However, the analysis of fungal communities in the gastrointestinal tract of yak remains
poorly understood.

Therefore, we hypothesized that the age might influence intestinal microbiota. Eluci-
dating this link between the host and intestinal microbiota was necessary because of the
commonly acknowledged association between gut microbiome from juvenile to natural



J. Fungi 2021, 7, 559 3 of 17

aging and the risks of various diseases [16]. The dynamic distribution of intestinal bacte-
rial and fungal populations in yaks from juvenile to natural aging was identified in this
study, characterized by 16S rDNA (16S ribosomal DNA) and ITS (Internal Transcribed
Spacer) high-throughput sequencing methods. This study enhanced knowledge about the
developmental regulations of intestinal microorganisms in yaks and insights regarding
adaptability, nutrition management, and ruminant feeding strategy.

2. Materials and Methods
2.1. Animals and Samples Collection

A total of 18 yaks (half male and half female) were obtained from high plateau
(>3000 m, Qinghai, China), including six young kids (1 year old, Y group), six adults
(5 years old, A group), and six older adults (12 years old, O group). The yaks’ body
weight and gender information are listed in Table S1. All selected animals received similar
immunization procedures and were free of any illness. All yaks grazed freely in the pasture
without any dry matter addition. Fresh feces from each yak were collected and rapidly
frozen in liquid nitrogen before storing at −80 ◦C for later examination. The animal-
specific procedures were approved by the ethics committee of Animal Experiment Center,
Huazhong Agricultural University Wuhan, China (approval No. 4200696959, approval
date: 1 December 2020).

2.2. DNA Extraction

The QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany) was used to extract genomic
DNA, including bacterial and fungal genomic DNA, by following the manufacturer’s
instructions. The quality and integrity of collected DNA were assessed by 0.8% agarose
gel electrophoresis, while the concentrations were tested by UV-Vis spectrophotometer
(NanoDrop 2000, Thermo Scientific, Waltham, MA 02451, USA).

2.3. 16S rDNA and ITS Genes Amplification and High-Throughput Sequencing

The specific primers of the bacterial 16S rDNA gene and fungal ITS gene were
used for PCR amplification to construct DNA libraries for further sequencing and ampli-
fied bacterial V3/V4 regions with primers (338F: ACTCCTACGGGAGGCAGCA and
806R: GGACTA CHVGGGTWTCTAAT). The melting temperature was 55 ◦C for the
30 s, and PCR cycles were 30. The ITS gene PCR was conducted using primers 5′-
NNNNNNNNGCATCGATGAAGAACGCAGC-3′ and 5′-TCCTCCGCTTATTGATATGC-
3′ [31]. The annealing temperature was 58 ◦C during the 35 PCR cycles. PCR primer
barcodes were used to facilitate the output of segregated sequencing data. All the PCR
products were evaluated and purified by 1% gel electrophoresis and AMPure XP beads
(AGENCOURT) to delete the unspecific products. According to the manufacturer’s in-
structions, Illumina HiSeq 2500 (Illumina, San Diego, CA, USA) used the purified PCR
amplification products to generate a sequencing library. The libraries were then treated for
quality inspection by keeping only a single peak with the more than 2 nM concentration.
Finally, the qualified libraries were used for high-throughput sequencing.

2.4. Bioinformatics and Statistical Analysis

In order to obtain more reliable and high-quality sequencing results (effective reads),
the following pre-procedures were performed on the raw reads from the Illumina HiSeq
platform: (1) Trimmomatic v0.33 software was used to filter the raw reads, and then
we identified and removed primer sequences by using cutadapt 1.9.1 software to obtain
high-quality reads; (2) in order to get clean reads, FLASH v1.2.7 software was used to
splice high-quality reads of all samples through overlap, (3) Chimera sequences were
identified and removed by using UCHIME v4.2 software to obtain the final effective reads.
Subsequently, the obtained sequences were clustered into OTUs (operational taxonomic
units) at over 97% sequence similarity by Usearch software. We used R software (v3.0.3) to
draw Venn diagrams, which could visually display the number of common and unique
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OTUs between different groups. Five indicators, including Chao1, Ace, Shannon, Simpson,
and Coverage, were calculated using QIIME2 software to evaluate alpha diversity; it
reflected the sample species richness and species diversity. Rarefaction curve and Shannon
index curve were used to detect whether the sequencing depth of the sample covered most
of the species’ information. The similarities between individuals or groups were assessed
using UPGMA (unweighted pair-group method with arithmetic mean) and PCA (principal
component analysis). LEfSe (linear discriminant analysis (LDA) effect size) could find
biomarkers with statistical differences between different groups. The Metastats software
was used to perform a T-test for detecting the difference in the abundance of microbial
communities between groups of samples. The values were presented as the mean ± SD. A
level of p-value < 0.05 were considered statistically significant. In addition, Silva and Unite
databases were used for bacterial and fungal classification, respectively.

3. Results
3.1. 16S rDNA and ITS Sequence Data Analysis

After sequence quality filtering, we obtained 1,393,035 and 1,375,201 clean reads of the
V4 region and ITS region in 36 fecal samples. Each sample of bacterial and fungal popula-
tions generated an average of 77,391 and 76,400 clean reads, respectively (Tables S2 and S3).

Both multi-samples Rarefaction and Shannon curves tended to be stable, indicating
that most bacterial and fungal populations were detected with the current sequencing
depth (Figure S1A–D). All estimated Coverage values were over 99%, which indicated the
current sequences sufficiently covered the diversity of the sample of bacterial and fungal
communities (Figure 1).
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Figure 1. The diversity indices of bacterial and fungal communities in all groups. (A–E) Represents bacterial ACE, Chao1,
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A total of 13,479 and 2995 operational taxonomic units (OTUs), clustered at 97%
sequence similarity, were detected in bacterial and fungal feces samples, respectively
(Figure 2A,E). Among them, 779 bacterial and 180 fungal core OTUs were recognized in all
samples. Moreover, flower Venn showed the numbers of common OTUs were far more
than the unique OTUs of each group, suggesting that the sequenced differences of samples
between groups were more significant than those within groups. The samples collected
had sufficient uniformity (Figure 2B–D,F–H).



J. Fungi 2021, 7, 559 5 of 17

J. Fungi 2021, 7, x FOR PEER REVIEW 5 of 18 
 

 

A total of 13,479 and 2995 operational taxonomic units (OTUs), clustered at 97% se-
quence similarity, were detected in bacterial and fungal feces samples, respectively (Fig-
ure 2 A,E). Among them, 779 bacterial and 180 fungal core OTUs were recognized in all 
samples. Moreover, flower Venn showed the numbers of common OTUs were far more 
than the unique OTUs of each group, suggesting that the sequenced differences of sam-
ples between groups were more significant than those within groups. The samples col-
lected had sufficient uniformity (Figure 2B–D,F–H). 

 
Figure 2. Venn diagram is showing OTUs compositions. (A) OTUs of bacterial compositions in all groups; (B–D) repre-
sents the compositions of bacterial OTUs within Y, A, and O groups, respectively. (E) OTUs of fungal compositions in all 
groups; (F–H) represents the compositions of fungal OTUs within Y, A, and O groups, respectively. 

3.2. Analysis of Bacterial and Fungal Microbiome Diversity with Age 
Multiple alpha diversity indices were used to assess the bacterial and fungal popula-

tions’ richness and diversity, as measured by ACE, Chao1, Shannon, and Simpson, and 
they varied significantly with age (Figure 1). The bacterial results showed that ACE and 
Chao1 indices, which reflect microbiome communities’ richness, significantly increased 
with age (p < 0.01). The richness study of fungal microbiome communities indicated a 
pattern that differed from that of bacterial microbiome communities. Richness and even-
ness were also reflected in Simpson and Shannon’s indexes. The elder group also exhib-
ited wider variety in fungal communities. 

To assess beta diversity, we used UPGMA, which reflect variations in samples in mi-
crobial communities in the evolutionary tree and PCA. Three branches were segregated 
with age based on variations in evolutionary information of each sample (Figure 3B,D). 
As shown in the scatterplot from PCA, the three developmental stages of yaks showed 
continuous alterations in bacterial communities. Moreover, scattered points in the Y 
group of bacterial communities were more scattered, suggesting variability and uncer-
tainty in the bacterial microbiome of the yak calves (Figure 3A). Fungal communities were 
sequestered into three clusters according to age, indicating a difference in gut fungal com-
munities between old, adult, and calf yaks (Figure 3C). 

Figure 2. Venn diagram is showing OTUs compositions. (A) OTUs of bacterial compositions in all groups; (B–D) represents
the compositions of bacterial OTUs within Y, A, and O groups, respectively. (E) OTUs of fungal compositions in all groups;
(F–H) represents the compositions of fungal OTUs within Y, A, and O groups, respectively.

3.2. Analysis of Bacterial and Fungal Microbiome Diversity with Age

Multiple alpha diversity indices were used to assess the bacterial and fungal popula-
tions’ richness and diversity, as measured by ACE, Chao1, Shannon, and Simpson, and they
varied significantly with age (Figure 1). The bacterial results showed that ACE and Chao1
indices, which reflect microbiome communities’ richness, significantly increased with age
(p < 0.01). The richness study of fungal microbiome communities indicated a pattern that
differed from that of bacterial microbiome communities. Richness and evenness were also
reflected in Simpson and Shannon’s indexes. The elder group also exhibited wider variety
in fungal communities.

To assess beta diversity, we used UPGMA, which reflect variations in samples in
microbial communities in the evolutionary tree and PCA. Three branches were segregated
with age based on variations in evolutionary information of each sample (Figure 3B,D).
As shown in the scatterplot from PCA, the three developmental stages of yaks showed
continuous alterations in bacterial communities. Moreover, scattered points in the Y group
of bacterial communities were more scattered, suggesting variability and uncertainty in the
bacterial microbiome of the yak calves (Figure 3A). Fungal communities were sequestered
into three clusters according to age, indicating a difference in gut fungal communities
between old, adult, and calf yaks (Figure 3C).

3.3. Significant Alterations in Gut Bacterial Microbiota Composition with Age

We analyzed the relative proportion of preponderant taxa of the gut bacterial com-
munity at different taxonomical levels (Figure 4A,B). Following the phylum taxonomical
level assignment results, Firmicutes and Bacteroidetes were the dominant phyla regardless
of age, which consisted of over 84% of total sequences. Metastats analysis was used to
examine the differences in phyla among groups in order to undertake exploratory changes
in all taxa as the yaks matured. To further perform an exploratory alteration in all taxa
as the yaks aged, Metastats analysis was performed to compare the difference of phyla
among groups (Figure 5). A continuous increase was recorded in the relative abundances of
Tenericutes, Cyanobacteria, and Planctomycetes with age. Bacteroidetes, on the other hand,
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exhibited substantial decreases in relative abundance as the yaks matured. Similarly, en-
richment of phyla Firmicutes and low abundance of phyla Proteobacteria and Spirochaetes
existed in the adulthood of yaks (p < 0.05 or p < 0.01). Using genus-level cluster analysis,
a total of 194 genera were identified across all data. Several abundances in the genus
were among the genera found as having significant age-related variations (Figure 6). Six
taxa belonging to genera Christensenellaceae_R-7_group, Butyrivibrio, Anaerovibrio, Faecal-
ibacterium, Corynebacterium_1, and Hydrogenoanaerobacterium were significantly enriched in
old age, and the majority of these also increased with age. Conversely, an abundance of
Rikenellaceae_RC9_gut_group, Alloprevotella, Acetitomaculum, Lachnospiraceae_NK3A20_group,
Bacteroides, Olsenella, Candidatus_Saccharimonas, and Escherichia-Shigella were negatively
associated with ageing; their abundance was increased in the young yaks compared with
the other two development periods. The high signals of the A group of bacteria were signif-
icant at these genera level (Ruminococcaceae_UCG-005, Romboutsia, Prevotellaceae_UCG-004,
Ruminiclostridium_5, Blautia, Clostridium_sensu_stricto_1, Ruminococcus_1, Lactobacillus, and
Tyzzerella_4, Turicibacter). Furthermore, Treponema_2, Olsenella, Candidatus_Saccharimonas,
and Escherichia-Shigella were significantly underrepresented in adult yaks compared with
young and old yaks (p < 0.05 or p < 0.01).
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3.4. Significant Alterations in Gut Fungal-Microbiota Composition with Age

The findings of taxonomic classification of the fungal OTU preponderant taxa re-
vealed three dominating phyla at the phylum level (Basidiomycota, Ascomycota, and
Neocallimastigomycota), accounting for approximately 76% of identified taxonomic se-
quences (Figure 4C). When comparing all taxa among groups, we confirmed five phyla
with significant changes in relative abundance, including Basidiomycota, Ascomycota,
Neocallimastigomycota, Chytridiomycota, and Mortierellomycota (Figure 5). A negative
association was found between the Mortierellomycota relative abundance and ageing,
while the abundance of Chytridiomycota increased as yaks aged. In addition, the abun-
dance of Neocallimastigomycota was significantly enriched in adult yaks. Meanwhile, the
abundance of Ascomycota and Basidiomycota decreased first and then increased across
the developmental stages of yaks. We compared relative abundance and identified several
fungal genera that were significantly shifted across the developmental stages (Figure 6).
Pecoramyces, Coprinellus, Caecomyces, and Trichosporon phyla were continuously enriched
across all development periods, while Saccharomyces and Lomentospore were decreased
significantly in old age (p < 0.05 or p < 0.01). Wallemia and Mortierella were detected to have
the highest abundance in the Y group, indicating that these might have special significance
at a young age (p < 0.05 or p < 0.01). Extremely significant, Caecomyces was enriched in
adult yaks (p < 0.01).
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3.5. LEfSe Analysis of Samples between Groups

LEfSe was used to investigate bacterial and fungal abundance differences across
development phases (Figure 7). Noteworthy changes in the microbiomes of three develop-
ment periods were found (LDA Score > 4). Treponema_2, Rikenellaceae_RC9_gut_group, un-
cultured_bacterium_f_Muribaculaceae, and uncultured_bacterium_o_Clostridiales significantly
enriched in the Y group, whereas group A (Ruminococcaceae_UCG-005 and Romboutsia)
and O (Ruminococcaceae_UCG-014 and Christensenellaceae_R-7_group) had two bacterial
genera enriched, respectively (Figure 7A,B). Six different fungal genera were collectively
found between A and O, including Rhodotorula, Naganishia, Caecomyces, Trichosporon, and
Pecoramyces in the O group Orpinomyces enriched in A group (Figure 7C,D).
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4. Discussion

The interactions between the gut microbiota and the host have been identified as
major modulators in disease development and progression. Studies have been carried
out to see any links between changes in bacterial communities and disease, e.g., obesity,
hypertension, and chronic kidney disease [32,33]. However, most microbiome research
has focused on bacteria without considering the multi-kingdom nature of the microbial
ecosystem. As an integral part of microbiomes, the functional ecology of fungi is not well
understood. Using 16S rDNA and ITS high-throughput sequencing, we characterized the
bacterial and fungal communities’ shifts in yaks across all development stages. The results
revealed that the structure and compositions of the microbiome were changed dynamically
in different development stages, which contribute to the maintenance of the intestinal
environment’s stability, supporting the growing needs of various developmental stages,
and realizing a mature functional intestinal microbiome.

Intestinal microbiome research has yielded findings and resources that link host-gut
microbiome interactions to health-related consequences. Previous analysis suggested that
the young animal’s diarrhea has high morbidity, and this problem eases gradually with
age [34]. Moreover, this study showed that the intestinal bacterial and fungal communi-
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ties significantly shift in different development stages. The alpha indices reflecting the
abundance and diversity of bacterial and fungal communities significantly increased with
age. As a result, we hypothesized a connection between the structure and composition
of the gut microbiota that might explain why yaks of young ages are more susceptible to
intestinal illness than adults. Furthermore, three branches in an evolutionary tree were
sequestered with age, showed that microbiota composition and structural segregation
occurred in yaks at various phases of development. This finding supported the hypothesis
that each growth stage likely has a distinct selection of unique microbial communities that
coexist with the host.

As previously mentioned, various beneficial microflora is positively involved in
regulating gut function, host immune system and reducing incidences of intestinal dis-
eases [35,36]. This information conveyed the message that the reduction in potential
beneficial microflora abundance exacerbates intestinal disease susceptivity or that the
intestinal environment, which more susceptible to disease, drives the reduction of bene-
ficial microorganisms. This study’s results showed a continuous increase in the relative
abundances of phyla Tenericutes, Cyanobacteria, and Planctomycetes with age, whereas
phyla Bacteroidetes had the opposite trend. The discovery of Planctomycetes was first
reported in 1924 [37]. It lives in the intestine of animals, playing a pivotal role in carbon
and nitrogen cycles [38].

Similarly, to previous research, the relative abundances of Tenericutes increases as
the host ages [39]. We observed that the gut microbiota of young yaks contained enriched
Bacteroidetes, which is known to be involved in the production of short-chain fatty acids
and is beneficial to drive the host’s intestinal immune system [40]. This assists colonization
by providing a potentially advantageous way to fulfil the demands of fast growth and
development. Cyanobacteria and Spirochaetes significantly enriched in old yaks, which
might be a dangerous signal because bacteria belonging to these two phyla pose a big
threat to animal health [34,41]. In this study, phyla Firmicutes and Proteobacteria were
respectively regarded as dominant in the intestines of adult yaks. To our knowledge, phyla
Firmicutes contributes to the digestion of plant fiber [42], while Proteobacteria mainly
comprises Gram-negative pathogenic bacteria, including Escherichia coli and Helicobacter
pylori etc. [40]. These results suggested that the microbiome gradually reaches a balanced
and mature state with age.

At the genus level, the dominant microbiota in the early stage of yaks (Y group) were
Rikenellaceae_RC9_gut_group, Alloprevotella, Acetitomaculum, Lachnospiraceae_NK3A20_group,
Bacteroides, Treponema_2, Olsenella, Candidatus_Saccharimonas, and Escherichia-Shigella. Genus
Escherichia coli was a crucial inducer of diarrhea in young ruminants, whose abundance
usually increased with a high incidence of diarrhea [43,44]. However, the animals in our
experiment were healthy and had no symptoms of diarrhea, indicating that the structure of
the intestinal flora in the young stage might still be unstable. Rikenellaceae was associated
with limiting inflammation in the host [45], and this process was achieved by stimulating
T-cell regulatory differentiation. It was reported that Alloprevotella produces large amounts
of succinate [46], whose number was negatively correlated with cardiovascular disease [47].
The short-chain fatty acids produced by Acetitomaculum, Olsenella, and Lachnospiraceae are
beneficial for maintaining the function and morphology of intestinal epithelial cells [48–50].
Similar to the previous study, the relative abundance of Treponema enriches the young
host’s gut, indicating that it could adapt to the young gut conditions and might be ben-
eficial for the host [31]. As an intestinal symbiotic bacterium, Candidatus spp. plays an
important effect in driving a mature host’s immune system [51], while a large abundance
of Bacteroides could cause endogenous infection when the immune system is dysfunctional.
These results might convey a good message that the young yak evolves towards a more
mature gut community [22]. Dominance shifts of several bacteria were observed in an adult
community. The percentage of Ruminococcaceae_UCG-005, Romboutsia, Prevotellaceae_UCG-
004, Blautia, Clostridium_sensu_stricto_1, Ruminococcus_1, Ruminiclostridium_5, Turicibacter,
and Tyzzerella_4 in adult yaks were significantly enriched compared with the other two



J. Fungi 2021, 7, 559 12 of 17

development stages. As mentioned by previous analysis, several members of Firmicutes
(Blautia, Clostridium, Ruminococcus) were involved in producing SCFAs (short-chain fatty
acids), which are beneficial for regulating systemic immunity [52,53]. The genome analysis
of Romboutsia indicated the containment of genes associated with metabolic and carbohy-
drate utilization [54]. According to report, the abundance of Turicibacter increased during
enteritis. However, it was not identified which disease it should be responsible for [55].
Prevotellaceae, a member of phylum Bacteriodetes, is mainly responsible for the digestion
of plant carbohydrates, hemicellulose, pectin, etc. [56]. The presence of these microorgan-
isms in the intestines aids adult hosts in obtaining more energy and may play a critical
role in the host’s survival in the harsh natural environment. Most microorganisms were
early settlers and continue to exist throughout the development period, but their abun-
dance and proportion changed in different growth stages. The signature microbiota in
the old yaks were Christensenellaceae_R-7_group, Hydrogenoanaerobacterium, Butyrivibrio,
Parabacteroides, Alistipes, Corynebacterium_1, Faecalibacterium, Anaerovibrio, and Lactobacillus.
Christensenellaceae is involved in the positive regulation of the gut healthy homeostasis and
immunomodulation, so it has been seen as a potentially beneficial bacterium [57]. Butyriv-
ibrio is commonly found in the intestines of ruminants. It digests and degrades cellulose,
starch, and polysaccharides, producing a variety of short-chain fatty acids, such as acetic
acid and butyric acid [58]. Lactobacillus and Faecalibacterium play a crucial role in main-
taining micro-ecological balance and preventing intestinal bacterial diseases [59,60]. Both
Parabacteroides and Anaerovibrio are producers of short-chain fatty acids, which maintain
normal gut permeability and intestinal physiological functions [61,62]. Hydrogenoanaer-
obacterium is associated with obesity [63]. Disease indicates an imbalance between energy
intake and metabolic consumption in animals. Research showed an age-related increase in
skeletal muscle bioenergetics consumption during dynamic exercise [64]. Corynebacterium
is rarely considered a pathogen. However, it is often isolated from patients with orthopedic
infection [65]. A meaningful study reported that adding microorganisms from old mice
(not young) to germ-free mice caused inflammation, which indicated that microorganisms
gradually become harmful to the host with age [66]. Although the elderly samples we
collected came from healthy yak, we found several microbial components correlated to
frailty [66]. Specific bacterial metabolic function interventions were performed on bacterial
strains linked to the nematode Caenorhabditis elegans, such as suppressing bacterial folate
production and thereby prolonging the life of the animals [67]. Interestingly, a study of the
gut flora of over-hundred-year-olds discovered that numerous bacteria linked to health
were colonized [68]. It was hard to apply this knowledge to the microbiome of animals,
but these findings showed potential strategies for manipulating the gut flora to preserve
health in old age.

Fungal communities were dedicated to the decomposition of lignocellulose in ru-
minants, and this functionality was implemented through physical penetration and the
secretion of cell wall degrading enzymes. The final products of this process were mainly
acetate, formate, and hydrogen [69]. More than 400 species of fungi were identified, and
they were mainly members belonging to three phyla classification levels: Chytridiomycota,
Ascomycota, and Basidiomycota [70]. Neocallimastigomycota was found to have a lower
abundance of diarrhea in the host than healthy animals [28]. Our study’s most abundance
of them was recorded in adult yaks (p < 0.05 or p < 0.01). Our results might be related
to their physiological effects in the host, such as the ability of fungi in this phylum to
depolymerize complex molecular structures, degrade lignocellulosic biomass, and improve
feed digestibility [71]. Previous studies only identified 18 anaerobic fungal genera from
herbivores [72,73]. However, more fungal genera were identified in our research, which is
likely to be linked to the following factors: First, the abundances and diversity of fungal
communities are quite different between different species; secondly, yaks grow in a rela-
tively harsh environment, which means that a more complete and mature gut microbial
community is needed to cope with extreme climates (cold, hypoxia) to survive. A high
abundance of Mortierella was identified in calves with diarrhea [28]. Species of Lomentospora
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was an emerging opportunistic pathogen, and it was shown to be a potential threat to
hosts with low immune function and weakness [74]. In this study, the fungal communities
significantly increased, included Mortierella and Lomentospora, in young yaks compared
with the other two stages, suggesting that yaks in the early stage had an immature intestinal
microbiome. Orpinomyces was reported for its outstanding contribution to the degradation
of cellulose [75], which might reveal the up-regulation of plant digestion in adult yaks
because the highest abundance of it was found in A group (p < 0.05 or p < 0.01). As a
non-pathogenic species, a decline in Saccharomyces represents the disorder and malnutrition
of the fungal flora associated with IBD [76]. The fungal genus Wallemia is found in various
harsh environments, such as solar salterns, dry and highly sugared foods, etc. Among the
eight identified species, three were related to human health problems, including W. muriae,
W. Sebi, and W. mellicola [77]. These gradual changes in the proportion and composition
of involved fungal flora (Orpinomyces, Saccharomyces, and Wallemia) from young to adult
might be related to the more energy required by adults to maintain the steady-state of the
intestinal environment under harsh environments.

Moreover, our results demonstrated a significant increase in the relative abundances
of four genera (Trichosporon, Coprinellus, Pecoramyces, and Caecomyces) in the old yak’s
development stage (p < 0.05 or p < 0.01). The fungal microbiome in the intestine was
a powerful degrader of the plant content in the intestine of herbivorous animals [78],
such as Pecoramyces [73]. Given that they produced a high number of biomass-degrading
enzymes, these organisms have potential applications in lignocellulosic-related chemical
products [79,80]. However, as an effective degrader of plant biomass, Caecomyces formed a
limited system that could only attach to plant biomass [81]. The colonic mucosa of mice
with severe colitis was often accompanied by outbreaks of opportunistic pathogenic fungi,
including Trichosporon [76]. In this study, we found that bacteria and fungi associated with
health problems increased in the intestines of aged yaks, which might confirm that the
relationship between bacteria and fungi is synergistic and inter-kingdom [82].

5. Conclusions

In summary, our research demonstrated the dynamic distribution of gut microbiome
development, including bacterial and fungal communities, in yaks during their whole
development process. Specifically, the proportion and abundance of some microorganisms
in young yaks tend to change and gradually merge into more mature adult components,
including bacterial communities Ruminococcaceae_UCG-005, Romboutsia, Prevotellaceae_UCG-
004, Blautia, Clostridium_sensu_stricto_1, Ruminococcus_1, Ruminiclostridium_5, Rikenel-
laceae_RC9_gut_group, Alloprevotella, Acetitomaculum, Lachnospiraceae_NK3A20_group, Bac-
teroides, Treponema_2, Olsenella, Escherichia-Shigella, Candidatus_Saccharimonas, and fungal
communities Mortierella, Lomentospora, Orpinomyces, and Saccharomyces. Several microbial
components were found correlated to frailty (Hydrogenoanaerobacterium, Corynebacterium_1,
Trichosporon, and Coprinellus) in elderly samples of healthy yaks. Such colonization and
succession of the host’s age-dependent intestinal microbiota may provide an important
theoretical basis for microbiota-based treatment or disease prevention strategies. After all,
the gut microbiota from juvenile to natural aging and the risks of various diseases based
on age had a similar connection.
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