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At this point, there are more additions than errors to report...
1.1. Pythagoras’ Constant. A geometric irrationality proof of v/2 appears in
[1]; the transcendence of the numbers

V3
\/5 it LT
V2 , 1, 1°

would follow from a proof of Schanuel’s conjecture [2]. A curious recursion in [3, 4]
gives the n' digit in the binary expansion of v/2. Catalan [5] proved the Wallis-like
infinite product for 1/ V2. More references on radical denestings include 6, 7, 8, 9.

1.2. The Golden Mean. The cubic irrational ¢ = 1.3247179572... is connected

to a sequence
¢1:17 wn:\3/1+¢n—1 fOI'nZZ

which experimentally gives rise to [10]

Tim (= v,) (3(1+2))" = 18168834242....
The cubic irrational x = 1.8392867552... is mentioned elsewhere in the literature with
regard to iterative functions [11, 12, 13] (the four-numbers game is a special case of
what are known as Ducci sequences), geometric constructions [14, 15] and numerical
analysis [16]. Infinite radical expressions are further covered in [17, 18]; more gen-
eralized continued fractions appear in [19, 20]. See [21] for an interesting optimality
property of the logarithmic spiral. A mean-value analog C' of Viswanath’s constant
1.13198824... (the latter applies for almost every random Fibonacci sequence) was dis-
covered by Rittaud [22]: C' = 1.2055694304... has minimal polynomial 23+ 2% —z — 2.
The Fibonacci factorial constant ¢ arises in [23] with regard to the asymptotics

A1 N 1 1 (s — 21 _ 3In(5)? e
LT " mpw (s1060) —21mt) ~ T ) 4
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as s — 0, which gives meaning to the “regularized product” of all Fibonacci numbers.

1.3. The Natural Logarithmic Base. More on the matching problem appears
in [24]. Let N denote the number of independent Uniform [0, 1] observations Xy
necessary until ), _ Xj first exceeds 1. The fact that E(/N) = e goes back to at
least Laplace [25]; see also [26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. Imagine guests
arriving one-by-one at an infinitely long dinner table, finding a seat at random, and
choosing a napkin (at the left or at the right) at random. If there is only one napkin
available, then the guest chooses it. The mean fraction of guests without a napkin
is (2 — \/e)? = 0.1233967456... and the associated variance is (3 — ¢)(2 — v/€)? =
0.0347631055... [36, 37, 38, 39]. See pages 280-281 for the discrete parking problem
and [40] for related annihilation processes.

Proofs of the two infinite products for e are given in [5, 41]; Hurwitzian continued
fractions for /9 and e?/? appear in [42, 43, 44, 45]. The probability that a random
permutation on n symbols is simple is asymptotically 1/e?, where

(2647513) is non-simple  (since the interval 2..5 is mapped onto 4..7),

(2314) is non-simple  (since the interval 1..2 is mapped onto 2..3),

but (51742683) and (2413) are simple, for example. Only intervals of length ¢, where
1 < ¢ < n, are considered, since the lengths ¢ =1 and ¢ = n are trivial [46, 47].
Define the following set of integer k-tuples

k
1
Nk:{(”lanza---,nk)i E —zland1§n1<n2<...<nk}.
Jj=1

U

Martin [48] proved that
e

min ng ~ k
(n1,m2,...,nk)EN} e—1
as k — oo, but it remains open whether
1
max ng ~ k.
(n1,m2,...,nk)EN e—1

Croot [49] made some progress on the latter: He proved that ny > (1+0(1))k/(e—1)
for infinitely many values of k, and this bound is best possible.
Holcombe [50] evaluated the infinite products

2

had 1\" T
(%) =

n=2
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ﬁ 1L "1 exp[3+ % — 55((3) + g Lis (727) + L Liy (¢77)]
_ n? e 2sinh(7)

and similar products appear in [51, 52]. Also, define fy(x) = x and, for each n > 0,

fn<x> = (1+fn—1( ) fn 1( ))

This imitates the definition of e, in the sense that the exponent — oo and the base
— 1 as x — 0. We have f1(0) =e =2.718...,

f2(0) =exp (—5) = 0.257...,  f3(0) = exp (Hg exp (1 — §5)) = 1.086...

and f4(0) = 0.921... (too complicated an expression to include here). Does a pattern
develop here?
1.4. Archimedes’ Constant. Viéte’s product

\[ 11+11
573 2\ 2

has the following close cousin:

8=

1
+ 2= |-+ =2

St fied
: Vi

where L is the lemniscate constant (pages 420-423). Levin [53, 54] developed analogs
of sine and cosine for the curve 2% +y* = 1 to prove the latter formula; he also noted
that the area enclosed by z* + y* = 1 is v/2L and that

2/3 1 1 1 1 1 /1 1 1 1 /1 \[
e e |-l =+ R S I _ Zh/Z =
p 2 2 2 2 22 5T\ 2z 3\z2

Can the half-circumference of ¢ + y* = 1 be written in terms of L as well? This
question makes sense both in the usual 2-norm and in the 4-norm; call the half-
circumference 74 for the latter. More generally, define 7, to be the half-circumference
of the unit p-circle |z|? + |y|P = 1, where lengths are measured via the p-norm and
1 < p < oo. It turns out [55] that m = 75 is the minimum value of 7,. Additional
infinite radical expressions for 7 appear in [56, 57]; more on the Matiyasevich-Guy
formula is covered in [58, 59, 60, 61, 62]; see [63] for a revised spigot algorithm for
computing decimal digits of 7 and [64, 65] for more on BBP-type formulas.
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1.5. Euler-Mascheroni Constant. An impressive survey appears in [66]. De la
Vallée Poussin’s theorem was, in fact, anticipated by Dirichlet [67, 68]; it is a corollary
of the formula for the limiting mean value of d(n) [69]. Vacca’s series was anticipated
by Nielsen [70] and Jacobsthal [71, 72]. An extension was found by Koecher [73]:

_%: 1/<:+1> UESH

where 6 = (14 a)/4 = 0.6516737881... and o = 3, 1/(2" — 1) = 1.6066951524...
is one of the digital search tree constants. Glaisher [74] discovered a similar formula:

=1 In(3k
=3 ( )J

- 1
kz_; (3k — 1)(3k)(3k + 1) { In(3)
nearly eighty years earlier. The following series [75, 76, 77] suggest that In(4/7) is an
“alternating Euler constant”

<5 (o () = [

k=

o(£)-For (one D)t

k=1

-2

(see section 1.7 later for more). Evaluation of the definite integral involving >2° | 22"
was first done by Catalan [5].

Sample criteria for the irrationality of v appear in Sondow [78, 79, 80, 81, 82].
Long ago, Mahler attempted to prove that 7 is transcendental; the closest he came
to this was to prove the transcendentality of the constant [83, 84]

Yo(2)
2J0(2)

where Jy(z) and Yy(z) are the zeroth Bessel functions of the first and second kinds.
(Unfortunately the conclusion cannot be applied to the terms separately!) From
Nesterenko’s work, I'(1/6) is transcendental; from Grinspan’s work [85], at least two
of the three numbers 7, I'(1/5), I'(2/5) are algebraically independent. See [86, 87, 88]
for more such results.

Diamond [89, 90] proved that, if

1
n) = Z In(vq1) In(vy) - - - In(vg)
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where the (finite) sum is over all integer multiplicative compositions n = vqvy - - - vy,
and each v; > 2, then

oy (13

n=2 k=1

) =exp(y —v — In(In(2)) = 1.2429194164...

where 7/ = 0.4281657248... is the analog of Euler’s constant when 1/z is replaced
by 1/(xIn(z)) (see Table 1.1). The analog when 1/x is replaced by 1//z is called
Toachimescu’s constant [91]. See [92] for a different generalization of . Also, related
limiting formulas include [93]

lim (i arctan (%) — ln(n)> = —arg (I'(1+1)),

k=1

lim (Z arctanh (;) - 1n(n)> = —%111(2).

k=2

1.6. Apéry’s Constant. The famous alternating central binomial series for ((3)
dates back at least as far as 1890, appearing as a special case of a formula due to
Markov [94, 95, 96]:

% LG (1)) 2(x — 1)+ 6(n + 1)z — 1) + 5(n + 1)°
Z (z+n)3 _4; 2n+1 @@+ 1) (z+n)]

n=0

Ramanujan [97, 98| discovered the series for ((3) attributed to Grosswald. Plouffe
[99] uncovered remarkable formulas for 721 and ((2k + 1), including

- Z: e — — 96 Z e2mn _ + 24 Z e47rn _ ’

> 1
T _7202n3 —900Zn3 +180;m7
1 1 !
0 = 70562_:—n5(em_ 3 —6993Zm+63’zm’
_282n3 —— —37Zn3 em_ +7Zn3 647m_ )

1 259
B —ouS L 1
) nz:; n5<e7rn — 1) ]_0 — n5(627m _ 10 Z 'TL5 647rn _ 7
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304 1 103 1 19 & 1
C(7):_Z T(pmn T4 7(p2mn +_Z 7( 4T ’
13 = n7(e™ —1) 4 Lni(e?™ —1) 524 ni(e*™ —1)
A claimed proof that ((5) is irrational awaits confirmation [100]. Volchkov’s formula
(which is equivalent to the Riemann hypothesis) was revisited in [101]; a new criterion
[102] has the advantage that it involves only integrals of ((z) taken exclusively along
the real axis. We mention a certain alternating double sum [103, 104]

i—1 Z—|—j 4 2

- S SRV ENVERP S
> = oot @) - @) 2L14<2)

=2 j=1

= —0.1178759996...

and wonder about possible generalizations.

1.7. Catalan’s Constant. Rivoal & Zudilin [105] proved that there exist in-
finitely many integers k for which 3(2k) is irrational, and that at least one of the
numbers 3(2), 5(4), 5(6), B(8), 5(10), 5(12), F(14) is irrational. More double inte-
grals (see section 1.5 earlier) include [106, 107, 108, 109]

11 11
C(3)__1//ln(xy)dxdy 1// dx dy
20 ) 1 -y 80 (1—ay)\/z(1—y)

0

Zudilin [108] also found the continued fraction expansion

13, 1040] | 42322176 15215850000
2G ~ ' 10699 ' [434871 14090123

where the partial numerators and partial denominators are generated according to
the polynomials (2n — 1)%(2n)*(20n? — 48n + 29)(20n? + 32n + 13) and 3520n° +
5632n° + 2064n* — 384n3 — 156n2 + 16n + 7.

1.8. Khintchine-Lévy Constants. Let m(n,z) denote the number of partial
denominators of x correctly predicted by the first n decimal digits of z. Lochs’ result
is usually stated as [110]

fim 2 2)_ SI@ A0 o oz90701143..

n—o00 n 7T2

— (1.0306408341...)~" = [(2)(0.5153204170...)] *

for almost all z. In words, an extra 3% in decimal digits delivers the required partial
denominators. The constant 0.51532... appears in [111] and our entry [2.17]. A
corresponding Central Limit Theorem is stated in [112, 113].
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If x is a quadratic irrational, then its continued fraction expansion is periodic;
hence lim,, .o, M(n, z) is easily found and is algebraic. For example, lim,, o, M (n, @) =
1, where ¢ is the Golden mean. We study the set ¥ of values lim,, ., In(@,,)/n taken
over all quadratic irrationals z in [114]. Additional references include [115, 116, 117].

1.9. Feigenbaum-Coullet-Tresser Constants. Consider the unique solution
of p(x) = Th[p](x) as pictured in Figure 1.6:

p(r) = 1-— (1.5276329970...)2% + (0.1048151947...)*
+(0.0267056705...)2% — (0.0035274096...)2° + — - - -

The Hausdorff dimension D of the Cantor set {z;}32, C [—1,1], defined by z; =1
and rp11 = ¢(xg), is known to satisfy 0.53763 < D < 0.53854. This set may be
regarded as the simplest of all strange attractors [118, 119, 120].

In two dimensions, Kuznetsov & Sataev [121] computed parameters o = 2.502907875...,
£ = 1.505318159..., § = 4.669201609... for the map

Tpi1 \ 1—ca? .
Yn+1 B 1—ayy2l—b%21 ’

a = 1.90007167..., f = 4.00815785..., 6 = 6.32631925... for the map

Tpy1 \ [ 1— az?+dr,y, .
Yn+1 1-— bmnyn ’

and a = 6.565350..., § = 22.120227..., 6 = 92.431263... for the map

(o) =)
Yn+1 N €Yn — ZL’% '
“Certainly, this is only a little part of some great entire pattern”, they wrote.

Let us return to the familiar one-dimensional map = — a x(1—x), but focus instead
on the region a > as = 3.5699456718... = 4(0.8924864179...). We are interested in
bifurcation of cycles whose periods are odd multiples of two:

the smallest value of a for which a cycle of

A(m,n) = period (2m + 1)2™ first appears.

For any fixed m > 0,

lim A(m,n) — X(m,n — 1)

=0 =4.6692...
n—oo A(m,n + 1) — A(m, n) 669
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which is perhaps unsurprising. A new constant emerges if we reverse the roles of m

and n: A )= A(m - 1.n)
m,n —1,n
lim li = = = 2.9480...
e mlggo A(m+1,n) — X(m,n) K

Tn

due to Geisel & Nierwetberg [122] and Kolyada & Sivak [123]. High-precision values
of Yo, V1, Vo, - - would be good to see. A proof of the existence of ~ is in [124], but
apart from mention in [125], this constant has been unjustly neglected.

1.10. Madelung’s Constant. The following “near miss” exact expression [126]:

1 1 4x In(2) , I(1/8)T(3/8)
R Y R B Fa e TEN
(_1)i+j+k:

_2§:/

igk=—oo V12 + 72+ 2 (esm — 1)

is noteworthy because the series portion is rapidly convergent. See also [127, 128, 129].
Related to our function f(z) is the limit

n

> 3 ijQ —2rln(n) — [41n(2) + 3In(n) + 2y — 4In (0(1/4))] 7 — 4G

imj:in

as n — 0o, where v is Euler’s constant and G is Catalan’s constant [130]. Another

series o
> (—1)* 21
s )
ijz_:ooz2+(3]+1)2 g n[2(V3

is only the first of many evaluations appearing in [131, 132]. Likewise

S e [ ) s (2) -2 (B0)
g k+1% — % {7 +In(27) — 21In (Egﬁ;) } ;

i{ 3:;fk++11 lné:/ik:;)} % {m Ggg;) N (7+ln(2ﬁ))}’

k=0

1
3

s In(4k +1)  In(4k +3) T ['(1/8)I'(3/8)

z% { P Y } 272 {1 (F(5/8)F(7/8)) _(7““(2”))}
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are just starting points for research reported in [133, 134, 135].

1.11. Chaitin’s Constant. Ord & Kieu [136] gave a different Diophantine
representation for 2; apparently Chaitin’s equation can be reduced to 2-3 pages in
length [137]. A rough sense of the type of equations involved can be gained from
[138]. Calude & Stay [139] suggested that the uncomputability of bits of € can be
recast as an uncertainty principle.

2.1. Hardy-Littlewood Constants. In a breakthrough, Zhang [140, 141, 142,
143] proved that the sequence of gaps between consecutive primes has a finite lim-
inf (an impressive step toward confirming the Twin Prime Conjecture). In another
breakthrough, Green & Tao [144] proved that there are arbitrarily long arithmetic
progressions of primes. In particular, the number of prime triples p; < ps < p3 <
in arithmetic progression is

2

In(z)3

2
thin X
Y

2 In(z)3

= (0.3300809079...)

as r — 00, and the number of prime quadruples p; < ps < p3 < ps < x in arithmetic
progression is likewise

2 2

D =x x
~— = (0.4763747659... )
6 In(z)* ( )1n(x)4
Here is a different extension Clyi, = C:
p—1 n
Pn 5 2r) ~ 2C] win T A1 oo
(p,p+2r) t Hp—2ln(n)2
pp>2
Cs,

and C%. has mean value one in the sense that > " C% ~ m as m — oo. Further
generalization is possible [145, 146].

Fix ¢ > 0. Let N(z,k) denote the number of positive integers n < z with
Q(n) = k, where k is allowed to grow with =. Nicolas [147] proved that

. N(z, k) 1 1 1
| = = - 14+ ——— | = 0.3786950320....
ooso (1/29) In(/2%)  AChm 4 g < - 2))
under the assumption that (2 +¢)In(In(z)) <k < In(z)/In(2). More relevant results
appear in [148]; see also the next entry.

Let L(z) denote the number of positive odd integers n < x that can be expressed in
the form 2'+p, where [ is a positive integer and p is a prime. Then 0.09368 z < L(z) <
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0.49095 z for all sufficiently large x. The lower bound can be improved to 0.2893 x if
the Hardy-Littlewood conjectures in sieve theory are true [149, 150, 151, 152, 153].

Let Q(z) denote the number of integers < x with prime factorizations p{*p§? - - - p&r
satisfying a1 > ap > ... > «,. Extending results of Hardy & Ramanujan [154], Rich-
mond [155] deduced that

1/2 2
2 In(x) 2In(m)+12B/7*—2 In(3)—In(In(In(z)))
In(Q(x)) ~ V3 (m(mi;;))) <1 - 2In(In(z)) - 21n(ln(m))x >

where

B=— 1ot — ) dy = €(2) - 5.

2.2. Meissel-Mertens Constants. See [156] for more occurrences of the
constants M and M’ and [157] for a historical treatment. Higher-order asymp-
totic series for E,(w), Var,(w), E,(2) and Var, () are given in [158]. The values
my 3 = —0.3568904795... and my 3 = 0.2850543590... are calculated in [159]; of course,
mis+mas+1/3 =M. While Zp 1/p is divergent, the following prime series is con-
vergent [160]:

111 1
T (_2 TR +) = — 0.7731566690....

~\p* P p ~plp—1)

The same is true if we replace primes by semiprimes [161]:

>N aF = > g Ty~ 1710518920...

p,q k=2 Dsq

Also, the reciprocal sum of semiprimes satisfies [162, 163]

lim (Z L In(In(n))? — 2M1n(ln(n))> = W—Q + M?

n—o0 ar<n Pq 6

and the corresponding analog of Mertens’ product formula is

1
T}LIEO (ln(n>>ln(ln(n))+2M H (1 . @) _ e—7r2/6—M2_A

pgsn

where [161]

SN | 1 1
A= = In(1——)+ —) = 0.0798480403....
Z,; k (pq)* 2 ( ( PQ) Pq

p.q p.q
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We can think of 72/6 + M? + A as another two-dimensional generalization of Euler’s
constant 7.

The second moment of Im(In(¢(1/2+4t))) over an interval [0, 7] involves asymp-
totically a constant [164, 165]

Z > (g - @) = —Z (ln (1 - —) + Lip (1)> = 0.1762478124...

m=2 p

as ' — oo. This assumes, however, that a certain random matrix model is applicable
(asymptotics for the pair correlation of zeros).

If Qx denotes the set of positive integers n for which Q(n)—w(n) = k, then @1 =
and the asymptotic density §;, satisfies [166, 167, 168]

lim 2%5, =

k—o0

= 0.3786950320...;

twin

the expression 4Ci, also appears on pages 86 and 133-134, as well as in the preceding
entry.

Given a positive integer n, let K(n) = ][, p denote the square-free kernel of n
and p, = n/K(n). We say that n is flat if the ratio p, = 1. Define Ry to be the
set of n such that p,, itself is flat and w(p,) = k. We have R; = S and asymptotic
densities for Ry, R equal to [169]

= 0.0221245744...,
22: p(p+1 q+D

p<q

1
= 0.0010728279....
2p;T (p+ Dg(g+ Dr(r+1)

Averaging p,, over all n > 1 remains unsolved [170].
Define fi.(n) = #{p : p*|n} and Fy(n) = #{p**™ : p**™|n and m > 0}; hence
fi(n) =w(n) and Fi(n) = Q(n). It is known that, for £ > 2,

1 1
2 N e d g 2 e )

as © — oo. Also define g,(n) = #{p : p|n and p* | n} and Gi(n) = #{p™ : p™|n,
p¥tn and m > 1}. Then, for k > 2,

ng(n) <1n(ln )+ M — Z >

n<x
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ZGk(n) (hl(ln +M+Zp kp+k:—1>

n<x

as r — 0o. Other variations on k-full and /{:—free prime factors appear in [171]; the
growth rate of > _ 1/w(n) and > _ 1/Q(n) is covered in [172] as well.

2.3. Landau-Ramanujan Constant. It is not hard to show that C, =
0.6093010224... [173]. The second-order constant corresponding to non-hypotenuse
numbers should be

w2eY

212

C=0C+ %m ( > = 0.7047534517...

(numerically unchanged, but 7 is replaced by 72). Moree [174] expressed such con-
stants somewhat differently:

1—2C = —0.1638973186..., 1 —2C = —0.4095069034...

calling these Euler-Kronecker constants. His terminology is unfortunately inconsis-
tent with ours [175, 176].

Define Bs ;(x) to be the number of positive integers < x, all of whose prime factors
are = jmod 3, where j = 1 or 2. We have [177, 178, 179]

. In(x) V3
lim Y—~pB = L2 — 0.3012165544...
Jim —— 31() oK, 0.30121655 ,
1 2V/3K
lim %BS,Q(@ _ 23K 0.7044984335....
T—00 T

An analog of Mertens’ theorem for primes = j mod 3 unsurprisingly involves K3 as well
[159]. Here is a more complicated example (which arises in the theory of partitions).
Let

W(z)=#{n<z:n=2"p0ps - -pi", h>1, e, >1, p, =3,5,6mod7 for all k},
then the Selberg-Delange method gives [180, 181]

. O

mod 7

1 6 1/4
= —_— 1.0751753443...) = 0.2733451113...
T(1/4) (m) ( )

7
—(0.9371832387...).
24(0 9371832387....)

) —1/4
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Other examples appear in [181] as well.
Define Z3 ;(z) to be the number of positive integers n < x for which ¢(n)
jmod 3, where ¢ is Euler’s totient and j = 1 or 2. We have [182, 183]

i YR 5y - VY32 H (CIT [ 0.6100136202..  if j =1,
e @ T T J77 ) 0.3284176245..  if j=2

where

1
= 1 (1 o 1) — 1.4140643909...,

1
= 1- ——— ) =0. 177....
n= ]I ( o 1)2) 0.8505360177

p=2mod 3

Analogous results for Z, ;(x) with j = 1 or 3 are open, as far as is known.
Estermann [184, 185, 186] first examined the asymptotics

Blx)= Y u(m*+1)" ~ Kz =(0.8948412245...)z

1<m<z

as x — 00, where y is the Mobius mu function. One possible generalization is [187]

Z u(m2+n2+1)2~jx2

1<m,n<zx

and a numerical value for .J evidently remains open. See [188] for another occurrence
of K.

Fix h > 2. Define N,(x) to be the number of positive integers not exceeding
x that can be expressed as a sum of two nonnegative integer h'" powers. Clearly
Ny(z) = B(x). Hooley [189, 190] proved that

o/ _ 1 T(/n?
Jim 2N () = o7 T'(2/h)

when h is an odd prime, and Greaves [191] proved likewise when & is the smallest
composite 4. It is possible that such asymptotics are true for larger composites, for
example, h = 6.

While Ny(z) also counts n < z that can be expressed as a sum of two rational
squares, it is not true that Ns(z) does likewise for sums of two rational cubes. See
[192] for analysis of a related family of elliptic curves (cubic twists of the Fermat
equation u?® + v® = 1) and [193] for an unexpected appearance of the constant K.
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The issue regarding counts of z of the form a® + 2b% is addressed in [194]. We
mention that products like [195]

2p >
1— = 0.6436506796....,
H ( (P+1)(p-1)

p=3mod4

I1 (1 e 12)1217 — 1)) — 0.1739771224...

p=2mod 3

are evaluated to high precision in [196, 197] via special values of Dirichlet L-series.
2.4. Artin’s Constant. Other representations include [198]

lim In(N) 3 o(p—1)

N—ooo N

Stephens’ constant 0.5759... and Matthews’ constant 0.1473... actually first appeared
in [199]. Let ¢(n) = 1 if n is square-free and +(n) = 0 otherwise. Then [200, 201, 202,
203, 204, 205, 206]

N
1 2
Jim 5> 1) = ] (1 - z?) — 0.3226340989... = —1 + 2(0.6613170494...)
n=1 P
1
- % (1 ~ 1) = %(0.5307118205...),
T — T

p

that is, the Feller-Tornier constant arises with regard to consecutive square-free num-
bers and to other problems. Also, consider the cardinality N(X) of nontrivial primi-
tive integer vectors (g, 1, T2, z3) that fall on Cayley’s cubic surface

ToT1T2 + XoT1X3 + ToxaTs + r1Tox3 = 0

and satisfy |z;| < X for 0 < j < 3. It is known that N(X) ~ ¢X(In(X))® for some
constant ¢ > 0 [207, 208]; finding ¢ remains an open problem.

2.5. Hafner-Sarnak-McCurley Constant. In the “Added In Press” section
(pages 601-602), the asymptotics of coprimality and of square-freeness are discussed
for the Gaussian integers and for the Eisenstein-Jacobi integers. Generalizations
appear in [209, 210]. Cai & Bach [211] and Té6th [212] independently proved that the
probability that k positive integers are pairwise coprime is [213, 214]

N

1! k—1 (k—1)!
_Z FodY ooy V2 N et
H (1 p) (1 + P ) J&l—rgo NlIn(N)k-1 ;k .

p
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Freiberg [215, 216, 217], building on Moree’s work [218], determined the probability
that three positive integers are pairwise not coprime to be 1 — 18/7% + 3P — Q =
0.1742197830.... The constant @) also appears in [219, 220, 221]. More about sums
involving 2¢(™ and 27“(") appears in [222]. The asymptotics of ZnN:1 32 due to
Tenenbaum, are mentioned in [158]. Also, we have [223]

‘ 1 C(2€+2) y
2~ gy

R IR (REE TR T Y
2 Kw) e+1<@>£]0 ﬂ@+n>jv

n<N

as N — oo, for any positive integer £. In the latter formula, the product for ¢ = 1
and ¢ = 2 appears in [222] with regard to the number/sum of unitary square-free
divisors; the product for ¢ = 2 further is connected with class number theory [114].

2.6. Niven’s Constant. The quantity C' appears unexpectedly in [224]. If we
instead examine the mean of the exponents:

1 i =1,
k
Lim)=<¢ 1 .
E Z CL]‘ 1f m > 1,
j=1
then [225, 226]
n n n
m; Lm) =n+Ciaieyy * Cmmnz TO <ln(ln(n))3)
as n — 0o, where [160]
1
Cy = — M’ — M = 0.7731566690...,
1 Zp: plp—1)

1
s ::jiziﬁzgijij — 1M = Cy(1 — M) — N = 0.1187309349...,
p

using notation defined on pages 94-95. The constant C} also appears in our ear-
lier entry [2.2]. A general formula for coefficients ¢;; was found by Sinha [227] and
gives two additional terms (involving n'/® and n'/7) in the asymptotic estimate of

D mt h(m).

Let Ny(x) denote the number of positive integer primitive triples (i, j, k) with
i+j=k<uzand,j,k square-full. Tt is conjectured that [228]

No(z) = 22 (1 + o(1))
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as r — 00, where ¢ = 2.677539267... has a complicated expression. Supporting evi-
dence includes the inequality Na(z) > éz'/2 (1 + 0(1)) and Na(z) = O (2%/° In(z)'2).

2.7. Euler Totient Constants. Let us clarify the third sentence: ¢(n) is the
number of generators in Z,, the additive group of integers modulo n. It is also the
number of elements in Z}, the multiplicative group of invertible integers modulo n.

Define f(n) = np(n)~! — e”In(In(n)). Nicolas [229] proved that f(n) > 0 for
infinitely many integers n by the following reasoning. Let P, denote the product of
the first & prime numbers. If the Riemann hypothesis is true, then f(F;) > 0 for
all k. If the Riemann hypothesis is false, then f(P;) > 0 for infinitely many & and
f(P) <0 for infinitely many /.

Let U(n) denote the set of values < n taken by ¢ and v(n) denote its cardinality;
for example [230], U(15) = {1,2,4,6,8,10,12} and v(15) = 7. Let Iny(x) = In(In(x))
and In,,(z) = In(In,,—1(z)) for convenience. Ford [231] proved that

v(n) = iy exp {C[Inz(n) — Ins(n)]* + DIng(n) — [D + 3 — 2C] Ins(n) + O(1) }

as n — 00, where

C = —35p; = 0.8178146464...,
n(p)
D =20 (1+ In(F'(p)) — In(2C)) — 2 = 2.1769687435...
F(zr)=> ((k+1)In(k+1) — kln(k) — 1) 2*
k=1

and p = 0.5425985860... is the unique solution on [0,1) of the equation F(p) = 1.
Also,

1 1
lim ——— w(m) = —— = 2.1862634648...
n—o0 v(n) Ing(n) mer%n) (m) 1—p

which contrasts with a related result of Erdés & Pomerance [232]:

lim b Zw(gp(n)) = %

n—oo n Ing(n)?

These two latter formulas hold as well if w is replaced by 2. See [233] for more on
FEuler’s totient.

Define the reduced totient or Carmichael function 1p(n) to be the size of the largest
cyclic subgroup of Z*. We have [234]

3 ) = % exp —Pll“(jjg ) (14 (1))

n<N
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as N — oo, where

1
P=cT[(1- — 0.3453720641....
’ 1;[( (p—l)Q(pH))

(note the similarity to a constant in [235].) There is a set S of positive integers of
asymptotic density 1 such that, for n € S,

mip(n) ™" = (In(n))me @t

and

In(p)
Q=-1+ = 0.2269688056...;
Zp: (p—1)°
it is not known whether S = Z* is possible.
Let X, denote the ged of two integers chosen independently from Uniform {1,2,...,n}
and Y;, denote the lem. Diaconis & Erdés [236] proved that
3¢(3)

E(X,) = % In(n)+ E+ O (%) ., EY,) = 2—7T2n2 + O (nln(n))

as n — 0o, where
S 1 u ~ 3,2, - 6 12 1\ _ 1
E=) wimm Zlgo(j)m — 3K+ Zlgo(j) k—S@k+ Dk p+12 (y+1)-1
k=1 J= J=
but a vastly simpler expression
6 1 7 6
E=—(2yv—2>—-2—— — (2
e < T3 )>

was found earlier by Cohen [237, 238]; a reconcilation is needed.

2.8. Pell-Stevenhagen Constants. The constant P is transcendental via a
general theorem on values of modular forms due to Nesterenko [239, 240]. Here is a
constant similar to P: The number of positive integers n < N, for which 2n — 1 is
not divisible by 2” — 1 for any prime p, is ~ ¢N, where

1
c= H (1 ST 1) — 0.5483008312....

p

A ring-theoretic analog of this statement, plus generalizations, appear in [241].
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2.9. Alladi-Grinstead Constant. In the final paragraph, it should be noted
that the first product 1.7587436279... is € /2. See [112] for another occurrence of C'.
It is a multiplicative analog of Euler’s constant «y in the sense that [242]

=[G o= ()

2.10. Sierpinski’s Constant. Sierpinski’s formulas for S and S contained a few
errors: they should be [243, 244, 245, 246, 247, 248]

. 12 In(2

§=v+5-3C@)+ % — 1= 1.7710119609... = %(2.2549224628...),
N 12 In(2 1
§=25-—((2)+ @) 90166215457, 1(8.0664861829...).

In the summation formula at the top of page 125, D,, should be Dy. Also, the divisor
analog of Sierpinski’s second series is [249]

Zn:d(k2) = <% In(n)? + (187 -6 72 '(2)) In(n) + c) n+ 0 (nV/?)

2 4

as n — 0o, where the expression for c is complicated. It is easily shown that d(n?) is
the number of ordered pairs of positive integers (i, j) satisfying lem(i, j) = n.
The best known result for r(n) is currently [250]

zn:T(/f) =7mn+ 0 (n% In(n) 188362207) .

k=1

Define R(n) to be the number of representations of n as a sum of three squares,
counting order and sign. Then

. 4
S Rty = T 1.0 e
k=1
for all € > 0 and [251]

2 87t
2 "= 51¢3)

The former is the same as the number of integer ordered triples falling within the ball
of radius 1/n centered at the origin; an extension of the latter to sums of m squares,
when m > 3, is also known [251].

n? 4+ 0 (n49).
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A claimed proof that

Z d(n) = zIn(z) + (2y — 1)z + O (z"/*)

n<x

as © — oo awaits confirmation [252]. Let 6(n) denote the number of square divisors
of m, that is, all positive integers d for which d?|n. It is known that [253]

> 6(n) ~ ((2)z + ((1/2)2?

n<x

as r — 00. Analogous to various error-term formulas in [254], we have

/<Z5 2)y —¢(1/2)y 1/2> dy ~ Csz*/?

m<y

where )

21/3 o0

d
572 2 | 2

n=1 \ d2|n

Cs =

This supports a conjecture that the error in approximating ), d(n) is O(z'/6%),
2.11. Abundant Numbers Density Constant. An odd perfect number can-
not be less than 10'%% [255]. The definition of A(z) should be replaced by

Ale) — T HES o) 2 k]

n—oo n

Kobayashi [256] proved that 0.24761 < A(2) < 0.24765; see also [257, 258, 259, 260).
If K(z) is the number of all positive integers m that satisfy o(m) < z, then [261]

w0 1Y) (S (e5)

ST (o E)

2.12. Linnik’s Constant. In the definition of L, “lim” should be replaced by
“limsup”. Clearly L exists; the fact that L. < oo was Linnik’s important contribution.
Xylouris [262] recently proved that L < 5.18; an unpublished proof that L < 5 needs
to be verified [263].
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2.13. Mills’ Constant. Caldwell & Cheng [264] computed C' to high precision.
The question, “Does there exist C' > 1 for which LC‘”J is always prime?”, remains

open [265]. Let ¢; < ga < ... < qx denote the consecutive prime factors of an integer

n > 1. Define
-1
4 45
F(n) = l—-——)=wn) —1-
m=3(1-7%) > L

if k> 1and F(n) =0if k = 1. Erdés & Nicolas [266] demonstrated that there exists
a constant C’ = 1.70654185... such that, as n — oo, F(n) < /In(n) — C" + o(1),
with equality holding for infinitely many n. Further, C' = C” + In(2) + 1/2, where
1266, 267]

0o 00 2
=3 {m (pZ“) - (1 " >} = 0.51339467..., Y _ (p”l - 1) = 1.65310351...,
pa— Di Pi+1 =1 \ Di

and p; = 2, po = 3, p3 = 5, ... is the sequence of all primes.

It now seems that liminf, . (pn+1 — pn)/In(p,) = 0 is a theorem [268, 269], clari-
fying the uncertainty raised in “Added In Press” (pages 601-602). More about small
prime gaps will surely appear soon; research concerning large prime gaps continues
as well [270, 271].

2.14. Brun’s Constant. Wolf [272] computed that B, = 1.1970449... and a
high-precision calculation of this value would be appreciated.

2.15. Glaisher-Kinkelin Constant. A certain infinite product [273]

(=pr-t A3
H ( V2mn( n/e) ) T 9712174

features the ratio of n! to its Stirling approximation. In the second display for D(z),
exp(—xz/2) should be replaced by exp(x/2). Another proof of the formula for D(1) is
given in [77]; another special case is [51, 52, 274]

21/6ﬁA3
D(1/2) = =~/
The two quantities
G (1) =0.6032442812..., G5 (2) = /7G5 (1) = 1.0692226492...

play a role in a discussion of the limiting behavior of Toeplitz determinants and the
Fisher-Hartwig conjecture [275, 276]. Krasovsky [277] and Ehrhardt [278] proved
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Dyson’s conjecture regarding the asymptotic expansion of E(s) as s — oo; a third
proof is given in [279]. Also, the quantities

Gy ()7 = 1.6577032408... = 271/24¢=3/1671/4(3.1953114860...)>/

Gs (3) 7 =Gy (3) Gy (3) 7! = 0.9560900007... = 7~ /3(3.3388512141...)7/16

appear in [280]. In the last paragraph on page 141, the polynomial ¢(x) should be
assumed to have degree n. See [281, 282] for more on the GUE hypothesis.

Here is a sample result involving not random real polynomials, but a random
complex exponential. Let a, b denote independent complex Gaussian coefficients.
The expected number of zeroes of a + bexp(z) satisfying |z| < 1 is [283]

(22)
/ / exp(27) ~dx dy = 0.2029189212. .
(1 + exp(22))?

x2+y2<1

and higher-degree results are also known.

2.16. Stolarsky-Harboth Constant. The “typical growth” of 20 is ~ n!/2
while the “average growth” of 20 is ~ nln(?’/ 2/10(2); more examples are found in
[284]. The “typical dispersion” of 2% is ~ n™(2/4 while the “average dispersion”
of 2°() is ~ p(/2)/1(2); more examples are found in [285]. Coquet’s 1983 result is
discussed in [286] and a misprint is corrected. The sequence {0} U{c(n)}5°, is called
Stern’s diatomic sequence [287] and our final question is answered in [288]:

3\ 2(0)/ In(2) In(3)/1n(2)
limsup — ) _ ¥ ( ) Y 0.9588541908....

e MIN)/I) /B V5
Given a positive integer n, define s? to be the largest square not exceeding n.
Then define s3 to be the largest square not exceeding n — s?, and so forth. Hence
n= Z;Zl 532 for some r. We say that n is a greedy sum of distinct squares if s; > so >
. > s.. Let A(N) be the number of such integers n < N, plus one. Montgomery
& Vorhauer [289] proved tha