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OPTIONS REELLES ET OPTIONS EXOTIQUES, UNE APPROCHE PROBABILISTE 
 
Cet ouvrage se concentre sur la valorisation et la couverture d'options financières non traitées sur les marchés, les 
options réelles, qui servent à évaluer des décisions optimales d'investissement en capital pour des entreprises. 
L'existence pour une entreprise d'un projet d'investissement s'apparente en effet à la possession d'une option 
financière: l'entreprise possède l'option d'attendre le moment le plus favorable pour lancer son projet. Pour valoriser 
l'intérêt économique d'un projet, il convient alors de calculer la valeur de l'option d'investir. L'objectif de cette thèse 
est de montrer comment la théorie des options réelles peut bénéficier des apports des méthodes habituellement 
employées pour les options exotiques. 
A la différence de l'approche classique dans le domaine des options réelles, qui privilégie l'utilisation de techniques 
d'équations différentielles, nous proposons dans cette thèse d'évaluer des projets d'investissement en applicant des 
méthodes très probabilistes. Cette distinction de méthode permet non seulement de généraliser l'approche classique 
du problème, mais encore d'obtenir des résultats analytiques dans des situations ou une technique d'équation 
différentielle ne permettrait pas de résoudre le problème. Egalement, c'est un pont jeté entre la recherche 
académique en finance d'entreprise et la floraison de nouveaux résultats sur les options exotiques, très souvent 
obtenus par des approches probabilistes. 
Dans cette thèse, nous abordons spécifiquement des problèmes 
•= de valorisation de projets d'investissement sous certaines contraintes particulières : lorsqu'il existe un délai 

incompressible entre la prise de décision et sa mise en oeuvre, lorsqu'il existe une compétition entre deux 
acteurs économiques de caractéristiques différentes, et lorsque l'information sur le marché de l'entreprise est 
imparfaite. 

•= de couverture de ces projets d'investissement : comment couvrir des options réelles qui sont un peu complexes 
de la manière la plus efficace lorsqu'il existe des coûts de transaction sur les actifs financiers, et comment une 
nouvelle classe de produits dérivés qui s'apparentent aux options barrières permet de couvrir le risque lié à 
l'exercice des options réelles. 

•= de décision optimale d'investissement lorsque l'on peut manipuler le marché : un agent économique qui possède 
une information privilégiée sur la valeur d'une entreprise peut intervenir sur le marché afin de l'utiliser, et par la 
même occasion influencer la valeur des titres émis par l'entreprise. Quelle est sa stratégie optimale ? 

Les outils mathématiques utilisés sont surtout probabilistes, essentiellement la théorie des excursions, les temps 
locaux et le contrôle stochastique. Le principal souci est l'obtention de résultats analytiques, au détriment du 
développement de méthodes numériques. 
 
This work focuses on valuing and hedging financial options that are not traded, called real options, and that are used 
to assess corporations' optimal capital investment decisions. For a company, the existence of an investment project is 
similar to owning a financial option: the company possesses the option to wait for the most favorable time to launch 
its project. Assessing the economic attractiveness of a project therefore requires to value this option. Our objective is 
to show how real option theory can benefit from exotic options methods. 
Unlike the classical approach in real options, which favors using differential equations techniques, we propose to 
value investment projects with probabilistic methods. This distinction allows not only to generalize the approach, 
but also to obtain analytical results in cases when a differential equation approach would not prove tractable. Also, it 
relates a corporate finance research domain with the very flourishing field of exotic options, a field where most 
results are obtained through probabilistic tools. 
Specifically, we tackle 
•= the valuation of investment projects when there is a delay between the decision to invest and its actual 

implementation, when there is a competition between two economic agents with different delay-related 
constraints, and when the information available to the firm is noisy, 

•= the hedging of investment projects: how to hedge real options in the most efficient manner when there are 
transaction costs on the underlying assets, and how a new class of derivatives products that are related to barrier 
options allow to hedge the risk related to exercising real options 

•= the optimal investment decision of an agent who has an impact on the market. An economic agent possessing 
privileged information on a company can trade its stock with profit, while pushing the market price towards the 
price that reflects the information. What is the agent's optimal strategy? 

The mathematical tools used are essentially probability, the theory of excursions, local times, and stochastic control. 
We are especially interested in obtaining analytical results, rather than in finer modeling or developing numerical 
methods. 
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Chapter 1 INTRODUCTION
The study of probability has been historically linked to decision problems. Pascal’s
motivation in 1654 when he wrote his ”Adresse à l’Académie Parisienne” was
to assess the fairest repartition of the bets if a random game was interrupted.
Probability at its birth was closely associated with financial and economic issues.
In 1900 Bachelier in his ”Théorie de la Spéculation” provided a basis for Markovian
diffusion processes, that were to be rediscovered in 1933 by Kolmogorov. Finally,
Black, Merton and Scholes published in 1973 a series of fundamental papers where
they valued financial products by calculating the expectation of a function of a
Brownian Motion.

Since then, financial mathematics have become a flourishing branch of proba-
bility and mathematical analysis. Black, Merton and Scholes’s result allowed for
the development of new financial markets, inducing a significant need for research
in this field. Throughout the past 25 years, considerable resources were allocated
to adapting original models to new problems. It clearly appears that a symbiotic
evolution took place: markets develop and mature thanks in part to new models
and technical paradigms, which pushes financiers towards innovating and creating
new markets so that they can maintain profitability in the business, and these new
markets require new models.

A large majority of mathematical finance research has been carried out in
the field of financial derivatives. These products give their owners future income
streams that are a function (specified in advance) of other products’ value. These
other financial products are called the underlying of the derivative. From a math-
ematical perspective, the value of an underlying is modeled as a diffusion process,
and the value of the derivative is often the expectation, under a certain probability,
of a functional of this underlying process. Since 1973, the thorough study of the
Brownian Motion has allowed the valuation of more and more complex derivatives,
such as ”barrier options” that are related to hitting times, or ”mean options” re-
lated to exponential integrals of the Brownian Motion. Besides, accounting for
realistic market-related constraints required the intensive use of stochastic con-
trol, in particular of the notions of viscosity solution or optimal stopping. Market
”non-completion” problems (the fact there always exist a risk against which one
cannot be insured) have induced significant research on the existence of equivalent
probabilities, or on projections onto semi-martingale spaces.

Financial derivatives, which are traded on many markets with extremely high
volumes, can also be used to model micro-economic decisions. There is a simple
analogy: a company that wishes to invest in a project possesses the option to
wait for better conditions to implement this investment. This option is in fact
very much like a financial derivative, and its underlying consists of the economic
variables that will condition the future value of the project (such as the market
share, the value of the products sold or bought or the intensity of demand). This
option is a so-called ”real option” and its valuation is similar to that of financial
derivatives. The theory of real options was developed through the 1980s, benefiting
from the wide success of financial derivatives. Real options have been mentioned in
Business Week1. For managers, real options appear as superior to the traditional
method of discounting future cash flows so as to decide whether to invest or not.

1Coy, Peter, ”Exploiting Uncertainty: The ’Real Options’ Revolution in Decision-Making,”
Business Week, June 7, 1999, pp. 118-124.
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As written in Business Week,

”[By] boiling down all the possibilities for the future into a single sce-
nario, NPV [Net Present Value] doesn’t account for the ability of ex-
ecutives to react to new circumstances - for instance, spend a little up
front, see how things develop, then either cancel or go full speed ahead”

However, as much as the field of probability benefited from the new problems
posed by financial derivatives, the mathematical methods used to study real op-
tions were not demanding in terms of mathematical research. Real options being
from the start more related to corporate finance than market finance, most of the
research in their field has been performed on a more economic tradition. From a
technical perspective, it translates into a generalized use of differential equations,
rather than pure probabilistic tools. This work focuses on the frontier between ex-
otic options and the probabilistic methods associated to them on one side, and real
options on the other side. Unlike financial derivatives that are traded on various
markets, there is no limit to the complexity with which the decision to invest, or
the constraints under which this decision is made, can be modeled. Approaching
the problem from a probabilistic angle allows a greater freedom in modeling these
constraints, as we will see.

Our goal is to show how the analysis of real options can benefit from con-
cepts and methods that are usually employed for exotic options-related problems.
So as to exploit the relationships between real options, probability, and exotic
options, we will articulate our work as follows. The first part of this thesis fo-
cuses on the valuation of investment projects under different constraints by the
use of mathematical techniques usually applied to exotic derivatives. This part
comprises Chapters 2 through 5. The second part focuses on the hedging of the
risks related to investment decisions using financial options-related methods, and
comprises Chapters 6 to 8.

The second chapter introduces the technical aspects of basic real option analy-
sis from a probabilistic perspective. Then we proceed and study the effect, on
the value of an investment project, of the delay existing between the decision to
invest and its actual implementation. Numerous investment decisions are charac-
terized by significant implementation delays. These delays can be linked to the
search for an investment project, to the length of the decision process itself within
the company, or to the time necessary to gather funding. We show that these
implementation delays have an important impact on optimal investment decision
rules as well as on the investment projects value. We show in particular that this
loss of value can become negligible if the firm has the possibility to abandon the
project during its implementation. From a technical perspective, we calculate the
generating function of several stopping times related to the Brownian Motion. For
example, we need to consider the first instant when a Brownian Motion spends
continuously more than a given amount of time (the delay) above a barrier (the
threshold that triggers the investment decision). We derive the value of this option
for various exercise policies corresponding to different levels of freedom with re-
spect to the abandonment of the project and analyze its effects on the investment
policy of the firm. The mathematical results used in this Chapter are not new, but
our application to real options and delay modeling had not been derived before.

The third chapter discusses the mathematical methods that can be used to
study delay-related investment decision constraints. The probabilistic approach
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we propose allows an unequaled flexibility in specifying the various constraints
faced by investing firms or managers. Some results, as we will see, cannot be
reached using conventional analytical approaches. This chapter presents no fun-
damentally new mathematical result, but proposes a varied range of approaches to
the computations involved by stopping times related the Brownian Motion and its
excursions. Using mainly excursion theory, we show how to derive the generating
function of some stopping times related to the modeling of delays in investment
decisions. We show several proofs of the main result we used in Chapter 2 on the
first instant the Brownian Motion spends consecutive time above a barrier.

The fourth chapter focuses on the competition situation between two firms
interested in the same investment project, when they have different kind of con-
straints. The real option approach fits very well the monopolist case. However,
in a competitive case, the strategic behaviors of different firms is more complex
to account for. Some authors have already tackled this problem and studied the
preemption of investment projects in a real option framework. The aim of this
chapter is also to consider this question, but in the case where the competitors
have different constraints in terms of investment delay and flexibility: one firm
is large, the other is small. In our setting, the large firm suffers a delay in its
investment decisions, whereas the smaller firm’s decisions are instantaneously im-
plemented. Calculating the value of the investment project, depending on the level
of information available to each firm on its competitor, requires to study the first
instant when a Brownian Motion spends more than a given amount of time above
a certain level (that would model one firm’s investment, accounting for delay) or
hits another higher level (that would represent the other firm’s decision). We de-
rive the generating function of this stopping time and of other functionals by using
excursion theory. To our knowledge, this result is new.

The fifth chapter studies the investment decision when the information on the
underlying project is ”noisy”. When we look at empirical evidence, the option
premium detected in those models seems to have a great statistical significance.
However, most tests find that the option premium generated by the data is gen-
erally spread over and under the value generated by the models. In competitive
markets the winner’s curse can account for the undervaluation of the real option
models. Another reason for this undervaluation may be that many models de-
veloped so far are very simple and do not account for the investment projects
’embedded options such as the option to expand the investment size or the option
to abandon the project. We show in this paper that the noise in the informa-
tion available to the investor can account for their overvaluation. The revenues
associated with the exploitation of petroleum leases or mines is typically noisy
as the extraction rate or the amount of reserves are subject to large forecasting
errors. This chapter examines the effects of noise on investment decisions. We use
the computation of first passage times to derive closed-form formulas relating the
value of the investment opportunity to the noisy decision variable. Our setting for
the description of the noise is simple but brings out the generality of the idea. We
show that the value of real options, when we account for the noise, is lower than
the option value computed in the perfect forecast case. For reasonable parameter
values, our model can generate values for the investment opportunities very close
to that observed in reality.

The sixth chapter considers the hedging of derivatives, whether they are fi-
nancial derivatives or real options, using other financial derivatives. As there are
transaction costs, there is a balance between the frequency of transactions and
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the quality of a financial product as a good hedge. For many firms, especially in
the mining, oil, or commodities industries, the value of investment projects can
be determined with real option theory. In these cases, an important argument
underlying the valuation of projects is that the business risk, being linked to a
traded product, can be hedged. Real options in that case can be considered as
equivalent to complex options written on a commodity. In this paper, we address
the issue of hedging such options, and more generally hedging complex options,
using an optimal combination of underlying product and other derivatives written
on it. The optimal hedging basket should minimize transaction costs, which can
be important for derivatives, as well as for the underlying. There is a trade-off
between hedging with a derivative that replicates locally well the real option but
with a high transaction cost, or with the underlying at a lower transaction cost
but a higher frequency of rehedging. This chapter generalizes the result of Leland
(1985) to hedging strategies that use not only the underlying but all kinds of op-
tions. These hedging strategies are a generalization of static hedging. In addition,
the result is valid for all shapes of payoff, including path-dependent. Two cases
of hedging methods are studied. The first one, as in Leland, assumes rehedging
takes place at fixed time intervals. The second one supposes rehedging takes place
when the delta moves by more than a fixed proportion. The pricing of securities
in that frame can be done by solving a non-linear partial differential equation, and
optimal hedging strategies, using various kinds of options, can be found so as to
minimize transaction costs. The convergence result for the replication strategy is
shown in detail.

The seventh chapter introduces a new sort of financial derivatives, which we
christen ”switch options”. These products can hedge the risk related to the acqui-
sition or to the business risk of an investment project. We define Switch options
as path-dependent derivatives written on a single underlying that are activated
every time the underlying hits a barrier and deactivated every time it hits another
barrier. At maturity, if the option is activated, the holder receives a payoff that
is a function of the underlying at that time; if it is not activated, the payoff is a
different and lower function of the underlying’s price. The number of times such
an option can be activated and deactivated is not bounded. Unlike a standard
barrier option, the Switch option is never totally cancelled when the underlying
hits the barrier, as there is always a chance it will go back and hit the other bar-
rier. In this chapter we will first focus on the relationship between real options
and Switch options. We also price these options and compare them with standard
barrier options. The technical analysis makes use of the Brownian Meander, and
in particular we derive the joint law of the Brownian Meander and its maximum.

The eighth chapter focuses on the behavior of an informed investor. In this
chapter we address the issue of quantifying the incentive to invest or disinvest
from an equity investment to benefit from discrepancies between its real value
and its market price. There exists an ”insider option” for informed agents: the
option to arbitrage the market price based on privileged information about the
firm’s projects. The decision of when to invest or disinvest and how much is
indeed a real option based on market conditions. The exercise of such an option
entails an effect on market prices. In this chapter we study the optimal arbitrage
transactions an informed agent carries out and their influence on the market price.
We model the discrepancy between the market price and the real value, known
to the informed agent (maybe with some noise), and the impact on the market
price of the trading strategy that maximizes the agent’s wealth. The effect of a



15

transaction on the price of a security determines how much it costs to trade this
security, as well as the evolution of this price, which conditions future trading
gains. We focus on the particular case of a manager trading his company’s own
stock. An existing models for the impact of transactions on prices is extended
to the case of discrete transactions. It is derived from simple assumptions on
the behaviour of market participants. A probabilistic approach is proposed to
determine the optimal control applied to the market price by the informed agent.
Analytical solutions are derived to calculate the value of ”realigning the price” for
an informed market participant, and the properties of the controlled market price
are discussed.

Finally, the ninth chapter presents some concluding remarks.
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Chapter 2 DECISION DELAYS AND
EMBEDDED OPTIONS1

Since the early 80’s, advances in the real options literature have completely changed
the way we evaluate investment opportunities. As shown in this literature, firms
should not invest in projects which are expected to earn only the opportunity
cost of capital. Managers can make choices about the project’s characteristics and
this flexibility creates embedded options. These options add value to the project
and invalidate the traditional net present value (NPV) rule. Among them, we can
quote the option to defer the investment spending (McDonald and Siegel (1986)),
the option to abandon an active project (Majd and Myers (1990)), the option
to expand or to reduce the production capacity (Abel and Eberly (1996)) or the
option to choose the production technology (He and Pindyck (1992)).

Although this literature has made a great step toward a better understand-
ing of investment decisions, little research has focused on the practical side of the
investment spending. One of the major characteristics of the capital budgeting
process is the delay existing between the investment decision and its implementa-
tion. This implementation delay is generally associated with the decision process
within the firm or the gathering of the financing funds necessary to undertake the
investment spending. Harris and Raviv (1996), citing Taggart (1987), assert that
projects are generally initiated from the bottom up, suggesting a centralization
of the capital allocation process. Depending on the nature and the size of the
investment, projects that have been approved at the division level may have to be
submitted to headquarters. Although all these intermediary steps take time, this
point has been ignored without exception in the real options literature whereas
it can have important consequences. Depending on the evolution of the decision
variable during this implementation lag, the investment opportunity may have lost
part of its attractiveness.

Beyond the analysis of the effects of capital budgeting practices within firms,
typical applications of our model include the services offered by specialized invest-
ment funds or the cost of the recourse to outside financing. For large projects
it often takes considerable time to gather all the financing funds as the decision
process within the institutions involved can be highly time consuming. For ex-
ample, the time necessary to gather investors for a closed-end investment fund
typically reaches one year during which the economic and market conditions can
completely change. The type of financing funds may have an impact over the
investment policy of firms as they condition the availability of the option to aban-
don investment opportunities during the implementation delay. The use of outside
funds, which typically destroys such options for reputation concerns in a classic
manager-investor conflict as described in Jensen and Meckling (1976), reduces the
value of the investment opportunity. There is nevertheless room for negotiation:
if funds are raised externally the firm can pay the right to cancel the investment
process, depending on the evolution of the decision variable. In the same way, the
services offered by specialized investment funds constitute a typical application of
these options. Investment opportunities on emerging markets can take time to be

1THE ORIGINAL VERSION OF THIS CHAPTER WAS CO-WRITTEN WITH ERWAN
MORELLEC AND IS TO APPEAR IN REAL OPTIONS AND INVESTMENT UNDER UN-
CERTAINTY, EDS. E. SCHWARTZ AND L. TRIGEORGIS, MIT PRESS.
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realized and an investment specialist can reduce the delay between the investment
decision and its real implementation by providing a dedicated vehicle. The best
example in that case is an open-ended fund. The price to pay for the immediacy
of the opportunity is reflected in the bid-ask spread for the fund as opposed to a
closed-end investment which prevents the early withdrawal of funds.

This paper analyses in a single unifying framework the valuation and behavioral
consequences of the real options’ implementation delay. We use the computation
of first passage times2 to derive closed-form formulas relating the value of the in-
vestment opportunity and the investment threshold to the size of the delay. We
find that the implementation delay can reduce the value of the investment oppor-
tunity by a large amount when there are no ”minimum profitability requirements”
once the investment decision has been taken. This result shows that the delay
creates by itself the embedded option to abandon the investment project during
its implementation should the decision variable evolve unfavorably. If the option
is readily available, its value equals the increase in expected payoffs it permits.
When the availability of this option depends on outside parties, its value consti-
tutes the maximum price at which the agent holding the investment opportunity
will be willing to negotiate it.

Using this general valuation framework, we compute the value of this option
under alternative exercise policies corresponding to different minimum profitabil-
ity requirements during the implementation period. We show that profitability
requirements generate a higher project value only if they apply to the whole im-
plementation lag. Minimum profitability requirements at the implementation date
do not increase the welfare of investors when the investment decision is taken op-
timally. Therefore, it is not optimal for the headquarters of a firm to force the
operational division to invest only if the decision variable is above a new cutoff
level at the end of the implementation delay. In the same way, there is no interest
for the investing firm to negotiate with its partners a covenant allowing for its
withdrawal from the project when all the financing funds are gathered. On the
contrary we find that ”American” abandonment options increase the value of the
investment project. Considering the difficulty of writing and enforcing contracts,
we derive a so called ”Parisian3” abandonment rule that can be implemented at a
low writing cost on the contrary to the value maximizing abandonment rule.

In the following section, we review the traditional approach where there is no
implementation delay and the value of an investment opportunity is the solution
to a free boundary problem similar to that of an American financial option. In
section two, we use a general valuation framework to describe the effects of the
implementation delay on investment decisions. Section three provides the optimal
value of the investment opportunity under various abandonment policies associated
with this implementation delay. Section four concludes the paper and presents
possible extensions.

2First passage times have already been used in the paper by Mauer and Ott (1995) in order
to compute the mean replacement time of corporate assets. To our knowledge, our paper is the
first that makes a systematic use of them. This singularity is due to the difficulty associated with
the resolution of highly non linear ODE.

3See Chapter 3 and/or Chesney, Jeanblanc and Yor (1997) for a detailed presentation of
Parisian options.
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The traditional approach

We study the investment decision of a firm in a stochastic environment. At any
time t the firm can invest in a project yielding an operating profit that depends
on a decision variable (St, t ≥ 0) ruled by the diffusion process½

dSt = St (µdt+ σdZt)
S0 = x

(2.1)

where µ and σ are constant and (Zt, t ≥ 0) is a Brownian motion defined on a
filtered probability space

³
Ω,F , (Ft)t≥0 ,P

´
4. Ft represents the information avail-

able at time t.
The literature on real options describes the investment decisions of firm thanks

to two technics closely related to each other: dynamic programming and contin-
gent claims analysis. These technics essentially differ about the assumptions they
involve concerning investors, the financial markets and the discount rates used by
investors. Due to these differences, the results they yield are similar although not
identical5.

One common characteristic of these models is the implicit assumption that
actions are taken instantaneously: the project is started as soon as the investor
has decided to invest. Using the stationary property and the Markovian property
of the cash flows generated by the project, traditional real options models consider
that the investment starts as soon as the decision variable (St, t ≥ 0) hits some
constant optimal level6.

The first valuation method used in the real options literature amounts to find-
ing the optimization program of an investor through dynamic programming argu-
ments. This investor is generally risk neutral and has rational expectations. He
maximizes the present value of the cash flow generated by the investment through
an appropriate timing of the investment decision. Let us denote V (St, t) the value
of the investment project, f (St, t) the bounded monotonic profit flow function,
c+ (respectively c−) the investment cost for a positive (respectively negative) in-
vestment, and ρ the investor’s required rate of return i.e. the opportunity cost of
capital7. The maximization program of this investor over an infinite time horizon
can be written

V (x, t) = max
{h∗,l∗}

E
½Z +∞

0
e−ρs

¡
f
¡
Sx,ts , s

¢
ds− c+dPt+s + c−dNt+s

¢¾
where Pt (Nt) is a non-decreasing (non-decreasing) function of time representing
the cumulation of positive (negative) investment spending up to time t, and (h∗, l∗)
is the pair of values of the underlying variable corresponding to optimal investment
decisions. The Bellman equation associated with this optimization problem in the
continuation region is8

1

dt
E [dV (St, t)] + f (St, t) = ρV (St, t) for St ∈ ]l∗, h∗[ (2.2)

4 (Ft, t ≥ 0) is the filtration generated by the Brownian motion
5See Harchaoui and Lasserre (1995).
6Dixit and Pyndick (1994) provide a detailed presentation of this principle.
7 If the investor discounts all its future cash flows at a constant rate ρ then we must

have ρ > µ for the expected present value of the payoffs generated by the project,
E
©R∞

t
exp (−ρ (u− t))Sudu/Ft

ª
, to be finite at any time t, t ≥ 0 when f is the identity.

8See Duffie (1988) chapter 23 or Dixit and Pindyck (1994) chapter 4.
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subject to familiar value-matching and smooth-pasting conditions9 at S = h∗ and
S = l∗. The LHS of this equation is the expected return on the investment project
whereas the RHS is the investor’s required return. The solution of this equation
yields the optimal investment thresholds h∗ and l∗ and the value of the investment
opportunity.

The other valuation method relies on an analogy between real and financial
investment decisions. The firm has an option to invest in a project and the value of
this option can be found thanks to the usual contingent claim valuation framework.
By an application of Theorem 3 of Cox, Ingersoll and Ross (1985), the value of
the investment opportunity satisfies the following fundamental valuation equation

rV (St, t) =
1

2dt
VSS (St, t) d hS,Sit +

1

dt
VS (St, t) (E [dSt]− λ (St, t) dt) + f (St, t)

where r is the continuously compound risk-free interest rate and E [dSt]−λ (St, t)
is the risk adjusted 10 drift of the underlying variable (St, t ≥ 0). In order to find
λ (St, t) capital markets must be complete: there must exist an asset or a dynamic
portfolio of assets spanning the stochastic changes in the value function V (St, t).
The solution of this equation11 gives the value of the investment opportunity and
the optimal exercise boundary of this option 12. Note that if the investment is
perpetual and if f is independent of time, then the value function does not depend
on time. In this case, the partial differential equation above becomes an ordinary
differential equation.

General model of delayed investment decisions

In this subsection, we build a general valuation framework for the value of the
investment opportunity when there is a delay between the investment decision and
its implementation. Our analysis significantly differs from the ”time to build”13

literature as our implementation delay accounts for the lag existing between the
decision to invest and the spending of the first dollar by the firm, not for the speed
at which production facilities can be built.

As mentioned earlier, the implementation delay can be due to the research of an
investment opportunity on an emerging market, to the capital budgeting process
within the firm or to the time spent gathering the financing funds. Although
our model applies to a wide range of implementation delays, we will emphasize
in the following section the role of the capital budgeting process in altering the
value of the investment opportunity. In order to keep the presentation simple,
we will take the simplest environment possible. As in Harris and Raviv (1996),
our firm is composed of headquarters and a single division14. The investment
decision is initiated by the division manager but he must obtain capital from the

9When the optimization program is strictly concave, i.e. when the indirect expected discounted
payoff V (., .) is strictly concave, the boundary conditions ensuring that we are along the optimal
path are called high-contact conditions and involve second order derivatives. See Dumas (1991)
for a good exposition of value-matching, smooth-pasting and high-contact conditions.
10λ (St, .) is the risk premium associated with (St, t ≥ 0).
11The boundary conditions used to solve this equation are the same than those used to solve

equation (2).
12When investment is reversible there are two exercise boundaries, one for investment and one

for disinvestment.
13 In this literature each dollar invested in the investment opportunity gives the firm the option

to spend another dollar in the project. See for example Majd and Pindyck (1987).
14Considering that the implementation delay reduces the value of the investment opportunity,

the division would probably do better of as a stand alone entity. We do not address this issue
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headquarters. This decentralization of the investment decision is due to the specific
human capital of the division manager. We assume that he has no incentive to
misrepresent his information but that the information transfer within the firm
and the decisions concerning the capital allocation take time. We will focus on
discretionary investments for which there is generally such a bottom up process.

In our setting agents are risk neutral and the firm has an investment oppor-
tunity in a non-traded asset yielding stochastic returns. Markets are incomplete
in the sense that it is impossible to buy an asset or a dynamic portfolio of assets
spanning the stochastic changes in the value of the project. There is no futures
market either for the decision variable or the size of the investment project pre-
vents the firm from taking a position on such a market. Moreover, we consider
that the project, once installed, goes on producing output forever15.

We will be interested in the value of the investment opportunity when the
profit function associated with an active project has the following special form16

f (x) = ψxγ where γ > 0 and ψ does not depend on x. We denote F (St,∞) the
expected present value of future profits when the investment spending is realized
at time t i.e.

F (St,∞) =
Z ∞

t
dse−ρ(s−t)ESt [f (Ss)] = ∆S

γ
t

with

∆ =
ψ£

ρ− γ ¡µ+ 1
2σ
2 (γ − 1)¢¤

The Markovian features of the standard model and the stationary property of
the distribution of the payoffs generated by the active project imply that the value
of the investment project depends on time only through the time dependence of the
decision variable (St, t ≥ 0). Consequently, the investment decision will occur at
the first instant when this variable hits some constant optimal investment threshold
h∗.

Let us define for an arbitrary investment boundary h the stopping time Th (S)
by

Th (S) = inf {s ≥ 0, Ss = h}
When we take a delay-related constraint into account, the investment is realized
at a parameterized stopping time θ (St − STh , t ≥ Th) independent of Th (S) and of
(St, t ≤ Th (S)) such that the level of the decision variable at time θ is independent
of θ and Th (S); in other words Sθ is independent from θ and Th. This time can be
viewed as a general constraint. It can be a fixed time or any time that conditions

as in most economic organizations the capital allocation is centralized as in our analysis (see
for example Ross (1986)). The paper by Harris and Raviv provides a rationale for this capital
budgeting process relying on information and incentive problems within firms.
15Standard justifications of the assumption of irreversibility rely on the lemons problem or

capital specificity of the assets in place (see for example Abel and alii (1995)). The irreversibility
assumption is very realistic for economic activities which are highly capital intensive such as
mining projects or offshore petroleum leases. Indeed for such activities, it is unusual to observe
temporary shut down or capacity reduction. Dias (1997) remarks ”This kind of investment has a
high degree of irreversibility. For example, the drilling of a well is completely irreversible [...]”.
16The analysis could easily be extended to other specifications for the profit function. Never-

theless, this specification is general enough to allow us to treat most of the traditional financial
or economic applications. For example, f(Rt,Kt) = ψRγtK

1−γ
t where Rt represents the level of

a demand shock and Kt is the production capacity at time t can account for a firm with a CRS
Cobb-Douglas production function facing an isoelastic demand curve (this kind of specification
can be found in Abel and Eberly (1996) or Dixit (1991)).
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the implementation of the investment spending. We require that θ be independent
from Sθ to simplify the calculations.

If we denote Ce the direct investment cost, the value of the investment project
for S0 < h is given by17

V (S0, h,∆, Ce, θ) = ES0
·Z ∞

0
dte−ρtf (St) It≥θ

¸
−CeES0

h
e−ρθ

i
where the first term of the RHS is the present value of expected profits generated
by the investment project and Ce isd the direct investment cost. Using the inde-
pendence between (St+θ − Sθ, t ≥ 0) and (St, t ≤ θ), we can write the value of the
investment opportunity as

V (S0, h,∆, Ce, θ) = ES0
h
e−ρθ (F (Sθ,∞)−Ce)

i
by the Strong Markov Property. Now, let us write θ = (θ − Th) + Th. Thanks to
the independence before and after Th and standard results concerning first passage
times18 , we get

V (S0, h,∆, Ce, θ) = ES0
h
e−ρθ∆Sγθ

i
−CeES0

h
e−ρθ

i
= ES0

£
∆Sγθ

¤
ES0

£
e−ρTh

¤
Eh
h
e−ρ(θ−Th)

i
−CeES0

£
e−ρTh

¤
Eh
h
e−ρ(θ−Th)

i
=

µ
S0
h

¶ξ1
A (θ) (∆hγB (θ)−Ce) (2.3)

with ξ1 =
1
2− µ

σ2
+
q

2ρ
σ2
+
¡
1
2 − µ

σ2

¢2, A (θ) = Eh £e−ρ(θ−Th)¤ andB (θ) = Eh h³Sθh ´γi.
A (θ) is the discounting factor associated with the implementation lag while B (θ)
accounts for the exponential of the change in the expected operating profit due to
the path of the decision variable during this delay.

Using equation 2.3, we can write

V (S0, h,∆, Ce, θ) = V (S0, h,∆A (θ)B (θ) , CeA (θ) , 0) (2.4)

The value of the investment opportunity, for a given investment barrier h, can
be expressed as the value of the investment opportunity with no delay and modi-
fied parameters. Straightforward calculations give us the optimal barrier and the
optimal value of the investment opportunity.

Proposition 1 When there is an implementation delay and the instantaneous
profit function associated with an active project is f (x) = ψxγ, then the value of
the investment opportunity and the optimal investment threshold are respectively
given by

V (S0,∆, Ce, θ) = A (θ)B (θ)
ξ1
γ γS

ξ1
0

µ
Ce

ξ1 − γ
¶γ−ξ1

γ
µ
∆

ξ1

¶ξ1
γ

(2.5)

and

h∗ (∆, Ce, θ) =
µ

ξ1
(ξ1 − γ)∆

Ce

¶ 1
γ

(B (θ))−
1
γ .

17Hereafter, we write Th for Th (S) and θ for θ (S).
18For an heuristic presentation of these results see Dixit and Pindyck (1994) pp.316. A rigorous

proof can be found in Karatzas and Shreve (1991) pp.196.
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From 2.5 we can easily obtain the ratio of the value of the investment oppor-
tunities at their respective optima with a delay to that with no delay as

r (θ) = A (θ)B (θ)
ξ1
γ = Eh∗

h
e−ρ(θ−Th)

iµ
Eh∗

·µ
Sθ
h∗

¶γ¸¶ ξ1
γ

(2.6)

This ratio allows an easy comparison among different constraints over the imple-
mentation period. It appears that the ratio combines two effects: the earlier the
investment time is, the greater the ratio. But on the other hand, the lower the
level of S at that time, and the smaller the ratio.

In the following section we show that the implementation delay has a signif-
icant impact on the value of investment opportunities. We provide alternative
investment rules so as to minimize the associated value reduction.

Implementation delay and embedded options

We have seen in the previous section that any investment opportunity with an
implementation delay can be valued according to equation 2.5 from proposition
1. We now turn to specific applications concerning the abandonment option asso-
ciated with the implementation lag. Although we do not focus on this aspect of
investment decisions, the availability of the abandonment option depends on the
type of financing funds used by the holder of the investment project. Indeed, if
the project is financed internally, then this option always exists and we will see
that, depending on the exercise policy followed, it can be interpreted in terms of
profitability requirements. On the contrary, the use of external funds links the
manager to outside investors and for reputation concerns associated with the clas-
sic manager-investors conflict described by Jensen and Meckling (1976), he may
be forced to invest in this investment project. This phenomenon underlines a new
type of financing costs whose magnitude depends on the type of funds used and
the liquidity of the financing markets.

With respect to the abandonment of the project, various type of options can
be considered19. All of these options can be interpreted in terms of profitability
requirement by the headquarters or the operational division. The most obvious
one is a European abandonment option giving the investor the right to leave the
project at time θ should the decision variable evolve unfavorably. Alternatives
are to give him the option to cancel the whole thing during the interval [Th, θ] if
the decision variable falls beneath some prespecified level. We will see American
options allow the investing firm to get a higher expected payoff from the project
whereas the European abandonment option is valueless.

Implementation delay with no exit option:
Let us consider first the case where the delay is a fixed time d and the operational
manager invests at time Th (S)+ d whatever the evolution of the decision variable
during the time interval [Th (S) , Th (S) + d] (in this case θ = d+ Th). This simple
case gives us the value reduction associated with the implementation lag when there
is no abandonment option. In this application, neither the operational division nor
the headquarters have any profitability requirement once the investment decision
as been taken optimally at Th (S). The delay with no exit option is illustrated in
Figure 1 on p. 24.

19The extensive proofs of the results given in this section are given in Chapter 3.
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Figure 1 Implementation Delay and no Exit Option
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Straightforward calculations give

A (θ) = e−ρd

B (θ) = e
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and the optimal investment boundary is

h∗ (∆, Ce, d) = e
−d
³
µ−σ2

2
(1−γ)

´
h∗ (∆, Ce, 0)

This investment boundary is strictly lower than h∗ (∆, Ce, 0) when γ > 0 if we
assume µ ≥ σ2

2 . When there is an implementation delay, investors anticipate in-
vestment decisions by choosing an investment threshold lower than in the standard
analysis. If we had µ ≤ σ2

2 , then we would expect to find a higher threshold.
Using equation 2.6, we see that the ratio of the value of the investment oppor-

tunity with delay to that with no delay is

r (θ) = exp

½
dξ1

µ
µ+

σ2 (γ − 1)
2

− ρ

ξ1

¶¾
.

Numerical simulations reveal that the implementation delay has an impact on
the value of the investment opportunity. with reasonable parameters20 , we find
that the ratio is about 94%. By changing the drift µ and increasing it to 5%,
the ratio jumps to 98%. This illustrates how the delay can hurt the value of the
investment if the state variable does not tend to increase significantly over the
waiting period on average. The associated value reduction is due to the discount-
ing of the investment NPV from Th to Th + d and to the dependence of the value
of the project on the evolution of the decision variable during the implementation

20d = 1; ρ = 0.075; µ = 0.01; σ = 0.20; γ = 0.7
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period. The agent in charge with the investment decision does not benefit from
the opportunity to abandon the project during the implementation lag. Further-
more, since markets are incomplete, it is impossible for the firm to suppress the
uncertainty concerning the evolution of the value of the decision variable during
this period of time. Therefore, the value of the investment opportunity depends
on the evolution of the decision variable21 over the time interval [Th, Th + θ].

One can show that the value reduction due to the implementation delay is
increasing as a function of the opportunity cost of capital for reasonable parameter
values. As capital gets more costly, the effect of the discounting factor associated
with the implementation period and the uncertainty concerning the profitability
of the project weight more on the value of the investment opportunity.

European abandonment option
This application accounts for the case of an investment decision taken at division
level that has to be approved by the headquarters. If the approval arrives d units of
time after the submittance, then the operational manager invests only if the state
variable is above a new cutoff level h0. The headquarters have no own profitability
requirements during the implementation lag and the approval is based on the
strategical merits of the project (new line of business, expanded markets). On the
contrary, there are profitability requirements when the operational manager is in
charge with the decision i.e. at times Th and Th + d.

The variable θ, that is the time when the investment is decided, is here the
first instant when d units of time after having hit h, the state variable is above h0,
such that if it is not over h0, one has to wait until the process hits h again before
re-waiting until it hits h again, and so on. Optimally, h0 is obviously expected to
be lower than h. Using the definitions from Chapter 3, we have θ = νh

0,h
d (S) . In

Chapter 3, we show that S
νh

0,h
d

is independent of νh
0,h
d (S) . The European imple-

mentation delay is shown in Figure 2 on p. 26.
Chapter 3 formally defines this stopping time and provides the tools to compute

the law of this stopping time. Using Proposition 4 on p. 39, we get

A (θ) =

e−ρd
µ
1−N

µ
b
√
d+ ln

³
h0
h

´³
σ
√
d
´−1¶¶

1−N
µ
−p(2ρ+ b2)d+ ln ¡h0h ¢ ³σ√d´−1¶

B (θ) = e
dγ
³
µ−σ2

2
(1−γ)

´ 1−N
µ
(b+ γσ)

√
d+ ln

³
h0
h

´³
σ
√
d
´−1¶

1−N
µ
−b√d+ ln ¡h0h ¢ ³σ√d´−1¶ .

where N is the Standard Normal cumulative distribution function

N (x) = 1√
2π

Z x

−∞
e−

t2

2 dt, x ∈ R

and b =
µ−σ2

2
σ . We can find the ratio of the optimal value of the investment project

with European abandonment option to the value of the investment project with
21The mean change in the decision variable during the implementation delay is given by

e
γd

µ
µ−σ2

2 (1−γ)
¶
which is larger than one. Nevertheless, as the real path followed by the stochas-

tic process ruling the evolution of this variable can be unfavorable to the firm, the abandonment
options are not valueless.
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Figure 2 Implementation Delay with European Exit Option
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Numerical results show that this ratio is decreasing in h0/h. The European
abandonment option will always be exercised as we have h0/h = 0 at the optimum.
When the manager holds a European abandonment option, the value of waiting
to invest at the maturity of this security (i.e. at the implementation date) is lower
than the benefits of investing directly. Postponing the investment spending would
lower the value of the profits generated by the investment project by an amount
larger than an immediate exercise at Th + d would. Table 2.1 on p. 27 shows
numerical results with the same parameters as in the preceding example.

As the European abandonment option is valueless, it is not optimal for the
headquarters, once they have approved the project on its strategical merits, to
have any profitability requirement at Th + d if the investment decision has been
taken optimally at Th. In the same way, their is no interest for the firm to negotiate
with external investors the availability of this exit option at the end of the gathering
of the funds when the investment project requires external financing.

The Parisian abandonment option
We give here the value of the investment opportunity when the manager invests
at θ only if the decision variable reaches a prespecified level and remains above
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h0
h r (θ) =European exit option

Value with no delay
0.0 . 93595

0.1 . 93595

0.2 . 93595

0.3 . 93595

0.4 . 93595

0.5 . 93595

0.6 . 9310

h0
h r (θ) =European exit option

Value with no delay
0.7 . 90732

0.8 . 85047

0.9 . 76597

1.0 . 67133

1.1 . 58042

1.2 . 49971

1.3 . 43073

Table 2.1 Valuation of the European Entry Option
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Figure 3 Implementation Delay with Parisian Option

this level for a time interval longer than a fixed amount of time (the window)
without going back down. In this application, the time window is equal to the
implementation delay and the prespecified level is set at an optimal value, the best
investment threshold h∗. The decision triggering criterium is a so-called Parisian
stopping time depending on the size of excursions of the state variable over the
optimal investment threshold. We have θ = H+

h,d (S), where H
+
h,d (S) is defined

below. The Parisian abandonment option is represented graphically in Figure 3
on p. 27.

This investment criterion reflects the will of the investing firm (the headquarters
and the operational division) to check that the market conditions remain favorable
during the implementation lag. The firm has profitability requirements which are
constant over time i.e. the level of the state variable has to stay above some
constant cutoff level during the whole implementation lag. Intuitively, this cutoff
level will be lower than the investment boundary of the standard case without
implementation lag22.

22Note that this Parisian investment criterion is not absolutely optimal. It only uses one degree
of freedom, that is the level of the barrier.
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In order to find the value of the investment opportunity under the Parisian
investment policy, we define the following random variables, all linked to a random
process X:

gat (X) = sup {s ≤ t : Xs = a}
H+
a,d (X) = inf {t ≥ 0 : (t− gat (X)) ≥ d,Xt ≥ a} .

gat (X) represents the last time the process X crossed the level a. It can be checked
it is not a stopping time for the Brownian filtration Ft, but for the slow filtration
G = (σ (sgn (Bt)) ∨Fgt)t≥0 which represents the information on the Brownian
motion until its last zero plus the knowledge of its sign after this23. H+

h,d (X) is
therefore the first instant when the process has spent d units of time consecutively
over the level a.

Using the above notations, the Parisian investment policy is described by the
stopping time H+

h,d (S). In this case, the value of the investment opportunity can
be written

V P (S0, h, d,Ce) = ES0
h
e−ρH

+
h,d(S)

³
F
³
SH+

h,d(S)
,∞
´
−Ce

´i
The Parisian criterion allows for two degrees of freedom: the barrier h and the

”time window” d, which we naturally choose as the minimal implementation delay.
Following the approach we outlined for the general model, we write for S0 < h,

the value of the investment project as

VP (S0, h,∆, Ce, d) = ES0
·Z ∞

0
dte−ρtf (St) It≥H+

h,d(S)

¸
−CeES0

h
e−ρH

+
h,d(S)

i
Using the independence of the index paths after and before H+

h,d (S), we can write
the value of the investment opportunity as

VP (S0, h,∆, Ce, d) = ES0
h
e−ρH

+
h,d(S)

³
F
³
SH+

h,d(S)
,∞
´
−Ce

´i
Writing St = S0 exp

¡
σZbt

¢
where Zbt = Bt + bt and b =

µ−σ2

2
σ , we have

VP (S0, h,∆, Ce, d) = ES0
·
e−ρH

+
a,d(Z

b)
µ
F

µ
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µ
σZb

H+
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¶
,∞
¶
−Ce

¶¸
with a = 1

σ ln
³
h
S0

´
. Thanks to the equality in law betweenH+
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¡
Zb
¢
andH+

0,d

¡
Zb
¢
+

T a
³¡
Zb
¢0´
, for two independent copies Zb and

¡
Zb
¢0
, and thanks to the indepen-

dence between
¡
Zbt , t ≤ T a

¢
and

¡
Zbt , t ≥ T a

¢
we get

VP (S0, h,∆, Ce, d) = ES0
·
e−ρH

+
a,d(Z

b)
µ
F

µ
h exp

µ
σZb

H+
0,d(Zb)

¶
,∞
¶
−Ce

¶¸
Using the approach for the general model outlined in section 2 we have

VP (S0, h,∆, Ce, d) =

µ
S0
h

¶ξ1
ES0

h
e−ρH

+
0,d(Z

b)
i

×
³
E
h
F
³
h exp

³
σ
³
bd+m1

√
d
´´
,∞
´i
−Ce

´
.

23For details see Azéma and Yor (1989).
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d r (θ) Parisian r (θ) No exit
0.0 1.0 1.0
0.25 . 99931 . 98359

0.50 . 99333 . 96745

0.75 . 98464 . 95157

1.0 . 97415 . 93595

d r (θ) Parisian r (θ) No exit
1.5 . 94968 . 90548

2.0 . 92237 . 87601

3.0 . 86401 . 8199

10.0 . 50804 . 51587

Table 2.2 Valuation of the Parisian Entry Option

where m1 is the Brownian meander taken at time 1. The difficulty in the above
expression is to calculate the Laplace transform of the Parisian time H+

0,d

¡
Zb
¢
.

Thanks to the results of Chesney, Jeanblanc and Yor (1997) on Parisian options,
we are able to directly write this value. The law of BH+

0,d
was also derived in

Chesney, Jeanblanc and Yor (1997) and is given in Chapter 3. Using theorem 7
on p.43 (taken from Chesney, Jeanblanc and Yor (1997)) and after straightforward
simplifications, we finally have

VP (S0, h,∆, Ce, d) =

µ
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h

¶ξ1 Φ
³
b
√
d
´
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³p

d (2r + b2)
´
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³
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√
d
´

Φ
³
b
√
d
´ −Ce

 .
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Φ (x) =
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z exp

µ
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2
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¶
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√
2πxe−

x2

2 N (x) .

This can also be written as

A (θ) =
Φ
³
b
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d
´

Φ
³p

d (2ρ+ b2)
´

B (θ) =
Φ
³
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³
b
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d
´ .

The ratio of the value of the Parisian investment opportunity with respect to
the investment opportunity with no delay, at their respective optima, is

r (θ) =
Φ
³
b
√
d
´

Φ
³p

d (2ρ+ b2)
´
Φ

³
(σγ + b)

√
d
´

³
Φ
³
b
√
d
´´


ξ1
γ

.

We can compare the value of the investment project with no delay, with a
delay and no exit option (or a European option), and with a delay and a Parisian
investmen criterion, see Table 2.2 on p. 29. We use the same parameters as in the
preceding examples.

The value of the investment opportunity is shown to be higher when the in-
vestor has the opportunity to choose the Parisian investment criterion than in the
standard case, for reasonable parameter values. This investment policy gives the
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investor the option to give up its investment opportunity if the decision variable
goes below a prespecified level hP during the implementation of the investment
spending. This option is freely obtained when the firm uses internal funds to fi-
nance its investment opportunity. Therefore, the cost of outside funds is higher
than traditionally assumed as they often prevent the management from exercising
such embedded options. The value of the Parisian option gives us the maximum
price that the firm will be willing to pay for this option to be available during the
gathering of outside financing funds.

Numerical imulations indicate that when the delay becomes very long, it be-
comes better to follow the European criterion, and invest as soon as the delay is
expired. This leaves indeed a positive value for the project, while the Parisian
criterion forces the investor to delay the investment too much: it becomes less and
less likely that the state variable will spend consecutively a long period of time
above the threshold.

When the investing firm holds a Parisian abandonment option, the optimal
investment boundary is given by

hP (∆, Ce, d) = h
∗ (∆, Ce, 0)

 Φ
³
b
√
d
´

Φ
³
(σγ + b)

√
d
´


1
γ

Since Φ (.) is a strictly increasing function, the investment boundary is lower than
in the standard case with no implementation delay for γ > 0. One can notice that
when d = 0, we find back the results associated with the standard case. Moreover,
the larger the implementation lag, the lower the optimal investment barrier is and
the lower the hurdle rate used by the firm. Note that if γ = 1, then the optimal
barrier hP in the Parisian case is lower with respect to the non-delayed case by a
factor that corresponds to how higher the state variable should be at the time of
investment. On average, the investment decision will intervene at the same level
as in the non-delayed case.

This investment criterion provides the value of the decision variable under
which their will be no investment. According to this model there exists a value
of waiting to invest but the real investment threshold and the option premium
can vary according to the basic parameters and the shape of the excursion of the
decision variable over the barrier. The value of the decision variable for which
investment will occur and the value of the option premium can therefore be over
or under the standard ones. This phenomenon has recently been stressed by the
empirical evidence concerning real options (see Quigg (1993)).

American abandonment option with an exponential exercise barrier
When we look at standard results concerning American options, it is clear that the
optimal exercise barrier exhibits some time dependence. Therefore, the Parisian
criterion is not absolutely optimal as for the corresponding option the abandon-
ment barrier is constant through time. Indeed, if for example the state variable
goes back under the barrier just one day before the end of the implementation, it
would not be optimal to cancel it. As a matter of fact, there exists a time depen-
dence of the optimal abandonment level to how much time the firm has spent in
the implementation of its investment decision.

In this section, we give the value of the investment opportunity if the man-
ager invests at θ only if the decision variable remains above an early abandonment
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Figure 4 Implementation Delay with Exponential Exercise of the Exit Option

boundary depending on time during the implementation delay. In this case the
headquarters take into account the cost of postponing once again the investment
spending and have a decreasing minimum profitability requirement during the
whole implementation lag. This case is a generalization of the Parisian criterion;
the approach here is indeed ”Parisian in concept”, though the mathematical tech-
nique used is quite different. We have θ = ηg,hd , where ηg,hd is formally defined in
Chapter 3. The exponential exit option exercise is graphed in Figure 4 on p. 31.

Following Omberg (1987), we approximate the early exercise boundary of the
American abandonment option by an exponential function which is given the fol-
lowing form g (t) = he−σ(ε+βt) where ² and β are positive real numbers. ² > 0
implies that there is an initial jump in the abandonment barrier while β takes into
account the time dependence of this boundary.

Proposition 5 on p. 40 gives the value of the coefficients A (θ) and B (θ) when
the manager follows this exercise policy, with y (t) = −ε− βt. We have
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³
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η
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¸

and for all positive λ and positive α
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√
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2πt3
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The optimal investment boundary can be obtained by the maximization of the
value of the investment opportunity with respect to h, ² and β. We show in
Chapter 3 how E

h
e−λη

y,0
d

i
converges towards the Parisian time, that is how

lim
ε→0E

h
e−λη

y,0
d

i
= E

h
e−λH

+
0,d

i
with β = 0, which justifies the claim that this abandonment time generalizes the
Parisian time.

Numerical simulations indicate that the abandonment option with exponential
exercise barrier has a larger value than the Parisian abandonment option. This is
what was expected as we have now three degrees of freedom h, ² and β instead
of one. This stresses that there exists indeed a time dependence of the optimal
abandonment level to the time already spent in the approval stage or to how long
the firm has been consecutively gathering investors.

Concluding remarks

This chapter provides a general valuation framework for investment opportunities
relying on the computation of first passage times. We show that the delay existing
between the investment decision and its implementation has important valuation
consequences. In particular, when the investing firm has no profitability require-
ment once the investment decision has been taken, the value of the investment
opportunity can be reduced by almost 10%.

Although we focused on the capital budgeting process within the firm, the
analysis can be readily extended to other applications. In particular the various
types of options considered can constitute the basis for covenants in the contracts
linking the investing firm to outside parties. The firm can negotiate the right with
external investors to cancel the whole investment process if the evolution of the
state variable is unfavorable. In the same way, these options can enter in contracts
concerning the services offered by specialized investment funds.

We have shown that there is no interest in negotiating a covenant which would
allow the firm to abandon the investment opportunity if the decision variable is be-
low a specified level at the end of the implementation delay. The so-called Parisian
and exponential criterions clearly yield higher values for the investment opportu-
nity than the case when the investment cannot be cancelled. Nevertheless although
the exponential abandonment option seems to be closer to the first best abandon-
ment policy, the Parisian investment policy can be probably be implemented in
an easier way and at a lower writing cost. Given the recent developments in the
literature on incomplete contracts, this aspect may be important since a Parisian
criterion can be enforced at a lower cost.

The approach presented in this paper is general enough to allow us to extend
the scope of our analysis to other rigidities in the investment process. We focused
in this paper on the delay existing between the investment decision and its real
implementation. Other imperfections or rigidities can be considered such as noise
existing in the information available to the investor concerning the profitability of
his investment opportunity or the competition for corporate resources due to the
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capital allocation process within firms. At the technical level the present model
can be extended to take into account entry and exit decisions at a cost of a heavy
mathematical treatment. Also, other exotic times can be devised, corresponding
to various levels of the freedom with respect to outside parties.
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Chapter 3 THE MATHEMATICS OF
DELAYED INVESTMENT DECISION1
This chapter presents no fundamentally new result, but proposes a varied range of
approaches to the computations involved by stopping times related the Brownian
Motion and its excursions. The chapter is organized as follows. The first section is
dedicated to the study of a family of simple but nevertheless useful stopping times.
The second section defines Parisian stopping times, and provides two proofs for
the calculation of their Laplace transform. The first and original proof is due
to Chesney, Jeanblanc, Yor (1997). A second proof is proposed, relying on a
limit behavior of the stopping times introduced in the second section. In the
third section, we introduce a third demonstration of the result on Parisian times,
thanks to an extension of a known method, due to Leuridan, and presented as an
exercise in Revuz, Yor (1990). The ”Parisian” name comes among other things
from the numerous meanders of the Seine river in Paris. Another extension of
this approach will be used to derive new results under different conditions in the
following chapter.

In the whole chapter we will focus on various functionals for a drifted Brownian
motion (Zt = Bt + bt, t ≥ 0), where b is a real number and (Bt, t ≥ 0) a Brownian
motion.

A simple and interesting stopping time

This stopping time’s Laplace transform is used to study the case of the ”European
abandonment option” in the preceding chapter. These stopping times could have
been christened the ”Maastricht” times, since they are more European than the
Parisian ones.

Computation of the first instant where d units of time after having hit a level, the
Brownian Motion is above another level
We want to define a stopping time that helps us model delayed investment decision.
One way to do this is to consider that if a decision is made at a certain time, then
at the end of the delay one may have the choice to either confirm it or cancel it.
We consider that the kind of decisions we are interested in depend on the level
of some reference variable. This option to cancel the project can be modelled
as followed: the investment is made when the reference variable, after the delay,
is above some threshold. The event that triggers the count-down of the delay is
when the variable has hit some decision level. If we translate all that in Brownian
Motion terms, what we want to do is look at the first instant when, d units of time
after being at 0, the Brownian Motion is above some level −a. If it is not above
−a, then we have to wait a little until it goes back to zero, and then wait again
for d units of time to check whether the process is above −a or not and so on...

Let us define ν−a,0d , the first instant when, d units of time after reaching 0, the
Brownian Motion is above −a. To be able to formally define ν−a,0d , we create the
series of random times T (i). T (0) = d. If the Brownian Motion is above −a at that

1THE PART OF THIS CHAPTER THAT FOCUSES ON THE ALTERNATIVE PROOFS
OF THE THEOREM OF CHESNEY, JEANBLANC AND YOR IS TO APPEAR IN THE
ADVANCES IN APPLIED PROBABILITY, UNDER THE TITLE ”PARISIAN OPTIONS: A
SIMPLIFIED APPROACH WITHOUT EXCURSIONS”
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time, then ν−a,0d = T (0) = d. If not, we look at the first instant after T (0) when
the Brownian Motion reaches 0, that is TT

(0),0. Then, we write T (1) = TT
(0),0+ d,

that is T (1) is d units of time after the Brownian Motion has reached zero. If
the Brownian Motion is above −a at T (1), and if it was below −a in T (0) then
ν−a,0d = T (1). Following the same procedure one can generate the series of T (i).
We have T (2) = TT

(1),0 + d and more generally, T (i+1) = TT
(i),0 + d.

Now we define

bT (0) = T (0)IB
T (0)

≥−abT (1) = T (1)IB
T (1)

≥−aI bT (0)=0 and generally
bT (i) = T (i)IB

T (i)
≥−a

i−1Y
k=0

I bT (k)=0
= T (i)IB

T (i)
≥−a

i−1Y
k=0

IB
T (k)

<−a

Finally, we can write

ν−a,0d =
X
i≥0

bT (i) = sup
i≥0

bT (i) = T (i∗) (3.1)

with

i∗ =
X
i≥i
iIB

T (i)
≥−a

i−1Y
k=0

IB
T (k)

<−a.

Note that if bT (i) = 0 for all i then ν−a,0d = 0 by definition.

The bT (i) are not independent. Indeed P
³bT (1) 6= 0, bT (2) 6= 0´ = 0 because

of the characteristic function in the expression of bT (2), while P³bT (1) 6= 0´ and
P
³bT (1) 6= 0´ are both strictly positive. However, the times TT (i),0 − T (i) are in-

dependent thanks to the independence of Brownian increments before and after
a stopping time. Also, the times T (i) − T (i−1) = d + inf ©s : BT (i)+s = 0ª are in-
dependent. Since TT

(i−1),0 is a stopping time,
³
B
TT

(i−1),0+s −BTT (i−1),0 , s ≥ 0
´

is independent from F
TT

(i−1),0 thanks to the Markov property of the Brownian

Motion. Noticing that B
TT

(i−1),0 = 0 and BT (i) = T
T (i−1),0 + d, we conclude that

BT (i) is independent from F
TT

(i−1),0 and BT (i)
d
= Bd.

Lemma 2 ν−a,0d is a stopping time and it is finite.

Proof. We write for all tn
ν−a,0d < t

o
=

½
sup
i

bT (i) < t¾
=

(
∀i ≥ 1, T (i)IB

T (i)
≥−a

i−1Y
k=0

IB
T (k)

<−a < t

)\n
T (0)IB

T (0)
≥−a < t

o
=

³n
∃i : BT (i) ≥ −a and T (i) < t

o[n
ν−a,0d = 0

o´
⊂ Ft.
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In the last equality, including the possibility that ν−a,0d = 0 covers the case
when all the bT (i) are zero. Therefore ν−a,0d is a stopping time. Now, let us consider

n
ν−a,0d = +∞

o
=

+∞\
i=0

{BT (i) < −a}

P
³
ν−a,0d = +∞

´
=

+∞Y
i=0

P (BT (i) < −a)

since the BT (i) are independent. In addition, P (BT (i) < −a) = P (Bd < −a) < 1 .
In consequence, P

³
ν−a,0d = +∞

´
= 0 and ν−a,0d is finite.

We have then the following result

Proposition 3 For all positive λ and positive α, ν−a,0d and Bν−a,0d
are independent

and

E
h
e−λν

−a,0
d

i
= e−λd

N
³
a√
d

´
N
³√
2λd+ a√

d

´
E
h
f
³
Bν−a,0d

´i
=

R∞
−a dz

f(z)√
2πd
e−

z2

2d

N
³
a√
d

´ .

Proof. First, we show the independence of B
ν−a,0d

and ν−a,0d , by calculating their
joint Laplace Transform:

E
·
e
−λν−a,0d −αB

ν
−a,0
d

¸
= E

"Ã ∞X
i=1

e−λT
(i)−αB

T (i) IB
T (i)

≥−a
i−1Y
k=0

IB
T (k)

<−a

!
+ IBd≥−ae

−λd−αBd
#
.

Now we write T (i) as the following sum of independent terms:

T (i) = T (0) + id+
i−1X
k=0

³
TT

(k),0 − T (k)
´
= (i+ 1)d+

i−1X
k=0

³
TT

(k),0 − T (k)
´
.

Replacing in the equation and conditioning gives

E
·
e
−λν−a,0d −αB

ν
−a,0
d

¸
= E

"Ã ∞X
i=1

e−αBT (i) IB
T (i)

≥−ae−λd
i−1Y
k=0

IB
T (k)

<−ae
−λd−λ

³
TT

(k),0−T (k)
´!
+ IBd>−ae

−λd−αBd
#

=
∞X
i=1

E

"
E
h
e−αBT (i) IB

T (i)
≥−a

¯̄̄
F
TT

(i−1),0

i
e−λd

i−1Y
k=0

IB
T (k)

<−ae
−λd−λ

³
TT

(k),0−T (k)
´#

+E
h
IBd>−ae

−λd−αBd
i
,

where we used the fact that all BT (k) , T
(k) and TT

(k),0 are F
TT

(i−1),0-measurable for

k ≤ i− 1. Besides, we know that BT (i) is independent from F
TT

(i−1),0 and BT (i)
d
=
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Bd.Now considering the independence of the terms
µ
IB

T (k)
<−ae

−λd−λ
³
TT

(k),0−T (k)
´
, k ≥ 0

¶
we can write

E
·
e
−λν−a,0d −αB

ν
−a,0
d

¸
= E

£
e−αBdIBd≥−a

¤
e−λd

Ã
1+

∞X
i=1

E

"
i−1Y
k=0

IB
T (k)

<−ae
−λ
³
TT

(k),0−T (k)
´#!

= E
£
e−αBdIBd≥−a

¤
e−λd

Ã
1+

∞X
i=1

i−1Y
k=0

E
h
IBd≤−ae

−λTd,0
i!

=
E
£
e−αBdIBd≥−a

¤
e−λd

1− E £IBd≤−ae−λTd,0¤ .
So we have

E
·
e
−αB

ν
−a,0
d

¸
=
E
£
e−αBdIBd≥−a

¤
1− E [IBd≤−a]

and E
h
e−λν

−a,0
d

i
=

e−λdE [IBd≥−a]
1− E £IBd≤−ae−λTd,0¤ ,

and the independence of ν−a,0d and Bν−a,0d
.

Now, straightforward calculations give

E [IBd>−a] = N
µ
a√
d

¶
and from Markov property,

E
h
IBd≤−ae

−λTd,0
i
= e−λdE

h
IBd≤−ae

−|Bd|
√
2λ
i

= N
µ
−
√
2λd− a√

d

¶
.

Thus, we obtain

E
h
e−λν

−a,0
d

i
= e−λd

N
³
a√
d

´
N
³√
2λd+ a√

d

´ .
As for the position of the Brownian Motion, we notice using the Markov prop-

erty of the process that, at that time, the process is only conditioned by the fact
it was at the level 0 d units of time before ν−a,0d , and that it is higher than −a.
Therefore we just have to compute

E
h
f
³
Bν−a,0d

´i
= E [f (Bd)|Bd ≥ −a]

=

R∞
−a dz

f(z)√
2πd
e−

z2

2d

N
³
a√
d

´
to finally obtain the result.
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Laplace transforms for a drifted Brownian motion
First of all, we naturally extend the definition of ν−a,0d to νh

0,h
d : the first instant

when the process is above h0, d units of time after having hit h. If the process is
under h0 d units of time after hitting h, then we wait until it hits h again, and
then look d units of time afterwards to see if the process is above h0, and so on...

Proposition 4 For a positive ρ and for St = S0 exp
³³
µ− σ2

2

´
t+ σZt

´
where Z

is a Brownian Motion, we have

Eh
·
e−ρν

h0,h
d (S)

¸
=

e−ρd
µ
1−N

µ
b
√
d+ ln

³
h0
h

´³
σ
√
d
´−1¶¶

1−N
µ
−p(2ρ+ b2) d+ ln ¡h0h ¢³σ√d´−1¶

Eh
·
Sγ
νh

0,h
d (S)

¸
= hγe

dγ
³
µ−σ2

2
(1−γ)

´ 1−N
µ
(b+ γσ)

√
d+ ln

³
h0
h

´³
σ
√
d
´−1¶

1−N
µ
−b√d+ ln ¡h0h ¢ ³σ√d´−1¶ .

Proof. Writing St = S0 exp
¡
σZbt

¢
where Zbt = Bt + bt and b =

1
σ

³
µ− σ2

2

´
, we

have

Eh
·
e−ρν

h0,h
d (S)

¸
= E0

h
e−ρν

l,0
d (Z

b)
i

where we noted l = 1
σ ln

³
h0
h

´
, and

Eh
·
Sγ
νh
0,h
d (S)

¸
= E0

·
hγ exp

µ
γσZb

νl,0d (Zb)

¶¸
.

These expressions, thanks to Girsanov’s theorem, give

Eh
·
e−ρν

h0,h
d (S)

¸
= E0

"
e
−
³
ρ+ b2

2

´
νl,0d (Z)+bZ

ν
l,0
d

#
and

Eh
·
Sγ
νh
0,h
d (S)

¸
= E0

·
hγ exp

µ
(b+ γσ)Z

νl,0d (Z)
− b

2

2
νl,0d (Z)

¶¸
Thanks to the independence between the stopping time and the position of the
Brownian Motion at that time, we have

Eh
·
e−ρν

h0,h
d (S)

¸
= E0

·
e
−
³
ρ+ b2

2

´
νl,0d (Z)

¸
E0
·
e
bZ

ν
l,0
d

¸

= e−ρd

³
1−N

³
b
√
d+ l√

d

´´
1−N

³
−p(2ρ+ b2)d+ l√

d

´
and

Eh
·
Sγ
νh

0,h
d (S)

¸
= hγE0

h
exp

³
(b+ γσ)Z

νl,0d (Z)

´i
E0
·
exp

µ
−b

2

2
νl,0d (Z)

¶¸

= hγe
dγ
³
µ−σ2

2
(1−γ)

´ 1−N ³
(b+ γσ)

√
d+ l√

d

´
1−N

³
−b√d+ l√

d

´
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which is the result.

Computation of the first instant when the Brownian Motion spends more than d units
of time over a non-constant barrier, while having to go back to zero
In the remaining of this chapter, we count time in a non-cumulative manner. When
we say we are interested in the time spent by the Brownian Motion above a level,
the counter starts at zero for every new excursion above the level. We will start
by defining the following stopping times, for a given measurable negative function
y

Ht,y = inf {s ≥ t : Bs = y (s− t)} .
Ht,y is the first instant when after t the Brownian Motion B hits y. Then we
define the stopping time ηy,0d , the first instant when the Brownian Motion spends
more than d units of time over y, the countdown starting every time the Brownian
Motion reaches 0 after reaching y. An entirely formal definition for ηy,0d can be
written, in a very similar fashion to the definition of ν−a,0d . ηy,0d is like a Parisian
stopping time, but without the issue of determining exactly the last zero of the
excursion. Indeed, when we consider an excursion of the Brownian Motion, one
important issue is that B vibrates around zero, and therefore there are an infinity
of very small excursions that tend to complicate the manipulation of the concept of
excursion. Considering the stopping time ηy,0d instead, we do not have this problem
if we take y (0) < 0; in this case B may vibrate around zero, but it will not jump
to y (0) immediately.

We are interested in a particular y, of the form

y (t) = −ε− βt.

We have then the following result

Proposition 5 For all positive λ and negatively bounded f , ηy,0d and Bηy,0d
are

independent and

E
h
e−λη

y,0
d

i
=

e−λd
R∞
d dt

ε exp

µ
− (ε+βt)2

2t

¶
√
2πt3

1− e−ε
√
2λ
R d
0 dt

ε exp
³
−(λ+β

√
2λ)t− (ε+βt)2

2t

´
√
2πt3

E
h
f
³
B
ν−a,0d

´i
=

R∞
−∞ dz

f(z)√
2πd

µ
e−

z2

2d − eβz+β2d
2
− (ε+|z+ε+βd|)2

2d

¶
R∞
d dt

ε exp
³
− (ε+βt)2

2t

´
√
2πt3

.

Remark 1 If the barrier is constant, the expression simplifies and can be re-
written as:

E
h
e−λη

y,0
d

i
=

e−λd
R∞
d dt

ε exp
³
− ε2

2t

´
√
2πt3

1− e−2ε
√
2λ + e−ε

√
2λ
R +∞
d dt

ε exp
³
−λt− ε2

2t

´
√
2πt3

.

This expression shows more clearly how E
h
e−λη

y,0
d

i
behaves as ε is near zero.
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Proof. The proof is based on the Markov property of Brownian Motion, and
follows the one developed in the preceding subsection. We first concentrate on the
Laplace transform of the law of ηy,0d . We write directly (the formalization of the
reasoning has been done in the previous subsection for ν−a,od ):

E
h
e−λη

y,0
d

i
=

∞X
i=0

µ
E
·
IH0,y≤de

−λ
³
H0,y+HH0,y,0

´¸¶i
E
h
IH0,y>de

−λd
i

=
E
£
IH0,y>de

−λd¤
1− E

h
IH0,y≤de

−λ(H0,y+HH0,y,0)
i .

Now, we use the fact that for a Brownian Motion B,

H0,y (B) = inf {t ≥ 0 : Bt = −ε− βt}
= inf {t ≥ 0 : Bt + βt = −ε}
= T−ε

³
Bβ
´
.

We also know that BH0,y = −ε − βH0,y. Also, noticing that the law of HH0,y ,0

only depends on H0,y through the position of the Brownian Motion at that time,
we get that in law

HH0,y ,0 = T−ε−βH0,y (W )

For an independent Brownian Motion W . These considerations allow us to write

E
·
IH0,y≤de

−λ
³
H0,y+HH0,y,0

´¸
= E

h
IT−ε(Bβ)≤de

−λT−ε(Bβ)−(ε+βT−ε(Bβ))
√
2λ
i

= e−ε
√
2λ

Z d

0
dt
ε exp

³
−
³
λ+ β

√
2λ
´
t− (ε+βt)2

2t

´
√
2πt3

.

On the other hand we get easily

E
h
IH0,y>de

−λd
i
= e−λd

Z ∞

d
dt
ε exp

³
− (ε+βt)22t

´
√
2πt3

.

This last results completes the computation, and we have

E
h
e−λη

y,0
d

i
=

e−λd
R∞
d dt

ε exp

µ
− (ε+βt)2

2t

¶
√
2πt3

1− e−ε
√
2λ
R d
0 dt

ε exp
³
−(λ+β

√
2λ)t− (ε+βt)2

2t

´
√
2πt3

.

As for the position of the Brownian Motion, we first notice, still using the Markov
property of the process that, at that time, the process is only conditioned by the
fact it was at the level 0 d units of time before ηy,0d , and that it has not hit the
barrier before d. We have

E
h
f
³
Bηy,0d

´i
= E

h
f (Bd)|T−ε

³
Bβ
´
≥ d

i
= E

h
f
³
Bβd − βd

´¯̄̄
T−ε

³
Bβ
´
≥ d

i
=

E
h
f
³
Bβd − βd

´
I
infu≤dB

β
u≥−ε

i
P [T−ε (Bβ) ≥ d]
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Using the well-known joint law between the Brownian Motion and its minimum
(cf. Borodin and Salminen (1996), formula 1.2.8, p. 199), we get

E
h
f
³
B
ηy,0d

´i
=

E
h
f
³
Bβd − βd

´³
1− I

infu≤dB
β
u≤−ε

´i
R∞
d dt

ε exp
³
− (ε+βt)2

2t

´
√
2πt3

=

R∞
−∞ dz

f(z)e−
z2

2d√
2πd

− R∞−∞ dz f(z−βd)eβz−β2d
2 − (ε+|z+ε|)2

2d√
2πdR∞

d dt
ε exp

³
− (ε+βt)2

2t

´
√
2πt3

=

R∞
−∞ dz

f(z)√
2πd

µ
e−

z2

2d − eβz+β2d
2
− (ε+|z+ε+βd|)2

2d

¶
R∞
d dt

ε exp
³
− (ε+βt)2

2t

´
√
2πt3

,

and this is the announced result.

Laplace transforms for the drifted Brownian motion
Now, we are interested in similar results for the geometric Brownian Motion. We
have the following

Proposition 6 For a positive ρ and for St = S0 exp
³³
µ− σ2

2

´
t+ σZt

´
where Z

is a Brownian Motion, and g (t) = he−σ(ε+βt) we have

Eh
h
e−ρη

g,h
d (S)

i
= E0

·
e
−
³
ρ+ b2

2

´
ηy,0d (Z)

¸
E0
·
e
bZ

η
y,0
d

¸
and

Eh
·
Sγ
ηg,hd (S)

¸
= hγE0

h
exp

³
(b+ γσ)Zηy,0d (Z)

´i
E0
·
exp

µ
−b

2

2
ηy,0d (Z)

¶¸
.

Proof. Recalling that we have St = S0 exp
¡
σZbt

¢
we write

Eh
h
e−ρη

g,h
d (S)

i
= E0

h
e−ρη

y,0
d (Z

b)
i

and

Eh
·
Sγ
ηg,hd (S)

¸
= E0

·
hγ exp

µ
γσZb

ηy,0d (Zb)

¶¸
.

These expressions, thanks to Girsanov’s theorem, give

Eh
h
e−ρη

g,h
d (S)

i
= E0

"
e
−
³
ρ+ b2

2

´
ηy,0d (Z)+bZ

η
y,0
d

(Z)

#
and

Eh
·
Sγ
ηg,hd (S)

¸
= E0

·
hγ exp

µ
(b+ γσ)Zηy,0d (Z) −

b2

2
ηy,0d (Z)

¶¸
.

Thanks to the independence between the stopping time and the position of the
Brownian Motion at that time, we have

Eh
h
e−ρη

g,h
d (S)

i
= E0

·
e
−
³
ρ+ b2

2

´
ηy,0d (Z)

¸
E0
·
e
bZ

η
y,0
d

¸
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which can be explicitly computed, and

Eh
·
Sγ
ηg,hd (S)

¸
= hγE0

h
exp

³
(b+ γσ)Zηy,0d (Z)

´i
E0
·
exp

µ
−b

2

2
ηy,0d (Z)

¶¸
as said in the proposition.

The Parisian stopping time

In this case, the manager invests at Th + d only if the decision variable remains
above the optimal investment threshold during the implementation delay. The
decision triggering criterium is a so-called Parisian stopping time depending on
the size of excursions of the state variable over the optimal investment threshold.
In this paragraph the size of the excursion is equal to the implementation delay
d. This is different from the previous case since here every excursion above zero is
accounted for, however small it may be. Previously, the process had to go down
to −ε to stop the count-down.

First of all, we define the following random variables, all linked to a random
process X:

gat (X) = sup {s ≤ t : Xs = a}
H+
a,d (X) = inf {t ≥ 0 : (t− gat (X)) ≥ d,Xt ≥ a} .

Thus gat (X) represents the last time the process X crossed the level a. It
can be checked it is not a stopping time for the Brownian filtration Ft, but for
the slow filtration G = (σ (sgn (Bt)) ∨Fgt)t≥0 which represents the information on
the Brownian motion until its last zero plus the knowledge of its sign after this.
H+
a,d (X) is therefore the first instant when the process has spent d units of time

consecutively over the level a. We define a Parisian investment decision criterion
very simply as H+

h,d (S). We write H
+
d for H

+
0,d.

The Laplace transform of the first time a positive Brownian excursion reaches a certain
length
Theorem 7 (Chesney Jeanblanc Yor 1997) If B is a Brownian motion start-
ing from zero, then

∀λ ≥ 0, E £exp ¡−λH+
d (B)

¢¤
=

1

Φ
³√
2λd

´
if Φ (x) =

R +∞
0 z exp

³
zx− z2

2

´
dz = 1+

√
2πxe−

x2

2 N (x) .

The original proof is given in Chesney, Jeanblanc and Yor (1997). In subsequent
sections, we will prove the result

• by taking to the limit the results developed in the preceding section
• with the use of excursion theory and the description of Itô’s measure.
The theorem can be easily extended to a drifted Brownian Motion:

Theorem 8 If Zt = Bt + bt, the Laplace transform of H+
d (Z) is given by

∀λ ≥ 0, E £exp ¡−λH+
d (Z)

¢¤
=

Φ
³
b
√
d
´

Φ
³p

(2λ+ b2) d
´ .
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Proof. Our goal is to compute

E
£
exp

¡−λH+
d (Z)

¢¤
Using Girsanov’s theorem, we write for λ ≥ 0

EP
£
exp

¡−λH+
d (Z)

¢¤
= EL

·
exp

¡−λH+
d (Z)

¢ dP
dL

¯̄̄̄
FH+

d (Z)

¸
= EP

·
exp

µ
−
µ
λ+

b2

2

¶
H+
d (B)

¶
exp

³
bBH+

d (B)

´¸

But we know that H+
d and BH+

d
are independent, and in law, BH+

d
= md =

√
dm1.

Therefore

EP
£
exp

¡−λH+
d (Z)

¢¤
= EP

·
e

³
−
³
λ+ b2

2

´
H+
d (B)

´¸ Z +∞

0
ebx
x

d
exp

µ
−x

2

2d

¶
dx.

After some simplifications, we get for any λ ≥ 0

EP
£
exp

¡−λH+
d (Z)

¢¤
=

1

Φ
³p

(2λ+ b2)d
´ Z +∞

0
ebx
x

d
exp

µ
−x

2

2d

¶
dx

=
Φ
³
b
√
d
´

Φ
³p

(2λ+ b2)d
´ .

as expected.

Theorem 9 If Zt = Bt + bt, we have the following Laplace transform

∀λ ≥ 0, EP
h
exp

³
−λH+

a,d (Z)
´i
= exp

³
ba− |a|

p
2λ+ b2

´ Φ
³
b
√
d
´

Φ
³p

(2λ+ b2) d
´ .

Proof. We write that

H+
a,d (Z) = Ta (Z) +H

+
d

¡
Z ◦ θTa(Z) − a

¢
where θ is the so-called ”shift operator” on the canonical space Ω. This means
that, using the strong Markov property and the fact that the increments after and
before Ta are independent, we can write

EP
h
exp

³
−λH+

a,d (Z)
´i

= EP
h
EP
h
exp

³
−λH+

a,d (Z)
´¯̄̄
FTa(Z)

ii
= EP

£
EP
£
exp

¡−λ ¡Ta (Z) +H+
d

¡
Z ◦ θTa(Z) − a

¢¢¢¯̄
Ta (Z)

¤¤
= EP [exp (−λTa (Z))]EP

£
exp

¡−λH+
d (Z)

¢¤
.

and we obtain the result.
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A second proof of Chesney, Jeanblanc, Yor’s theorem
Let us start with the following

Lemma 10 We have limε→0 η−ε,0d = H+
0,d almost surely.

Proof. First, let us compare η−ε,0d and H+
0,d. For any continuous path starting

from zero, we have η−ε,0d ≤ H+
0,d. Indeed, any trajectory that spends consecutively

d units of time above zero will have a fortiori spent d units of time above −ε.
Now, let us introduce H+

−ε,d the Parisian time defined relative to −ε instead of
zero. We always have (on continuous trajectories) H+

−ε,d ≤ η−ε,0d . Indeed, the
Parisian criterion will be satisfied earlier than the other stopping time because it
includes the time spent between −ε and 0 in the count-down. So, almost surely
H+
−ε,d ≤ η−ε,0d ≤ H+

0,d. Now, τ
−ε
d converges towards H+

0,d (just by taking ε = 0).

As a consequence, η−ε,0d converges to H+
0,d almost surely.

Now, thanks to the above Lemma and to Proposition 5, we can obtain another
proof of Theorem 7. Indeed, we have
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R∞
d dt

ε exp

µ
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¶
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√
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0 dt
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³
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√
2λ)t− (ε+βt)2

2t

´
√
2πt3

.

Now, if the function y is simply defined as y = ε, we obtain (adapting the notation)

E
h
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i
=

e−λd
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ε exp
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´
√
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´
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2πt3

.

where this Laplace transform is that of the first instant where, starting from zero,
the Brownian Motion spends d units of time consecutively over −ε. Also, we know
that almost surely ηε,0d →

ε→0 H
+
d where H

+
d is the Parisian time. So the convergence

result applies to the Laplace transform.
Therefore
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We used the fact that
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0
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√
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= E
h
e−λTε

i
= e−ε

√
2λ,
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and therefore

Z d

0
dt
ε exp
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√
2πt3

= e−ε
√
2λ −

Z +∞

d
dt
ε exp

³
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2t

´
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.

So as to compute the limit in question, the most natural way is to write limited
developments. We obtain that the limit is equal toq

2
πde

−λd

2
√
2λ+

R∞
d dtexp(−λt)√

2πt3

However,
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by integration by parts.

Consequently, we have
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´
and this is exactly the result of Chesney, Jeanblanc and Yor’s theorem.

We can also apply the same approach to find back the law of BH+
d
. We have a

similar convergence as above:
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We write, using limited developments, that
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where m is the Meander. This is indeed the result from Chesney, Jeanblanc and
Yor.

Excursion theory related stopping times

In this section we propose an extension of a known method to calculate ”Parisian-
style” stopping times Laplace transforms.

Let us study something of the formZ ∞

0
dte−ρtE

h
f (Wt) IH+

D>t

i
.

So as to write explicitly this integral, we will use a particular approach of
excursions lengths due to Leuridan. Our method will be based on his computation
of a Laplace Transform of the law of the longest Brownian excursion up to a time
t, which is given as exercise 4.10 in Revuz Yor (1991).

Reformulation of the integral
First of all, we recall the definition of the inverse process of the local time:

τs = inf {t ≥ 0 : Lt = s} .
The points of increase of the local time are the zeros of the Brownian Motion, and
therefore the jumps in the inverse process intervene at the extremities of excursions.
Let us also define the longest positive excursion up to a time τs− as

l+ (τs−) = sup {l ≥ 0 : ∃u, u < s, (τu − τu−) = l,eu ≥ 0}
where e is the excursion process. This random variable can also be defined up to
the last zero as

l+ (gt) = sup {(ds − gs) : gt > s ≥ 0,Ws ≥ 0} .
V will be used to denote the length of an excursion, that is V (es) = τs − τs−

Now, let us notice we have the following equalities of events¡
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D > t

¢
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¡
l+ (gt) < D

¢\³
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[³
(Wt > 0)

\
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´´
.

We deduce that we can writeZ ∞

0
dte−ρtE

h
f (Wt) IH+

D>t

i
= E

Z ∞

0
dte−ρtf (Wt) Il+(gt)<D (IWt>0It−gt<D + IWt≤0) .
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A useful path decomposition based on the balayage principle
We will use the following decomposition formula, but also we will detail a part of
its proof, which happens to be sufficient for our needs:Z ∞

0
dtW t =

Z ∞

0
dsW τs ◦

Z ∞

0
dtnt (·; t < V )

where W t is the law of the Brownian Motion up to t and n is Itô’s measure. This
result can be found in Yor (1997).

Let us consider the following path integral, for two positive measurable func-
tionals F1 and F2

E
·Z ∞

0
dte−ρtF1 (Bu, u ≤ gt)F2 (Bu, gt ≤ u ≤ t)

¸
.

We rewrite it and apply a change of variable, namely t = v + τs−, and obtain
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#
.

Now the first Master formula (see Yor (1997)), also called the Compensation For-
mula, gives the expected path decomposition:
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Applying this result to the particular case we are studying entails immediately
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The second part of the RHS product is known, thanks to Itô’s description of the
measure n. Indeed, we have

• n (V (ε) ∈ dv) = dv√
2πv3

• n (ε ∈ df |V (ε) = v) = R(3)0→0,v (ε ∈ df) where R(3)0→0,v is the law of a Bessel-3
bridge from 0 to 0 of length v.

Computations of the path integral related to the longest excursion
We are interested in E

£R∞
0 dse−ρτs−Il+(τs)<D

¤
. We start by noticing that

e−ρτs−Il+(τs−)<D =
X
0≤u<s

¡
e−ρτuIl+(τu)<D − e−ρτu−Il+(τu−)<D

¢
+ 1.
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But we also write easily that¡
l+ (τu) < D

¢
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l+ (τu−) < D
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(eu ≤ 0)
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(eu > 0)

\
(τu − τu− < D)

´´
.

In other words, for the longest excursion up to τu to be shorter than D, we need
the longest of all excursions before the one straddling τu to be shorter than D
(that is l+ (τu−) < D), and either the next one is negative, or it is shorter than
D. Therefore, we have
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Taking the expectation and applying the Compensation Formula yields
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If we define
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Solving the differential equation gives directly
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Using the description of Itô’s measure, we can writeZ ∞
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where q (r;u, v) is the density of a Bessel(3) bridge taken at time u ≤ v from 0 to
0 of length v.
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A third proof of Chesney, Jeanblanc, and Yor’s theorem
It is very quick to see that
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In consequence, we write
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With a change of variable and an integration by parts, we can show that

1

ρ

Z D

0
dv
1− e−ρv√
2πv3

=
2
√
2√
ρ

 e−ρD − 1√
2π
√
2ρD

+

Z √
2ρD

0
dz
e−

z2

2√
2π

 and

1

ρ

Z ∞

0
dv
1− e−ρv√
2πv3

=

√
2√
ρ
.

After replacing in 3.2, we have
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And we therefore obtain a third proof of the theorem.
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Chapter 4 DECISION DELAYS IN
ASYMETRIC DUAL COMPETITION1
By relying on the classical approach, an investment must be undertaken if and
only if its expected discounted earnings are higher than its expected discounted
costs. However, as we have shown in the preceding chapters, for now more than
ten years, this approach neglects the risk and the irreversibility inherent in a lot of
investment projects, and implicitly assumes that only two possibilities are avail-
able: investment now or never. The real option approach represents a much more
realistic tool, since a third possibility is taken into account: wait and see... This
approach fits very well the monopolist case. However, in a competitive case, the
strategic behaviors of different firms are usually not taken into account. Some
authors (see Lambrecht and Perraudin (1994, 1996)), have already tackled this
problem and studied the preemption of investment projects. The aim of this chap-
ter is also to consider this question, where unlike in the case treated by Lambrecht
and Perraudin the competitors have different constraints in terms of investment
delay and flexibility. In our setting, the large firm suffers a delay in its investment
decisions, whereas the smaller firm’s decisions are instantaneously implemented.

First of all, let us describe an example of a particular asymmetrical compe-
tition situation. We consider a competition situation, between a small firm and
a big market leader. In the field of technology, between a specialized company
and Microsoft for a new kind of user interface, or between a big pharmaceutical
conglomerate and a biotechnologies research company to start the implementation
of a new patent.

Under these conditions, it is natural to assume the small company knows the
constraints of the big company, as the latter is highly ”visible”. But the contrary
is not true, since the small company has probably no obligation to publish detailed
material on its abilities and strategic plans. Moreover, investment decisions in a
small structure can be considered to be instantaneous, whereas they would require
a non negligible processing delay in a big multinational company. Finally, an
important structure will benefit from scale economies, and the necessary sunk
cost linked to an investment will be lower than for a smaller company. Also, the
required return on investment by stockholders is lower for a large entity due to the
diversification of its profits, that allows for more stable dividends.

We suppose, as it is the norm in such industries, that these investment decisions
are not reversible, that is there is no option to disinvest. If the small company
was contemplating to invest in a project, the future return of which is a stochastic
variable, it is optimal for it to invest when this variable reaches a certain level.
This corresponds to the usual real option theory. The large company, because of
its decision making structure, would require a delay between the decision to invest
and its implementation. In that case, we have shown in Chapter 2 that the best
optimal decision process to implement is to invest when the future return spends
continuously enough time over a given level to trigger the implementation. The

1A DIFFERENT VERSION OF THIS CHAPTER HAS ALSO BEEN CO-WRITTEN WITH
MARC CHESNEY, USING A MORE ANALYTICAL APPROACH. THE TECHNICAL PART
OF THIS CHAPTER THAT FOCUSES ON THE LENTH AND HEIGHT OF EXCURSIONS
IS TO APPEAR IN THE JOURNAL OF APPLIED PROBABILITY IN DECEMBER 2002,
UNDER THE TITLE ”EXCURSION LENGTH AND HEIGHT AND APPLICATION TO
FINANCE”.
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constant level in question, due to the lower costs of investing, will be substantially
lower than the target level for the small company.

Therefore, we can expect the large company to find the optimum level that
triggers its decision, knowing its constraints (costs, decision acceptance delay),
but unaware of the small firm’s intention. The small firm, then knowing when the
large firm will invest, will find its own optimal investment level. From the small
firm perspective, it is always optimal to preempt the larger one, as far as its break-
even point is smaller than the investment threshold of the large firm. Indeed, if it
does invest just before the large firm, it generates a positive value, versus a zero
value if it does not invest.

We can also consider that the large firm is aware there is a potential competitor,
but does not know its cost structure: only the distribution from which it is drown.
Indeed, information about these potential small competitors would be accessible
in an aggregate way, and the large firm would have rational expectations.

The paper is organized as follows: the first section is dedicated to presenting
the analogy between Parisian American barrier options and the problem of valuing
investment projects in an asymmetric competition situation as we have described
above. This section follows an option pricing approach and reduces the problem
to that of calculating the expectation of a functional of the Brownian Motion. In
this section, the large firm is assumed to be unaware of the existence of a smaller
competitor.

The second section focuses on a core result on various stopping times that help
represent the preemption situation. This result is derived using excursion theory,
following a method presented in Chapter 3. We assume here that the large firm
follows the Parisian criterion because it is simple to implement, although it is not
necessarily optimal. As we discussed in Chapter 2, an optimal strategy would
involve the existence of a non-constant exercise frontier depending on the delay.
An alternative approach has been developed in a working paper by Chesney and
Gauthier (2001), that implicitly models this optimal exercise frontier for the large
firm.

The third section studies the situation when the large firm is aware there is a
competitor. Finally, the fourth section concludes this Chapter.

The model
Let us first consider the case when the small company acts strategically and tries
to preempt the big one. The latter acts as if it was a monopolist and therefore
doesn’t act strategically. Both face only one investment opportunity, the same
one. This is a situation of mutual preemption.

Following the lines of real option theory, we assume there exists an observed
variable that conditions the future cashflows of the investment opportunity faced
by the two competitors. We consider there are traded assets that can be used to
perfectly replicate the value of this observed variable. Therefore we can use clas-
sical option theory to price the real options involved in the competition situation.

The dynamics of the observed variable, under the risk-neutral probability,
solves the following SDE

dSt
St

= (r − δ)dt+ σdWt (4.1)

where St, r, δ, σ, (Wt, t > 0) are respectively the underlying value at time t,
the domestic risk free rate, the convenience yield, the volatility, and a Q-Brownian
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motion. We suppose the risk free rate and volatility are constant. In that frame,
the results are equivalent if we suppose agents are risk-neutral, and the yield of
the underlying value verifies µ = r − δ.

We will consider also that S0 = x. So St = x exp
³³
µ− σ2

2

´
t+ σWt

´
, which

we rewrite as St = xeσ(mt+Wt), or St = xeσZ
m
t where Zm is a drifted Brownian

Motion, i.e. (Zmt = mt+Wt, t ≥ 0).
Let us define the following functionals

Th (X) = inf {t ≥ 0 : Xt = h}
ght (X) = sup {s ∈ [0, t] : Xs = h}

H+
h,D (X) = inf

n
t ≥ Th :

³
t− ght

´
≥ D and Xt ≥ h

o
.

They are, respectively, the first instant a process hits a given level, the last instant
when the process was at a given level, and the Parisian time, the first instant when
the process spends consecutively more than D units of time over a given level.
Notice that ght (X) is not a stopping time. When this random time ”happens”,
there is no way to know immediately that is has just happened..

Investment decision and options
We write the value of the project once launched, as

F (St,∞) = EFt
Z ∞

t
dse−r(s−t)f (Ss)

where f is a power function, thus allowing us to deal with Cobb-Douglas utility
functions. Typically, in a simple case where f is the identity, we would have
F (S0,∞) = ∆S0 with ∆ = 1

δ . Linked to the investment project, there are entry
costs Ke and infinite exit costs. It means that once started the project cannot be
stopped. The entry cost is therefore a sunk cost that cannot be recovered in the
future. Also, we suppose there is no external reason why the firms should invest
before any given time.

We can compute the level K corresponding to the break-even point. At that
point we would have Ke = K

r , so K = Ker.
The case of competition between companies with similar constraints has been

studied by Dixit and Pindyck (1994) and Lambrecht and Perraudin (1994, 1996).
The former show how in a competition situation, if there are many competitors
the decision criterion is in fact the NPV. In the case of a duopoly, the latter have
shown that the non availability of all information about one’s opponent creates
an equilibrium. In this case, the optimal investment barrier, even for a perpetual
project, evolves through time depending on the rolling supremum reached by the
observed variable: agents update their subjective probability distribution for the
other’s optimal barrier, and find in turn their own optimal level. This process
allows for example a firm with a low cost to realize its opponent has a higher cost,
and therefore a higher barrier, depending on how the observed variable will evolve.

If one firm is informed and the other does not even suspect its existence, then
the optimal strategy for the informed is to invest at the first instant between the
hitting time of its optimal level in monopoly, and the hitting time of its opponent’s
optimal level (or an infinitesimal time before), as far as it is above its own break-
even point.



56

Competition between a large and a small companies
We will use the subscript 1 for the large company, and 2 for the small one. The
small company will maximize its expected payoffs, its value at time zero, V2 (x) is
given by:

V2 (x) = sup
L2

E
·
exp (−rTL2) (L2 −K2) ITL2<H+

L1,D

+exp
³
−rH+

L1,D

´µ
SH+

L1,D
−K2

¶
ITL2>H+

L1,D

¸
(4.2)

where x = S0, K2 are the expected discounted costs generated by the investment
project, for the small firm, L2 is the underlying value level at which the firm will
decide to invest, and where H+

L1,D
is the investment date of the big company, using

the notations defined earlier.
Indeed, the large company invests only if the underlying value has remained

during a period D above a given level L1. Due to the delay in its decision process,
the large company has interest in being able to cancel its investment decisions
if market conditions deteriorate. The Parisian stopping time, though not the
absolute optimal solution in that frame, is simple enough to be implemented easily
and still allows a much better value for the firm than following the usual hitting-
time linked investment decision.

If TL2 < H
+
L1,D

the small firm invests at its optimal level L2, otherwise, it will
also preempt the big company, even if it is not optimal from the monopolist point
of vue. Indeed, it is better to generate positive earnings than to loose the project
as far as the break-even point K2 of the smaller firm is lower than the investment
level for the large firm L1. In this case, the investment will take place just before
the big company optimal date H+

L1,D
, at a level SH+

L1,D
lower than L2. In fact, the

small firm will invest an instant arbitrarily small before the large one, so we can
consider that it invests at the same time, but preempts the opportunity. We have
represented both firms investment decisions in Figure 1, p. 57.

Let us now turn to the general problem of the valuation of American Parisian
Options.

The up and out Parisian call
Definition 11 An American up and out Parisian option gives its owner the right
to exercise it at will until either maturity (which can be infinite) or until the first
instant when the underlying price spends consecutively more than D units of time
over a given level L1 (the so-called Parisian time). If the investor decides to
exercise at the stopping time τ , the present value of the payoff of the option writes

e−rτ (Sτ −K)+ Iτ≤H+
L1,D

Iτ≤T

where T is the maturity and K the strike price. The value of this option is defined
as CuAo (x, t) for an underlying x and a time to maturity t.

It is interesting to note that the value of the small firm V2 (x) given by equation
4.2, corresponds exactly to the value of an up and out perpetual American Parisian
Call Value (see Chesney, Jeanblanc, Yor (1997), for the European Parisian Options
case) CuAo (St, T − t), where K2, L1 and D are respectively the strike price, the
barrier and the window of the option. Indeed, the owner of such an option, will
have to figure out the optimal exercise boundary (L2 in our example) and to
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Time

S

L1

L2

d

Large firm would inve

Small firm would invest
Both firms would invest

Figure 1 Large and Small Firms Investment Thresholds

exercise its option either at this level, if it is reached before the option is lost, or
just before loosing its option.

In the perpetual case, the optimal strategy consists of exercising the option
either at an optimal level (equivalent to the optimal level in the case of a standard
perpetual American call) or just before it is cancelled, that is at the Parisian time
if it happens before. Though, if the exercise price is above the Parisian threshold
L1, then it is not always optimal to exercise the option at the Parisian time. In
that case, if the Parisian time happens before the optimal exercise barrier is hit,
then depending on whether the underlying is above the strike price, the option is
exercised or not.

Returning to the analogy with investment decision, if the small firm could
not preempt the large one, and could only invest by following the hitting time
rule, then the value of the investment project would correspond to another kind
of option, that can be exercised only when the underlying hits an optimal level,
fixed in the terms of the contract, and cancelled at the Parisian time. This option
would have the following payoff (net present value)

e−rτ (Sτ −K)+ Iτ≤H+
L1,D

Iτ≤T

with τ = TL, the hitting time of a given optimal level. We will call it the non
preemptive American Parisian up and out call.

In this case, both the barrier and the exercise boundary are below the spot
price. The option is therefore exercised either when the spot price reaches the
exercise boundary L1 , or just before the time at which the option is lost (H+

L1,D

).

Proposition 12 The value of the perpetual Parisian up and out call, with K ≤ L1
is equal to the supremum over L of

V (S0) = E
·
exp (−rTL) (L−K) ITL<H+

L1,D
+ exp

³
−rH+

L1,D

´µ
SH+

L1,D
−K

¶
ITL>H+

L1,D

¸
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=

µ
L1
S0

¶q 2r+m2

2σ2

h
(1− AB) f (a) +

³
ea
√
2ρB− 1

´
K(f)
K(1)

i
ea
√
2ρ − A

with m = 1
σ

³
µ− σ2

2

´
, ρ = r + m2

2 , a =
1
σ ln

³
L
L1

´
, f (z) = (L1eσz −K) emz and

A, B, K defined in Section 2.

A decomposition appears between the part of the price that is due to a normal
exercise µ

L1
S0

¶q 2r+m2

2σ2 (1− AB) f (a)
ea
√
2ρ − A

and the part of the price linked to a forced early exercise at the Parisian time

µ
L1
S0

¶q 2r+m2

2σ2

³
ea
√
2ρB− 1

´
K(f)
K(1)

ea
√
2ρ − A .

Proof. First of all, we want to write the price as a functional of the Brownian
Motion. We have

V (S0) = ES0
·
exp (−rTL) (L−K) ITL<H+

L1,D

¸
+ES0

·
exp

³
−rH+

L1,D

´µ
SH+

L1,D
−K

¶
ITL>H+

L1,D

¸
= E0

·
exp (−rTb (Wm)) (L−K) ITb(Wm)<H+

b1,D
(Wm)

¸
+E0

·
exp

³
−rH+

b1,D
(Wm)

´µ
S0e

σWm

H+
b1,D

(Wm) −K
¶
ITb(Wm)≥H+

b1,D
(Wm)

¸
with

m =
1

σ

µ
r − δ − σ

2

2

¶
and

b =
1

σ
ln

µ
L

S0

¶
b1 =

1

σ
ln

µ
L1
S0

¶
andWm

t = mt+Wt, a drifted Brownian Motion. In the expression above, we have
written

SH+
L1,D

= S0e
σWm

H+
b1,D

(Wm)

so as to be able to directly work with the Brownian Motion Wm. We can now
apply Girsanov’s theorem, and write

V (S0) = E0
·
exp (−rTb (W )) (L−K) ITb(W )<H+

b1,D
(W )e

−m2

2
Tb(W )+mWTb(W )

¸
+E0

·
exp

³
−rH+

b1,D
(W )

´µ
S0e

σW
H+
b1,D

(W ) −K
¶

ITb(W )≥H+
b1,D

(W )e
−m2

2
H+
b1,D

(W )+mW
H+
b1,D

(W )

#
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= E0
·
exp

µ
−
µ
r +

m2

2

¶
Tb

¶³
S0e

σWTb −K
´
ITb<H+

b1,D
emb

¸
+E0

·
exp

µ
−
µ
r +

m2

2

¶
H+
b1,D

¶µ
S0e

σW
H+
b1,D −K

¶
ITb≥H+

b1,D
e
mW

H+
b1,D

¸
= E0

·
exp

µ
−
µ
r +

m2

2

¶
τ

¶¡
S0e

σWτ −K¢ emWτ

¸
where all the functionals refer to the (new) Brownian Motion W under the new
probability, with τ = Tb∧H+

b1,D
. So as to simplify this expression, it is now natural

to condition by the first hitting time of b1, which will necessary be smaller than τ
for b ≥ b1. Applying the strong Markov property at Tb1 gives therefore

V (S0) = E0
·
exp

µ
−
µ
r +

m2

2

¶
τ

¶¡
S0e

σWτ −K¢ emWτ

¸
= E0

·
exp

µ
−
µ
r +

m2

2

¶
Tb1

¶¸
Eb1

·
exp

µ
−
µ
r +

m2

2

¶
τ

¶¡
S0e

σWτ −K¢ emWτ

¸
= E0

·
exp

µ
−
µ
r +

m2

2

¶
Tb1

¶¸
E0
·
exp

µ
−
µ
r +

m2

2

¶
Tb−b1 ∧H+

0,D

¶µ
L1e

σW
Tb−b1∧H

+
0,D −K

¶
e
mW

Tb−b1∧H
+
0,D

¸
.

We have the following well known Laplace transform:

exp

Ã
−b1

s
2

µ
r +

m2

2

¶!
=

µ
L1
S0

¶q 2r+m2

2σ2

Now, thanks to theorem 13 on p. 60, we can easily write

E0
·
exp

µ
−
µ
r +

m2

2

¶
Tb−b1 ∧H+

0,D

¶µ
L1e

σW
Tb−b1∧H

+
0,D −K

¶
e
mW

Tb−b1∧H
+
0,D

¸

= E
h
e−ρTa∧H

+
Df
³
WTa∧H+

D

´i
=

h
(1− AB) f (a) +

³
ea
√
2ρB− 1

´
K(f)
K(1)

i
ea
√
2ρ − A

with ρ = r+ m2

2 , a = b− b1, f (z) = (L1eσz −K) emz, and where A, B, K, depend
on ρ. This ends the proof of the proposition.

The optimal value for the level L can be found by solving the first order con-
dition equation

∂V

∂L
= 0

for which a closed-form expression is difficult to obtain.
Note that if the firms’ parameters are such that limL→∞ V (L) = ∞, then it

means that the small firm will only invest just before the large firm, if the variable
S is above its break-even threshold K2 at the Parisian time.

The case of an already started excursion
In this case, we assume that, at time zero, the excursion has already started (so
it started at a negative time). The impact of such a situation on the value of the
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option is in fact very simple: either the underlying price hits the barrier back again
quickly enough in the remaining time, or it does not. If it does not, the option is
cancelled at that time. So the option’s value will be the value starting from the
barrier level weighed by the probability that the underlying price hits it before it
is too late.

More specifically, let us assume the excursion has started u units of time ago.
Then, if the price does not go back up to L1 before D−u units of time, the option
will be cancelled. At time zero, the underlying price S0 has to be above L1 since
the excursion has started. So we can consider TL1, the hitting time of the barrier.
When the price hits the barrier, we revert to the previous case again, and the price
of the option is known: it is CuAo (L1,+∞). So, naturally, we obtain

CuAo (S0,+∞, u) = ES0
h
ITL1≤ue

−rTL1
i
CuAo (L1,+∞) .

We now turn to the proof of the formula we used to obtain a closed-form
formula for the value of the small firm’s investment project.

On the length and height of excursions

In this section, we are interested in the paths such that the Parisian time is trig-
gered before or after the process hits a certain level. We will derive the Laplace
transforms of stopping times involving the Parisian time and classical hitting times
as well.

More precisely we are interested in the direct computation of the following
quantities, for a Brownian Motion starting from 0:

E
h
e−ρTaIH+

D≥Ta
i

(4.3)

E
h
e−ρH

+
DIH+

D≤Taf
³
WH+

D

´i
(4.4)

E
h
e−ρH

+
D∧Ta

i
(4.5)

where we consider these expectations for a Brownian MotionW starting from 0. To
simplify notations we have written H+

D = H
+
0,D. The first expression is used in the

computation of the value of investing for the small company (and thus preempting
the larger one). The second expression gives the value to the larger company,
which is preempted. Finally, the third expression intervenes in the calculation of
the two others. It will be calculated using excursion theory. But for a start, we
give the following

Theorem 13 We have the following relationships for B a standard Brownian Mo-
tion, ρ a positive number, a a positive level, and f a measurable function bounded
below:

E
h
e−ρTaIH+

D≥Ta
i
=

1− AB
ea
√
2ρ − A

E
h
e−ρH

+
DIH+

D≤Taf
³
WH+

D

´i
=

K (f)

K (1)

ea
√
2ρB− 1

ea
√
2ρ − A

E
h
e−ρTa∧H

+
Df
³
WTa∧H+

D

´i
=

h
(1− AB) f (a) +

³
ea
√
2ρB− 1

´
K(f)
K(1)

i
ea
√
2ρ − A
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with

K (f) =
X
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0
dzf
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√
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2ka√
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where for independent Bessel-3 processes R and R0 we have

E(3)0
h
e−ρ(Tm+T

0
m)ITm+T 0m<D
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0
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0
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+e−ρD
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E(3)0
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e−ρTa∧D

¤
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Z D
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dve−ρv

π2
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k∈Z

(−1)k+1 k2e−k2π2v
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+e−ρD
Z ∞

D
dv
π2
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X
k∈Z

(−1)k+1 k2e−k2π2v
2a2 .

Proof. The three expressions 4.3, 4.4, 4.5 are closely related as the third one will
be helpful in computing the first one, which in turn will help calculate the second
one. The proof of the theorem will be shown in the remaining of this section.

The third expression clearly comes from the two other ones.

Exploiting the links between the three expressions
Studying such a problem it is natural to try to use exponential martingales prop-
erties. First we write

E
h
e−ρH

+
D∧Ta

i
= E

h
e−ρTaIH+

D≥Ta
i
+ E

h
e−ρH

+
DIH+

D≤Ta
i
. (4.6)

This expression states the relationship between two of the expressions above.
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Lemma 14 For all positive a and α, we have

E
·
e−

α2

2
TaIH+

D≥Ta

¸
=

1− AαE
·
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α2

2
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D∧Ta

¸
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Proof. Let us define the exponential martingale
³
Mt = exp

³
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2 t
´
, t ≥ 0

´
for any α . If we apply Doob’s martingale stopping theorem at H+

D ∧ Ta (with a
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This gives a relationship between 4.3 and 4.4, for a particular case of function f .

We concentrate now on the term E

"
e
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Also, we know that the trajectory
¡
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¡
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D

¢
is a Brownian meander,

and by scaling¡
Wt, g

¡
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D
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D

¢
=
³√
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´
in law.

Now, using Theorem 31 in Chapter 7 (p. 131) on the joint law of the Brownian
Meander and its maximum, we write
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e
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Remark 2 This calculation is also valid for all positive f . We have
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To explicit the term E
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Gathering the results, we have
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This gives a second relationship between the quantities we are interested in. For
notational convenience we will write 4.7 as
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so when combined with 4.6 we get
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as stated in the Lemma.
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i
Lemma 15 For all positive ρ, we have

E
h
e−ρH

+
D∧Ta

i
= 1−ρ

R
n (dε)

R V (ε)
0 dve−ρv (Iεv>0Iv<D + Iεv≤0)

³
Iεv>0Isupu≤v εu≤a + Iεv≤0

´
R
n (dε)

³
1− e−ρV (ε) ¡Iε≤0 + Iε>0IV (ε)<D¢ ³ Iε≤0 + Iε>0Isup0≤u≤V (ε) εu<a

´´
Proof. To compute this quantity we follow the approach lined out in Chapter 3,
Section 4. First of all, we define τ = H+

D ∧ Ta, and write

E
·Z ∞

0
dte−ρtIτ≥t

¸
=
1

ρ

¡
1− E £e−ρτ¤¢

so

E
£
e−ρτ

¤
= 1− ρE

·Z ∞

0
dte−ρtIτ≥t

¸
.

Now, as before, let us also define the longest positive excursion up to a time
τs− as

l+ (τs−) = sup {l ≥ 0 : ∃u, u < s, (τu − τu−) = l,eu ≥ 0}
and we introduce the highest level reached by an excursion up to time τs− defined
by

h+ (τs−) = sup

(
h ≥ 0 : ∃u, u < s, sup

τu−≤v≤τu
eu (v) = l,eu ≥ 0

)
where e is the excursion process. These random variables can also be defined up
to the last zero as

l+ (gt) = sup {(ds − gs) : gt > s ≥ 0,Ws ≥ 0}

and
h+ (gt) = sup {Ws : gt > s ≥ 0,Ws ≥ 0} .

V will be used to denote the length of an excursion, that is V (es) = τs − τs−.
Now, let us notice we have the following equalities of events

(τ > t) =
¡
D > l+ (gt)

¢\³
(Wt ≤ 0)

[³
(Wt > 0)

\
(t− gt < D)

´´
\¡

h+ (gt) < a
¢

\Ã
(Wt ≤ 0)

[Ã
(Wt > 0)

\
sup

gt≤u≤t
Wu ≤ a

!!
.
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We deduce that we can writeZ ∞

0
dtE

£
e−ρtIτ≤t

¤
= E

Z ∞

0
dte−ρtIl+(gt)<D (IWt>0It−gt<D + IWt≤0)

×Ih+(gt)<a
³
IWt>0Isupgt≤u≤tWu≤a + IWt≤0

´
.

Let us recall the balayage theory result mentioned in Chapter 3:

E
·Z ∞

0
dte−ρtF1 (Bu, u ≤ gt)F2 (Bu, gt ≤ u ≤ t)

¸
= E

·Z ∞

0
dse−ρτs−F1 (Bu, u ≤ τs−)

¸Z
n (dε)

Z V (ε)

0
dve−ρvF2 (εu, u ≤ v) .

Applying it to the particular case we are studying entails immediately

E
Z ∞

0
dte−ρtIl+(gt)<D (IWt>0It−gt<D + IWt≤0)

Ih+(gt)<a
³
IWt>0Isupgt≤u≤tWu≤a + IWt≤0

´
= E

·Z ∞

0
dse−ρτs−Il+(τs−)<DIh+(τs−)<a

¸
Z
n (dε)

Z V (ε)

0
dve−ρv (Iεv>0Iv<D + Iεv≤0)

³
Iεv>0Isupu≤v εu≤a + Iεv≤0

´
.

We will use William’s description of n, based on the maximum of the excursion.

• n
³
supu≤V (ε) εu ∈ dm

´
= dm

m2

• The excursion path conditionally to m is composed of two Bessel-3 processes
put back to back between 0 and their hitting times of m.

Let us also recall Itô’s description of the measure n: n (V (ε) ∈ dv) = dv√
2πv3

.

We now turn to the computation of the path integral. We are interested in

E
·Z ∞

0
dse−ρτs−Il+(τs−)<DIh+(τs−)<a

¸
.

We start with

e−ρτs−Il+(τs−)<DIh+(τs−)<a = 1+
X
0≤u<s

¡
e−ρτuIl+(τu)<DIh+(τu)<a − e−ρτu−Il+(τu−)<DIh+(τu−)<a

¢
.

But we also write easily that¡
l+ (τu) < D

¢\¡
h+ (τu) < a

¢
=

¡
l+ (τu−) < D

¢\³
(eu ≤ 0)

[³
(eu > 0)

\
(τu − τu− < D)

´´
\¡

h+ (τu−) < a
¢\Ã

(eu ≤ 0)
[Ã

(eu > 0)
\

sup
τu−≤v≤τu

eu (v) < a

!!
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Therefore, we have

e−ρτs−Il+(τs−)<DIh+(τs−)<a
= 1+

X
0≤u<s

Il+(τu)<DIh+(τu)<a³
e−ρτu

¡
Ieu≤0 + Ieu>0Iτu−τu−<D

¢ ³
Ieu≤0 + Ieu>0Isupτu−≤v≤τu eu(v)<a

´
− e−ρτu−

´
= 1+

X
0≤u<s

e−ρτu−Il+(τu−)<DIh+(τu−)<a³
e−ρV (es)

¡
Ieu≤0 + Ieu>0Iτu−τu−<D

¢ ³
Ieu≤0 + Ieu>0Isupτu−≤v≤τu eu(v)<a

´
− 1
´
.

Taking the expectation and applying the Compensation Formula yields

E
£
e−ρτs−Il+(τs−)<DIh+(τs−)<a

¤
= 1+ E

·Z s

0
due−ρτu−Il+(τu−)<DIh+(τu−)<a

¸
Z
n (dε)

³
e−ρV (ε)

¡
Iε≤0 + Iε>0IV (ε)<D

¢³
Iε≤0 + Iε>0Isup0≤u≤V (ε) εu<a

´
− 1
´
.

If we define

ϕD (s) = E
£
e−ρτs−Il+(τs−)<DIh+(τs−)<a

¤
then we know that

E
·Z ∞

0
dse−ρτs−Il+(τs−)<DIh+(τs−)<a

¸
=

Z ∞

0
dsϕD (s)

and

ϕD (s) = 1+

Z
n (dε)³

e−ρV (ε)
¡
Iε≤0 + Iε>0IV (ε)<D

¢³
Iε≤0 + Iε>0Isup0≤u≤V (ε) εu<a

´
− 1
´Z s

0
duϕD (u) .

Solving the differential equation gives directly

E
·Z ∞

0
dse−ρτs−Il+(τs−)<DIh+(τs−)<a

¸
=

1R
n (dε)

³
1− e−ρV (ε) ¡Iε≤0 + Iε>0IV (ε)<D¢ ³ Iε≤0 + Iε>0Isup0≤u≤V (ε) εu<a

´´ .
Rewriting the entire expression gives

E
£
e−ρτ

¤
= 1−ρ

R
n (dε)

R V (ε)
0 dve−ρv (Iεv>0Iv<D + Iεv≤0)

³
Iεv>0Isupu≤v εu≤a + Iεv≤0

´
R
n (dε)

³
1− e−ρV (ε) ¡Iε≤0 + Iε>0IV (ε)<D¢ ³Iε≤0 + Iε>0Isup0≤u≤V (ε) εu<a´´ .

This result ends the proof.
We now turn to the actual calculation of these integrals.
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Explicit computation of Itô measure integrals
We summarize the result in this

Lemma 16 For all positive ρ

E
£
e−ρτ

¤
= 1−

R a
0
dm
m2

³
1− E(3)0

h
e−ρ(Tm+T 0m)∧D

i´
R a
0
dm
m2

³
1− E(3)0

£
e−ρ(Tm+T 0m)ITm+T 0m<D

¤´
+ 1
a +

√
2ρ

−
R∞
0

dv√
2πv3

(1− e−ρv) + 1
a

³
1− E(3)0

£
e−ρTa∧D

¤´
R a
0
dm
m2

³
1− E(3)0

£
e−ρ(Tm+T 0m)ITm+T 0m<D

¤´
+ 1

a +
√
2ρ
.

with

E(3)0
h
e−ρ(Tm+T

0
m)ITm+T 0m<D

i
=

π4

4m4

Z D

0
due−ρu

Z u

0
dv
X
k∈Z

(−1)k+1 k2e−k2π2v
2m2

X
l∈Z
(−1)l+1 l2e− l2π2(u−v)

2m2 ,

E(3)0
h
e−ρ(Tm+T

0
m)∧D

i
=

π4

4m4

Z D

0
due−ρu

Z u

0
dv
X
k∈Z

(−1)k+1 k2e−k2π2v
2m2

X
l∈Z
(−1)l+1 l2e− l2π2(u−v)

2m2

+e−ρD
π4

4m4

Z ∞

D
du

Z u

0
dv
X
k∈Z

(−1)k+1 k2e−k2π2v
2m2

X
l∈Z
(−1)l+1 l2e− l2π2(u−v)

2m2

and

E(3)0
£
e−ρTa∧D

¤
=

Z D

0
dve−ρv

π2

2a2

X
k∈Z

(−1)k+1 k2e−k2π2v
2a2

+e−ρD
Z ∞

D
dv
π2

2a2

X
k∈Z

(−1)k+1 k2e−k2π2v
2a2 .

Proof. So as to compute these integrals, we have to study the ”joint law” under
Itô’s measure of the supremum and the length of an excursion. Also, we need the
joint law of a hitting time and the length of the excursion. First, let us see how
these laws intervene in our problem. As for the denominator:Z

n (dε)
³
1− e−ρV (ε) ¡Iε≤0 + Iε>0IV (ε)<D¢ ³ Iε≤0 + Iε>0Isup0≤u≤V (ε) εu<a

´´
=

Z
n (dε)

³
1− e−ρV (ε)Iε≤0 − e−ρV (ε)Iε>0IV (ε)<DIsup0≤u≤V (ε) εu<a

´
=

Z
n (dε) Iε≤0

³
1− e−ρV (ε)

´
+

Z
n (dε) Iε>0

³
1−e−ρV (ε)IV (ε)<DIsup0≤u≤V (ε) εu<a

´
and for the numerator:Z

n (dε)

Z V (ε)

0
dve−ρv (Iεv>0Iv<D + Iεv≤0)

³
Iεv>0Isupu≤v εu≤a + Iεv≤0

´
=

Z
n (dε)

Z V (ε)

0
dve−ρv

³
Iεv>0Iv<DIsupu≤v εu≤a + Iεv≤0

´
.
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In these integrals, the difficult terms are respectivelyZ
n (dε) Iε>0

³
1−e−ρV (ε)IV (ε)<DIsup0≤u≤V (ε) εu<a

´
(4.8)

and Z
n (dε)

Z V (ε)

0
dve−ρvIεv>0Iv<DIsupu≤v εu≤a

=

Z
n (dε)

Z V (ε)∧D∧Ta(ε)

0
dve−ρvIεv>0

=
1

ρ

Z
n (dε) Iε>0

³
1− e−ρ(V (ε)∧D∧Ta(ε))

´
. (4.9)

These expressions can be calculated using William’s description of Itô’s mea-
sure. Let us notice that, conditionally to the maximum of the excursion m, the
law of the life length V is the sum of two independent hitting times Tm (R) for a
Bessel-3 process. Also, we have ”in law”

Ta (ε) ∧ V (ε) =
¡
Tm (R) + Tm

¡
R0
¢¢
Im<a + Ta (R) Im≥a

for an independent Bessel-3 processR0. The law of Th (R) can be found for a Bessel-
3 starting at zero; we just illustrate the approach. From Borodin and Salminen
(1996, p. 339, formula 2.0.1) we get that for a Bessel-3 process R starting from a,
with h ≥ a,

Ea
·
e−

α2

2
Th(R)

¸
=
h

a

sinh (αa)

sinh (αh)
.

To obtain the law for the process starting at zero, we take the limit of the Laplace
Transform. We have

E0
·
e−

α2

2
Th(R)

¸
=

αh

sinh (αh)
.

This Laplace transform can be inverted (cf Biane and Yor (1987)) and gives

P0 (Th (R) ∈ dt) = π2

2h2

+∞X
k=−∞

(−1)k+1 k2e−k2π2t
2h2 dt. (4.10)

So we can write for 4.9

1

ρ

Z
n (dε) Iε>0

³
1− e−ρ(V (ε)∧D∧Ta(ε))

´
=

1

2ρ

Z a

0

dm

m2

Z ∞

0

¡
1− e−ρv∧D¢P0 ¡Tm (R) + Tm ¡R0¢ ∈ dv¢

+
1

2ρ

Z ∞

a

dm

m2

Z ∞

0

¡
1− e−ρv∧D¢P0 (Ta (R) ∈ dv)

=
1

2ρ

Z a

0

dm

m2

Z D

0

¡
1− e−ρv¢P0 ¡Tm (R) + Tm ¡R0¢ ∈ dv¢

+
1

2ρ

Z a

0

dm

m2

Z ∞

D

¡
1− e−ρD¢P0 ¡Tm (R) + Tm ¡R0¢ ∈ dv¢

+
1

2ρ

Z ∞

a

dm

m2

Z D

0

¡
1− e−ρv¢P0 (Ta (R) ∈ dv)

1

2ρ

Z ∞

a

dm

m2

Z ∞

D

¡
1− e−ρD¢P0 (Ta (R) ∈ dv) .
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Using 4.10 we obtain:

1

ρ

Z
n (dε) Iεv>0

³
1− e−ρ(V (ε)∧D∧Ta(ε))

´
=

1

2ρ

Z a

0

dm

m2
π4

4m4

Z D

0
du
¡
1− e−ρu¢ Z u

0
dv
X
k∈Z

(−1)k+1 k2e−k2π2v
2m2

X
l∈Z
(−1)l+1 l2e− l2π2(u−v)

2m2

+
1

2ρ

¡
1− e−ρD¢Z a

0

dm

m2
π4

4m4

Z ∞

D
du

Z u

0
dv
X
k∈Z

(−1)k+1 k2e−k2π2v
2m2

X
l∈Z
(−1)l+1 l2e− l2π2(u−v)

2m2

+
1

2aρ

Z D

0
dv
¡
1− e−ρv¢ π2

2a2

X
k∈Z

(−1)k+1 k2e−k2π2v
2a2

+
1

2aρ

¡
1− e−ρD¢Z ∞

D
dv
π2

2a2

X
k∈Z

(−1)k+1 k2e−k2π2v
2a2 .

Now, for 4.8, we can use the same calculation, and we obtainZ
n (dε) Iε>0

³
1−e−ρV (ε)IV (ε)<DIsup0≤u≤V (ε) εu<a

´
=

Z
n (dε) Iε>0Isup0≤u≤V (ε) εu<a

³
1−e−ρV (ε)IV (ε)<D

´
+

Z
n (dε) Iε>0Isup0≤u≤V (ε) εu>a

=
1

2

Z a

0

dm

m2

³
1− E(3)0

h
e−ρ(Tm+T

0
m)ITm+T 0m<D

i´
+
1

2

Z ∞

a

dm

m2

=
1

2

Z a

0

dm

m2

Ã
1− π4

4m4

Z D

0
due−ρu

Z u

0
dv
X
k∈Z

(−1)k+1 k2e−k2π2v
2m2

X
l∈Z
(−1)l+1 l2e− l2π2(u−v)

2m2

!

+
1

2a
.

As for the remaining terms:Z
n (dε) Iε≤0

³
1− e−ρV (ε)

´
=

1

2

Z ∞

0

dv√
2πv3

¡
1− e−ρv¢

=

r
ρ

2
,

and Z
n (dε)

Z V (ε)

0
dve−ρvIεv≤0

=
1

2ρ

Z
n (dε)

³
1− e−ρV (ε)

´
=

1

2ρ

Z ∞

0

dv√
2πv3

¡
1− e−ρv¢

=
1√
2ρ
.

So, we can gather all the terms and write the following Laplace transform,
using the previous Lemma:

E
£
e−ρτ

¤
= 1−ρ

R
n (dε)

R V (ε)
0 dve−ρv

³
Iεv>0Iv<DIsupu≤v εu≤a + Iεv≤0

´
R
n (dε) e−ρV (ε)Iε>0

³
Isup0≤u≤V (ε) εu>a + IV (ε)>D − Isup0≤u≤V (ε) εu>aIV (ε)>D

´ .
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Replacing the densities with their closed form expression gives the final result.
We can double-check the behavior of this expression as τ converges to Ta, by

seeing what happens when D goes to infinity. We know that

E(3)0
h
e−ρ(Tm(R)+Tm(R

0))∧D
i

= E(3)0
h
e−ρ(Tm(R)+Tm(R

0))ITm(R)+Tm(R0)<D + e
−ρDITm(R)+Tm(R0)>D

i
so

lim
D→∞

E(3)0
h
e−ρ(Tm(R)+Tm(R

0))∧D
i
=
³
E(3)0

h
e−T2m(R)

i´2
=

2ρm2

sinh2
¡
m
√
2ρ
¢ ,

and

lim
D→∞

E(3)0
h
e−ρTa(R)∧D

i
=

a
√
2ρ

sinh
¡
a
√
2ρ
¢ .

In addition,

lim
D→∞

E(3)0
h
e−ρ(Tm(R)+Tm(R

0))ITm(R)+Tm(R0)<D
i
=

2ρm2

sinh2
¡
m
√
2ρ
¢ .

We can writeZ a

0

dm

m2

³
1− E(3)0

h
e−ρ(Tm+T

0
m)
i´

=

Z ∞

0

dm

m2

³
1− E(3)0

h
e−ρ(Tm+T

0
m)
i´
−
Z ∞

a

dm

m2

³
1− E(3)0

h
e−ρ(Tm+T

0
m)
i´

=

Z ∞

0

dv√
2πv3

¡
1− e−ρv¢− 1

a
+

4ρ√
2ρ
¡
1− e2a√2ρ¢

=
p
2ρ− 1

a
+

4ρ√
2ρ
¡
1− e2a√2ρ¢ .

Thanks to a change of variable (x = eαz), it is easy to check thatZ b

a

dz

sinh2 (αz)
=

2

α

µ
e2αa

e2αa − 1 −
e2αb

e2αb − 1
¶
andZ ∞

a

dz

sinh2 (αz)
=

2

α (e2αa − 1) .

Also, let us notice that under Ito’s measure, William’s and Ito’s description of
the length of an excursion should agree. This is a quick way of showing that:

1

2

Z ∞

0

dv√
2πv3

¡
1− e−ρv¢

=

Z
n (dε) Iε>0

³
1− e−ρV (ε)

´
=

1

2

Z ∞

0

dm

m2

Z ∞

0
P0
¡
Tm (R) + Tm

¡
R0
¢ ∈ dv¢ ¡1− e−ρv¢

=

Z ∞

0

dm

2m2

Ã
1− 2ρm2

sinh2
¡
m
√
2ρ
¢! .
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In consequence, we have

lim
D→∞

E
£
e−ρτ

¤
= 1−

R a
0
dm
m2

³
1− E(3)0

h
e−ρ(Tm+T 0m)

i´
+
√
2ρ+ 1

a

³
1− E(3)0

£
e−ρTa

¤´
R a
0
dm
m2

³
1− E(3)0

£
e−ρ(Tm+T 0m)

¤´
+ 1

a +
√
2ρ

=
1
aE

(3)
0

£
e−ρTa

¤R a
0
dm
m2

³
1− E(3)0

£
e−ρ(Tm+T 0m)

¤´
+ 1

a +
√
2ρ

=

√
2ρ

sinh(a
√
2ρ)

2
√
2ρ+ 4ρ√

2ρ(e2a
√
2ρ−1)

=

1
sinh(a

√
2ρ)

2− 2

(1−e2a
√
2ρ)

=

³
1− e2a

√
2ρ
´

−2e2a√2ρ sinh ¡a√2ρ¢
=

³
1− e2a

√
2ρ
´

e2a
√
2ρe−a

√
2ρ
¡
1− e2a√2ρ¢ = e−a√2ρ,

As could be expected.
We can also check how the expression behaves as a → ∞. We can write

directly:

lim
a→∞E

£
e−ρτ

¤
= 1−

R∞
0

dm
m2

³
1− E(3)0

h
e−ρ(Tm+T 0m)∧D

i´
R∞
0

dm
m2

³
1− E(3)0

£
e−ρ(Tm+T 0m)ITm+T 0m<D

¤´
+
√
2ρ

−
R∞
0

dv√
2πv3

(1− e−ρv)R∞
0

dm
m2

³
1− E(3)0

£
e−ρ(Tm+T 0m)ITm+T 0m<D

¤´
+
√
2ρ
.

Now, using the agreement between Ito’s description and William’s, and by simpli-
fying some, we have

lim
a→∞E

£
e−ρτ

¤
=

R∞
0

dv√
2πv3

(1− e−ρvIv<D) +
√
2ρ− R∞0 dv√

2πv3

¡
1− e−ρv∧D¢−√2ρR∞

0
dv√
2πv3

(1− e−ρvIv<D) +
√
2ρ

=

R∞
0

dv√
2πv3

(1− e−ρvIv<D)−
R∞
0

dv√
2πv3

¡
1− e−ρv∧D¢R∞

0
dv√
2πv3

(1− e−ρvIv<D) +
√
2ρ

=
e−ρD

R∞
D

dv√
2πv3R D

0
dv√
2πv3

(1− e−ρv) + R∞D dv√
2πv3

+
√
2ρ

=

2e−ρD√
2πD√

2ρ+ 2
√
2ρ
³
e−ρD−1√
2π
√
2ρD

+N ¡√2ρD¢− 1
2

´
+ 1√

2πD

=

2e−ρD√
2πD

2 e−ρD√
2πDD

+ 2
√
2ρN ¡√2ρD¢

=
1

1+
√
2πDρe−ρDN ¡√

2ρD
¢ .

This is the result from Chesney, Jeanblanc, Yor (1997).
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Expression of the desired quantities
Using the preceding computations, we can write that for any positive ρ
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The other expression we are interested in can be rewritten, using the same
independence results as earlier,
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Now, we know that
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The proof of the theorem is now complete.

The large company’s strategic behavior

In the first section the strategic behavior of the small company was presented.
In the model, the small company knows exactly the investment level of the big
company when the latter acts as a monopolist and can therefore preempt it in all
cases.

We will consider in this section the case when the large company has a better
information. First, we will examine the situation where both companies are fully
informed. Then, we will consider on the contrary that the big company acts
strategically on the basis of an imperfect information concerning the small one.
Indeed, only the probability distribution of the small company investment level
could be known.
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If both firms have full information
Since both companies have advantages and disadvantages, there should be no
systematic preemption as it was the case in the preceding section.

The big company knows that the small company knows its monopolist opti-
mal investment level and its investment delay and that the latter firm will try to
preempt. The big company will therefore try to decrease its investment level in
order to avoid to be preempted. However, the small company will also decrease
its investment level in order to keep preempting the big one as long as possible.
At the limit, the small company won’t invest bellow its minimum cost level K2,
which is higher than the costs of the big one and also known by the latter firm.
Therefore, the small company will invest at its NPV level, and the big one will have
an optimal level strictly higher than its NPV level, but smaller than the minimal
cost level of the small firm and therefore than the monopolist optimal level.

The advantage of the small company consists of zero investment delay, the
advantage of the big one in smaller costs. Following the approach explained in the
first Section, we know the value of the big firm is given by:

V ∗1 (S0) = sup
L1

E
µ
exp

³
−rH+

L1,D

´µ
SH+

L1,D
−K1

¶
IH+

L1,D
<TK2

¶
V1(x) is a perpetual American up and out Barrier Call Option value, with a

Parisian exercise boundary.. In other words, when at the level L1 , below the
barrier K2, the decision to eventually exercise later is taken, the payoff is not the
intrinsic value L1 −K1. It is obtained after a lag D, only if the underlying value
has remained above L1 (and below the barrier K2) during a period of D units of
time.

Proposition 17 The value of the large firm if it knows the constraints of its
competitors is (keeping the notations defined in the first section) the supremum
over L1 of

V1 (S0) = ES0
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Proof. Using the theorem shown in Section 2, we can give a closed form expres-
sion for the value. Indeed, we have
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If we apply a change of measure and after a few substitutions, we obtain the
proposition’s result.

At the optimum, the first order condition gives the level at which the large
firm will trigger its decision. Note that in all cases, the value of the large firm
combined with the value of the small firm should equal the total value of the small
firm when it can preempt systematically. This can be clearly seen in the formal
expression of V1 (S0) and V (S0) (as given in the first section).
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If we do not assume that the small firm realizes a null profit (by investing
at its break-even point), then the strategies of both firms must be optimal in an
equilibrium.

V1(S0, L2) = supL1 E
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¶¾
These expressions can be written explicitly, thanks to the theorem of Section

2, but the resolution of the system cannot be done explicitly.

If the big firm has limited information
In this section, we study more particularly the behavior of the large firm when it
is aware there is a smaller firm that can potentially preempt its investment oppor-
tunity, but it does not know its constraints. Information is still asymmetrical in
that case, but we allow the big firm to follow a strategic behavior.. It is natural
to consider that the large firm has only access to aggregate information regarding
its competitor: industry surveys very often would give industry averages or distri-
butions that are relevant to the big firm’s analysis, but no precise and individual
information. So the large firm has to assume the characteristics of its opponent
are drawn from a known distribution, but their value is known only to the small
firm.

This ”distributional strategies approach” has been first developed by Milgrom
and Weber (1985), and then applied to real options by Lambrecht and Perraudin
(1994, 1996), who consider two similar firms with no delay constraint. We propose
here a simple and rational explanation for the use of an a-priori distribution for the
decision parameters of the large firm. In a specific industry, managers are able to
produce subjective distributions for the level of profitability at which competitors
would enter a market. This comes from industry wide surveys, but also from the
analysis they perform on their own company.

We assume that for the large company, the level at which the small company
will invest is a random variable independent from the source of randomness we have
been considering so far, and we write its density P

³cL2 ∈ dh´. This is valid at the
outset of the problem, that is when the large firm discovers it has an investment
opportunity, or when it discovers it has a competitor, if it has not invested yet.
Implicitly, we assume the large company is aware of the shape of the constraints
incurred by the small firm: it is making the hypothesis that the investment trigger
is a hitting time.

Finally, the large firm uses the available information, that is the filtration gen-
erated by the variable process, to update its subjective distributional assumption
over the value of its opponent trigger. It conditions its distribution assumption by
the fact the opponent has not invested yet. All the information the large firm has,
indeed, is whether the stopping time that represents its opponent’s threshold has
been realized or not.



75

To the large firm, the ”strategic” value of the project is therefore

V1 (St) = sup
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¶
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where M is the running supremum of the process S. We have Mt = sup0≤s≤t Ss
where 0 is the instant since when the large firm believes the small firm has contem-
plated investing. Here, on the contrary to the usual situation with these notations,
the random variable is cL2 and the parameter is Mt, as the latter is Ft-measurable.

We obtain immediately
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With time, the large firm changes its anticipation of cL2, as the running maxi-
mum increases, it changes its own threshold. The optimal investment threshold for
the large firm will therefore evolve and reflect its original subjective distribution,
the realized path of the observed variable, and the fact the smaller firm has not
invested so far.

However, since the small firm knows the characteristics of the large firm, it can
take into account in its strategy the fact that the large firm will alter its strategy.
If the large firm makes its decision thresholds path-dependent as we have described
above, then the small firm will take it into account. In such a situation, the optimal
strategy followed by the small firm becomes more complex to describe and model.

Concluding remarks

We have seen how large entities and smaller entities face different constraints when
they contemplate investing in a project. The value of these investments is related
to the value of certain options, when the investors are each in a monopolistic
situation. In a competition situation where the first to invest preempts totally
the project, we have exposed how a particular class of options, Parisian American
options, allows to model the combined constraints faced by investors. The largest
firm has an option to invest which can be exercised only under a given barrier
(over which the smaller firms invests immediately) and according to its investment
delay constraints.

We have proposed a pricing formula for these options which is decomposed
into its value if exercised at the upper barrier, and its value if it is exercised at
the Parisian time. To calculate the result, we have given a new result pertaining
to the first instant a Brownian Motion hits a level or spends more than a given
amount of time above a lower level.

The pricing formulas can be applied to specific competition situations which ex-
hibit a disbalance between the characteristics of the opponents. From the technical
viewpoint, the same approach helps value options where functionals of excursions
intervene (such as the first instant when the area of an excursion reaches a certain
level).
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An application to delayed investment decision

In this section we describe an application of the main theorem in Chapter 4 to
monopolistic investment decisions with a delay. As we explained in Chapter 2, a
Parisian stopping time can be used to account for an investment strategy under
a delay constraint. Indeed, it is more optimal to follow the Parisian rule, rather
than ”blindly” invest D units of time after a threshold has been reached by the
underlying variable.

This framework does not take into account the fact that, in reality, it may be
possible to speed things up at a cost: for a (significantly) higher entry cost, the
project could be started straight away. For example, if the delay is associated to a
financing constraint, it is certainly possible to issue very cheap capital, or borrow
money at a higher rate, and obtain the necessary funds immediately. In this case,
the cost for immediacy translates into higher entry costs.

We note

• Ki the cost associated to an immediate start of the project,
• Ke the cost of entry after a delay of D,
• L1 the level above which the underlying variable has to stay for D units of
time to trigger the investment at a cost of Ke,

• and L the level that will trigger an immediate investment at the cost of Ki.
Proposition 18 The value of an investment project, with barriers L1 ≤ L and
Ke < Ki is equal to
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L1,D
+ exp

³
−rH+

L1,D

´µ
SH+

L1,D
−K

¶
ITL>H+

L1,D

¸

=

µ
L1
S0

¶q 2r+m2

2σ2

h
(1− AB) fi (a) +

³
ea
√
2ρB− 1

´
K(fe)
K(1)

i
ea
√
2ρ − A

with ρ = r+m
2

2 , a =
ln
³
L
L1

´
σ , fi (z) = 1

δ e
mz (L1e

σz −Ki), fe (z) = 1
δ e
mz (L1e

σz −Ke)
and A, B, K defined in Theorem 13.

The optimal value of the investment is supL,L1 V (S0).
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A decomposition appears between the part of the price that is due to an im-
mediate entry at a higher cost,

µ
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and the part of the price linked to a an entry at the lower cost of Ke, but after a
delay of D. µ

L1
S0
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Chapter 5 NOISY INFORMATION
AND INVESTMENT DECISION1

We have seen in the previous chapters that firms managers have an option to invest
and should not invest as soon as it gets in the money. Real options are not only
academic thought exercises, they are more and more used by corporate decision-
makers, more or less consciously. As Luehrman puts it in the Harvard Business
Review (1998):

The analogy between financial options and corporate investments that
create future opportunities is both intuitively appealing and increas-
ingly well accepted. Executives readily see why investing today in
R&D, or in a new marketing program, or even in certain capital ex-
penditures (a phased plant expansion, say) can generate the possibility
of new products or new markets tomorrow.

When we look at empirical evidence concerning these theories, the option pre-
mium detected in those models seems to have a great statistical significance. How-
ever, most tests find that the option premium generated by the data is generally
spread over and under the value generated by the models 2.

In competitive markets the winner’s curse can account for the undervaluation
associated with standard real option models. Another reason for this underval-
uation may be that many models developed so far are too simple to account for
the investment projects’ embedded options. Managers can make choices about
the project’s characteristics and this flexibility creates embedded options that add
value to the project.

One other major characteristic of the capital budgeting process is the noise ex-
isting in the information available to the investor. Almost without exception, the
literature on real options has assumed that managers have perfect information con-
cerning the decision variable underlying their investment decisions. Nevertheless,
as noticed by Williams (1995), since most markets for real assets are decentralized,
the information available to the investor is generally noisy. Recently, Decamps and
Mariotti (2000) have looked at the effect of imperfect information in a duopolistic
competition case. They show that having to acquire information creates further
incentives to delay investment.

The present paper shows that the noise in the information available to the
investor can account for the overvaluation of real options models. We use the
computation of first passage times to derive closed-form formulas relating the value
of the investment opportunity to the noisy decision variable. Our setting for the
description of the noise is simple but brings out the generality of the idea. We
show that noisy information tends to raise the first best investment boundary. As
a consequence, the investment spending is depressed and the values of investment
opportunities are reduced in comparison with the perfect forecast case.

Section one presents the model. Simulation results are reported in section two.
Section three concludes the paper and discusses extensions.

1A VERSION OF THIS CHAPTER, CO-WRITTEN WITH ERWAN MORELLEC, HAS
BEEN PUBLISHED UNDER THE TITLE ”NOISY INFORMATION AND INVESTMENT DE-
CISION: A NOTE”, FINANCE (PUF) 1999, 20(2).

2This phenomenon is documented empirically in Quigg (1993).
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The model

In this section we develop a model where a firm has the opportunity to invest in
a project yielding a stochastic continuous stream of cash flows. Throughout the
analysis, capital markets are perfect with no transaction costs. Agents are risk
neutral3and may lend and borrow freely at a constant instantaneous riskless rate
r.

The noisy model
Consider a firm having the opportunity to invest in a new market. Once installed,
this firm produces output with a constant capital stock k and variable factors of
production. Uncertainty is represented by the demand shift parameter for the
good produced by the firm. We consider that the observed variable is generic and
of limited use to the firm. For example, it could be a national level of demand,
estimated and published by a trade association, while the firm’s market is in a
specific region, or in a specific sub-class of product. With respect to the observed
variable (the national level), the more specific information the firm is interested
in is to be considered like noise: we assume it can not be estimated per se, but
still some information can be gleaned about its properties. By conducting market
pilots or market tests, the firm can measure how its own market behaves with
respect to the national market. The firm can statistically estimate the mean and
the dispersion of the noise. However, these market tests cannot be performed
on a continuous basis, due to their cost. Consequently, the actual noise, as the
discrepancy between the national level of demand and the local level of demand
in our example, is unknown. The only variable on which the firm can rely for
its investment decision is the observed national demand; for a given level of this
national demand, the firm only knows the distribution of the local demand.

For the remainder of the paper, the observed or estimated demand shift para-
meter (xt, t ≥ 0) is ruled by the geometric Brownian motion

xT = xt exp
©¡
µ− σ2/2¢ (T − t) + σ (ZT − Zt)ª ≥ 0 (5.1)

where µ and σ are constant parameters and (Zt, t ≥ 0) is a standard Brownian
motion defined on a probability space (Ω,F ,P).

In a model with sequential search for investment opportunities, Williams (1995)
shows that if the equilibrium value of an asset is a geometric Brownian motion then
the average transaction price is ruled by a noisy geometric Brownian motion. In
this paper we develop the ideas in the simplest possible context. Since we do not
model the decision to acquire information to reduce noise, the error between the
observed state variable and reality should not increase in norm over time. This
means that the process modelling noise has to possess a limit distribution at infinite
times. Therefore, noise cannot be conditioned by the level of the index x.

A practical way is to use the paradigm of mean-reversion, an Ornstein-Uhlenbeck
process. We shall thus model noise as the exponential of the solution of

dyt = α (κ− yt) dt+ θdWt,

3When agents are risk averse, we can operate a change of probability measure using Cameron-
Martin-Girsanov theorem to develop the analysis in a risk neutral economy (see Harrison and
Pliska (1981)). This approach which relies on the dynamic completeness of financial markets is
used by He and Pindyck (1992) in a model where firms are characterized by a technology similar
to ours.
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where both processes Z andW are independent Brownian motions, that is hZ,W it =
0.

We can now define the real process for the demand shift parameter as

at = xte
yt

= x0e

³
µ−σ2

2

´
t+σZt+κ(1−e−αt)+e−αty0+θ

R t
0 e

−α(t−u)dWu

that is the exponential of a sum of a drifted Brownian Motion and an Ornstein-
Uhlenbeck process. This sum is a Gaussian process. yt is normally distributed
with mean and variance

E (yt) = κ
¡
1− e−αt¢+ e−αtE (y0) ,

Var (yt) = e−2αtVar (y0) +
θ2

2α

¡
1− e−2αt¢ .

Finally, if we want the law of yt to be constant over time, y0 has to be a Gaussian
with mean κ and variance θ2

2α independent of W and Z.

Optimal investment decisions with noisy uncertainty
We determine in this section both the value of the investment opportunity and
the level of the demand shift parameter that triggers investment. Hereafter we
consider that the project, once installed, goes on producing the output flow forever,
i.e. investment is irreversible4. Moreover, we assume that the technology of the
project is such that the instantaneous profit function of an active firm is given by

f (at, kt) = ψa
γ
t k
1−γ
t ,

where γ ∈ [0, 1[ and ψ is a scale parameter. This specification approximates the
case of a pure equity firm with a Cobb-Douglas production function and facing
an isoelastic demand curve. k is the production capacity, which we will assume
constant so that f (at, kt) = f (at) and k

1−γ
t can be ”integrated” in ψ. Such a

specification has already been used for the study of investment decisions under
uncertainty by He and Pindyck (1992) and Abel and Eberly (1996). Notice that
according to equation 5.1, we must have r > µγ + γ (γ − 1)σ2/2 for the expected
present value of operating profits to be finite.

As mentioned earlier, the investor cannot observe the real path of this state
variable. Therefore, the firm acts as if the demand shock was ruled by the geometric
Brownian motion (xt, t ≥ 0), whereas it is ruled by (at, t ≥ 0). We assume however
that the investor knows the first two moments of the distribution of the noise. If we
denote F (at,∞) the expected present value of future profits when the investment
is realized at time t, we have

F (at,∞) =
Z ∞

t
dse−r(s−t)Ext [f (as)] = ∆x

γ
t ,

with

∆ =
ψeγ(κ+γθ

2/4α)

r − γµ+ σ2γ (γ − 1) /2 .
4Abel, Dixit, Eberly, and Pindyck (1996) note that ”irreversibility may be important in prac-

tice because of ”lemons effects” and because of capital specificity”. The irreversibility assumption
is realistic at least for economic activities which are highly capital intensive such as mining projects
or offshore petroleum leases. Indeed for such activities, it is unusual to observe temporary shut
down or capacity reduction.
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The Markovian features of the model and the stationarity of the distribution
of the payoffs generated by the active project imply that investment occurs at the
first instant when the demand shock hits some constant threshold. Let us denote
by Th (x) the first passage time of x at the level h. It is defined by

Th (x) = inf {s ≥ 0, xs = h}

If we denote C the entry cost, the value of investment opportunity for a given
investment threshold h, h > x0, is given by

V (x0, h) = Ex0
·Z ∞

0
dte−rtf (at) It≥Th(x)

¸
−CEx0

h
e−rTh(x)

i
(5.2)

In this equation, the first term of the right hand side is the present value of
expected profits generated by the investment project. The second term is the
capital expenditure discounted between the expected investment time and the
current date.

Using the strong property of Brownian motion, we can write equation 5.2 as

V (x0, h) = Ex0
h
e−rTh(x)

¡
F
¡
aTh(x),∞

¢−C¢i .
Finally, using standard results concerning first passage times, we get the value of
the option to invest and the demand threshold triggering investment as

V (x0, h) =
³x0
h

´ξ "ψhγ exp ¡γ ¡κ+ γθ2/4α¢¢
r − γµ+ σ2γ (γ − 1) /2 −C

#
, (5.3)

and

h∗ = exp
µ
−γ
µ
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γθ2
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¶¶Ã
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!1/γ
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1
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1

2
− µ

σ2

¶2
.

In equation 5.3, the first term of the right hand side represents the value of one
dollar contingent on investment. The terms in the bracket account for the present
value of the payoffs generated by the project. Finally, the first term of the right
hand side in equation 5.4 accounts for the impact of the noise on the decision to
invest.

When the firm decides to enter in the market the profit flow is

f (at, k) = ψa
γ
t

Since the direct investment cost is C, equation 5.3 shows that it is optimal to
invest when the expected present value of the profit flow generated by an active
project exceeds its cost by the multiple ξ

ξ−γ > 1. This term is the usual option
value parameter representing the value of waiting to invest. This coefficient makes
the optimal investment threshold differ from the traditional Jorgensonian user cost
of capital.
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θ ρ (0.7, θ, 0.05)

0 1
0.02 1. 0004

0.04 1. 0017

0.06 1. 0038

0.08 1. 0067

0.10 1. 0106

θ ρ (0.7, θ, 0.05)

0.12 1. 0152

0.14 1. 0208

0.16 1. 0272

0.18 1. 0346

0.20 1. 0429

Table 5.1 Effect of Noise on Valuation

Noisy information and real options values

Using a sample of 2700 land transactions in Seattle5 , Quigg (1993) shows that real
options models perform better than standard Neoclassical models in explaining the
real investment process. However, the coefficient corresponding to the increase in
statistical significance of the option premium parameter in her regressions lies in
most subsamples between 0.5 and 1.3 instead of the unit value associated with the
empirical success of the models.

The undervaluation of the option model is often associated with the winner’s
curse in competitive markets6or with the value of the embedded options which,
most of the time, are not taken into consideration. We show in this section that the
noise in the information available to the investor can account for the overvaluation
associated with real options models. By noise in this context, we specifically mean
the uncertainty around the real level of the unobserved variable, rather than the
fact that the variable evolves randomly.

Let us assume without loss of generality that the noise is centered around the
decision process, i.e. κ = − θ2

4α . The first factor of the right hand side of equation
5.4 can then be written as

ρ (γ, θ,α) = exp

½
γ (1− γ) θ

2

4α

¾
> 1

Table 5.1 on p. 83 represents the value of this factor, as a function of θ ∈ [0, 0.2]
for γ = 0.7 and α = 0.05.

One can observe that when information is noisy, investors choose an investment
threshold higher than in standard real options model. Thus, the value of waiting
to invest is higher and noisy information tends to depress investment. The ratio of
the value of the investment opportunity with noisy information to that associated
to the perfect forecast case is given by

r = exp
©
ξ (γ − 1) θ2/4αª

5The building industry is characterized by many non-linearities for its profit and cost functions.
For example, there exists a concave relationship between price and building size. Quigg points out
that ”in the market for commercial space, there might be a downward sloping demand curve for a
given location, and it is likely that as the building size grows, the prime rentable space decreases
as the proportion of the total space (e.g. more interior offices). In the market for residential
space, doubling an appartment’s size does not normally double the rent [...].”

6See Paddock, Siegel, and Smith (1988) for an example illustrating this point. In a nutshell,
the ”winner’s curse” consists of the following reasoning: if someone wins a bidding contest, for
example at an auction, then by definition he will have paid the highest price. This price is higher
than the average of all the other bids, which can be taken as an indication of the real value of the
good in question.
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θ and σ 0.2 0.3 0.4
0.1 . 9675 . 97428 . 97775

0.15 . 92836 . 94306 . 95064

0.2 . 87621 . 90102 . 91393

Table 5.2 Combined Effect of Noise and Volatility

= exp


1
2
− µ

σ2
+

s
2r

σ2
+

µ
1

2
− µ

σ2

¶2 (γ − 1) θ2/4α
 .

Using the fact that r > µγ+γ (γ − 1)σ2/2, we know that
µ
1
2 − µ

σ2
+
q

2r
σ2
+
¡
1
2 − µ

σ2

¢2¶is
positive and the ratio r is decreasing as a function of θ and increasing as a function
of α. This ratio tels us the value of the investment opportunity if there is noisy
information (with an optimal investment threshold in this case) relative to the
value of the investment opportunity if there is no noise (with a different invest-
ment threshold, optimal in that case). Let us look at the value of this ratio as a
function of θ ∈ [0, 0.2] and σ ∈ [0.15, 0.3] for r = 0.075, µ = 0.01, γ = 0.7 and
α = 0.05.

Table 5.2 on p. 84 clearly shows how a greater noise in the estimation of the
unobserved variable’s position from the observed variable reduces the value of the
investment opportunity. If for example the quality of the market tests conducted
by a firm planning to invest in a new line of production deteriorated, the expected
value of the investment project would decrease quite significantly, as shown in the
numbers above. We have not addressed in our approach the issue of the cost of
information (see Descamps and Mariotti, 2000), as we considered that the quality
of available information is exogeneous for the firm. A simple rule to assess the
marginal interest in buying a better information could be simply based on the
increase in the project’s value due to a lower θ.

Our results indicate that noise in the information available to managers can
account for the fact that standard real options models overvalue investment op-
portunities. Indeed, we can see that the ratio lies between 0.8 and 1 for reasonable
input parameter values. Moreover, the lower the risk of the firm’s activity, the
larger this value reduction. With a higher risk (larger σ), the variations of the ob-
served state variable will so big they will tend to offset, at least partly, the effects
of the noise on firm value.

Concluding remarks

The simple model we develop in this chapter shows that the noise in the information
available to investors can explain part of their investment behavior. Indeed, the
value of the investment opportunity can be reduced significantly for reasonable
parameter values. The results in this chapter can be extended in several directions.
First of all, a non-constant distribution of the noise could allow us to model more
explicitly the acquisition of information by the investors. Second, strategic aspects
can be introduced by considering competition between several investors looking for
limited entry rights on a new market characterized by noisy information. In the
case of limited entry, the ”quota” could induce suboptimal rent runs with early
entry due to dumping as in Bartolini (1995). On the other hand, noisy information
could depress investment as the first mover would reveal the true state of nature
to other investors.
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Chapter 6 HEDGING REAL
OPTIONS WITH TRANSACTION

COSTS: A CONVERGENCE RESULT1
For many firms, especially in the mining, oil, or commodities industries, the value
of investment projects can be determined with real option theory. In these cases,
an important argument underlying the valuation of projects is that the business
risk, being linked to a traded product, can be hedged. Real options in that case
can be considered as equivalent to complex options written on a commodity. Most
large firms trading a commodity implement sophisticated hedging strategies to
eliminate the market risk and concentrate on the business risk where they are the
most efficient (oil companies can focus on oil exploration rather than running an
exposure to oil markets, mining companies can focus on devising the most efficient
ways of mineral extraction rather than playing the gold market...). When they
implement hedging strategies for their market risks, commodities firms often face
large transaction costs. Indeed, commodities are often traded the most heavily by
investment banks (these banks benefit from a large capital basis they can leverage
on commodities markets as well as in pure financial markets), which charge fees
or transaction costs for the liquidity they provide. Because of these transaction
costs, the valuation of real options should be altered.

In this chapter, we address the issue of hedging real options, and more generally
hedging complex options, using an optimal combination of the underlying product
and other derivatives written on it. The optimal hedging basket should minimize
transaction costs. There is a trade-off between hedging with a derivative that
replicates locally well the real option but with a high transaction cost, or with the
underlying at a lower transaction cost but a higher frequency of rehedging.

There have been numerous approaches to study the pricing and hedging of
derivative products in a continuous setting when there are transaction costs. The
way these costs are modelled greatly conditions the tractability of the results. In-
deed, as soon as transaction costs are considered to be proportional and not neg-
ligeable, a utility function must be specified for the trader, and the price verifies a
free-boundary problem, the dimension of which is necessarily more than 3. Results
can only be obtained numerically, as it is done in Davis et Al.. (1993), even in
the simplest setting: opportunistic utility function, geometric Brownian Motion to
model the underlying’s price, European path-independent payoff, hedging strategy
restrained to using the underlying.

In a series of papers, Hoggard et Al.. (1994), Whalley and Wilmott (1994 and
1997), efficient approximations for this kind of model have been developed. These
approximations are based on asymptotic analysis, and suppose that transaction
costs as well as the time delay between two portfolio rehedgings converge to zero.
They write, after rather tedious calculations, the price of a plain-vanilla option,
as the solution to an Integro-Partial Differential Equation, and propose numerical
solutions. They also provide the limit hedging strategy for an arbitrary transaction
cost structure. This model has not been extended to the path-dependent case.

1A SHORTER VERSION OF THIS CHAPTER HAS BEEN PUBLISHED UNDER THE
TITLE ”A TRANSACTION COST CONVERGENCE RESULT FOR GENERAL HEDGING
STRATEGIES” IN STOCHASTIC MODELS (DEKKER), 17(3), PP. 313-339 (2001).
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In Hoggard et Al.. (1994), in Dewynne et Al.. (1995), and in Henrotte (1994),
the particular case of proportional transaction costs going to zero as hedging fre-
quency goes to infinity has been studied, along the lines of the seminal paper of
Leland (1985). This model allows a perfect replication of the payoff, and there-
fore there is no need to specify a utility function. Prices are given as the solution
of a two-dimensional non-linear PDE. However, in Hoggard et Al.. (1994) and
Dewynne et Al.. (1995), the authors base their model on an assumption of risk
neutrality for the trader. Avellaneda and Paras (1994) also assume risk neutrality
with respect to hedging residuals, but they consider non-convex payoffs. They
study different ways of solving the non-linear PDE when it is ill-posed, by using
super-replication. In their setting, it is not worth rehedging sometimes. On the
subject of hedging or not, Taleb (1997) considers that in fact market-makers don’t
pay transaction costs, and those who do have no interest in hedging options. In
Henrotte (1994), the author shows the convergence of discrete transaction costs un-
der the assumption the payoff is European, convex, and path-independent. He also
studies the behavior of the hedging error at the limit, and the case where portfolio
rehedgings are not blindly carried out, but triggered by some price movements.

In Dewynne et Al. (1995), a model is developed which gives the price and
hedging strategy in the path-dependent case, but in a particular setting. We note
that there are very few approaches which have given closed-form formulae when
there are transaction costs, barring the simplest model derived by Leland. On the
subject of the convergence of option prices with transaction costs, Kabanov and
Mher (1997) have shown that one has to chose a very precise relationship between
the frequency of rehedgings and transaction costs so that hedging errors converge
to zero if hedging frequency increases indefinitely..

Our target in this chapter is to extend the limit model to the case of a dynamic
hedging strategy using an arbitrary set of derivatives, on which transaction costs
are very small and hedging frequency is very high. We give a thorough proof of the
convergence of the price of the derivatives hedged under these conditions towards a
non-linear PDE. This constitutes a generalization of static hedging, which assumes
that the replication portfolio, composed of a range of simple derivatives, is not
rebalanced over time. Static hedging has been analyzed in Dermann et Al.. (1994)
for example.

We will mainly follow Henrotte’s approach. We will not study the behavior
of hedging errors, but we will show the convergence of transaction costs without
neither convex hypotheses nor path-independency hypotheses, in the case of a
”blind” hedging strategy (rehedging intervening periodically) and in the case of a
more subtle hedging strategy.

The most important aspect of the model is that it will allow us to contemplate
hedging not only with the underlying, but with any other simple derivative written
on the underlying. Because of the redundancy of the model, it will be possible
to still have a perfect replication. This ability to choose to allocate the hedging
strategy among different derivatives allows traders to choose the optimal strategy
with respect to transaction costs. Their target is to minimize the cumulated trans-
action costs, knowing that sometimes some products are cheaper than others, that
some products better replicate the payoff than others, but their transaction costs
structures are different. We will also see how choosing the best products to hedge
also allows the existence of the solution to the equation verified by the price.

The paper is organized as follows: in the first section, the model is presented.
First, some particular aspects of the standard Black-Scholes model are detailed,
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so as to be able to model investment into various simple derivatives for hedging
purposes. The case of path-dependent payoffs is also examined to give a good basis
for the analysis in the case of transaction costs. Then, the transaction costs models
are introduced, and prices are expressed as the solutions of non-linear partial
differential equations in the path-independent case, and as solution of functional
equations in the path-dependent case.

The proof of the convergence result is provided in the second section, and
involves a series of thorough applications of Taylor’s theorem.

In the third section, We discuss the optimization procedure to follow so as to
determine the optimal hedging allocation with respect to transaction costs, and
we show the existence of solutions to the pricing equation for European payoffs.

The fourth section concludes the paper, and the fifth section is an appendix,
providing the reader with a proof of the convergence of transaction costs in the
path-dependent case.

The model
Derivatives redundant hedging
Black-Scholes model assumes, among other things, that it is possible to perfectly
replicate the payoff of a derivative product with a self-financing portfolio. If there
is only one source of risk, it implies that all the derivatives that can be written
on an underlying financial asset are redundant. It makes possible to hedge any
derivative with as many other derivatives as one wishes, including the underlying,
without changing the price. In Black-Scholes’ setting, there is no clear advantage
to such a strategy, but it can be of great help if markets are not frictionless, as we
will see later on.

The objective in this section is to determine the required amounts of various
hedging derivatives to hold in the replication portfolio, so as to obtain a perfect
replication, and following, the same price as in Black-Scholes model. We will focus
on the simplest approach to model the underlying price, and will use a geometric
Brownian Motion.

We start by defining our notations. We introduce a diffusion process to model
the underlying price:

dSt
St

= µdt+ σdBt (6.1)

where B is a Brownian Motion on the measured space (Ω,F ,P), and (Ft)t≥0 is
the natural filtration of B. Since there is only one source of noise, the market is
complete.

The path-independent case and the partial differential equation ap-
proach

We suppose there is a constant risk-free rate r associated to a numeraire process
S0, and we want to hedge and price a derivative product, whose price will be noted
h (t, St). Indeed, it will be first supposed that the payoff of this derivative product
is σ (ST )-measurable, with T fixed. We also define a set of plain-vanilla options,
including the underlying itself, which can be defined as a call with a null exercise
price, indexed by k ∈ Γ where Γ is numerable, and note their prices Ck (t, St).
These prices follow from the application of Black-Scholes formula. In most cases,
the set of derivatives used for hedging would be finite, but perpetual products
may require an infinite set. It is possible to generalize all the following arguments
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to a continuous set of hedging products (but compact), though it does not either
respect market practice, nor bring any additional clarity to the analysis.

A hedging strategy based on the underlying financial asset is an adapted process¡
∆,∆0

¢
such that

dh (t, St) = ∆tdSt +∆
0
tdS

0
t and

h (t, St) = ∆tSt +∆
0
tS
0
t . (6.2)

∆ reflects the number of underlying units which are held in the replication port-
folio, and ∆0 is the amount put in the cash deposit. We also need the following
integrability conditions:

E
µZ T

0
∆2tdt

¶
< +∞ and

E
µZ T

0

¡
∆0t
¢2
dt

¶
< +∞.

From the definition, and since dS0t = rS
0
t dt, it is clear that

dh (t, St) = rh (t, St) dt+∆tdSt − r∆tStdt
= rh (t, St) dt+ σ∆tStdBt +∆tµStdt− r∆tStdt. (6.3)

If we consider replicating by means of the various simple options, then we
extend the definition of a strategy to a couple

¡
Υ,∆0

¢
where ∆0 is still an adapted

process but Υ is an adapted process taking values in R|Γ|, such that

dh (t, St) =
X
k

Υkt dC
k (t, St) +∆

0
t rS

0
t dt

h (t, St) =
X
k

ΥktC
k (t, St) +∆

0
tS
0
t (6.4)

which implies

dh (t, St) = rh (t, St) dt+
X
k

Υkt dC
k (t, St)− r

X
k

ΥktC
k (t, St)dt (6.5)

Implicitly, it is assumed that the simple options are only used in replacement of the
financial underlying part of the replication strategy, and the balance between cash
investment and risky investment remains the same. The investor has an absolute
freedom as for the choice of the allocation amongst the different hedging products.
In any case the price remains the same, as options are redundant. Using Itô’s
theorem, we can write that

dCk (t, St) = Ckt (t, St)dt+C
k
S (t, St)µStdt+C

k
S (t, St)σStdBt (6.6)

+
1

2
S2t σ

2CkSS (t, St) dt.

Then, by inverting the sum and the stochastic integral2, we haveX
k

Υkt dC
k (t, St) =

X
k

ΥktC
k
t (t, St) dt+

X
k

ΥktC
k
S (t, St)µStdt

+
X
k

ΥktC
k
S (t, St)σStdBt

+
1

2

X
k

Υkt S
2
t σ
2CkSS (t, St)dt. (6.7)

2Using a special Fubini theorem, cf Protter (1994), p. 160. We use the fact that the numerable
sum is a particular case of integration with a positive finite measure (the Dirac mass).
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Again, thanks to Itô’s theorem, we know that

dh (t, St) = ht (t, St) dt+ hS (t, St) dSt +
1

2
hSS (t, St)d [S]t

= ht (t, St) dt+ hS (t, St)µStdt+ hS (t, St)σStdBt

+
1

2
S2t σ

2hSS (t, St) dt. (6.8)

Using Doob-Meyer’s identity theorem (cf Protter (1994), p. 94), we obtain from
the above equations that the following identity must be verified:

hS (t, St) =
X
k

ΥktC
k
S (t, St) . (6.9)

If CkS (t, St) 6= 0, we can choose Υkt = ηkt
hS(t,St)

CkS(t,St)
, which is consistent with the

identity, if
P
k η

k
t = 1. To be sure that the delta of the plain-vanilla options is not

zero, we can suppose that they are sold just before their maturity3. It is therefore
possible to hedge a long maturity option with shorter ones, as far as these options
are phased out of the hedging portfolio -strictly- before maturity. The problem
posed by hedging with shorter-lived options is that the amount received at maturity
is ”discrete”, in the sense that it is not infinitesimal. The set of hedging options
being discrete, it comes down to shifting from the position taken in the short-lived
option to the other ones, which are still alive, exactly when the payoff has been
paid. This puts a special constraint on η, the ”short-lived component” of which
must then be set at zero at maturity date. The problem we face is also that if,
as we will do it later, we consider that transactions costs exist but are very small,
then a finite number of discrete transactions, with non-infinitesimal amounts, will
not cost anything, whereas the same amount traded little by little, as an infinite
number of infinitesimal transactions, will cost some money, which is exactly the
effect we want to study. In fact, it boils down to setting an upper limit in the
speed at which transactions can be carried out.

It appears clearly that if some of the hedging products are shorter-lived than
the derivative hedged by the trader, then there will be at most a finite number
of shifts in the position held by the trader, and we do not mind having a finite
number of finite-sized transactions. Indeed, we will see later that in that case, and
under our hypotheses, the induced costs will be negligeable.

We also add the constraint that η ≥ 0. As we are in the case of a non-
path-dependant derivative, we can restrict ourselves to the strategies η such that
ηkt = η

k (t, St).
As we want to avoid trading big amounts at the same time, and prefer only

trading infinitesimal amounts, as it is the case in the standard Black-Scholes model,
then it is important that the strategy ηk (t, St) should be differentiable with respect
to t and S, as we will see when we take into account the effects of transaction costs.

We have therefore clearly defined a hedging strategy for non-path-dependant
assets using various simple derivative products as a simple set of weights.

The path-dependant case, with the Risk-Neutral probability approach

We are now trying to write a hedging strategy in the case of a path-dependant
product. In the classical model, the price corresponds to the expectation of the

3That is, we can fix a small positive number ρ such that all options are sold ρ units of time
before their maturity.
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payoff under a particular probability, and we expect to obtain the same result in
our new setting.

First of all, we need to detail a few points about the original model. Unlike the
preceding model in which the use of Itô’s theorem has allowed us to identify the
replication strategy with the derivative of the price with respect to the underlying,
the risk-neutral probability approach does not give this result in itself. Indeed,
the identification of a probability measure such that the present values of prices
are martingales along with the martingale representation theorem only allow us
to write the price of an FT -measurable random variable and not the replication
strategy. But it is widely used that this strategy is still the derivative of the price
with respect to the underlying. We are going to clarify this point and see which
hypotheses are sufficient to have this result.

We consider the simplest case, that of a FT -measurable, square integrable,
payoff X. The self-financing portfolio (as we do not introduce transaction costs
yet) has the value V .

Remark 3 The implicit assumption made is the following: V and the final payoff
X depend on T, ST , and HT where H is a finite variation adapted process4 and
(S,H) is Markovian.

We still write the same accounting equation for the portfolio:

dV = ∆dS + rV dt− r∆Sdt
V (T ) = X (6.10)

but now, the application of Itô’s theorem gives, since H is a finite variation process

dV = VSdS + Vtdt+
1

2
VSSd [S] + VHdH. (6.11)

And by identification we have the result, that is ∆ = VS . Of course, we cannot get,
properly speaking, a real PDE as before, since it happens to be rather a functional
equation, due to the intervention of H.

Now we can return to the standard approach for pricing. We know, thanks to
Girsanov’s theorem and the martingale representation theorem, that there exists
a unique probability measure Q such that under Q,

• ¡Bt + µ−r
σ t = Zt

¢
t≥0 is a Brownian Motion

• For any price V associated to a replication strategy ∆, VS0 is a Q-local mar-
tingale

• V (t, St,Ht) = EQ
£
e−r(T−t)X

¯̄Ft¤
This approach does not give directly the replication strategy, but we have

exposed a way of writing it.
Now, let us return to the more general case of the extended replication strat-

egy. We know that the price remains the same if we use redundant assets for
hedging purposes, and still corresponds to the expectation under the risk-neutral

4That is, a process which equals the difference of two increasing processes. It can be checked
that for ”usual” exotic products, the part of the price which is a functional of the path of the
underlying constitutes a finite variation process.
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probability, but we have to determine the amounts invested in the different assets.
We can write the evolution of the value of a strategy as

dh (∆)t = rh (∆)t dt+
X
k

Υkt dC
k (t, St)− r

X
k

ΥktC
k (t, St)dt

= rh (∆)t dt+∆tdSt − rSt∆t
h (∆)T = X (6.12)

now associated to an FT -measurable payoff X.
An example of a financial product depending on S and H would be a lookback

option with maturity T . Its payoff would be (ST − inf0≤s≤T Ss)+, or (ST −HT )+
with Ht = inf0≤s≤t Ss which is a finite variation process. When there are no
transaction costs, the price at time t < T of the lookback option is a known
smooth function of St and Ht. Another example is the case of an Asian option
(or average option). The payoff in this case does not depend on S, but on the
process Ht =

R t
0 Ssdt, which has finite variations. Again another example would

be an option of the maximum: an interesting case for investors who leverage on
volatility is Ht = sup0≤s≤t Ss -inf0≤s≤t Ss.

Let us now have a closer look at the replication strategy, so as to see what is
changed if we are allowed to use other financial assets than the underlying. We
make the same assumptions as earlier, that is the price h is supposed to depend
on a finite variation process representing the path-dependency of the payoff. We
can write the two versions of dh as earlier, and check immediately by identification
that we have to chose

Υt (dk) = ηkt
hS (t, St, Ht)

CkS (t, St)
and therefore

hS (t, St) =
X
k

ΥktC
k
S (t, St) (6.13)

for the extended replication strategy. We can consider that ηt = η (t, St,Ht) to
take into account the effects of path-dependency. It is also natural to add the
constraints we have presented earlier.

Leland’s hedging strategy
In this section we use the preceding setting in a particular case of transaction
costs derived from Leland’s model. We consider the case when transaction costs
are proportional and very small, and hedging frequency is very high. We will see
that at the limit, when transaction costs are paid at a continuous rate it is possible
to build a portfolio that perfectly replicates the derivative payoff.

Henrotte (1994) and Ahn et Al.. (1996) study the limit behavior of the vari-
ance between the payoff of an option and the value of the replication portfolio.
It has appeared difficult in the generalized setting we took, to extend the results
derived in the above mentioned papers. Henrotte’s assumption of a convex payoff
also fits poorly with the reality of a traded portfolio. Indeed, it is highly probable
that a trader will hold puts as well as calls of different strike prices, written on the
same maturity. The problem is that as soon as transaction costs intervene, the
pricing operator associating a price to a random variable is no more linear, due to
the absence of self-financing. Then it is not possible to make a breakdown of the
portfolio into convex and concave payoffs, which in return makes it almost impos-
sible to use the results assuming convex payoffs in practice. This non-linearity also
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implies the following natural remark: the minimum (break-even) price at which a
trader can sell a derivative depends on the composition of his portfolio at this time.
There are indeed obvious economies for the transaction costs to pay if a product
to sell perfectly fits into the ”holes” left by the ones already in the portfolio.

We consider that transaction costs as well as the constant time between two
portfolio rehedgings depend on a small parameter ε, such that both converge to-
wards 0 with ε, with their ratio remaining constant. Then, at the limit, hedging
is perfect, and transaction costs are paid in a continuous mode. We intend to use
such a limit model, considering that transaction costs are small enough so that the
limit model is a good proxy for the non-limit one, and the frequency of rehedging
is high enough so that the hedging error may be neglected.

We write Dεt the value of the portfolio in the non-limit case, that the trader
constitutes to attempt to hedge the derivative. It is not a perfect hedge since
rebalancings intervene only at discrete times. We will show that the value of the
portfolio in the non-limit case converges in some suitable sense to h, the value in
the limit case.

First, we write ∆t the delay between two consecutive rehedgings of the port-
folio, for a given maturity T . We define the proportional transaction costs to be
εδk

¡
t, Ckt

¢
, depending on the product k being considered. We write τk

¡
t, Ckt

¢
=

εδk(t,Ckt )√
∆t

, which is assumed to remain constant when ε and ∆t both tend to zero.

This gives an implicit definition of τk.
We suppose that in the non-limit case, the trader uses the limit case optimal

hedging strategy. If the parameters are small enough, then the hedging error is
negligeable, and this hedging strategy is relevant. The trader is in fact supposed
to be risk-neutral with respect to the residual hedging error in the non-limit case.
At the limit, this assumption is not needed anymore as replication is perfect.

We can write

DεT = h (0, S0)

+
X
tj≤T

X
k

ηk (tj , Sj)
hS (tj , Sj)

CkS (tj, Sj)

³
Ck (tj+1, Sj+1)−Ck (tj, Sj)

´
−
X
tj≤T

X
k

¯̄̄̄
ηk (tj+1, Sj+1)

hS (tj+1, Sj+1)

CkS (tj+1, Sj+1)
− ηk (tj, Sj) hS (tj , Sj)

CkS (tj , Sj)

¯̄̄̄
×
√
∆tτk

³
tj+1, C

k
j+1

´
Ck (tj+1, Sj+1)

+
X
tj≤T

(h (tj , Sj)− SjhS (tj, Sj))
³
S0j+1 − S0j

´
S0j

. (6.14)

The first sum is the value of the part of the portfolio which tries to track the payoff
of the derivative, using various other options. The second sum is the cumulated
amount of the transactions costs induced by the hedging strategy, and the third
sum is the amount invested in the cash deposit, that we have written as the whole
value minus the amount invested in risky assets. The transaction costs are paid
on all the amounts transferred from risky assets to cash and reciprocally; and
reweighing the position from one risky asset to the other has to be done via the
cash deposit. It appears clearly in 6.14 that all these possible movements are
accounted for. We now state a first result, based on the convergence Theorem 23
shown in the next section.
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Theorem 19 Assuming that

• h and η belong to C3,3, with bounded derivatives
• τk, for each k, belongs to C2,2

then the value of the derivative when transaction costs and the delay between
portfolio rehedgings tend together to zero verifies the following partial differential
equation:

r (ShS − h) + ht + σ
2

2
S2hSS =

r
2

π
σ
X
k

τkCkS

¯̄̄̄
¯ηkS hSCkS − ηk hSSC

k
S − hSCkSS¡
CkS
¢2

¯̄̄̄
¯ .

Proof. We start by applying Theorem 23 on p. 100. As the assumptions are
verified for this theorem, we know that for each kX

tj≤T

¯̄̄̄
ηk (tj+1, Sj+1)

hS (tj+1, Sj+1)

CkS (tj+1, Sj+1)
− ηk (tj , Sj) hS (tj, Sj)

CkS (tj, Sj)

¯̄̄̄
×
√
∆tτk

³
tj+1, C

k
j+1

´
Ck (tj+1, Sj+1) (6.15)

converges in L1 towardsr
2

π
σ

Z T

0
τkCkS

¯̄̄̄
¯ηkS hSCkS − ηkhSSC

k
S − hSCkSS¡
CkS
¢2

¯̄̄̄
¯ ds. (6.16)

On the other hand, standard stochastic integration theory states that for each
k X

tj≤T
ηk (tj , Sj)

hS (tj, Sj)

CkS (tj , Sj)

³
Ck (tj+1, Sj+1)−Ck (tj, Sj)

´
(6.17)

converges in L2 to
R T
0 η

k hS
CkS
dCk , which by definition equals

R T
0 hSdS.

It is also clear that the sumX
tj≤T

(h (tj , Sj)− SjhS (tj, Sj))
¡
S0j+1 − S0j

¢
(6.18)

converges in the same way to r
R T
0 (h− ShS) ds.

Summing over k does not change the result, and we obtain that the value of
the replication portfolio DεT converges in L

1 to

h (T, ST ) =
X
k

Z T

0
ηk
hS
CkS
dCk + r

Z
(h− ShS) ds

+

r
2

π
σ
X
k

Z T

0
τkCkS

¯̄̄̄
¯ηkS hSCkS − ηkhSSC

k
S − hSCkSS¡
CkS
¢2

¯̄̄̄
¯ ds

=

Z T

0
hSdS + r

Z T

0
(h− ShS)ds

+

r
2

π
σ
X
k

Z T

0
τkCkS

¯̄̄̄
¯ηkS hSCkS − ηkhSSC

k
S − hSCkSS¡
CkS
¢2

¯̄̄̄
¯ ds.(6.19)
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But, thanks to Itô’s theorem, we know that

h (T, ST ) = h (0, S0) +

Z T

0
hSdS +

Z T

0
htdt+

σ2

2

Z T

0
hSSS

2ds. (6.20)

Finally, with the help of the Meyer’s identification theorem (cf. Protter, 1994), we
can write the expected PDE

The risk-related hedging strategy
Following Henrotte (1994) we study the case where the portfolio is rehedged at
certain times, depending on the evolution of the underlying’s price. In his paper,
Henrotte deals with a European, path-independent, and convex payoff option. As
we wished to price non-convex portfolios, it has been necessary to reduce the set
of possible triggering events for the reweighing to take place.

We now consider the following hedging strategy: as soon as some particular
measure of a deviation from the ideal quantity of underlying holding deviates for
more than a given percentage, the holding of this underlying are changed to the
ideal ones. We also suppose that the right quantity of holding is given by the
delta, that is, the derivative of the price with respect to the underlying’s price.
Indeed, we consider that the trader wants to minimize his local risk, as in Hoggard
et Al.. (1994), as opposed to maximizing a utility function on terminal wealth. It
is clear that if the percentage in question is non-zero, then hedging is not perfect
and there is a replication error.

We consider a portfolio whose payoff depends on the underlying in a European
way, without depending on the path followed by the underlying. We write the
price of the portfolio at the limit h (t, St). h is assumed to be smooth enough so
that we can define its successive derivatives. Again, we write Dεt the value of the
replication portfolio, in the non-limit case. We will show that the value of the
portfolio in the non-limit case converges to h.

We define, as in the preceding sub-section, the proportional transaction costs
to be εδk

¡
t, Ckt

¢
, ak the percentage deviation at which the portfolio is hedged, and

bk such that 1 − e−ak = eb
k − 1. We write τk (t, St) = εδk(t,Ckt )

1−e−ak which remains

constant when ε and a both tend to zero. We also note the hedging instants tkj ,
which are defined for a positive real number ξ as tk0 = 0 and

tkj+1 = T ∧ inf
½
t ≥ tkj : ηk (t, St)

hS (t, St)

CkS (t, St)
=

I¯̄̄̄
¯ηk(tj ,Sj) hS(tj,Sj)Ck

S(tj ,Sj)

¯̄̄̄
¯>ξ
ηk (tj , Sj)

hS (tj , Sj)

CkS (tj, Sj)
e−a

k

+I¯̄̄̄
¯ηk(tj ,Sj) hS(tj ,Sj)Ck

S(tj ,Sj)

¯̄̄̄
¯≤ξ
µ
ηk (tj, Sj)

hS (tj , Sj)

CkS (tj, Sj)
+ ξ

³
1− e−ak

´¶

or I¯̄̄̄
¯ηk(tj ,Sj) hS(tj,Sj)Ck

S(tj,Sj)

¯̄̄̄
¯>ξ
ηk (tj , Sj)

hS (tj, Sj)

CkS (tj , Sj)
eb
k

+I¯̄̄̄
¯ηk(tj ,Sj) hS(tj ,Sj)Ck

S(tj ,Sj)

¯̄̄̄
¯≤ξ
µ
ηk (tj, Sj)

hS (tj , Sj)

CkS (tj , Sj)
+ ξ

³
eb
k − 1

´¶(6.21)
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This definition implies that the portfolio is rehedged with respect to any of
the underlyings derivatives under consideration as soon as the optimal quantity
which should be held has moved by a certain amount. Be this variation due to a
necessary rehedging or to a change in the decision parameter given by the measure
η, the part of the portfolio in question is readjusted. We avoid problems when
the holdings tend to zero, in which case it is not possible to refer to a percentage
variation of the delta. We consider that as soon as the delta is sufficiently close to
zero, the variation becomes an absolute value. Note that if we are in a situation
such that for all t

ηk (t, St)
hS (t, St)

CkS (t, St)
> 0 (6.22)

then this problem does not appear.
We consider that in the non-limit case, the derivative portfolio is sold at the

price it would have in the limit-case, that is h. Therefore we can write

DεT = h (0, S0)

+
X
tj≤T

X
k

ηk (tj , Sj)
hS (tj , Sj)

CkS (tj, Sj)

³
Ck (tj+1, Sj+1)−Ck (tj, Sj)

´
−
X
tj≤T

X
k

¯̄̄̄
ηk (tj+1, Sj+1)

hS (tj+1, Sj+1)

CkS (tj+1, Sj+1)
− ηk (tj, Sj) hS (tj , Sj)

CkS (tj , Sj)

¯̄̄̄
×
³
1− e−ak

´
τk
³
tj+1, C

k
j+1

´
Ck (tj+1, Sj+1)

+
X
tj≤T

(h (tj , Sj)− SjhS (tj, Sj))
³
S0j+1 − S0j

´
S0j

. (6.23)

The following result relies on Theorem 24 shown in the next section.

Theorem 20 Assuming that

• h and η belongs to C3,3, with bounded derivatives
• τk, for each k, belong to C2,2

then the value of the derivative when transaction costs and the rehedging spread
tend together to zero verifies the following partial differential equation:

r (ShS − h) + ht + σ
2

2
S2hSS = σ

2
X
k

S2τkCk
µ
ηkS

hS
CkS
+ ηk

hSSC
k
S−hSCkSS
(CkS)

2

¶2
I¯̄̄̄
ηk

hS
Ck
S

¯̄̄̄
>ξ

¯̄̄
ηk hS

CkS

¯̄̄
+ ξI¯̄̄̄

ηk
hS
Ck
S

¯̄̄̄
≤ξ

.

Proof. By definition, we have

³
1− e−ak

´
=

¯̄̄
ηk (tj+1, Sj+1)

hS(tj+1,Sj+1)

CkS(tj+1,Sj+1)
− ηk (tj , Sj) hS(tj ,Sj)CkS(tj ,Sj)

¯̄̄
I¯̄̄̄
¯ηk(tj ,Sj) hS(tj ,Sj)Ck

S(tj ,Sj)

¯̄̄̄
¯>ξ
¯̄̄
ηk (tj, Sj)

hS(tj ,Sj)

CkS(tj ,Sj)

¯̄̄
+ ξI¯̄̄̄

¯ηk(tj ,Sj) hS(tj ,Sj)Ck
S(tj,Sj)

¯̄̄̄
¯≤ξ
.

(6.24)
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Therefore we can write

DεT = h (0, S0)

+
X
tj≤T

X
k

ηk (tj, Sj)
hS (tj , Sj)

CkS (tj , Sj)

³
Ck (tj+1, Sj+1)−Ck (tj , Sj)

´
−
X
tj≤T

X
k

µ
ηk (tj+1, Sj+1)

hS (tj+1, Sj+1)

CkS (tj+1, Sj+1)
− ηk (tj , Sj) hS (tj , Sj)

CkS (tj, Sj)

¶2

×
τk
³
tj+1, C

k
j+1

´
Ck (tj+1, Sj+1)

I¯̄̄̄
¯ηk(tj ,Sj) hS(tj ,Sj)Ck

S(tj ,Sj)

¯̄̄̄
¯>ξ
¯̄̄
ηk (tj, Sj)

hS(tj ,Sj)

CkS(tj ,Sj)

¯̄̄
+ ξI¯̄̄̄

¯ηk(tj ,Sj) hS(tj ,Sj)Ck
S(tj,Sj)

¯̄̄̄
¯≤ξ

+
X
tj≤T

(h (tj, Sj)− SjhS (tj , Sj))
³
S0j+1 − S0j

´
S0j

. (6.25)

Using Theorem 24 (p. 106 adapted from Henrotte’s paper, we get that DεT
converges in probability over compacts to

h (T, ST ) =
X
k

Z T

0
ηk
hS

CkS
dCk + r

Z T

0
(h− ShS)ds

+
X
k

Z T

0

τkCk

I¯̄̄̄
ηk

hS
Ck
S

¯̄̄̄
>ξ

¯̄̄
ηk hS

CkS

¯̄̄
+ ξI¯̄̄̄

ηk
hS
Ck
S

¯̄̄̄
≤ξ

d

·
ηk
hS

CkS

¸
s

=

Z T

0
hSdS + r

Z T

0
(h− ShS)ds

+σ2
X
k

Z T

0

S2τkCk
µ
ηS

hS
CkS
+ ηk

hSSC
k
S−hSCkSS
(CkS)

2

¶2
I¯̄̄̄
ηk

hS
Ck
S

¯̄̄̄
>ξ

¯̄̄
ηk hS

CkS

¯̄̄
+ ξI¯̄̄̄

ηk
hS
Ck
S

¯̄̄̄
≤ξ

ds. (6.26)

The sum accounting for the amounts invested in the cash deposit trivially
converges to the same limit as in the preceding theorem.

But, once again, thanks to Itô’s theorem, we know that

h (T, ST ) = h (0, S0) +

Z T

0
hSdS +

Z T

0
htdt+

σ2

2

Z T

0
hSSS

2ds (6.27)

And by identification we obtain the result.
For technical reasons in the proof of the theorem we demanded that the alloca-

tion ηk be differentiable with respect to time. It is obvious that the differentiability
with respect to the underlying’s price is necessary, since this derivative appears
in the final formula, but one can wonder why the time differential does not ap-
pear. An intuitive explanation is the following: in our setting, we are trading an
infinitely big number of infinitely small transactions, and finally get a finite price.
If there were two domains in the (t, St) plane such that in one the replication
portfolio is fully weighted in some option, and in the other one it is fully weighted
in some other option (in which case the measure would not be differentiable with
respect to the underlying), then, because of the local time spent by the process at
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the border between the two domains, there would be an infinite number of finite
sized transactions (reweighing the whole portfolio at each time). On the other
hand, if we consider a strategy which is not time-differentiable on a finite number
of instants, we will pay a finite number of finite sized transactions, which is more
bearable. At last, since transaction costs are supposed to converge to zero, the
amount paid a finite number of times tend to zero.

The continuity hypotheses we made on the price function, in both cases (blind
or not hedging strategy), is in fact fully compatible with non-differentiable payoffs
a priori only in the case when there are no transaction costs. Indeed, they are
relevant to the price of the securities on an open interval, which can accommodate
non-differentiable shapes at the extremity of the interval, as the PDE they verify
can be solved with non smooth boundary conditions. When there are transaction
costs, non-convex or non-smooth payoffs pose a problem: they cannot be replicated
correctly, as exposed in Avellaneda and Paras (1994) or Dewynne et Al. (1995)
due to ill-posedness, and require special hedging strategies.

In the third section, we study under which conditions there will be solutions
to the pricing equations of theorems 19 and 20.

The path-dependent case with transaction costs
We focus now on how to be able to specify the replication strategy in the same
manner as we did before. We follow and extend the approach developed in the
path-independent case.

We start by defining, with the intuition of the above results, the notion of
transaction costs associated to the replication of a payoff. We also make the
hypothesis that the price of the derivative is a function p (t, St,Ht) where H is a
finite variation process.

Definition 21 A transaction cost functional is a positive functional K associated
to a replication strategy.

For example, it can be associated to the gamma of the option being hedged.
In Dewynne et Al. (1995), the simplest case mentioned is that of transaction costs
totaling cS2 |pSS| for some constant c. The transaction cost functional in that case
is therefore Kf = c

¯̄̄
∂f
∂x

¯̄̄
x2.

Theorem 22 The price p of an exotic payoff X, under a transaction cost func-
tional K, must verify the following functional equation

p (t, St, Ht) = EQ
h
e−r(T−t)X

¯̄̄
Ft
i

+EQ
·Z T

t
dse−rsK (pS) (s, Ss, Hs)

¯̄̄̄
Ft
¸
.

Proof. We write the following equation for the value of the portfolio, associated
to a replication strategy ∆

dp = rpdt+∆dS − r∆Sdt−K (∆) dt
X = p (T, ST ,HT ) . (6.28)

Writing Itô’s theorem for p and using the identification theorem gives that neces-
sarily we still have ∆ = pS . Therefore, we have identified the replication strategy.
We now have to write the price.
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Switching to the unique risk-neutral probability, we can write

dp = rpdt+ σSpSdZ −K (pS)dt (6.29)

and therefore, if we write the same equation for the present value, we obtain

d
³ p
S0

´
= σSpSdZ − K (pS)

S0
dt. (6.30)

This last equation can also be written

e−rTp (T, ST , HT )− e−rtp (t, St, Ht)
=

Z T

t
σSspS (s, Ss, Hs) dZs −

Z T

t
e−r(s−t)K (pS) (s, Ss, Hs) ds (6.31)

and by taking the expectation under the risk-neutral probability conditional on
Ft, we get

p (t, St,Ht) = EQ
h
e−r(T−t)X

¯̄̄
Ft
i

+EQ
·Z T

t
dse−rsK (pS) (s, Ss, Hs)

¯̄̄̄
Ft
¸

(6.32)

which is the expected result.
This result is, of course, applicable in the case of path-independent payoffs, that

is if H is zero. As we will see later, it can also be shown thanks to Feynman-Kac’s
theorem.

Now, we have to specify the transaction cost functional K. We will assume,
by analogy with the results we have obtained in the path-independent case, that
K has the same shape in the path-dependent case. The demonstration that the
cumulated transaction costs in the non-limit case, when the price depends on a
path functional H, converge to the same expression as in the path-independent
case is based on Theorem 27 on p. 114, which is an extension of Theorem 23.
But this extension uses the hypothesis that the process H, representing the path-
dependency, is continuous. An extension to the case with bounded jumps seems to
be difficult. For the extension of Theorem 24, we rely on a very intuitive argument
(as there does not seem to be a need to rewrite the proof).

Endowed with these generalized convergence results, we can prove that, even if
there is a dependency on the past evolution of S, the cumulated transaction costs
converge to a similar expression as in the path-independent case.

Due to the form of the functional pricing equation obtained if the payoff is
path-dependent, showing the existence and unicity of solutions is an open question,
which for now has to be dealt with on a case-by-case basis.

Proof of the convergence results

The following result has been used in the proof of Theorem 19. It allowed us to
express the limit value of total transaction costs in a handy way, in the case where
the derivative price depends only on the underlying’s price, and not its trajectory.
The theorem and the proof in the case of a path-dependent derivative are given in
the appendix.

Theorem 23 Let (tni , 0 ≤ i ≤ n)n∈N a series of uniform partitions of a positive in-
terval I, F and G be two C2,2 functions with bounded derivatives, F being positive,
and S a continuous diffusion such that
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• limn→∞ supi≤n
¡
tni+1 − tni

¢
= 0

• dSt = Stµdt+ StσdBt where B is a Brownian Motion

• E RI F (s, Ss) ds <∞ and E
R
I S

2
sF

2 (s, Ss) |GS (s, Ss)|2 ds <∞

Then we have the following convergence result:

nX
i=0

q
tni+1 − tni F

³
tni+1, Stni+1

´ ¯̄̄
G
³
tni+1, Stni+1

´
−G ¡tni , Stni ¢¯̄̄

converges in L1 (Ω,P) tor
2

π

Z
I
dsF (s, Ss)σSs |GS (s, Ss)| .

Proof. The demonstration is based on Taylor’s theorems. We are interested in
the following quantity, where we have naturally simplified the notations:

E

¯̄̄̄¯̄ X
ti,i≤n

p
ti+1 − tiFi+1 |Gi+1 −Gi|− σ

r
2

π

Z
I
dsF (s, Ss)Ss |GS (s, Ss)|

¯̄̄̄
¯̄
 .
(6.33)

We do not bound on the upper side this amount by extracting the sum from the
absolute value, as it would not be possible, at the end, to show its convergence
towards 0. Instead, we study the random variable¯̄̄̄
¯̄ X
ti,i≤n

p
ti+1 − tiFi+1 |Gi+1 −Gi|− σ

r
2

π

Z
I
dsF (s, Ss)Ss |GS (s, Ss)|

¯̄̄̄
¯̄ . (6.34)

As a first step, we notice that for a continuous function f ,¯̄̄̄Z ti+1

ti

ds (f (s, Ss)− f (ti, Si))
¯̄̄̄
≤ (ti+1 − ti) sup

ti≤s≤ti+1
|(f (s, Ss)− f (ti, Si))| a.s.

(6.35)
Hence, we obtain that almost surely,¯̄̄̄Z ti+1

ti

dsF (s, Ss)Ss |GS (s, Ss)|− (ti+1 − ti)FiSi |GS (ti, Si)|
¯̄̄̄

≤ (ti+1 − ti) sup
ti≤s≤ti+1

|F (s, Ss)Ss |GS (s, Ss)|− FiSi |GS (ti, Si)|| . (6.36)

Using Taylor’s theorem, we also have¯̄
F
¡
ti+1, Sti+1

¢− F (ti, Sti)− (ti+1 − ti)Ft (ti, Sti)− (Si+1 − Si)FS (ti, Sti)¯̄
≤

³
(ti+1 − ti)2 + (Si+1 − Si)2

´
2

sup
z,ti≤s≤ti+1

(|Ftt (s, z)|+ |FSS (s, z)|+ 2 |FtS (s, z)|)

≤ M
³
(ti+1 − ti)2 + (Si+1 − Si)2

´
(6.37)

because of the hypothesis that the derivatives are bounded. From this result we
deduce that¯̄

F
¡
ti+1, Sti+1

¢− F (ti, Sti)¯̄ ≤M ((ti+1 − ti) + |Si+1 − Si|) (6.38)
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as well as¯̄
G
¡
ti+1, Sti+1

¢−G (ti, Sti)−∆SiGS (ti, Si)¯̄ ≤M ¡
∆t+∆S2i

¢
(6.39)

and ¯̄
G
¡
ti+1, Sti+1

¢−G (ti, Sti)¯̄ ≤M ((ti+1 − ti) + |Si+1 − Si|) . (6.40)

On the other hand, notice that for any real numbersA, B, and C, ||A+B|−C| ≤
||A|−C|+ |B|. Applying this result, as we write Fi+1 = Fi+1 − Fi + Fi andZ ti+1

ti

dsF (s, Ss)Ss |GS (s, Ss)|

=

Z ti+1

ti

dsF (s, Ss)Ss |GS (s, Ss)|− (ti+1 − ti)FiSi |GS (ti, Si)|
+(ti+1 − ti)FiSi |GS (ti, Si)| (6.41)

gives immediately¯̄̄̄
¯̄ X
ti,i≤n

p
ti+1 − tiFi+1 |Gi+1 −Gi|−

r
2

π
σ

Z
I
dsF (s, Ss)Ss |GS (s, Ss)|

¯̄̄̄
¯̄

≤
¯̄̄̄
¯̄ X
ti,i≤n

√
∆tFi |Gi+1 −Gi|−

X
ti,i≤n

σ

r
2

π
∆tF (ti, Si)Si |GS (ti, Si)|

¯̄̄̄
¯̄

+

¯̄̄̄
¯̄ X
ti,i≤n

p
ti+1 − ti |Fi+1 − Fi| |Gi+1 −Gi|

¯̄̄̄
¯̄

+

r
2

π
σ
X
ti,i≤n

¯̄̄̄Z ti+1

ti

dsF (s, Ss)Ss |GS (s, Ss)|− (ti+1 − ti)FiSi |GS (ti, Si)|

(ti+1 − ti)FiSi |GS (ti, Si)|| . (6.42)

Using now the different bounds we have determined in 6.38, 6.39, and 6.40, we
obtain ¯̄̄̄

¯̄ X
ti,i≤n

p
ti+1 − tiFi+1 |Gi+1 −Gi|−

r
2

π
σ

Z
I
dsF (s, Ss)Ss |GS (s, Ss)|

¯̄̄̄
¯̄

≤
¯̄̄̄
¯̄ X
ti,i≤n

p
ti+1 − tiFi |Gi+1 −Gi|−

X
ti,i≤n

σ

r
2

π
∆tF (ti, Si)Si |GS (ti, Si)|

¯̄̄̄
¯̄

+M
X
ti,i≤n

p
ti+1 − ti |Gi+1 −Gi| ((ti+1 − ti) + |Si+1 − Si|)

+

r
2

π
σ sup

i
sup

ti≤s≤ti+1
|F (s, Ss)Ss |GS (s, Ss)|− FiSi |GS (ti, Si)|| |I| . (6.43)

For the third term in 6.43, we use the preceding upper boundX
ti,i≤n

p
ti+1 − ti |Gi+1 −Gi| ((ti+1 − ti) + |Si+1 − Si|)

≤ M
X
ti,i≤n

(ti+1 − ti)
5
2 + 2M

X
ti,i≤n

|Si+1 − Si|
p
ti+1 − ti (ti+1 − ti)

+M sup
i

³p
ti+1 − ti

´Z
I
d [S] . (6.44)
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We can also write the norm of this random variable, and obtain, if we forget
multiplicative constants

E

¯̄̄̄¯̄ X
ti,i≤n

p
ti+1 − ti |Gi+1 −Gi| ((ti+1 − ti) + |Si+1 − Si|)

¯̄̄̄
¯̄


≤
X
ti,i≤n

(ti+1 − ti)
5
2 + E

X
ti,i≤n

(ti+1 − ti)2 σSi
r
2

π


+sup

i

³p
ti+1 − ti

´
E
Z
I
d [S] . (6.45)

And these amounts are clearly converging to 0.
As for the fourth term in 6.43, we note first that since the functions F and G

are continuous, then F (s, Ss)Ss |GS (s, Ss)| is continuous with respect to s. It is
clear that in expectation

sup
i

sup
ti≤s≤ti+1

|F (s, Ss)Ss |GS (s, Ss)|− FiSi |GS (ti, Si)||→ 0. (6.46)

It is now important to remark that for any series A and B and for any real C,
we have ¯̄̄X

|Ai +Bi|−C
¯̄̄
≤
¯̄̄X

|Ai|−C
¯̄̄
+
X

|Bi| . (6.47)

Also noticing that¯̄
G
¡
ti+1, Sti+1

¢−G (ti, Sti)¯̄
=

¯̄
G
¡
ti+1, Sti+1

¢−G (ti, Sti)−∆SiGS (ti, Si) +∆SiGS (ti, Si)¯̄ (6.48)
we are in a position to write for the second term in 6.43¯̄̄̄

¯̄ X
ti,i≤n

p
ti+1 − tiFi |Gi+1 −Gi|−

X
ti,i≤n

σ

r
2

π
∆tF (ti, Si)Si |GS (ti, Si)|

¯̄̄̄
¯̄

≤
¯̄̄̄
¯̄ X
ti,i≤n

p
ti+1 − tiFi |∆SiGS (ti, Si)|−

X
ti,i≤n

σ

r
2

π
∆tF (ti, Si)Si |GS (ti, Si)|

¯̄̄̄
¯̄

+

¯̄̄̄
¯̄ X
ti,i≤n

p
ti+1 − tiFi

¯̄
G
¡
ti+1, Sti+1

¢−G (ti, Sti)−∆SiGS (ti, Si)¯̄
¯̄̄̄
¯̄ . (6.49)

The latter term can be bounded as followsX
ti,i≤n

p
ti+1 − tiFi

¯̄
G
¡
ti+1, Sti+1

¢−G (ti, Sti)−∆SiGS (ti, Si)¯̄
≤ M

√
∆t

X
ti,i≤n

Fi
¡
∆t+∆S2i

¢
. (6.50)

Now, if we take the expectation and thus the norm, we can write

E

X
ti,i≤n

EFtiFi
¡
∆t+∆S2i

¢
≤ E

X
ti,i≤n

∆tFi (1+M)

 (6.51)
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and this amount converges to E
R
I F (s, Ss)ds. Therefore, we have shown thatX

ti,i≤n

p
ti+1 − tiFi

¯̄
G
¡
ti+1, Sti+1

¢−G (ti, Sti)−∆SiGS (ti, Si)¯̄ (6.52)

converges to 0 in L1.
We are now interested in the remaining amount in 6.49, and will prove its

convergence to 0. We note that¯̄̄̄
¯̄ X
ti,i≤n

p
ti+1 − tiFi |∆SiGS (ti, Si)|−

X
ti,i≤n

σ

r
2

π
∆tF (ti, Si)Si |GS (ti, Si)|

¯̄̄̄
¯̄

=

¯̄̄̄
¯̄ X
ti,i≤n

√
∆tFi |GS (ti, Si)|

Ã
|∆Si|− σ

r
2

π

√
∆tSi

!¯̄̄̄
¯̄

=

¯̄̄̄
¯̄ X
ti,i≤n

√
∆tFi |GS (ti, Si)|

³
|∆Si|− EFti |∆Si|

´¯̄̄̄¯̄ . (6.53)

As the reader can check, it is not possible to show directly that this amount
converges to 0 in expectation, and as a consequence we are going to consider the
L2 norm. We study

E

X
ti,i≤n

√
∆tFi |GS (ti, Si)|

³
|∆Si|− EFti |∆Si|

´2

= E

X
ti,i≤n

∆tF 2i |GS (ti, Si)|2
³
|∆Si|− EFti |∆Si|

´2
+E

 X
tj ,j≤n,ti,i≤j

∆tFiFj |GS (ti, Si)| |GS (tj, Sj)|³
|∆Si|− EFti |∆Si|

´¡|∆Sj|− EFtj |∆Sj|¢i (6.54)

As for the first term,

EFti
³
|∆Si|− EFti |∆Si|

´2
= S2i

Z
dze−

z2

2√
2π

Ã¯̄̄̄
e

³
µ−σ2

2

´
∆t+σ

√
∆tz − 1

¯̄̄̄
−
√
∆t

r
2

π
σ

!2
(6.55)

Thanks to the Mean Value theorem, we write¯̄̄̄
e

³
µ−σ2

2

´
∆t+σ

√
∆tz − 1−

µ
µ− σ

2

2

¶
∆t− σ

√
∆tz

¯̄̄̄
≤ M∆t2 exp

¡
M 0z

¢
. (6.56)

Therefore ¯̄̄̄
e

³
µ−σ2

2

´
∆t+σ

√
∆tz − 1− σ

√
∆tz

¯̄̄̄
≤M∆t exp ¡M 0z

¢
. (6.57)
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First of all, let us write that for all A, B, C, D, if |A−C| ≤ D and D is positive,
then

(|A|−B)2 ≤ (|C|−B)2 +D2 + 2D ||C|−B| . (6.58)

This makes it possible to state, simplifying the multiplicative constantsÃ¯̄̄̄
e

³
µ−σ2

2

´
∆t+σ

√
∆tz − 1

¯̄̄̄
−
√
∆t

r
2

π
σ

!

≤
Ã¯̄̄
σ
√
∆tz

¯̄̄
−
√
∆t

r
2

π
σ

!2
+ σ2∆tz2

+2
√
∆t

r
2

π
σ

¯̄̄̄
¯¯̄̄σ√∆tz ¯̄̄−√∆t

r
2

π
σ

¯̄̄̄
¯

≤ ∆tMz2. (6.59)

Thus, we have

EFti
³
|∆Si|− EFti |∆Si|

´2 ≤ ∆tMS2i Z dze−
z2

2√
2π

z2 ≤M∆tS2i . (6.60)

This bounds help us write

E

X
ti,i≤n

∆tF 2i |GS (ti, Si)|2
³
|∆Si|− EFti |∆Si|

´2
≤ M∆tE

X
ti,i≤n

∆tS2i F
2
i |GS (ti, Si)|2

 . (6.61)

The expectation converges to E
R
I S

2
sF

2 (s, Ss) |GS (s, Ss)|2 ds, which is assumed
to be bounded, and therefore the whole quantity converges to 0, in R.

As for the second term in 6.54, let us note that

E

 X
tj ,j≤n,ti,i≤j

∆tFiFj |GS (ti, Si)| |GS (tj, Sj)|³
|∆Si|− EFti |∆Si|

´¡|∆Sj|− EFtj |∆Sj |¢i
= E

 X
tj ,j≤n,ti,i≤j

∆tFiFj |GS (ti, Si)| |GS (tj, Sj)|

EFti
h³
|∆Si|− EFti |∆Si|

´ ¡|∆Sj |− EFtj |∆Sj |¢ii (6.62)

But

EFti
h³
|∆Si|− EFti |∆Si|

´ ¡|∆Sj |− EFtj |∆Sj |¢i
= EFti [|∆Si| |∆Sj |] + EFti

h
EFti |∆Si|EFtj |∆Sj |

i
−EFti

£|∆Si|EFtj |∆Sj |¤− EFti h|∆Sj |EFti |∆Si|i . (6.63)
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Thanks to the independence of the variations of the Markov diffusion S, we can
split the expectations and get

EFti
h³
|∆Si|− EFti |∆Si|

´¡|∆Sj |− EFtj |∆Sj|¢i
= EFti [|∆Si|]EFti [|∆Sj|] + EFti [|∆Si|]EFti [|∆Sj|]

−EFti [|∆Si|]EFti [|∆Sj |]− EFti [|∆Si|] EFti [|∆Sj|]
= 0. (6.64)

And this last result ends the proof.
We need to adapt a lemma shown by Henrotte about the convergence of a sum

towards a stochastic integral.

Theorem 24 Suppose that

• ηk (t, St) hS(t,St)CkS(t,St)
is C1,2 with respect to t and St

• F and G are two C1,2 functions

Then we have the following convergence result for any k

sup
j

¯̄̄
tkj+1 − tkj

¯̄̄
→
ak→0

0 a.s.

and thereforeX
tkj

F
³
tkj , Stkj

´³
G
³
tkj+1, S

k
j+1

´
−G

³
tkj , Stkj

´´
→
ak→0

Z T

0
F (s, Ss) dG (s, Ss)

in probability over compacts.

Proof. We follow Henrotte’s proof.
First, we recall the definition of tkj : t

k
0 = 0 and

tkj+1 = T ∧ inf
½
t ≥ tkj : η (t, St) (dk)

hS (t, St)

CkS (t, St)
=

I¯̄̄̄
¯η(tj ,Sj)(dk) hS(tj,Sj)Ck

S(tj,Sj)

¯̄̄̄
¯>ξ
η (tj , Sj) (dk)

hS (tj , Sj)

CkS (tj, Sj)
e−a

k

+I¯̄̄̄
¯η(tj ,Sj)(dk) hS(tj ,Sj)Ck

S(tj ,Sj)

¯̄̄̄
¯≤ξ
µ
η (tj , Sj) (dk)

hS (tj , Sj)

CkS (tj , Sj)
+ ξ

³
1− e−ak

´¶

or I¯̄̄̄
¯η(tj ,Sj)(dk) hS(tj ,Sj)Ck

S(tj,Sj)

¯̄̄̄
¯>ξ
η (tj, Sj) (dk)

hS (tj, Sj)

CkS (tj, Sj)
eb
k

+I¯̄̄̄
¯η(tj ,Sj)(dk) hS(tj ,Sj)Ck

S(tj ,Sj)

¯̄̄̄
¯≤ξµ

η (tj , Sj) (dk)
hS (tj , Sj)

CkS (tj , Sj)
+ ξ

³
eb
k − 1

´¶¾
(6.65)

Since it does not change anything, we will forget the k in the notations. We are
interested in the study of ∆taj = taj+1 − taj , where we note, instead of the k, the
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size a of the hedging band. Let us also recall that 1− e−a = eb − 1, and therefore
b
a converges to 1 when a goes to zero. If we also write

η (tj , Sj) (dk)
hS (tj, Sj)

CkS (tj , Sj)
= Utaj (6.66)

then we can rewrite taj+1 in a simpler way:

taj+1 = T ∧ inf
(
t ≥ taj : Ut = I¯̄̄̄

Uta
j

¯̄̄̄
>ξ
Utaj e

−a + I¯̄̄̄
Uta
j

¯̄̄̄
≤ξ

³
Utaj + ξ

¡
1− e−a¢´

or I¯̄̄̄
Uta
j

¯̄̄̄
>ξ
Utaj e

b + I¯̄̄̄
Uta
j

¯̄̄̄
≤ξ

³
Utaj + ξ

³
eb − 1

´´)
∧ T

= I¯̄̄̄
Uta
j

¯̄̄̄
>ξ
inf
n
t ≥ taj : Ut = Utaj e−a or Utaj eb

o
∧ T

+I¯̄̄̄
Uta
j

¯̄̄̄
≤ξ
inf
n
t ≥ taj : Ut =

³
Utaj + ξ (1− ea)

´
or
³
Utaj + ξ

³
eb − 1

´´
or
³
Utaj + ξ

³
eb − 1

´´o
(6.67)

We note Wu
a the set of instants t

a
j+1 such that

¯̄̄
Utaj

¯̄̄
> ξ and W d

a the set of

instants taj+1 such that
¯̄̄
Utaj

¯̄̄
≤ ξ. We can write that supj ∆t

a
j = supWu

a
∆taj ∨

supWd
a
∆taj . Therefore, we want to show that the set of trajectories A

u such that
supWu

a
∆taj does not converge to zero and the set of trajectories A

d such that
supWd

a
∆taj does not converge to zero are of Lebesgue measure zero. The procedure

is to show that if these sets have not a zero measure, then for a as little as one
wishes, it is possible to find a set of trajectories of S such that U does not go out
of a band the size of which is determined by a; which is not consistent with the
fact S is a diffusion.

Let us fix a trajectory in Au. Since supWu
a
∆taj does not converge to zero, there

existsM > 0 such that for all α > 0, there exists a < α such that supWu
a
∆taj > M .

Using this fact, we can create a sequence (an, bn) converging to zero such that for
all n supWu

a
∆taj > M . It is therefore possible to find a sequence of intervals

In = [cn, dn] included inWu
a , which set is included in [0, T ], such that dn−cn > M

and such that for all t, t0 in In, |ln (|Ut|)− ln (|Ut0 |)| ≤ an+ bn. Since the sequence
(cn, dn) remains in the compact set [0, T ] × [0, T ], we can extract a converging
subsequence with limit (c, d). We have d− c ≥M , and since (an, bn) is converging
to zero, then ln (U) must be constant on

£
c+ M

4 , d− M
4

¤
. 4 is chosen, but we

could have taken 3; the important thing being that there is a non-empty interval.
But the set of trajectories where U is constant on an interval, because of the
hypothesis that ηk hS

CkS
is C1,2 as a function of (t, St), is negligeable. Indeed, Itô’s

theorem allows us to say that U is a diffusion. We conclude that Au is included in
a set of measure zero.

Now, let us follow the same procedure for Ad. We will only stress the differences
with the arguments given above. We get that |Ut − Ut0 | ≤ ξ

¡
ebn − e−an¢, and that

U must be constant on a non-empty interval. The conclusion follows identically.
Therefore Ad is negligeable.

Since supWu
a
∆taj and supWd

a
∆taj go to zero with a almost surely, we conclude

that almost surely as well, supj ∆t
a
j goes to zero.
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Endowed with this last result, we are in a position to show the theorem, by
following the lines of Lemma 3 in Henrotte (1994). A first consequence is that

sup
s∈[0,t]

¯̄̄̄
¯̄F (s, Ss)−X

j

I]taj ,taj+1] (s)F
³
taj , Staj

´¯̄̄̄¯̄ (6.68)

converges almost surely to zero, by the almost sure uniform continuity of the
trajectories of F (t, St), being continuous over the compact set [0, T ]. Therefore,³P

j I]taj ,taj+1] (s)F
³
taj , Staj

´´
s≥0

converges to (F (s, Ss))s≥0 uniformly on compacts

a.s. and also in probability. But we can writeX
taj

F
³
taj , Staj

´³
G
³
taj+1, Staj+1

´
−G

³
taj , Staj

´´
=

Z T

0

X
j

I]taj ,taj+1] (s)F
³
taj , Staj

´
dG (s, Ss) . (6.69)

Using Protter (1994), the right hand side of the equality converges in probability
over compacts to

R T
0 F (s, Ss) dG (s, Ss), and this ends the proof.

Applications to options pricing

We have seen there is some freedom in the choice of the products to use so as to
hedge a derivative portfolio. Since the induced transaction costs are not necessarily
the same depending on the products used for hedging, there is an interest in finding
the cost-minimizing strategies. This can be especially true for products which have
a long maturity, in which case cumulated transaction costs may be very expensive.

As it has been shown in the first section, the two equations giving the price of
derivatives under transaction costs, with the correct boundary conditions, are:

BS (h) =

r
2

π
σ
X
k

τkCkS

¯̄̄̄
¯ηkS hSCkS − ηk hSSC

k
S − hSCkSS¡
CkS
¢2

¯̄̄̄
¯ (6.70)

for Leland’s hedging strategy, and

BS (h) = σ2
X
k

S2τkCk
µ
ηkS

hS
CkS
+ ηk

hSSC
k
S−hSCkSS
(CkS)

2

¶2
I¯̄̄̄
ηk

hS
Ck
S

¯̄̄̄
>ξ

¯̄̄
ηk hS

CkS

¯̄̄
+ ξI¯̄̄̄

ηk
hS
Ck
S

¯̄̄̄
≤ξ

= σ2S2τC

µ
hSSCS − hSCSS

C2S

¶2
under some conditions (6.71)

for the risk-related hedging strategy. We write BS for the ”Black-Scholes term”
which usually intervenes in the pricing equation without transaction costs:

BS (h) = 0.

Other terms accounting for the effect of transaction costs have been found;
several of them are given in Dewynne et Al. (1995). For example, a limiting
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model of Davis et Al. (1993) has been proposed by Whalley and Willmott (1997)
where the price of a derivative hedged with the underlying verifies

BS (h) =
e−r(T−t)

γ

µ
3k3γ

2S4σ3

8e−2r(T−t)

¶ 2
3

Ã¯̄̄̄
¯hSS − e−r(T−t) (µ− r)γS2σ2

¯̄̄̄
¯
!4

5

where k3 is the proportional cost depending on dollar volume, γ is risk-aversion,
and µ is the drift of the underlying process under the real probability. Also, a
model based on a hedging bandwidth of size ε(S,hS)

S around the delta has been
proposed by Whalley and Willmott (1994). In this model, the price of the option
verifies

BS (h) =
σ2S4

ε

µ
k1 + (k2 + k3S)

√
ε

S

¶
h2SS

with the transaction cost equal to k1 + k2N + k3NS, N being the number of
shares transacted. Note that this model is not asymptotic and assumes the risk
neutrality of the hedger with respect to hedging residuals. Also, it is very close to
our risk-related hedging strategy, which also use a hedging bandwidth around the
delta.

Existence of solutions to the pricing equations
As it has been documented in Dewynne et Al (1995) or in Avellaneda and Paras
(1994), an equation such as 6.70 in the simplest case, with k = 1, C1 = S, and

η1 = 1 can be ill-posed depending on the value of the Leland Number
q

2
π
τ
σ . In

this case, a standard solution to the pricing equation cannot be found if hedging
is performed the usual way. A price can be found, as a solution of an obstacle
problem, and under some conditions hedging is not performed.

In our setting, as we can choose among various simple options to hedge, we
have more flexibility. Let us find how we should choose these so that the pricing
equation can be solved. We consider the case when only one option is used for
hedging purposes.

Theorem 25 (Leland’s Strategy Solution) If the option C used for hedging
verifies hSS

hS
≥ CSS

CS
, if the delta hS has always the same sign as the option’s delta

CS, and if the price C is positive then the pricing equation 6.70 possesses a unique
classical solution in C2,1.

Note that the conditions required in the theorem are quite intuitive; they mean
that the derivative used for hedging should have a delta which is less volatile than
that of the option being hedged. Also, the closer the two quantities hSShS and CSS

CS
are, the smaller the transaction costs.
Proof. We have

hSS
hS

≥ CSS
CS

so
hSSCS − hSCSS

(CS)
2 ≥ 0.

Therefore the pricing equation simplifies to

BS (h) =

r
2

π
στCS

hSSCS − hSCSS
(CS)

2
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or

0 = hSS

Ã
σ2

2
S2 +

r
2

π
στS

C

CS

!

+hS

Ã
rS −

r
2

π
στSC

CSS

(CS)
2

!
+ ht − rh.

Since
³
σ2

2 S
2 +

q
2
πστS

C
CS

´
is always strictly positive, this equation is a linear

parabolic PDE with terminal boundary conditions and therefore admits a classical
solution for any continuous boundary conditions.

Now, we turn to the risk-related strategy, still in the simple case when only
one option is used for hedging:

Theorem 26 (Risk-Related Strategy Solution) If the option C used for hedg-
ing verifies

hSS ≤
1+ 4Cτ CSS

C2S

4Cτ CShS

,

and if the options deltas verify hS > ξCS , for some ξ, then the pricing equation
6.71 possesses a classical solution.

Proof. We just have to show that the PDE is elliptic and degenerate in that
case. The condition on the gamma hSS entails that

S2σ2
µ
2τ

hSS
CShS

− 2τ CSS
C2S

− 1
2

¶
≤ 0. (6.72)

We can define the operator H by

H (S, t, h (S, t) , hS , ht, hSS) = −BS(h) + σS2τC
µ
hSSCS − hSCSS

C2S

¶2
.

It corresponds to 6.71. Thanks to 6.72, the operator H verifies for all (S, t) , hS ,
ht, h, and all f and g such that f ≥ g

H (S, t, h, hS, ht, f) ≤ H (S, t, h, hS , ht, g) .

First, we show that h is a sub-solution of 6.71. For any (S0, t0), if we pick a test
function φ on C2,2, such that (S0, t0) is a local maxima of h − φ, then we can
assume without a loss of generality that h (S0, t0) = φ (S0, t0). Also, since (S0, t0)
is a local maxima of h − φ and h, φ ∈ C2,2 then hSS (S0, t0) ≤ φSS (S0, t0) and
hS (S0, t0) = φS (S0, t0) . As a result, we have

H (S0, t0,φ (S0, t0) ,φS ,φt,φSS) = H (S0, t0, h (S0, t0) , hS , ht,φSS)

≤ H (S0, t0, h (S0, t0) , hS , ht,φSS)

≤ 0.

As a consequence, h is a sub-solution belonging to C2,2 (as we assumed). A
symmetrical argument allows to conclude that h is also a super-solution. Therefore,
h is a classical solution of the equation.
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Approximating the solution of the non-linear PDE
The preceding pricing models have supposed that the continuous cost due to trans-
actions fees is financed by the portfolio. The replication strategy is therefore such
that these fees are exactly paid by the portfolio. If we compared the limit price
with that of Black and Scholes’ model, corresponding to the PDE without the
non-linear term, it would give the amount of money which, once invested along
with the portfolio, is going to finance transaction costs.

We could as well imagine that the market-maker only asks for an average
remuneration of his costs: banking on an averaging effect of his portfolio, he could
ask for a ”fair” price without transaction costs plus an additional amount equal
to his expectation of transaction costs if he hedges his position with Black and
Scholes model.

Let us consider the simplest case, that of Leland’s standard model. Transaction
costs are paid at a continuous rate corresponding to the absolute value of the
gamma (the second derivative with respect to price). The equation writes(

Pt +
1
2σ

2x2Pxx + r (P − xPx) = σ
q

2
π τx

2 |Pxx|
P (T, x) = f (x)

(6.73)

Feynman-Kac’s theorem, which can be found in Karatzas and Shreve (1991), p.366,
states that if a smooth enough function g is given, then if P satisfies the equation(

Pt +
1
2σ
2x2Pxx + r (P − xPx) = σ

q
2
π τx

2 |gxx|
P (T, x) = f (x)

(6.74)

we have

P (t, x) = BS (t, x) + ESt=x

"Z T

t
dse−rsσ

r
2

π
τS2s |gxx (s, Ss)|

#
(6.75)

where the expectation is taken under the risk-neutral probability. If we assume
now that g happens to be a solution X to the non-linear equation, we can write
the following functional equation

X (t, x) = BS (t, x) + ESt=x

"Z T

t
dse−rsσ

r
2

π
τS2s |Xxx (s, Ss)|

#
. (6.76)

This result finally shows that the price of a path-independent product can be
obtained using the path-dependent approach we defined earlier.

We intend to approximate equation 6.73 by a couple of linear equations

Ut +
1
2σ
2x2Uxx + r (U − xUx) = 0

Vt +
1
2σ
2x2Vxx + r (V − xVx) = σ

q
2
π τx

2 |Uxx|
U (T, x) = f (x)
V (T, x) = 0
P ∗ = U + V

(6.77)

In fact, we suppose that the costs due to transactions are not paid as a function of
the real rehedging policy, but as if the portfolio was rehedged using Black-Scholes
model. The assumption is that the gamma in the transaction costs model is not
too far from that of Black-Scholes’ model.
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Using Feynman-Kac’s theorem, we also have that

P ∗ (0, x) = BS (0, x) + ES0=x

"Z T

0
dte−rtσ

r
2

π
τS2t |BSxx (t, St)|

#
(6.78)

where the expectation is taken under risk-neutral probability. This expression has
the great advantages to be computable as a double integral, and to be computable
by simulation if there are complicated functionals intervening under the integral.

This method is in fact the first step of a convergent procedure. Let us define
the operator F such that

Fu (t, x) = BS (t, x) + ESt=x

"Z T

t
dse−rsσ

r
2

π
τS2s |uxx (s, Ss)|

#
. (6.79)

The limit of the sequence can be computed

P0 = BS + FBS (6.80)

Pn+1 = BS + FPn

as we know that P = BS + FP .
Let us insist on the difference between viewing the first step of the procedure

as an approximation or as a price calculated by the trader under the assumption of
some sort of averaging effect of his portfolio. In the latter case, the trader will sell,
or buy, the product at the price given by the model, but if he is consistent with
his views, he will hedge it with the Black-Sholes delta. On the other hand, if he
considers this first step as an approximation, he will use the derivative of the newly
obtained price in state of the delta. He will be therefore closer to self-financing,
whereas the former has no chance to self-finance his replication portfolio.

Reducing the set of possible replication strategies
Since all the prices we have computed so far potentially depend on the ”allocation
measure” which we define as a way of weighting the different redundant deriva-
tives used to replicate the payoff, we can look for an optimization procedure. We
consider that the trader’s goal is to minimize his bid-ask spread. It is trivial that
it corresponds to minimizing the ”transaction costs” part of the price (the other
part being the ”fair value”).

The difficulty is that the price depends on the strategy which has been chosen,
and the optimal strategy depends on the price. Solving this problem demands that
the price be written as an explicit functional of the strategy, and that the trans-
action costs intervening in this price be minimized with respect to the strategy.

Let us assume that we have a way of determining the price as a function of
the strategy. It can be done using the approximation procedure we have described
earlier, or by a direct resolution of the non-linear PDE. We have seen also that
it is reasonable to put bounds on the different derivatives of η, these bounds
representing a maximum speed of transaction.

In the case of the approximation procedure, if the ”blind” strategy is used the
total amount of transaction costs to be paid isr

2

π
σE
X
i

Z T

0
dse−rsτ i (s, Ss)SsCi (s, Ss)¯̄̄̄

¯ηiS hSCiS (s, Ss) + ηihSSC
i
S − hSCiSS¡
CiS
¢2 (s, Ss)

¯̄̄̄
¯ (6.81)
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where h is the price of the derivative, assumed to be given. It would be ideal to be
able to put all the weight at once on the cheapest product. The problem is that it
induces an infinite cost to follow this strategy, because of the term ηiS .

Let us define

Ait =

(
x : τ i (t, x)xCi (t, x)

¯̄̄̄
¯hSSCiS − hSCiSS¡

CiS
¢2 (t, x)

¯̄̄̄
¯

= min
j
τ j (t, x)xCj (t, x)

¯̄̄̄
¯̄̄hSSCjS − hSCjSS³

CjS

´2 (t, x)

¯̄̄̄
¯̄̄
 . (6.82)

The ideal would be, therefore, to have ηi (t, x) = Ix∈Ait . But since it is not possible,
we can choose to smooth this ideal function, depending on a parameter ε, the
maximum slope for example. Then, we look for the optimal strategy among the
set of these simpler strategies, which are easier to implement.

Concluding remarks

A model allowing a trader to hedge by means of various derivatives, in a path-
dependent-case, has been presented. This model takes transaction costs into ac-
count. We have proposed a proof of the convergence of Leland’s scheme towards a
non-linear PDE in this general setting. As the setting includes transaction costs,
an allocation strategy minimizing these costs can be followed.

It has clearly appeared there is a possibility to benefit from lower transactions
fees by thoroughly choosing how to hedge a derivative. But the optimal strategy
and the price of the hedged derivative are solutions of complicated equations,
which we were only able to approach in simple cases. For example, if we consider
usual path-dependent options, like barrier or lookback options, and contemplate
hedging them with plain-vanilla options while minimizing cumulated transaction
costs, the equation has to be solved numerically. The study of the quality of the
approximations we proposed is also left for further research.
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Appendix: the path-dependent case

In this appendix we give the proof for the path-dependent case, which is a straight
generalization of the path-independent case. We have the following result:

Theorem 27 Let (tni , 0 ≤ i ≤ n)n∈N a series of uniform partitions of a positive
interval I, F and G be two C2,2,2 functions with bounded derivatives, F being
positive, and S a continuous diffusion such that

• limn→∞ supi≤n
¡
tni+1 − tni

¢
= 0

• dSt = Stµdt+ StσdBt where B is a Brownian Motion

• H is a finite variation process with continuous paths adapted to the natural
filtration of S

• E RI F (s, Ss, Hs)ds <∞ and E
R
I S

2
sF

2 (s, Ss, Hs) |GS (s, Ss,Hs)|2 ds <∞
• EV (H) = E supn

P
ti

¯̄
Hti+1 −Hti

¯̄
<∞
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Then we have the following convergence result:

nX
i=0

q
tni+1 − tni F

³
tni+1, Stni+1 ,Htni+1

´ ¯̄̄
G
³
tni+1, Stni+1 ,Htni+1

´
−G ¡tni , Stni ,Htni ¢¯̄̄

converges in L1 (Ω,P) tor
2

π

Z
I
dsF (s, Ss, Hs)σSs |GS (s, Ss, Hs)| .

Proof. We want to show the following quantity converges to zero

E

¯̄̄̄¯̄ X
ti,i≤n

p
ti+1 − tiFi+1 |Gi+1 −Gi|−

r
2

π

Z
I
dsF (s, Ss,Hs)Ss |GS (s, Ss,Hs)|

¯̄̄̄
¯̄
 .

As in the demonstration of theorem 7.1, we study the random variable¯̄̄̄
¯̄ X
ti,i≤n

p
ti+1 − tiFi+1 |Gi+1 −Gi|−

r
2

π

Z
I
dsF (s, Ss,Hs)Ss |GS (s, Ss, Hs)|

¯̄̄̄
¯̄ .

For a continuous function f , the following result still holds¯̄̄̄Z ti+1

ti

dsF (s, Ss,Hs)Ss |GS (s, Ss,Hs)|− (ti+1 − ti)FiSi |GS (ti, Si,Hi)|
¯̄̄̄

≤ (ti+1 − ti) sup
ti≤s≤ti+1

|F (s, Ss,Hs)Ss |GS (s, Ss, Hs)|− FiSi |GS (ti, Si,Hi)|| .

If H had got jumps, we would not be in a position to show the convergence
of this supremum to zero. Instead, we would have to add the hypothesis that
F (s, Ss,Hs) and GS (s, Ss,Hs) have continuous trajectories, or to find another
way for the demonstration.

Using Taylor’s theorem, we also have

|F (i+ 1)− F (i)−∆tFt (i)−∆SFS (i)−∆HFH (i)|

≤
¡
∆t2 +∆S2 +∆H2

¢
2

sup
y,z,ti≤s≤ti+1

(|Ftt (s, z, y)|+ |FSS (s, z, y)|+ |FHH (s, z, y)|+ ..)

≤ M
¡
∆2 +∆S2 +∆H2

¢
because of the hypothesis that the derivatives are bounded. From this result we
deduce that¯̄

F
¡
ti+1, Sti+1 ,Hti+1

¢− F (ti, Sti , Hti)¯̄ ≤M (∆t+ |∆S|+ |∆H|)

as well as ¯̄
G
¡
ti+1, Sti+1 ,Hti+1

¢−G (ti, Sti ,Hti)−∆SiGS (ti, Sti ,Hti)¯̄
≤ M

¡
∆t+∆S2i + |∆H|

¢
and ¯̄

G
¡
ti+1, Sti+1 ,Hti+1

¢−G (ti, Sti ,Hti)¯̄ ≤M (∆t+ |∆S|+ |∆H|) .
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With the same procedure as before, we get¯̄̄̄
¯̄ X
ti,i≤n

p
ti+1 − tiFi+1 |Gi+1 −Gi|−

r
2

π
σ

Z
I
dsF (s, Ss,Hs)Ss |GS (s, Ss, Hs)|

¯̄̄̄
¯̄

≤
¯̄̄̄
¯̄ X
ti,i≤n

√
∆tFi |Gi+1 −Gi|−

X
ti,i≤n

σ

r
2

π
∆tFiSi |GS (ti, Si,Hi)|

¯̄̄̄
¯̄

+

¯̄̄̄
¯̄ X
ti,i≤n

p
ti+1 − ti |Fi+1 − Fi| |Gi+1 −Gi|

¯̄̄̄
¯̄

+

r
2

π
σ
X
ti,i≤n

¯̄̄̄Z ti+1

ti

dsF (s, Ss, Hs)Ss |GS (s, Ss,Hs)|−∆tFiSi |GS (ti, Si,Hi)|
¯̄̄̄
.

Then we obtain easily¯̄̄̄
¯̄ X
ti,i≤n

p
ti+1 − tiFi+1 |Gi+1 −Gi|−

r
2

π
σ

Z
I
dsF (s, Ss,Hs)Ss |GS (s, Ss, Hs)|

¯̄̄̄
¯̄

≤
¯̄̄̄
¯̄ X
ti,i≤n

p
ti+1 − tiFi |Gi+1 −Gi|−

X
ti,i≤n

σ

r
2

π
∆tFiSi |GS (ti, Si,Hi)|

¯̄̄̄
¯̄ (6.83)

+M
X
ti,i≤n

p
ti+1 − ti |Gi+1 −Gi| (∆t+ |∆S|+ |∆H|) (6.84)

+

r
2

π
σ sup

i
sup

ti≤s≤ti+1
|F (s, Ss, Hs)Ss |GS (s, Ss,Hs)|− FiSi |GS (ti, Si, Hi)|

−FiSi |GS (ti, Si, Hi)|| |I|| . (6.85)

For 6.84, we use the preceding upper boundsX
ti,i≤n

p
ti+1 − ti |Gi+1 −Gi| (∆t+ |∆S|+ |∆H|) ≤M

X
ti,i≤n

√
∆t (∆t+ |∆S|+ |∆H|)2

It is now possible to study the norm of this variable. We have already proved the
convergence to zero of a part of this quantity, and we therefore prove it now only
for the new terms.

E

M X
ti,i≤n

³√
∆t∆H2 +

√
∆t∆t |∆H|+

√
∆t |∆S| |∆H|

´
≤ M

√
∆tE

X
ti,i≤n

∆H2 +
X
ti,i≤n

∆t |∆H|+
X
ti,i≤n

|∆S| |∆H|


≤
√
∆tE

X
ti,i≤n

∆H2

+√∆t∆tE
X
ti,i≤n

|∆H|
+ sup

ω,ti

|∆H| (ω)E
X
ti,i≤n

√
∆t |∆S|


And these amounts are clearly converging to 0. Indeed, the first expectation is
bounded since H is a finite variation process; for the same reason, and because of
our hypotheses, the second expectation is also bounded. For the third expectation,
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we notice that the expectation has been shown to be bounded, and since H is
continuous, the supremum goes to zero.

As for 6.85, the convergence to zero comes from the continuity of the processes
under consideration, as in the proof of Theorem 23.

We are now interested in 6.83. We write

|Gi+1 −Gi| = |Gi+1 −Gi −∆SiGS +∆SiGS|
and then obtain¯̄̄̄

¯̄ X
ti,i≤n

√
∆tFi |Gi+1 −Gi|−

X
ti,i≤n

σ

r
2

π
∆tFiSi |GS (ti, Si, Hi)|

¯̄̄̄
¯̄

≤
¯̄̄̄
¯̄ X
ti,i≤n

√
∆tFi |∆SiGS |−

X
ti,i≤n

σ

r
2

π
∆tFiSi |GS (ti, Si,Hi)|

¯̄̄̄
¯̄

+

¯̄̄̄
¯̄ X
ti,i≤n

√
∆tFi |Gi+1 −Gi −∆SiGS |

¯̄̄̄
¯̄ .

The latter term can be bounded as follows:X
ti,i≤n

√
∆tFi |Gi+1 −Gi −∆SiGS |

≤ M
√
∆t

X
ti,i≤n

Fi
¡
∆t+∆S2i + |∆H|

¢
.

Now, if we take the expectation and thus the norm, we can write

E

X
ti,i≤n

EFtiFi
¡
∆t+∆S2i + |∆H|

¢
≤ E

X
ti,i≤n

EFtiFi
¡
∆t+∆S2i

¢+ E
X
ti,i≤n

Fi |∆H|


≤ E

X
ti,i≤n

∆tFi (1+M)

+ E
X
ti,i≤n

Fi |∆H|


and this amount converges to E
£R
I F (s, Ss) |dHs|+

R
I F (s, Ss, Hs)

¤
ds , staying

positive. Therefore, we have shown thatX
ti,i≤n

√
∆tFi |Gi+1 −Gi −∆SiGS |

converges to 0 in L1.
We are now interested in the remaining amount of the expression, and will

prove its convergence to 0, using extensively the procedure we followed to show
Theorem 23 ¯̄̄̄

¯̄ X
ti,i≤n

√
∆tFi |∆SiGS |−

X
ti,i≤n

σ

r
2

π
∆tFiSi |GS |

¯̄̄̄
¯̄

=

¯̄̄̄
¯̄ X
ti,i≤n

√
∆tFi |GS (ti, Si,Hi)|

³
|∆Si|− EFti |∆Si|

´¯̄̄̄¯̄ .
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As before, we consider the L2 norm. We study

E

X
ti,i≤n

√
∆tFi |GS |

³
|∆Si|− EFti |∆Si|

´2

= E

X
ti,i≤n

∆tF 2i |GS |2
³
|∆Si|− EFti |∆Si|

´2
+E

 X
tj ,j≤n,ti,i≤j

∆tFiFj |GS (ti, Si,Hi)| |GS (tj , Sj ,Hj)|

×
³
|∆Si|− EFti |∆Si|

´¡|∆Sj|− EFtj |∆Sj|¢i .
Then, with the help of the results we have already obtained, we get

EFti
³
|∆Si|− EFti |∆Si|

´2
≤ M∆tS2i .

The expectation converges to E
R
I S

2
sF

2 (s, Ss, Hs) |GS (s, Ss,Hs)|2 ds, which is as-
sumed to be bounded, and therefore the whole quantity converges to 0, in R. For
the cross-product term, the same procedure allows us to get the expected conver-
gence result. And therefore, everything converges to zero

As for the extension of Theorem 24 to the path-dependent case, an added
dependence on the past price evolution will not change a lot of things. Indeed,
it will only add to the ”volatility” of the process ηk hS

CkS
= U and the rehedging

instants will be even tighter.
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Chapter 7 HEDGING ENTRY AND
EXIT DECISIONS1

Real options theory establishes an analogy between monopolistic investment projects
and financial options. An investment project, as we have seen in the previous
chapters, contains an option to wait for a better time to invest, depending on the
evolution of the random variables that condition the project’s profitability (such as
market share, commodity prices or labor costs). The classical Net Present Value
rule, which prescribes investment as soon as a positive value is generated today,
does not take into account the value contained in the option to wait. The option
to exit an investment that has proven unattractive also possesses a value. Entry
or exit are in most cases costly, that is there is an often important fixed cost in
stopping a manufacturing plant, or restarting it.

Under these conditions, it is well known that the optimal strategy in terms
of the entry or exit from a perpetual investment opportunity, is composed of two
levels that will respectively trigger investment and disinvestment, when hit by the
relevant variable. Dixit and Pindyck (1994) have presented an extensive survey
of real option models, and of the entry/exit decision in particular. The value of
an investment, as far as its management follows this rational decision behavior, is
a function of the index level (the level of the relevant variables), and depends on
whether the project is activated or not. If the underlying variable upon which the
future cashflows of the project depend is traded in the marketplace, the value of the
option can be determined thanks to a no arbitrage principle2. If it is not traded,
one can resort to assuming investors are risk-neutral, and the actual calculation
of the project value remains the same, with only a difference in the drift of the
underlying variable. This risk-neutral assumption, and how some aversion of risk
can be factored into the risk-free rate, is discussed in Trigeorgis (1996).

In practice, the levels at which a firm will enter or exit an investment are
not necessarily optimal. McDonald (1999) has shown that there are ”rules of
thumb” used by corporations managers that allow them to implicitly proxy real
options, such as hurdle rates or profitability requirements. This does not mean
that many firms are poorly run, but rather that these proxy strategies do a good
job of improving the straight Net Present Value rule. One consequence of this
observation is that different investors might want to apply different entry and
exit levels to the same project, even though they have the same entry costs and
underlying dynamics. Different managers may also be able to lower entry or exit
costs, or to change the dynamics of the project’s stream of chas-flows, which would
result in different optimal entry and exit levels.

Our goal in this chapter is to see how the buyers of a business could ”hedge”
the difference between their own preferred ”optimal” levels and the ones actually
in place (whether the difference in the levels comes from a more optimal strategy

1THIS CHAPTER HAS BEEN PUBLISHED IN THE JOURNAL OF APPLIED MATH-
EMATICS AND DECISION SCIENCES (ERLBAUM), 6(1), PP. 51-70 (2002), UNDER THE
TITLE ”HEDGING ENTRY AND EXIT DECISIONS: ACTIVATING AND DEACTIVATING
BARRIER OPTIONS”.

2As in the case of financial options, any future stream of cashflows that can be replicated can be
priced, and its value equals the expectation of these cashflows under the risk-neutral probability.
See Dixit and Pindyck (1994) or Trigeorgis (1996) for an exposition of these principles applied to
real options.
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or from different costs). In our analysis, we introduce a new kind of derivatives,
which we call Switch options, and show that they are a well-adapted instrument
to hedge the risk related to business entry and exit decisions. We will see how
Switch options allow the buyer of a business to cancel the risk that, when he
implements his new entry/exit strategy (as opposed to the prior strategy followed
by the previous owner), he may have to pay immediate entry or exit costs. Since
these entry or exit costs depend on whether the firm is active or not when he
implements the new strategy, then the buyer incurs a random cost. The larger
the delay between the buying of the business and when the buyer is actually able
to implement his new strategy, the greater the potential discrepancy between the
actual activity level of the firm and the optimal activity level.

We define Switch options as path-dependent derivatives written on a single
underlying that are activated every time the underlying hits a barrier and deac-
tivated every time it hits another barrier. At maturity, if the option is activated,
the holder receives a payoff that is a function of the underlying at that time; if
it is not activated, the payoff is a different and lower function of the underlying’s
price. The number of times such an option can be activated and deactivated is
not bounded. Unlike a standard barrier option, the Switch option is never totally
cancelled when the underlying hits the barrier, as there is always a chance it will go
back and hit the other barrier. To our knowledge, such options are not currently
traded with significant volume in financial markets.

The first section of the chapter focuses on a simple probabilistic approach to
calculate the value of an investment with given entry and exit thresholds. In the
second section, we give a general pricing formula for Switch options and compare
them with standard barrier options. In the third section, we analyze the relation-
ship between real options and Switch options, and show how the latter can help
hedge the former. The Fourth section contains a proof for a central theorem in
the second section’s approach. This proof makes use of the Brownian Meander.
Finally, the fifth section concludes the chapter.

Real options: entry and exit decisions

The optimal barriers that determine entry or exit decision can be found, and are
thoroughly studied in Dixit and Pindyck’s book, as well as in the important acad-
emic literature on the subject3. We propose here a simple probabilistic approach
to derive a closed-form solution for the value of an investment with entry and exit.
Brennan and Schwartz (1985) proposed a numerical method to calculate the value
of an investment project with entry and exit, when the entry and exit levels are
determined optimally. Our goal here is to write the value of the investment project
as a function of the entry and exit barriers.

If we derive the value of an investment, dependent on the entry and exit levels
a and d, then, the optimal value of this investment will be its maximum with
respect to both a and b.

We assume that there is an underlying economic variable S, driven by the
following process:

dSt
St

= µdt+ σdBt,

where B is a Brownian Motion on the measured space (Ω,F ,P), and (Ft)t≥0 is
the natural filtration of B. S represents the future stream of cash-flows (revenues

3Dixit and Pindyck’s book contains an extensive review of the literature.
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minus current expenses) generated by the investment project, and could therefore
be dependent on oil prices (if the project is a refinery), gold prices (in the case
of a gold mine), or even on the market share in a given product. As in most of
the real-option theory, let us consider that the underlying variable, or one of its
derivatives, is traded.

Since there is only one source of noise, the market is complete. µ is assumed to
be smaller than the risk-free rate r used for discounting the cashflows. Equivalently,
we can assume that µ = r − δ, where δ is the convenience yield (a continuous
dividend paid by the project), and reflects a degree of risk aversion of investors.
We suppose there is a running cost of c, so that the stream of cashflows generated by
the project may sometimes becomes negative. For example, this constant running
cost could be the recurrent expenses the firm has to pay to maintain the activity,
which are not proportional to profits, such as payroll expenses.

In this case, we easily derive that the value of a perpetual project at time 0 is

ES0
·Z ∞

0
dse−rs (Ss − c)

¸
=

S0
δ
− c
r

= F∞ (S0)− c
r

where F∞ represents the gross revenue from the project.

Lemma 28 The value F of a perpetual investment project that can be entered at
level a and exited at level d, for the respective costs of Ce and Cx verifies:
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where ξ = 1
σ

³
µ− σ2

2

´
.

Proof. We write the value of the investment opportunity just when it has
been deactivated as a function of its value just when it has been activated, and
reciprocally. Naturally, the value of the investment does not depend on time, only
on the level of the underlying variable and whether it is active or not. Consequently,
the optimal strategy is time-invariant, meaning that it can be represented by the
constant levels a and d. Using the strong Markov property of the Brownian Motion,
which ensures that Brownian increments before and after a stopping time are
independent, gives us:

F (d) = Ed
h
e−rTa(S)

i
(F (a)−Ce)

F (a) = Ea

"Z Td(S)

0
dse−rs (Ss − c)

#
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e−rTd(S)

i
(F (d)−Cx)
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#
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By solving for F (a) and F (d) we get
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We write for a ≥ S0
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We used the fact that
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Now, we use the well-known fact that for a Brownian Motion, E
£
e−λTh

¤
= e−|h|

√
2λ,

combined with Girsanov’s theorem, and we get:
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Following the same approach for d ≤ S0 gets us
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These calculations allow us to write
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which is the result from the lemma.
We now have the following

Proposition 29 The value of an investment project verifies
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Proof. If the project is not activated, then its value is the present value of its
value when it is activated, minus the cost of activation:

Fdeact (S0) = ES0
h
e−rTa(S)

i
(F (a)−Ce) .

If the project is activated, then its value is the present value of the cashflows it
will generate until it is stopped, plus its present value deactivated, minus the cost
of deactivation:

Fact (S0) = ES0
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We obtain the result by replacing in the above expressions the value for 7.1 and
7.2.

The value of an investment project can be maximized with respect to the entry
and exit levels a and d. Let us look at an example, where we make the following
assumptions:

Ce = 500, Cx = 50, c = 93.3

r = 8%, µ = 2%,σ = 20% and S0 = 100.

In these conditions, the value of the project if it is started right away is about
0 (after entry costs). If the project is running and if it is never deactivated, its
value is about 500. The following tables show the project’s value, depending on
the entry levels a and d. Note that apart from the case where a or d are very close
to S0, the project value is not very sensitive to the specific choice of barriers. This
would seem to confirm the opinion developed in MacDonald (1999). It appears
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Active value 100 110 120 130 140 150 160 170 180
100 NA -288 -84 53 147 212 257 288 309
90 -14 141 243 312 360 392 415 430 440
80 305 379 429 463 486 502 513 520 525
70 470 505 529 545 556 564 569 572 574
60 548 564 575 583 588 591 594 596 597
50 576 583 588 591 594 595 596 597 597
40 574 577 579 581 582 582 583 583 583
30 556 557 558 558 559 559 559 559 559
20 532 532 532 532 532 532 532 532 532

Table 7.1 Valuation of an Active Project

Inactive value 100 110 120 130 140 150 160 170 180
100 NA -520 -201 0 131 218 277 317 345
90 -638 -259 -28 119 216 280 324 353 372
80 -343 -72 96 205 277 325 357 379 392
70 -144 53 180 263 318 355 380 396 406
60 -23 130 230 297 343 373 393 406 414
50 40 169 255 314 355 382 400 411 420
40 60 180 262 319 357 384 401 412 421
30 52 174 257 315 354 381 399 410 420
20 31 159 247 307 348 377 396 408 418

Table 7.2 Valuation of an Inactive Project

that as far as the exit level is below 70, the value of the active project is greater
by following an entry/exit strategy than by just leaving the project in place (the
values in the table are above 500).

Table 7.1 on p. 124 shows the active value; the different columns represent
various inputs for a (above the current index level of 100), while the rows represent
various inputs for d (below 100). Table 7.2 on p. 124 shows the value for an inactive
project.

The pricing of switch options

Switch options cannot be constituted out of finite combinations of single or double
barrier options. A Switch option cannot either be valued using a two-dimensional
partial differential equation, the problem being that the value at a barrier depends
on whether it has been activated or deactivated, and therefore depends on its value
at the preceding barrier hitting time.

These products have a payoff that is a function of

• the underlying value at maturity,

• whether or not the option is active at maturity, which depends on whether
the underlying value has crossed an activating or deactivating barrier.

The latter feature can be summarized as: whether the underlying value has
crossed a deactivating barrier since it last crossed an activating barrier, or since it
was first activated.
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So as to price options, the Black-Scholes model standardly assumes, among
other things, that it is possible to perfectly replicate the payoff of a derivative
product with a self-financing portfolio. If there is only one source of risk, it implies
that all the derivatives that can be written on an underlying financial asset are
redundant. It makes it possible to hedge any derivative with the underlying. We
therefore assume that for the purpose of pricing the Switch options, we are in
a ”risk-neutral” world, the underlying variable value follows the same process as
earlier:

dSt
St

= (r − δ)dt+ σdBt, S0 = 0
Since there is only one source of noise, the market is complete.

Let us now define the following path functionals

gat (X) = sup {0 ≤ s ≤ t : Xs = a}
m (t, T ) (X) = inf

u∈[t,T ]
Xu

Ta (X) = inf {s ≥ 0 : Xs = a} .
Respectively, they are the last time the process crossed level a, the minimum, the
maximum, and the hitting time of a. In the following, we will consider two barriers
a and d (activating and deactivating), and we will assume that a ≥ d, since this is
the usual situation in the real option approach. The method to derive the results
in the opposite case is the same, and in view of our application to real option
theory, it does not serve any purpose

A Switch option can start its life being already activated, or deactivated. A
particular case of Switch option would be a special ”second chance” knock-out call,
that could be reactivated any time after it has been knocked out, just by hitting
another level. Such an option would have a zero payoff if it is not activated at
maturity.

These options are clearly distinct from classical barrier options

• Even if the ”inactivated” payoff is zero, they are never worth zero unless at
maturity they are not exercised

• The reactivation feature provides the holder with a sort of insurance against
a worst-case scenario.

• In a situation of high volatility, a barrier option would have more chances to
be cancelled, whereas if it is also true for the Switch option, it has also more
chances of being reactivated.

We can consider two cases, that is whether the option starts as being active,
or inactive. If the option is inactive, then its payoff will be, for a maturity T

p (ST )
³
ITa≤T Im(gaT ,T)≥d

´
+ q (ST )

³
1− ITa≤T Im(gaT ,T)≥d

´
.

This expressions means that if the option starts as inactive, it will pay p if it is
activated, and does not hit the deactivating barrier after its latest activation, and
q in the other case. The value of an option that starts by being active can be
derived from the value of the inactive option. Indeed, the active option will pay:
either if it is never deactivated, or if it is deactivated; it will become an option
that starts by being inactive at the time it is deactivated.
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We can write, thanks to the classical option pricing theory, the price of an
inactive option at time 0 and maturity T :

Vd (x, T ) = e
−rTEx

h
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´
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³
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We have the following

Proposition 30 The price of the inactive switch option is
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We can chose simplified parameters, so as to make the results clearer. We

assume µ = σ2

2 so that ξ = 0. Also, we are interested in a simple payoff function:
p = 1 and q = 0 ; then f = 1. This option pays 1 if it is activated at maturity,
and nothing otherwise. Its value in this case is
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By comparison, the value of a knock-in option that pays 1 if it has been acti-
vated (knocked-in) would be:
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so the difference between the two is
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The proof of the Proposition follows.
Proof. We write ξ = 1
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Thanks to Girsanov’s theorem, we have
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We will focus on the first term in the above sum. It is natural then to study
an expression of the following form, for a Brownian Motion B,
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thanks to the independence of the Brownian paths (Bt, t ≤ Tb) and (Bt+Tb − b, t ≥ 0).
Now we can write
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Thus, we have to use the law of the last Brownian excursion away from b before
T−t. We can write this using the Brownian Meander4 and conditioning by whether
the excursion straddling T − t is above or under 0.
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Where m is a Meander (do not confuse with the minimum functional that we have
noted m (a, b)). We have used the scaling property to simplify the expression.
Now, we have
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4For a precise definition and some comments, please see Chapter 3.
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using the well-known law (cf Revuz and Yor (1991) or Yor (1995)). Now, using
heorem 31 (p. 131), we can write
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In this expression, the laws of Tb and gT−t are known. We have
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So we can finally write the result and complete the proof.
The price of the active option can also be obtained. As we discussed above,

the active option becomes an inactive option when it is deactivated, or just pays
at maturity if it is never deactivated. Its price is therefore

Va (x, T ) = Ex
£
e−rTdVd (d, T − Td) ITd≤T

¤
+ e−rTEx [p (ST ) ITd>T ] .

It is very clear in this expression that such a price is decomposed into the price
of a classical down and out option e−rTEx [p (ST ) ITd>T ] (as it pays only if the
cancelling barrier is not hit) and the price of this ”second renewable chance”
Ex
£
e−rTdVd (d, T − Td) ITd≤T

¤
, itself matching the value of a Switch option starting

deactivated.
Let us write the price of the down and out option as Bdo (x, T ). We obtain the

price of the deactivated Switch option by writing the law of the first hitting time,
which is well known. Indeed, we have

P (Td ∈ dt) =
1
σ ln

¡
S0
d

¢
√
2πt3
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µ
− 1
2t

µ
1

σ
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µ
S0
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¶
− ξt

¶¶
and it allows us to write

Va (x, T ) =

Z T

0
e−rt

1
σ ln

¡
S0
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√
2πt3
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µ
− 1
2t

µ
1

σ
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µ
S0
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¶
− ξt

¶¶
Vd (d, T − t)dt

+Bdo (x, T ) .
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Relationship between Switch options and real options.

Switch options as a replication tool
Let us consider a switch option, the payoff of which at maturity is set to equal
the value at that time of an investment project with possible entry and exit. The
underlying variable is supposed to be a commodity, traded on a market, so that
no-arbitrage arguments are valid for pricing purposes. The barriers of the option
are chosen so that they are equal to the thresholds of the investment project in
question. Therefore, at maturity, whether the investment is active or not, the
switch option replicates the project’s value. In other words,

Value of investment project today = Value of Switch option today

whose payoff equals the value

of the investment project at time T .

This means that the switch option also replicates the value of the investment
at any time since its inception. Hence, buying the switch option is equivalent,
in terms of cashflows, to investing and following the optimal entry/exit decision
rule. Equivalently, anyone possessing shares in the investment can perfectly hedge
them thanks to the switch option. The switch option therefore also constitutes an
option to enter into a project, by providing the holder with exactly the necessary
amount of cash at maturity to buy the project. It is a financial option written on
a real option.

An investment decision typically generates a continuous stream of cashflows,
when it is active, and nothing when an exit decision has just been made. If instead
the investor buys a switch option, aiming at ”exercizing” it at maturity and then
buying into the project, he will pay the premium, and then receive nothing. In
fact, it is the appreciation in value of the option which compensates for the missing
stream of cashflows.

Switch options to hedge entry and exit costs
In our analysis, we are more interested in Switch options as a way to hedge the
future cost of entering or exiting a business, rather than as replication tools. When
a project or a firm changes hands, the new management typically will need to
implement new strategies, so that they can extract more value from the business.
This could be because the firm was badly run, or because of a special know-how
that allows them to reduce current costs. In any case, it is fair to assume that the
new management, within the framework of entry/exit decisions and real options,
will set up different thresholds from the ones in place.

We believe that in most cases, there is a significant delay between the buying of
a business (in fact, that is the instant when the buyer decides to buy the business)
and the time when the buyer is able to implement his strategy. This delay comes
from the time it takes to close the acquisition and restructure the reporting lines
in the firm5.

Switch options provide a hedging vehicle during this delay. Let us write a0 and
d0 the activating and deactivating levels following the new strategy, associated with
entry and exit costs of C0e and C0x (which may be different from the costs incurred
by the previous owners/managers). Note that if the costs are lower for the buyer,

5Recent examples, such as the buying of JP Morgan by Chase, or DLJ by CSFB, illutrate the
delay can easily be of 6 months.
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we would expect a0 ≤ a and d0 ≥ d. If however the firm was not optimally run,
the new optimal barriers could be anywhere with respect to the previous ones.

At time 0, the buyer has decided to acquire the business and possesses a major-
ity of its shares (acquired at the market price, and therefore pricing in the previous
strategy). The buyer reckons that he will be able to implement his new strategy
only at time T . The buyer incurs the risk that, at time T , the new optimal strategy
will require an immediate change in the firm’s activity level:

• if a0 ≤ a then the buyer will need to activate the business and pay C 0e if
a0 ≤ ST ≤ a and the business is not active at time T

• if a0 ≥ a then the buyer will need to deactivate the business and pay C 0x if
a0 ≤ ST ≤ a and the business is active at time T

• if d0 ≥ d then the buyer will need to deactivate the business and pay C0x if
d0 ≤ ST ≤ d and the business is active at time T

• f d0 ≤ d then the buyer will need to activate the business and pay C0e if
d0 ≤ ST ≤ d and the business is not active at time T

A simple Switch option allows us to hedge these risks. For example, if a0 ≥ a
and d0 ≤ d, then the buyer would need to be long one Switch option that pays

• C 0e if deactivated with levels a and d and if d0 ≤ ST ≤ d

• C 0x if activated with levels a and d and if a0 ≤ ST ≤ a.

The value of the option at time zero would therefore be given by 7.3 , with

p (z) = C0xIa0≥z≥a
q (z) = C0eId0≥z≥d

To illustrate this calculation, let us price one leg of this Switch option. We
are interested in the part of the option that pays C 0e if the project is not activated
at time T and d0 ≤ ST ≤ d. Let us see what happens if the new owner wants to
lower the exit threshold significantly. This would make sense if the business was
previously run with an excessively high exit level: in this case, exiting often costs
a lot, based on the example numbers we showed in the first section. Let us assume
that µ = σ2

2 so as to simplify the calculations.
If we use the same parameters as in the numerical examples of the first section,

with a = 120 and d = 80, and d0 = 40 (so the inactive project has a value of about
96 today), we find that the option is worth about 15% of C0e. Therefore, if C0e is
the same as Cx (say 500), then the new owner could pay 75 for the Switch option.
This option will pay the new owner the entry cost of 500 in a year, if and only if
the business is not active while it should be active. Since the value of the project
with the new barriers of 120 and 40 is 262, that is 166 over its current cost with
the sub-optimal barriers of 120 and 80, the cost of buying the Switch option is well
ompensated.
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The joint law of the Brownian meander and its running supremum

We have the following:

Theorem 31 For any measurable positive or bounded function f we have

E
h
f (m1) Isupu≤1mu≤y

i
=

Z y

0
dzf (z)

X
k∈Z

(z + 2ky) e−
(z+2ky)2

2

where m is a Brownian meander
³
mu =

1√
t−gt

¯̄
Bgt+u(t−gt)

¯̄
, 0 ≤ u ≤ 1

´
for any

positive t.

As could be expected, we can check that

lim
y→∞E

h
f (m1) Isupu≤1mu≤y

i
=

Z ∞

0
dzf (z) ze−

z2

2 = E [f (m1)] and

lim
y→0E

h
f (m1) Isupu≤1mu≤y

i
= 0.

Proof. The proof relies on Imhof’s theorem and on the explicit expression of
running supremum densities for Bessel-3 processes. These densities are known and
can be directly obtained from Borodin and Salminen. They give the joint law of a
Bessel-3 process starting from x > 0 and its running maximum (formula 1.1.8, p.
317):

Px
µ
Rt ∈ dz, sup

s≤t
Rs ≤ y

¶
=

z

x
√
2πt

X
k∈Z

µ
e−

(z−x+2ky)2
2t − e− (z+x+2ky)2

2t

¶
dz.

A limit calculation gives the law for a Bessel-3 process starting from 0.

P0
µ
R1 ∈ dz, sup

s≤1
Rs ≤ y

¶
= Iz≤y

z
√
2√
π

X
k∈Z

(z + 2ky) e−
(z+2ky)2

2 dz.

Thanks to Imhof’s theorem (see Yor (1997) or Imhof (1984)), we have a relationship
between the Brownian meander and a Bessel-3 process. Namely, we have

M |F1 =
µr

π

2

1

X1

¶
R
(3)
0

¯̄̄
F1

where M is the law of the meander between 0 and 1 and R is the law of a Bessel-3
process starting from zero up to 1. Applying this result gives

E
h
f (m1) Isupu≤1mu≤y

i
= E0

·
f (R1)

r
π

2

1

R1
Isupu≤1Ru≤y

¸
=

Z y

0
dzf (z)

X
k∈Z

(z + 2ky) e−
(z+2ky)2

2

which can also be written

=
√
2π
X
k∈Z

E
£
f (N − 2ky)NI(2k+1)y≥N≥2ky

¤
for N a normal Gaussian.

This ends the proof.
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Concluding remarks

We have proposed a new class of barrier derivatives, Switch options, that allows
to mitigate the losses due to the ”knock-out” effect of classical barrier options.
These derivative products also constitute a hedging tool of the business risk linked
to entry or exit decision. Switch options can replicate the exit or entry costs that
a buyer of a business might have to pay so as to implement his optimal entry and
exit strategy.

We required that the underlying business variable should be traded, which
would restraint the use of these derivatives mostly to commodities firms, unless
that assumption is made that investors are risk-neutral. As a tool to price Switch
options, we have derived the joint law of the Brownian Meander and its running
maximum.

References
1. Borodin, Andrei and Paavo Salminen, 1996, Handbook of Brownian Motion
- Facts and Formulae, Birkhauser, Basel Boston Berlin.

2. Brennan, M. J. and E. S. Schwartz, 1985, ”Evaluating Natural Resources
Investments”, Journal of Business, 58(2), 135-157.

3. Dixit, A., R. Pindyck, 1994, Investment under Uncertainty. Princeton Uni-
versity Press, Princeton.

4. Imhof, J.-P., 1984, Density Factorizations for Brownian Motion, Meander,
and the Three-Dimensional Bessel Process, and Applications, Journal of Ap-
plied Probability, 21, 500-510.

5. McDonald, R. L., 1999, ”Real Options and Rules of Thumb in Capital Bud-
geting”, in Innovation, Infrastructure, and Strategic Options, Eds. M. J.
Brennan and L. Trigeorgis, Oxford University Press, London.

6. Revuz, Daniel and Marc Yor, 1991, Continuous Martingales and Brownian
Motion, Springer-Verlag, Berlin Heidelberg New York.

7. Trigerogis Lenos, 1996, Real Options, Managerial Flexibility and Strategy in
Resource Allocation. MIT Press, Cambridge

8. Yor, Marc, 1997, Local Times and Excursions for Brownian Motion: a
Concise Introduction. Lecciones in Matematicas, Universidad Central de
Venezuela.



133

Chapter 8 MANAGER’S
OPPORTUNISTIC TRADING1

Real options allow managers to optimize their firm’s value with respect to the
economic environment. But there exists an ”insider option” for informed agents:
the option to arbitrage the market price based on privileged information about the
firm’s projects. The decision of when to buy or sell and how much is indeed a real
option based on market conditions. The exercise of such an option affects market
prices.

The impact of transactions on prices, and the motivation for such transactions,
have been studied from many perspectives. Jarrow (1994) proposed to analyze the
behavior of a manipulator, an agent with a sufficient size to influence the mar-
ket, who profits from trading on securities and their derivatives at the same time.
Back (1992) also focused on the relationship between derivatives prices and their
underlyings when some agents can observe the other’s order flow. Jeanblanc-Piqué
(1992) derived the optimal interest rates manipulation behavior for a central bank.
A series of papers, Platen and Schweizer (1994 and 1998), Frey (1996), and Frey
and Stremme (1996 and 1998) have more particularly focused on the modeling of
the feedback effects of transactions in hedging derivatives. The microstructure lit-
erature has also extensively analyzed the relationships between prices and volumes,
as explained by O’Hara (1995).

In this chapter we study the optimal arbitrage transactions an informed agent
carries out and their influence on the market price. We model the discrepancy
between the market price and the real value, known to the informed agent (maybe
with some noise), and the impact on the market price of the trading strategy
that maximizes the agent’s wealth. In our approach, the impact on prices is a
consequence of informed trading, and manipulation is not an objective, rather a
constraint. The effect of a transaction on the price of a security determines how
much it costs to trade this security, as well as the evolution of this price, which
conditions future trading gains.

In particular we are interested in the behavior of the manager of an invested
perpetual project as an informed trader. The shares of the project, as a subsidiary
or as an independent entity, are assumed to be listed on an exchange. The manager
can tell the difference between the market price of the project and its real value,
due to his privileged information. As Jordan (1998) mentions it:

[...] I find that managers alter their holdings when the firm’s
prospects change. Managers consistently take advantage of private
firm-specific information, earning positive abnormal returns on open
market purchases, while avoiding negative abnormal returns on open
market sales.

The decision the manager can make, based on that information, to invest more
in that project or to disinvest, that is to buy or to sell shares, corresponds to an
exit or entry decision. In this situation, the trades the manager can execute will
have an impact on the share price, and they will realign it progressively towards

1A SHORTER VERSION OF THIS CHAPTER IS TO APPEAR IN THE INTERNA-
TIONAL JOURNAL OF APPLIED AND THEORETICAL FINANCE UNDER THE TITLE
”INFORMED OPPORTUNISTIC TRADING AND PRICE OPTIMAL CONTROL”.
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the real value, which he is the only one to observe. This phenomenon is recognized
in the financial community, as could be exemplified by the ”Lex Collumn” of the
Financial Times (July 6, 1998):

Actions speak louder than words. That is why monitoring the buy-
ing and selling of shares by directors is worth the investor’s while.

Specifically, the questions we address are: what is the optimal strategy for the
manager? Also, what dynamics will it involve for the share price? And finally, what
is the total present value of this information monopole? We would hope this value
is under the typical punishment applied to insider dealers. Though, it has been
shown by empirical evidence that the current legislation does not prevent insiders
from profitably trading shares in their firm. In the 1980’s, increased sanctions did
not deter most insiders from profitable trading, as many important trials showed
it.

In the first section, we present an extension of two models accounting for
the influence of transactions on prices, originally designed to model the effect of
hedging derivatives. We extend the results of these models to the case of discrete
transactions and obtain simple relationships between traded volumes and price
jumps. We find that in the case of an infinite market size, the traded volume
makes prices jump by an exponential of this volume multiplied by a constant
factor. This factor is identified as the depth of the market. For the other model,
which defines the market size, the jump depends on the ratio of the number of
shares in the market before the trade to the number of shares after the trade. We
find that for very small volumes, the infinite market size model is a more tractable
proxy for the finite market size.

In the second section, we develop a probabilistic approach to the problem of
controlling a Brownian Motion to maintain it in a tunnel. These results have been
usually derived using differential equations. Getting an explicit formula for the
value function of the stochastic control problem allows us to deal with various
constraints.

In the third section, we study the optimal strategy followed by the manager.
We propose a simulation that gives the profit the manager can realize by entering
these informed trades and influencing the market. We study the optimal range of
intervention for the manager, and its implication on the path of the underlying
security. We find that the informed traders will maintain the market price in
an optimal range around the real value. This affects the distribution of shares
performance, and increases its volatility. On the other hand, it ensures that market
price are not too far from the real value. Finally, for reasonable parameters, we
find the gain (for perpetual trading) to the informed trader can represent about
10% of the company’s market capitalization if the correlation between its real and
market values is low enough.

The fourth section concludes the paper, followed by the references in a fifth
section and an appendix in the sixth section.

A model for the market impact of transactions

In this section we present two different models and study their consequences for
the mechanics of the impact of transactions on prices. These models have been
designed in the first place to study the continuous hedging of derivatives when
transactions influence price. We adapt them to the case of discrete transactions.
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Infinite market size model
This model has been introduced in Platen and Schweizer (1994), and was derived
from the model presented in Föllmer and Schweizer (1993). The original objective
of Föllmer and Schweizer’s paper is to study the ergodic behavior of securities
prices when time goes to infinity.

We first review the basic assumptions of this model. For each n, we will
implicitly define the discrete time price process

¡
Sntk , tk =

T
nk
¢
. For each of these

n, we consider the case of an economy with A agents, where the authors set the
excess demand at time index k of agent a for the underlying asset to be

ena(t
n
k , S

n
k ) = G

n
a(t

n
k−1, ln

SnkdSna,k ) + fna (tnk−1, lnSnk−1, tnk , lnSnk ) + λna,k (8.1)

where we note for short Snk = S
n
tk
, and where

¡
λna,tk , tk =

T
nk
¢
is the only random

source in the model. The excess demand is the new demand with respect to what
the agents already posses. The first component of this equation, Gna , is due to
the ”arbitrage demand” i.e. the demand describing the reaction of agent a to the
deviation of the traded price at date tk from his assessment dSna,k of the price for
this date. We take dSna,k = Snk−1. The second component, fna , is the strategy of a
market manipulator. The third component, λna,k, represents the liquidity demand
for the asset.

The market clearing condition isX
a∈A

ena(t
n
k , S

n
k ) = 0

For a given sequence (tnk)k∈{1,...,n} of trading dates, this yields a sequence (S
n
k )k

of prices which can be viewed as a stochastic process in discrete time.
It is important to clarify the concept of a manipulator as opposed to the rest

of the market. We have to consider that if there was no manipulator, the market
would follow some dynamic, consistent with past observations. But among the
traders we consider as ”noise”, there could be also manipulators. We consider
that, these manipulators being unpredictable from our manipulator’s viewpoint,
they still remain noise. This explains the importance of having a model which,
when free of manipulations, follows an usual dynamic.

We specify in a simple way the manipulator’s strategy:

fna (tk−1, lnS
n
k−1, t, lnS

n
k ) = ζ

n(tk, lnS
n
k )− ζn(tk−1, lnSnk−1).

Therefore we assume that the manipulator’s strategy depends only on time and on
the price of the underlying. We start by ruling out all the strategies which could be
based on the history of the underlying’s price. In addition to the fact that the set
of strategies we consider here is sufficient to encompass a large part of market prac-
tices, to allow more complex strategies would result in a purely intractable model.
ζn represents here the quantity of assets held by the manipulator. Of course, this
function does not necessarily depend on n. In Föllmer and Schweizer’s original
setting, there is no manipulation, as they are interested on the ergodic behavior
of the market, depending on the hypotheses made on the shape of the arbitrage
demand. Platen and Schweizer, on the contrary, introduce an external influence
on the market but confine it to the ”technical demand” induced by derivatives
hedging.
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We assume for simplicity that (λnk)k are i.i.d. square integrable random vari-
ables with mean mn and variance vn. We now have to specify the form of the
arbitrage demand. This demand takes the formX

a∈A
Gna(t

n
k−1, ln

SnkdSna,k ) = γ ln
Snk
Snk−1

This assumption implies that the investors make their decisions over a very short
horizon in time, which could correspond to short-lived agents. We will suppose
throughout the paper that γ is negative, that is investors buy when the price
decreases and sell when it increases. This behavior can be considered typical for
many investment managers, as their criterium for investment is the discrepancy
between the market price of the asset and the fundamental value they assign to
it. The reason for this choice is that in the other case, we would be considering
a market led only by speculative behaviors. We prefer to model a market where
the signal given by price variations is taken as short-term noise, the real meaning
behind a lower price being that, for an unchanged fundamental value, the asset is
cheaper, thus inducing a willingness to buy.

We then make the assumption that all the functions described in the discrete
time setting converge uniformly as n goes to infinity. There are numerous technical
conditions to ensure the proper convergence, and they are dealt with in Platen and
Schweizer’s paper. The authors write the market clearing condition in continuous
time

0 = γd (ln (St)) + dζ (t, ln (St)) + dUt (8.2)

where U is the limit of the cumulated liquidity demand and writes

dUt = mdt+ vdWt (8.3)

with W a Brownian Motion.
The equation 8.2 can be thought of as the simple limit of the discrete time

equivalent

0 = γ ln
Snk
Snk−1

+ ζn(tk, lnS
n
k )− ζn(tk−1, lnSnk−1) +

X
a

λna,k.

The liquidity demand is assumed in fact to converge towards a drifted Brownian
Motion.

In the model, U represents the amount held by noisy traders. A part of these
traders can be thought of as the impact of the public demand for the financial
asset, reflecting the need for cash or the willingness to spare their revenues. Its
randomness is supposed to come from the economy. The other part can be thought
of as the reactions of institutions as well as consumers to the arrival of information.
The above equation is the weak limit of the discrete model, that is the expectation
of any functional applied to the discrete market model converges to the same
expectation applied to the continuous one. It appears clearly that in this model,
the cumulated traded volume over any non-zero interval is infinite, as it equals the
variation of a continuous martingale.

We finally have the following

Theorem 32 (Platen Schweizer 1994) Let Sn0 = S0 for all n ∈ N. The law
of the equilibrium price process (Snk )k∈N converges weakly to the law of the unique
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strong solution S = (St)t≥0 of the stochastic differential equation

dSt
St

= −
Ã
m+ ζ·(t, lnSt)
γ + ζ 0(t, lnSt)

− 1
2

v2ζ0(t, lnSt)¡
γ + ζ 0(t, lnSt)

¢2 + 12 v2ζ00(t, lnSt)¡
γ + ζ0(t, lnSt)

¢3
!
dt

− v

γ + ζ0(t, lnSt)
dWt (8.4)

where ζ0(t, lnSt) is the derivative of the quantity of assets held by the manipulator
expressed in monetary units with respect to S, and ζ ·(t, lnSt) is the derivative with
respect to t .

Proof. Refer to the appendix.
Platen and Schweizer notice that if there is no manipulation-induced demand,

we retrieve the usual geometric Brownian Motion model. In that case, we have

dSt
St

= −v
γ
dWt − m

γ
dt

This particular case allows us to normalize the parameters intervening in the excess
demand expression. Indeed, since we want the limit model’s constant volatility to
equal a given parameter σ, we have γσ = ν. In fact, the volatility in the limit model
represents the ratio between the liquidity demand’s volatility and the intensity of
the arbitrage demand. We will give later another interpretation of the parameter
γ.

Remarks on the infinite size market model
A precision about volume

As our target is to model the influence of an important transaction on the price
dynamic of a financial asset, we start by considering the simplest example of a
buying / selling strategy. We suppose the manipulator buys at a constant speed
of a asset units per unit of time. In our setting, it corresponds to a manipulation
strategy ζ (t, lnSt) = at . When the manipulator is buying (or selling, depending
on the sign of a), the price dynamic becomes

dS
(a)
t

S
(a)
t

=
m+ a

γ
dt+

v

γ
dWt.

An issue that can be raised about Platen and Schweizer’s model is the infinite
volumes: how can a finite volume of transaction, induced by the manipulator,
influence the price of the asset whereas the overall traded volume is infinite over
any non zero period? A first hint of explanation is that in fact, the observed volume
of transaction depends of the scale at which it is observed. Indeed, let us consider
an order from a broker: it will be the result of a compensation between all the sell
and buy orders of his clients over a certain period of time, which, themselves are
the compensations of continuous decisions to buy and sell securities throughout
the day based on new information. Thus, the exchanged volume at the market
level and at the broker level are not the same, the latter being greater. This
aggregating behavior is well documented and comes from issues such as inventory
risks, inducing a transaction cost (refer to O’Hara (1995)). We argue that limited
transaction volumes are a consequence of these induced costs, and that without
transaction costs, volume can be infinite.
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Now, instead of the variation of the process as a measure of transaction volume,
we propose very simply to measure the difference in the volume held by the traders
between two distinct dates, that is, considering the compensation over this period
of time. Then, it gives a figure which is comparable with the volume traded by the
manipulator. Overall, if we write the price S as the solution of the above stochastic
differential equation, it appears clearly that St only depends on Wt and not on
(Wu, u ≤ t), that is, not on the intermediary volume, whatever the precision of its
measure. As the transaction volume is induced by the liquidity demand, that is
the noisy traders, we can consider that there is an aggregating market-maker at
some point.

Finally, let us notice that trading continuously presents an advantage over dis-
crete transactions. Indeed, the noisy agents in our setting cannot see that the price
is being manipulated if it is done continuously. A big jump, being a discontinuity,
ought to be noticed since these agents do not induce jumps themselves.

A parameter for the depth of the market

Now, let us model the influence of discrete transactions. We start by writing the
price when the manipulator is buying at the speed of a. We have

S
(a)
t = S0 exp

µµ
m+ a

γ
− v2

2γ2

¶
t+

v

γ
Wt

¶
.

One can wonder what one would obtain if discrete transactions were allowed.
The following results give the answer.

Proposition 33 A discrete transaction of size M started at price S0 makes the

price jump to a.s. S0e
M
γ . The price paid by the buyer/seller of a discrete block is

MS0e
M
γ .

Proof. If the manipulator starts buying at time zero and stops when he holds
M units of financial assets, that is at time M

a , then we have
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and we also have lima→∞ E

"µ
S
(a)
M
a

− S0e
M
γ

¶2#
= 0. This limit results allow us

to write that an instant buy order from the manipulator of M units of the asset

provokes a jump in the price of almost surely e
M
γ . Therefore, the parameter γ
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can be also thought of as a measure of the influence of a direct order on prices:
the bigger this number, the smaller the influence. Hence, it can be viewed as the
depth of the market.

The expected average price in a continuous transaction can be calculated: it is
equal to

a
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dtE
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¶
.

At the limit, we have lima→∞ a
M

R M
a
0 dtE

h
S
(a)
t

i
= S0

γ
M

³
e
M
γ − 1

´
. However, we

will consider that a discrete block trade cannot be traded at the average price. The
difference between the terminal price and the average price should be taken up by
the intermediaries. The manipulator is a price-taker in this situation, since he/she
normally does not have a direct access to the market (not being a broker/dealer).
A simple asymptotic analysis tells us that for a small but discrete amount of
transaction M , the terminal price is about

³
1+ M

γ

´
times the starting price, and

the average price is about
³
1+ M

2γ

´
times the starting price.

This completes the proof.

The cost of trading and the order queue

We have seen that in this first setting

• A discrete transaction induces a jump in the asset price.
• This price is what the manipulator has to pay when he buys discretely, and
it is higher (respectively, lower when he sells) than the listed price an instant
before.

It is therefore natural to consider that buying/selling prices constitute bid-ask
prices for given quantities.

Proposition 34 Two discrete immediately consecutive opposed transactions for
the same number of units induce a loss of S0

³
e
M
γ − 1

´
per unit.

Proof. This fact is trivially verified; it is enough to notice that³
S0e

M
γ

´
γ
³
1− e−Mγ

´
= S0γ

³
e
M
γ − 1

´
and the proof is complete.

Let us see how it implies a particular shape of the order queue. We suppose
that the quoted price is the last trade price. We also suppose that after every
trade, the missing demand or offer which has been ”consumed” is immediately
replaced in the same proportion as it was before.

The model predicts that for all M , the above relationship should be written

p = S0e
M
γ that is

M = γ ln

µ
p

S0

¶
.

This explains the link between the volume that can be traded, and the price at
which it can be traded: it constitutes the order queue.
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The case of a market with a limited number of assets
The market clearing condition in continuous time we saw in the preceding subsec-
tion expressed how the random liquidity demand influences the price of an asset.
It appears that this influence is not supposed to change with the size of the market,
which is the number of assets which can be freely traded. However, if there is a
limited total amount of assets in circulation, then the influence of a given transac-
tion should not be the same depending on the size of the market. Indeed, buying
10 million in a 50 million market or in a 50 billion market cannot intuitively have
the same effect.

A particular case of the market model which is introduced in Frey and Stremme
(1995) accounts for this particular effect. This model, though being also based on
the limit of a discrete formulation, does not make the same kind of hypotheses as
Platen and Schweizer’s one. Frey and Stremme, instead of assuming the existence
of two sorts of traders, one being noisy, assume that all the traders’ demand is
linked to an economic index which, in turn, is randomized. The available wealth
of each trader is random and he has to optimize his expected utility with respect
to his (simple) trading strategy.

The aggregate demand from the traders for the risky asset, function of the
price x, is written Dn(tnk , F

n
k , x). Here, F

n
k is a discrete stochastic process which

gives the evolution of the economy. This demand function is supposed to verify
technical conditions that ensure the existence of the equilibrium, which we do
not detail here. To this total demand is added the manipulator’s demand, which
we write ξn(tk, x) . It is different from the manipulation demand mentioned in
the preceding model, since here we write the total amount of asset held by the
manipulator, and not its variation. The total demand is written

Gn(tnk , F
n
k , x) = D

n(tnk , F
n
k , x) + ξ

n(tk, x).

If we suppose now there are N units of the asset on the market, then the market
clearing condition at equilibrium writes (this is the aggregate demand, not excess
demand as in Platen and Schweizer’s model)

Gn(tnk , F
n
k , x) = N.

Here, Frey and Stremme propose that, given an income f , the trader maximizes

Dn (Fnk , x) = argmax
d≥0

E
h
u
³
Fnk + d

³
[Snk+1 − x

´´i
where [Snk+1 is the trader’s belief of the price in the next period and F

n
k is his

income. Frey and Stremme then make the assumptions that

• The utility function is of Constant Relative Risk Aversion, that is u (z) = z−γ
for γ > 0.

• The agent believes that [Snk+1 = xλnk with (λnk)k independent and identically
distributed

• Fnk+1 = Fnk ²nk where (²nk)k independent and identically distributed. If ² = λ
then we will obtain that the expectations are rational.

Solving the optimization program, the demand is shown to write

Dn (f, x) =
f

x
Dn∗ (8.5)
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and therefore if there is no manipulation, the market clearing condition, justifying
the remark about rational expectations, gives

Snk =
Dn∗
N
Fnk , that is

Snk+1 =
Dn∗
N
Fnk+1 =

Dn∗
N
Fnk ²

n
k = S

n
k ²
n
k .

Here, the behavior of all the agents is aggregated. In this setting, different agents
can have different parameters such as D and F , as long as the sum of all the
agents’F equals Fnk .

Frey and Stremme give the example of an endowment process F converging
towards a geometric Brownian Motion. Here, Dn can converge to a constant (or
even be a constant), and

²nk = exp

µµ
µ− σ

2

2

¶¡
tnk+1 − tnk

¢
+ σ

q
tnk+1 − tnkεnk+1

¶
.

This is the discretization of a Geometric Brownian Motion and the asset price
obviously converges weakly to the solution of

dSt
St

= µdt+ σdWt

where W is a Brownian Motion.
Hence, if there are manipulations, thanks to 8.5, the price solves

N =
Ft
St
D + ξ (t, St) .

Some remarks on the limited size market model
Here, we start by noticing that in the case of the simplest manipulation, we have

N =
Ft

S
(a)
t

D + at

S
(a)
t =

FtD

N − at =
S
(0)
t N

N − at.

This process can also be written as

S
(a)
t = S0 exp

µµ
µ− σ

2

2

¶
t+ ln

µ
N

N − at
¶
+ σWt

¶
.

Therefore, the influence of buying or selling the asset increases with the number
of units already bought or sold. Let us study first the effect of a discrete order of
size M < N . We have the following

Proposition 35 A discrete transaction of size M < N provokes a jump in the
asset price from S0 to S0 N

N−M . The price paid by the manipulator is S0
MN
N−M . The

transaction cost is M
N−M .

Proof. We follow the proof of the preceding subsection. We write that

E
·
S
(a)
M
a

¸
=
S0e

µM
a N

N −M
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and hence

lim
a→∞E

·
S
(a)
M
a

¸
= S0

N

N −M .

The convergence of the L2 norm can also be checked. And this gives the result
stated in the proposition.

We can compare the results, for the case of a discrete transaction and asymp-
totically in M , with Platen and Schweizer’s model. We see that N and γ play a
similar role. Indeed, we notice that

S0
N

N −M = S0

µ
1+

M

N

¶
+ o (M) .

And for a small amount of transaction M , the transaction cost, as a measure
between the price effectively paid and the price before a discrete transaction, is
proportional and its coefficient is 1

2γ under the large market size model. The
large market model can therefore be thought of as an approximation of Frey and
Stremme’s model.

Controlling the BM in a tunnel

We study in this section the optimal control of a Brownian Motion in view of
optimizing a functional of the controlled path of the process, the control being
performed by keeping the process in a tunnel.

We consider a set of two barriers a and b with a < b, and two inner barriers
a0 and b0. We call bB the process derived from B that is sent back to a0 (resp. b0)
whenever it touches a (resp. b).

We are interested in the total value V (x) = Ex
hR∞
0 dte−rtf

³ bBt´i for a nega-
tively bounded function f .

The law of the controlled Brownian Motion
It is natural to consider the problem starting from one of the barriers. We have
the following

Proposition 36 The following equalities hold:

V
¡
b0
¢
=

Z b−b0

a−b0
dzf

¡
z + b0

¢ 1√
2r

X
k∈Z

³
e−|z+2k(b−a)|

√
2r − e−|z−2a+2k(b−a)|

√
2r
´

+V
¡
b0
¢ sinh ¡(b0 − a)√2r¢
sinh

¡
(b− a)√2r¢ + V ¡a0¢ sinh

¡
(b− b0)√2r¢

sinh
¡
(b− a)√2r¢

and

V
¡
a0
¢
=

Z b−a0

a−a0
dzf

¡
z + a0

¢ 1√
2r

X
k∈Z

³
e−|z+2k(b−a)|

√
2r − e−|z−2a+2k(b−a)|

√
2r
´

+V
¡
a0
¢ sinh ¡(a0 − a)√2r¢
sinh

¡
(b− a)√2r¢ + V ¡b0¢ sinh

¡
(b− a0)√2r¢

sinh
¡
(b− a)√2r¢ .

Before going to the proof, notice that the knowledge of

F (r, f) = Ex
·Z ∞

0
dte−rtf

³ bBt´¸
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gives the law of cBt. Indeed, inverting the Laplace transform in time would give
Exf

³ bBt´ for all f , which in turn allows the characterization of the law of cBt.
Proof. We know that, thanks to the strong Markov property of the Brownian
Motion,

V
¡
b0
¢
= Eb0

·µZ Tb

0
dte−rtf (Bt) + e−rTbV

¡
b0
¢¶
ITb≤Ta

¸
+Eb0

·µZ Ta

0
dte−rtf (Bt) + e−rTaV

¡
a0
¢¶
ITa≤Tb

¸
.

and we want to calculate a quantity of the kind

E0
·µZ Tb

0
dte−rtf (Bt) + e−rTbV

¡
b0
¢¶
ITb≤Ta

¸
=

Z ∞

0
dte−rtE

h
f (Bt) It≤Tb≤TaIsups≤t Bs≤b

i
+ E0

£
e−rTbV

¡
b0
¢
ITb≤Ta

¤
But it can also be writtenZ ∞

0
dte−rtE

h
f (Bt) It≤TbIinfu≤Tb Bu≥aIsups≤t Bs≤b

i
+ E0

£
e−rTbV

¡
b0
¢
ITb≤Ta

¤
and the integrand equals

E
h
f (Bt) Iinfu≤t Bu≥aIinfu∈[t,Tb] Bu≥aIsups≤t Bs≤b

i
.

where it is clear that all the characteristic functions are equivalent to that of the
set where t ≤ Tb ≤ Ta. By conditioning we get that it equals

E
h
f (Bt) Iinfu≤tBu≥a Isups≤t Bs≤bEFt

h
Iinfu∈[t,Tb]Bu≥a

ii
= E

h
f (Bt) Iinfu≤tBu≥aIsups≤tBs≤bEBt

h
Iinfu∈[t,Tb] Bu≥a

ii
by the Markov property of the Brownian Motion. Let us now mention the well
known formula, that can be found for example in Borodin and Salminen (1996,
formula 2.2.2, p. 163)

Px
µ
inf
u≤Tb

Bu ≥ a
¶
=
x− a
b− a Ia≤x≤b + Ia≤b≤x

so that we get

E
·µZ Tb

0
dte−rtf (Bt) + e−rTbV

¡
b0
¢¶
ITb≤Ta

¸
=

Z ∞

0
dte−rtE

·
f (Bt)

Bt − a
b− a Iinfu≤tBu≥aIsups≤t Bs≤b

¸
+ V

¡
b0
¢
E
£
e−rTbITb≤Ta

¤
.

But the joint law of the Brownian Motion and its first exit time of a tunnel
P (Bt ∈ dy, Ta ∧ Tb > t) is known, as mentioned in Karatzas and Shreve (1991,
Proposition 8.10, P. 90) and we have therefore

E
·
f (Bt)

Bt − a
b− a Iinfu≤t Bu≥aIsups≤t Bs≤b

¸
=

Z b

a
f (z)

z − a
b− a

dz√
2πt

X
k∈Z

µ
e−

(z+2k(b−a))2
2t − e− (z−2a+2k(b−a))2

2t

¶
.
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Now, considering a process starting from b0 does not change much in the above
equation. We get

Eb0
·
f (Bt)

Bt − a
b− a Iinfu≤tBu≥aIsups≤tBs≤b

¸
= E

·
f
¡
Bt + b

0¢ Bt − a+ b0
b− a Iinfu≤t Bu+b0≥aIsups≤t Bs+b0≤b

¸
=

Z b−b0

a−b0
f
¡
z + b0

¢ z + b0 − a
b− a

dz√
2πt

X
k∈Z

µ
e−

(z+2k(b−a))2
2t − e− (z−2(a−b

0)+2k(b−a))2
2t

¶
.

Integrating with respect to t we get the following Laplace transformZ ∞

0
dte−rtEb0

·
f (Bt)

Bt − a
b− a Iinfu≤t Bu≥aIsups≤t Bs≤b

¸
=

Z b−b0

a−b0
f
¡
z + b0

¢ z + b0 − a
b− a

1√
2r

X
k∈Z

³
e−|z+2k(b−a)|

√
2r − e−|z−2(a−b0)+2k(b−a)|

√
2r
´
.

It is also known (refer to Revuz and Yor (1991) for example, or Karatzas and
Schreve (1991), p. 100) that

Eb0
£
e−rTbITb≤Ta

¤
=
sinh

¡
(b0 − a)√2r¢

sinh
¡
(b− a)√2r¢ .

Now, summing the various expressions we obtain the first equation in the theorem.
The second equation is written very easily by changing the variables, and using
the fact that B = −B in law. In particular, one has to use that

Px

Ã
sup
u≤Ta

Bu ≥ a
!
=
b− x
b− a

from Borodin and Salminen (1996, 2.1.2, p. 163) and the proof of the proposition
is complete.

If we write the density

K (z) = Ib−b0≥z≥a−b0
z + b0 − a
b− a

dz√
2πt

X
k∈Z

µ
e−

(z+2k(b−a))2
2t − e− (z−2a+2k(b−a))2

2t

¶
then we get by solving the system that

V
¡
b0
¢
=
α+ βγ

1− βδ
with

α =

R
dzf (z + b0)K (z) sinh

¡
(b− a)√2r¢

sinh
¡
(b− a)√2r¢− sinh ¡(b0 − a)√2r¢

β =
sinh

¡
(b− b0)√2r¢

sinh
¡
(b− a)√2r¢− sinh ¡(b0 − a)√2r¢

γ =

R
dzf (z + a0)K (z) sinh

¡
(b− a)√2r¢

sinh
¡
(b− a)√2r¢− sinh ¡(b− a0)√2r¢

δ =
sinh

¡
(a0 − a)√2r¢

sinh
¡
(b− a)√2r¢− sinh ¡(b− a0)√2r¢ .
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Distribution of the cost of control
Now, let us look at the ”cost” of controlling the Brownian Motion in a tunnel.
We define Ca0 and Cb0 as the finite costs of pushing the Brownian Motion into the
tunnel up and down, respectively.

Proposition 37 We have the following result

C
¡
b0
¢
= Eb0

"X
i

³
e−rTa0,iCa0 + e−rTb0,iCb0

´#

=
Cb0 (α

0 + βδ) +Ca0 (β + γ0β)
1− βδ

with

α0 =
sinh

¡
(b− a0)√2r¢

sinh
¡
(b− a)√2r¢− sinh ¡(b0 − a)√2r¢ and

γ0 =
sinh

¡
(b0 − a)√2r¢

sinh
¡
(b− a)√2r¢− sinh ¡(b0 − a)√2r¢ .

Proof. Starting from b0 we obtain easily, relying on the preceding computations:

C
¡
b0
¢
= Eb0

£
e−rTb

¡
Cb0 +C

¡
b0
¢¢
ITb≤Ta + e

−rTa ¡Ca0 +C ¡a0¢¢ ITa≤Tb¤
=

¡
Cb0 +C

¡
b0
¢¢ sh ¡(b0 − a)√2r¢
sh
¡
(b− a)√2r¢ + ¡Ca0 +C ¡a0¢¢ sh

¡
(b− b0)√2r¢

sh
¡
(b− a)√2r¢ .

And

C
¡
a0
¢
=
¡
Cb0 +C

¡
b0
¢¢ sh ¡(a0 − a)√2r¢
sh
¡
(b− a)√2r¢ + ¡Ca0 +C ¡a0¢¢ sh

¡
(b− a0)√2r¢

sh
¡
(b− a)√2r¢ .

So we finally get

C
¡
b0
¢
=
Cb0 (α

0 + βδ) +Ca0 (β + γ0β)
1− βδ

The symmetric expression follows easily.
So as to compute the value or the cost of a control strategy for the Brownian

Motion starting from any point in the tunnel, one just has to calculate

C (x) = Ex
£
e−rTbC

¡
b0
¢
ITb≤Ta + e

−rTaC
¡
a0
¢
ITb>Ta

¤
and thanks to the result mentioned above, we have

C (x) = C
¡
b0
¢ sinh ¡(x− a)√2r¢
sinh

¡
(b− a)√2r¢ +C ¡a0¢ sinh

¡
(b− x)√2r¢

sinh
¡
(b− a)√2r¢ .

An optimal control in a very general setting can be found by minimizing the
costs while maximizing a functional of the path of the controlled process, over the
strategies represented by the set of four barriers.
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Market manipulations and arbitrage

We now consider a setting where the relevant variable to the investment project or
the company, observed by the manager only, follows a geometric Brownian Motion.
This variable can be a demand level, a commodity price, or directly the stream
of cash-flows generated by the company. The market value of the company is
supposed to follow a correlated Brownian Motion, with the same drift. Indeed, we
assume the market information is noisy but unbiased. An extension of the model
to the biased case is straightforward but computationally heavy. The informed
agent knows the real value of the company, which is only correlated to its market
value. When the discrepancy between the two reaches an optimal level, the agent
will enter trades so as to benefit from the difference in valuation: the cashflows the
stock will generate in the future have a certain present value, and its difference with
the market value will be a net gain for the agent. Though, while performing these
transactions, the agent will influence the price of the stock, and push it towards
its real value. The problem is similar to that of controlling a random process to
stay in a tunnel.

An investment decision is usually assumed to be perpetual, the investment cost
being a sunk cost. The agents we study are not infinitely lived as corporations
can be, but we can consider that the impact of a manager’s trades should not
be too different from his successor, and therefore we can suppose the successive
informed traders can be aggregated into one. Some investments can be exited,
even if the cost is high. Dixit and Pindyck (1994) have exposed many examples,
as well as the methods to address the problem of valuation in that case. It is
sometimes possible, indeed, to sell a plant or an expensive machine on the market,
and therefore exit the market. But generally, the costs of exiting an investment are
important, due for example to the social costs of firing employees. So the optimal
investment strategy is to invest when the relevant variable hits an optimal high
level, and disinvest each time it hits an optimal low level. In fact, the decision
to invest in real option theory correspond to the decision to buy in our problem
setting, and disinvesting corresponds to selling. But our problem is even simpler
as the only relevant cashflows will only intervene at these times when transactions
are performed, instead of being a continuous stream.

The present section will use the mathematical results shown in the preced-
ing section to express closed-form solutions for the price control problem of the
informed trader.

The setting of the model
We assume there exists an underlying random process that conditions the compa-
ny’s business (its market share, the price of inputs, the price of the goods sold, ...).
We suppose that this variable is governed by the following stochastic differential
equation

dXt = Xtµdt+XtσdBt

and the perception of this variable by the market follows

dSt = Stµdt+ StσdWt

with hB,W it = ρt.
We write, for the informed manager, the value of the company at time t as

V (x) = EXt=x
·Z ∞

t
due−ruf (Xu)

¸
.
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In the relatively general case of a Cobb-Douglass profit function for f , that is an
exponent function, we obtain something of the form

V (Xt) = ∆X
κ
t .

If f is the identity, we obtain for example

V (X0) =
X0
r − µ

The value to the market investors, that is the market price, will write ∆Sκt . It is
natural to assume that the preferences of the manager and the investors are the
same, since if they were not, then there would be a necessary minimal amount
of transactions between them. However, if X equalled S then there should be no
reason why the investor and the manager would trade in our setting.

When the informed manager enters a trade that allows him to buy shares of
the company for less than what they are really worth, or the contrary, his profit
has to be considered in terms of yield rather than absolute value. Indeed, we do
not put constraints on his ability to get financing or to sell short. Therefore, the
right benchmark would be what proportional return he would obtain if he did not
trade. Then, by buying more, he increases his yield with respect to the yield of
the company (at which he would have invested), and by selling at the right time,
he invests the money he’s getting at the risk-free rate. The difference in price
between the real value and the trade price times the number of shares represents
the dollar amount that he saves or gains at each trade, and is comparable to the
value of the firm at any time. Taking the present value gives the value today of
performing these trades.

The manager looks at the ratio between the real value and the market value,
and depending on how far they are from each other, will decide to buy, sell, or
do nothing. This is a very simple control problem. Let us write the value of
trading V

¡
s
x

¢
as a function of the ratio. The manager will maximize this value

with respect to his parameters, i.e. the levels at which he trades, and the amounts
he trades.

In addition, we will consider that the transactions undertaken by the manager
must be of a minimum size, and/or maximum size. Indeed, any size cannot be
traded at once: there are blocks, representing minimal or maximal sizes. This
volume constraint could appear to be an ”information asymmetry” cost, as the
broker does not know the manager is informed, but knows that some trades are
informed, and observing the size of the trades gives some information. O’Hara
(1995) for example explains this situation. The minimal or maximal volume at
each trade will be noted m.

The value of a strategy in the infinite market model
As soon as the ratio between the value of the company to the manager and to the
market goes up to a given level or goes down to a lower threshold, the manager
will decide to trade.

The process Z = V (S)
V (X) is a geometric Brownian Motion, and its dynamic is

easy to derive. Indeed, we have

Zt =
Sκ0 e

κ
³
µ−σ2

2

´
t+κσWt

Xκ
0 e
κ
³
µ−σ2

2

´
t+κσBt

=
Sκ0
Xκ
0

eκσ(Wt−Bt).
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So, thanks to the assumption that the drift and the volatility are the same for the
market’s perception and reality, the expression of Z is greatly simplified. As the
process in the exponential has no drift, there won’t be a need to use Girsanov’s the-
orem in the calculations. The ratio Sκ0

Xκ
0
can be considered to be 1 if at the starting

time, the market has a perfect information no the firm’s value. But if we consider
the decision to trade by the manager after the company has been set up, this ratio
may be different from 1. W and B being two correlated Brownian Motions, W−B
is a Brownian Motion with a multiplicative coefficient of

p
2 (1− ρ).

Zt =
Sκ0
Xκ
0

eκσ
√
2(1−ρ)Ut

where U is a standard Brownian Motion.
When Z leaves a tunnel, the manager trades a volume of M (positive in the

case of buying and negative if selling). This costs (at time t) ∆StMJ (M) where
J is the ”jump function”, and the price jumps by J (M). We can write hu and
hd the barriers that trigger the trades, and the manager wants the ratio to reach
its optimal level lu or ld. It implies that there is a precise volume that has to be
traded so that the share price adjustment moves the ratio by the desired amount.
Propositions 12 and 13 allow us to write explicitly the cost and impact of trans-
actions.

Let us write Mu and Md the volumes traded respectively in the case of selling

or buying. In the case of selling, we have e
Mu
φ Zt = lu just after the transaction,

where φ is the depth of the market. But Zt = hu, and it implies Mu = φ ln
³
hu
lu

´
.

Notice that Zt = hu is equivalent to Ut =
ln

µ
Xκ0
Sκ0
hu

¶
κσ
√
2(1−ρ) , so the hitting time we are

interested in would be Tb (U) with b =
ln

µ
Xκ0
Sκ0
hu

¶
κσ
√
2(1−ρ) .

In the other case, we obtain e
Md
φ Zt = ld andMd = φ ln

³
ld
hd

´
, which is naturally

positive. Notice that simplifying the expressions with S0 = X0 gives for all the
levels

b =
ln (hu)

κσ
p
2 (1− ρ) , b

0 =
ln (lu)

κσ
p
2 (1− ρ) ,

a0 =
ln (ld)

κσ
p
2 (1− ρ) , a =

ln (hd)

κσ
p
2 (1− ρ) .

The impact of a transaction on the wealth of the manager is simply the number
of shares traded times the gain per share, all being divided by the real value of
the company (since we are interested in the return generated by informed trading
with respect to the value of a share, as a yield). The gain per share equals the real
price minus the market price or the opposite, depending if it is a buy or a sell. So
we have in the case of buying

gain = Gd =Md

∆

µ
Xκ
t − Sκt e

Md
φ

¶
∆Xκ

t

= φ ln

µ
ld
hd

¶
(1− ld)
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When selling

gain = Gu = φ ln
µ
hu
lu

¶
(hu − 1) .

The additional yield to the manager due to informed trading equals the sum of
the present value of the yield of future trades. The additional yield, starting after
a sale, writes

Eb0
"X

i

³
e−rT

i
dGd + e

−rT iuGu
´#

where the times refer to the hitting times of Z. This amount gives, in stock value
units, how much the trader can generate by using his privileged information.

So, using proposition 16, we get

V T
¡
b0
¢
=
Gu (α

0 + βδ) +Gd (β + γ0β)
1− βδ .

Thanks to the calculations performed in the preceding section, we can therefore
write the following

Taking into consideration the volume constraint implies that the intervention
boundaries h and l must verify m = φ ln

³
ld
hd

´
and m = φ ln

³
hu
lu

´
(or ≤ or ≥

depending whether the constraint is a fixed volume, a volume greater or equal to
m or lesser or equal to m).

Proposition 38 The value of trading for the informed manager, for given inter-
vention levels hu and hd, and given target levels lu and ld, under the assumptions
pertaining to the extension of Platen and Schweizer’s model, we have

• When buying, the volume of stock traded writes Md = φ ln
³
ld
hd

´
and the

additional yield realized writes Gd = φ ln
³
ld
hd

´
(1− ld) ,

• When selling, the volume of stock traded writes Mu = φ ln
³
hu
lu

´
and the

additional yield writes Gu = φ ln
³
hu
lu

´
(lu − 1) ,

• The present value to the manager of trading perpetually is

V (z) = V (lu)

sinh

Ã
ln

Ã³
z
hd

´ √
r

κσ
√
1−ρ
!!

sinh

Ã
ln

Ã³
hu
hd

´ √
r

κσ
√
1−ρ
!!

+V (ld)

sinh

µ
ln

µ¡
hu
z

¢ √
r

κσ
√
1−ρ
¶¶

sinh

Ã
ln

Ã³
hu
hd

´ √
r

κσ
√
1−ρ
!!

with a, b, a0, b0 defined as above and

V
¡
b0
¢
=

Gu (α
0 + βδ) +Gd (β + γ0β)

1− βδ
V
¡
a0
¢
=

Gu (δα
0 + δ) +Gd (γ0 + δβ)

1− βδ .
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• If the volume of each trade has to be equal to m, then one has the additional
relationships lu = hue

−m
φ and hd = lde

−m
φ .

The value of the strategy in the finite-size market
In this framework, we take into account the outstanding volume of stock on the
market. In this model, the variable that impacts prices is not the volume traded at
a precise instant, but rather the total volume held by the manipulator. The market
price is expressed as a function of this volume, so that variations of this volume
have an influence on the price. We can define the ”zero manipulation price” as
the price’s dynamic if there was no manipulation. It is consistent with the model’s
hypotheses to assume that the zero manipulation price is the price process with
the same dynamic as the real price. So we have the following definition for the
zero manipulation price eSt = eSκ0 eκ³µ−σ2

2

´
t+κσWt

and using proposition 35, we can write the observed market price as

St = eSt N

N −Mt

where N is the outstanding volume and M is the quantity held by the manager.
The ratio of the real value to the market value therefore writes

N

N −Mt

eSκ0 eκ³µ−σ2

2

´
t+κσWt

Xκ
0 e
κ
³
µ−σ2

2

´
t+κσBt

=
N

N −Mt

eSκ0
Xκ
0

eκσ
√
2
√
1−ρUt .

The relationship between the traded volume and its impact on price depends
on the volume that is already held by the manager. Therefore, the optimal barriers
will depend on the volume held by the manager (which will evolve through time,
depending on the trades undertaken).

If we write ∆Mt = Mt −Mt− the volume traded at time t (an intervention
time), then we get in the case of a sale

Zt− = hu =
eSt−
Xκ
t−

N

N −Mt−

Zt = lu =
eSt−
Xκ
t−

N

N −Mt− −∆Mt
= hu

N −Mt−
N −Mt− −∆Mt

where the optimal barriers h and l are to be understood as dependent on M . We
obtain

∆Mt = −(N −Mt−) (hu − lu)
lu

.

The realized gain, relative to the real value, writes therefore

(hu − lu) |∆Mt| = (N −Mt−) (hu − lu) (lu − 1)
lu

.

minus any transaction costs. Similarly in the case of a buy transaction, one
gets

∆Mt =
(N −Mt−) (hd − ld)

ld
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and the gain equals

(ld − hd) |∆Mt| = (N −Mt−) (hd − ld) (1− ld)
ld

.

So under the assumptions of this model, the series of gains realized by the
manager depends on his original share in the capital. For a volume M0 held by
the manager at the start, depending whether the first trade is a buy or a sale, the
volume he controls will be M0 +

(N−Mt−)(hd−ld)
ld

or M0 − (N−Mt−)(hu−lu)
lu

.
It is possible to write the functional equation that is solved by the optimal

intervention levels. Indeed, if we write Vu (M) and Vd (M) the value of the strategy,
starting just after an intervention time (up or down), and if the starting volume
is M , we have

Vu (M) = sup
hu,lu,hd,ld

½
Elu

·
IThu≤Thde

−rThu (N −Mt−) (hu − lu) (lu − 1)
lu

¸
+Elu

·
IThu≤Thd e

−rThuVu
µ
M − (N −M) (hu − lu)

lu

¶¸
+Elu

·
IThd≤Thue

−rThd (N −Mt−) (hd − ld) (1− ld)
ld

¸
+Elu

·
IThd≤Thu e

−rThdVd
µ
M +

(N −M) (hd − ld)
ld

¶¸¾
and

Vd (M) = sup
hu,lu,hd,ld

½
Eld

·
IThu≤Thde

−rThu (N −Mt−) (hu − lu) (lu − 1)
lu

¸
+Eld

·
IThu≤Thde

−rThuVu
µ
M − (N −M) (hu − lu)

lu

¶¸
+Eld

·
IThd≤Thue

−rThd (N −Mt−) (hd − ld) (1− ld)
ld

¸
+Eld

·
IThd≤Thue

−rThdVd
µ
M +

(N −M) (hd − ld)
ld

¶¸¾
The barriers values that maximize these expressions give the optimal strate-

gies. The expression can be written explicitly, but the maximization cannot be
performed analytically, the only possible approach being then numerical.

Imperfect information
Considering that the informed trader has perfect information can raise a problem.
Indeed, there is always some level of uncertainty. It would therefore make sense to
assume that the informed manager can get a better information than the market,
but with some noise, potentially at some cost.

Now, this noise, which we can consider as a measurement error, should be
independent from all other random factors, and its amplitude should not depend on
when the measurements occur. Also, for the sake of simplicity and since we already
made this assumption, we keep on dealing with a risk-neutral trader. Or, another
justification to just taking the expectation could be that these measurement errors
are entirely diversifiable in the market.

So the simplest approach is to assume that the observed variable is read each
time with a lognormal error, or the logarithm of the variable is read with a Gaussian
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error. We write ε the variance of this Gaussian variable. So in fact when the deci-
sion is made to invest as the noisy observed variable hits a level, the consequences
of this decision will not be entirely deterministic but will depend on the result of
the draw of this Gaussian variable Ui. We want the noise to be unbiased, so the
mean of the variables has to be −ε2

2 .
So the total additional value generated by informed trading can be written

Eb0
"X

i

³
e−rT

i
dGid + e

−rT iuGiu
´#

with

gain = Gid =Md

∆

µ
Xκ
t − Sκt e

Md
φ eκUi

¶
∆Xκ

t

= φ ln

µ
ld
hd

¶¡
1− ldeκUi

¢
and when selling

gain = Giu = φ ln
µ
hu
lu

¶¡
lue

κUi − 1¢ .
One can see easily that if the profit function is such that κ = 1, then the noise

does not change the value to the trader nor the optimal strategy. If the profit
function is of a Cobb-Douglas type, the noise affects the value of the gain, and
therefore the optimal strategy. In expectation, we obtain the following for the
gains

Gid = φ ln

µ
ld
hd

¶Ã
1− lde

ε2(κ−κ2)
2

!

Giu = φ ln

µ
hu
lu

¶Ã
lue

ε2(κ−κ2)
2 − 1

!
.

So, if κ is smaller than 1, the correction term is positive, and the expected utility
is greater. In the limit case when minimum trading volume goes to zero, the total
value to the informed agent is different if there is noise, but the optimal strategy
will not be different. Indeed, the value function is the same, up to a multiplicative
factor. The influence of a noisy information is therefore quite limited in our setting.
By comparing the above equations with Proposition 38, we notice it corresponds
to altering the market depth parameter φ.

The optimal strategy
The maximum value for the manager at the optimum is found by maximization
with respect to the intervention levels and target zones. This gives the strategy
followed by the manager at the optimum, as well as the additional yield he will
obtain by entering such trades. We consider Platen and Schweizer’s model, as the
approach developed by Frey and Stremme unfortunately prevents finding easily
the solution. Though, as their model is a more realistic approach, since it takes
into account the size of the market, we will use it to find a realistic parameter for
the depth of the market φ. By directly applying Proposition 38, we get
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Proposition 39 For the manager, the value of performing informed trades is

4φ ln (k)
¡
x
k − 1

¢ ³¡
x
k

¢v − ¡xk¢−v + (k)v − (k)−v´¡
(x)v − (x)−v¢ ³(x)2v − (x)−2v − ¡xk¢v + ¡xk¢−v − (k)v + (k)−v´

where x is the width of the intervention band, and k is the relative impact on prices
of the maximal transaction. Other parameters are summarized in v =

√
r

κσ
√
1−ρ .

Maximizing with respect to x gives the size of the optimal width for the intervention
band. For very small transactions, ie if k goes towards zero, the gain at the limit
is zero for the manipulator, but the intervention band is not reduced to zero and
equals

argmax
x>1

(x− 1) (xv − x−v)
(xv − x−v) (x2v − x−2v − xv + x−v)

We illustrate this result with a numerical example. Let us consider, for ex-
ample, a small company with a market capitalization of $20 million. There are
1,000,000 shares, each worth $20. To assess the depth of the market, we assume
the following. If a manipulator who does not own any of these shares, wanted the
price to increase by 10%, then a number of shares x would have to be traded such
that 1.1 = 1,000,000

1,000,000−x , that is trade around 91,000 shares, following the second
market model we presented. Therefore, if we assume the same kind of relationship
still holds for Follmer and Schweizer’s model, we would expect to have φ solving

1.1 = e
91,000
φ , that is φ = 955, 000. Notice that if we assume the trader already

holds a non negligible part of the market capitalization, the effect of transactions
is even stronger on prices. Also, φ can be taken to be almost equal to the total
number of shares on the market.

Let us assume in addition the volatility σ equals 40% (the volatility has to be
rather high, since we consider a small capitalization), the interest rate r is 10%,
and the correlation factor ρ 0.5. In these conditions, we get v = 1.12.

We consider now that there is a maximal volume volume m. This maximal
transaction size puts a constraint on the barriers lu and ld by expressing them as
a function of hu and hd.

If we assume a symmetrical situation where hu = 1
hd
and lu = 1

ld
, we obtain

the following value, using Proposition 39

2φ ln
³
hu
lu

´
(lu − 1)

µ
(hulu)

v − (hulu)−v +
³
hu
lu

´v − ³hulu ´−v¶
(hu)

2v − (hu)−2v − (hulu)v + (hulu)−v −
³
hu
lu

´v
+
³
hu
lu

´−v sinh

µ
ln

µ
(hu)

√
r

κσ
√
1−ρ
¶¶

sinh

µ
ln

µ
(hu)

2
√
r

κσ
√
1−ρ
¶¶

with v =
√
r

κσ
√
1−ρ for the gain of future transactions. This can be simplified into

4φ ln
³
hu
lu

´
(lu − 1)

µ
(hulu)

v − (hulu)−v +
³
hu
lu

´v − ³hulu ´−v¶¡
(hu)

v − (hu)−v
¢µ
(hu)

2v − (hu)−2v − (hulu)v + (hulu)−v −
³
hu
lu

´v
+
³
hu
lu

´−v¶ .
If we suppose there is a maximum of 2000 shares to trade it implies that

m = 2000 = φ ln
³
hu
lu

´
and therefore hulu = e

2
955 = 1. 0022. So the size of the jumps



154

x k = 1.001 k = 1.01 k = 1.05

1.1 2. 0531× 10−3 .0 1842 4. 8619× 10−2
1.2 2. 0974× 10−3 1. 9728× 10−2 7. 3115× 10−2
1.3 2. 1037× 10−3 2. 0089× 10−2 8. 1062× 10−2
1.4 2. 085× 10−3 2. 0053× 10−2 8. 4025× 10−2
1.5 2. 0492× 10−3 .0 1979 8. 4671× 10−2
1.6 2. 0022× 10−3 1. 9387× 10−2 8. 4037× 10−2
2.0 1. 7724× 10−3 1. 7245× 10−2 7. 6525× 10−2
2.5 1. 4995× 10−3 1. 4622× 10−2 6. 5533× 10−2
3.0 1. 2822× 10−3 1. 2515× 10−2 5. 6337× 10−2
Table 8.1 Value of Manipulation vs. Maximal Trade Size

x v = 0.8 v = 1 v = 1.2

1.1 2. 3121× 10−2 .0 1842 1. 5272× 10−2
1.2 2. 5015× 10−2 1. 9728× 10−2 1. 6158× 10−2
1.3 .0 2584 2. 0089× 10−2 1. 6175× 10−2
1.4 2. 6237× 10−2 2. 0053× 10−2 1. 5829× 10−2
1.5 2. 6379× 10−2 .0 1979 1. 5293× 10−2
1.6 .0 2635 1. 9387× 10−2 .0 1466

2.0 2. 5324× 10−2 1. 7245× 10−2 1. 2004× 10−2
2.5 2. 3377× 10−2 1. 4622× 10−2 9. 3363× 10−3
3.0 .0 2147 1. 2515× 10−2 7. 4538× 10−3
Table 8.2 Influence of v on Manipulation Value

induced by the minimal transactions is around 0.2%. We can consider that such
a size is reasonable so that these jumps are not noticed by the other agents in the
market.

If we write hu
lu
= k and hu = x, then the expression of the total gain can be

written

W (x, v, k) =
4 ln (k)

¡
x
k − 1

¢ ³¡
x
k

¢v − ¡xk¢−v + (k)v − (k)−v´¡
(x)v − (x)−v¢ ³(x)2v − (x)−2v − ¡xk ¢v + ¡xk¢−v − (k)v + (k)−v´

See Table 8.1 on p. 154 for the total value to the manipulator for different minimal
trading amounts (in units to be multiplied by φ). The maximum gain realized is
clearly a function of the maximum trade size.

If the maximal size of a transaction goes to zero, then the profit realized by
the manipulator goes also to zero. However, the optimal trading range converges
to the maximum of

(x− 1) (xv − x−v)
(xv − x−v) (x2v − x−2v − xv + x−v)

If v = 1 we find x = 2
1
3 , that is v ' 1.26.

It appears therefore that setting a low maximal trade volume on the exchange
so as to deter optimal manipulation trades would affect the total profit realized by
the manager in a noticeable manner, therefore finding a justification. The influence
of the parameter v can also be calculated (see Table 8.2 on p. 154).
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The higher the exponent v, the lower the value of manipulation. The perpetual
value generated by these manipulations in our simulation with k = 1.05 and v = 1
is slightly less than 10% of the company market capitalization.

The impact of informed trading on the evolution of prices
One can argue that the opportunistic trading is useful, as it keeps the market
value of the company in line with the real value of its future cashflows. If we are
in the case of using costly information, the price of this information should reflect
precisely the additional yield due to informed trading. So this general cost can be
thought of as the cot of being insured that market prices will not wander too far
off real prices.

The distribution of controlled prices

The price process being controlled in a tunnel around the real price, its distribution
will converge towards a stationary distribution. It is well known, for example, that
the distribution of a Brownian Motion reflected in a tunnel converges towards an
exponentially-shaped distribution (a uniform distribution if the Brownian Motion
is driftless). A simple proof can be found in Dixit and Pindyck (1994). To model
the distribution of the controlled price without assuming the stationary distribu-
tion has been reached would require to use proposition 15 and invert the Laplace
transform.

Let us look at the singular control case: the term distribution of the price
is that of the real value perturbed by the control, which we assume stationary,
considering that managers have been intervening on this share for a long time.

The distribution of the yield is obtained by deriving the law of the sum of the
Gaussian original return and the uniform distribution of the ergodic effect of the
manipulation. We obtain

P
µ
ln

µ
St
S0

¶
∈ dv

¶
= dv

Z 1

0

du√
2πtσ2

e−
µ
v−(b−a)u−

µ
µ−σ2

2

¶
t−a

¶2
2tσ2

with

a =
ln (hd)

κσ
p
2 (1− ρ) and b =

ln (hu)

κσ
p
2 (1− ρ) .

This distribution would be, without any intervention from the informed trader:

P
µ
St
S0
∈ dv

¶
=

dv√
2πtσ2

e−
µ
v−

µ
µ−σ2

2

¶
t

¶2
2tσ2 .

Table 8.3 on p. 156 shows a comparison of returns actual volatility with or
without manipulation. We compare

Z +∞

−∞
dvv2

Z 1

0

du√
2πtσ2

e−
µ
v−(b−a)u−

µ
µ−σ2

2

¶
t−a

¶2
2tσ2

and Z +∞

−∞
dvv2

e−
µ
v−

µ
µ−σ2

2

¶
t

¶2
2tσ2√
2πtσ2

= tσ2.
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a = −b Variance of manipulated returns
0.005 . 16091

0.05 . 16173

0.1 . 1642

0.2 . 1741

0.3 . 1906

0.4 .2137

a = −b Variance of manipulated returns
0.5 . 2434

0.75 . 34653

1.0 . 4909

1.5 . 92748

2.0 1. 4809

Table 8.3 Variance of Manipulated Returns

The values of the parameters are the same as in the example discussed in
the preceding section, and we look at a horizon of 1 year. The results are to be
compared with the variance of non manipulated returns of 0.16 in our example.

Maintaining the share price in a tunnel around the real value changes the shape
of the distribution of returns to market participants. The returns are more volatile.
This added volatility is in fact the cost for the other agents of the manager’s trading
strategy.

The limit distribution will depend on two kind of factors: the ones related to
the market itself (volatility, depth) and the ones related to the manipulator (costs,
quality of the information). The correlation between the real value and the market
value can be considered to belong to either one of these categories, depending if it
is controlled by the information expenses of the manipulator, or if it is simply a
fact that characterize the market for the stock under scrutiny.

The depth of the market, as measured by the coefficient φ has a very identifiable
effect on the gains realized by the informed trader. Indeed, it is a multiplicative
coefficient, and therefore only impacts the total gain, without affecting the optimal
strategy. A deeper market means that the manager can perform more trades
without influencing the market price adversely.

Increases in correlation between the real value and the market value increase
the v coefficient. This is also the effect of increasing r, reducing σ or reducing κ.
We can see easily that increases in v at the same time reduce the present value of
the trades and the size of the trading range. So, as could be intuitively expected,
correlation increases reduce the gain to the informed trader. A higher volatility
on the contrary improves the gains from informed trading.

Why prevent informed trading?

We have seen that informed trading prevents market prices from being too far
away from the real value. We asserted that it is a desirable objective, as the
intuition suggests, but it is better to quantify this objective. Also, we have seen
that the control by the informed trader induces a modification of the shape of
returns’ distributions and increases volatility. The impact of such an effect on
stockholder’s utilities should be equally quantified.
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From the viewpoint of marked participants, the optimal manipulation, if any,
should maximize a function expressing their interest in representative prices minus
the cost of increased volatility. This could be expressed as

sup
hu,hd

½
E
·Z ∞

0
dte−ρtu

µ
St
Xt

¶¸
− a

µ
R(hu,hd)

R(∞,0)

¶¾
where u is a utility function representing the aggregate preferences of market par-
ticipants as for the discrepancy between real and market value, ρ is an intertem-
poral preferences coefficient, and R(hu,hd) is a measure of the risk of returns if
there is manipulation. a measures the cost of the additional risk relative to the
no-manipulation case. The expression E

hR∞
0 dte−ρtu

³
St
Xt

´i
is known explicitly

thanks to Proposition 36, and the risk measure R will be expressed as a function
of the distribution of manipulated market prices which have been derived explicitly
earlier.

This optimization program yields the level of manipulation at which market
participants’ interests are the highest. The regulation of the exchange will neces-
sarily try to attain this optimum, and therefore should try to discourage informed
traders from setting their intervention levels at different levels from the ones de-
termined by the program. The tools they can use are minimal or maximal trading
volumes, fixed costs, or finally the fine or punishment incurred by insider traders.
It may be optimal for market participants that no manipulation be performed on
the stock price, in which case punishments would be very severe and minimal vol-
umes high, but it can be the case that realigning prices counterbalances the cost
bearing with manipulations.

Concluding remarks

We have analyzed how an informed agent can maximize its wealth by trading
opportunistically the shares of a company, based on its knowledge of the real value
of the future cashflows this equity will generate. By buying at low prices and
selling at high prices relative to the real value, the agent impacts the market price
and prevents the market value from wandering too far away from the real value.
We have derived the profits generated by such a strategy, and some properties of
the controlled market price.

Such a situation arises in particular when a firm manager trades his firm’s stock,
which has been shown to be one of the primary sources of income for managers. We
have quantified a relationship between some market properties, some parameters
linked to the manager, and the long-term distribution of share prices. When
managers perform trades, they tend to increase the volatility of share prices, but
maintain this price within a range around the real value of these shares.

The gains generated by the informed trader can be thought of as the cost for
the rest of the market of being guaranteed that prices reflect somewhat the value
of the company.

The empirical analysis of both models we proposed to explain the influence of
volume on prices is left for further research. Also, testing the relationship between
trades induced by companies managers and the long-term distribution of shares
performance is an empirical study that is still to be done.
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Appendix

Platen and Schweizer Theorem
We provide here a simplified proof of Platen and Schweizer’s theorem mentioned
in the second section.

An application of Itô’s theorem to 8.2 gives

0 = γdK + ζ·dt+ ζ 0dK +
1

2
ζ00d [K] + dU

with K = ln (S). By Meyer’s identification theorem, we find that

0 = γdM + ζ 0dM + dB

0 = γdA+ ζ ·dt+ ζ0dA+
1

2
ζ 00d [K] + dN

where K = A+M and U = N +B are the semi-martingale decomposition of the
two processes. We obtain

dM = − dB

γ + ζ0
so d [K] = d [M ] =

d [U ]¡
γ + ζ 0

¢2 and
0 = γdK + ζ ·dt+ ζ0dK +

1

2
ζ00

d [U ]¡
γ + ζ0

¢2 + dU
from which we get

dK =
−ζ·dt− dU¡
γ + ζ0

¢ − 1
2
ζ00

d [U ]¡
γ + ζ0

¢2 .
Now, we can write by applying Itô to K

dK =
dS

S
− 1

2S2
d [S] , so

dS

S
=

−ζ·dt− dU¡
γ + ζ0

¢ − 1
2
ζ00

d [U ]¡
γ + ζ0

¢3 + 1

2S2
d [S]

and this allows us to write that d [S] = S2

(γ+ζ0)2
d [U ] so finally

dS

S
=
−ζ ·dt− dU¡
γ + ζ0

¢ − 1
2

¡
ζ00 + γ + ζ 0

¢
d [U ]¡

γ + ζ0
¢3

and it completes the proof.

The case of a singular control
In this subsection we study the law of the Brownian Motion, and its cost of control,
when the control is applied in a singular way, that is an infinite number of times
and of an infinitesimal size. In his book, Harrison (1985) gives a very good overview
of this problem, following an analytical method. Our approach here will be more
probabilistic. Note that Harrison also gives the differential equation solved by the
expectation Ex

hR∞
0 dte−rtf

³ bBt´i in the singular case.
This problem corresponds to the preceding one with the size of the control

jumps going down to zero. For our applications, it is directly possible to obtain
this limit. This subsection only illustrates some connections with the concept
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of local time. An introduction to the definition and properties of local times for
continuous semi-martingales can be found in Yor (1997), or Revuz and Yor (1991).

The controlled process, at the limit, is a reflected Brownian Motion in a tunnel.
Every time the process hits one of the two barriers, it receives an infinitesimal
impulsion until it bounces back towards the center of the tunnel. The limit of the
size of such impulsions times their number is an intuitive description of the local
time.

Proposition 40 The present value of the cost of controlling the process is given
by

C (x) =
1

2 (b− a) rÃÃ
Ca +

Cb

cosh
¡
(b− a)√2r¢

!
sinh

¡
(x− a)√2r¢

sinh
¡
(b− a)√2r¢

+

Ã
Cb +

Ca

cosh
¡
(b− a)√2r¢

!
sinh

¡
(b− x)√2r¢

sinh
¡
(b− a)√2r¢

!

where Ca and Cb are the proportional costs prevailing at the barriers a and b.

Proof. We first of all will need the following result which can be found in Borodin
and Salminen (1996).

Lemma 41 Using the fact that Tx (|B|) = Tx (B)∧T−x (B) it is easy to show that

E
h
e−rTx(|B|)

i
=

1

cosh
¡
x
√
2r
¢ .

We will consider the Brownian Motion reflected in the tunnel defined by a and
b. The cost of intervention will have to be determined as the limit of the cost in
the impulse control case when the size of the jumps go to zero. If we write C (ε)
for the cost, with ε = b − b0 or a − a0, we would write C = limε→0 C(ε)−cε where
c is any fixed component of the cost. It is clear that we must have c = 0 for the
proportional cost not to explode.

Now, we consider the controlled process from the barrier b up to its next hitting
time of a, and therefore the next intervention. The total cost of intervention up
to that time is given by

Cbc
b
ε = Cb

X
n

ITb≤Tnb ≤Tae
−rTnb ε

where the Tnb are the successive instants when the process is pushed from b to b0

(by a distance ε). caε is defined symetrically.
Using the same approach as in the preceding proofs, we write the expectation of

the costs starting from a as a function of the costs starting from b and reciprocally:½
C (a) = Ea+ε

£
Cac

a
ε + e

−rTbC (b)
¤

C (b) = Eb−ε
£
Cbc

b
ε + e

−rTaC (a)
¤

Solving the limit of this system as ε goes to zero will give the cost of the singu-
lar control. First of all, we know that due to the symetrical situation we have
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Ea+ε [caε ] = Eb−ε
£
cbε
¤
. More precisely,

p = lim
ε→0Eb−ε

h
cbε

i
= lim

ε→0 ε
∞X
k=1

kEε
£
e−rT0IT0≤Tb−a

¤k Pε (Tb−a ≤ T0)

= lim
ε→0 ε

∞X
k=1

k

Ã
sinh

¡
(b− a− ε)√2r¢

sinh
¡
(b− a)√2r¢

!k
ε

b− a

=
sinh2

¡
(b− a)√2r¢

2 (b− a) r cosh2 ¡(b− a)√2r¢ .
In addition to that, by symetry we also have Ea+ε

£
e−rTb

¤
= Eb−ε

£
e−rTa

¤
. At

the limit, the controlled process converges to a reflected Brownian Motion between
the barriers, so the Laplace transform of the first hitting time of the opposite
barrier should be given by the lemma:

q = lim
ε→0Eb−ε

£
e−rTa

¤
= E

h
e−rTb−a(|B|)

i
=

1

cosh
¡
(b− a)√2r¢ .

This can also be shown by simply expressing Eb−ε
£
e−rTa

¤
and taking the limit.

Solving the system gives

C (a) = Cap+ q (Cbp+ qC (a))

=
p

1− q2 (Ca + qCb)

=

Ã
Ca +

Cb

cosh
¡
(b− a)√2r¢

!
sinh2

¡
(b− a)√2r¢

2 (b− a) r ¡cosh2 ¡(b− a)√2r¢− 1¢
=

Ca +
Cb

cosh((b−a)
√
2r)

2 (b− a) r .

Starting from x, the cost C (x) is equal to

Ex
£
e−rTaITa≤Tb

¤
C (a) + Ex

£
e−rTbITb≤Ta

¤
C (b)

=
sinh

¡
(x− a)√2r¢

sinh
¡
(b− a)√2r¢C (a) + sinh

¡
(b− x)√2r¢

sinh
¡
(b− a)√2r¢C (b)

=
1

2 (b− a) rÃÃ
Ca +

Cb

cosh
¡
(b− a)√2r¢

!
sinh

¡
(x− a)√2r¢

sinh
¡
(b− a)√2r¢

+

Ã
Cb +

Ca

cosh
¡
(b− a)√2r¢

!
sinh

¡
(b− x)√2r¢

sinh
¡
(b− a)√2r¢

!
and this ends the proof.

Notice that if x = 0 and b = −a the expression simplifies to

C (0) =
1

4br

sinh
¡
b
√
2r
¢

sinh
¡
2b
√
2r
¢

(Ca +Cb)

Ã
1+

1

cosh
¡
2b
√
2r
¢! .
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Chapter 9 CONCLUSION
The objective of this work was to show that real options have a lot to benefit from
exotic options analogies and probabilistic methods. We have focused on a few
specific examples, where we insisted on the relationship between real and exotic
options.

Focusing on the specific issue of delays in investment decisions, we have used a
probabilistic method inspired from exotic options to obtain closed-form formulae
for the valuation of a real option. This has allowed us to gain insights on the op-
timal decision rules under this particular constraint. We have provided a general
valuation framework for investment opportunities relying on the computation of
first passage times. We showed that the delay existing between the investment
decision and its implementation has important valuation consequences. The ap-
proach we presented in the second chapter is general enough to allow us to extend
the scope of our analysis to other rigidities in the investment process. We focused
on the delay existing between the investment decision and its real implementation.

We have also seen how large entities and smaller entities face different con-
straints when they contemplate investing in a project. In a competition situation
where the first to invest totally preempts the project, we have exposed how a par-
ticular class of options, Parisian American options, allows to model the combined
constraints faced by investors. The largest firm has an option to invest which
can be exercised only under a given barrier (over which the smaller firms invests
immediately) and according to its investment delay constraints. We have given a
new result pertaining to the first instant a Brownian Motion hits a level or spends
more than a given amount of time above a lower level. This result allowed us to
derive a pricing formula for these options. From the technical viewpoint, the same
approach helps value options where functionals of excursions intervene (such as
the first instant when the area of an excursion reaches a certain level).

The simple model we developed in Chapter 5 shows that the noise in the
information available to investors can explain part of their investment behavior.
This model relies essentially on probabilistic techniques and concepts, and departs
from the traditional approach in that respect.

In Chapter 6, we focused on how to hedge an option with other options, when
there are transaction costs. Such an issue arises if a corporation that consumes
or produces traded commodities needs to hedge its real options. The most ap-
propriate hedging tools could be traded financial options on the commodities in
question. We have proposed a proof of the convergence of Leland’s scheme towards
a non-linear PDE in a general setting. As the setting includes transaction costs,
an allocation strategy minimizing these costs can be followed. It has clearly ap-
peared there is a possibility to benefit from lower transactions fees by thoroughly
choosing how to hedge a derivative. But the optimal strategy and the price of the
hedged derivative are solutions of complicated equations, which we were only able
to approach in simple cases. For example, if we consider usual path-dependent
options, like barrier or lookback options, and contemplate hedging them with
plain-vanilla options while minimizing cumulated transaction costs, the equation
has to be solved numerically.

We have proposed a new class of barrier derivatives in Chapter 7, Switch op-
tions, that allows to mitigate the losses due to the ”knock-out” effect of classical
barrier options. These derivative products also constitute a hedging tool of the
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business risk linked to entry or exit decision, as they allow to replicate or com-
plement the payoffs of real options. To hedge this risk with Switch options, it
is required that the underlying business variable be traded, which restraints the
use of these derivatives mostly to commodities firms. As a tool to price Switch
options, we have derived the joint law of the Brownian Meander and its running
maximum.

We have finally analyzed in Chapter 8 how an informed agent can maximize its
wealth by trading opportunistically the shares of a company, based on its knowl-
edge of the real value of the future cashflows this equity will generate. By buying
at low prices and selling at high prices relative to the real value, the agent impacts
the market price and prevents the market value from wandering too far away from
the real value. We have derived the profits generated by such a strategy, and some
properties of the controlled market price. We carried out this analysis from the
perspective of real option analysis, the decisions to buy or sell stock being similar
to entry or exit decisions. We have quantified a relationship between some market
properties, some parameters linked to the manager, and the long-term distribution
of share prices. When managers perform trades, they tend to increase the volatil-
ity of share prices, but maintain this price within a range around the real value of
these shares. The gains generated by the informed trader can be thought of as the
cost for the rest of the market of being guaranteed that prices reflect somewhat
the value of the company.


