The diversity of microfungi in peatlands originated from the White Sea

Olga A. Grum-Grzhimaylo¹

White Sea Biological Station, Faculty of Biology, Lomonosov Moscow State University, 1–12 Leninskie Gory, 119234, Moscow, Russia, and Faculty of Biology, St Petersburg State University, 7–9, Universitetskaya nab., 199034, St Petersburg, Russia

Alfons J.M. Debets

Laboratory of Genetics, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands

Elena N. Bilanenko

Department of Mycology and Phycology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234, Moscow, Russia

Abstract: The diversity of culturable filamentous microfungi in peat and sediments of four peatlands at the coastal zone of Kandalaksha Bay of the White Sea (Murmansk region, Russia) was studied by culture methods on standard and selective media. Annually 100 samples were collected from the bogs 2007–2010. Based on morphological, molecular markers and cultural features, 211 taxa were identified. Fungal communities observed at the peatlands were influenced mostly by their sea origin. We discovered a large difference between fungal communities from the peat and the sediments of the peatlands. In contrast to the sediments, the fungal community of the peat was found to be consistent throughout sampling sites. Fungi with specific ecophysiology, such as Sphagnum-decomposing species (Oidiodendron griseum, O. tenuissimum, Penicillium spinulosum, P. thomii, Talaromyces funiculosus), psychrotolerant and associated with insects species (Pseudogymnoascus pannorum, Tolypocladium spp.), typical marine species (Acremonium spp.) were found. In addition, different types of sterile mycelia were characteristic for the researched peatlands.

Key words: fungal diversity, fungi decomposing Sphagnum, fungi in sediments, molecular identification, psychrotolerants

INTRODUCTION

Peatlands cover about 4% of the world, more than 10% of the territory of Russia and about 70–80% of the White Sea coastal territory (Yurkovskaya 2004). Peatlands accumulate peat, partially decayed plant material, and play a significant role in the global carbon

cycle by virtue of their significant peat deposits that contain 45–50% carbon (Thormann 2006b). The importance of peatlands for the global C cycle is illustrated by the fact that northern peatlands store 180–277 Gt C (1 Gt = 1×10^9 metric tons), which constitutes approximately 10–16% of the total global terrestrial detrital C (Thormann et al. 2001a).

Bogs are a dominant peatland type in the north of Russia. Coupled with spruce forest, raised bogs prevail in the taiga zone in northeastern Europe. Coastal raised bogs predominate along the White Sea coast (Schulze et al. 2002, Yurkovskaya, 2004). Raised bogs and aapa fens (also called aapa mires) are the zonal mire complex types of boreal regions (Laitinen et al. 2005). Raised bogs are ombrotrophic ecosystems that receive water and nutrients solely from atmospheric precipitation. They are commonly dominated by species of Sphagnum mosses, Picea mariana and members of the Ericaceae, including species of Rhododendron spp., Andromeda spp. and Vaccinium spp. (Thormann et al. 1999, Thormann 2006a). Aapa fens are more minerotrophic (i.e. they receive their nutrients both from precipitation and the surrounding land because of their hydrological regime). These peatlands consist of a lake, elongated Sphagnum-formed hummocks and water channels (Keränen and Kalpio 2001; Laitinen et al. 2005, 2007). Aapa mire is a Finnish term for a large, complex, cold-climate wetland. This is a mire-system type, the central parts of which are characterized by minerotrophy and near to mire inherent influence. These systems may receive supplementary nutrition to their central parts, in addition to marginal parts and brook sides, through meltwater from the surrounding area. Aapa mires are morphologically variable (Laitinen et al. 2007).

The annual accumulation of peat is caused by relatively slow organic decomposition by microorganisms because of extremely unfavorable conditions: lack of oxygen, low temperatures, high acidity and humidity, the presence of inhibitory complex phenolic compounds from specific vegetation (mostly *Sphagnum* spp.) and an inherent lack of microbial diversity to degrade the most complex polymers of peat (Untiedt and Müller 1984, Tsuneda et al. 2001, Thormann et al. 2002, Rice et al. 2006, Andersen et al. 2010).

In White Sea coastal raised bogs, peat consists of the complex of plant material dominated by *Sphagnum fuscum* (Yurkovskaya 2004). Fungi, together with heterotrophic bacteria, are the main decomposers of the organic matter in peat (Pankratov et al. 2005; Gilbert and Mitchell 2006; Thormann et al. 2001a, b,

Submitted 19 Sep 2014; accepted for publication 20 Oct 2015.

¹Corresponding author. E-mail: olgrgr@wsbs-msu.ru

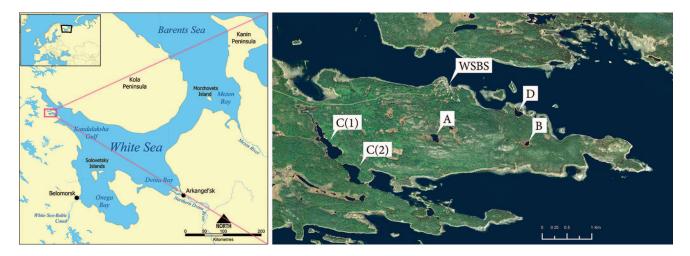


FIG. 1. Map of the Kindo Peninsula with four studied peatlands tagged: A = Verkhnee Peatland, B = Krugloe Peatland, C = Ershovskoe Peatland, C(1) = Ershovskoe Verkhnee Lake, C(2) = Ershovskoe Nizhnee Lake, D = Kislosladkoe Peatland, WSBS = White Sea Biological Station.

2006a, b, 2007; Andersen et al. 2010). In the northern peatlands fungal diversity estimates are 22–55 species per peatland. Those species have a capacity for living and physiological activity in peat (Nilsson and Rülcker 1992, Czeczuga 1993, Thormann et al. 2001b).

The respective role of fungi in litter decomposition and the multiple-factor peat-forming process in peatlands is still poorly studied. Most peatlands are in the northern hemisphere (Thormann et al. 2007), however, little is known about fungal biodiversity of the northern peatlands. Some data is available of peatland fungi from western Siberian and central Russia (Golovchenko et al. 2002, Kachalkin et al. 2005, Grum-Grzhimaylo and Bilanenko 2009, Filippova and Thormann 2014) but almost no data is available for the fungi from the peatlands in northwestern Russia.

The peatlands at the Kandalaksha Bay of the White Sea have a unique origin. They appear as a result of a part of the sea becoming isolated during rapid land uplift (0.5 cm/y), followed by both demineralization and the development of bogs (Shaporenko et al. 2005, Pantyulin and Krasnova 2011). In this process the succession of marine biota by freshwater takes place, which is common for peatlands. Fungi, functioning as decomposers, symbionts, parasites and pathogens, are associated with the evolution of the reservoirs that have a sea origin (their number is evaluated from one to several hundred at Kandalaksha Bay), but the data on mycobiota of these systems are hardly discussed in the literature.

The aim of our research was to investigate fungal diversity in the peatlands around the White Sea Biological Station (WSBS) of Lomonosov Moscow State University in northwestern Russia. The fungi were isolated from the peat and sediment samples taken from four peatlands at different altitudes above sea level (1.5–87 m) representing different stages of bog formation. Fungi were identified with morphological and cultural features as well as DNA sequence data (ITS rDNA region, along with SSU and LSU rDNA). We characterized the composition, abundance and spatial distribution of species in fungal communities from peatlands in connection with the age of the reservoirs and their contact with the sea.

MATERIALS AND METHODS

Study area.—It is near the Karelian coast of Kandalaksha Bay of the White Sea (FIG. 1) near the WSBS ($66^{\circ}34'N$, $33^{\circ}08'E$). Kindo Peninsula, where the station is located, is near the Arctic Circle. The geographic position of lakes determines the climatic conditions under which their hydrological regime is formed. In this case this is a long winter with an average daily temperature of -11 C in Jan and a relatively short humid summer with a maximum precipitation in Aug and a mean temperature of 14 C in Jul (Shaporenko et al. 2005). Annual precipitation is 300–400 mm (Bubnova 2005). Geomorphologically the region lies on the northern margin of Pribelomorskaya Lowland. The maximum elevation of the area is less than 100 m.

Description of the investigated peatlands.—Four investigated peatlands are located, ranging from the lowest to the highest point of the peninsula and represent almost all evolution stages of bogs in this area of the White Sea coast (FIG. 1, TABLE I). Two of them represent raised bog-type peatlands (Verkhnee, Krugloe; FIGS. 2A, 2B), the third is a transition aapa fen (Ershovskoe; FIG. 2C) and the fourth is a brackish lake detaching from the sea (Kislosladkoe; FIG. 2D). Kislosladkoe Lake has both marine and continental features. There is a combination of typical littoral vegetation with bog plants depending of coast parts in this peatland. The characteristics of aapa fen types were described in detail by Laitinen et al. (2007).

Latitude/	centers of lakes)	66°32′37.0206″ / 33°5′50.4348″	66°32'32.8416″/ 33°8'22.4592″	3_1:66°32′ 14.3874″/33°3′ 35.7156″; 3_2:66° 32'27.9198″/ 33°3'2.9628″	66°32' 52.5186"/ 33°8'8.865"
	Mosses/lichens	Pleurazium schraberi, Sphagrum fuscum, Sph. aapillijohum, Sph. nagellanicum, Sph. majus, Cladonia rangiferina, Cl. alpestris, Cl. mitis, Cetraria islandica, Nephroma sp.	Pleurozium schreberi, Sphagrum papillosum, Sph. fuscum, Sph. balticum, Sph. indbegü, Sph. subfukrum, Cladonia rangiferina, Cladonia spp.	Sphagnum papillosum, Sph. subfutuum, Sphagnum spp.	Sphagnum spp.
Dominant vegetation	Herbs	Drosera rotundifolia, D. anglica, Eriophorum Iatiplium, Menyanthes trifoliata	Drosera rotundifolia, D. anglica, Baeolhryon caespitosum	Eriophorum polystachyon, Carex rostrata, Baeothryon caespitosum, Menyanthes trifoliata, Utricularia sp., Comarum palustra, Dexchampsia sp., Calamagrostis sp.,	Aster tripolium, Triglochin maritima, Phleum alpinum, Festuca rubra, funcus atrofuscus, Polygonum vivipancum, Blysmus rufus, Eleodaris uniglumis,
Don	Shrubs/subshrubs	Chamaedaphne cabculata, Caltuna vulgaris, Rubus chamaemorus, Oxycoccus microcarpus, Ledum patustre	Calluna vulgaris, Rubus chamaemorus, Oxycoccus microcarpus, Vaccínium sp.	Rubus chamaemorus, Oxycoccus microcarpus, Vaccínium sp.	Corrus suecica, Empetrum hermaphroditu, Vaccinium vitis- idaea, Oxycoccus pahustris, Rubus chamaemorus,
	Trees	Pinus sylvestris, Betula nana	Pinus sylvestris, Betula nana	Pinus sylvestris, Betula nana	Pinus sylvestris, Betula pubescen, × B. nana,
Water level in sampling	(cm)	-20	-10	ا 57	ן ט
Jo U c	pri or samples	Peat 4.1, sediments 6.0	Peat 4.1, sediments 6.0–6.5	Peat 5.5, sediments 5.5–8.0	Peat 5.0-6.0, sediments 5.0-6.0, water 7.5-9.2
Max depth of	(m)	2.0	1.4	1.8	0.3
Peat	(m)	4.6	2.4	1.8	0.3
J ^o curt	rype or peatland	Raised bog	Oligotrophic aapa	Transition aapa-fen	Detaching from the sea
Alti-	(m)	84	27.5	90 51	1.5
Age (year)	(Jullova 2011)	Verkhnee 8400±110	3970 ± 40	Ershovskoe 810±40	1
Peatland	Name	Verkhnee	Krugloe	Ershovskoo	Kislosladkoe
Pe	No.	-	51	ಲ	4

TABLE I. Description of the investigated peatlands

235

Latitude/	longitude (in centers of lakes)													
	Mosses/lichens													
Dominant vegetation	Herbs	Ophioglossum	vulgatum, Primula	nutans, Salix sp.,	Carex sect. Temnelis,	Trientalis europaea,	Triglochin palustris,	Triglochin maritima,	Parnassia palustris,	Comarum palustre,	Listera cordata,	Comarum palustre,	Dactylorhiza maculata,	Eleocharis polystachion
Domi	Shrubs/subshrubs	Vaccinium	uliginosum											
	Trees	Sorbus	aucuparia											
Water level in sampling	places (cm)													
c :	pH of samples													
Max depth of 	sampling (m)													
	depth (m)													
E	1 ype of peatland													
Alti-	tude (m)													
Age (year)	(Shilova 2011)													
Peatland	Name													
Pea	No.													

Sampling.—Peat samples (0.5-2 m deep) were taken every 50 cm with a hand peat drill from each of the peatlands in Sphagnum-covered sites (one series of samples from one core of each peatland). Peat samples, 50-10 cm deep, plants (living and dead parts of Sphagnum spp.) and soil samples were taken with a knife. The tools were cleansed with water and 96% alcohol after each extraction. Twenty-two samples of peat were taken from the Verkhnee Peatland, 21 from Krugloe, 19 from Verkhnee Ershovskoe and nine from Kislosladkoe. Peatland sediment samples were taken every 0.5 m at different depths by Scuba and free diving, from both surface and from approximately 0.3 m below surface at each sampling site. Six sediment samples were taken from each of the three peatlands, the Verkhnee, Krugloe and Nizhnee Ershovskoe, four samples from the Verkhnee Ershovskoe and seven from the Kislosladkoe. The collected samples were transferred to sterile Petri dishes and transported in a cooler to the laboratory where they were stored at 5 C 1-2 d after sampling. The samples of different species of Sphagnum were collected in sterile paper envelopes for identification.

Fungal isolation and identification.-From the peat samples Sphagnum spp. plant material and sediment, dilutions were prepared with 1 g in 10 mL sterile distilled water, pounded by a mortar, and further diluted 100-fold. From this final dilution 0.25 mL was pipetted on each of two Petri plates of six media: malt agar (MA, containing 17 g malt extract [Merck] and 20 g agar per liter); water agar (WA, containing 20 g agar per liter); citric-acid buffer agar (CA, pH 4, containing 800 mL citric-acid buffer (McIlvaine, 1921), 17 g malt extract, 30 g agar and 200 mL dH₂O); Sphagnum extract agar (SEA, containing 600 mL Sphagnum-extract (from 200 g Sphagnum spp. in 500 mL bog H₂O), 20 g agar and 400 mL dH₂O); alkaline buffer agar (AA, pH 9, containing 12 g Na₂CO₃ 6 g NaHCO₃, 17 g malt extract and 20 g agar); semi-saltwater agar (SWA, containing 20 g agar per liter unfiltered water from Kislosladkoe Lake). Petri dishes were incubated at room temperature in light until fungal colonies appeared (5-30 d according to growth of fungi); the colonies were subcultured onto MA as soon as they grew from the samples. Our isolation method did not yield yeasts or chytridiomycetous fungi or lower fungi-like organisms, such as Oomycota. Naturally our recovery output of fungi from the investigated habitats was affected by isolation and incubation biases, such as media type and incubation conditions. Newly isolated fungi were subcultured for identification according to the morphology and cultural features. The cultures that failed to sporulate after incubation were considered sterile. The major part of the sterile mycelia and other species that were difficult to identify by morphology (Acremonium-like, Cadophora/Phialophora-like, Phoma-like isolates) were identified by DNA sequence analysis of the ITS regions, LSU and SSU of nuclear-encoded rDNA. The same analysis was conducted for dominant fungal species to verify identification by morphological features.

Data analysis.—Data on the total number of microscopic fungi were expressed in colony-forming units (CFU) per g dry peat. For this purpose 1 g of every sample was placed in

TABLE I. Continued

a drying chamber at 120 C for 24 h to establish the water content of each sample. The spatial frequency (%) of every species was calculated as the number of sites of occurrence times 100 divided by the total number of sites samples. The abundance (%) of fungal divisions was calculated as the CFU of the genus $\times 100$ /the total CFU of all genera from the peatland. Species diversity was determined by enumerating the number of species of the genus in the peatland. Sørensen index was used to compare fungal communities among the peatlands (Zak et al. 2004).

Molecular techniques and sequence analysis.—Genomic DNA was isolated from mycelium of the 152 fungal strains with a chloroform/isopropanol method (Karakousis et al. 2006). Before DNA isolation the fungi were grown on MA with under cellophane membranep 3-5 d at 27 C. The mycelium was harvested, frozen with liquid nitrogen and grinded twice for 10 s with a bead-beater machine (beads 2 mm diam) added to the Eppendorf tube with mycelium. Then 1 mL LETS buffer (0.1 M LiCl, 10 mM EDTA pH = 8.0, 10 mM Tris pH = 8.0, 0.5% SDS) was added, mixed thoroughly (withvortex) and centrifuged 15 min at 13 000 rpm. A total of 700 mL supernatant was transferred into a fresh 2 mL Eppendorf tube. Five milliliters of proteinase K was added and incubated 1 h at 37 C. Subsequently 300 mL phenol and 300 mL SEVAG (isoamylalcohol:chloroform 1:24) were added, mixed thoroughly and centrifuged 15 min at 13 000 rpm. A total of 600 mL of the supernatant was transferred to a clean 1.5 mL Eppendorf tube; 300 mL SEVAG was added, mixed thoroughly and centrifuged 15 min at 13 000 rpm. A total of 500 mL supernatant was transferred to a clean Eppendorf tube, 300 mL ($0.6 \times$ volume) was added, mixed and stored for 15 min at -20 C or overnight at 4 C. Then nucleic acids were centrifuged out of suspension in an Eppendorf centrifuge for 15 min at 13 000 rpm at 4 C. The supernatant was discarded with a micropipette; the pellet was washed with 100 mL ice-cold 70% ethanol and centrifuged 1 min at 13 000 rpm at 4 C. The supernatant was discarded with a micropipette; the pellet was dried under vacuum and dissolved overnight in 50 mL MQ water at 4 C. Subsequently the solution was mixed with a pipette and stored -20 C. The resultant DNA solution was used for subsequent PCR procedure.

The primers ITS-1f and ITS4r (White et al. 1990) were used to amplify a portion of the nuclear ribosomal gene (rDNA) including the two internal transcribed spacer regions (ITS1 and ITS2) and the 5.8S rDNA. The primers LR0R, LR7, LR9, NS1, NS4 and NS8 (Vilgalys et al. 1990; http://www.lutzonilab.net/primers/page244.shtmL) were used for amplification of part of the nuclear large and small subunits (LSU and SSU) of rDNA.

PCR mixes (Promega Corp., Madison, Wisconsin) contained 0.5 mL 25 mM MgCl₂, 5 mL 5 × PCR GoTag buffer, 1 mL 10 mM dNTP, 1 mL 10 mM of each PCR primer, 0.1 mL GoTag polymerase and 2 mL gDNA in 25 mL. The amplification program included 35 cycles of 94 C for 1 min, 52 C for 1 min and 72 C for 1 min followed by final extension at 72 C for 7 min. PCR products were purified with GenEluteTM PCR Clean-Up Kit (Sigma) and sequenced in Eurofins MWG Operon (Ebersberg, Germany). Sequences were compared with data from GenBank with a BLAST similarity query. If the ITS sequence similarity was more than 85%, we considered the isolate a member of kingdom Fungi.

RESULTS

In total 501 fungal isolates were obtained from the 100 samples of Sphagnum moss, peat and sediments that were collected annually in summer (Jun-Jul) 2007–2010. These isolates belong to 211 taxa, representing 65 genera. Of these taxa 113 (54%) were Ascomycota, 30 (15%) Basidiomycota, seven (3%) Zygomycota and 61 were sterile unidentified morphotypes (including Fungus sp. strain) (TABLE II). The number of viable fungal propagules were $10^2 - 10^5$ CFU per 1 g dry weight. Taxonomic identification of all 211 taxa was based on morphological characteristics, and 98 of them also were identified by molecular genetics (ITS region, LSU, SSU rDNA), including a major part of the sterile mycelia (93 of 153 isolates), other species difficult to identify by morphology (13 taxa from Acremoniumlike, Cadophora/Phialophora-like and Phoma-like groups of fungi) and few frequent species (10 taxa). Newly generated sequences were deposited in the GenBank with accession numbers provided (TABLE III). Due to the lack of the GenBank data sequence identity for the ITS in some cases was higher than for LSU (TABLE III). On the whole 25 taxa were linked with known species and 73 remained undetermined. The number of taxa in the peatlands ranged from 44 (Krugloe Peatland) to 84 (Ershovskoe Peatland). The number of identified taxa in the peat and sediments ranged from 30 (Krugloe Peatland) to 47 (Verkhnee and Kislosladkoe peatlands) and from 18 (Krugloe) to 42 (Ershovskoe Nizhnee). The overall frequency of fungal taxa was low (20% and lower). The frequency of fungal taxa in the peat and sediments of different bogs was 3.4–32.1% and 3.4–17.9%, respectively (TABLE II).

The dominance of fungi from the Ascomycota division was a common characteristic of the mycobiota from all reservoirs investigated due to the anamorphic species (FIG. 3). The prevailing genus was Penicillium Link with its Talaromyces C.R.Benj. sexual stage (32 species) predominantly from Monoverticillata and Biverticillata-Symmetrica sections (TABLE II). Only eight species (e.g. Talaromyces funiculosus, P. spinulosum, P. thomii, Cladosporium cladosporioides, C. herbarum, Pseudogymnoascus pannorum, Beauveria bassiana, Tolypocladium inflatum) were obtained from all peatlands and labeled typical species for the investigated peatlands (TABLE II). The similarity of the fungal communities among the different peatlands ranged from 0.20 (Ershovskoe and Kislosladkoe) to 0.32 (Verkhnee and Krugloe) (FIG. 4).

Because the fungal communities of the peat and sediments of each of the four peatlands differed substantially, peat and sediments had to be analyzed

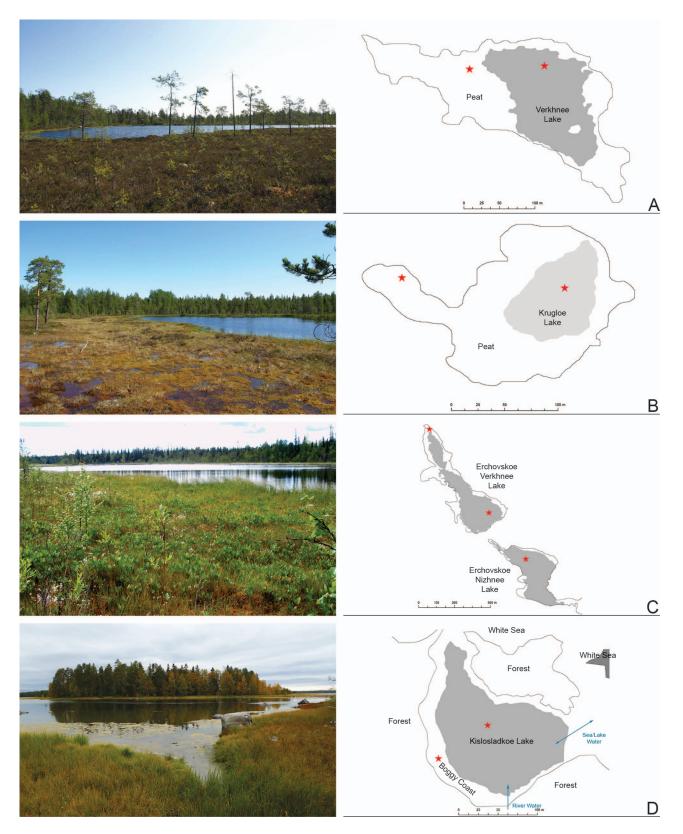


FIG. 2. Pictures and schemes of the investigated peatlands. A. Verchnee Peatland. B. Krugloe Peatland. C. Ershovskoe Peatland. D. Kislosladkoe Peatland.

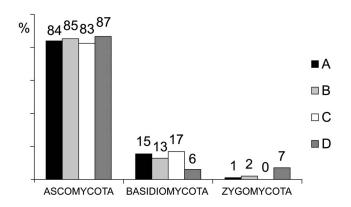
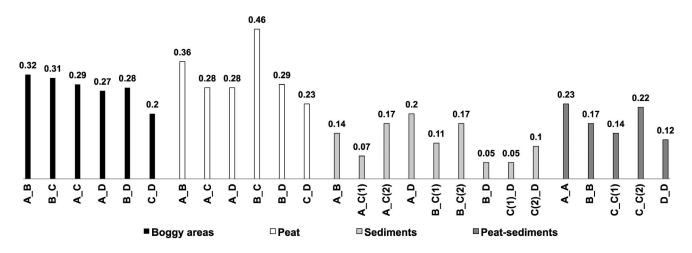
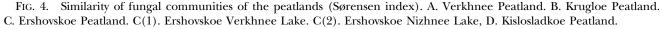


FIG. 3. Abundance (%) of fungal divisions in four peatlands. A. Verkhnee. B. Krugloe. C. Ershovskoe. D. Kislosladkoe.

independently. An average specific abundance of the genus *Penicillium* was 29.5% in peat and 11.5% in sediments. Common species in peat were *Talaromyces funi*culosus, *Penicillium spinulosum*, *P. glabrum*, *P. thomii*, *Cladosporium bruhnei*, *C. cladosporioides*, *C. herbarum*, *Beauveria bassiana*, *Oidiodendron griseum*, *Tolypocladium inflatum* and *Trichoderma harzianum*. We found 31 species that have not been observed before in *Sphagnum* peat (TABLE II) (Thormann and Rice 2007). In the bottom sediments sterile mycelia *Tolypocladium inflatum*, *Trichoderma hamatum*, *T. polysporum*, *Talaromyces funiculosus*, *Penicillium spinulosum*, *Aureobasidium pullulans* and *Sistotrema brinkmannii* were prevalent.

In total, 43 isolates of the *Basidiomycota* division were found; among them were species of genera *Phlebiopsis* Jülich, *Sistotrema* Fr., *Amylostereum* Boidin, *Antrodia* P. Karst., *Ceriporiopsis* Domański, *Gloeophyllum* P. Karst., *Neolentinus* Redhead & Ginns, *Phellinus* Quél., *Pholiota* (Fr.) P. Kumm., *Piptoporus* P. Karst., *Peniophora* Cooke, *Polyporus* P. Micheli, *Resinicium* Parmasto, *Stereum* Hill ex Pers., *Strobilurus* Singer and unidentified *Basidiomycota*.


The observed fungal diversity was affected by the isolation media (TABLE II). Many species were isolated only on one type of media. Some versatile species such as *Penicillium* spp., *Cladosporium* spp., *Trichoderma*. spp. and *Sistotrema* spp. appeared on all types of media.


We did not find distinct correlation between the species composition of the fungi and the depth at which the peat samples were taken. The maximum species number of the micromycetes was isolated from the upper and the deepest peat horizons. The number of fungi isolated from the surface sediment was larger than that obtained from the deep layer sediment.

DISCUSSION

The composition of fungal species in the studied peatlands is primarily associated with their origin. Substantial parts of the coastal zone of the White Sea are rising. As the result numerous bays, armlets and coastal straits separate from the sea, which in turn leads to the formation of small lakes (Shaporenko et al. 2005). Geological investigations and diatom analysis of the sediments indicated that all peatlands of the Kindo Peninsula formerly were a part of the sea (Romanenko, 2012). These isolated basins develop into peatland lakes and evolve in different ways depending on depth. Those that are 5-6 m deep remain as meromictic lakes, the shallower ones turn to fresh peatland lakes or slack marshes (Pantulin and Krasnova 2011).

The maximum depth of the peatland lakes explored was 2.0–2.5 m (lakes Verkhnee, Krugloe, Ershovskoe Verkhnee). Based on this fact it can be assumed that these peatlands have a similar way of formation starting from their detachment from the sea and ending with freshening and bogging (Olyunina 2008). The

TABLE II. The results of the molecular analysis of 152 taxa including accession numbers of DNA sequences and the closest match
from the GenBank database

	GenBank a	ccession No.			
Species	ITS	LSU	SSU	BLAST	
Acremonium sp. 1 ^a	JQ780657	JQ768402		Acremonium sp., 499/505, 99% ITS	FJ571421
				Acremonium strictum, 1319/1337, 98% LSU	FJ176879
Acremonium sp. 2	JX535092	JX535093		Acremonium sp., 498/505, 99% ITS	FJ571421
				Sarocladium ochraceum, 800/813, 98% LSU	HQ232070
				Acremonium strictum, 1272/1299, 98% LSU	FJ176879
Acremonium sp. 2	JX507654	JX507655		Acremonium sp., 498/505, 99% ITS	FJ571421
				Sarocladium ochraceum, 800/813, 98% LSU	HQ232070
				Acremonium strictum, 1272/1299, 98% LSU	FJ176879
Acremonium sp. 3	JX535076	JX535077		Acremonium potronii, 443/443, 100% ITS	DQ865091
				Emericellopsis maritima, 1318/1321, 99% LSU	FJ176861
Agaricomycetes sp.	JQ780614	JQ768389		Sistotrema brinkmannii, 560/560, 100% ITS	JQ912675
				Antrodia gossypium, 1010/1016, 99% LSU	EU232298
				Phanerochaete lamprocystidiata, 898/903, 99% LSU	GQ470648
Alternaria sp.	JX507701			Alternaria tenuissima, 503/503, 100% ITS	JX406554
				Alternaria brassicae, 503/503, 100% ITS	JX290140
				Alternaria alternata, 503/503, 100% ITS	JF802121
Alternaria sp.	JX535139			Alternaria tenuissima, 503/503, 100% ITS	JX406554
				Alternaria brassicae, 503/503, 100% ITS	JX290140
				Alternaria alternata, 503/503, 100% ITS	JF802121
Amylostereum areolatum	JX507658			Amylostereum areolatum, 525/525, 100% ITS	JX049992
				Amylostereum areolatum, 525/525, 100% ITS	HQ864715
Antrodia xantha	JX507636	JX507637		Antrodia xantha, 531/531, 100% ITS	EU232210
	-	-		Antrodia xantha, 2087/2094, 99% LSU	AJ583430
Antrodia sp. 1	JQ780622	JQ780623	JQ780624	Antrodia serialis, 446/560, 98% ITS	AJ345010
•				Antrodia serialis,1081/1092, 99% LSU	EU232293
				Antrodia variiformis, 1663/1668, 99% SSU	AY336783
Antrodia sp. 2	JX507729	JX507730		Antrodia sinuosa, 587/587, 100% ITS	GU991578.
•				Antrodia xantha, 2015/2114, 95%, LSU	AJ583430
Antrodiella romellii	JQ780621	JQ768396		Antrodiella romellii, 587/587, 100% ITS	AF126902
				Antrodiella romellii, 879/879, 100% LSU	JN710520
Ascomycota sp. 1	JX535148	JX535149		Helotiales sp., 457/464, 98% ITS	FN548161
				Articulospora tetracladia, 1957/2051, 95% LSU	EU998928
Ascomycota sp. 2	JX535116			Ascomycete sp., 432/450, 96% ITS	AY805600
Ascomycota sp. 3	JX507652	JX507653		Ascomycota sp., 488/510, 96% ITS	JN120374
				Setomelanomma holmii, 700/701, 99% LSU	GQ387633
Ascomycota sp. 4	JX507689			Articulospora atra, 459/479, 96% ITS	FJ000402
Ascomycota sp. 5	JX507709			Hirsutella sp., 489/493, 99% ITS	EF029185
				Ascomycete sp., 448/450, 99% ITS	AM084797
Ascomycota sp. 6	JX507650	JX507651		Lecythophora mutabilis, 505/505, 100% ITS	HQ637304
		-		Hyalodendriella betulae, 757/779, 97% LSU	EU040232
Basidiomycota sp. 1	JQ780626	JQ780627	JQ780628	Basidiomycota sp., 490/492, 99% ITS	GU062230
- 1	~ ~	~ ~		Leptosporomyces galzinii, 683/692, 99% LSU	EU118642
				Athelia sp., 994/1005, 99% SSU	GU187619
Basidiomycota sp. 2	JX507638	JX507639		Basidiomycota sp., 642/642, 100% ITS	FR682225
- 1	~	-		Antrodia xantha, 1968/2096, 94% LSU	AJ583430

	GenBank a	ccession No.			
Species	ITS	LSU	SSU	BLAST	
Basidiomycota sp. 3	JX507646			Armillaria novae-zelandiae, 536/592, 91% ITS	AF394919
				Coprinus sp., 526/590, 89% ITS	AY254874
Basidiomycota sp. 4	JX507631	JX507632		Armillaria novae-zelandiae, 536/592, 91% ITS	AF394919
				Coprinus sp., 526/590, 89% ITS	AY254874
				Multiclavula mucida, 1983/2059, 96% LSU	EU909345
Botryotinia sp.	JX535121			Botryotinia fuckeliana, 474/474, 100% ITS	KC172064
				Botrytis elliptica, 474/474, 100% ITS	AY684918
				Botrytis sp., 474/474, 100% ITS	FR822791
Cadophora fastigiata	JX535145			Cadophora fastigiata, 521/521, 100% ITS	JN689948
				Cadophora fastigiata, 521/521, 100% ITS	GU212371
Cadophora luteo-olivacea	JX535088			Cadophora luteo-olivacea, 563/564, 99% ITS	JQ796751
				Cadophora luteo-olivacea, 563/564, 99% ITS	FJ486274
Cadophora luteo-olivacea	JX535123			Cadophora luteo-olivacea, 565/565, 100% ITS	GU212374
				Cadophora luteo-olivacea, 565/565, 100% ITS	GU128589
Cadophora luteo-olivacea	JX535125			Cadophora luteo-olivacea, 563/564, 99% ITS	AB725391
				Cadophora luteo-olivacea, 563/564, 99% ITS	GU212374
Cadophora luteo-olivacea	JX535132			Cadophora luteo-olivacea, 560/560, 100% ITS	GU212374
Cadophora luteo-olivacea	JX535171			Cadophora luteo-olivacea, 567/568, 99% ITS	GU212374
Cadophora luteo-olivacea	JX535179			Cadophora luteo-olivacea, 581/581, 100% ITS	FJ430742
Cadophora sp.	JX507647			Cadophora sp., 555/564, 98% ITS	JN859254
Ceriporiopsis subvermispora	JX507705	JX507706		Ceriopsiopsis subvermispora, 580/580, 100% ITS	HQ659228
				Ceriporiopsis subvermispora, 840/842, 99% LSU	FJ496707
Cladosporium cladosporioides	JX535079			Cladosporium cladosporioides, 483/483, 100% ITS	JQ768327
Cladosporium cladosporioides	JX535084			Cladosporium cladosporioides, 481/481, 100% ITS	JQ768327
Cladosporium cladosporioides	JX535135			Cladosporium cladosporioides, 491/491, 100% ITS	JQ768327
Cladosporium cladosporioides	JX535166			Cladosporium cladosporioides, 480/480, 100% ITS	JQ768327
Cladosporium cladosporioides	JX535173			Cladosporium cladosporioides, 491/491, 100% ITS	HQ380766
Cladosporium cladosporioides	JQ780660			Cladosporium cladosporioides, 481/481, 100% ITS	JQ768327
Cladosporium herbarum	JX535143			Cladosporium herbarum, 494/494, 100% ITS	AF455517
Cladosporium herbarum	JX535172			Cladosporium herbarum (Davidiella tassiana), 408/408, 100% ITS	KC292373
Cladosporium langeronii	JQ780666			Cladosporium langeronii, 490/490, 100% ITS	DQ780380
Cladosporium langeronii	JQ780667			Cladosporium langeronii, 490/490, 100% ITS	DQ780380
Cladosporium sp. 1	JQ780649			Cladosporium langeronii, 501/502, 99% ITS	DQ780380
				Cladosporium cladosporioides, 486/490, 99% ITS	JN986780
Cladosporium sp. 2	JQ780629			Cladosporium cladosporioides, 487/488, 99% ITS	JN986780
Cladosporium sp. 3	JX535124			Cladosporium sp., 490/491, 99% ITS Cladosporium langeronii, 463/467, 99% ITS	GU395509 JQ780667
1	5			Cladosporium cladosporioides, 463/467, 99% ITS	AF455525
Clavulinaceae sp.	JX507640	JX507641		Clavulinaceae sp., 608/609, 99% ITS	FJ475570

_

TABLE II. Continued

	GenBank a	ccession No.			
Species	ITS	LSU	SSU	BLAST	
				Clavulina sp., 792/829, 96% LSU	AY745694
Clavulinaceae sp.	JX507727	JX507728		<i>Clavulinaceae</i> sp., 610/611, 99% ITS	FJ475570
				Clavulina sp., 812/850, 96% LSU	AY745694
Conichaeta sp.	JX507629	JX507630		Coniochaeta sp., 489/489, 100% ITS	HM595513
				Coniochaeta sp., 509/509, 100% LSU	HM595603
Crocicreas sp.	JQ780618	JQ768393		Crocicreas sp., 477/478, 99% ITS	FJ005100
				Cyathicula microspora, 1323/1339, 99% LSU	EU940088
Crocicreas sp.	JX507682			Crocicreas sp., 440/442, 99% ITS	FJ005098
				Crocicreas sp., 438/442, 99% ITS	FJ005099
Dothideales sp.	JX535090	JX535091		Dothideales sp., 510/511, 99% ITS	HM240804
				Dothideomycetes sp., 503/513, 98% ITS	GQ153228
				Dothideomycetes sp., 763/774, 99% LSU	GU323957
				Dothidea insculpta, 764/808, 95% LSU	NG027643
Dothideomycetes sp. 1	JX535078			Paraconiothyrium sp., 497/515, 97% ITS	HM999948
				Paraphaeosphaeria sp., 496/515, 96% ITS	KC208020
Dothideomycetes sp. 1	JX507635			Paraconiothyrium sp., 494/512, 96% ITS	HM999948
				Paraphaeosphaeria sp., 493/512, 96% ITS	KC208020
Dothideomycetes sp. 2	JX535162			Mycosphaerella fragariae, 472/476, 99% ITS	GU214691
				Ramularia grevilleana, 469/475, 99% ITS	GU939181
Fungus sp.	JX507690			Hongkongmyces pedis, 252/285, 88% ITS	JQ435790
Gloeophyllum sepiarium	JX507712	JX507713		Gloeophyllum sepiarium, 569/570, 99% ITS	JQ358803
				Gloeophyllum sepiarium, 821/821, 100% LSU	JN649344
Gnomoniaceae sp.	JX507716			Gnomonia cf. ischnostyla, 475/477, 99% ITS	EU254903
				<i>Ophiognomonia</i> sp., 474/477, 99% ITS	JQ414264
Gnomoniaceae sp.	JX507717			Gnomonia cf. ischnostyla, 475/477, 99% ITS	EU254903
				<i>Ophiognomonia</i> sp., 474/477, 99% ITS	JQ414264
Helotiales sp. 1	JQ780635			Lachnum sp., 416/435, 97% ITS	FJ378861
Helotiales sp. 2	JQ780665			<i>Gremmeniella</i> sp., 450/453, 99% ITS	FR715997
•				Helotiales sp., 421/423, 99% ITS	AY354243
Helotiales sp. 3	JQ780658	JQ780659		Godronia sp., 439/453, 98% ITS	EF672237
-				Godronia urceulos1320/1321, 99% LSU	EU754163
Helotiales sp. 4	JX535181			Varicosporium elodeae, 489/492, 99% ITS	GQ152148
Helotiales sp. 5	JX535100	JX535101		Helotiales sp., 480/490, 98% ITS	JN655578
-				Mollisia cinerea, 801/811, 99% LSU	DQ470942
Helotiales sp. 6	JX535046	JX535047		<i>Hyaloscyphaceae</i> sp., 479/488, 98% ITS	GU393951
-				Hyalodendriella betulae, 727/746, 97% LSU	EU040232
Helotiales sp. 7	JX535102	JX535103		Catenulifera brevicollaris, 479/507, 94% ITS	GU727561
*	Ũ	0		Catenulifera brachyconia, 784/800, 98% LSU	GU727559
Helotiales sp. 8	JX507674	JX507675		Hymenoscyphus sp., 472/487, 97% ITS	GU479911
^	~	~		Hyaloscypha fuckelii, 766/780, 98% LSU	EU940154
Helotiales sp. 8	JX507670	JX507671		Hymenoscyphus sp., 471/486, 97% ITS	GU479911
^	~	~		Hyaloscypha fuckelii, 806/820, 98% LSU	EU940154
Helotiales sp. 9	JX507660	JX507661		Meliniomyces bicolor, 480/480, 100% ITS	HQ157926
^	~	~		Hyaloscypha hepaticola, 829/838, 99% LSU	EU940118
Helotiales sp. 9	JX507662	JX507663		Meliniomyces sp., 500/503, 99% ITS	JQ711936
-	-			Hyaloscypha hepaticola, 830/839, 99% LSU	EU940118

	GenBank a	ccession No.			
Species	ITS	LSU	SSU	BLAST	
Helotiales sp. 10	JX507720	JX507721		Helotiales sp., 488/542, 90% ITS	FJ378857
				Neobulgaria sp., 484/542, 89% ITS	HQ211726
				Neobulgaria pura, 752/788, 95% LSU	DQ257365
Helotiales sp. 11	JX507672	JX507673		Helotiales sp., 492/497, 99% ITS	JX852365
				Catenulifera brachyconia, 766/782, 98% LSU	GU727559
Helotiales sp. 12	JX507664	JX507665		Acephala sp., 478/483, 99% ITS	JN655564
				Mollisia sp., 771/797, 97% LSU	EU107273
Helotiales sp. 12	JX507666	JX507667		Acephala sp., 479/484, 99% ITS	JN655564
				Mollisia sp., 737/781, 94% LSU	EU107273
Helotiales sp. 13	JX507676	JX507677		Cudoniella acicularis, 435/470, 93% ITS	DQ202512
				Varicosporium giganteum, 737/747, 99% LSU	GQ477344
Helotiales sp. 14	JX507656	JX507657		Acephala sp., 481/489, 98% ITS	HQ889709
				Mollisia sp., 737/755, 97% LSU	EU107273
Helotiales sp. 15	JX507693			Helotiales sp., 531/534, 99% ITS	GU934595
Helotiales sp. 16	JX535119	JX535120		Helotiales sp., 424/426, 99% ITS	AY354243
				Godronia urceolus, 831/831, 100% LSU	EU754163
Helotiales sp. 17	JX507731	JX507732		Helotiales sp., 491/545, 90% ITS	FJ378857
×	Ū	0		Neobulgaria sp., 487/545, 89% ITS	HQ211726
				Neobulgaria pura, 748/783, 96% LSU	DQ257365
Helotiales sp. 18	JX507688			Dimorphospora sp., 479/479, 100% ITS	JX077075
				Ascocoryne sp., 382/382, 100% ITS	JX077076
Helotiales sp. 18	JX507714	JX507715		Dimorphospora sp., 479/479, 100% ITS	JX077075
				Ascocoryne sp., 382/382, 100% ITS	JX077076
				Neobulgaria lilacina, 794/821, 97% LSU	EU940141
Helotiales sp. 19	JX507683			Dimorphospora sp., 479/479, 100% ITS	JX077075
				Ascocoryne sp., 382/382, 100% ITS	JX077076
Leotiomycetes sp. 1	JQ780634			Leotiomycetes sp., 471/529, 94% ITS	HQ212354
Leotiomycetes sp. 2	JQ780630	JQ768398		Helotiaceae sp., 463/478, 97% ITS	GU997932
				Helotiales sp., 463/478, 97% ITS	JN655588
				Hyaloscypha fuckelii, 1324/1336, 99% LSU	EU940154
Leotiomycetes sp. 3	JX507735			Dimorphospora sp., 474/479, 99% ITS	JX077075
				Ascocoryne sp., 377/382, 100% ITS	JX077076
Leotiomycetes sp. 4	JX507684	JX507685		Leotiomycetes sp., 521/531, 98% ITS	HQ211767
				Hyaloscypha sp., 810/831, 97% LSU	EU940092
Leotiomycetes sp. 5	JX507687			Dimorphospora sp., 473/478, 99% ITS	JX077075
				Ascocoryne sp., 370/377, 100% ITS	JX077076
Massarinaceae sp.	JQ780631	JQ780632		Saccharicola bicolor, 491/501, 98% ITS	AF455415
_				Neottiosporina paspali, 813/822, 99% LSU	EU754172
<i>Mollisia</i> sp. 1	JX507704			Mollisia minutella, 488/493, 99% ITS	FR837920
Mollisia sp. 2	JX507644	JX507645		Mollisia minutella, 477/484, 99% ITS	FR837920
•	-	~		Mollisia cinerea, 732/746, 98% LSU	DQ470942
<i>Mollisia</i> sp. 3	JX507668	JX507669		Mollisia minutella, 483/483, 100% ITS	~ FR837920
*	-	-		Mollisia cinerea, 806/819, 98% LSU	DQ470942
Mortierella elongata	JX535038			Mortierella elongata, 468/468, 100% ITS	~ KC018241
Nectriaceae sp.	JX535175			Cylindrocarpon obtusisporum, 475/476, 99% ITS	GU726752

	GenBank a	ccession No.			
Species	ITS	LSU	SSU	BLAST	
				Nectria lugdunensis, 475/477, 99% ITS	FJ000394
Nectriaceae sp.	JX535186			Cylindrocarpon obtusisporum, 480/481, 99% ITS	GU726752
				Nectria lugdunensis, 482/483, 99% ITS	FJ000394
<i>Nectriaceae</i> sp.	JX535187			Cylindrocarpon obtusisporum, 475/477, 99% ITS	GU726752
-				Nectria lugdunensis, 476/477, 99% ITS	FJ000394
Neolentinus sp.	JX507691	JX507692		Neolentinus lepideus, 452/455, 99% ITS	AB615456
				Neolentinus lepideus, 849/856, 99% LSU	HM536077
Penicillium spinulosum ^a	JQ780638			Penicillium spinulosum, 506/507, 99% ITS	KC167850
Penicillium spinulosum	JQ780639			Penicillium spinulosum, 510/510, 100% ITS	DQ888735
Peniophora piceae	JX507718	JX507719		Peniophora piceae, 545/545, 100% ITS	AY781264
	Ũ	0		Peniophora sp., 1352/1357, 99% LSU	DQ094783
Peniophora sp. 1	JX507724	JX507725		Peniophora pini, 574/576, 99% ITS	EU118651
* *	0	0		Peniophora pini, 1313/1331, 99% LSU	EU118651
				Peniophora cinerea, 1290/1309, 99% LSU	DQ094786
Peniophora sp. 2	[X535110	JX535111		Peniophora pini, 569/572, 99% ITS	EU118651
1 1	5	5		Peniophora pini, 1313/1331, 99% LSU	EU118651
				Peniophora cinerea, 1290/1309, 99% LSU	DQ094786
Pezizomycotina sp. 1	JQ780651			Ramularia eucalypti, 451/453, 99% ITS	€F394861
	J ∼			Glomerella lagenaria, 451/453, 99% ITS	AJ301970
Pezizomycotina sp. 2	JQ780663			Ramularia eucalypti, 462/465, 99% ITS	EF394861
Phellinus sp.	JQ780625	JQ768397		Phellinus cinereus, 554/557, 99% ITS	AY340047
nounnus sp.	J 2.000-0	J 2. 00001		Phellinus igniarius, 601/604. 99% ITS	AM269797
				Phellinus cinereus, 858/859, 99% LSU	AF311027
				Phellinus igniarius, 1838/1850, 99% LSU	AY839834
Phlebiopsis giganteaª	JQ780612			Phlebiopsis gigantea, 626/626, 100% ITS	AF087487
Phlebiopsis gigantea ^a	JQ780612 JQ780617	JQ768392		Phlebiopsis gigantea, 584/584, 100% ITS	AF087487
i nieotopsis gigunieu	JQ700017	JQ700392		<i>Ceratobasidiaceae</i> sp., 1291/1335, 97% LSU	JF799768
Phlahiopsis morantaga	IX 507707	[X507708		<u>^</u>	AF087487
Phlebiopsis gigantea ^a	JX507707	JA507708		Phlebiopsis gigantea, 598/598, 100% ITS Antrodiella romellii, 1961/2058, 95% LSU	
Dhaliata an	IVE07699				JQ768396 AY281022
<i>Pholiota</i> sp.	JX507628			Pholiota lenta, 608/608, 100% ITS	
Dlama ta landa	10700099	1070900		Pholiota lubrica, 602/602, 100% ITS	JF908578
Phoma poolensis	JQ780633	JQ768399		Phoma novae-verbascicola, 468/468, 100% ITS	GU237753
י א	10700640	10700409		Phoma novae-verbascicola, 1323/1323, 100% LSU	GU238135
Phoma poolensis	JQ780648	JQ768403		Phoma novae-verbascicola, 455/455, 100% ITS	GU237753
	TXK OFFOO	TXFORM A		Phoma novae-verbascicola, 1319/1319, 100% LSU	GU238135
Piptoporus betulinus	JX507733	JX507734		Piptoporus betulinus, 600/600, 100% ITS	GU731570
				Piptoporus betulinus, 601/602, 99% LSU	JQ700297
				Piptoporus betulinus, 811/843, 96% LSU	JQ700297
Pochonia bulbillosa	JX535141			Pochonia bulbillosa, 537/539, 99% ITS	AB378551
Pochonia bulbillosa	JQ780661	JQ780662		Pochonia bulbillosa, 534/535, 99% ITS	AB378551
				Pochonia bulbillosa, 838/840, 99% LSU	HQ232164
Pochonia bulbillosa	JX535180			Pochonia bulbillosa, 538/540, 99% ITS	AB378551
Polyporus sp.	JX507702	JX507703		Polyporus lepideus, 592/593% ITS	GU731572
				Polyporus ciliatus, 560/567, 99% ITS	AB070883
				Polyporus arcularius, 831/840, 99% LSU	AF393067
Polyporales sp.	JX507648	JX507649		Oligoporus placentus, 596/597, 99% ITS	AJ416069

	GenBank a	ccession No.			
Species	ITS	LSU	SSU	BLAST	
				Postia placenta, 590/597, 99% ITS	JQ700293
				Antrodia xantha, 2039/2092, 97% LSU	AJ583430
Pseudogymnoascus pannorum	JQ768386	JQ768405		Pseudogymnoascus pannorum, 487/487, 100% ITS	HQ115661
				Pseudogymnoascus pannorum, 575/576, 99% LSU	GU951694
Pseudogymnoascus pannorum	JQ780644	JQ768404		Pseudogymnoascus pannorum, 487/487, 100% ITS	HQ115661
				Pseudogymnoascus pannorum, 575/576, 99% LSU	GU951694
Resinicium bicolor	JQ780611	JQ768387		Resinicium bicolor, 518/518, 100% ITS	DQ218310
				Resinicium bicolor, 1260/1266, 99% LSU	AY700183
Resinicium bicolor	JQ780619	JQ768394		Resinicium bicolor, 495/495, 100% ITS	DQ218310
				Resinicium bicolor, 1221/1226, 99% LSU	AY700183
<i>Resinicium</i> sp.	JQ780620	JQ768395		Resinicium furfuraceum, 609/617, 99% ITS	DQ873648
				Resinicium furfuraceum, 1357/1364, 99% LSU	DQ873648
Sistotrema brinkmannii	JQ780616	JQ768391		Sistotrema brinkmannii, 605/605, 100% ITS	JQ912675
				Sistotrema brinkmannii, 1286/1303, 99% LSU	AF506473
Sistotrema brinkmannii	JX507642	JX507643		Sistotrema brinkmannii, 577/577, 100% ITS	JQ912675
	5	5		Sistotrema brinkmannii, 1275/1292, 99% LSU	AF506473
Sistotrema brinkmannii	JX535082	JX535083		Sistotrema brinkmannii, 570/571, 99% ITS	JQ912675
	5	5		Sistotrema brinkmannii, 1289/1306, 99% LSU	J∼ AF506473
Sistotrema brinkmannii	JX507686			Sistotrema brinkmannii, 563/563, 100% ITS	JQ912675
Sistotrema brinkmannii	JX535117	JX535118		Sistotrema brinkmannii, 568/569, 99% ITS	JQ912675
	J1000117	511000110		Sistotrema brinkmannii, 1288/1305, 99% LSU	AF506473
Sistotrema brinkmannii	JX507710	JX507711		Sistotrema brinkmannii, 570/571, 99% ITS	AY089729
Sistementa ormaniaania	J11007710	J1007711		Sistotrema brinkmannii, 1282/1300, 99% LSU	AF506473
Sistotrema sp.	JQ780613	JQ768388		Sistotrema sp., 530/530, ITS 100%	AY781271
sistenenia sp.	JQ700013	JQ/000000		Sistotrema brinkmannii, 1282/1301, 99% LSU	AF506473
				Sistotrema coroniferum, 1247/1277, 98% LSU	AM259215
Sistotrema sp.	JQ780615	JQ768390		Sistotrema sp., 530/530, ITS 100%	AY781271
Sistoirenia sp.	JQ700013	JQ700330		Sistotrema brinkmannii, 1284/1303, 99% LSU	AF506473
				Sistotrema coroniferum, 1248/1278, 98% LSU	AF500475 AM259215
Sistotrema sp.	JX507633	JX507634		Sistotrema sp., 522/522, 100% ITS	AY781271
Sistoirema sp.	JA507055	JA307034		Sistotrema brinkmannii, 1288/1307, 99% LSU	AF506473
S'	BVF9F100	WF9F100		Sistotrema coroniferum, 1252/1282, 98% LSU	AM259215
Sistotrema sp.	JX535108	JX535109		Sistotrema sp., 530/530, 100% ITS	AY781271
				Sistotrema brinkmannii, 1285/1304, 99% LSU	AF506473
<u>.</u>	B7505114	TYPOP11F		Sistotrema coroniferum, 1249/1279, 98% LSU	AM259215
Stereum sp.	JX535114	JX535115		Stereum hirsutum, 470/472, 99% ITS	JX501297
				<i>Stereum annosum</i> , 565/571, 99% ITS	DQ000294
				Stereum sp., 789/791, 99% LSU	EF600046
Strobilurus tenacellus	JX507722	JX507723		Strobilurus tenacellus, 686/686, 100% ITS	GQ892812
				Strobilurus tenacellus, 833/833, 100% LSU	AM946470
Sydowia polyspora	JQ780656	JQ768401		Sydowia polyspora, 536/537, 99% ITS	FR822985
				Sydowia polyspora, 1305/1305, 100% LSU	DQ678058
Sydowia polyspora	JX535167			Sydowia polyspora, 526/529, 99% ITS	FR822985
				Sydowia polyspora, 526/530, 99% ITS	FR717223

TABLE II. Contin	iucu

	GenBank a	ccession No.			
Species	ITS	LSU	SSU	BLAST	
Talaromyces funiculosus	JX507726			Penicillium funiculosum, 516/516, 100% ITS	JX045839
Teberdinia hygrophila ^a	JQ780641	JQ780642	JQ780643	Teberdinia hygrophila, 446/447, 99% ITS	AY129291
				Pseudoeurotium zonatum, 1311/1319, 99% LSU	DQ470988
				Pseudoeurotium sp, 785/791, 99% LSU	AB470594
				Teberdinia hygrophila, 733/734, 99% SSU	AY129282
Teberdinia hygrophila ^a	JQ780645	JQ780646	JQ780647	Teberdinia hygrophila, 447/447, 100% ITS	AY129291
				Teberdinia hygrophila, 1053/1055, 99% SSU	AY129282
				Pseudoeurotium zonatum, 819/822, 99% LSU	AF096198
Teberdinia hygrophila ^a	JQ780653	JQ780654	JQ780655	Teberdinia hygrophila, 448/449, 99% ITS	AY129291
				Pseudoeurotium zonatum, 1307/1315, 99% LSU	DQ470988
				Pseudoeurotium sp, 785/791, 99% LSU	AB470594
				Teberdinia hygrophila, 1045/1047, 99% SSU	AY129282
Tolypocladium cylindrosporum	JX535129			Tolypocladium cylindrosporum, 497/497, 100% ITS	FJ025179
Tolypocladium					
cylindrosporum	JX507699			Tolypocladium cylindrosporum, 499/499, 100% ITS	FJ025179
Tolypocladium geodes ^a	JX507694			Tolypocladium geodes, 467/470, 99% ITS	FJ973059
Tolypocladuim inflatum ^a	JQ780640			Tolypocladuim inflatum, 493/494, 99% ITS	JX488470
Tolypocladuim inflatum ^a	JX507695			Tolypocladuim inflatum, 494/495, 99% ITS	JX488470
Tolypocladuim inflatum ^a	JX507696			Tolypocladuim inflatum, 494/495, 99% ITS	JX488470
Tolypocladuim inflatum ^a	JX507697			Tolypocladuim inflatum, 494/495, 99% ITS	JX488470
Tolypocladuim inflatum ^a	JX507698			Tolypocladuim inflatum, 494/495, 99% ITS	JX488470
Tolypocladuim inflatum ^a	JQ780650			Tolypocladuim inflatum, 494/495, 99% ITS	JX488470
Tolypocladuim inflatum ^a	JQ780652			Tolypocladuim inflatum, 494/495, 99% ITS	JX488470
Tolypocladuim inflatum ^a	JQ780664			Tolypocladuim inflatum, 494/495, 99% ITS	JX488470
Trichoderma polysporum ^a	JQ780637			Hypocrea pachybasioides, 555/557, 99% ITS	FJ860796
				Trichoderma polysporum, 532/537, 99% ITS	DQ093710
Trichoderma polysporum ^a	JQ780636	JQ768400		Hypocrea parapilulifera, 539/540, 99% ITS	FJ860799
				Trichoderma sp., 1018/1018, 100% LSU	AY283550
<i>Volutella</i> sp.	JX507700			Volutella sp., 517/521, 99% ITS	FR822789
				Volutella ciliata, 517/521, 99% ITS	GU479901

^a Species names identified by morphology.

depth of the other two lakes (Ershovskoe Nizhnee and Kislosladkoe) is less than 5 m, and they evolve presumably in the same way. The evolution of all the lakes explored is followed by the uniform processes of change such as succession of plants, change of organic sediments and physical-chemical properties of the lakes. All these factors influence species composition of fungi in the boggy lakes.

Whereas the fungal communities from the peatlands studied have similarities at higher taxonomic levels, the species composition at lower taxonomic levels change depending on the distance of the lakes from the sea and differences in the age of the peatlands (TABLE I, FIG. 3). However, despite the mentioned similarities, the fungal communities of the studied peatlands are different (FIG. 4). Consistently pairs Verkhnee-Krugloe and Krugloe-Ershovskoe have the highest similarity. The established Ershovskoe Peatland and the newly forming Kislosladkoe Peatland have the lowest similarity, which can be attributed to the unique species composition of the sediments of Lake Ershovskoe Verkhnee.

Fungal communities from the Verkhnee, Krugloe and Ershovskoe peatlands are similar in spite of the differences in the altitude and age. This stability could be explained primarily by the chemical constitution of *Sphagnum* moss, because it consists of complex phenolic compounds that can be decomposed by a specific group of fungi. Taxa such as *Oidiodendron griseum*, *O*.

TABLE III. Isolated species with frequencies (%) of their occurrence and media of isolation

	Sampling site										
		Р	eat			Se	edimer	nts		Total F ^e /No. of isolates	Medium
Species	A ^a	B^b	Cc	D^{d}	A ^a	B^b	С (1) ^с	С (2) ^с	D^{d}		
Acremonium sp. 1 ^h	3.6	_	_	_	_	_	_	_	_	1	MA
Acremonium sp. 2 ^h	—	—	—	18.8	—	_	—	3.4	_	4	AA
Acremonium sp. 3 ^h	—	—	—	—	3.6	_	—	—	6.3	2	SWA
Acrodontium crateriforme (J.F.H. Beyma) de Hoog	3.6	—	3.4	—	7.1	_	—	—	_	4	MA, CA, WA
Acrodontium simplex (F. Mangenot) de Hoog	—	—	3.4	—	—	_	—	—	_	1	WA
Agaricomycetes sp. ^h		3.7		_		_	_	_	_	1	CA
Alternaria alternata (Fr.) Keissl.	3.6			6.3		_	_	_	_	2	SEA
Alternaria sp. ^h	—	—	—	6.3	—	_	—	3.4	_	2	MA, CA
Amylostereum areolatum (Chaillet ex Fr.) Boidin ^h	—	—	—	—	—	_	—	3.4	_	1	SWA
Antrodia xantha (Fr.) Ryvarden ^h	_	_	_	_	3.6	_	_	_	_	1	MA
Antrodia sp. 1 ^h	_	_	3.4	_	_	_		_		1	CA
Antrodia sp. 2 ^h				_	3.6	_	_	_		1	MA
Antrodiella romellii (Donk) Niemelä ^h			3.4	_	_	_		_		1	MA
Ascomycota sp. 1 ^h	_	_	_	6.3	_	_	_	_	_	1	CA
Ascomycota sp. 2 ^h	_	_		_	_	_		_	6.3	1	WA
Ascomycota sp. 3 ^h				_		_	_	3.4		1	AA
Ascomycota sp. 4 ^h	_	_	_	_	_	_	3.4	_	_	1	SWA
Ascomycota sp. 5 ^h	_	_	_	_	_	_	_	3.4	_	1	MA
Ascomycota sp. 6 ^h	_	_	_	_	_	_	_	3.4	_	1	SWA
Aspergillus repens (Corda) Sacc.	_	_	_	_	3.6	_	_	_	_	1	CA
Aspergillus tubingensis Mosseray	_	_	_	_	_	_	_	_	6.3	1	MA
Aspergillus ustus (Bainier) Thom et Church	3.6	_		_	3.6	_				2	MA, SEA
Aspergillus versicolor (Vuill.) Tirab.	_	_	_	6.3	_	_	_	_	_	1	CA
Aureobasidium pullulans (de Bary) G. Arnaud	—	7.4	10.3	—	3.6	—	6.9	6.9	—	10	MA, WA, SEA, SWA
Basidiomycota sp. 1 ^h			3.4	_		_		_		1	CA
Basidiomycota sp. 2 ^h				_		_		3.4		1	MA
Basidiomycota sp. 3 ^h				_		_	3.4	_		1	CA
Basidiomycota sp. 4 ^h	_	_		_	3.6	_		_		1	MA
Beauveria bassiana (BalsCriv.) Vuill.	10.7	14.8	6.9	6.3		_		_		10	MA, CA, SEA
Beauveria brongniartii (Sacc.) Petch	_	_		6.3	_	_		_		1	MA
Botryotinia sp. ^h				6.3		_		_		1	WA
Botrytis cinerea Pers.	3.6	_		6.3	_	_		_		2	MA, CA
Cadophora fastigiata Lagerb. et Melin ^h				6.3		_		3.4		2	CA, SWA
Cadophora luteo-olivacea (J.F.H. Beyma) T.C. Harr. et McNew ^h	—	_	—	12.5	—	_	_	6.9	6.3	5	MA, CA, WA SEA, SWA
Cadophora sp. ^h				_		_		3.4		1	CA
Cadophora sp.	_	_	_	6.3		_	_	_	_	1	SEA
Ceriporiopsis subvermispora (Pilát) Gilb. et Ryvarden ^h	_	_		_	3.6		_		_	1	MA
Chrysosporium sp.	_	_	_	_	_	_	3.4	_	_	1	WA
Cladophialophora humicola Crous et U. Braun	3.6	_	_	_	_	_	_	_	_	1	SEA
Cladosporium antarcticum K. Schub., Crous et U. Braun	—	—	—	18.8	_	—	_	—	_	3	AA
Cladosporium bruhnei Linder	_	3.7	6.9	18.8	_	3.7	_	_	_	7	MA, CA, AA WA, SWA
Cladosporium cladosporioides (Fresen.) G.A. de Vries ^h	10.7	3.7	6.9	12.5	_	_	3.4	_	12.5	11	MA, CA, WA SEA, SWA

	Sampling site										
		Pe	eat			Se	edimer	nts		Total F ^e /No. of isolates	Medium
Species	A ^a	B^b	Cc	$\mathbf{D}^{\mathbf{d}}$	A ^a	B^b	С (1) ^с	С (2) ^с	$\mathbf{D}^{\mathbf{d}}$		
Cladosporium herbarum (Pers.) Link ^h	3.6	7.4	3.4	18.8	_	_	_			7	MA, WA, SEA, SWA
<i>Cladosporium langeronii</i> (Fonseca, Leão et Nogueira) Vuill. ^h	7.1	_	—	—	—	—	—	—	—	1	SEA
Cladosporium sphaerospermum Penz.	32.1	11.1	—	—	3.6	—	—	—	—	13	MA, CA, WA, SEA, SWA
Cladosporium sp. 1 ^h	3.6	_	_	_	_	_	_		_	1	SEA
Cladosporium sp. 2 ^h	—	3.7	—	—	—	—	—	—	—	1	MA
Cladosporium sp. 3 ^h	_	_	_	6.3	_	_	_	_	_	1	SEA
Clavulinaceae sp. ^h	_	_	_	_	_	3.7	_	3.4	_	2	MA
Coniochaeta sp. ^h	_	_	_	_	3.6	_	_	_	_	1	CA
Crocicreas sp. ^h	_	_	3.4	_	_	_	_	3.4	_	2	CA, SEA
Dothideales sp. ^h	_	_	_	6.3			_			1	MA
Dothideomycetes sp. 1 ^h	_	_	_	_		_	_	3.4	6.3	1	MA, SEA
Dothideomycetes sp. 2 ^h	_	_	_	6.3	_	_	_	_	_	1	MA
Elaphocordyceps subsessilis (Petch) G.H. Sung, J.M. Sung et Spatafora ^h	21.4	_	3.4	12.5	17.9	7.4	_	—	6.3	17	All
Emericellopsis minima Stolk	_	_	_	_	_	_	_	6.9	_	2	WA
Emericellopsis sp.	_	_	_	_	_	_	3.4	_		1	SWA
Engyodontium album (Limber) de Hoog	_	3.7	_	6.3	_	3.7	_	_		3	MA, CA, SEA
Fungal sp. ^h	_	_	_	_	_	_	_	3.4	_	1	WA
Fusarium sp.	_		_	_	3.6					1	MA
Geomyces pannorum (Link) Sigler et J.W. Carmich. ^h	7.1	3.7	3.4	6.3	—	—	—	6.9	—	7	MA, CA, WA, SEA
Geotrichum candidum Link	3.6	_	_	_	3.6	_	_	6.9	_	4	MA, CA, SEA
Gibellulopsis nigrescens (Pethybr.) Zare, W. Gams et Summerb.	3.6	—	_	—	—	—	—	3.4	_	2	MA, SWA
Gloeophyllum sepiarium (Wulfen) P. Karst. ^h	_	_	_	_		_	3.4			1	MA
Gnomoniaceae sp. ^h	_	_	_	_	3.6		_	3.4		2	MA, SEA
Hansfordia sp.	_	_	_	_			3.4			1	SWA
Helotiales sp. 1 ^h	_	_	3.4	_			_			1	WA
Helotiales sp. 2 ^h	3.6	_	_	_			_			1	SEA
Helotiales sp. 3 ^h	3.6	_	_	_	_	_	_	_	_	1	MA
Helotiales sp. 4 ^h	_	_	_	6.3	_	_	_	_	_	1	MA
Helotiales sp. 5 ^h	_	_	_	_	_	_	_	_	6.3	1	SEA
Helotiales sp. 6 ^h	_	_	_	6.3			_			1	CA
Helotiales sp. 7 ^h	_	_	_	_		_	_		6.3	1	CA
Helotiales sp. 8 ^h	_	_	_	_	7.1	3.7	_			3	MA, CA, SEA
Helotiales sp. 9 ^h	_	_	_	_	_	_	_	3.4	_	2	WA
Helotiales sp. 10 ^h	_	_	_	_	_	_	_	3.4	_	1	MA
Helotiales sp. 11 ^h	_	_	_	_	_	_	3.4		_	1	CA
Helotiales sp. 12 ^h	_	_	_	_	3.6	_	_	_	_	2	MA
Helotiales sp. 13 ^h	_	_	_	_	3.6	_	_	_	_	1	MA
Helotiales sp. 14 ^h		_			_	3.7	_			1	SWA
Helotiales sp. 15 ^h				_	3.6				_	1	SWA
Helotiales sp. 16 ^h	_	_	_	6.3		_	_		_	1	WA
Helotiales sp. 17 ^h	_	_	_		_	_	_	3.4	_	1	MA
Helotiales sp. 18 ^h								3.4		2	CA, SWA

				San							
			Se	edimer	nts		-				
Species	A ^a	B^b	Cc	$\mathbf{D}^{\mathbf{d}}$	A ^a	B^b	С (1) ^с	С (2) ^с	$\mathbf{D}^{\mathbf{d}}$	Total F ^e /No. of isolates	Medium
Helotiales sp. 19 ^h	_	_	_	_	_	_	3.4	_	_	1	MA
Humicola fuscoatra Traaen	_	_	_	_	3.6	_		_	_	1	CA
Humicola sp.	_	_	_	_	_	_	3.4	_	_	1	SWA
Lecanicillium evansii Zare etW. Gams	_	_	3.4	_		_	_	_		1	MA
Lecanicillium muscarium (Petch) Zare et W. Gams	_	_	_	_	_	3.7	_	_	_	1	AA
Leotiomycetes sp. 1 ^h	_	3.7	_	_	_	_	_	_	_	1	WA
Leotiomycetes sp. 2 ^h	3.6	_	_	_	_	_	_	_	_	1	CA
Leotiomycetes sp. 3 ^h	_		_	_	3.6					1	MA
Leotiomycetes sp. 4 ^h	_	_	_	_		3.7	_		_	1	WA
Leotiomycetes sp. 1 Leotiomycetes sp. 5 ^h	_	_	_	_			3.4	_	_	1	MA
Massarinaceae sp. ^h				6.3			5.1			1	CA
Mollisia sp. 1 ^h	_	_	_	0.5	3.6	_		_		1	CA
Mollisia sp. 2 ^h	_	_	_	_	5.0		_	_	_		
*	_	_	_	_		3.7				1	MA
<i>Mollisia</i> sp. 3 ^h	_	_	_	_	_	_	_	3.4		1	WA
Mortierella elongata Linnem. ^h	_	_	_	_	_		_	_	6.3	1	MA
Mortierella lignicola (G.W. Martin) W. Gams et R. Moreau	_	_	_	_	_	3.7	_	_	_	1	WA
Mortierella longicollis Dixon-Stew.	—	—	—	—	3.6	—	—	—	—	1	SWA
Nectriaceae sp. ^h		—	—	12.5		—	—	—		2	MA
Neolentinus sp. ^h	_	_	_	_	_	3.7	_	_	_	1	CA
Neoscytalidium dimidiatum (Penz.) Crous et Slippers	—	—	3.4	—	—	—	—	—	—	1	WA
Oidiodendron ambiguum Peyronel et Malan	_	_	_	6.3		_		_		1	MA
Oidiodendron echinulatum G.L. Barron	_	_	_	_	_	_	3.4	3.4	_	2	SWA
Oidiodendron griseum Robak	17.9	3.7	_	6.3	3.6	_	_	_	_	8	MA, CA, WA
Oidiodendron maius var. citrinum (Barron) Rice a. Currah	3.6	—	—	—	—	_	_	—	—	1	MA
Oidiodendron periconioides Morrall	_	3.7	_	_	_	_	_	_	_	1	CA
Oidiodendron sp.	_		_	_		3.7				1	SEA
Penicillium aculeatum Raper et Fennell	_	_	_	_		_	_	_	6.3	1	MA
Penicillium aurantiogriseum Dierckx	3.6	3.7	3.4	_	_	_	_		_	3	WA, CA
Penicillium brevicompactum Dierckx		11.1	_	—	—	_	_	_	—	4	MA, WA, SEA
Penicillium chermesinum Biourge	_	_	_	_	_	_	_	3.4	_	1	CA
Penicillium citreonigrum Discuge	3.6	3.7	3.4	_		_	_		_	3	MA, CA
Penicillium citrinum Thom	5.0	5.7	5.1					3.4		1	SEA
	_	_	3.4	_		_		5.4			CA
Penicillium corylophilum Dierckx	_	_	3.4		_	_	_	_	_	1	
Penicillium dierckxii Biourge		_	_	6.3	_	_	_	_	_	1	WA
Penicillium expansum Link	3.6		_	_	_	_	_	_	_	1	CA
Penicillium glabrum (Wehmer) Westling	3.6	18.5	_	6.3	_	_	_	_	_	7	MA, CA, WA, SEA, SWA
Penicillium griseofulvum Dierckx	—	—	_	6.3	—	—	—	—	_	1	CA
Penicillium implicatum Biourge	_	_	3.4	—	_	_	—	—		1	MA
Penicillium janczewskii K.M. Zalessky	—	_	3.4	_	_	_		_	_	1	CA
Penicillium multicolor GrigMan. et Porad.	_	—	—	—	—	—	—	—	6.3	1	WA
Penicillium nalgiovense Laxa	_	3.7	_	_	_	_	_	_		1	WA
Penicillium purpurascens (Sopp) Biourge	_	_	_	_	3.6	_		_		1	SWA

	Sampling site										
		Ре	eat			Se	edimer	nts		Total F ^e /No. of isolates	Medium
Species	Aa	B^b	Cc	$\mathbf{D}^{\mathbf{d}}$	Aa	B^b	С (1) ^с	С (2) ^с	\mathbf{D}^{d}		
Penicillium restrictum J.C. Gilman et E.V. Abbott	3.6	_	_	_	_	_	_	_	_	1	CA
Penicillium rolfsii Thom	—	3.7	—	—	—	—	—	—	—	1	MA
Penicillium roseopurpureum Dierckx	3.6	—	—	—	7.1	—	—	—	6.3	3	CA, WA, SEA
Penicillium sclerotiorum J.F.H. Beyma	_	_	_	_		_	_	3.4	_	1	CA
Penicillium solitum var solitum Westling	_			_	3.6	_	_	_		1	SEA
Penicillium spinulosum Thom ^h	14.3	18.5	10.3	25	3.6	7.4	_	3.4	—	20	MA, CA, WA, SEA, SWA
Penicillium thomii Maire	3.6	3.7	17.2	_		_	_	_	6.3	8	MA, CA, WA
Penicillium verrucosum Dierckx	_	_	3.4	_	_	_	_	_	_	1	MA
Penicillium vinaceum J.C. Gilman et E.V. Abbott	3.6	_	3.4	_	_	_	_	_	_	2	SEA
Penicillium waksmanii K.M. Zalessky	_	_	_	6.3	_	_	_	_	_	1	MA
Peniophora piceae (Pers.) J. Erikss. ^h	_	_	_	_	3.6	_	_	_	_	1	MA
Peniophora sp. 1 ^h		_	_	_		_		3.4		1	CA
Peniophora sp. 2 ^h	_	_	_	_	_	_	_	_	6.3	1	WA
Pezizomycotina sp. 1 ^h	3.6	_	_	_	_	_	_	_	_	1	MA
Pezizomycotina sp. 2 ^h	3.6	_	_	_	_	_	_	_	_	1	SEA
Phaeosphaeria sp.	_	_	_	_	_	_	_	3.4	_	1	WA
Phellinus sp. ^h	3.6			_						1	SEA
Phialophora europaea de Hoog, Mayser et Haase	3.6		_	_	_	_	_	_		1	CA
Phialophora lagerbergii (Melin et Nannf.) Conant	_	_	_	_	_			3.4	_	1	MA
Phialophora verrucosa Medlar	_		3.4	6.3	_	_	_			2	CA, WA
Phlebiopsis gigantea (Fr.) Jülich ^h	3.6	_	6.9		_	_		3.4	_	4	MA, CA, WA
Pholiota sp. ^h					3.6					1	MA
Phoma poolensis (Ellis et Kellerm.) Aa et Boerema ^h		_	6.9	_			_	_		2	MA, CA
Piptoporus betulinus (Bull.) P. Karst. ^h		_		_	_		3.4	_		1	MA
Pochonia bulbillosa (W. Gams et Malla) Zare et W. Gams ^h	3.6	—	—	12.5	_	_	_	—	—	3	MA, CA
Polyporus sp. ^h		_	_	_	_	3.7		_	_	1	MA
Polyporales sp. ^h					3.6					1	CA
Polyscytalum fecundissimum Riess	3.6	_	_	_			_	_		1	WA
Resinicium bicolor (Alb. et Schwein.) Parmasto ^h		3.7	3.4	_	_		_	_		2	MA
Resinicium sp. ^h			3.4	_	_			_		1	SEA
Sclerotinia sp.	3.6		5.1							1	MA
Scopulariopsis brumptii SalvDuval	5.0		_				6.9			2	SWA
Sistotrema brinkmannii (Bres.) J. Erikss. ^h	_	_	3.4	_	7.1	_		3.4	12.5	6	MA, CA, AA, WA, SWA
Sistotrema sp. ^h	3.6	3.7	—	—	3.6	—	—	—	6.3	4	MA, CA, SEA, SWA
Stachybotrys chartarum (Ehrenb.) S. Hughes	3.6	_	_		_				_	1	SEA
Stachybotrys dichroa Grove	_	_	_	6.3	_	_	_	_	_	1	SEA
Stephanosporium atrum Dal Vesco	_	_	_	_	_	_	3.4	_	_	1	WA, SEA
Stereum sp. ^h	_	_	_	_	_	_	_	_	6.3	1	AA, SEA
Strobilurus tenacellus (Pers.) Singer ^h	_	_	_		_		_	3.4		1	MA
Sydowia polyspora (Bref. et Tavel) E. Müll. ^h	3.6	_	_	6.3	_	_			_	2	CA, SEA
Talaromyces diversus (Raper et Fennell) Samson, Yilmaz et Frisvad	_	3.7	—	_	—	—	—	—	—	1	MA
Talaromyces duclauxii (Delacr.) Samson, Yilmaz, Frisvad et Seifert	—	_	—	—	—	—	—	3.4	—	1	MA

		Sampling site									
		Pe	eat			Se	edimer	nts		Total F ^e /No. of isolates	Medium
Species	A ^a	B^b	Cc	$\mathbf{D}^{\mathbf{d}}$	A ^a	B^b	С (1) ^с	С (2) ^с	$\mathbf{D}^{\mathbf{d}}$		
<i>Talaromyces funiculosus</i> (Thom) Samson, Yilmaz, Frisvad et Seifert ^h	3.6	14.8	20.7	6.3	10.7	3.7	_	6.9	_	18	MA, CA, WA, SEA, SWA
Talaromyces rugulosus (Thom) Samson, Yilmaz, Frisvad et Seifert	—	—	3.4	—	—	—	—	—	—	1	MA
Talaromyces variabilis (Sopp) Samson, Yilmaz, Frisvad et Seifert	—	7.4	3.4	—	—	—	—	—	6.3	4	MA, CA, SEA
Talaromyces verruculosus (Peyronel) Samson, Yilmaz, Frisvad et Seifert	3.6	—	—	—	—	—	—	—	6.3	2	WA, SEA
<i>Teberdinia hygrophila</i> Sogonov, W. Gams, Summerb. et Schroers ^h	—	7.4	3.4		—	—	—	—	—	3	WA
Tolypocladium cylindrosporum W. Gams ^h	—	—	_	18.8	3.6	_	—	—	6.3	5	MA, AA, SWA
Tolypocladium geodes W. Gams ^h	_	11.1	_	_	3.6	_	_	3.4	_	5	WA, AA, SEA
Tolypocladium nubicola Bissett	_	_	_	6.3	_	_	_	_	_	1	WA
Tolypocladium tundrense Bissett		_		_	3.6		_	_	_	1	AA
Trichoderma asperellum Samuels, Lieckf. et Nirenberg	—	—	—		3.6	—	—	—	—	1	WA, SEA
Trichoderma hamatum (Bonord.) Bainier	_	—	_	_	_	3.7	6.9	6.9	—	5	MA, CA, WA, SEA, SWA
Trichoderma harzianum Rifai	—	3.7	6.9	6.3	—	—	—	3.4	_	5	CA, WA, SEA, SWA
Trichoderma koningii Oudem.		_		6.3			_	_	_	1	CA
Trichoderma piluliferum J. Webster et Rifai	_	_	3.4	_	_	_	_	_	_	1	WA
Trichoderma polysporum (Link) Rifai ^h	3.6	—	3.4	_	_	7.4	6.9	3.4	_	7	MA, CA, WA, SEA, SWA
Trichoderma viride Pers.	—	7.4	6.9	—	7.1	—	3.4	—		7	WA, SEA, SWA
Trichosporon lignicola (Diddens) Fell et Scorretti	3.6	—	—	—	—	—	—	—	_	1	CA
Umbelopsis isabellina (Oudem.) W. Gams	_			6.3					_	1	CA
Umbelopsis ramanniana (Möller) W. Gams	_			6.3				_	_	1	MA
Umbelopsis vinacea (Dixon-Stew.) Arx			—	6.3	—	—		—	—	1	CA
Umbelopsis sp.			—	6.3	—	—		—	—	1	SWA
Volutella sp. ^h			—		—	7.4		—	—	2	AA
Zythiostroma pinastri (P. Karst.) Höhn.	7.1		—		—	—		—	—	2	MA, CA
Cladosporium spp. ^f (3 morphotypes)	3.6	—	_	6.3	_	_	—	3.4	_	3	MA, WA, SEA
Lecanicillium spp. ^f (4 morphotypes)	—	3.7	—	12.5	3.6	—	—	—	—	4	MA, AA, SEA, SWA
Penicillium spp. ^f (6 morphotypes)	_	3.7	—	—	10.7	3.7	_	3.4	_	6	MA, CA, SWA
Phaeoacremonium spp. ^f (4 morphotypes)	—	_	3.4	6.3	_	3.7	_	6.9	—	5	MA, WA, SEA
<i>Trichoderma</i> spp. ^f (3 morphotypes)		_	_	_	_	_	3.4	6.9		3	SEA, SWA
Sterile isolates ^g (60 morphotypes)	14.3	18.5	6.9	18.8	46.4	25.9		27.6	75.0	60	All

^a Frequency was calculated as percentage of 28 samples collected from peatland A.

^b Frequency was calculated as percentage of 27 samples collected from peatland B.

^c Frequency was calculated as percentage of 29 samples collected from peatland C.

^d Frequency was calculated as percentage of 16 samples collected from peatland D.

^e Frequency was calculated as percentage of 100 samples collected during the overall investigation.

^f Morphotypes were not determined to species.

^g Sterile morphotypes were not determined to division.

^h Species identified by morphological and molecular approach. Species not found in sphagnum peat before this research in boldface.

Abbreviations: MA = malt-extract agar, CA = citric agar, AA = alkaline agar, WA = water agar, SEA = sphagnum-extract agar, SWA = seawater agar.

A = Verchnee Peatland. B = Krugloe Peatland. C = Ershovskoe Peatland. C(1) = Ershovskoe Verchnee Lake. C(2) = Ershovskoe Verchnee Lake. D = Kislosladkoe Peatland.

maius, O. periconioides, Talaromyces funiculosus, Penicillium spinulosum, P. thomii, Pochonia bulbillosa were found; they are known as decomposers of Sphagnum mosses (Thormann et al. 2002, 2003; Rice et al. 2006; Thormann 2006). The community of the Kislosladkoe Peatland appears to be fundamentally different from the others. The Sphagnum peat of the Kislosladkoe Peatland contains a higher frequency and quantity of species of genera Cadophora Lagerb. & Melin, Alternaria Nees, Tolypocladium W. Gams, Cladosporium and Acremonium Link when compared to the peat of the other peatlands (TABLE II). Presumably it could be explained by the sea proximity and the youth of the peat deposit. These factors influence physical-chemical features and organic composition.

Sediments present a more dynamic system due to some differences in organic input as well as physicalchemical and hydrological exposures. In the upper lake of the Ershovskoe Peatland large numbers of invertebrate animals were found, such as leeches and freshwater shrimp. Apart from that, numerous plants and plant roots were discovered. These facts could indicate the existence of a different fungal community in this lake (TABLE II). The results of the diatom research confirm the difference between the Ersovskoe Peatland and other peatlands of the Kindo Peninsula (Shilova 2011). Taxa such as *Emericellopsis minima* and *Acremonium* spp. were found in the sediments, which are characteristic for marine habitats (Jones et al. 2009, Pivkin 2010).

The abundance of sterile isolates is typical for peat (Golovchenko et. al. 2002, Thormann 2006a). Significant amounts of sterile mycelium were found both in the peat and in the sediments of all the peatlands. The identification of a part of the sterile isolates by molecular approaches revealed the abundance of *Ascomycota*; isolates belonging to the *Helotiales* were most abundant, especially in the sediments examined (TABLE II). The fungi of this group can fulfill different functions: members of the *Helotiales* have been described as plant pathogens, endophytes, nematode-trapping fungi, mycorrhiza-forming (including ectomycorrhizae and ericoid mycorrhizae), ectomycorrhizal parasites, fungal parasites, terrestrial saprobes, aquatic saprobes, root symbionts and wood-rot fungi (Wang et al. 2006).

One of the important results of using molecular approaches for the identification of sterile isolates was the detection of species of the *Basidiomycota*. Thormann (2006a) considers five groups of fungi, which decompose different types of organic substance in peat. One of these includes species that are known as recalcitrant polymer degraders. This group mostly consists of the basidiomycetes species, which are capable of utilizing complex polymers, including lignin, tannins and other polyphenolics typical for peat. Due to slow growth and difficulties related with identification of these fungi, they are difficult to find and study. In our work a significant number of the basidiomycetes isolates was identified, which can be used for future research.

Apart from that fungi that are known as psychrotolerant species were isolated. The examples of these fungi are *Pseudogymnoascus pannorum* and *Tolypocladium inflatum* (Bisset 1982, Bubnova 2005, Kochkina et al. 2007). Both species were found in almost all studied samples; moreover *T. inflatum* was successfully grown on all media (TABLE II). These facts indicate the adaptation of the species to a wide spectrum of environmental conditions. In addition to *T. inflatum* other anamorphs of the *Cordycipitaceae* and *Ophiocordycipitaceae* were isolated; these include *Tolypocladium cylindrosporum*, *T. geodes*, *T. nubicola*, *T. tundrense*, *Beauveria bassiana*, *B. brongniartii* and *Engyodontium album*.

Also, fungi that are known as typical soil saprobes for northern regions and species associated with insects such as *Tolypocladium inflatum*, *Tolypocladium cylindrosporum*, *T. geodes*, *Engyodontium album* were found at high frequency (Lam et al. 1988, Hodge et al. 1996, Bubnova 2005). The high incidence of entomopathogenic species is remarkable. The abundance of insects and larvae in the peatlands may present a protein source in this N-limited environment and may reflect adaptations similar to that of some carnivorous plants found in the peatlands, such as *Drosera* spp. (TABLE I) (Limpens et al. 2011).

Our investigations revealed high fungal biodiversity and density in all components of the studied peatlands on the Kindo Peninsula at Kandalaksha Bay of the White Sea. The isolated fungi predominantly belong to saprobiotic ascomycetous species. In addition to the data available on the biological diversity of the fungi from the peatland ecosystems of the northern region we present molecular data on a large group of fungi of undetermined taxonomy and sterile mycelia, among which are a significant percentage of basidiomycetes as well as newly revealed taxa of ascomycetes. The investigations carried out in this study suggest a specificity of the fungal community in aqueous-peatland system of the coastal area of Kandalaksha Bay. It is related to the characteristic properties of the complex communities of the isolated fungi in each of the reservoirs and in particular in a high percentage of entomopathogenic species, as well as in the occurrence of psychrotolerant species. Our research revealed that fungal communities in peat can be characterized by higher stability than those in sediments.

ACKNOWLEDGMENTS

We thank Alexander Tzetlin (director of the WSBS) for the opportunity to do this research, Elena Vortsepneva and Alexander Semenov for their help with sample collection, Bertha Koopmanschap, Marijke Slakhorst and Alex Grum-Grzhimaylo for technical assistance, and Denis Landin for image processing. The work was supported by Erasmus Mundus IAMONET-RU and the Laboratory of Genetics at Wageningen University, the research grants from St Peterburg State University No. 1.0.134.2010 and RFBR grants No. 15-29-02553, No.15-04-02722 (the field investigation and identification of the fungi), RSCF grant No. 14-50-00029 (the cultivation and collection of the fungi; Bilanenko, Grum-Grzhimaylo).

LITERATURE CITED

- Andersen R, Grasset L, Thormann MN, Rochefort L, Francez A-J. 2010. Changes in microbial community structure and function following Sphagnum peatland restoration. Soil Biol Biochem 42:291–301, doi:10.1016/j.soilbio. 2009.11.006
- Bisset J. 1982. Notes on *Tolypocladium* and related genera. Can J Bot 61:1311–1329, doi:10.1139/b83-139
- Bubnova EN. 2005. Izmenenia komplexov pochvoobitaushih gribov pri perehode ot zonalnih pochv k morskim ekotopam (na primere poberezhia Kandalakshskogo zaliva Belogo moray) [doctoral dissertation]. Moscow State University. 141 p. [In Russian]
- Czeczuga B. 1993. Studies of aquatic fungi XXVIII. The presence of predatory fungi in the waters of northeastern Poland. Acta Mycol 28:211–217.
- Filippova NV, Thormann MN. 2014. Lager fungi of ombrotrophic bogs in west Siberia. Mires Peat 14:1–22.
- Gilbert D, Mitchell EAD. 2006. Microbial diversity in *Sphag-num* peatlands. In: Martini IP, Martinez Cortizas A, Chesworth W, eds. Peatlands: evolution and records of

environmental and climate changes. Developments in earth surface processes. Elsevier Science.

- Golovchenko AV, Semenova TA, Polyakova AV, Inisheva LI. 2002. The structure of the micromycete complexes of oligotrophic peat deposits in the southern taiga subzone of west Siberia. Microbiology 71:575–581, doi:10.1023/ A:1020514904709
- Grum-Grzhimaylo OA, Bilanenko EN. 2009. Microfungal communities of bogs of the northwest and central Russia: extreme inhabitations. Asian Mycological Congress 2009 and 11th International Marine and Freshwater Mycology Symposium. Taichung, Taiwan, 15–19 Nov 2009. Taichung, Taiwan. p 146–147.
- Hodge KT, Krasnoff SB, Humber RA. 1996. Tolypocladium inflatum is the anamorph of Cordyceps subsessilis. Mycologia 88:715–719.
- Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL. 2009. Classification of marine *Ascomycota*, anamorphic taxa and *Basidiomycota*. Fungal Divers. 187 p.
- Kachalkin AV, Chernov IYu, Semyonova TA, Golovchenko AV. 2005. Characteristic of the taxonomy structure hyphomycetes and yeast communities in peat soils of different genesis. Mat. IV nauch. konf. Bolota i Biosphera. Tomsk, Russian. p 208–216. [In Russian]
- Karakousis A, Tan L, Ellis D, Alexiou H, Wormald PJ. 2006. An assessment of the efficiency of fungal DNA extraction methods for maximizing the detection of medically important fungi using PCR. J Microbiol Methods 65:38– 48, doi:10.1016/j.mimet.2005.06.008
- Keränen S, Kalpio S. Aapa mires. The world of plants. http://julkaisut.metsa.fi/julkaisut/pdf/luo/aapa_ mires_plants.pdf
- Kochkina GA, Ivanushkina NE, Akimov VN, Gilichinskii DA, Ozerskaya SM. 2007. Halo- and psychrotolerant *Geomyces* fungi from arctic cryopegs and marine deposits. Microbiology 76:31–38, doi:10.1134/S0026261707010055
- Laitinen J, Rehell S, Huttunen A. 2005. Vegetation-related hydrotopographic and hydrologic classification for aapa mires (Hirvisio, Finland). Ann Bot Fennici 42:107–121.
- Lam TNC, Goettel MS, Soares GG Jr. 1988. Host records for the entomopathogenic hyphomycete *Tolypocladium cylindrosporum*. Florida Entomol 71:86–89, doi:10.2307/ 3494898
- Limpens J, Granath G, Gunnarsson U, Aerts R, Bayley S, Bragazza L, Bubier J, Buttler A, Berg LJL, Francez A-J, Gerdol R, Grosvernier P, Heijmans MMPD, Hoosbeek MR, Hotes S, Ilomets M, Leith I, Mitchell EAD, Moore T, Nilsson MB, Nordbakken J-F, Rochefort L, Rydin H, Sheppard LJ, Thormann M, Wiedermann MM, Williams BL, Xu B. 2011. Climatic modifiers of the response to nitrogen deposition in peat-forming *Sphagnum* mosses: a meta analysis. New Phytol 191:496–507, doi:10.1111/ j.1469-8137.2011.03680.x
- McIlvaine TC. 1921. A buffer solution for colorimetric comparison. J Biol Chem 49:183–186.

- Nilsson M, Rülcker C. 1992. Seasonal variation of active fungal mycelium in an oligotrophic *Sphagnum* mire, northern Sweden. Soil Biol Biochem 24:795–804, doi:10.1016/0038-0717(92)90255-V
- Olunina ES. 2008. Bolota poluostrova Kindo I ostrova Velikiy (Kandalakshskiy zaliv Belogo moray): frola, sovremennaya rastitelnost, stroenie torfyanoy zalezhi I istoria formirovaniya. Mat. XI nauch. konf., posvyashennoy 70-letiu Belomorskoy biologicheskoy stancii imeni N.A. Pertsova. Moscow: Grif i K. p 207–212. [In Russian]
- Pankratov TA, Belova SE, Dedysh SN. 2005. Evaluation of the phylogenetic diversity of prokaryotic microorganisms in *Sphagnum* peat bogs by means of fluorescence in situ hybridization (FISH). Microbiology 74:722–728, doi:10.1016/0038-0717(92) 90255-V
- Pantiulin AN, Krasnonva ED. 2011. Otdelyaushiesya vodoemi Belogo moray: noviy objekt dlya mezhdisciplinarnih issledovaniy. Mat. XIX Mezhdunarodnoy nauch. konf. (shkoli) po morskoy geologii Geologia morey I okeanov. Moscow. p 241–245. [In Russian]
- Pivkin MV. 2010. Vtorichnie morskie gribi Yaponskogo I Okhotskogo morey [doctoral dissertation]. Moscow State University. 407 p. [In Russian]
- Rice AV, Tsuneda A, Currah RS. 2006. In vitro decomposition of *Sphagnum* by some microfungi resembles white rot of wood. FEMS Microbiol Ecol 56:372–382, doi:10.1111/j.1574-6941.2006.00071.x
- Romanenko FA. 2012. Poslelednikovoe podnyatiye Karelskogo berega Belogo moray po dannim radiouglerodnogo i diatomovogo analisa ozerno-bolotnih otlozheniy poluostrova Kindo. Russia: Dokladi Academii Nauk. 442:544–548. [In Russian]
- Schulze ED, Prokuschkin A, Arneth A, Knorre N, Vaganov EA. 2002. Net ecosystem productivity and peat accumulation in a Siberian Aapa mire. Tellus A 54:531–536.
- Shaporenko SI, Koreneva GA, Pantyulin AN, Pertsova NM. 2005. Characteristics of the ecosystems of water bodies separating from Kandalaksha Bay of the White Sea. Water Resources 32:469–483, doi:10.1007/s11268-005-0060-x
- Shilova OS. 2011. Golotsenovie diatomei bolot Karelskogo poluostrova i Severo-Vostochnoy Karelii. Moscow: MAKS Press. 177 p. [In Russian]
- Thormann MN. 2006a. Diversity and function of fungi in peatlands: a carbon cycling perspective. Can J Soil Sci 86:281–293, doi:10.4141/S05-082
 - 2006b. The role of fungi in boreal peatlands. Ecol Stud 188:101–123.

- ——, Bayley SE, Currah RS. 2001a. The microbial wildcard in peatland carbon storage: implications for global warming. Inf Rep NOR-X 383:25–28.
- —, Currah RS, Bayley SE. 1999. The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada. Wetlands 19:438– 450, doi:10.1007/978-3-540-31913-9_6
- _____, _____, _____. 2001b. Microfungi isolated from Sphagnum fuscum from a southern boreal bog in Alberta, Canada. Bryologist 104:548–559, doi:10.1639/0007-2745 (2001)104[0548:MIFSFF]2.0.CO;2
- , ____, ____, 2002. The relative ability of fungi from *Sphagnum fuscum* to decompose selected carbon substrates. Can J Microbiol 48:204–211, doi:10.1139/ w02-010
- _____, _____, _____. 2003. Succession of microfungal assemblages in decomposing peatland plants. Plant Soil 250:323–333, doi:10.1023/A:1022845604385
- —, Rice AV. 2007. Fungi from peatlands. Fungal Divers 24:241–299.
- —, —, Beilman DW. 2007. Yeasts in peatlands: a review of richness and roles in peat decomposition. Wetlands 27:761–773, doi:10.1672/0277-5212(2007)27[761: YIPARO]2.0.CO;2
- Tsuneda A, Thormann MN, Currah RS. 2001. Modes of cellwall degradation of *Sphagnum fuscum* by *Acremonium* cf. *curvulum* and *Oidiodendron maius*. Can J Bot 79:93–100.
- Undient E, Müller K. 1985. Colonization of Sphagnum cells by Lyophillum palustre. Can J Bot 63:757–761.
- Vilgalys R, Gonzalez D. 1990. Organization of ribosomal DNA in the basidiomycete *Thanatephorus praticola*. Curr Genet 18:277–280, doi:10.1007/BF00318394
- Wang Z, Binder M, Schoch CL, Johnston PR, Spatafora JW, Hibbett DS. 2006. Evolution of helotialen fungi (*Leotio-mycetes, Pezizomycotina*): a nuclear rDNA phylogeny. Mol Phylogenet Evol 41:295–312, doi:10.1016/j.ympev.2006. 05.031
- White TJ, Bruns T, Lee S, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In*: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and applications. New York: Academic Press. p 315–322.
- Yurkovskaya TK. 2004. Raised bogs on the north east of Europe. Annali di Botanika nuova serie IV:19–28.
- Zak JC, Willig MR. 2004. Fungal biodiversity patterns. *In:* Mueller GM, Bills GF, Foster MS, eds. Biodiversity of fungi: inventory and monitoring methods. Burlington, Massachusetts: Elsevier Academic Press. p 59–75.