

Open Access

Research Article

Seasonal Abundance and Diversity of Rotifers of Shahanoor Dam, Amravati District, India

Y. A. Gadhikar¹, S. P. Sawale²

Department of Zoology, Govt. Vidarbh Institute of Science and Humanities Amravati (M.S.) India-444604

Corresponding Author: Yash.gadhikar@rediffmail.com

Abstract:

The present study was designed to study the seasonal variation and diversity of rotifers from the Shahanoor dam reservoir, district Amravati, Maharashtra. In the study period from January 2011 to December 2013, total 25 species of rotifers belonging to 14 genera were identified. *Keratella tecta* was the most dominant rotifer, followed by *Keratella serullata* and *Monostyla copies*. Percentage and population of each species of rotifers was studied. Further seasonal variation among the rotifers was also noted. Highest number of rotifers were recorded in summer season while lowest rotifer count was in winter season. Rotifer species like *Keratella tecta, Keratella serulata, Monostyla copies, Monostyla pyriformes, Monostyla clastocerca, Lecanae mira, Lecanae flexilis* were abundant while *Collurella uncinata, Harringia rosa, Trichocera* and *Vonoyella globosa* were rarely found throughout the study period. The main objective of the present study was to assess the composition of rotifers and determine their response to seasonal variations. As the water from this reservoir is supplied to different villages nearby, such study will help to know the water quality and general environmental status of water body.

Keywords: Rotifers, Seasonal Variation, Shahanoor Dam, Diversity.

1.0 Introduction:

Zooplanktons are key components of aquatic ecosystems and constitute as an important elements of the food chain. They play vital role in transferring the energy from producers to large invertebrates and fish. Zooplanktons are heterotrophic and sometimes detrivorous.. They feed on detritus and dead phytoplanktons and thus help in moniroring water pollution (Tyor et al., 2014). Zooplanktons have been used as bioindicator of eutrophication (Sharma and Tiwari, 2011). Zooplankton community comprises of five groups such as Protozoa, Rotifera, Copepoda, Cladocera and Ostracoda.

Rotifers are soft bodied invertebrates which found in both, marine and fresh water environment. They are small sized organisms, but their abundance make them important component of the aquatic ecosystem (Herzig,1987; Starkweather, 1987; Walz,1997). Rotifers play a crucial role in many ecosystems as the fish, aquatic crustaceans and their larvae feed on them. Presence of some rotifer species indicates the pollution level of water body. Rotifers are used as good indicator for pollution level and eutrophication state of aquatic ecosystem because of their sensitivity to the changes in water environment (Boltovskoy and Mazzoni, 1998). Rotifer diversity and distribution is influenced by deteriorating quality of water in fresh water ecosystem. Since rotifers constitute a considerable position of total zooplanktons, the limnological investigations of rotifers is important as part of study. The present study is undertaken to investigate the seasonal abundance, diversity and distribution of rotifers from the Shahanoor dam, district Amravati.

2.0 Materials and Methods:

2.1 Description of the Study Area:

The study area selected in the present investigation is Shahanoor dam situated near the town Anjangaon surji, Amravati district, Maharashtra, India. The dam is located in hill ranges of Satpuda at latitude 21.15'21' and longitude 77.19'30'. The length of dam is 795 meters and height of the dam is 56.45 meters. The total catchment area of the dam site is 53.74 sq miles. The water from the dam is used for

irrigation and hydroelectricity. The water from the dam is also supplied for drinking for 160 villages and 2 towms in Anjangaon surji, Daryapur and Bhatkuli of Amravati district which is called as saline track of Amravati district. The whole network is run by gravity. Hence power supply is not required. The gravity based supply system is unique and only one of its kind in India, which is recorded in 'Limca Book of Record'.

2.2 Sample Collection:

For the study of rotifers, samples were collected seasonally from January 2011 to December 2013. Samples were collected from three different sampling sites,viz site 1(West side), site 2 North side) and site 3 (South side) of the reservoir in the morning time. Analysis was carried out during the three seasons of the year-summer, monsoon and winter. Collected samples were mixed well and brought to the laboratory for analysis. Water sample of 25 litres was filtered through the plankton net of bolting silk no. 25 of mesh size 63 micron. The filtered zooplankton sample was preserved in 4% formalin (Zabbey et.al.2008). Few drops of glycerine were added to it to prevent hardening of rotifers. All zooplanktons were allowed to settle down at the bottom. Supernatant plankton free water was removed by siphoning with pipette and the sample was reduced to the desired volume of 25 ml.

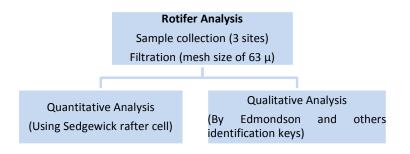


Figure a: Diagrammatic Representation of Methodology

Geographical Location and Study Site of Shahanoor Dam Figure b

2.3 Quantitative analysis of rotifers:

For quantitative estimation of rotifers, 'Sedgewick Rotifer Cell' was used. Number of rotifers in the S-R cell was derived from the following formula(.APHA,1998).

Number / mL =
$$\frac{C \times 1000 \text{ mm}}{L \times D \times W \times S}$$

Here,

C = No. of organisms counted L = Length of each stripe (mm) D = Depth of each stripe (mm) W = Width of each stripe S = No. of each stripe.

2.4 Qualitative analysis of rotifers:

Rotifers were identified upto the genus/species level based on the minute morphological details by observing them under the microscope and using standard identification key as described by Edmondson (1965), Needham (1966), Sharma &Tonapi (1980).

2.5 Statistical analysis:

The data collected were analysed by using the standard Bio-stastical method i. e. standard error of mean \pm SE and Shannone Weaver index (H).

2.6 Standard Error of Mean :

Standard Error of mean was applied to all readings of planktonic rotifers found was used for further interpretation by using standard methods in Biostatistics.

> S.E. = $\frac{SD}{Root \text{ of } N}$ Where SD is Standard deviation N = Number of observations

Diversity indices were calculated by using Shannone Wiener Index.

Shannone Wiener diversity index is expressed as the formula:

 $H = -SUM[(Pi) \times In(Pi)]$

H = Shannone Wiener diversity index.

Pi = Proportion of total sample represented by species

Pi = Number of particular species i / Total number of samples

3.0 Result and Discussion:

The present study reports the rotifer density (68%) and diversity (25 species) from the Shahanoor dam reservoir from the January 2011 to the December 2013. In total 25 species of rotifers belonging to 14 different genera were

recorded (Table 1). As evident from the table, the most abundant species was *Keratella tecta* while *keratella serrulata* and *Monostyla copies* were secondly dominated among the rotifers.

In the analysis of water samples collected from Shahanoor dam, highest number of rotifers were found in the summer season and least were found in winter during the study period from January 2011 to December 2013. In summer of 2013 highest number of rotifers (2619 org / I) were recorded and lowest (1535 org/l) in the winter season of 2012. Similar trends of rotifer distribution were recorded by Sukand and Chavan (2013) in Malprabha river and Jafari N. et al (2011) in Haraz river in Northeast Iran. Maximum number observed in summer showed the positive corelation between temperature and rotifers population. Similar pattern was observed by Arora and Mehra (2003), Jadhav et al (2010), Reeja Jose and Sonalkumar M. G. (2012) & N.A.Bhat et al. (2015). In summer less quantity of water in reservoir and sufficient food availability due to decomposition of organic matter contribute to increase the density of rotifers. Many researchers are of the opinion that the abundance and occurance of planktonic rotifer depends upon the availability of food (Nayer& Nair 1969, Sharma 1983, Sharma, 1988).

However different trend was also observed by some researchers. Saumen Chakrabarti revealed highest rotifer density in the winter and rainy season and lowest in the summer while studying the pond ecosystem of Tripura. Similar trend was observed by King 1967, Backer, 1979, Patra&Datta 2004, Edmondson,1992, Nasar, 1997). Similar results were reported by Shivakami et al. (1996; 2007;2011,2013), Paulose and Maheswari (2008). During the study of rotifer density of temple ponds of Nashik district highest density of rotifers in monsoon was observed by Tidame S.K. & Shinde S. S.in 2010.

Pollution indicator species from rotifers such as *Lepadella*, *Monostyla*, *Keratella* were identified. Abundance of genus of the family Brachionidae i.e. *Keratella tecta*, *Keratella serrulata* and of the family Lecanaeidae i.e. *Lecanae mira*, *Lecanae innermis*, *Lecanae flexilis*, *Lecanae ungulate* are indicator of eutrophication (Baloch et al.2000). Species *Trichocera* was absent during monsoon of 2013 while *Vonoyella globosa* was completely absent during monsoon period of 2012 and 2013. Absence of these rotifer species can be

84

attributed to turbulence generated by the excess water flow during this season.(Chakraborty, 1.2004) Diversity of the plankton community depends on the species richness and species evenness. Species diversity in the study was impressive. The Shannon Wiener diversity index of the rotifers showed in the table no. 4 which shows even distribution of rotifers in all seasons.

S.N.	Rotifera		Seasons	Mean	±SE	
		Summer	Monsoons	Winter		
1.	Keratell tecta	320	263	231	271.33	26.02
2.	Ketatella serrulata	316	260	149	241.66	49.07
3.	Brachiouns sp	45	40	42	42.33	1.45
4.	Asplanchna brightwelli	54	40	39	44.33	4.84
5.	Anuraeopsis fissa	96	62	60	72.66	36.69
6.	Anureopsis navicula	43	26	40	36.33	5.23
7.	Ascomorpha saltans	34	42	46	40.66	3.52
8.	Monostyla copies	280	260	183	241	29.56
9.	Monostyla pyriformes	183	144	127	151	16.57
10.	Monostyla clastocerca	146	85	104	111.66	19.32
11.	Lecanae inermis	86	65	43	64.66	12.41
12.	Lecanae mira	140	129	88	119	18.53
13.	Lecanae flexilis	114	85	65	88	14.22
14.	Lecanae ungulata	102	44	96	80.66	18.41
15.	Euchlanis sp	180	60	40	93.33	43.71
16.	Euchlanis deflexa	32	52	39	41	5.18
17.	Euchlanis oblongata	44	40	33	39	3.21
18.	Lepadella patella	48	18	26	30.66	8.96
19.	Lepadella accuminata	80	24	65	56.33	16.73
20.	Collurella adriatica	58	48	24	43.33	10.08
21.	Collurella uncinata	60	28	27	38.33	10.83
22.	Harringia rousseleti	40	8	19	22.33	9.38
23.	Habratrocha rosa	9	22	20	17	4.04
24.	Trichocera	10	14	15	13	1.52
25.	Vonoyella globosa	15	28	10	17.66	5.41
	Total Rotifers	2425	1887	1631	1981	233.08

Table 1: Seasonal and Quantitative distribution of rotifers (org/lit) in Shahanoor fromJan 2011 to Dec 2011

S.N.	Rotifera	Season			Mean	±SE
		Summer	Monsoon	Winter		
1.	Keratella tecta	260	227	208	231.66	15.19
2.	Keratella serrulata	240	202	120	187.33	35.40
3.	Branchionus sp	72	127	48	82.33	20.33
4.	Asplnachana brightwelli	62	41	55	52.66	6.97
5.	Anuraeopsis fissa	28	40	33	33.66	5.44
6.	Anuraeopsis navicula	35	43	32	36.66	3.28
7.	Ascomorpha sultans	60	72	48	60	6.92
8.	Monostyla copies	130	206	69	135	39.62
9.	Monostyla pyriformes	90	120	86	98.66	10.72
10.	Monostyla clastocerca	178	108	106	130.66	23.66
11.	Lecanae inermis	66	42	30	46	10.58
12.	Lecanae mira	109	139	60	102.66	23.02
13.	Lecanae flexilis	192	152	161	168.33	12.11
14.	Lecanae ungulata	81	85	64	76.66	6.43
15.	Euchlanis sp	71	66	78	71.66	3.47
16.	Euchlanis deflexa	65	57	25	49	12.60
17.	Euchlanis oblongata	62	58	31	50.33	9.73
18.	Lepadella patella	44	34	36	38	3.05
19.	Lepadella accuminata	60	31	68	53	11.23
20.	Collurella adriatica	66	81	55	67.33	7.53
21.	Collurella uncinata	43	27	41	37	5.03
22.	Harringia rousseleti	36	19	25	26.66	4.96
23.	Habratrocha rosa	16		14	10	5.03
24.	Trichocera	13	13	22	16	3
25.	Vonoyella globosa	20		20	13.33	6.66
	Total Rotifers	2099	1978	1519	1874.66	104.4 7

Table 2: Seasonal and Quantitative distribution of rotifers (org/lit) in Shahanoor from Jan 2012 to Dec 2012

keratella tecta

- Anuraeopsis fissa
- Monostyla pyriformis Monostyla clasocerca Lecanae inermis
- Lecanae flexilis
- Euchlanis blongata
- Collurella uncinata
- Vonoyella globosa

■ keratella serrulata496 ■ Brachionus sp226

Anuraeopsis navucula Ascomorpha sultans

Asplachana brightwelli Monostyla copies

Lecanae mira

euchlanis deflexa

- Euchlanis sp
- Lepadella aspida

lecanae ungulata

- Harringia rosa
- Lepadella accuminata Collurella adriatica
- Habratrocha rousseleti Trichocera

1% 2% 1% 3% 0% 3% 2%_2% 13% 3% 8% 4% 4% 2% 6% 3% 11% 6% 6% 7% 2% 3% 4%

Figure c: Percentage contribution of each rotifer species of the Shahanoor dam

S.N.	Rotifera	Season			Mean	±SE
		Summer	Monsoon	Winter		
1.	Keratella tecta	322	240	235	265.6	28.20
2.	Keratella serrulata	213	148	135	165.33	24.12
3.	Branchionus sp	100	76	50	75.33	14.43
4.	Asplnachana brightwelli	61	40	45	48.66	6.33
5.	Anuraeopsis fissa	87	43	52	60.66	13.42
6.	Anuraeopsis navicula	69	37	48	51.33	6.15
7.	Ascomorpha sultans	45	55	57	52.33	3.71
8.	Monostyla copies	280	260	140	226.6	43.71
9.	Monostyla pyriformes	135	159	114	136	13
10.	Monostyla clastocerca	154	93	144	130	18.89
11.	Lecanae inermis	140	45	50	78.33	25.17
12.	Lecanae mira	177	135	88	133.33	17.82
13.	Lecanae flexilis	171	119	78	122.66	26.90
14.	Lecanae ungulata	99	42	129	90	25.51
15.	Euchlanis sp	84	69	35	62.66	14.49
16.	Euchlanis deflexa	67	30	39	45.33	11.14
17.	Euchlanis oblongata	56	42	39	45.66	6.66
18.	Lepadella patella	57	25	27	44.35	5.12
19.	Lepadella accuminata	77	47	75	66	9.68
20.	Collurella adriatica	70	61	68	66	2.73
21.	Collurella uncinata	57	40	31	42.66	7.62
22.	Harringia rousseleti	45	15	18	26	9.5
23.	Habratroch arosa	20	15	32	22.33	5.04
24.	Trichocera	23		25	16	8.26
25.	Vonoyella globosa	10		18	9.33	3.55
	Total Rotifers	2619	1836	1772	2075.66	173.24

Table 3: Seasonal and Quantitative distribution of rotifers (org/ lit) in Shahanoor fromJan 2013 to Dec 2013

Table 4: Shannon wiener diversity indices (H) value of rotifers of Shahanoor dam during Jan 2011 – Dec 2013

Year/Seasons	Summer	Monsoon	Winter
2011	2.872	2.824	2.924
2012	2.956	2,878	2.987
2013	2.975	2.846	2.994

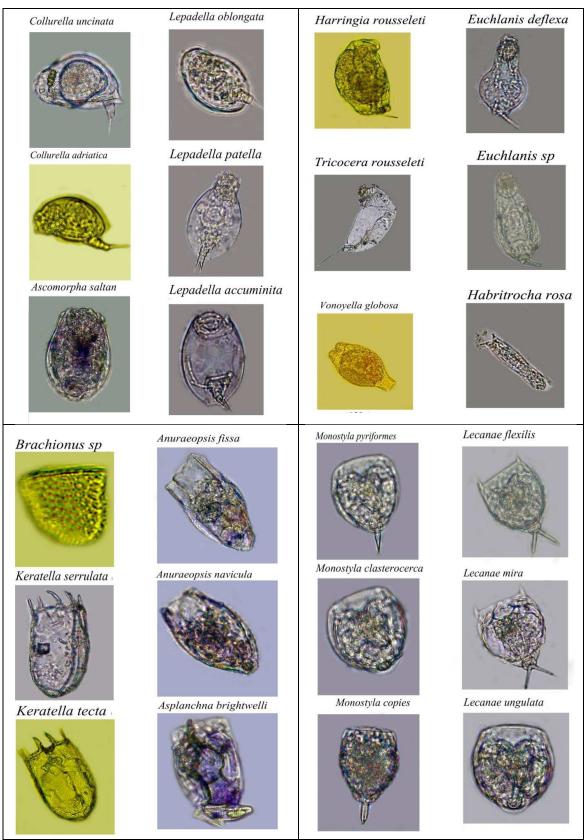


Figure d: Rotifer Species from Shahanoor dam (Amravati, Maharashtra) India

Lecanae inermis (Bryce, 1892)

4.0 Conclusion:

The present study infers that there is a abundance of rotifers in the Shahanoor dam reservoir. Also, the distribution of rotifers showed a seasonal variation which might be due to the physicochemical factors of the water body. Few pollution indicator species were also recorded in all the seasons indicating the urgent need of proper purification system in the dam.

5.0 Acknowledgement:

The authors are thankful to the Zoology Department, Government Vidarbh Institute of Science and Humanities, Amravati for providing facilities and help during the study period.

References:

- A.P.H.A. (1998): Standard Methods for the Examination of water and waste water. American Public Health Association, Washington D. C.
- Arora, J. and Mehra,N. (2003): Seasonal dynamics of rotifers in relation to physical and chemical conditions of the river Yamuna (Delhi), India. *Hydrobiologia*, 491:101-109.
- Baker, R.C.(1979): Birth rate of planktonic rotifers in relation to food concentration in a shallow eutrophic lake in Western Canda. *Can. J. Zool., 57: 1206 -1214.*
- 4) Baloch, W. A. (2000): Occurrence of Planktonic communities in River Indus of Kotri barrage, Sindh, Pakistan. *Proc.,zool, congress.*
- Bhat, N. A., Rajni, R. Wanganeo, A. (2015): Ecological investigation of zooplankton abundance in the Bhoj wetland, Bhopal of Central India: Impact of environmental variables. International journal of Fisheries and Aquaculture vol. 7(6):81-93.
- 6) Boltovskoy, D. and Mazzoni, H.E. (1988): The effects of sampling gear and environmental conditions on the abundance estimates of

freshwater zooplankton. *Rev.Hydrobiol. Trop.* 21, 21-34..

- 7) Chakrabarti Saumen. (2015): Rotifer density, percentage composition and their seasonal variations in a perennial pond ecosystem of Tripura in relation to physico-chemical factors.*I.J.A.B.R. 5*(*4*) : 309-314.
- 8) Chakraborty, I. (2004): Limnology and zooplankton abundance in selected wetlands of Nadia District of West Bengal. *Environment and Ecology.* 22: 576-578
- 9) Edmondson W. T. (1965): Reproductive rate of planktonic rotifers as related food amd temperature in nature. Ecol. Monogr., 35: 61-111.
- 10) Edmondson, W.T. (1992): Freshwater Biology. John Wiley and Sons, New York. 410.
- 11) Herzig, A. (1987): The analysis of planktonic rotifer populations: A plea for long-term investigations. *Hydrobiologia*, 1471: 63-180.
- 12) Jafari, N .Nabavi ,S.M. and Moslem Akhavan. (2011): Ecological investigation of zooplankton abundance in the river Haraz, Northeast Iran:Impact of environmental variables. *Arch.Biol.Sci,Belgrade.* 63(3):785-798.
- 13) Jose, R. Sonalkumar, M. G. (2012): Seasonal variations in the zooplankton diversity of river Achenkovil. *International journal of Science and Research publications, volume 2,issue 11*
- 14) Kaushik, S. and Sharma, D. N. (1994): Physicochemical characteristics and zooplankton population of a perennial lake, Malsyasarovar, Gwalior. *J. Environ. Ecol.* (1): 429-434.
- 15) King, C.E. (1967): Food, age and the dynamics of a laboratory population of rotifers. *Ecology*, 48: 111 128.
- 16) Nasar, S.A.K. (1997): Investigations on the seasonal productivity of zooplankton in the freshwater pond in Bhagalpur, India. *Acta. Hydrochem. Hydrobiol.* 5: 577-584.
- 17) Nayer, C.K.G. & Nair, K.K.N. (1969): A collection of Brachionid rotifers from Kerala. *Proc. Indian AcadSci*.69: 223-233.
- 18) Needham, J.G. and Needham, P. R. (1966): A Guide to the study of Freshwater Biology. *Holden-Day, Inc. San Fransisco.* pp. 108.
- 19) Parta, S.B. and Dutta, N.C.(2004): Seasonal fluctuations on different zooplanktonic group of a rainfed wetland in relation to some abiotic factors. *Indian J. Environ. andEcoplan.* 8:07 12.

- Paulose P. V. and Maheshwari K.(2008): Seasonal variation in Zooplankton community structure of Ramgarh lake, Jaipur,Rajasthan.
 12Th world lake conference: 82-87.
- 21) Sivakami, R. (1996): Limnological profile of two contrasting lentic systems and their potential for Aquaculture. Ph. D thesis, Bharathidasan University, Tiruchirappalli, Tamil Nadu. 250 p.
- 22) Sivakami, R., Guru, V., Sathish Kumar, A., Kannan, P., and Premkishore, G.(2007): Seasonal distribution of zooplankton in Uyyakkondan channel at Ayilapettai region, Tiruchirappalli District, Tamil Nadu. Indian J. Environ & Ecoplan. 14 (1-2): 1999 - 2002.
- 23) Sivakami, R. Sankar, R.M. Shimna. P.P. and Pdremkishore, G. (2011): Rotifer population in two frewhwater bodies with varied water sources in Tiruchirappalli, Tamil Nadu. J. Curr. Sci. 16(1): 207 - 210.
- 24) Sivakami, R., Sugumar, R., Sumithra, P. and Amina, S.(2013): Rotifer diversity and its seasonal variation of twoperennial temple ponds of Tiruchirapalli, Tamil Nadu. *AsiaPacific Journal of Research* 2(8): 157-162.
- 25) Sharma, B.K. (1983): The Indian species of the genus *Brachionus* (Eurotatoria: Monogononta Brachionidae).*Hydrobiologia* 104: 31-39.
- 26) Sharma B. K. (1998): In: Faunal diversity of India. (Eds. J.R.B.Alfred, A.K. Das and A. K. Sanyal) Zoological survey of India,Environmental centre: 57-70.
- 27) Sharma, C. and Tiwari, R.P.(2011): Studies on zooplanktons of fresh water reservoir at Lony dam. Theonther Rewa (M.P.) *International journal of pharmacy and life.*
- 28) Sukad, B. N. and Chavan, V. A. (2013): Zooplankton Abundance in Malaprabha River: Impact of environmental variables. Online International Interdisciplinary Research Journal (Bimonthly) Vol 3(5).
- Tonapi, G.T. (1980): Fresh water animals of India an ecological approach. Oxford and IBH. Publ. Co., New Delhi. 431.
- Tyor, A. K., Chopraand, G., SeemaKumari (2014): Zooplankton diversity in Shallow Lake of Sultanpur National Park, Gurgaon Haryana. *Int. J. Appl. Biol. Pharm Technol.*, 5(1):35-40.
- 31) Starkweather, P. L. (1987): Rotifera. In T. J. Pandian and F. J. Vernberg (Eds.), Animal energetics. Vol. 1, Protozoa through Insecta ,Academic Press, Orlandodo 159–183.
- 32) Tidame, S.K. and S.S. Shinde,(2012): Seasonal variation in rotifer diversity of temple ponds ofNashik District (M.S.) India. *International Multidisciplinary Research Journal, 2(5): 19-22.*

- 33) Walz, N. (1997): Rotifer life history strategies and evolution in freshwater plankton communities. In B. Streit, T. Städler, and C. M. Lively (eds.), Evolutionary ecology of freshwater animal, BirkhäuserVerlag, Basel, 119–149.
- 34) Zabbey, N., Sikoki, F. D. and Edoghotu, J. (2008): Plankton assemblages and environmental gradients in the middle reaches of the Imo river, Niger Delta,Nigeria. *African Journal of Aquatic Science; 33(2):241-248.*