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PREFACE TO THE SECOND EDITION

IN preparing this second edition the earlier portions of the book
have been partly re-written

,
while the chapters on recent mathematics

are greatly enlarged and almost Wholly new . The desirability of
having a reliable one-volume history for the use of readers who cannot
devote themselves to an intensive study of the history of mathematics
is generally recognized . On the other hand

,
i t i s a diffi cult task to

give an adequate bird ’s-eye-View of the development of mathematics
from i ts earliest beginnings to the present time . In compiling this
history the endeavor has been to use only the most reliable sources .
Nevertheless

,
in covering such a wide territory

,
mi stakes are sure to

have crept in . References to the sources used in the revision are
given as fully as the limitations of space woul d permi t. These ref
erences will assist the reader in following into greater detail the his
tory of any special subject . Frequent use without acknowledgment
has been made of the following publications:Annuario Biografico del
Ci rcoloMatematico di Palermo

,
1914 ; J ahrbuck nber die Fortschritte def

Mathemati k , Berlin ; J . C . P oggendorfi
’
s B iographiscli -Literarisches

Handw
'

o
'

rterbuch
,
Leipzig ; Gedenktagebncli fur Mathematiker

,
von Felix

M ii ller
, 3. Aufl .

,
Leipzig und Berlin , 191 2 ; Revue S emestriel le des Pub

l ications Mathématiques , Amsterdam.

The author is indebted to M iss Falka M . Gibson of Oakland
,
Cal

for assistance in the reading of the proofs.
FLORIAN CAJORI .

University of California
,

March
,
1919.
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A HISTORY OF MATHEMATICS

INTRODUCTION

THE contemplation of the various steps by which mankind has
come into possession of the vast stock of mathematical knowledge
can hardly fail to interest the mathematician . He takes pride in the
fact that his Science

,
more than any other

,
i s an exact science

,
and

that hardl y anything ever done in mathematics has proved to be use
less . The chemi st smiles at the chi ldish efforts of alchemists , but the
mathematician finds the geometry Of the Greeks and the arithmetic
of the Hindus as useful and admirable as any research of to-day . He
is pleased to notice that though

,
in course of its development

,
mathe

matics has had periods of Slow growth
,
yet in the main i t has been

pre-eminently a progressive science.
The history of mathematics may be instructive as well as agreeable ;
i t may not only remind uS of what we have

,
but may also teach us

how to increase our store . Says A . De Morgan
,

“The early history
Of the mind of men with regard to mathematics leads us to point out
our own errors ; and in this respect it is well to pay attention to the
hi story of mathematics. It warns us against hasty conclusions ; it
points out the importance of a good notation upon the progress Of the
science ; i t discourages excessive Specialisation on the part of investi
gators

,
by Showing how apparently distinct branches have been found

to possess unexpected connecting links ; i t saves the student f rom
wasting time and energy upon problems which were

,
perhaps

,
solved

long S ince ; it discourages him from attacking an unsolved problem by
the same method which has led other mathematicians to failure ; it
teaches that fortifications can be taken in other ways than by di rect
attack , that when repulsed from a direct assaul t it is well to recon
noitre and occupy the surrounding ground and to discover the secret
paths by which the apparently unconquerable position can be taken .

1

The importance of this strategic rule may be emphasised by citing a
case in which it has been violated. An untold amount of intellectual
energy has been expended on the quadrature of the circle

,
yet no con

quest has been made by di rect assault . The circle-squarers have
existed in crowds ever S ince the period of Archimedes. After in
numerable failures to solve the problem at a time , even , when in

l S . Gunther , Ziele und Resultate der neueren Mathematisch-historischen Forschung.

Erlangen , 1876 .
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vestigators possessed that most powerful tool , the differential calculus ,
persons versed in mathematics dropped the subj ect

,
whi le those who

stil l persisted were completely ignorant of its history and generally
misunderstood the conditions of the problem.

“Our problem
,

”says
A . De M organ

,

“ is to square the circle with the old allowance of means:
Euclid ’s postul ates and nothi ng more . We cannot remember an
instance in which a question to be solved by a defini te method was
tried by the best heads

,
and answered at last

,
by that method, after

thousands Of complete failures .”But progress was made on this
problem by approaching it from a different direc tion and by newly
di scovered paths . J . H . Lambert proved in 1 76 1 that the ratio of the
circumference Of a circle to its diameter is irrational . Some years
ago

,
F . Lindemann demonstrated that thi s ratio is also transcendental

and that the quadrature Of the circle , by means Of the ruler and com
passes only

,
is impossible. He thus showed by actual proof that which

keen-minded mathematicians had long suspected ; namely , that the
great army of circle- squarers have

,
for two thousand years , been

assaulting a fortification whi ch is as indestructible as the firmament

Of heaven .

Another reason for the desirability of historical study is the value
of historical knowledge to the teacher of mathematics . The interest
which pupils take in their studies may be greatly increased if the
solution Of problems and the cold logic of geometrical demonstrations
are interspersed with historical remarks and anecdotes . A class in
arithm etic will be pleased to hear about the Babylonians and Hindus
and their invention of the “Arabic notation”; they will marvel at
the thousands of years which elapsed before people had even thought
Of introducing into the numeral notation that Columbus-egg—the
zero ; they will find it astounding that it Should have taken so long
to invent a notation which they themselves can now learn in a month .

After the pupils have learned how to bisect a given angle , surprise
them by telling of the many futile attempts whi ch have been made

"

to solve
,
by elementary geometry

,
the apparently very S imple problem

of the trisection Of an angle. When they know how to construct a
square whose area is double the area Of a given square

,
tell them about

the duplication Of the cube
,
of its mythical origin—how the wrath of

Apollo could be appeased only by the construction Of a cubical altar
double the given altar

,
and how mathematicians long wrestled w ith

this problem. After the class have exhausted their energies on the
theorem of the right triangle

,
tell them the legend about its discov

erer—how Pythagoras
,
j ubilant over his great accomplishment ,

sacrificed a hecatomb to the Muses who inspired him. When the
value of mathematical training is called in question , quote the in
scription over the entrance into the academy of Plato , the philosopher:
“Let no one who is unacquainted with geometry enter here . Students
in analytical geometry should know something of Descartes, and ,
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after taking up the differential and integral calculus
,
they should

become familiar with the parts that Newton , Leibniz , and Lagrange
played in creating that science . In his historical talk i t is possible
for the teacher to make i t plain to the student that mathematics is
not a dead science , but a living one in which steady progress is made .

1

A S imilar point of View is taken by Henry S . Wh ite :2 “ The ac
cepted truths of to-day , even the commonplace truths of any science ,
were the doubtful or the novel theories of yesterday . Some indeed
of prime importance were long esteemed of slight importance and
almost forgotten . The first eff ect of reading in the hi story of science
is a naive astonishment at the darkness of past centuries

,
but the

ul timate effect is a fervent admiration for the progress achieved by
former generations , for the triumphs of persistence and of genius .
The easy credulity with whi ch a young student supposes that of
course every algebraic equation must have a root gives place finally
to a delight in the slow conquest Of the realm of imaginary numbers

,

and in the youthful genius of a Gauss who could demonstrate thi s
once obscure fundamental proposition .

”
The history of mathematics is important also as a valuable con

tribution to the history of civilisation . Human progress is closely
identified with scientific thought. M athematical and physical re
searches are a reliable record of intellectual progress . The history
of mathematics is one of the large windows through which the philo
sophic eye looks into past ages and traces the line of intellectual de
velopment.

1 Cajori , F. ,
The Teaching andHistory of Mathematics in the United S tates. Wash

ington ,
1890 , p . 236 .

2Bul l . Am. Math. Soc.
, Vol . 15, 1909, p . 325.



THE BABYLONIANS

THE fertile valley of the Euphrates and Tigris was one of the
primeval seats of human society . Authentic history of the peoples
inhabiting this region begins only with the foundation , in Chaldaea
and Babylonia

,
of a united kingdom out of the previously disunited

tribes . M uch light has been thrown on their history by the discovery
of the art of reading the cuneiform or wedge- shaped system of writing .

In the study of Babylonian mathematics we begin with the notation
of numbers . A vertical wedgevstood for 1 , while the characters
and Y) signified 10 and 100 respectively . Grotefend believes the
Character for 10 originally to have been the picture of two hands

,
as

held in prayer
,
the palms being pressed together

,
the fingers close to

each other
,
but the thumbs thrust out . In the Babylonian notation

two principles were employed —the additive andmultiplicative . Num
bers below 100 were expressed by symbols whose respective values
had to be added. Thus

, VVs tood for 2 ,”Y for 3 , w , for
for 23 , for 30 . Here the symbols of higher order appear
always to the left Of those of lower order . In writing the hun
dreds

,
on the other hand

,
a smaller symbol was placed to the left of

100
,
and was

,
in that case

,
to be multipl ied by 100 . Thus

, I
signified 10 times 100

,
or 1000 . But this symbol for 1000 was itself

taken for a new unit
,
which could take smaller coefficients to its left .

Thus
, y denoted

,
not 20 times 100

,
but 10 times 1000 . Some

of the cuneiform numbers found on tablets in the ancient temple
library at Nippur exceed a million ; moreover , some of these Nippur
tablets exhi bit the subtractive principle (20 similar to that shown
in the Roman notation

,

“XIX .

”
If

,
as is believed by most Specialists

,
the early Sumer1ans were the

inventors Of the Cuneiform writing
,
then they were

,
in all probabili ty

,

also the inventors Of the notation of numbers . Most surprising
,
in

this connection
,
is the fact that Sumerian inscriptions disclose the use

,

not only of the above decimal system,
but also Of a sexagesimal one .

The latter was used chiefly in constructing tables for weights and
measures . It is full of historical interest . Its consequential develop
ment

,
both for integers and fractions

,
reveals a high degree Of mathe

matical insight . We possess two Babylonian tablets which exhibi t
its use . One of them ,

probably written between 2300 and 1600 B . C .

,

contains a table Of square numbers up to 602. The numbers I
, 4 , 9,

16
,
2 5, 36 , 49, are given as the squares Of the first seven integers re
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spectively. We have next 8
2
, 9

2
,

10
2
,

1 1
2
,
etc .

This remains unintelligible , unless we assume the sexagesimal scale ,
which makes 60+ 2 1

,
2 .6O+ I . The second

tablet records the magnitude of the illum inated portion of the moon ’s
disc for every day from new to full moon , the whole disc being assumed
to consist of 240 parts . The illum inated parts during the first five
days are the series 5, 10

,
20

, 40 , which is a geometrical
progression . From here on the series becomes an arithmetical progres
sion

,
the numbers from the fifth to the fifteenth day being respectively

4 . This table
not only exhibi fs the use of the sexagesimal system

,
but also indicates

the acquaintance Of the Babylonians with progressions . Not to be
overlooked is the fact that in the sexagesimal notation of integers
the “ principle Of position”was employed . Thus

,
in the

I is made to stand for 60 , the unit of the second order , by virtue of
its position with respect to the 4 . The introduction Of this principle
at SO early a date is the more remarkable , because in the decimal nO
tation i t was not regularly introduced till about the ninth century
after Christ . The principle of position , in its general and systematic
application

,
requires a symbol for zero . We ask

,
Did the Babylonians

possess one? Had they already taken the gigantic step of representing
by a symbol the absence of units? Neither Of the above tables answers
this question

,
for they happen to contain no number in which there

was occasion to use a zero . Babylonian records of many centuries
later—O i about 200 B . C .

—give a symbol for zero which denoted the
absence of a figure but apparently was not used in calculation . It
consisted Of two angular marks 5 one above the other , roughly re

sembling two dots
,
hastily written . About I 30 A . D .

, Ptolemy in
Alexandria used in his Almagest the Babylonian sexagesimal fractions ,
and also the omicron o to represent blanks in the sexagesimal numbers .
This 0 was not used as a regular zero . It appears therefore that the
Babylonians had the principle of local v alue , and also a symbol for
zero

,
to indicate the absence of a figure

,
but did not use this zero in

computation. Their sexagesimal fractions were introduced into India
and with thes e fractions probably passed the principle Of local value
and the restricted use of the zero .

The sexagesimal system was used also in fractions . Thus
,
in the

Babylonian inscript ions
,
3
, and are designated by 30 and 20

,
the

reader being expected
,
in his mind

,
to supply the word “ sixtieths .”

The astronomer Hipparchus
,
the geometer Hypsicles and the as

tronomer P tolemy borrowed the sexagesimal notation of fractions
from the Babylonians and introduced i t into Greece . From that time
sexagesimal fractions held almost full sway in astronomical and mathe
matical calculations until the S ixteenth century

,
when they finally

yielded their place to the decimal fractions . It may be asked , What
led to the invention Of the sexagesimal system? Why was it that 60
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parts were selected? To this we have no positive answer . Ten was
chosen , in the decimal system, because i t r epresents the number Of
fingers. But nothing of the human body coul d have suggested 60 .

Did the system have an astronomical origin? It was supposed that
the early Babyloni ans reckoned the year at 360 days , that this led
to the div ision of the circle into 360 degrees, each degree representing
the daily amount Of the supposed yearly revolution Of the sun around
the earth . Now they were

,
very probably

,
familiar with the fact

that the radius can be applied to its circumference as a Chord 6 times
,

and that each of these chords subtends an are measuring exactly 60
degrees . Fixing their attention upon these degrees

,
the division into

60 parts may have suggested itself to them. Thus
,
when greater pre

cision necessitated a subdivision of the degree
,
i t was partitioned into

60 minutes . In this way the sexagesimal notation was at one time
supposed to have originated . But i t now appears that the Babylonians
very early knew that the year exceeded 360 days . Moreover

,
i t i s

highly improbable that a higher unit of 360 was chosen first
,
and a

lower unit of 60 afterward . The normal development of a number
system is from lower to higher units . Another guess is that the
sexagesimal system arose as a mixture of two earlier systems of the
bases 6 and Certain i t is that the sexagesimal system became
closely interwoven with astronomical and geometrical science. The
di vision of the day into 24 hours , and Of the hour into minutes and
seconds on the scale of 60

,
is attributed to the Babylonians. There is

strong evidence for the belief that they had also a division of the day
into 60 hours . The employment Of a sexagesimal division in numeral
notation

,
in fractions

,
in angular as well as in time measurement

,
in

dicated a beautiful harmony which was not disturbed for thousands
Of years until Hindu and Arabic astronomers began to use S ines and
cosines in place Of parts of chords

,
thereby forcing the right angle to

the front as a new angular unit
,
which

,
for consistency

,
should have

been subdivided sexagesimally , but was not actually so divided .

It appears that the people in the Tigro-Euphrates basin had made
very credi table advance in arithmetic . Their knowledge of arith
metical and geometrical progressions has already been alluded to .

Iambl ichus attributes to them also a knowledge Of proportion , and
even the invention of the so-called musical proportion . Though we

1M . Cantor , Vorlesungen uber Geschichte der Mathematik , 1 . Bd. , 3 . Aufl.
,
Leipzig ,

1907 , p . 37 . This work has appeared in four large volumes and carries the history
down to 1 799. The fourth volume ( 1908)was written with the cooperation of nine

scholars from Germany, Italy ,
Russia and the United States. Moritz Cantor ( 18 29

rank s as the foremost general writer of the nineteenth century on the history
of mathematics. Born in Mannheim , a student at Heidelberg , at Gottingen under

Gauss and Weber
,
at Berl in under Dirichlet , he lectured at Heidelberg where in

1877 he became ordinary honorary professor . H is first historical article was

brought out in 1856 , but not until 1880 did the first volume of hiswel l-known history
appear .
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possess no conclusive proof
,
we have nevertheless reason to believe

that in practical calculation they used the abacus . Among the races
of middle Asia

,
even as far as China

,
the abacus is as old as fable .

Now , Babylon was once a great commercial centre ,—the metropolis of
many nations

,

—
and i t is , therefore , not unreasonable to suppose that

her merchants employed this most improved aid to calculation .

In 1889 H . V. Hilprecht began to make excavations at Nuffar (the
ancient Nippur)and found brick tablets containing multiplication and
division tables

,
tables of squares and square roots

,
a geometric progres

sion and
l

a few computations . He published an account of hi s findings
.

in 1906 .

The divisions in one tablet contain results like these :“ 604 divided
by 2= each

,

”“
60

4 divided by 3= 4 ,320 ,OOO each ,
”and

so on
,
using the divisors 2

, 3 , 4 , 5, 6 , 8 , 9, 10 , 1 2 , 15, 16 , 18 . The very
first division on the tablet is interpreted to be “

604 divided by I

This strange appearance Of % as a divisor l s diffi cult to
explain . Perhaps there 1S here a use of 3

2
corresponding to the Egyp tian

use of 73: as found in the Ahmes papyrus
2

at a
,
perhaps

,
contemporaneous

period. It is noteworthy that 604 which Hilprecht found
in the Nippur brick text-books , is nothing less than themystic

“
Platonic

number
,

”the “ lord of better and worse births
,

”mentioned in P lato ’s
Republic. Most probably

,
P lato received the number from the

Pythagoreans
,
and the Pythagoreans from the Babylonians .2

In geometry the Babylonians accomplished little . Besides the divi
sion Of the circumference into 6 parts by i ts radius

,
and into 360 de

grees
,
they had some knowledge of geometrical figures

,
such as the

triangle and quadrangle
,
which they used in their auguries . Like the

Hebrews (1 Kin . they took 7r= 3 . Of geometrical demonstra
tions there is

,
of course

,
no trace . “

AS a rule
,
in the Oriental mind

the intuitive powers eclipse the severely rational and logical .”
Hilprecht concluded from his studies that the Babylonians pos
sessed the rules for findi ng the areas of squares , rectangles, right tri
angles

,
and trapezoids.

The astronomy of the Babylonians has attracted much attention .

They worshipped the heavenly bodies from the earliest hi storic times.
When Alexander the Great , after the battle Of Arbela (331 B . C. took
possession of Babylon

,
Cal listhenes found there on burned brick as

tronomical records reaching back as far as 2 234 B . C . Porphyr‘ius says
that these were sent to Aristotle . P tolemy

,
the Alexandrian astrono

mer
,
possessed a Babylonian record of eclipses going back to 747 B . C .

1Mathematical , M etrological and Chronological Tablets from the Temple Library
of Nippur , by H . V . Hilprecht . Vol . XX, part I , Series A ,

Cuneiform Texts, pub
l ished by the Babylonian Expedition of the University of Pennsylvania, 1906 . Con

sul t also D . E . Smith in Bull . Am. Math. S oc.
,
VO l . 13 , 1907 , p . 392 .

2 On the
“
P laton ic number consu lt P . Tannery in Revue phi losophique, Vol . I ,

1876 , p . 1 70 ; Vol . X III , 1881 , p . 2 10 ; Vol . XV ,
1883 , p . 573 . Also G . Loria in Le

scienze esatte nell ’antica grecia , 2 Ed .
,
M ilano

,
1914 ,

Appendice.
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Epping and Strassmaier 1 have thrown considerable light on Babylon
ian chronology and astronomy by explaining two calendars of the
years 1 23 B . C . and 1 1 1 B . C .

,
taken from cuneiform tablets coming ,

presumably
,
from an old observatory . These scholars have succeeded

in giving an account of the Babylonian calcul ation Of the new and
full moon

,
and have identified by calculations the Babyloni an names

of the planets, and of the twelve zodiacal signs and twenty-eight
normal stars whi ch correspond to some extent with the twenty-eight
nakshatras of the Hindus . We append part of an Assyrian astronomical
report, as translated by Oppert:

To the King , my lord, thy faithful servant Mar-Istar.
On the first day, as the new moon 5 day of the month Thammuz

declined
,
the moon was again visible over the planet Mercury, as I had

already predicted to my master the King . I erred not .

1 Epping , Astronomisches aus Babylon. Unter M itwirkung von P .J. R. Strass

maier. Freiburg , 1889.
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papyrus—the most ancient mathematical handbook known to us

puts us at once in contact with the mathematical thought in Egypt of
three or five thousand years ago . It is entitled “Directions for ob
taining the Knowledge Of all Dark Things .”We see from i t that the
Egyptians cared but little for theoretical results . Theorems are not
found in it at all . It contains hardly any general rules of procedure

,

but chi efly mere statements of results intended possibly to be ex

plained by a teacher to his pupils .”1 In geometry the forte of the
Egyptians lay in making constructions and determining areas . The

area of an isosceles triangle
,
of which the sides measure 10 khets (a

unit of length equal to m. by one guess and about thrice that
amount by another guess 2)and the base 4 khets , was erroneously given
as 20 square khets

,
or half the product Of the base by one side . The

area Of an isosceles trapezoid is found
,
similarly

,
by multiplying half

the sum of the parallel sides by one of the non-parallel S ides . The
area of a circle is found by deducting from the diameter 51, of its length
and squaring the remainder . Here 71 is taken= (-1-g6 a
very fair approximation . The papyrus explains also such problems
as these

,

—TO mark out in the field a right triangle whose sides are
10 and 4 units ; or a trapezoid whose parallel sides are 6 and 4, and
the non—parallel sides each 20 units .
Some problems in this papyrus seem to imply a rudimentary knowl

edge of proportion .

The base—l ines Of the pyramids run north and south
,
and east and

west
,
but probably only the lines running north and south were deter

mined by astronomical observations“ This , coupled with the fact
that the word harpedonaptce, applied to Egyptian geometers , means
“ rope- stretchers

,

”would point to the conclusion that the Egyptian
,

like the Indian and Chinese geometers
,
constructed a right triangle

upon a given line
,
by stretching around three pegs a rope consisting

of three parts in the ratios 3 :4 5, and thus forming a right triangle .

3

If thi s explanation is correct
,
then the Egyptians were familiar

,
2

years B . C .
,
with the well-known property of the right triangle

,
for

the special case at least when the sides are in the ratio 3 :4:5.

On the walls of the celebrated temple of Horus at Edfu have “been
found hi eroglyphics , written about 100 B . C .

,
which enumerate the

pieces of land owned by the priesthood
,
and give their areas . The

area of any quadrilateral
,
however irregular

,
is there found by the

formula flg Thus
,
for a quadrangle whose Opposite sides

are 5 and 8, 20 and 1 5, is given the area $
4 The incorrect for

1James Gow
,
A Short History of Greek Mathematics . Cambridge, 1884 , p. 16 .

2A . Eisenlohr
,
Ein mathematisches Handbuch der alten Aegypter , 2 . Ausgabe, Leip

zig , 1897 , p . 103 ; F . L . Griffi th in P roceedings of the S ociety of B iblical Archaeology,

3 M . Cantor, op. ci t. Vol . I , 3 . Aufl .
,
1907 , p . 105 .

4 H . Hankel , Zur Geschichte der Mathematik in Alterthum undM ittelalter , Leipzig ,
1874 , p . 86 .
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mulae of Ahmes of 3000 years B . C . yield generally closer approxima
tions than those of the Edfu inscriptions

,
written 200 years after

Euclid !
The fact that the geometry of the Egyptians consists chiefly of

constructions
,
goes far to explain certain of its great defects . The

Egyptians failed in two essential points without which a science of
geometry

,
in the true sense of the word

,
cannot exist . In the first

place
,
they failed to construct a rigorously logical system of geometry

,

resting upon a few axioms and postulates . A great many of their
rules

,
especially those in solid geometry

,
had probably not been proved

at all
,
but were known to be true merely from obseryation or a s mat

ters of fact . The second great defect was their inability to bring the
numerous Special cases under a more general view

,
and thereby to

arrive at broader and more fundamental theorems . Some of the
simplest geometrical truths were divided into numberless special cases
of which each was supposed to require separate treatment .
Some particulars about Egyptian geometry can be mentioned more

advantageously in connection with the early Greek mathematicians
who came to the Egyptian priests for instruction .

An insight into Egyptian methods of numeration was obtained
through the ingenious deciphering of the hieroglyphics by Champol
lion

,
Young

,
and their successors . The symbols used were the fol

lowing: h for 1 ,mfor 10 , G for 100
, ii for 1000 , Efor k

for i f for Q for The symbol for
1 represents a vertical staff ; that for a pointing finger ; that
for a burbot ; that for a man in astonishment . The
significance of the remaining symbols is very doubtful . The writing
of numbers with these hieroglyphics was very cumbrous . The unit
symbol of each order was repeated as many times as there were units
in that order . The principle employed was the additive. Thus, 23

was writtenmm[j uH
Besides the hieroglyphics , Egypt possesses the hieratic and demotic

writings
,
but for want of space we pass them by.

Herodotus makes an important statement concerning the mode of
computing among the Egyp tians . He says that they

“
calculate with

pebbles by moving the hand from right to left , while the Hellenes
move it from left to right .”Herein we recognise again that instru
mental method oi figuring so extensively used by peoples of antiquity .

The Egyptians used the decimal scale . Since , in figuring
,
they moved

their hands horizontally
,
i t seems probable that they used ciphering

boards with vertical columns . In each column there must have been
not more than nine pebbles

,
for ten pebbles would be equal to one

pebble in the column next to the left .

1 M . Cantor
,
op. cit. Vol . I , 3 . Aufl .

,
190 7 , p . 82 .
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The Ahmes papyrus f contains interesting information on the way
in whi ch the Egyptians employed fractions . Their methods of opera
tion were, of course , radi cally different from ours . Fractions were a
subj ect of very great diffi culty with the ancients . Simultaneous
changes in both numerator and denominator were usually avoided .

In manipul ating fractions the Babylonians kept the denominators (60)
constant. The Romans likewise kept them constant

,
but equal to 1 2 .

The Egyptians and Greeks
,
on the other hand

,
kept the numerators

constant
,
and deal t with variable denominators . Ahmes used the

term “ fraction in a restricted sense
,
for he applied it only to unit

fractions , or fractions having unity for the numerator . It was desig
nated by writing the denominator and then placing over it a dot .
Fractional values which could not be expressed by any one unit
fraction were expressed as the sum of two or more of them. Thus

,
he

wrote _
4 4

1

5
in place of

2
. Whi le Ahmes knows to be equal to 44, he

cur iously allows 4
2 to appear often among the unit fractions and adopts

a special symbol
3

for i t . The first important problem naturally arising
was

,
how to represent any fractional value as the sum of unit fractions .

Thi s was solved by aid of a table , given in the papyrus , in which all

fractions of the form (where n designates successively all the
2

2n+ 1

numbers up to 49)are reduced to the sum of unit- fractions . Thus,
1 2 1 1

4 4 , 4 4
—
4 4 4 4 4

. When , by whom,
and how thi s table was cal

cul ated, we do not know . Probably i t was compiled empirically at
different times , by di fferent persons . It will be seen that by repeated
application of this table

,
a fraction whose numerator exceeds two can

be expressed in the desired form, provided that there is a fraction in
the table having the same denominator that i t has. Take , for ex
ample

,
the problem,

to di vide 5 by 2 1 . In the fir st place
, 5 1+ 2+ 2 .

From the table we get 2

4
=
4
1—
4

1

4
Then _

2 1

5

4 4

T 44 I

2

4 4
=
2
1

1
3
, 4
1
4

:
4

1

, 4

2

4
=

4

1

f
i J

2

The
2

papyrus contains prob
lems in which it is required that fractions be raised by addition ormulti
plication to given whole numbers or to other fractions . For example

,

1 1 1 1 1
i t 18 requi red to mcrease

4 4 4 0 4
—
0 4 4

to 1 . The common d
l

enominator

taken appears to be 45, for the numbers are stated as 1 14 , 52 4 , 44 ,

1
4 ,

1 . The sum of these IS 231 1 i forty fifths. Add to this 1
4 4 4 , and

the sum isg. Add ?4, and we have 1 . Hence the quantity to be added
0 0 0

1 1 1to the given fracti on i s
4 4 4 4

.

Ahmes gives the following example involving an ari thmetical

progression:
“
D ivide 100 loaves among 5 persons ; 4 of what the first

three get is what the last two get . What is the difference?”Ahmes

gi ves the solution: “Make the difference 54; 23 , 1 74, 1 2
,
6-1
4 ,

1 .

Mul tiply by 1
4 ; 384 ,

294 , 2, 12 . How did Ahmes come upon
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54? Perhaps thus:
1 Let a and—d be the fir st term and the differ

ence in the required arithm etical progression,
then 4[a+ (a

—dH
(a—2d)] (a —

4d), whence d 5% (a—4d), i . e. the dif
ference d is 5% times the last term. Assuming the last term 1

,
he

gets his first progression The sum i s 60
,
but should be 100 ; hence

multiply by
2

1_,
for -

2
100 . We have here a method of solution

which appear
s

s again lat
a

er among the Hindus
,
Arabs and modern

Europeans— the famous method of false position .

Ahmes speaks of a ladder consisting of the numbers 7 , 49, 343,
2401 , 16807. Adjacent to these powers of 7 are the words picture,
cat, mouse, barley, measure. What is the meaning of these mysterious
data? Upon the consideration of the problem given by Leonardo of
P isa in hi s Liber abaci

, 3000 years later:
“

7 old women go to Rome;
each woman has 7 mules , each mule carries 7 sacks , etc . Moritz
Cantor offers the following solution to the Ahmes riddle : 7 persons
have each 7 cats , each cat eats 7 mice , each mouse eats 7 ears of
barley

,
from each ear 7 measures of corn may grow . How many

persons
,
cats

,
mice

,
ears of barley

,
and measures of corn

,
altogether?

Ahmes gives 19607 as the sum of the geometric progression . Thus
,

the Ahmes papyrus discloses a knowledge of both arithmetical and
geometrical progression .

Ahmes proceeds to the solution of equations of one unknown quan
tity. The unknown quantity is called ‘ hau ’ or heap . Thus the

x
problem

,
heap

,
i ts 4, i ts whole, i t makes 19, i . e.

5
+x= 19. In

thi s case
,
the solution 15 as follows %

3f= 19; f; x= 1644. But

in other problems
,
the solutions are effected by various other methods.

It thus appears that the beginnings of algebra are as ancient as those
of geometry .

That the period of Ahmes was a flowering time for Egyptian mathe
maties appears from the fact that there exist other papyri (more re
cently di scovered)of the same period . They were found at Kahun ,
south of the pyramid of Illahun . These documents bear close t e

semblance to Ahmes . They contain
,
moreover

,
examples of quadratic

equations
,
the earliest of whi ch we have a . record . One of them is :2

A given surface of
,
say

,
100 units of area , shall be represented as

the sum of two squares
,
whose S ides are to each other as 1 :4. In

modern symbols
,
the problem is

,
to find as and y, such that x

2
+y

2

100 and x:y
= 1 4. The solution rests upon the method of false

position . Try x= 1 and y=4, then x
2
+y

2

44 and §g=4 But

V 19 9
= 10 and 10 8 The rest of the solution cannot be made

4

1M . Cantor, op. cit. , Vol . I , 3 . Aufl.
,
1907 , p . 78.

2 Cantor, op. cit. Vol . I , 1907 , pp . 95 , 96 .
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out
,
but probably was x= 8X 1

, y
= 8X4: 6 . This solution leads to

the relation The symbol r was used to designate
square root .
In some ways similar to the Ahmes papyrus is also the Akhmim

papyrus
,

1 written over 2000 years later at Akhmim
,
a city on the

Nile in Upper Egypt . It is in Greek and is supposed to have been
written at some time between 500 and 800 , A . D. I t contains

,
besides

arithmetical examples , a table for finding “ unit- fractions
,

”like that
of Ahmes. Unlike Ahmes

,
i t tells how the table was constructed . The

rule
,
expressed in modern symbols , is as follows

9

For z= 2
,
this formula reproduces part of the table in Ahmes.

The principal defect of Egyptian arithmetic was the lack of a
simple

,
comprehensive symbolism—a defect which not even the Greeks

were able to remove .

The Ahmes papyrus and the other papyri of the same period repre
sent the most advanced attainments of the Egyptians in arithmetic
and geometry. It is remarkable that they should have reached so
great proficiency in mathematics at so remote a period of antiquity .

But strange
,
indeed

,
is the fact that

,
during the next two thousand

years
,
they should have made no progress whatsoever in i t . The con

clusion forces itself upon us , that they resemble the Chinese in the
stationary character

,
not only of their government

,
but also of their

learning . All the knowledge of geometry which they possessed when
Greek scholars visited them

,
six centuries B . C .

,
was doubtless known

to them two thousand years earlier , when they built those stupendous
and gigantic structures— the pyramids .

Baillet , Le papyrus mathématiq ue d
’
Akhmim

,
Mémoires publ i es par les

membres de la mi ssion archéologique franga ise au Caire
,
T . IX ,

1 r fascicule
,
Paris

,

1892 , pp . 1
—88 . See also Cantor, op. cit. Vol . I

,
190 7 , pp . 67, 504 .
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Greek Geometry

About the seventh century B . C . an active commercial intercourse
sprang up between Greece and Egyp t . Naturally there arose an
interchange of ideas as well as of merchandise . Greeks

,
thirsting for

knowledge
,
sought the Egyptian priests for instruction . Thales

,

Pythagoras
,
(Enopides, P lato , Democritus , Eudoxus , all visited the

land of the pyramids . Egyptian ideas were thus transplanted across
the sea and there stimulated Greek thought

,
directed i t into new lines

,

and gave to it a basis to work upon . Greek culture
,
therefore

,
is not

primi tive . Not only in mathematics
,
but also in mythology and

art
,
Hellas owes a debt to older countries . To Egypt Greece

'

is in

debted
,
among other things , for i ts elementary geometry . But this

does not lessen our admiration for the Greek mind . From the mo
ment that Hellenic philosophers applied themselves to the study of
Egyptian geometry

,
this science assumed a radically different aspect .

“Whatever we Greeks receive
,
we improve and perfect

,

”says Plato .

The Egyptians carried geometry no further than was absolutely neces
sary for their practical wants . The Greeks

,
on the other hand

,
had

within them a strong speculative tendency. They felt a craving to
discover the reasons for things . They found pleasure in the con
templation of ideal relations , and loved science as science .
Our sources of information on the history of Greek geometry before

Euclid consist merely of scattered notices in ancient writers . The
early mathematicians

,
Thales and Pythagoras

,
left behind no written

records of their discoveries . A full history of Greek geometry and
astronomy during this period

,
written by Eudemus

,
a pupil of Aris

totle
,
has been lost . It was well known to Proclus

,
who

,
in his com

mentaries on Euclid
,
gives a brief account of it . This abstract con

stitutes our most reliable information . We shall quote i t frequently
under the name of Eudemian Summary.

The Ionic School

To Thales (640—546 B . of M iletus
,
one of the seven wise men

,

and the founder of the Ionic school
,
falls the honor of having intro

duced the study of geometry into Greece . During middle life he
engaged in commercial pursuits

,
which took him to Egypt . He is

said to have resided there
,
and to have studied the physical sciences

and mathematics with the Egyptian priests . Plutarch declares that
Thales soon excelled his masters

,
and amazed King Amasis bymeasur

I S
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ing the heights of the pyramids from their shadows. According to
Plutarch, this was done by considering that the shadow cast by a
vertical stafi of known length bears the same ratio to the shadow of
the pyramid as the height of the staff bears to the height of the pyra
mid. This solut ion presupposes a knowledge of proportion

,
and the

Ahmes papyrus actually shows that the rudiments of proportion were
known to the Egyptians . According to Diogenes Laertius , the pyra
mids were measured by Thales in a di ff erent way ; viz . by finding the
length of the shadow of the pyramid at the moment when the shadow
of a staff was equal to its own length . Probably both methods were
used .

The Eudemian S ummary ascribes to Thales the invention of the
theorems on the equality of vertical angles

,
the equality of the angles

at the base of an isosceles triangle
,
the bisection of a circle by any

diameter
,
and the congruence of two triangles having a side and the two

adjacent angles equal respectively. The last theorem
,
combin ed (we

have reason to suspect)with the theorem on similar triangles , he applied
to the measurement of the distances of ships from the shore . Thus
Thales was the first to apply theoretical geometry to practical uses .
The theorem that all angles inscribed in a semicircle are right angles
is attributed by some ancient writers to Thales , by others to Pythag
oras . Thales was doubtless familiar with other theorems

, not re

corded by the ancients. It has been inferred that he knew the sum
of the three angles of a triangle to be equ l to two right angles, and
the sides of equiangular triangles to be progortional .1 The Egyptians
must have made use of the above theorems on the straight line, in
some of their constructions found in the Ahmes papyrus

,
but i t was

left for the Greek phi losopher to give these truths, whi ch others saw,

but did not formulate into words , an explicit , abstract expression , and
to put into scientifi c language and subj ect to proof that which others
merely fel t to be true . Thales may be said to have created the geom
etry of lines , essentially abstract in its character , whi le the Egyp tians
studi ed only the geometry of surfaces and the rudiments of solid
geometry

,
empirical in their character .2

With Thales begins also the study of scientifi c astronomy. He
acquired great celebrity by the prediction of a solar eclipse in 585 B . C .

Whether he predicted the day of the occurrence , or simply the year,
is not known . It is told of him that while contemplating the stars
dur ing an evening walk , he fell into a ditch . The good old woman
attending him exclaimed,

“How canst thou know what is doing in
the heavens

,
when thou seest not what is at thy feet?”

The twomost prominent pupils of Thales were Anaximander (b . 6 1 1

1 G. J. Al lman
,
Greek Geometry from Thales to Euclid. Dubl in

,
1889, p . 10 .

George Johnston Al lman ( 1824- 1904)was professor of mathematics at Queen
’

s

Coll ege , Galway, Ireland.

2 G . J. Al lman, op. cit. , p . 15 .
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the teaching of philosophy, mathematics , and natural science , but it
was a brotherhood

,
the members of whi ch were united for life . This

brotherhood had Observances approaching masonic peculiarity. They
were forbidden to divulge the discoveries and doctrines of their school .
Hence we are obliged to speak of the Pythagoreans as a body

,
and

find i t difficult to determine to whom each particular discovery is to
be ascribed . The Pythagoreans themselves were in the habit of r e
ferring every discovery back to the great founder of the sect .
This school grew rapidly and gained considerable political ascend
ency . But the mystic and secret Observances , introduced in imi tation
of Egyptian usages, and the aristocratic tendencies of the school ,
caused it to become an object of suspicion. The democratic party in
Lower Italy revolted and destroyed the buildings of the Pythagorean
school . Pythagoras fled to Tarentum and thence to Metapontum,

where he was murdered .

Pythagoras has left behind no mathematical treatises
,
and our

sources of information are rather scanty . Certain i t is that
,
in the

Pythagorean school , mathematics was the principal study . Pythag
oras raised mathematics to the rank of a science . Arithmetic was
courted by him as fervently as geometry . In fact

,
arithm etic is the

foundation of his philosophic system.

The Eudemian S ummary says that Pythagoras changed the study
of geometry into the form of a liberal education

,
for he examined its

principles to the bottom
,
and investigated i ts theorems in an imma

terial and intellectual manner .”His geometry was connected closely
with hi s arithmetic . He was especially fond of those geometrical
relations which admitted of arithmetical expression .

Like Egyptian geometry
,
the geometry of the Pythagoreans is much

concerned with areas . To Pythagoras is ascribed the important
theorem that the square on the hypotenuse of a right triangle is
equal to the sum of the squares on the other two sides. He had
probably learned from the Egyptians the truth of the theorem in the
special case when the sides are 3 , 4 , 5, respectively. The story goes

,

that Pythagoras was so jubilant over this discovery that he sacrificed
a hecatomb . Its authenticity is doubted

,
because the Pythagoreans

believed in the transmigration of the soul and opposed the shedding
of blood . In the later traditions of the Neo-Pythagoreans this ob
jection is removed by replacing this bloody sacrifice by that of

“ an
ox made of flour !”The proof of the law of three squares , given in
Euclid ’s Elements

,
I . 47 , is due to Euclid himself, and not to the

Pythagoreans . What the Pythagorean method of proof was has
been a favorite topic for conj ecture .
The theorem on the sum of the three angles of a triangle

, presum

ably known to Thales
,
was proved by the Pythagoreans after the

manner of Euclid . They demonstrated also that the plane about a
point is completely filled by six equilateral triangles

,
four squares

,
or
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three regular hexagons
,
so that it is possible to divide up a plane into

figures of either kind .

From the equilateral triangle and the square arise the solids
,
namely

,

the tetraedron
,
octaedron ,

icosaedron ,
and the cube . These solids

were
,
in all probability

,
known to the Egyptians

,
excepting

,
perhaps

,

the icosaedron . In Pythagorean phi losophy, they represent respec
tively the four elements of the physical world ; namely, fire , air , water,
and earth . Later another regular solid was discovered

,
namely

,
the

dodecaedron
,
which

,
in absence of a fifth element

,
was made to repre

sent the universe itself. Iambl ichus states that Hippasus , a Pytha
gorean ,

perished in the sea
,
because he boasted that he first divulged

the sphere with the twelve pentagons. The same story of death at
sea is told of a Pythagorean who disclosed the theory of irrationals .
The star-shaped pentagram was used as a symbol of recognition by
the Pythagoreans

,
and was called by them Health .

Pythagoras called the sphere the most beautiful of all solids
,
and

the circle the most beautiful of all plane figures . The treatment of
the subjects of proportion and of irrational quantities by him and
his school will be taken up under the head of arithmetic .
According to Eudemus

,
the Pythagoreans invented the problems

concerning the application of areas
,
including the cases of defect and

excess
,
as in Euclid

,
VI . 28

,
29.

They were also familiar with the construction of a polygon equal
in area to a given polygon and similar to another given polygon . This
problem depends upon several important and somewhat advanced
theorems

,
and testifies to the fact that the Pythagoreans made no

mean progress in geometry.

Of the theorems generally ascribed to the Italian school
,
some

cannot be attributed to Pythagoras himself
,
nor to his earliest suc

cessors. The progress from empirical to reasoned solutions must
,
of

necessity
,
have been slow . It is worth noticing that on the circle

no theorem of any importance was discovered by this school .
Though politics broke up the Pythagorean fraternity

,
yet the school

continued to exist at least two centuries longer . Among the later
Pythagoreans

,
Philolaus and Archytas are the most prominent .

Philolaus wrote a book on the Pythagorean doctrines . By him were
first given to the world the teachings of the Italian school

,
which had

been kept secret for a whole century. The brilliant Ar chytas (428
347 B . C .)of Tarentum,

known as a great statesman and general
,
and

universally admired for his virtues
,
was the only great geometer

among the Greeks when P lato opened his school . Archytas was the
first to apply geometry to mechanics and to

'

treat the latter subject
methodically . He also found a very ingenious mechanical solution
to the problem of the duplication of the

‘cube . His solution involves
clear notions on the generation of cones and cylinders . This problem
reduces itself to finding two mean proportionals between two given
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lines . These mean proportionals were obtained by Archytas from
the sec tion of a half-cylinder . The doctrine of proportion was ad
vanced through him.

There is every reason to believe that the later Pythagoreans exer
cised a strong influence on the study and development of mathematics
at Athens . The Sophists acquired geometry from Pythagorean
sources . P lato bought the works of Philolaus

,
and had a warm friend

in Archytas .

The S ophist S chool

After the defeat of the Persians under Xerxes at the battle of
Salamis

, 480 B . C .
,
a league was formed among the Greeks to preserve

the freedom of the now liberated Greek cities on the islands and coast
of the E gaean Sea . Of this league Athens soon became leader and
dictator . She caused the separate treasury of the league to be merged
into that of Athens

,
and then spent the money of her allies for her

own aggrandisement . Athens was also a great commercial centre .
Thus she became the richest and most beautiful city of antiquity.

All menial work was performed by slaves . The citizen of Athens was
well- to-do and enjoyed a large amount of leisure . The government
being purely democratic

,
every citizen was a politician . To make hi s

influence fel t among his fellow-men he must
,
first of all

,
be educated .

Thus there arose a demand for teachers . The supply came principally
from Sicily

,
where Pythagorean doctrines had Spread . These teachers

were cal led S ophists , or
“wise men .

”Unlike the Pythagoreans
,
they

accepted pay for their teaching . Although rhetoric was the principal
feature of their instruction

,
they also taught geometry

,
astronomy

,

and philosophy . Athens soon became the headquarters of Grecian
men of letters , and of mathematicians in particular . The home of
mathematics among the Greeks was first in the Ionian Islands

,
then

in Lower Italy
,
and during the time now under consideration

,
at

Athens .
The geometry of the circle

,
which had been entirely neglected by

the Pythagoreans
,
was taken up by the Sophists . Nearly all their

discoveries were made in connection with their innumerable attempts
to solve the following three famous problems
(1)To trisect an are or an angle .

(2)To “ double the cube
,

”
i . e.

,
to find a cube whose volume is

double that of a given cube .

(3)To “ square the circle
,
i . e. to find a square or some other

rectilinear figure exactly equal in area to a given circle .

These problems have p robably been the subject of more discussion
and research than any other problems in mathematics . The bisec tion
of an angle was one of the easiest problems in geometry . The triseé
tion of an angle

,
on the other hand

,
presented unexpected diffi culties .

A right angle had been divided into three equal parts by the Pytha
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goreans . But the general construction
,
though easy in appearance

,

cannot be effected by the aid only of rul er and compasses . Among
the first to wrestle with i t was H ippias of El is , a contemporary of
Socrates

,
and born about 460 B . C . Unable to reach a solution by

ruler and compasses only
,
he and other Greek geometers resorted to

the use of other means . Proclus mentions a man ,
Hippias

, presum
ably Hippias of Elis

,
as the inventor of a transcendental curve which

served to div ide an angle not only into three
,
but into any number of

equal parts . This same curve was used later by Dinostratus and

others for the quadrature of the circle . On this account it is palled

the quadratrix. The curve may be described thus :The side AB of the
square shown in the figure turns uniformly about ' A , the point B
moving along the circular arc BED . In the
same time

,
the side BC moves parallel to it X

self and uniformly from the position of BC
B

to that of AD . The locus of intersection of
AB and BC

,

‘ when thus moving
,
is the

quadratrix BFG . Its equation we now write

The ancients considered only

the part of the curve that lies inside the
quadrant of the circle ; they did not know
that x= i 2r are asymptotes

,
nor that there

is an infinite number of branches . According to Pappus
,
Dinostratus

effected the quadrature by establishing the theorem that BED :AD
=AD :AG .

The Pythagoreans had shown that the di agonal of a square is the
side of another square having double the area of the original one .

Thi s probably suggested the problem of the duplication of the cube ,
i . e.

,
to find the edge of a cube having double the volume of a given

cube. Eratosthenes ascribes to this problem a different origin . The
Delians were once suffering from a pestilence and were ordered by
the oracle to double a certain cubical altar . Thoughtless workmen
simply constructed a cube with edges twice as long , but brainless
work like that did not pacify the gods . The error being discovered ,

Plato was consulted on the matter . He and his disciples searched
eagerly for a solution to this “Delian Problem. An important con
tribution to this problem was made by Hippocrates of Ch ios (about
430 B . He was a talented mathematician but , having been de
frauded of his property , he was pronounced slow and stupid . It is
also said of him that he was the first to accept pay for the teaching of
mathematics . He showed that the Delian Problem could be reduced
to findi ng two mean proportionals between a given line and another
twice as long . For , in the proportion a :x= x :y y 2a

,
since x2 :

ay and y
2=2ax and x

4
a
2
y
2
,
we have x4 2a

3
x and x3 2a

3
. But ,



2 2 A HISTORY OF MATHEMATICS

of course
,
he failed to find the two mean proportionals by geometric

construction with ruler and compasses. He made himself celebrated
by squaring certain lunes. According to Simplicius

,
Hippocrates

believed he actually succeeded in applying one of his lune-quadratures
to the quadrature of the circle . That Hippocrates really commi tted
this fallacy is not generally accepted.

In the first lune which he squared
,
he took an isosceles triangle

ABC
,
right-angled at C

,
and drew a semi- circle on AB as a diameter

,

and passing through C . He drew also a semi-circle on AC as a diam
eter and lying outside the triangle ABC . The lunar area thus formed
is half the area of the triangle ABC . This is the first example of a
curvilinear area which admits of exact quadrature . Hippocrates
squared other lunes

,
hoping

,
no doubt

,
that he might be led to the

quadrature of the circle .

1 In 1840 Th . Clausen found other quadrable
lunes

,
but in 190 2 E . Landau of Gottingen pointed out that two of

the four lunes which Clausen supposed to be new
,
were known to .

Hippocrates .2

In his study of the quadrature and duplication-problems
,
Hip

pocrates contributed much to the geometry of the circle . He showed
that circles are to each other as the squares of their diameters

,
that

similar segments in a circle are as the squares of their chords and
contain equal angles

,
that in a segment less than a semi- circle the

angle is ob tuse . Hippocrates contributed vastly to the logic of geom
etry. His investigations are the oldest reasoned geometrical proofs
in existence”(Gow). For the purpose of describing geometrical figures
he used letters

,
a practice probably introduced by the Pythagoreans.

The subj ect of similar figures
,
as developed by Hippocrates

,
in

volved the theory of proportion . Proportion had’

,
thus far

,
been used

by the Greeks only in numbers . They never succeeded in uniting
the notions of numbers and magnitudes. The term “ number”was
used by them in a restricted sense. What we call irrational numbers
was not included under this notion . Not even rational fractions
were called numbers . They used the word in the same sense as we
use “ positive integers. Hence numbers were conceived as discon- f

tinuous
,
while magnitudes were continuous . The two notions ap

peared, therefore , entirely distinct . The chasm between them is ex
posed to full view in the statement of Euclid that “ incommensurable
magnitudes do not have the same ratio as numbers .”In Euclid ’s
Elements we find the theory of proportion of magnitudes developed
and treated independent of that of numbers . The transfer of the
theory of proportion from numbers. to magnitudes (and to lengths in
particular)was a diffi cult and important step .

1 A ful l account is g iven by G . Loria in his Le scienze esatte nell
’
antica Grecia ,

M ilano
, 2 edition ,

1914 , pp . 74
—
94 . Loria gives also ful l bibliog raphical references

to the extensive l iterature on H ippocrates.

2 E .W. Hobson
, S quaring the Circle, Cambridge, 1913, p . 16 .
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Hippocrates added to his fame by writing a geometrical text-book
,

called the Elements . This publication shows that the Pythagorean
habit of secrecy was being abandoned ; secrecy was contrary to the
spirit of Athenian life .

The sophist Antiphon , a contemporary of Hippocrates , introduced
the process of exhaustion for the purpose of solving the problem of
the quadrature . He did himself credit by remarking that by inscrib
ing in a circle a square or an equilateral triangle

,
and on its sides

erecting isosceles triangles with their vertices in the circumference
,

and on the sides of these triangles erecting new triangles
,
etc .

,
one

could obtain a succession of regular polygons
,
of which each approaches

nearer to the area of the circle than the previous one
,
until the circle

is finally exhausted. Thus is obtained an inscribed polygon whose
sides coincide with the circumference . S ince there can be found
squares equal in area to any polygon

,
there also can be found a square

equal to the last polygon inscribed
,
and therefore equal to the circle

itself. Bryson of Heraclea , a contemporary of Antiphon , advanced
the problem of the quadrature considerably by circumscribing poly
gons at the same time that he inscribed polygons . He erred

,
however

,

in assum ing that the area of a circle was the arithmetical mean be
tween circumscribed and inscribed polygons . Unlike Bryson and

the rest of Greek geometers
,
Antiphon seems to have believed it

possible
,
by continually doubling the sides of an inscribed polygon

,

to obtain a polygon coinciding with the circle . This question gave
rise to lively disputes in Athens . If a polygon can coincide with the
circle

,
then

,
says Simpliciu's we must put aside the notion that magni

tudes are divisible ad infini tum. This diflficul t philosophi cal q p estion
led to paradoxies that are difli cul t to explain and that deterred Greek
mathematicians from introducing ideas of infinity into their geometry ;
rigor in geometric proofs demanded the exclusion of obscure concep
tions. Famous are the arguments against the possibility of motion
that were advanced by Zeno of Elea , the great dialectician (early in
the 5th century B . None of Zeno ’s writings have come down to
uS . We know of his tenets only through his critics , P lato , Aristotle ,
Simplicius. Aristotle

,
in his Physics VI , 9, ascribes to Zeno four

arguments
,
called “Zeno ’ s paradoxies (1)The “Dichotomy”:You

cannot traverse an infinite number of points in a finite time ; you
must traverse the half of a given distance before you traverse the
whole

,
and the half of that again before you can traverse the whole .

This goes on ad infini tum,
so that (if space is made up of points)there

is an infinite number in any given Space
,
and it cannot be traversed

in a finite time . (2)The “Achi lles”:Achilles cannot overtake a tor
toise . For , Achilles must first reach the place from which the tortoise
started . By that time the tortoise will have moved on a little way .

Achilles must then traverse that
,
and still the tortoise will be ahead

He is always nearer
,
yet never makes up to i t . (3)The “Arrow
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An arrow in any given moment of i ts flight must be at rest in some
particular point . (4)The “ S tade”: Suppose three , paral lel rows of
points in j uxtaposi tion , as in Fig . 1 . One of these (B)is immovable ,

A —A
B B
C C

Fig . 1 Fig . 2

while A and C move in opposite directions with equal velocity
,
so

as to come into the position in Fig . 2 . The movement of C relatively
to A will be double its movement relatively to B

,
or

,
in other words

,

any given point in C has passed twice as many points in A as i t has
in B . It cannot

,
therefore

,
be the case that an instant of time corre

sponds to the passage from one point to another .
P lato says that Zeno ’s purpose was “ to protect the arguments of

Parmenides against those who make fun of him”; Zeno argues that
there is no many,

”he denies plurality.

”That Zeno ’s reasoning was
wrong has been the view universally held since the time of Aristotle
down to the middle of the nineteenth century. More recently the
opinion has been advanced that Zeno was incompletely and incor
rectly reported , that his arguments are serious efforts, conducted with
logical rigor . This view has been advanced by Cousin

,
Grote and P .

Tannery .

1 Tannery claims that Zeno did not deny motion , but
wanted to Show that motion was impossible under the Pythagorean
conception of Space as the sum of points

,
that the four arguments must

be taken together as constituting a dialogue between Zeno and an
adversary and that the arguments are in the form of a double dilemma
into whi ch Zeno forces his adversary . Zeno ’s arguments involve con
cepts of continuity, of the infinite and infinitesimal ; they are as much
the subjects of debate now as they were in the time of Aristotle .
Aristotle did not successful ly explain Zeno ’s paradoxes . He gave no
reply to the query arising in the mind of the student

,
how is i t pos

sible for a variable to reach its limit? Aristotle ’s continuum was a
sensuous

,
physical one ; he held that , since a line cannot be bui l t up

of points
,
a line cannot actually be subdiv ided into points . “The

continued bisection of a quantity is unlimited
,
so that the unlimited

exists potentially
,
but is actually never reached . No satisfactory

explanation of Zeno ’s arguments was given before the creation of
Georg Cantor ’s continuum and theory of aggregates .
The process of exhaustion due to Antiphon and Bryson gave rise
to the cumbrous but perfectly rigorous “method of exhaustion .

”In
determining the ratio of the areas between two curvilinear plane
figures

,
say two circles

,
geometers first inscribed or circumscribed

S imilar polygons and then by increasing indefinitely the number of
1 See F . Cajori , The History of Zeno ’

s Arguments on Motion in the Americ.
Math. Monthly, Vol . 2 2

,
1915 , p . 3 .
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groves of the Academia, and devoted the remainder of his life to teach
ing and writing .

Plato ’s physical phi losophy is partly based on that of the Pytha
goreans. Like them, he sought in arithmetic and geometry the key
to the universe . When questioned about the occupation of the Deity

,

Plato answered that “He geometrises continually .

”Accordingly
,
a

knowledge of geometry is a necessary preparation for the study of
philosophy. To show how great a value he put on mathematics and
how necessary it is for higher Speculation

,
P lato placed the inscrip

tion over his porch
,

“ Let no one who is unacquainted with geometry
enter here .

”Xenocrates
,
a successor of P lato as teacher in the

Academy
,
followed in his master ’s footsteps

,
by declining to admit a

pupil who had no mathematical training
,
with the remark

,

“Depart
,

for thou hast not the grip of philosophy .

”
P lato observed that geom

etry trained the mind for correct and vigorous thinking . Hence i t
was that the Eudemian S ummary says ,

“He filled hi s writings with
mathematical discoveries

,
and exhibited on every occasion the re

markable connection between mathematics and philosophy .

”
With P lato as the head-master

,
we need not wonder that the P la

tonic ‘ school produced so large a number of mathematicians . P lato
did little real original work

,
but he made valuable improvements in

the logic and methods employed in geometry. It is true that the
Sophist geometers of the prev ious century were fairly rigorous in their
proofs

,
but as a rule they did not reflect on the inward nature of their

methods . They used the axioms without giv ing them explicit ex
pression

,
and the geometrical concepts

,
such as the point

,
l ine

,
surface

,

etc .
,
without assigning to them formal definitions.

1 The Pythagoreans
called a point “ unity in position

,

”but thi s is a statement of a phi lo
sophical theory rather than a definition . Plato objected to calling a
point a “ geometrical fiction .

”He defined a point as the “ beginning
of a l ine or as “ an indivisible line

,

”and a line as “ length without
breadth . He called the point

,
line

,
surface

,
the boundaries”of

the line
,
surface

,
solid

,
respectively. Many of the definitions in Euclid

are to be ascribed to the P latonic school . The same is probably true
of Euclid ’s axioms . Aristotle refers to P lato the axiom that equals
subtracted from equals leave equals .
One of the greatest achievements of P lato and his school is the in

vention of analysis as a method of proof. To be sure , this method
had been used unconsciously by Hippocrates and others ; but P lato ,
like a true philosopher

,
turned the instinctive logic into a conscious

,

legitimate method .

1 “ If any one scientific invention can claim pre
-eminence over al l others , I should

be incl ined myself to erect a monument to the unknown inventor of the mathe

matical point , as the supreme type of that process of abstraction which has been

a necessary condition of scientific work from the very beg inning .

”Horace Lamb’s
Address

,
Section A ,

Brit . Ass
’

n
,
1904.
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The terms synthesis and analylsis are used in mathematics in a more
special sense than in logic . In ancient mathematics they had a dif
ferent meaning from what they now have . The oldest definition of
mathematical analysis as Opposed to synthesis is that given in Euclid

,

XIII
, 5, which in all probabili ty was framed by Eudoxus:

“Analysis is
the obtaining of the thing sought by assuming i t and so reasoning up
to an admi tted truth ; synthesis is the obtaining of the thing sought
by reasoning up to the inference and proof of i t .”The analytic method
is not conclusive

,
unless all operations involved in it are known to

be reversible . To remove all doub t
,
the Greeks

,
as a rule

,
added to

the analytic process a synthetic one
,
consisting of a reversion of all

Operations occurring in the analysis . Thus the aim of analysis was
to aid in the discovery of synthetic proofs or solutions .
Plato is said to have solved the problem of the duplication of the

cube . But the solution is open to the very same objection whi ch he
made to the solutions by Archytas

,
Eudoxus

,
and M enaechmus . He

called their solutions not geometrical
,
but mechanical

,
for they re

quired the use of other instruments than the ruler and compasses .
He said that thereby the good of geometry is set aside and destroyed

,

for we again reduce it to the world of sense
,
instead of elevating and

imbuing it with the eternal and incorporeal images of thought
,
even

as it is employed by God
,
for which reason He always is God . These

objections indicate either that the solution is wrongly attributed to
P lato or that he wished to Show how easily non-geometric solutions
of that character can be found . It is now rigorously established that
the duplication problem

,
as well as the trisection and quadrature

problems
,
cannot be solved by means of the ruler and compasses

only .

Plato gave a healthful stimulus to the study of stereometry , which
until his time had been entirely neglected by the Greeks . The Sphere
and the regul ar solids have been studied to some extent

,
but the prism

,

pyramid
,
cylinder

,
and cone were hardly known to exist . All these

solids became the subj ects of investigation by the P latonic school .
One resul t of these inquiries was epoch-making . M enaechmus , an
associate of Plato and pupil of Eudoxus

,
invented the conic sections

,

which
,
in course of only a century

,
raised geometry to the loftiest height

whi ch it was destined to reach during antiquity . M enzechmus cut
three kinds of cones , the right-angled ,

”acute—angled
,

”and “ obtuse
angled

,

”by planes at right angles to a side of the cones , and thus
obtained the three sections which we now call the parabola

,
ellipse

,

and hyperbola . Judging from the two very elegant solutions of the
Delian Problem”by means of intersections of these curves , Menaech

mus must have succeeded well in investigating their properties . In
what manner he carried out the graphic construction of these curves
is not known .

Another great geometer was Dinostratus , the brother of Menwch
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mus and pupil of Plato . Celebrated is hi s mechanical solution of the
quadrature of the circle

,
by means of the quadratrix of Hippias .

Perhaps the most brilliant mathematician of thi s period was
Eudoxus . He was born at Cnidus about 408 B . C

,
studied under

Archytas
,
and later

,
for two months

,
under P lato . He was imbued

with a true spirit of scientific inquiry
,
and has been called the father

of scientific astronomical observation . Fmm the fragmentary notices
of his astronomical researches

,
found in later writers

,
Ideler and

Schiaparelli succeeded in reconstructing the system of Eudoxus with
its celebrated representation of planetary motions by “ concentric
spheres . Eudoxus had a school at Cyzicus

,
went with his pupils to

Athens
,
visiting P lato

,
and then returned to Cyzicus

,
where he di ed

355 B . C . The fame of the academy of P lato i s to a large extent due
to Eudoxus ’3 pupils of the school at Cyzicus

,
among whom are Men

wchmus
,
Dinostratus

,
Athenzeus

,
and Helicon . Diogenes Laertius de

scribes Eudoxus as astronomer
,
physician

,
legislator

,
as well as geom

eter . The Eudemian S ummary says that Eudoxus
“ first increased the

number of general theorems
,
added to the three proportions three

more
,
and raised to a considerable quantity the learning

,
begun by

Plato
,
on the subj ect of the section

,
to which he applied the analytical

method.

”By this section”i s meant
,
no doubt

,
the “ golden section

(sectio aurea), which cuts a line in extreme and mean ratio . The -first
five propositions in Euclid XIII relate to l ines cut by thi s section

,
and

are generally attributed to Eudoxus. Eudoxus added much to the
knowledge of solid geometry . He proved

,
says Archimedes

,
that a

pyramid is exactly one- third of a prism
,
and a cone one- third of a

cylinder
,
having equal base and altitude. The proof that spheres are

to each other as the cubes of their radii is probably due to him. He
made frequent and skilful use of the method of exhaustion , of which
he was in all probability the inventor . A scholiast on Euclid

,
thought

to be. Proclus
,
says further that Eudoxus practically invented the

whole of Euclid ’s fifth book . Eudoxus also found two mean propor
tionals between two given lines

,
but the method of solution is not

known .

P lato has been called a maker of mathematicians . Besides the
pupils already named

,
the Eudemian S ummarymentions the following:

Theaetetus of Athens , aman Of great natural gifts
,
to whom

,
no doubt

,

Euclid was greatly indebted in the composition of the roth book
,

1

treating of incomrnensurables and of the 13th book ; Leodamas of
Thasos ; Neocleides and his pupil Leon , who added much to the work
of their predecessors

,
for Leon wrote an Elements carefully designed

,

both in number and utility of its proofs ; Theudius of Magnes ia, who
composed a very good book of Elements and generalised propositions ,
which had been confined to particular cases ; Hermotimus of Col
ophon , who discovered many propositions of the Elements and com

1 G . J. Allman
,
op. cit., p . 21 2.
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posed some on loci ; and , finally
,
the names of Amyclas of Heraclea,

Cyzicenus of Athens , and Phi lippus of M ende

A skilful mathematician of whose life and works we have no details
isAn staeus , the elder , probably a senior contemporary of Euclid . The
fact that he wrote a work on coni c sections tends to Show that much
progress had been made in their study during the time of M enmchmus.

Aristaeus wrote also on regular solids and cultivated the analytic
method. His works contained probably a summary of the researches
of the P latonic school .1
Aristotle (384—32 2 B . the systematiser of deductive logic

,
though

not a professed mathematician
,
promoted the science of geometry by

improving some of the most difli cult defin itions. His Physics contains
passages with suggestive hints of the principle of virtual velocities .
He gave the best discussion of continuity and of Zeno ’s arguments
against motion

,
found in antiquity. About his time there appeared a

work calledMechanica
,
of which he is regarded by some as the author.

M echanics was totally neglected by the P latonic school .

The First Alexandrian S chool

In the previous pages we have seen the birth of geometry in Egypt
,

i ts transference to the Ionian Islands
,
thence to Lower Italy and to

Athens. We have witnessed its growth in Greece from feeble child
hood to "vigorous manhood

,
and now we shall see it return to the land

of its birth and there der ive new vigor .
During her declining years

,
immedi ately following the PeIOpon

nesian War
,
Athens produced the greatest scientists and philosophers

of antiquity . It was the time of P lato and Aristotle . In 338 B . C .
,
at

the battle of Chaeronea
,
Athens was beaten by Philip of Macedon

,

and her power was broken forever. Soon after
,
Alexander the Great

,

the son of Phi lip
,
started out to conquer the world. In eleven years

he built up a great empire which broke to pieces in a day . Egypt
fell to the lot of P tolemy Soter. Alexander had founded the seaport
of Alexandria

,
whi ch soon became the noblest of all cities . P tolemy

made Alexandria the capital . The history of Egypt during the next
three centuries is mainly the history of Alexandria . Literature

,

phi losophy
,
and art were di ligently cultivated . P tolemy created the

university of Alexandria . He founded the great Library and built
laboratories

,
museums

,
a zoo

’ logical garden
,
and promenades . Alex

andria soon became the great centre of learning .

Demetrius Phalereus was invited from Athens to take charge of the
Library

,
and it is probable

,
says Gow

,
that Eucl id was invi ted with

him to Open the mathematical school . According to the studies of
H . Vogt

,

2 Euclid was born about 365 B . C . and wrote his Elements
1 G . J. Al lman , op. cit.

, p . 205 .

2 B ibl iotheca mathematica, 3 S .
, Vol . 13 , 1913 , pp . 193

—
202 .
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between 330 and 320 B . C . Of the life of Euclid
,
little is known

,
except

what is added by Proclus to the Eudemian S ummary. Euclid
,
says

Proclus
,
was younger than Plato and older than Eratosthenes and

Archimedes , the latter of whommentions him. He was of the Platonic
sect

,
and well read in its doctrines . He collected the Elements

,
put

in order much that Eudoxus had prepared
,
completed many things of

Theze tetus, and was the first who reduced to unobjectionable demon
stration the imperfect attempts of his predecessors . When P tolemy
Once asked him if geometry could not be mastered by an easier process
than by studying the Elements

,
Euclid returned the answer

,
There

is no royal road to geometry.

”
Pappus states that Euclid was distin

guished by the fairness and kindness ot
'his disposition

,
particularly

toward those who could do anything to advance the mathematical
sciences . Pappus is evidently making a contrast to Apollonius

,
of

whom he more than insinuates the opposite character .1 A pretty
l ittle story is related by Stobmus:2 “A youth who had begun to read
geometry with Euclid

,
when he had learnt the first proposition

,
in

quired
,

‘What do I get by learning these things? ’ So Euclid called
his slave and said

,

‘Give him threepence
,
since he must make gain

out of what he These are about all the personal details
preserved by Greek writers. Syrian and Arabian writers claim to
know much more

,
but they are unreliable . At one time Euclid of

Alexandria was universally confounded with Euclid of M egara
,
who

lived a century earlier .
The fame of Euclid has at all times rested mainly upon his book on
geometry

,
called the Elements . This book was so far superior to the

Elements written by Hippocrates
,
Leon

,
and Theudius

,
that the latter

works soon perished in the struggle for existence . The Greeks gave
Euclid the Special title of “ the author of the Elements . It is a re

markable fact in the history of geometry
,
that the Elements of Euclid

,

wr itten over two thousand years ago
,
are still regarded by some as the

best introduction to the mathematical sciences . In England they
were used until the present century extensively as a text-book in
schools . Some editors of Euclid have

,
however

,
been inclined to credit

him with more than is his due . They would have us believe that a
finished and unassailable system of geometry sprang at once from the
brain of Euclid

,
an armed M inerva from the head of Jupiter .”They

fail to mention the earlier eminent mathematicians from whom Euclid
got his material . Comparatively few of the propositions and proofs
in the Elements are his own discoveries . In fact

,
the proof of the

“Theorem of Pythagoras”i s the only one directly ascribed to him .

Allman conj ectures that the substance of Books I , II , IV comes from
the Pythagoreans that the substance of Book VI is due to the Pytha

1 A . De Morgan ,
Eucleides in Smith

’
sDictionary of Greek andRoman Biography

and Mythology.

2 J . Gow , op. cit.
, p . 195 .
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goreans and Eudoxus , the latter contributing the doctrine of propor
tion as applicable to incommensurables and also the M ethod of Ex
haustions (Book XII), that Themtetus contributed much toward
Books X and XIII

,
that the principal part of the original work of

Euclid himself is to be found in Book X .

1 Euclid was the greatest
systematiser of his time . By careful selection from the material before
him

,
and by logical arrangement of the propositions selected

,
he built

up
,
from a few definitions and axioms

,
a proud and lofty structure .

It would be erroneous to believe that he incorporated into his Elements
all the elementary theorems known at his time . Archimedes

,
Apol

lonius, and even he himself refer to theorems not included in his Ele
ments

,
as being well—known truths .

The text of the Elements that was commonly used in schools was
Theon

’
s edition . Theon of Alexandria

,
the father of Hypatia

,
brought

out an edition
, ,
about 700 years after Euclid , with some alterations in

the text . AS a consequence
,
later commentators

,
especially Robert

Simson
,
who labored under the idea that Euclid must be absolutely

perfect
,
made Theon the Scapegoat for al l the defects which they

thought they could discover in the text as they knew it . But among
the manuscripts sent by Napoleon I from the Vatican to Paris was
found a copy of the Elements believed to be anterior to Theon ’

s recen
sion . Many variations from Theon

’

s version were noticed therein
,

but they were not at all important
, a nd Showed that Theon generally

made only verbal changes . The defects in the Elements for which
Theon was blamed ‘must

,
therefore

,
be due to Euclid himself . The

Elements used to be considered as off ering models of scrupulously
rigorous demonstrations. It is certainly true that in point of rigor
it compares favorably with i ts modern rivals ; but when examined
in the light of strict mathematical logic

,
i t has been pronounced by

C . S . Peirce to be riddled with fallacies . The results are correct
only because the writer ’s experience keeps him on his guard . In
many proofs Euclid relies partly upon intuition .

At the beginning of our editions of the Elements
,
under the head of

definitions
,
are given the assumptions of such notions as the point ,

l ine
,
etc . and some verbal explanations . Then follow three postul ates

or demands
,
and twelve axioms . The term “ axiom”was used by

Proclus
,
but not by Euclid . He Speaks

,
instead

,
of common no

tions”—common either to all men or to all sciences . There has been
much controversy among ancient and modern critics on the postulates
and axioms . An immense preponderance of manuscripts and the
testimony of Proclus place the “ axioms”about right angles and
paral lels among the postulates .

2 This is indeed their proper place ,

1 G . J. Allman
,
op. cit.

, p . 2 1 1 .

2A . De Morgan ,
loc . cit.; H . Hankel

,
Theorie der Complexen Zahlensysteme, Leip

zig , 186 7 , p . 5 2 . In the various editions of Eucl id
’

s Elements diff erent numbers are

assigned to the axioms. Thus the parallel axiom is called by Robert S imson the
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for they are really assumptions , and not common notions or axioms.
The postulate -about paral lels plays an important rOle in the history
of non-Euclidean geometry . An important postulate which Euclid
missed was the one of superposition

,
according to which figures can

be moved about in Space without any alteration in form or magnitude.
The Elements contains thi rteen books by Euclid

,
and two

,
of which

it is supposed that Hypsicles and Damascius are the authors. The
first four books are on plane geometry. The fifth book treats of the
theory of proportion as applied to magn itudes in general . It has been
greatly admired because of its rigor of treatment . Beginners find the
book difficult . Expressed in modern symbols

,
Euclid ’s definition of

proportion is thus:Four magnitudes
,
a
,
b
,

‘

c
,
d
,
are in proportion , when

for any integers m and n
,
we have simul taneously and mo

<

nd. Says T . L . Heath
,

1 “ certain it is that there is an exact corre
spondence, almost coincidence , between Euclid

’s definition of equal
ratios and the modern theory of irrationals due to Dedekind. H . G .

Zeuthen finds a close resemblance between Euclid ’s definition and
Weierstrass’ definition of equal numbers . The Sixth book develops
the geometry of similar figures . Its 27th Proposition is the earliest
maximum theorem known to history. The seventh

,
eighth

,
ninth

books are on the theory of numbers
,
or on arithmetic . According to

P . Tannery
,
the knowledge of the existence of irrationals must have

greatly affected the mode of writing the Elements . The old naive
theory of proportion being recognized as untenable

,
proportions

are not used at all in the first four books. The rigorous theory of
Eudoxus was postponed as long as possible

,
because of its difl‘i cu lty.

The interpolation of the arithmetical books VII—IX is explained
as a preparation for the fuller treatment of the irrational in book X .

Book VII explains the G . C . D . of two numbers by the process
of division (the so-called “Euclidean The theory of
proportion of (rational)numbers i s then developed on the basis of
the definition

,

“Numbers are proportional
‘

when the first is the same
mul tiple

,
part

,
or parts of the second that the third is of the fourth .

”
Thi s is believed to be the older

,
Pythagorean theory of proportion .

2

The tenth treats of the theory of incommensurables . De M organ con
sidered this the most wonderful of all . We give a fuller account of i t
under the head of Greek Arithmetic . The next three books are on

1 2th
, by Bolyai the r 1 th , by Clavius the 13th , by F . Peyrard the 5th. It is

.

cal led
the sth postulate in old manuscripts, also by Heiberg and M enge in their annotated

edition of Eucl id
’

s works , in Greek and Latin,
Leipzig , 1883 , and by T. L . Heath

in his Thirteen Books of Euclid
’

s Elements , Vols. I—III
,
Cambridge , 1908 . Heath

’
s

is the most recent translation into Eng l ish and is very fully and ably annotated.

1T. L . Heath
,
op. cit. Vol . II , p . 1 24.

2Read H . B . Fine
,
Ratio

,
Proportion and Measurement in the Elements of

Euclid,
”
Annals of Mathematics, Vol . XIX ,

1917, pp. 70
—
76 .
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the meaning of whi ch title is not understood . Heiberg believes it to
mean “ loci which are surfaces .”
The immediate successors of Euclid in the mathematical school at
Alexandria were probably Conon , Dositheus , and Zeuxippus , but
little is known of them.

Archimedes (287? —2 1 2 B . the greatest mathematician of an
tiquity,

was born in Syracuse. P lutarch calls him a relation of King
Hieron ; but more reliable is the statement of Cicero , who tells us he
was of low birth .

‘ Diodorus says he visited Egypt
,
and

,
since he was

a great friend of Conon and Eratosthenes
,
i t is highl y probable that

he studied in Alexandria . This belief is strengthened by the fact that
he had the most thorough acquaintance with all the work previously ’

done in mathematics . He returned
,
however

,
to Syracuse

,
where he

made himself useful to his admiring friend and patron
,
King Hieron

,

by applying his extraordinary inventive genius to the construction of
various war-engines

,
by which he inflicted much loss on the Romans

during the siege of M arcellus. The story that
,
by the use of mirrors

reflecting the sun ’s rays
,
he set on fire the Roman ships

,
when they

came within bow- shot of the walls
,
i s probably a fiction . The city

was taken at l ength by the Romans
,
and Archimedes perished in the

indi scriminate slaughter which followed . According to tradition
,
he

was
,
at the time

,
studying the diagram to some problem drawn in the

sand . As a Roman soldier approached him,
he called out

,
Don ’ t Spoil

my circles .
”The soldier

,
feeling insulted

,
rushed upon him and killed

him . No blame attaches to the Roman general Marcellus , who ad

mired his genius
,
and raised in his honor a tomb bearing the figure

of a sphere inscribed in a cylinder . When Cicero was in Syracuse
,

he found the tomb buried under rubbish .

Archimedes was admired by his f ellow-citizens chi efly for hi s me

chanical inventions ; he himself prized far more highly his discoveries
°

in pure science . He declared that “ every kind of art whi ch was con
nected with daily needs was ignoble and vulgar.”Some of his works
have been lost . The following are the extant books

,
arranged ap

proximately in chronological order: 1 . Two books on Equiponderance
of P lanes or Centres of P lane Gravities , between which is inserted his
treatise on the Quadrature of theP arabola; 2 . TheM ethod; 3 . Two books
on the Sphere and Cyl inder; 4 . The M easurement of the Circle; 5. On
Spirals; 6 . Conoids and Spheroids; 7 . The S and-Counter; 8 . Two books
on Floating Bodies; 9 . Fifteen Lemmas .

In the book on the M easurement of the Ci rcle, Archimedes proves
first that the area of a circle is equal to that of a right triangle having
the length of the circumference for its base

,
and the radius for its

altitude . In this he assumes that there exists a straight line equal in
length to the circumference—an assumption obj ected to by some
ancient critics

,
on the ground that it is not ev ident that a straight

l ine can equal a curved one . The finding of such a line was the next
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problem . He first finds an upper limit to the ratio of the circumfer
ence to the diameter

,
or To do this

,
he starts with an equilateral

triangle of which the base 1s a tangent and the vertex is the centre of
the circle . By successively bisecting the angle at the centre

,
by com

paring ratios
,
and by taking the irrational square roots always a little

too small
,
he finally arrived at the conclusion that 7r<34. Next he

finds a lower limi t by inscribing in the circle regular polygons of 6
,
1 2

,

24, sides
,
finding for each successive polygon its perimeter

,

which is
,
of course

,
always less than the circumference . ~ Thus he

finally concludes that “ the circumference of a circle exceeds three
times its ‘ diameter by a part which is less than 4 but more than 44
of the diameter.”Thi s approximation is exact enough for most pur
poses.
The Ouadrature of the P arabola contains two solutions to the prob

lem—one mechanical
,
the other geometrical . The method of ex

haustion is used in both .

It is . noteworthy that
,
perhaps through the influence of Zeno

,
in

finitesimals (infinitely small constants)were not used in rigorous
demonstration . In fact

,
the great geometers of the period now under

consideration resorted to the radical measure of excluding them from
demonstrative geometry by a postulate . This was done by Eudoxus

,

Euclid
,
and Archimedes . In the preface to the Ouadrature of the P arab

ola
,
occurs the SO called Archimedean postulate

,
which Archimedes

himself attributes to Eudoxus: “When two spaces are unequal
,
i t is

possible to add to itself the diff erence by which the lesser 1s surpassed
by the greater

,
so often that every finite space will be exceeded .

Euclid (Elements V , 4)gives the postulate in the form of a definition :
Magnitudes are said to have a ratio to one another

,
when the less

can be multiplied so as to exceed the other .”Nevertheless
,
infinitesi

mals may have been
-used in tentative researches . That such was the

case with Archimedes is evident from
,
his book

,
The M ethod

,
formerly

thought to be irretrievably lost
,
but fortunately discovered by Heiberg

in 1906 in Constantinople . The contents of this book Shows that he
considered infinitesimals sufficiently scientific to suggest the truths Of
theorems

,
but not to furnish rigorous proofs . In finding the areas of

parabolic segments
,
the volumes of Spherical segments and other solids

of revolution
,
he uses a mechanical process

,
consisting of the weighing

of infinitesimal elements
,
which he calls straight lines or plane areas

,

but which are really infinitely narrow strips or infinitely thin plane
laminae .1 The breadth .or thickness is regarded as being the same in
the elements weighed at any one time . The Archimedean postulate
did not command the interest Of mathematicians until the ‘

modern

arithm etic continuum was created . I t was 0 . Stolz that showed that
it was a consequence of Dedekind’s postulate relating to sections .”

1T. L . Heath
,
M ethod of Archimedes , Cambridge, 191 2 , p . 8 .
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It would seem that
,
in his great researches

,
Archimedes ’ mode of

procedure was , to start with mechanics (centre of mass of surfaces and
solids)and by his infinitesimal-mechanical method to discover new
resul ts for whi ch later he deduced and published the rigorous proofs.
Archimedes knew the integral 1 fx3dx.

Archimedes studied also the ellipse and accomplished its quadrature
,

but to the hyperbola he seems to have paid less attention . It is be
l ieved that he wrote a book on conic sections.
Of all his discoveries Archimedes prized most highl y those in his

Sphere and Cyl inder . In it are proved the new theorems
,
that the

surface of a sphere is equal to four times a great circle ; that the surface
segment of a sphere is equal to a circle Whose radius is the straight
line drawn from the vertex of the segment to the circumference of its
basal circle ; that the volume and the surface of a sphere are 4of the
volume and surface , respectively, of the cylinder circumscribed about
the sphere . Archimedes desired that the figure to the last proposition
be inscribed on his tomb . This was ordered done by Marcellus .
The spiral now called the “ spiral of Archimedes

,
and described in

the book On Spirals , was discovered by Archimedes, and not, as some
believe

,
by his friend Conon .

2 His treatise thereon is
,
perhaps

,
the

most wonderful of all his works. Nowadays , subj ects of this kind
are made easy by the use of the infinitesimal calculus . In its stead
the ancients used the method of exhaustion . Nowhere is the fertility
of hi s genius more grandly displayed than in hi s masterly use of thi s
method . With Euclid and his predecessors the method of exhaustion
was only the means of proving propositions whi ch must have been
seen and believed before they were proved . But in the hands of
Archimedes this method, perhaps combined with his infinitesimal
mechanical method , became an instrument of discovery.

By the word “ conoid ,
”in his book on Conoids and Spheroids, i s

meant the solid produced by the revolution of a parabola or a hyper
bola about its axis . Spheroids are produced by the revolution of an
ellipse , and are long or flat , according as the ellipse revolves around
the major or minor axis. The book leads up to the cubature of these

sol ids. A few constructions of geo
metric figures were given by Archi
medes and Appolonius whi ch were
effected by “ insertions .”In the
following trisection of an angle

,
at

tributed by the Arabs to Archi
medes , the insertion is achieved by the aid of a graduated ruler.3
To trisect the angle CAB

,
draw the arc BCD . Then “ insert”the

1H . G . Zeuthen in Bibl iotheca mathematica
, 3 S .

,
Vol . 7 , 1906

—
7 , p . 347 .

2M . Cantor
,
op. cit. , Vol . I , 3 Aufl .

,
1907 , p . 306 .

3 F . Enriq ues , Fragen der Elementargeometrie, deutsche Ausg . v . H . Fleischer, II,
Leipzig , 1907 , p . 234 .
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distance FE
,
equal to AB ,

marked on an edge passing through C
and moved until the points E and F are located as shown in the
figure . The required angle is EFD .

His arithmetical treatise and problems wil l be considered later .
We shall now notice hi s works on mechani cs . Archimedes is the
author of the first sound knowledge on this subject . Archytas , Aris
totle

,
and others attempted to form the known mechanical truths into

a science
,
but failed . Aristotle knew the property of the lever, but

coul d not establish its true mathematical theory. The radi cal and
fatal defect in the speculations of the Greeks

,
in the opinion of Whewell

,

was that though they had in their possession facts and ideas
,
the

ideas were not distinct and appropriate to the facts .

”For instance ,
Aristotle asserted that when a body at the end of a lever is moving

,

i t may be considered as having two motions ; one in the direction of
the tangent and one in the direction of the radi us ; the former motion
is
,
he says

,
according to nature

,
the latter contrary to nature. These

inappropriate notions of “ natural”and “ unnatural”motions
,
to

gether with the habits of thought whi ch dictated these speculations
,

made the perception of the true grounds of mechanical properties
impossible.1 It seems strange that even after Archimedes had en

tered upon the right path , thi s science should have remained ab

solutely stationary till the time of Galileo—a period of nearly two
thousand years .
The proof of the property of the lever

,
given in hi s Equiponderance

of P lanes , holds its place in many text-books to this day. Mach 2

criticizes it. “ From the mere assumption of the equilibrium of equal
weights at equal distances is derived the inverse proportionality of
weight and lever arm ! How is that possible?”Archimedes’ estimate
of the efli ciency of the lever is expressed in the saying attributed to
him,

Give me a fulcrum on whi ch to rest
,
and I will move the earth .

”
While the Equiponderance treats of solids , or the equilibrium of

solids
,
the book on ‘

Floating Bodies treats of hydrostatics . His atten
tion was first drawn to the subject of specific gravity when King Hieron
asked him to test whether a crown

,
professed by the maker to be pure

gold
,
was not alloyed with silver . The story goes that our phi losopher

was in a bath when the true method of solution flashed on his mind.

He immediately ran home
,
naked

,
shouting

,

“ I have found it !”TO
solve the problem

,
he took a piece of gold and a piece of silver

,
each

weighing the same as the crown . According to one author
,
he deter

mined the volume of water displaced by the gold , silver , and crown
respectively

,
and calculated from that the amount of gold and silver

1Will iamWhewel l
,
History of the Inductive S ciences, 3rd Ed . , New York , 1858,

Vol . I
, p . 87. Will iamWhewel l (1 794—1866)was Master of Trinity Col lege, Cam

bridge.

2E. Mach
,
The S cience of M echanics , tr. by T. M ccormack

,
Chicago , 1907 , p . 14.

Ernst Mach ( 1838—1916)was professor of the history and theory of the inductive

sciences at the university of Vienna.



38 A HISTORY OF MATHEMATICS

in the crown . According to another writer
,
he weighed separately

the gold
,
silver

,
and crown

,
while immersed in water

,
thereby deter

mining their loss of weight in water . From these data he easily found
the solution . It is possible that Archimedes solved the problem by
both methods .
After examining the writings of Archimedes

,
one can well under

stand how
,
in ancient times

,
an Archimedean problem”came to

mean a problem too deep for ordinary minds to solve
,
and how an

“Archimedean proof came to be the synonym for unquestionable
certainty . Archimedes wrote on a very wide range of subj ects

,
and

displayed great profundity in each . He is the Newton of antiquity.

Eratosthenes , eleven years younger than Archimedes , was a native
of Cyrene . He was educated in Alexandria under Callimachus the
poet

,
whom he succeeded as custodian of the Alexandrian Library.

His many—sided activi ty may be inferred from his works . He wrote
on Good and Evi l

,
M easurement of the Earth, Comedy, Geography,

Chronology, Constel lations , and the Dupl ication of the Cube. He was
also a philologian and a poet . He measured the obliquity of the
ecliptic and invented a device for finding prime numbers

,
to' be de

scribed later . Of hi s geometrical writings we possess only a letter to
P tolemy Euergetes , giving a history of the duplication problem and
also the description of a very ingenious mechanical contrivance of his
own to solve it . In his old age he lost his eyesight

,
and on that account

is said to have committed suicide by voluntary starvation .

About forty years after Archimedes flourished Apol loni us of P e rga ,
whose genius nearly equalled that of his great predecessor . He incon
testably occupies the second place in distinction among ancient mathe
maticians . Apollonius was born in the reign of P tolemy Euergetes
and died under P tolemy Phi lopator , who reigned 2 2 2

—
205 B . C . He

studied at Alexandria under the successors of Euclid
,
and for some

time
,
also

,
at Pergamum

,
where he made the acquaintance of that

Eudemus to whom he dedicated the first three books of his Conic
S ections . The brill iancy of his great work brought him the title of the
Great Geometer .”This is all that is known of hi s life .
His Conic S ections were in eight books , of whi ch the first four only

have come down to us in the original Greek . The next three books
were unknown in Europe till the middle of the seventeenth century,
when an Arabic translation

,
made about 1 250 , was discovered . The

eighth book has never been found . In 1 7 10 E . Halley of Oxford pub
l ished the Greek text of the first four books and a Latin translation
of the remaining three

,
together with his conj ectural restoration of

the eighth book
,
founded on the introductory lemmas of Pappus. The

first four books contain little more than the substance of what earlier
geometers had done . Eutocius tells us that Heraclides

,
in his life of

Archimedes
,
accused Appolonius of hav ing appropriated

,
in his Conic

S ections
,
the unpublished discoveries of that great mathematician.
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It is diffi cult to believe that this charge rests upon good foundation .

Eutocius quotes Geminus as replying that neither Archimedes nor
Apollonius claimed to have invented the conic sections , but that
Apollonius had introduced a real improvement . While the first three
or four books were founded on the works of M enaechmus

, Aristaeus ,
Euclid

,
and Archimedes

,
the remaining ones consisted almost entirely

of new matter . The first three books were sent to Eudemus at inter
vals

,
the other books (after Eudemus

’
s death)to one

‘

Attalus . The
preface of the second book is interesting as showing the mode i n
which Greek books were “ published”at this time . I t reads thus:
“ I have sent my son Apollonius to bring you (Eudemus)the second
book of my Conics . Read it carefully and communicate i t to such
others as are worthy of it . If Philonides, the geometer , whom I intro
duced to you at Ephesus , comes into the neighbourhood of Pergamum,

give it to him also .

”1
The first book

,
says Apollonius in his preface to it

,
contains the

mode of producing the three sections and the conjugate hyperbolas
and their principal characteristics

,
more ful ly and generally worked

out than in the writings of other authors . We remember that
M enaechmus

,
and all his successors down to Apollonius

,
considered only

sections of right cones by a plane perpendicular to their sides , and that
the three sections were obtained each from a di fferent cone . Apol
lonius introduced an important generalisation . He produced all the
sections from one and the same cone , whether right or scalene , and
by sections which may or may not be perpendicular to its sides . The
Old names for the three curves were now no longer applicable . Instead
of calling the three curves, sections of the

“ acute-angled ,
”“ right

angled
,

”and “ obtuse-angled”cone
,
he called them ell ipse, parabola ,

and hyperbola , respectively. To be sure , we find the words
“ parabola

and “ ellipse”in the works of Archimedes
,
but they are probably only

interpolations . The word “ ellipse”was applied because y2<px, p
being the parameter ; the word

“parabola”was introduced because
y
2= px, and the term hyperbola because y2>px.

The treatise of Apollonius rests on a unique property of conic sec
tions

,
whi ch is derived directly from the nature of the cone in which

these sections are found . How this property forms the key to the
system of the ancients is told in a masterly way by M . Chasles .2
“ Conceive

,

”says he
,

“ an oblique cone on a circular base ; the straight
line drawn from its summi t to the centre of the circle forming its base
is called the axis of the cone . The plane passing through the axis ,
perpendicular to its base , cuts the cone along two lines and determines
in the circle a diameter ; the triangle having this diameter for its base

1 H . G . Zeuthen ,
Die Lehre eon den Kegelschni tten im A lterthum

,
Kopenhagen ,

1886
, p . 502 .

2M . Chasles
,
Geschichte der Geometric. Aus dem Franzosischen ubertragen durch,

Dr . L . A . Sohneke
,
Hal le

,
1839, p . 1 5 .
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and the two lines for its sides
,
i s called the triangle through the axis .

In the formation of his conic sections
,
Apollonius supposed the cutting

plane to be perpendicul ar to the plane of the triangle through the
axi s . The points in whi ch thi s plane meets the two sides of this tri
angle are the vertices of the curve ; and the straight line whi ch joins
these two points is a diameter of it . Apollonius called this di ameter
latus transversum. At one of the two vertices of the curve erect a per
pendicul ar (latus rectum)to the plane of the triangle through the
axis

,
of a certain length

,
to be determined as

’

we shall specify later ,
and from the extremity of this perpendicular draw a straight line to
the other vertex of the curve ; now ,

through any point whatever of
the diameter of the curve

,
draw at right angles an ordinate. the square

of this ordinate
,
comprehended between the diameter and the curve

,

will be equal to the rectangle constructed on the portion of the ordinate
comprised between the diameter and the straight line

,
and the part

of the diameter comprised between the first vertex and the foot of the
ordinate . Such is the characteristic property which Apollonius recog
mises in hi s conic sections and whi ch he uses for the purpose of in
ferring from it

,
by adroit transformations and deductions

,
nearly all

the rest . It plays
,
as we shall see

,
in his hands

,
almost the same rOle

as the equation of the second degree with two variables (abscissa and
ordinate)in the system of analytic geometry of Descartes.”Apol
lonius made use of co—ordinates as did M enaechmus before him.

1

Chasles continues:
“ It will be observed from thi s that the diameter of the curve and

the perpendi cular erected at one of its extremities suffice to construct
the curve . These are the two elements whi ch the ancients used, with
whi ch to establish their theory of conics . The perpendicul ar in ques
tion was called by them latus erectum; the modem s changed this name
first to that of latus rectum

,
and afterwards to that Of parameter .

”
The first book of the Con ic S ections Of Apollonius is almost wholly
devoted to the generation of the three principal conic sections.
The second book treats mainly of asymptotes

,
axes

,
and diameters.

The third book treats of the equality or proportionality of triangles
,

rectangles
,
or squares

,
of whi ch the component parts are determined

by portions of transversals
,
chords

,
asymptotes

,
or tangents

,
which

are frequently subj ect to a great number of condi tions . It also touches
the subj ect of foci of the ellipse and hyperbola .

In the fourth book
,
Apollonius discusses the harmonic div ision of

straight lines. He also examines a system of two conics; and shows
that they cannot cut each other in more than four points. He inves
tigates the various possible relative positions of two coni cs , as , for
instance

,
when they have one or two points of contact with each other.

The fifth book reveals better than any other the giant intellect of
its author . Diffi cult questions of maxima and minima

,
of whi ch few

1T. L . Heath, Apol lonius of P erga, Cambridge, 1896 , p . CXV.
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adapted to the invention of general methods . Instead of a climb to
still loftier heights we observe

,
therefore

,
on the part of later Greek

geometers
,
a descent , during which they paused here and there to look

around for details which had been passed by in the hasty ascent .1
Among the earliest successors of Apollonius was Nicomedes . Noth
ing definite is known of him

,
except that he invented the conchoid

(
“
mussel a curve of the fourth order . He devised a little

machine by whi ch the curve could be easily described . With aid of
the conchoid he duplicated the cube . The curve can also be used for
trisecting angles in a manner resembling that in the eighth lemma of
Archimedes . Proclus ascribes this mode of trisection to Nicomedes,
but Pappus

,
on the other hand

,
claims i t as his own . The conchoid

was used by Newton in constructing curves of the third degree .
About the time of Nicomedes (say , 180 B . flourished also

Diocles , the inventor of the cissoid (
“ ivy Thi s curve he used

for finding two mean proportionals between two given straight lines .
The Greeks did not consider the companion- curve to the cissoid ;
in fact

,
they considered only the part of the cissoid proper whi ch

lies inside the circle used in constructing the curve . The part of the
area of the circle left over when the two circular areas on the concave
sides of the branches of the curve are removed

,
looks somewhat like

an ivy- leaf . Hence
,
probably

,
the name of the curve . That the two

branches extend to infinity appears to have been noticed first by G . P .

de Roberal in 1 640 and then by R . de Sluse .

2

About the life of P erseus we know as little as about that of Nico
medes and Diocles . He lived some time between 200 and 100 B . C .

From Heron and Geminus we learn that he wrote a work on the spire,
a sort of anchor-ring surface described by Heron as being produced by
the revolution Of a circle around one of its chords as an axis . The
sections of this surface yield peculiar curves called spiral sections ,
whi ch

,
according to Geminus

,
were thought out by Perseus . These

curves appear to be the same as the H ippopede of Eudoxus .
Probably somewhat later than Perseus lived Zenodorus . He wrote
an interesting treatise on a new subject ; namely, isoperimetricalfigures .

Fourteen propositions are preserved by Pappus and Theon . Here
are a few of them:Of isoperimetrical , regular polygons , the one having
the largest number of angles has the greatest area ; the circle has a
greater area than any regular polygon of equal periphery ; of all iso
perimentrical polygons of n S ides

,
the regular is the greatest ; of

all solids having surfaces equal in area
,
the sphere has the greatest

volume .

Hypsicl es (between 200 and 100 B . C .)was supposed to be the
author of both the fourteenth and fifteenth books of Euclid

,
but recent

critics are of opinion that the fifteenth book was written by an author
1 M . Cantor , op. cit.

,
Vol . I

, 3 Aufl .
,
190 7 , p . 350 .

2 G . Loria, Ebene Curve/i , transl . by F . Sch ii tte, I , 1910 , p . 37.



GREEK GEOMETRY 3

who lived several centuries after Christ . The fourteenth book con
tains seven elegant theorems on regular sol ids . A treatise of Hypsicles
on Risings is of interest because i t gives the div ision of the circum
ference into 360 degrees after the fashion of the Babylonians .
H ipparchus of Nicaea in B ithyn ia was the greatest astronomer of

antiquity. He took astronomical observations between 161 and 1 2 7
B . C . He established inductively the famous theory of epicycles and
eccentrics. As might be expected

,
he was interested in mathematics

,

not per se
,
but only as an aid to astronomical inquiry . No mathe

matical writings Of his are extant
,
but Theo 'n of Alexandria informs us

that Hipparchus originated the science of tr igonometry,
and that he

calculated a table of chords”in twelve books . Such calculations
must have required a ready knowledge of arithmetical and algebraical
operations . He possessed arithmetical and also graphical devices for
solving geometrical problems in a plane and on a Sphere . He gives
indication of having seized the idea of co-ordinate representation

,
found

earlier in Apollonius .
About 100 B . C . flourished Heron the Elde r of Alexandria . He was
the pupil of Ctesibius

,
who was celebrated for his ingeniousmechanical

inventions
,
such as the hydraulic organ

,
the water- clock

,
and catapult .

It is believed by some that Heron was a son of Ctesibius . He ex
hibited talent of the same order as did his master by the invention of
the eolipile and a curious mechanism known as “Heron ’s fountain .

”
Great uncertainty exists concerning his writings . M ost authorities
believe him to be the author of an important Treatise on the Dioptra ,
of which there exist three manuscript copies

,
quite dissimilar . But

M . Marie 1 thinks that the Dioptra is the work of Heron the Y ounger ,
who lived in the seventh or eighth century after Christ

,
and that

Geodesy, another book supposed to be by Heron , is only a corrupt and
defective Copy of the former work . Dioptra contains the important
formula for finding the area Of a triangle expressed in te rms Of its
sides ; its derivation is quite laborious and yet exceedingly ingenious .
“ It seems to me difficult to believe

,

”says Chasles
,

“ that so beautiful
a theorem should be found in a work so ancient as that of Heron the
Elder

,
without that some Greek geometer should have thought to

cite it .”Marie lays great stress on thi s silence of the ancient writers ,
and argues from i t that the true author must be Heron the Younger
or some writer much more recent than Heron the Elder . But no re
liable evidence has been found that there actually existed a second
mathematician by the name of Heron . P . Tannery has shown that ,
in -applying this formula

,
Heron found the irrational square roots by

A
the approximation

, x/Z~4 where a2 is the square nearest to

1Maximil ien M arie
,
Histoire des sciences mathematiques et phys iques . Paris

,

Tome I
,
1883 , p . 1 78 .



44 A HISTORY OF MATHEMATICS

A
A . When a more accurate value was wanted

,
Heron took

in the place of a in the above formula . Apparently
,
Heron some

times found square and cube roots also by the method of “ double
false position .

”
“Dioptra

,

”says Venturi
,
were instruments which had great re

semblance to our modern theodolites. The book Dioptra i s a treatise
on geodesy containing solutions

,
with aid of these instruments

,
of a

large number of questions in geometry
,
such as to find the distance

between two points
,
of which one only is accessible

,
or between two

points which are visible but both inaccessible ; from a given point to
draw a perpendi cular to a line which cannot be approached ; to find
the difference of level between two points ; to measure the area of a
field without entering it.
Heron was a practical surveyor . This may account for the fact
that his writings bear so little resemblance to those of the Greek
authors

,
who considered it degrading the science to apply geometry to

surveying . The character of his geometry is not Grecian
,
but de

cidedly Egyptian . This fact is the more surprising when we consider
that Heron demonstrated his familiarity with Euclid by writing a com
mentary on the Elements . Some of Heron ’s formulas point to an old
Egyptian origin . Thus

,
besides the above exact formula for the area

a l+az
x

2

0 1+ az
x
(31+bz

fO
2 2

of a triangle in terms of its sides
,
Heron gives the formula

whi ch bears a striking likeness to the formula 1

finding the area of a quadrangle
,
found in the Edfu inscriptions .

There are
,
moreover

,
points of resemblance between Heron ’s writings

and the ancient Ahmes papyrus . Thus Ahmes used unit- fractions
exclusively (except the fraction Heron uses them oftener than other
fractions . Like Ahmes and the priests at Edfu

,
Heron divides com

plicated figures into simpler ones by drawing auxiliary lines ; like them ,

he shows
,
throughout

,
a special fondness for the isosceles trapezoid.

The writings of Heron satisfied a practical want
,
and for that reason

were borrowed extensively by other peoples. We find traces of them
in Rome

,
in the Occident during the M iddle Ages

,
and even in India .

The works attributed to Heron
,
including the newly discovered

Melrica published in 1903 , have been edited by J . H . Heiberg
,

H . SchOne and W . Schmidt.
Geminus of Rhodes (about 70 B . c .)published an astronomical work

still extant . He wrote also a book
,
now lost

,
on the Arrangement of

Mathematics , which contained many valuable notices of the early
history of Greek mathematics . Proclus and Eutocius quote it fre
quently. Theodosius is the author of a book of little merit on the
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geometry of the sphere . Investigations due to P . Tannery and A . A .

BjOrnbo
l seem to indicate that the mathematician Theodosius was

not Theodosius of Tripolis
,
as formerly supposed

,
but was a resident

of Bithynia and contemporary of Hipparchus . Dionysodorus of
Ami sus in Pontus applied the intersection of a parabola and hyperbola
to the solution of a problem whi ch Archimedes

,
in his Sphere and

Cylinder , had left incomplete. The problem is
“ to cut a sphere so

that its segments shall be in a given ratio .

”
We have now sketched the progress of geometry down to the time

of Christ . Unfortunately
,
very little is known of the history of geom

etry between the time of Apollonius and the beginning of the Christian
era . The names of quite a number of geometers have been mentioned

,

but very few of their works are now extant . It is certain , however ,
that there were no mathematicians of real genius from Apollonius to
P tolemy, excepting Hipparchus and perhaps Heron .

The S econd A lexandrian S chool

The close of the dynasty of the Lagides which ruled Egypt from the
time of P tolemy Soter

,
the builder of Alexandria

,
for 300 years ; the

absorption of Egypt into the Roman Empire ; the closer commercial
relations between peoples of the East and of the West ; the gradual
decline of paganism and spread of Christianity

,

- these events were
of far-reaching influence on the progress of the sciences

,
which then

had their home in Alexandria . Alexandria became a commercial and
intellectual emporium . Traders of all nations met in her busy streets

,

and in her magnificent Library
,
museums

,
lecture-halls

,
scholars from

the East mingled wi th those of the West ; Greeks began to study older
literatures and to compare them with their own . In consequence of
this interchange of ideas the Greek philosophy became fused with
Oriental philosophy . Neo-Pythagoreanism and Neo-P latonism were
the names of the modified systems. These stood

,
for a time

,
in Op

position to Christianity. The study of P latonism and Pythagorean
mysticism led to the revival of the theory of numbers . Perhaps the
dispersion of the Jews and their introduction to Greek learning helped
in bringing about this revival . The theory of numbers became a
favorite study. This new line of mathematical inquiry ushered in
what we may call a new school . There is no doubt that even now
geometry continued to be one of the most important studies in the
Alexandrian course . This Second Alexandrian School may be said to
begin with the Christian era . It was made famous by the names of
Claudius P tolemaeus

,
Diophantus

,
Pappus

,
. Theon of Smyrna

,
Theon

of Alexandria
,
Iamblichus

,
Porphyrius

,
and others .

By the side of these we may place S erenus of Antinoeia, as having

1 Axel Anthon Bjornbo ( 1874—191 1)of Copenhagen was a historian of mathe
maties. See Bibl iotheca mathematica , 3 S . , Vol . 1 2 , 191 1

—
1 2 , pp . 337

—
344 .
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been connected more or less with this new school . He wrote on sec
tions of the cone and cylinder

,
in two books

,
one of which treated

only of the triangular section of the cone through the apex . He solved
the problem

,

“ given a cone (cylinder), to find a cylinder (cone), so
that the section of both by the same plane gives similar ellipses .”Of
particul ar interest is the following theorem

,
which is the foundation

of the modern theory of harmonics : If from D we draw DF ,
cutting

the triangle ABC
,
and choose H on it

,
so that DE DF= EH :HE,

and if we draw the line AH
,
then every transversal through D

,
such

as DG
,
will be div ided by AH so that DK DG= K] J G. M ene laus

of Alexandria (about 98 A . D .)was the author of Sphcerica , a work
extant in Hebrew and Arabic

,
but not in Greek . In it he proves the
theorems on the congruence of
spherical triangles

,
and describes

their properties in much the same
way as Euclid treats plane tri

D angles . In it are also found the
theorems that the sum of the three
sides Of a spherical triangle is less
than a great circle

,
and that the

sumof the three angles exceeds two right angles . Celebrated are two
theorems of his on plane and spherical triangles . The one on plane tri
angles is that

,

“ if the three sides be cut by a stra ight line , the product of
the three segments which have no common extremity is equal to the
product of the other three . L . N . M . Carnot makes this proposition

,

known as the “ lemma of M enelaus
,

”the base of his theory of trans
versals . The corresponding theorem for spherical triangles , the so

called regula sex quantitatum,

”is obtained from the above by
reading “ chords of three segments doubled

,

”in place of “ three seg
ments .
Cl audius Ptolemy , a celebrated astronomer , was a native of Egypt .

Nothing is known of his personal history except that he flourished in
Alexandria in 139 A . D . and that he made the earliest astronomical
Observations recorded in his works

,
in 1 2 5 A . D .

,
the latest in 1 51 A . D.

The chief of his works are the Syntaxis Mathematica (or the A lmagest,
as the Arabs call i t)and the Geographica , both of which are extant .
The former work i s based partly on his own researches

,
but mainly

on those of Hipparchus . P tolemy seems to have been not so much of
an independent investigator

,
as a corrector and improver Of the work

of his great predecessors . The A lmagest 1 forms the foundation of
all astronomical science down to N . Copernicus . The fundamental
idea of his system

,
the “

P tolemaic System
,

”is that the earth is in the
centre of the un iverse

,
and that the sun and planets revolve around

the earth . P tolemy did considerable for mathematics . He created ,
1 On the importance of the Almagest in the history of astronomy, consult P .

Tannery, Recherches sur l
’

histoire de l
’

astronomie, Paris, 1893 .
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for astronomical use
,
a trigonometry remarkably perfect in form. The

foundation of this science was laid by the illustrious Hipparchus .
The A lmagest is in 13 books . Chapter 9 of the first book shows how
to calculate tables of chords. The circle is divided into 360 degrees,
each of which is halved . The diameter is di vided into 1 20 divisions ;
each of these into 60 parts

,
which are again subdivided into 60 smaller

parts . In Latin
,
these parts were called partes minutae primae and

partes minutx secunda’ . Hence our names
,
minutes”and seconds .

The sexagesimal method of dividing the circle is of Babylonian origin ,
and was known to Geminus and Hipparchus . But P tolemy ’s method
of calculating chords seems original with him. He first proved the
proposition

,
now appended to Euclid VI (D), that “ the rectangle

contained by the diagonals of a quadrilateral figure inscribed in a
circle is equal to both the rectangles contained by its opposite S ides .”
He then shows how to find from the chords Of two arcs the chords of
their sum and di fference

,
and from the chord of any arc that of its

half . These theorems he applied to the calculation of his tables of
chords . The proofs of these theorems are very pretty. P tolemy ’s
construction of sides of a regular inscribed pentagon and decagon was
given later by C . Clavius and L . Mascheroni

,
and now is used much

by engineers. Let the radius BD be _L to AC ,

DE=EC M ake EF= EB
,
then BF is the side of

the pentagon and DF is the side of the decagon .

Another chapter of the first book in the A lma
gest is devoted to trigonometry, and to spherical
trigonometry in particular . P tolemy proved the
“ lemma of M enelaus

,

”and also the “ regula. sex quantitatum .

Upon these propositions he buil t up his trigonometry . In trigono
m etric computations, the Greeks did not use , as did the Hindus, half
the chord of twice the arc (the

“ sine the Greeks used instead
the whole chord of double the arc . Only in graphic constructions

,

referred to again later, did P tolemy and his predecessors use half the
chord of double the arc . The fundamental theorem of plane trigo
nometry, that two sides of a triangle are to each other as the chords
of double the arcs measuring the angles opposite the two sides

,
was

not stated explicitly by P tolemy
,
but was contained implicitly in other

theorems. M ore complete are the proposi tions in spherical trigo
nometry.

The fact that trigonometry was cultivated not for its own sake
,
but

to aid astronomical inquiry
,
explains the rather startling fact that

spherical trigonometry came to exist in a developed state earlier than
pla‘ne trigonometry .

The remaining books of the A lmagest are on astronomy. P tolemy
has written other works which have little or no bearing on mathe
maties

,
except one on geometry. Extracts from this book

,
made by

Proclus
,
indicate that P tolemy did not regard the parallel-axiom of

A F D E C
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Euclid as self- evident
,
and that Ptolemy was the first of the long line

of geometers from ancient time down to our own who toiled in the vain
attempt to prove it . The untenable part of his demonstration is the
assertion that

,
in case of parallelism

,
the sum of the interior angles on

one side of a transversal must be the same as their sum on the other
side of the transversal . Before Ptolemy an attempt to improve the
theory of parallels was made by Pos idoni us (first cent . B . C .)who de
fined parallel lines as lines that are coplanar and equidistant . From
an Arabic writer

,
A l -Ni rizi (ninth cent .)it appears that Simplicius

brought forward a proof of the 5th postulate , based upon this def
inition

,
and due to his friend Aganis

In the making of maps of the earth ’s surface and of the celestial
sphere

,
P tolemy (following Hipparchus)used stereographic projection .

The eye is imagined to be at one of the poles
,
the projection being

thrown upon the equatorial plane . He devised an instrument
,
a form

of astrolabe plani sphere
,
whi ch is a stereographi c proj ection of the

celestial sphere .

2 P tolemy wrote a monograph on the analemrna which
was a figure involving orthographic proj ections of the celestial sphere
upon three mutually perpendi cular planes (the horizontal , meridian
and vertical circles). The analemma was used in determining positions
of the sun

,
the rising and setting of the stars. The procedure was

probably known to Hipparchus and the older astronomers. It fur
nished a graphic method for the solution of spherical triangles and was
used subsequently by the Hindus

,
the Arabs

,
and Europeans as late

as the seventeenth century .

3

Two prominent mathematicians of this time were Nicomachus and
Theon _of Smyrna . Their favorite study was theory of numbers.
The investigations in this science culminated later in the algebra of
Diophantus . But no important geometer appeared after P tolemy
for 150 years . An occupant of this long gap was S extus Jul ius
Africanus , who wrote an unM portant work on geometry appli ed
to the art of war

,
entitled Cestes . Another was the sceptic , S extus

Empiricus (200 A . he endeavored to elucidate Zeno ’s “Arrow”
by stating another argument equally paradoxical and therefore far
from illuminating:M en never die

,
for if a man die

,
i t must either

be at a time when he is alive , or at a time when he is not alive ;
hence he never dies . Sextus Empiricus advanced also the paradox,
that

,
when a line rotating in a plane about one of its ends describes

a circl e w i th each of i ts points , these concentric circles are of um
equal area

,
yet each circle must be equal to the neighbouring circle

which it touches.1
1 R . Bonola, Non-Euclidean Geometry, trans. by H . S . Carslaw , Chicago, 191 2 ,

pp . 3
—8 . Robert Bonola ( 1875—191 1)was professor in Rome.

2 See M . Latham
,

“
The Astrolabe,

”
Am. M ath. Monthly, Vol . 24 , 191 7 , p . 16 2 .

3 See A . v . Braunmiihl , Geschichte der Trigonometr ie, Leipzig , I , 1900 , p . 1 1 .

Alexander von Braunmiihl (1853—1908)was professor at the technical high school
in Munich .
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cylinder
,
and imagine a cone of revolution having for its axis the side

of the cylinder passing through the initial point of the spiral
,
then

thi s cone cuts the cylinder in a curve of double curvature . The per
pendiculars to the axis drawn through every point in this curve form
the surface of a screw which Pappus here calls the plectoidal surface.

A plane passed through one of the perpendiculars at any convenient
angle cuts that surface in a curve whose orthogonal proj ection upon
the plane of the spiral is the required quadratrix. Pappus considers
curves of double curvature still further . He produces a spherical
spiral by a point moving uniformly along the circumference of a
great circle of a sphere

,
while the great circle itself revolves uniformly

around its diameter . He then finds the area of that portion of the
surface of the Sphere determined by the spherical spiral

,

“ a complana
tion which claims the more lively admiration

,
if we consider that

although the entire surface of the Sphere was known since Archimedes
time

,
to measure portions thereof

,
such as spherical triangles

,
was

then and for a long time afterwards an unsolved problem.

”1 A
question whi ch was brought into prominence by Descartes and Newton
is the “ problem of Pappus.”Given several straight lines in a plane

,

to find the locus of a point such that when perpendiculars (or , more
generally

,
straight lines at given angles)are drawn from i t to the

given lines
,
the product of certain ones of them shall be in a given

ratio to the product of the remaining ones. I t is worth noticing that
i t was Pappus who first found the focus of the parabola and pro
pounded the theory of the involution of points. He used the directrix
and was the first to put in definite form the definition of the conic
sections as loci of those points whose distances from a fixed point
and from a fixed line are in a constant ratio . He solved the problem
to draw through three points lying in the same straight l ine

,
three

straight lines which shall form a triangle inscribed in a given circle.
From the Mathematical Collections many more equally difli cul t the
orems might be quoted which are original with Pappus as far as we
know . It ought to be remarked

,
however

,
that he has been charged

in three instances with copying theorems without giving due credit
,

and that he may have done the same thi ng in other cases in whi ch
we have no data by which to ascertain the real discoverer.2

About the time of Pappus lived Theon of Alexandria. He brought
out an edition of Euclid’ s Elements with notes

,
which he probably

used as a text-book in his classes. His commentary on the A lmagest
is valuable for the many historical notices

,
and especially for the

specimens of Greek arithm etic which it contains . Theon
’
s daughter

Hypatia, a woman celebrated for her beauty and modesty, was the
last Alexandrian teacher of reputation

,
and is said to have been an

1M . Cantor
,
op. cit.

, Vol . I , 3 Aufl.
,
190 7 , p . 451 .

2 For a defence of Pappus against these charges, see J. H . Weaver in B ul l . Am.

M ath. S oc .
,
Vol . 23 , 1916 , pp . 13 1

—
133 .
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abler philosopher and mathematician than her father . Her notes on
the works of Diophantus and Apollonius have been lost . Her tragic
death in 41 5 A . D . is vividly described in Kingsley ’s Hypatia.

From now on
,
mathematics ceased to be cultivated in Alexandria.

The leading subj ect of men ’ s thoughts was Christian theology.

Paganism disappeared
,
and with it pagan learning . The Neo-P latonic

school at Athens struggled on a century longer. Proclus
,
Isidorus

,
and

others kept up the “ golden chain of Platonic succession .

”
P roclus ,

the successor Of Syrianus , at the Athenian school , wrote a commentary
on Euclid ’s Elements . We possess only that on the first book

,
which

is valuable for the information it contains on the history of geometry .

Damascius of Damascus , the pupil of Isidorus , is now believed to be
the author of the fifteenth book of Euclid . Another pupil of Isidorus
was Eutocius of Ascalon , the commentator of Apollonius and Archi
medes. S impl ic ius wrote a commentary on Aristotle

’s De Ccelo.

Simplicius reports Zeno as saying :
“That which

,
being added to

another
,
does not make i t greater

,
and being taken away from another

does not make i t less
,
is nothing .

”According to this
,
the denial of

the existence of the infinitesimal goes back to Zeno . This momentous
question presented itself centuries later to Leibniz

,
who gave diff erent

answers. The report made by Simplicius of the quadratures of Anti
phon and Hippocrates of Chios is one of the best sources of historical
information on this point.1 In the year 529, Justinian , disapproving
heathen learni ng

,
finally closed by imperial edict the schools at

Athens .
As a rule

,
the geometers of the last 500 years showed a lack of

creative power . They were commentators rather than discoverers .
The principal characteristics of ancient geometry are
(1)A wonderful clearness and definiteness of its concepts and an

almost perfect logical rigor of its conclusions .
(2)A complete want of general principles and methods . Ancient

geometry is decidedly special . Thus the Greeks possessed no general
method of drawing tangents. The determination of the tangents
to the three conic sections did not furnish any rational assistance for
drawing the tangent to any other new curve

,
such as the conchoid

,

the cissoid
,
etc .”In the demonstration of a theorem

,
there were

,
for

the ancient geometers
,
as many different cases requiring separate

proof as there were different positions for the lines . The greatest
geometers considered it necessary to treat all possible cases inde
pendently of each other

,
and to prove each with equal fulness . To

devi se methods by which the various cases could all be disposed of
by one stroke

,
was beyond the power of the ancients. “ If we com

pare a mathematical problem with a huge rock , into the interior of
which we desire to penetrate

,
then the work of the Greek mathe

1 See F . Rudio in B ibl iotheca mathematica , 3 S .
,
Vol . 3 , 190 2 , pp . 7

- 6 2 .
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maticians appears to us like that of a vigorous stonecutter who
,
with

chisel and hammer
,
begins with indefatigable perseverance

,
from with

out
,
to crumble the rock slowly into fragments ; the modern mathe

matician appears like an excellent miner
,
who first bores through the

rock some few passages
,
from which he then bursts it into pieces

wi th one powerful blast , and brings to light the treasures within .

”1

Greek Arithmetic and Algebra

Greek mathematicians were in the habit of discriminating between
the science of numbers and the art of calcul ation . The former they
called arithmetica , the latter logistica . The drawing of this distinction
between the two was very natural and proper . The difference be
tween them is as marked as that between theory and practice . Among
the Sophists the art of calculation was a favorite study. P lato

,
on

the other hand
,
gave considerable attention to phil osophi cal arith

metic
,
but pronounced calculation a vulgar and childish art .

In sketching the history of Greek calculation
,
we shall first give a

brief account of the Greek mode of counting and Of writing numbers.
Like the Egyptians and Eastern nations , the earliest Greeks counted
on their fingers or with pebbles. In case of large numbers

,
the pebbles

were probably arranged in parallel vertical lines . Pebbles on the
first line represented units

,
those on the second tens

,
those on the

third hundreds
,
and so on . Later

,
frames came into use

,
in which

strings or wires took the place of lines . According to tradition
,

Pythagoras
,
who travelled in Egypt and , perhaps , in India, first

introduced this valuable instrument into Greece . The abacus
,
as i t

is called
,
existed among di fferent peoples and at di fferent times, in

various stages of perfection . An abacus is still employed by the
Chinese under the name of Swan-pan . We possess no specific informa
tion as to how the Greek abacus looked or how it was used. Boethius
says that the Pythagoreans used with the abacus certain nine signs
called apices , which resembled in form the nine

“Arabic numerals.”
But the correctness of thi s assertion is subject to grave doubts.
1 The oldest Grecian numerical symbols were the so-called Herodianic

signs (after Herodianus
,
a Byzantine grammarian of about 200 A . D.

,

who describes them). These signs occur frequently in Athenian in
scriptions and are , on that account , now generally called Attic. For
some unknown reason these symbols were afterwards replaced by the
alphabetic numerals

,
in which the letters of the Greek alphabet were

used
,
together with three strange and antique letters I, 9 and TD,

and the symbol M . This change was decidedly for the worse , for the
old Attic numerals were less burdensome on the memory

,
inasmuch

1 H . Hankel
,
Die Entwickelung der Mathematik in den letzten J ahrhunderten .

Tubingen , 1884 , p . 16.
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as they contained fewer symbols and were better adapted to show
forth analogies in numerical operations . The following table shows
the Greek alphabetic numerals and their respective values

Z 9 t K it pt v cf 0 71 Q

7

a fl r 1)
I 2 3 8 9 10 20 30 40 50 60 70 80 90

3 e s

4 5 6

p 0
'

7 v 42 x 1p 1» T?) ,o. “8 ,y etc .
100 200 300 400 500 600 700 800 900 1000 2000 3000

It will be noticed that at 1000
,
the alphabet is begun over again

,

but
,
to prevent confusion

,
a stroke is now placed before the letter

and generally somewhat below it . A horizontal line drawn over a
number served to distinguish it more readily from words . The co

efficient for M was sometimes placed before or behind instead of over
the M . Thus was written 8M ,yxon. It is to be observed that
the Greeks had no zero .

Fractions were denoted by first writing the numerator marked with
an accent

,
then the denominator marked with two accents and written

twice . Thus
,
uy

’
nd K9
”=44. In case of fractions having unity for

the numerator
,
the a'was omitted and the denomi nator was written

only once . Thus 1

2 1"

The Greeks had the name epimorion for the ratio Archytas

proved the theorem that if an epimorion
[
2
1is reduced to its lowest

terms then Thi s theorem is found later in the musical

writings of Euclid and of the Roman Boethius . The Euclidean form
of arithmetic

,
without perhaps the representation of numbers by lines

,

existed as early as the time of Archytas .1
Greek writers seldom refer to calculation with alphabetic numerals .

Addition
,
subtraction

,
and even multiplication were probably per

formed on the abacus . Expert mathematicians may have used the
symbols . Thus Eutocius

,
a commentator of the sixth century after

Christ
,
gives a great many multiplications -of which the following is

a specimen:2

1 P . Tannery in B ibl iotheca mathematica , 3 S .
, Vol . VI , 1905 , p . 2 28 .

2
J. Gow

,
op. ci t. , p . 50 .
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The operation is explained suf

ficiently by the modern numerals
appended . In case of mixed
numbers, the process was still

MM , ,
8 ,
a 40000 , 1 2000

,
1000 more clumsy. Divisions are found

in Theon of Alexandria ’s com
M
539”1 2000

, 3600 , 300 mentary on the A lmagest. As
a 7 K6 1000

, 300 , 25 might be expected, the process is
long and tedious .

a K 6 70 2 25
We have seen in geometry that

themore advancedmathematicians
frequently had occasion to extract the square root . Thus Archimedes
in his M ensuration of the Ci rcle gives a large number of square roots .
He states

,
for instance

,
that -

1—3—5—1. and 2 6 5 but he gives no
1 5 3

clue totlie method by which he obtained these approximations . I t
is not improbable that the earlier Greek mathematicians found the
square root by trial only. Eutocius says that the method of extracting
it was given by Heron

,
Pappus

,
Theon

,
and other commentators on

the A lmagest. Theon
’

s is the only one of these methods known to us .
It is the same as the one used nowadays , except that sexagesimal
fractions are employed in place of our decimals . What the mode of
procedure actually was when sexagesimal fractions were not used , has
been the subj ect of conj ecture on the part of numerousmodern writers.
Of interest

,
in connection with arithmetical symbolism,

is the S and
Counter (Arenarius), an essay addressed by Archimedes to G elon ,
king of Syracuse . In it Archimedes shows that people are in error who
think the sand cannot be counted

,
or that if i t can be counted, the

number cannot be expressed by arithmetical symbols . He shows that
the number of grains in a heap of sand not only as large as the whole
earth

,
but as large as the entire universe

,
can be arithmetically ex

pressed. Assuming that grains of sand suffice to make a little
solid of the magnitude of a pop

p
y- seed

,
and that the diameter of a

poppy- seed be not smaller than 1
-

4
part of a finger ’s breadth

,
assum ing

further
,
that the diameter of the un iverse (supposed to extend to the

sun)be less than diameters of the earth
,
and that the latter

be less than stadia
,
Archimedes finds a number which would

exceed the number of grains of sand in the sphere Of the universe.
He goes on even further . Supposing the universe to reach out to the
fixed stars

,
he finds that the Sphere

,
having the distance from the

earth ’s centre to the fixed stars for its radius
,
would contain a number

of grains of sand less than 1000 myriads of the eighth octad . In our
notation

,
this number would be 1063 or 1 with 63 ciphers after it . It

can hardly be doubted that one object which Archimedes had in view
in making this calculation was the improvement of the Greek sym

bolism. It is not known whether he invented some short notation by
which to represent the above number or not .
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We judge from fragments in the second book of Pappus that Apol
lonius proposed an improvement in the Greek method of writing
numbers

,
but its nature we do not know . Thus we see that the Greeks

never possessed the boon Of a clear
,
comprehensive symbolism . The

honor of giving such to the world was reserved by the irony of fate
for a nameless Indian of an unknown time

,
and we know not whom to

thank for an invention of such importance to the general progress of
intelligence .

1

Passing from the subj ect of logistica to that of arithmetica, our at
tention is first drawn to the science Of numbers of Pythagoras . Before
founding his school

,
Pythagoras studied for many years under the

Egyptian priests and familiarised himself with Egyptian mathematics
and mysticism . If he ever was in Babylon

,
as some authorities claim

,

he may have learned the sexagesimal notation in use there ; he may
have picked up considerable knowledge on the theory of proportion

,

and may have found a large number of interesting astronomical
observations . Saturated with that speculative spirit then pervading
the Greek mind

,
he endeavored to discover some principle of homo

geneity in the universe . Before him ,
the philosophers of the Ionic

school had sought i t in the matter of things ; Pythagoras looked for
i t in the structure of things . He Observed various numerical relations
or analogies between numbers and the phenomena of the universe .

Being convinced that i t was in numbers and their relations that he
was to find the foundation to true philosophy

,
he proceeded to trace

the origin of all things to numbers. Thus he observed that musical
strings of equal length stretched by weights having the proportion of

4, 4, 4, produced intervals which
'

were an octave
,
a fifth

,
and a fourth .

Harmony
,
therefore

,
depends on musical proportion ; it is nothing but

a mysterious numerical relation . Where harmony is
,
there are

numbers . Hence the order and beauty of the universe have their
origin in numbers . . There are seven intervals in the musical scale

,

and also seven planets crossing the heavens . The same numerical
relations which underlie the former must underlie the latter . But
where numbers are

,
there is harmony. Hence his spiritual ear dis

cerned in the planetarymotions a wonderful harmony of the spheres .”
The Pythagoreans invested particular numbers with extraordinary
attributes . Thus one is the essence of things ; i t is an absolute number ;
hence the origin of all numbers and so of all things . Four is the most
erfect number and was in some mystic way conceived to correspond
to the human soul . Philolaus believed that 5 is the cause of color , 6 Of
cold

, 7 of mind and health and light , 8 of love and friendship .

2 In
Plato ’s works are evidences of a similar belief in religious relations of
numbers . Even Aristotle referred the virtues to numbers .
Enough has been said about these mystic speculations to show

what lively interest in mathematics they must have created and
1
J. Gow ,

op. cit.

, p . 6 2
J . Gow

,
op. cit. , p . 69.
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maintained . Avenues of mathematical inquiry were opened up by “

them which otherwise would probably have remained closed at that
time .

The Pythagoreans classified numbers into odd and even . They
observed that the sum of the series of odd numbers from 1 to 2n + 1

was always a complete square
,
and that by addition of the even num

bers arises the series 2
,
6
,
1 2

,
20

,
in which every number can be de

composed into two factors diff ering from each other by unity. Thus
,

6= 2 . 3 , 1 2 = 3 . 4 , etc . These latter numbers were considered of
suffi cient importance to receive the separate name of heteromecic (not”(

Z
-H)were call ed triangular ,

because they could always be arranged thus
,

Numbers which
were equal to the sum of all their possible factors

,
such as 6

,
28

, 496 ,
were called perfect; those exceeding that sum

,
excessive; and those

whi ch were less
,
defective. Amicable numbers were those of

'

which

each was the sum of the factors in the other. M uch attention was
paid by the Pythagoreans to the subj ect of proportion . The quan
tities a

,
b
,
c
,
d were said to be in arithmetical proportion when a—b

c—d; in geometrical proportion , when a:b= c:d; in harmonic propor
tion

,
when a—b:b—c= azc. It is probable that the Pythagoreans

a+b 2ab
were also famil iar with the musical proportion az—

z m :b.

Iambl ichus says that Pythagoras introduced it from Babylon .

In connection with arithmetic
,
Pythagoras made extensive inyesti

gations into geometry . He believed that an arithmetical fact had
its analogue in geometry

,
and vice versa . In connection with his

theorem on the right triangle he dev ised a rule by which integral
numbers could be found, such that the sum of the squares of two of
them equalled the square of the third . Thus

,
take for one side an odd

(2n+ 1

2

(2n2+ 2n+ 1)hypotenuse . If 2n+ 1 9, then the other two numbers
are 40 and 41 . But this rul e only applies to cases in which the hy
potenuse di ffers from one of the sides by 1 . In the study of the right
triangle there doubtless arose q uestions of puzzl ing subtlety. Thus

,

given a number equal to the side of an isosceles right triangle
,
to find

the number which the hypotenuse is equal to . The side may have
been taken equal to 1

,
2
, 4, 4, or any other number, yet in every in

stance all efforts to find a number exactly equal to the hypotenuse
must have remained fruitless. The problem may have been attacked
again and again

,
until finally some rare genius

,
to whom i t i s granted

,

during some happy moments
,
to soar -with eagle ’s flight above the

level of human thinking
,

”grasped the happy thought that this prob

equilateral). Numbers of the form

number then = 2n2+ 2n= the other side
,
and
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Euclid devotes the seventh , eighth , and ninth books of his Elements
to arithmetic . Exactly how much contained in these books is Euclid ’s
own invention

,
and how much is borrowed from his predecessors, we

have no means of knowing . Wi thout doub t, much is original with
Euclid . The seventh book begins with twenty-one definitions . All
except that for “ prime”numbers are known to have been given by
the Pythagoreans . Next follows a process for findi ng the G . C . D .

Of two or more numbers . The eighth book deals with numbers in con
tinued proportion , and with the mutual relations of squares , cubes ,
and plane numbers . Thus , XXII , if three numbers are in continued
proportion

,
and the first IS a square

,
so is the thi rd. In the ninth book ,

the same subject is continued . I t contains the proposition that the
number of primes is greater than any givennumber .
After the death of Euclid

,
the theory of numbers remained almost

stationary for 400 years . Geometry monopolised the attention of all
Greek mathematicians. Only two are known to have done work in
arithmetic worthy ofmention . Eratosthenes (275—194 B . C .)invented
a “ sieve”for finding prime numbers. All composite numbers are
“ sifted”out in the following manner:Write down the odd numbers
from 3 up , in succession . By striking out every third number after
the 3 , we remove all multiples of 3 . By striking out every fifth num
ber after the 5 , we remove all multiples of 5. In this way

,
by rejecting

multiples of 7 , 1 1 , 13 , etc .

,
we have left prime numbers only . Hyp

s ic les (between 200 and 100 B . C .)worked at the subj ects of polygonal
numbers and arithmetical progressions

,
which Euclid entirely neg

lected. In his work on “ risings of the stars
,

”he showed (1)that in
an arithm etical series of 2n terms

,
the sum of the last n terms exceeds

the sum of the first n by a mul tiple of n2 ; (2)that in such a series of
2n+ 1 terms

,
the sum of the series is the number of terms multiplied

by the middle term ; (3)that m such a series of 2n terms, the sum i s
half the number of terms multiplied by the two middle terms .1

For two centuries after the time of Hypsicles , arithmetic disappears
from hi story. I t is brought to light again about 100 A . D . by Ni
comachus , a Neo-Pythagorean

,
who inaugurated the final era of Greek

mathematics . From now on , arithmetic was a favorite study, while
geometry was neglected . Nicomachus wrote a work entitled In
troductio Arithmetica

,
which was very famous in its day. The great

number of commentators it has received vouch for its popularity.

Boethius translated it into Latin . Lucian could pay no higher com
pliment to a calculator than thi s: “You reckon like Nicomachus of
Gerasa.

”The Introductio A ri thmetica was the first exhaustive work
in whi ch arithmetic was treated quite independently of geometry.

Instead of drawing lines
,
like Euclid

,
he illustrates things by real

numbers. To be sure , in his book the Old geometrical nomenclature is
retained

,
but the method is inductive instead of deductive . “ Its sole

1
J. Gow ,

op. cit. , p . 87 .
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business is classification
,
and all its classes are derived from

,
and

exhibited by
,
actual numbers . The work contains few results that

are really original . We mention one important proposition whi ch is
probably the author ’s own . He states that cubical numbers are al
ways equal to the sum of successive Odd numbers . Thus

,

2 7 3
3 : 13+ 15+ 1 74

-
19, and so on . This

theorem was used later for finding the sum of the cubical number
themselves . Theon of Smyrna is the author of a treatise on

“ t
mathematical rules necessary for the study of Plato .

”The work is
ill arranged and of little merit . Of interest is the theorem

,
that every

square number
,
or that number minus 1

,
is divisible by 3 or 4 or both .

A remarkable discovery is a proposition given by Iamb lichus in his
treatise on Pythagorean philosophy . It is founded on the observation
that the Pythagoreans called 1

,
10

,
100

,
1000

,
units of the first

,
second

,

third
,
fourth “ course”respectively . The theorem is this : If we add

any three consecutive numbers
,
of which the highest is di visible by3 ,

then add the digits of that sum
,
then

,
again

,
the di gits of that sum

,

and so on
,
the final sumwill be 6 . Thus

,
63 186

,

15, 1+ 5= 6 . This discovery was the more remarkable
,
because the

ordinary Greek numerical symbolism was much less likely to suggest
any such property of numbers than our “Arabic”notation would
have been .

Hippolytus
,
who appears to have been bishop at Portus Romae in

Italy inthe early part of the third century
,
must be mentioned for the

giving of “ proofs by casting out the 9
’

s and the 7
’

s .

The works of Nicomachus
,
Theon of Smyrna

,
Thymaridas , and

others contain at times investigations of subjects which are really
algebraic in their nature . Thymaridas in one place uses the Greek ,
word meaning “ unknown quantity”in a way which would lead one
to believe that algebra was not far distant . Of interest in tracing the
invention of algebra are the arithmetical epigrams in the P alatine
Anthology, which contain about fifty problems leading to linear equa
tions . Before the introduction of algebra these problems were pro
pounded as puzzles . A riddle attributed to Euclid and contained in
the Anthology is to this effect :A mule and a donkey were walking
along

,
laden with corn . The mule says to the donkey ,

“ If you gave
me one measure

,
I should carry twice as much as you . If I gave you

one
,
we Should both carry equal burdens . Tell me their burdens , O

most learned master of geometry .

”1
I t will be allowed

,
says Gow ,

that this problem
,
if authentic

,
was

not beyond Euclid
,
and the appeal to geometry smacks of antiquity.

A far more diffi cult puzzle was the famous cattle-problem
,

”which
Archimedes propounded to the Alexandrian mathemati

‘

c
‘

ians . The
problem is indeterminate

,
for from only seven equations

,
eight um

known quantities in integral numbers are to be found . I t may be
1
J. Gow

,
op. cit.

, p . 99.



60 A HISTORY OF MATHEMATICS

stated thus : The sun had a herd of bulls and cows , of different colors .

(1)Of Bulls , the white (W)were , in number , of the blue (B)
and yellow ( Y): the B were (44—4)of the Y and piebald (P): the P
were of theW and Y . (2)Of Cows , which had the same colors
(w ,

b
, y, P),

(B 6 4 221 1)(P 2
-é

Find the number of bulls and cows .1 This leads to high numbers ,
but

,
to add to its complexity

,
the condi tions are superadded that

W+B = a square , and P+ Y =a triangular number , leading to an in
determinate equation oi the second degree . Another problem in the
Anthology is quite familiar to school-boys :

“Of four pipes
,
one fills the

cistern in one day,
the next in two days

,
the third in , three days , the

fourth in four days : if all run together , how soon will they fill the
cistern?”A great many Of these problems

,
puzzling to an arith

metician
,
would have been solved easily by an algebraist . They be

came very popular about the time of Diophantus
,
and doubtless acted

as a powerful stimulus on his mind .

D iophantus was one of the last and most fertile mathematicians of
the second Alexandrian school . He flourished about 250 A . _D . His
age was eighty four

,
as is known from an epitaph to this eff ect:Dio

phantus passed 6
4 of his life 1n childhood

,

1

1 2
in youth

,
and .

1

,
more as

a bachelor
,
five years after his marriage was born a son who

7

died four
years before his father

,
at half his father ’s age . The place of nativity

and parentage of Diophantus are unknown . If his works “were not
written in Greek

,
no one would think for a moment that they were

the product of Greek mind . There is nothing in his works that
reminds us of the classic period of Greek mathematics . His were al
most entirely new ideas ou a new subject . In the circle of Greek
mathematicians he stands alone in his special ty. Except for him

,

we should be constrained to say that among the Greeks algebra was
almost an unknown science .
Of his works we have

1

lost the P orisms
,
but possess a fragment of

P olygonal Numbers
,
and seven books of his great work on A ri thmetica

,

said to have been written in I 3 books . Recent editions of the Ari th
metica were brought out by the indefatigable historians, P . Tannery
and T . L . Heath , and by G . Wertheim.

If we except the Ahmes papyrus
,
which contains the first sugges

tions of algebraic notation
,
and of the solution of equations

,
then his

A rithmetica is the earliest treatise on algebra now extant . In this work
is introduced the idea of an algebraic equation expressed in algebraic
symbols . His treatment is purely analytical and Completely divorced
from geometrical methods . He states - that “ a number to be sub

1
J. Gow , op. cit. , p . 99.
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tracted
,
multiplied by a number to be subtracted , gives a number to

be added .

”This is applied to the multiplication of differences
,
such

as (x - I)(x I t must be remarked , that Diophantus had no
notion whatever of negative numbers standing by themselves . Al l

he knew were diff erences
,
such as (

‘

2x in which 2x could not be
smal ler than 10 without leading to an absurdity . He appears to be
the first who could perform such operations as (x 1)X (x 2)without
reference to geometry . Such identities as (a+b)2 = a2+ 2ab+b2, which
with Euclid appear in the elevated rank of geometric theorems , are
with Diophantus the simplest consequences of the algebraic laws of
operation . His S ign for subtraction was fl‘, for equality L. For un
known quantities he had only one symbol

,
9 . He had no sign for

addition except juxtaposition . Diophantus used but few symbols
,

and sometimes ignored even these by describing an operation in words
when the symbol would have answered just as well .
In the solution of simultaneous equations Diophantus adroitly

managed with only one symbol for the unknown quantities and ar
rived at answers

,
most commonly

,
by the method of tentative assump

tion
,
whi ch consists in assigning to some of the unknown quantities

prelimi nary values
,
that satisfy only one or two of the conditions .

These values lead to expressions palpably wrong
,
but which generally

suggest some stratagem by which values can be secured satisfying
all the conditions of the problem.

Diophantus also solved determinate equations of the second degree .

Such equations were solved geometrically by Euclid and Hippocrates .
Algebrai c solutions appear to have been found by Heron of Alexandria

,

who gives 84as an approximate answer to the equation 144x( 14 x)
6720 . In the Geometry, doubtfully attributed to Heron , the solution of
the equation 44x

2+ .

2
~4x = 2 1 2 is practically stated in the form x

“(154x 2 1 2 +841)29
. D iophantus nowhere goes through with the

whole process of solving quadratic equations ; he merely states the
result. Thus

,

“
84x

2+7x = 7 , whence x is found From partial
explanations found here and there it appears that the quadratic equa
tion was so written that all terms were positive . Hence , from the point
of view of Diophantus

,
there were three cases of equations with a

positive root :dx2+bx =c, ax2 =bx+c, ax2+c =bx, each case requiring
a rule slightly different from the other two . Notice he gives only one
root . His failure to observe that a quadratic equation has two roots

,

even when both roots are positive
,
rather surprises us . I t must be

remembered
,
however

,
that this same inability to perceive more than

one out of the several solutions to which a problem may point is com
mon to all Greek

‘

mathematicians . Another point to be observed
is that he never accepts as an answer a quantity which is negative
or i rrational .
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D iophantus devotes only the first book of his A rithmetica to the
solution of determinate . equations . The remaining books extant

\ t
\
reat mainly of indeterminate quadratic equations of the form Ax2+
Bx+C =

y
2
,
or of two simultaneous equations of the same form. He

considers several but not all the possible cases which may arise in
these equations . The opinion of Nesselmann on the method of Dio
phantus , as stated by Gow ,

is as follows : (1)Indeterminate equations
of the second degree are treated completely only when the quadratic
or the absolute term is wanting:his solution of the equations Ax2
C =

y
2 and Ax2—1-Bx+C =

y
2 is in many respects cramped . (2)For

the ‘

double equation ’ of the second degree he has a definite rule only
when the quadratic term is wanting in both expressions : even then
his solution is not general . M ore complicated expressions occur only
under specially favourable circumstances .”Thus

,
he solves Bx+C2

=
y
2
, l +C 12 =

The extraordinaryability of Diophantus l ies rather in another di
rection

,
namely

,
in his wonderful ingenu i ty to reduce all sorts of

equations to particular forms which he knows how to solve . Very
great is the variety of problems considered . The I 30 problems found
in the great work of Diophantus contain over 50 different classes of
problems

,
which are strung together without any attempt at classi

fication . But still more multifarious than the problems are the solu
tions . General methods are almost unknown to Dipohantus. Each
problem has its own distinct method

,
which is Often useless for the

most closely related problems . “ I t is
,
therefore

,
diffi cult for a modern

,

after studying 100 Diophantine solutions
,
to solve the I o rst .

”This
statement

,
due to Hankel

,
is somewhat overdrawn

,
as is shown by

Heath .

1

That which robs his work of much of its scientific value is the
fact that he always feels satisfied with one solution

,
though his equa

tion may admit of an indefinite number .of values . Another great
defect is the absence of general methods . Modern mathematicians

,

such as L . Euler , J . Lagrange
,
K . F . Gauss

,
had to begin the study of

indeterminate analysis anew and received no direct aid from Dio
phantus in the formulation of methods . In spite of these defects
we cannot fail to admire the work for the wonderful ingenuity ex
hibited therein in the solution Of particular equations .

1 T. L . Heath
,
Diophantus of Alexandria, 2 Ed. ,

Cambridge, 1910 , pp . 54
-

97 .



THE ROMANS

Nowhere is the contrast between the Greek and Roman minds
shown forth more distinctly than in their attitude toward the mathe
matical science . The sway of the Greek was a flowering time for
mathematics

,
but that of the Roman a period of sterility . In philos

ophy,
poetry

,
and art the Roman was an imitator . But in mathe

maties he did not even rise to the desire for imitation . The mathe
matical fruits of Greek genius lay before him untasted . In him a
science which had no direct bearing on practical life could awake no
interest. As a consequence , not only the higher geometry of Archi
medes and Apollonius

,
but even the Elements of Euclid

,
were neglected .

What littlemathematics the Romans possessed did not come altogether
from the Greeks

,
but came in part frommore ancient sources . Exactly

where and how some of it originated is a matter of doubt . I t seems
most probable that the “ Roman notation

,
as well as the early

practical geometry of the Romans
,
came from the old Etruscans

,

who
,
at the earliest period to which our knowledge of them extends

,

inhabited the district between the Arno and Tiber .
Livy tells us that the Etruscans were in the habit of representing
the number of years elapsed

,
by driving yearly a nail into the sanc

tuary Of M inerva
,
and that the Romans continued this practice . A

less primitive mode of designating numbers
,
presumably of Etruscan

origin
,
was a notation resembling the present

“Roman notation .

”
This system is noteworthy from the fact that a principle is involved
in it which is rarely met with in others

,
namely

,
the principle of sub

traction . If a letter be placed before another of greater value
,
its

value is not to be added to
,
but subtracted from

,
that of the greater .

In the designation of large numbers a horizontal bar placed over a
letter was made to increase its value one thousand fold . In fractions
the Romans used the duodecimal system.

Of arithmetical calculations
,
the Romans employed three different

kinds:W W W
pared or t e purpose . in er-s mbplfimm k wm aeaM i he

time of King Numa
,
for he ad erected

,
says P liny

,
a statue Of the

double- faced Janus
,
of which the fingers indicated 365 (35 the

number of days in a year . M any other passages from Roman authors
point out the use of the fingers as aids to calculation . In fact

,
a finger

symbolism of practically the same form was i n use not only in Rome
,

but also in Greece and throughout the East
,
certainly as early as the

beginning of the Christian era
,
and continued to be used in Europe

1M . Cantor
,
op. cit.

, Vol . I , 3 Aufl.
,
190 7, p . 526 .
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during theM iddle Ages . We possess no knowledge as to where or when
it was invented . The second mode of calculation

,
by the abacus , was

a subject of elementary instruction in Rome . Passages m oman
writers indicate that the kind of abacus most commonly used was
covered with dust and then divided into columns by drawing straight
lin es . Each column was supplied with pebbles (calculi , whence

“ cal
culare
”and calculate”)which served for calculation .

The Romans used also another kind of abacus
,
consisting of a

metallic plate hav ing grooves w ith movable buttons . By its use all
integers between 1 and as well as some fractions

,
could be

represented . In the two adjoining figures 1 the lines represent grooves

c i c w ii c x i c x w i

T

and the circles buttons . The Roman numerals indicate the value of
each button in the corresponding groove below ,

the button in the
shorter groove above having a fivefold value . Thus

"

If

hence each button in the long left—hand groove
,
when in use; stands

for and the button in the short upper groove stands for
The same holds for the other grooves labelled by Roman

numerals . The eighth long groove from the left (havin g 5 buttons)
represents duodecimal fractions

,
each button indicating

4

1

4 ,
while the

button above the dot means
4

6

4
. In the ninth column the upper

button represents
4
1

4 ,
t- he middle

4

1

4 ,
and two lower each -

7
Our

first figure represents the positions of the buttons before the operation
begins ; our second figure stands for the number 852 4 4

1

4
. The eye

has here to distinguish the buttons in use and those left idle . Those
counted are one button above c and three buttons below
c one button above x two buttons below I = 2)four
buttons indicating duodecimals ; and the button for

1

2

Suppose now that
4

3

is to be added to 852 1

4

1 The
3 2 4

operator could begin with the highest units , or the lowest units , as he
pleased . Naturally the hardest part is the addition of the fractions.

1 G . Friedlein
,
Die Zahlzeichen und das elementareRechnen der Griechen and Romer ,

Erlangen ,
1869, Fig . 2 1 . Gottfried Friedlcin (1828—1875)was “

Rek tor der Kgl .

Studienanstalt zu Hot
”
in Bavaria.



https://www.forgottenbooks.com/join


66 A HISTORY OF MATHEMATICS

Rome a science of geometry , with definitions , axioms , theorems , and
proofs arranged in logical order

,
will be disappointed . The only

geometry known was a practical geometry , whi ch , like the old Egyp
tian

,
consisted only of empirical rules . This practical geometry was

employed in surveying . Treatises thereon have come down to us
,

compiled by the Roman surveyors , called agri inensores or gromatici .
One would naturally expect rules to be clearly formulated . But no ;
they are left to be abstracted by the reader from a mass of numerical
examples . The total impression is as though the Roman gromatic
were thousands of years older than Greek geometry

,
and as though

a deluge were lying between the two . Some of their rules were prob
ably inherited from the Etruscans

,
but others are identical wi th those

of Heron . Among the latter is that for finding the area of a triangle
from its sides and the approximate formula , 44a2, for the area of
equilateral triangles (a being one of the sides). But the latter area
was also calculated by the formul as and 4a2, the first of
which was unknown to Heron . Probably the expression 4a? was de

a+b

2 2

the surface of a quadrilateral . This Egyptian formula was used by
the Romans for finding the area

,
not only of rectangles

,
but of any

quadrilaterals whatever . Indeed
,
the gromatici considered it even

suffi ciently accurate to determine the areas of cities , laid out irregu
larly,

simply by measuring their circumferences . 1 Whatever Egyptian
geometry the Romans possessed was transplanted across the M editer

ranean at the time of Jul ius Cwsar , who ordered a survey of the whole
empire to secure an equitable mode of taxation . Ca sar also reformed
the calendar

,
and

,
for that purpose

,
drew from Egyptian learning.

He secured the services of the Alexandrian astronomer
,
S osigenes .

Two Roman ph ilosophical writers deserve o ur attention . The
philosophical poet

,
Ti tus Lucreiius (96 ?—55 B . in his De rerum

natura
,
entertains conceptions of an infinite multitude and of an in

finite magnitude which accord with the modern definitions of those
terms as being not variables but constants . However , the Lucretian
infinites are not composed of abstract things , but of material particles .
His infinite multitude is of the denumerable variety ; he made use
of the whole-part property of infinite multitudes .2
Cognate topics are discussed several centuries later by the cele

brated father of the Latin church , S t. Augustine (354
—
430 A . in

hi s references to Zeno of Elea . In a dialogue on the question
,
whether

or not the mind of man moves when the body moves
,
and travels with

the body
,
he is led to a definition of motion

,
in which he displays some

levity . I t has been said of scholasticism that it has no sense of humor.

rived from the Egyptian formula for the determination of

1H . Hankel
,
op. cit.

, p . 297 .

2 C . J. Keyser in Bull . Am. Al al/z. S oc .
,
Vol . 24 , 1918 , p . 268 , 321 .
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Hardly does this apply to S t . Augustine . He says : When this dis
course was concluded

,
a boy came running from the house to call us

to dinner . I then remarked that this boy compels us not only to
define motion

,
but to see i t before our very eyes . So let us go

,
and

pass from this place to another ; for that is , if I am not mistaken
,

nothing else than motion .

”S t . Augustine deserves the credit of
having accepted the existence of the actually infinite and to have
recognized it as being

,
not a variable

,
but a constant . He recognized

al l finite positive integers as an infinity of that type . On this point
he occupied a radically different position than his forerunner

,
the

Greek father of the church
,
Origen of Alexandria . Origen ’s arguments

against the actually infinite have been pronounced by Georg Cantor
the profoundest ever advanced against the actually infinite .

In the fifth century
,
the Western Roman Empire was fast falling

to pieces . Three great branches— Spain
,
Gaul

,
and the province of

Africa—broke off from the decaying trunk . In 476 , the Western
Empire passed away

,
and the Visigothic chief

,
Odoacer

,
became king .

Soon after
,
I taly was conquered by the Ostrogoths under Theodor ic .

It is remarkable that this very period of political humiliation should
be the one during which Greek science was studied in Italy most
zealously. School—books began to be compiled from the elements of
Greek authors . These compilations are very deficient

,
but are of

absorbing interest , from the fact that , down to the twelfth century ,
they were the only sources ofmathematical knowledge in the Occident.
Foremost among these writers is Boethius (died At first he
was a great favorite of King Theodoric

,
but later

,
being charged by

envious courtiers with treason
,
he was imprisoned

,
and at last decapi

tated. While in prison he wrote On the Consolations of P hi losophy. As
a mathematician

,
Boethius was a Brobdingnagian among Roman

Scholars
,
but a Liliputian by the side of Greek masters . He wrote

an Insti tutis A rithmetica , which is essentially a translation of the arith
metic of N icomachus

,
and a Geometry in several books . Some of the

most beautiful results of Nicomachus are omitted in Boethius ’ arith
metic . The first book on geometry is an extract from Euclid ’s Ele
ments

,
which contains

,
in addition to definitions

,
postulates

,
and

axioms
,
the theorems in the first three books

,
without proofs . How

can this omission of proofs be accounted for? I t has been argued by
some that Boethius possessed an incomplete Greek copy of the Ele
ments; by others , that he had Theon

’

s edition before him
,
and be

lieved that only the theorems came from Euclid , while the proofs were
supplied by Theon . The second book , as also other books on geometry
attributed to Boethius

,
teaches

,
from numerical examples , the men

suration of plane figures after the fashion of the agrimensores .
A celebrated portion in the geometry of Boethius is that pertaining
to an abacus , which he attributes to the Pythagoreans . A consider
able improvement on the old abacus is there introduced . Pebbles
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are discarded
,
and apices (probably small cones)are used . Upon each

of these apices is drawn a numeral giving it some value below 10 .

The names of these numerals are pure Arabic
,
or nearly so

,
but are

added
,
apparently

,
by a later hand . The 0 is not mentioned by

Boethius in the text. These numerals bear striking resemblance to
the Gubar-numerals of the West-Arabs

,
which are admittedly of

Indian origin . These facts have given rise to an endless controversy.

Some contended that Pythagoras was in India
,
and from there brought

the nine numerals to Greece
,
where the Pythagoreans used them

secretly . This hypothesis has been generally abandoned
,
for it is

not certain that Pythagoras or any disciple of his ever was in India
,

nor is there any evidence in any Greek author
,
that the apices were

known to the Greeks
,
or that numeral signs of any sort were used by

them with the abacus . I t is improbable
,
moreover

,
that the Indian

signs
,
from which the apices are derived

,
are so old as the time of

Pythagoras . A second theory is that the Geometry attributed to
Boethius is a forgery ; that it is not older than the tenth , or possibly
the ninth

,
century

,
and that the apices are derived from the Arabs .

But there is an Encyclopaedia written by Cassiodorius (died about
585)in which both the arithmetic and geometry of Boethius are men

tioned. Some doubt exists as to the proper interpretation of this
passage in the Encyclopaedia. At present the weight of evidence is
that the geometry of Boethius

,
or at least the part mentioning the

numerals
,
is spurious .1 A third theory (Woepcke

’

s)is that the
Alexandrians either directly or indirectly obtained the nine numerals
from the Hindus

,
about the second century A . D .

,
and gave them to

the Romans on the one hand
,
and to the Western Arabs on the other.

Thi s explanation is the most plausible .
It is worthy of note that Cassiodorius was the first writer to use
the terms “ rational”and irrational”in the sense now current in
arithmetic and algebra .

2

1 A good discussion of this so-cal led Boethius question ,
which has been de

bated for two centuries, is g iven by D . E . Smith and L . C . Karpinski in theirHindu
Arabic Numerals

,
191 1 , Chap. V .

2Encyclopédie des sci ences mathe
’

matiques , Tome I , Vol . p . 2 . An il
lum inating article on ancient finger-symbol ism is L . J. Richardson

’

s Dig ital
Reckoning Among the Ancients”in the Am. Math. Monthly, Vol 23 , 18 16

,

pp 7
—13.



THE MAYA

The Maya of Central America and Southern M exico developed
hieroglyphic writing

,
as found in inscriptions and codices dating ap

pat ently from about the beginning of the Christian era
,
that ranks

probably as the foremost intellectual achievement of pre-Columbian
times in the New World .

”M aya number systems and chronology
are remarkable for the extent of their early development . Perhaps
five or six centuries before the Hindus gave a systematic exposition
of then decimal number system with its zero and principle of. local
value

,
the Maya in the flatlands of Central America had evolved

systematically a vigesimal number system employing a zero and the
principle of local value . In the Maya number system found in the
codices the ratio of increase of successive units was not 10 ,

as in the
Hindu system ; it was 20 in all positions except the third . That is ,
20 units of the lowest order (kins , or days)make one unit of the next
higher order (uinals , or 20 days), 18 uinals make one unit of the third
order (tun ,

or 360 days), 20 tuns make one unit of the fourth order
(katun ,

or 7200 days), 20 katuns make one unit of the fifth order
(cycle, or days)and finally

,
20 cycles make 1 great cycle of

days . In Maya codices we find symbols for 1 to 19, ex
pressed by bars and dots . Each bar stands for 5 units , each dot for
1 unit . For instance

,

2 4 5 7 1 1 19

The zero is represented by a symbol that looks roughly like a half
closed eye . In writing 20 the principle of local value enters . It is
expressed by a dot placed over the symbol for zero . The numbers
are written vertically

,
the lowest order being assigned the lowest

position . Accordingly
, 37 was expressed by the symbols for 1 7 (three

bars and two dots)in the kin place , and one dot representing 20
,

placed above 17 in the uinal place . T0 write 360 the M aya drew
two zeros

,
one above the other

,
with one dot higher up

,
in third place

(1x 18x 20 +0 +0 The highest number found in the codices
is in our decimal notation
A second numeral system is found on Maya inscriptions . I t em

ploys the zero
,
but not

.

the principle of local value . Special symbols
are employed to designate the diff erent units . I t is as if we were to
write 203 as 2 hundreds

,
0 tens

, 3 ones .
”1

1 For an account of the Maya number-systems and chronology, see S . G . Morley
An Introduction to the S tudy of the Maya Hierogl iphs , Government Printing Offi ce,
Washington, 1915 .
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The Maya had a sacred year of 260 days
,
an offi cial year of 360

days and a solar year of 365+ days . The fact that
seems to account for the break in the vigesimal system

,
making 18

(instead of 20)uinals equal to 1 tun . The lowest common multiple
of 260 and 365 , or 18980 , was taken by the Maya as the

“ calendar
round

,

”a period of 52 years , which is “ the most important period in
M aya chronology.

”
We may add here that the number systems of Indian tribes in North

America , while disclosing no use of the zero nor of the principle of
local value

,
are of interest as exhibiting not only quinary

,
decimal

,
and

vigesimal systems
,
but also ternary

,
quarternary

,
and octonary sys

tems .1

1 See W. C . Eel ls
,
Number Systems of the North American Indians

”
in Amer

ican M ath. Monthly, Vol . 20
,
1913 , pp . 263

—
27 2 , 293

—
299; also B ibl iotheca mathe

matica
, 3 S .

, Vol . 13, 1913 , pp . 2 18—2 2 2 .
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The oldest extant Chinese work of mathematical interest is an
anonymous publication , called Chou-pei and written before the
second century

,
A . D.

,
perhaps long before . In one of the dialogues the

Chou-pei is believed to reveal the state of mathematics and astronomy
in China as early as 1 100 B . C . The Pythagorean theorem of the right
triangle appears to have been known at that early date .
Next to the Chou—pei in age is the Chiu-chang S uan

—shu Arith
metic in Nine commonly called the Chiu -chang , the most
celebrated Chinese Text on arithmetic . Neither its authorship nor
the time of its composition is known definitely. By an edic t of the
despotic emperor Shih Hoang- ti of the Ch ’in Dynasty “ all books were
burned and all scholars were buried in the year 2 13 B . C . After the
death of this emperor

,
learning revived again . We are told that a

scholar named CHANG T ’

SANG found some old writings
,
upon which

he based this famous treatise
,
the Chiu- chang. About a century later

a revision of it was made by Ching Ch ’ou-ch ’ang ; commentaries on
this classic text were made by Liu Hui in 263 A . D. and by Li Ch ’un
féng in the seventh century. How much of the “Arithmetic in Nine
Sections

,
as it exists to-day

,
is due to the old records ante-dating

2 13 B . C .
,
how much to Chang T ’sang and how much to Ching Ch ’ou

ch ’ang
,
it has not yet been found possible to determine .

The “Arithmetic in Nine Sections”begins with mensuration ; it
gives the area of a triangle as 4b h, of a trapezoid as 4 (b of a
circle variously as %c éd,4cd, 4d? and 4

1

4
c2

,
where c is the circumference

and d is the diameter. Here 7r is taken equal to 3 . The area of a
segment of a circle is given as +a2), where c is the chord and a

the altitude . Then follow fractions
,
commercial arithmetic including

percentage and proportion
,
partnership

,
and square and cube root of

numbers . Certain parts exhibit a partiality for unit-fractions . Divi
sion by a fraction is effected by inverting the fraction and multiplying.

The rules of operation are usually stated in obscure language . There
are given rules for finding the volumes of the prism

,
cylinder

,
pyramid

,

truncated pyramid and cone , tetrahedron and wedge . Then follow
problems in alligation . There are indications of the use of positive
and negative numbers . Of interest is the following problem because
centuries later it is found ‘

in a work of the Hindu Brahmagupta:
1 All our information on Chinese mathematics is drawn from Yoshio M ikami ’s

TheDevelopment of Mathematics in China and J apan ,
Leipzig , 191 2 , and from David

Eugene Smith and Yoshio M ikami ’s History of J apanese Mathematics
,
Chicago ,

1914.
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There is a bamboo 10 f t . high
,
the upper end of which is broken and

reaches to the ground 3 ft . from the stem. What is the height of the
2

break? In the solution the height of the break is taken 3

2x 10

Here is another :A square town has a gate at the mid-point of each
side . Twenty paces north of the north gate there is a tree which
is

‘

vi sible from a point reached by walking from the south gate 14
paces south and then 1775 paces west . Find the side of the square .
The problem leads to the quadratic equation x2 + 14)x 10x

1775 =0 . The derivation and solution of thi s equation are not made
clear in the text . There is an obscure statement to the effect tha t
the answer is obtained by evolving the root of an expression which
is not monomial but has an additional term [the term of the first

It has been surmised that the process here re

ferred to was evolved more fully later and led to the method closely
resembling Horner ’s process of approximating to the roots , and that
the process was carried out by the use of calculating boards . Another
problem leads to a quadratic equation , the rule for the solution of
which fits the solution of li teral quadratic equations .
We come next to the Sun-Tsu S uan—ching (

“Arithmetical Classic
of Sun which belongs to the first century

,
A . D. The author

,

SUN-TSU ,
says:“ In making calculations we must first know positions

of numbers . Unity is vertical and ten horizontal ; the hundred stands
whi le the thousand lies ; and the thousand and the ten look equally,
and so also the ten thousand and the hundred . This is evidently a
reference to abacal computation , practiced from time immemorial in
Chi na

,
and carried on by the use of computing rods . These rods

,

made of smal l bamboo or of wood , were in Sun-Tsu ’s timemuch longer .
The later rods were about 14 inches long , red and black in color,
representing respectively positive and negative numbers . According
to Sun-Tsu

,
units are represented by vertical rods

,
tens by horizontal

rods
,
hundreds by vertical , and so on ; for 5 a single rod suffices . The

numbers 1- 9 are represented by rods thus:I, u, in, nu, nn, 1, n, m,
the numbers in the tens column , 10 , 20 , 90 are wri tten thus

| l l
z , 2 , E , E . The number 6728 is designated

by W W. The rods were placed on a board ruled in columns
,

and were rearranged as the computation advanced . The successive
steps in the mul tiplication of 32 1 by 46 must have been about as
fol lows

32 1 32 1 321

138 1472 14766

46 . 46 46

The product was placed between the multiplicand and multiplier.
The 46 is multiplied first by 3 , then by 2

,
and last by 1

,
the 46 being
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In the first half of the seventh century WANG Hs
’

IAo-T
’

UNG brought
forth a work

,
the Ch’

i—ku S uan—ching , in which numerical cubic equa
tions appear for the first time in Chinese mathematics . This took
place seven or eight centuries after the first Chinese treatment of
quadratics . Wang Hs ’iao- t ’ung gives several problems leading to
cubic

l

sz
“There is a right triangle

,
the product of whose two S ides is

706
1

5
—
0 ,
and whose hypotenuse is greater than the first side by 30 4

9

4 .

It 18 required to kn
l

ow the lengths of the three sides . He gives the
answer 14 4

—7
0 , 49 4 , 51 4 ,

and the rule : “The Product (P)being
squared and being divided by twice the Surplus (S), make the result
shih or the constant class . Halve the surplus and make it the l ien-fa
or the second degree class . And carry out the operation of evolution
according to the extraction of cube root . The result gives the first
side . Adding the surplus to it , one gets the hypotenuse . Divide the
product with the first side and the quoti ent is the second side .”Thi s
rule leads to the cubic equation x3+S/2x

°
= 0 . The mode of solu

tion is similar to the process of extracting cube roots
,
but detail s of

the process are not revealed .

In 1 247 CH
’

IN CHIU—SHAO wrote the Su-shu Chiu-chang Nine
Sections of Mathematics”)which makes a decided advance on the
solution of numerical equations. At first Ch ’ in Chiu—shao led a mili
tary life ; he lived at the time of the Mongol ian invasion . For ten
years stricken with disease

,
he recovered and then devoted himself to

study . The following problem led him to an equation of the tenth
degree : There is a circular castle of unknown diameter

,
having 4

gates . Three miles north of the north gate is a tree which is visible
from‘ a point 9 miles east of the south gate . The unknown diameter
is found to be 9. He passes beyond Sun-Tsu in his ability to solve
indeterminate equations arising for a number which will give the
residues r1, r2, rn when divided by ml , m2, mm, respectively.

Ch ’in Chi u-shao solves the equation —x4+763200x2—40642560000
0 by a process almost identical with Horner ’s method . However

,

the computations were very probably carried out on a computing
board

,
divided into columns , and by the use of computing rods .

Hence the arrangement of the work must have been different from
that of Homer . But the operations performed were the same . The
fir st digit in the root being 8 , (8 hundreds), a transformation 15 ef

fected which yields x4 —32003c3—3
.

0768009c
2—826880000x+3820544

0000 = 0 ,
the same equati on that i s obtained by Horner ’s process .

Then
,
taking 4 as the second figure in the root

,
the absolute term

vanishes in the operation , giving the root 840 . Thus the Chinese had

tion of the fraction -3—5—5
3+4

2
1s g iven anonymously In Grunert

’

s Archiv

Vol . p . Using 34
5
,
T . M . P . Hughes g ives in Nature, Vol . 93 ,

19 14 , p . 1 10
,
a method of constructing a triang le that gives the area of a g iven

circle w ith great accuracy.
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invented Horner ’s method of solving numerical equations more than
five centuries before Ruffini and Homer. Thi s solution of higher
numerical equations is given later in the writings of Li Y ek and others .
Ch ’ in Chiu—shao marks an advance over Sun-Tsu in the use of 0 as a
symbol for zero . Most likely this symbol is an importation from
India . Positive and negative numbers were distinguished by the use
of red and black computing rods . This author gives for the first time
a problem which later became a favorite one among the Chinese ; i t
involved the trisection of a trapezoidal field under certain restrictions
in the mode of selection of boundaries .
We have already mentioned a contemporary of Ch ’ in Chiu—shao

,

namely
,
LI Y EH ; he lived far apart in a rival monarchy and worked

independently. He was the author of T’

sé-yuan Hai—ching (
“ Sea

M irror of the Circle—M easurements 1 248 , and of the I4 mY en-man
,

I 259. He used the symbol 0 for zero . On account of the inconven
ience of writing and printing positive and negative numbers in dif
ferent colors

,
he designated negative numbers by drawing a cancella

tion mark across the symbol . Thus stood for 60
,

stood for
—60 . The unknown quantity was represented by unity which was
probably represented on the counting board by a rod easily distin
guished from the other rods . The terms of an equation were written ,
not in a horizontal , but in a vertical line . In Li Yeh

’s work of 1 259,
as also in the work of Ch ’ in Chiu- shao

,
the absolute term is put in the

top line ; in Li Yeh
’s work of 1 248 the order of the terms is reversed ,

so that the absolute term is in the bottom l ine and the highest power
of the unknown in the top line . In the thirteenth century Chi nese
algebra reached a much higher development than formerly . This
science

,
with its remarkable method (our Horner

’s)of solving numer
ical equations

,
was designated by the Chinese “ the celestial element

method.

”
A third prominent thirteenth century mathematician was YANG

HUI
,
of whom several books are still extant. They deal with the

summation of arithmetical progressions
,
of the series I +3 +6

(1 + 2 +11) —6
,

I 2 +112 = § n (n
also with proportion

,
simultaneous linear equations

,
quadratic and

quartic equations .
Half a century later

,
Chinese algebra reached its height in the

treatise Sucm—Izsiao Chi -méng (
“ Introduction to M athematical

S tudies 1 299, and the Szu-

yuen Vii-chien (
“ The Precious M irror

of the Four Elements 1303 , which came from the pen of CHU
SHIH-CHIEH . The first work contains no new results

,
but exerted a

great stimulus on Japanese mathematics in the seventeenth century.

At one time the book was lost in China
,
but in 1839 i t was restored

by the discovery of a copy of a Korean reprint
,
made in 1660 . The

Precious M irror”is a more original work . It treats fully of the
celestial element method .

”He gives as an ancient method a
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triangle (known in the West as Pascal
’s arithmetical triang le), dis

playing the binomial coefficients, which were known to the Arabs in
the eleventh century and were probably imported into China. Chu
shih-Chieh’

s algebraic notation was altogether different from our

modern notation . Thus
,
a+6+0+d was written

as shown on the left
,
except that , in the central position , we employ

an asterisk in place of the Chi nese character t’ai (great extreme , ab
solute term)and that we use the modern numerals in place of the
sangi forms . The square of a +6+6 +d, namely , a2+62+c2+d2+ 2ab

is represented as shown on the right .
In further illustration of the Chinese notation

,
at the time of Chu

Shih-Chieh
,
we give 1

- 2 I=

In the fourteenth century astronomy and the calendar were studied .

They involved the rudiments of geometry and spherical trigonometry . .

In thi s field importations from the Arabs are disclosed .

After the noteworthy achievements of the thirteenth century
,

Chinese mathematics for several centuries was in a period of decline.
The famous “ celestial element method”in the solution of higher
equations was abandoned and forgotten . M ention must be made

,

however
,
of CH ’

IENG TAI-WEI
,
who in I 593 issued his S uan-fa T

’

ung
tsung (

“A Systematised Treatise on which is the oldest
work now extant that contains a diagram of the form of the abacus

,

called man-pan ,
and the explanation of its use . The instrument was

known in China in the twelfth century. Resembling the old Roman
abacus

,
it contained balls

,
movable along rods held by a wooden

frame . The suan-pan replaced the old computing rods . The “ Sys
tematised Treatise on Arithmetic is famous also for containing some
magic squares and magic circles . Little is known of the early history

1 111 the symbol for xz notice that the
“
I
”
is one space down (x)and one

space to the right (2)of and is made to stand for the product xz. In the symbol
for

“
zyz
”
the three o

’
s indicate the absence of the terms y,

x
,
xy; the smal l “

2
”

means twice the product of the two letters in the same row ,
respectively one space

to the right and to the left of i . e .
,
2 yz. The limitations of this notation are ob

v10us.
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of magic squares . Myth tells us that , in early times , the sage Y u ,

the enlightened emperor , saw on the calamitous Yellow River a divine
tortoise

,
whose back was decorated with the figure made up of the

numbers from I to 9, arranged in form of a magic square or lo-shu .

The lo-shu .

The numerals are indicated by knots in strings:black knots repre
sent even numbers (symbolizing imperfection), white knots repre

sent odd numbers (perfection).
Christian missionaries entered China in the six teenth century.

The Italian Jesuit M atteo Ricci (1552—16 10)introduced European
astronomy and mathematics . With the aid of a Chinese scholar
named Hsit

,
he brought out in 1607 a translation of the first six books

of Euclid . Soon after followed a sequel to Euclid and a treatise on
surveying. The missionary Mu Ni -ko sometime before 1660 intro
duced logarithms . In 1713 Adrian Vlack

’
s logarithmic tables to 1 1

places were reprinted . Ferdinand Verbiest 1 of West Flanders
,
a

noted Jesuit missionary and astronomer
,
was in 1669 made vice

president of the Chinese astronomical board and in 1673 i ts president .
European algebra found its way into China. M ei Ku—ch’

éng noticed
that the European algebra was essentially of the same principles as
the Chinese “ celestial element method”of former days which had
been forgotten . Through him there came a revival of their own
algebraic method

,
Without

,
however

,
displacing European science .

Later Chinese studies touched mainly three subjects :The determina
tion of 71 by geometry and by infinite series

,
the solution of numerical

equations
,
and the theory of logarithms .

We shall see later that Chinese mathematics stimulated the growth
of mathematics in Japan and India . We have seen that

,
in a small

way
,
there was a taking as well as a giving . Before the influx of

recent European science
,
China was influenced somewhat by Hindu

and Arabic mathematics . The Chinese achievements which stand
out most conspicuously are the solution of numerical equations and
the origination of magic squares and magic circles .
1 Consult H . Bosmans, Ferdinand Verbiest, Louvain, 191 2 . Extract from Revue

des Questions scientifiques, January
—Apn l , 191 2 .
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According to tradition
,
there existed in Japan in remote times a

system of numeration which extended to high powers of ten and re

sembled somewhat the sand counter of Archimedes . About 552 A . D .

Buddhism was introduced into Japan . This new movement was
fostered by Prince Shotoku Taishi who was deeply interested in all
learning . M athematics engaged his attention to such a degree that
he came to be called the father of Japanese mathematics . A little
later the Chinese system of weights and measures was adopted . In
701 a university system was established in which mathematics figured
prominently. Chinese science was imported

,
special mention being

made in the offi cial Japanese records of nine Chinese texts on mathe
matics

,
which include the Chou -pei , the S uan-ching written by Sun

Tsu and the great arithmetical work
,
the Chiu -chang. But this eighth

'

century interest in mathematics was of sho rt duration ; the Chiu—chang
was forgotten and the dark ages returned . Calendar reckoning and
the rudiments of computation are the only signs of mathematical
activity until about the seventeenth century of our era . On account
of the crude numeral systems

,
devoid of the principal of local value

and of a symbol for zero
,
mechanical aids of computation became a

necessity. These consisted in Japan
,
as in China

,
of some forms of

the abacus . In China there came to be developed an instrument ,
called the suan—pan ,

in Japan it was called the soroban . The importa
tion of the suan-pan into Japan is usually supposed to have occurred
before the close of the S ixteenth century . Bamboo computing rods
were used in Japan in the seventh century . These round pieces were
replaced later by the square prisms (sangi pieces). Numbers were
represented by these rods in the manner practiced by the Chinese .

The numerals were placed inside the squares of a surface ruled like a
chess board . The soroban was simply a more highly developed form
of abacal instrument .
The years 1600 to 1675 mark a period of great mathematical ac

tivity. It was inaugurated by MoRI KAMBEI SHIGEY OSHI , who popu
larized the use of the soroban . His pupil

,
YOSHIDA SHICHIBEI KOY I

-

J ,

is the author of Jinko-ki , 162 7 , which attained wide popularity and
is the oldest Japanese mathematical work now extant. I t explains
operations on the soroban

,
including square and cube root. In one of

1This account is compiled from David Eugene Smith and Yoshio M ikami ’s
History of J apanese M athematics

,
Chicago , 1914 , from Yoshio M ikami

’
s Develop

ment of Mathematies in China and J apan ,
Leipzig , 191 2 , and from T. Hayashi

’

s

A B rief History of the J apanese M atheinaties , Overgedruk t uit het Nieuw Archief
voor Wiskunde VI, pp. 296

—
36 1 ; VII, pp . 105

—
161 .
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his later editions Yoshida appended a number of advanced problems
to be solved by competitors . This procedure started among the
Japanese the practice of issuing problems

,
which was kept up until

1813 and helped to stimulate mathematical activity.

Another pupil of Mori was IMAMURA CHISH6 who , in 1639, pub
l ished a treatise entitled Jugairoku , written in classical Chinese . He
took up the mensuration of the circle

,
sphere and cone . Another

author
,
ISOMURA KITTOKU ,

in his Ketsugishb, 1660 (second edition
when considering problems on mensuration

,
makes a crude

approach to integration . He gives magic squares
,
both odd and even

celled
,
and also magic circles . Such squares and circles became favor

ite topics among the Japanese . In the 1684 edition , Isomura gives
also magic wheels . TANAKA KI SSHIN arranges the integers 1 -

96 in
six 4

2
-celled magic squares

,
such that the sum in each row and column

are 194; placing the six squares upon a cube , he obtains his
“magic

cube . Tanaka formed also “magic rectangles .”1 MURAMATSU in
1663 gives a magic square containing as many as 19

2 cells and a magic
circle involving 1 29 numbers . M uramatsu gives also the famous
“ Josephus Problem”in the following form:

‘Once upon a time there
lived a wealthy farmer who had thirty children , half being of his first
w ife and half of his second one. The latter wished a favorite son to
inherit all the property

,
and accordingly she asked him one day,

say
ing:Would it not be well to arrange our 30 children on a circle , calling
one of them the first and counting out every tenth one until there
should remain only one

,
who should be called the heir. The hus

band assenting , the wife arranged the children the counting
resulted in the elimination of 14 step-children at once

,
leaving only

one . Thereupon the wife , feeling confident of her success , said ,
let us reverse the order . The husband agreed again

,
and the

counting proceeded in the reverse order
,
with the unexpected result

that all of the second wife ’s children were stricken out and there re

mained only the step c—hild
,
and accordingly he inherited the property.

”
The origin of this problem Is not known . It 15 found much earlier In
the Codex Einsidelensis (Einsideln ,

Switzerland)of the tenth century,
while a Latin work of Roman times attributes it to Flavius Josephus .
I t commonly appears as a problem relating to Turks and Christians

,

half of whom must be sacrificed to save a sinking Ship . I t was very
common in early printed European books on arithmetic and in books
on mathematical recreations .
In 1666 SAN

"

)SEIKO wrote hiS Kongenki which , in common with
other works of his day

,
considers the computation of 7r(

He is the first Japanese to take up the Chinese “ celestial element
method in algebra . He applies it to equations of as high a degree as
the sixth . His successor

,
SAWAGUCHI

,
and a contemporary NOZAWA ,

give a crude calculus resembling that of Cavalieri . Sawaguchi rises
1 Y . M ikami in Archivder Mathernatik u . Physik , Vol . 20, pp . 183

—
186 .
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above the Chinese masters in recognising the plurality of roots , but
he declares problems which yield them to be erroneous in their nature .
Another evidence of a continued Chinese influence is seen in the
Chinese value of 71

,

i

i
i—44,
which was made known in Japan by IKEDA .

We come now to SEKI K6WA (1642—1708)whom the Japanese con
sider the greatest mathematician that their country has produced.

The year of hi s birth was the year in which Galileo died and Newton
was born . Seki was a great teacher who attracted many gifted pupils.
Lik e Pythagoras

,
he discouraged divulgence of mathematical dis

coveries made by himself and his school . For that reason it is difficult
to determine with certainty the exact origin and nature of some of the
discoveries attributed to him. He is said to have left hundreds of
manuscripts ; the transcripts of a few of them still remain . He pub
lished only one book

,
the Hatsubi S ampo, 1674, in which he solved

15 problems issued by a contemporary writer . Seki
’

s explanations
are quite incomplete and obscure . Takebe

,
one of his pupils

,
lays

stress upon Seki ’s clearness . The inference is that Seki gave his ex
planations orally

,
probably using the computing rods or sangi , as he

proceeded . Noteworthy among his mathematical achievements are
the tenzon method and the yendon method . Both of these refer to
improvements in algebra . The tenzan method is an improvement of
the Chinese “ celestial element”method

,
and has reference to nota

tion
,
while the yendan refers to explanations or method of analysis .

The exact nature and value of these two methods are not altogether
clear . By the Chinese “ celestial element”method the roots of equa
tions were computed one digit at a time . Seki removed this limita
tion . Building on results of his predecessors

,
Seki gives also rules for

writing down magic squares of (2n cel ls . In the case of the more
troublesome even celled squares

,
Seki first gives a rule for the con

struction of a magic square of 42 cells , then of 4 (n and 16 n
2 cell s.

He simplified also the treatment of magic circles . Perhaps the most
original and important work of Seki is the invention of determinants

,

sometime before 1683 . Leibniz
,
to whom the first idea of determinants

is usually assigned
,
made hiS discovery in 1693 when he stated that

three linear equations in x and y can have the same ratio only when
the determinant arising from the coeffi cients vanishes . Seki took/ n
equations and gave a more general treatment . Seki knew that

'

a
determinant of the nth order

,
when expanded

,
has u 1 terms and that

rows and columns are interchangeable .

1 Usually attributed to Seki
is the invention of the yenri or

“ circle-principle which
,
i t is claimed

,

accomplishes somewhat the same things as the differential and in
tegral calculus . Neither the exact nature nor the origin of the yenri
is well understood. Doubt exists whether Seki was its discoverer.
TAKEBE ,

a pupil of Seki
,
used the yenri andmay be the chief originator

1 For detail s consult Y . M ikami,
“
On the Japanese theory of determinants”in

Isis, Vol . II, 1914, pp . 9
—
36 .
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can be drawn upon a folding fan . Here mathematics finds application
to artistic design .

After the middle of the nineteenth century the native mathematics
of Japan yielded to a strong influx of Western mathematics . The
movement in Japan became a part of the great international advance .
In 191 1 there was started the Tohoku M athematical Journal , under
the editorship of T . Hayashi . I t is devoted to advanced mathematics

,

contains articles in many of our leading modern languages and is quite
international in character .1

Looking back we see that Japan produced some able mathemati
cians

,
but on account of her isolation

,
geographically and socially

,

her scientific output did not aff ect or contribute to the progress of
mathematics in the West . The Babylonians

,
Hindus

,
Arabs

,
and to

some extent even the Chinese through their influence on the Hindus
,

contributed to the onward march of mathematics in the West . But
the Japanese stand out in complete isolation .

1 G . A . M il ler, Historical Introduction to Mathematical Literature, 1916 , p . 24 .
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After the time of the ancient Greeks
,
the first people whose re

searches wielded a wide influence in the world march of mathematics ,
belonged

,
like the Greeks

,
to the Aryan race . It was

,
however

,
not a

European
,
but an Asiatic nation

,
and had its seat in far-off India .

Unlike the Greek
,
Indian society was fixed into castes . The only

castes enjoying the privilege and leisure for advanced study and

thinkn were the Brahmins
,
whose prime busin ess was religion and

philosophy
,
and the Kshatriyas , who attended to war and government .

Of the development of Hindu mathematics we know but little . A
few manuScripts bear testimony that the Indians had cl imbed to a
lofty height

,
but their path of ascent is no longer traceable . It would

seem that Greek mathematics grew up under more favorable condi
tions than the Hindu

,
for in Greece it attained an independent exist

ence
,
and was studied for its own sake

,
while Hindu mathematics

always remained merely a servant to astronomy. Furthermore
,
in

Greece mathematics was a science of the people
,
free to be cultivated

by all who had a liking for it ; in India , as in Egypt , it was in the
hands chiefly of the priests . Again

,
the Indians were in the habit of

putting into verse all mathematical results they obtained , and of
clothing them in obscure and mystic language

,
which

,
though well

adapted to aid the memory of him who already understood the subject
,

was often unintelligible to the uninitiated . Although the great Hindu
mathematicians doubtless reasoned out most or all of their discoveries

,

yet they were not in the habit of preserving the proofs
,
so that the

naked theorems and processes of operation are all that have come
down to our time . Very different in these respects were the Greeks .
Obscurity of language was generally avoided

,
and proofs belonged

to the stock of knowledge quite as much as the theorems themselves .
Very striking was the difference in the bent of mind of the Hindu and
Greek ; for , while the Greek mind was pre-eminently geometri cal , the
Indian was first of all ari thmeti cal . The Hindu dealt with number , the
Greek with form. Numerical symbolism

,
the science of numbers

,

and algebra attained in India far greater perfection than they had
previously reached in Greece . On the other hand

,
Hindu geometry

was merely mensuration
,
unaccompanied by demonstration . Hindu

trigonometry is meritorious
,
but rests on a rithmetic more than on

geometry .

An interesting but difficult task is the tracing of the relation be
tween Hindu and Greek mathematics . It is well known that more
or less trade was carried on between Greece and India ‘ from early

83
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times . Af ter Egypt had become a Roman province , a more lively
commercial intercourse sprang up between Rome and India , by way
of Al exandria . A priori , it does not seem improbable , that with the
traffi c of merchandise there should also be an interchange of ideas.
That communications of thought from the Hindus to the Alexandrians
actually did take place , _is evident from the fact that cer tain philo
sophic and theologic teachings of the Manicheans

,
Neo-P latonists

,

Gnostics
,
Show unmistakable lik eness to Indian tenets . Scientific

facts passed also from Alexandria to India . Thi s is shown plainly
by the Greek origin of some of the technical terms used by the Hindus.
Hindu astronomy was influenced by Greek astronomy. A part of
the geometrical knowledge whi ch they possessed is traceable to Alex'

andria
,
and to the writings of Heron in particular . In algebra there

was
,
probably

,
a mutual giving and receiving.

There is ev idence also of an intimate connection between Indian
and Chinese mathematics . In the fourth and succeeding centuries of
our era Indian embassies to China and Chinese visits to India are
recorded by Chinese authorities . 1 We shall see that undoubtedly
there was an influx of Chinese mathematics into India.

The history of Hindu mathematics may be resolved into two
periods :First the S ’

u lvasutra period which terminates not later than
200 A . D .

,
second

,
the astronomical and mathematical period, extending

from about 400 to 1 200 A . D.

The term S ’ulvasutra means the rules of the cord it is the name

given to the supplements of the Kalpasfi tras which explain the con
struction of sacrificial altars .2 The S ’

ulvasutras were composed some
time between 800 B . C . and 200 A . D. They are known to modern
scholars through three quite modern manuscripts . Their aim is
primarily not mathematical

,
but religious . The mathematical parts

relate to the construction of squares and rectangles . S trange to say
,

none of these geometrical constructions occur in later Hindu works ;
later Indian mathematics ignores the S ’

ulvasfi tras !

The second period of Hindu mathematics probably originated
with an influx from Alexandria of western astronomy. .ZjTo the fif th
century of our era belongs an anonymous Hindu astronomical work

,

called the Surya S iddhanta (
“Kn wledge from the sun”)whi ch came

to be regarded a standard work . 11 the six th century A . D. Varaha.

M ihi ra wrote his P ancha S iddhantika whi ch gives a summary of the
Surya S iddhanta and four other astronomical works then in use ; i t
contains matters of mathematical interest.
J In 188 1 there was found at Bakhshdl i , in northwest India , buried
in the earth

,
an anonymous arithmetic

,
supposed

,
from the peculiar

1 G . R . Kaye , Indian Mathematics , Calcutta Simla , 1915, p . 38. We are draw

ing heavily upon this book which embodies the resul ts of recent studies of Hindu
mathematics.

2 G . R . Kaye, op. cit. , p . 3 .
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ities of its verses
,
to date from the third or fourth century after Christ.

The document that was found is of birch bark
,
and Is an incomplete

copy , prepared probably about the eighth century , of an older manu
script. 1 I t contains arithmetical computation .

SgThe noted Hindu astronomer Aryabhata was born 476 A . D . at
Patahputra, on the upper Ganges . His celebrity rests on a work
entitledAryabhatiya , of which the third chapter is devoted to mathe
maticssfi fi

l bout one hundred years later , mathematics in India reached
the highestmark . At that time flourished Brahmagupta (born
In 6 28 he wrote his B rahma-sphuta—siddhanta (“The Revised System
of of which the twelfth and eighteenth chapters belong
to mathematics .
5 ‘Probably to the ninth century belongs Mahavira, a Hindu author
on elementary mathematics

,
whose wri tings have only recently been

brought to the attention of historians . He 18 the author of the Ganita
Sara-S angraha which throws light upon Hindu geometry and arith
meticj The following centuries produced only two names of impor
tance ; namely , S

’
ridhara, who wrote a Ganita—sara (“Quintessence

of Calculation
”
9f.and Padmanabha, the author of an algebra . The

science seems to have made but little progress at this time ;_for a
work entitled S iddhanta S ’

iromani (
“Diadem of an Astronomical

System”),7written byBhaskaxa in 1 150 ,
stands little higher than that

of Brahmagupta
,
written over 500 years earlier . The two most im

portant mathematical chapters In thiswork are the Li la
'

vati the
beautiful

,
”i . e. the noble science)and Vij a-

ganita
“ root-extrac

devoted to arithm etic and algebra . From now on
,
the Hindus

in the Brahmin schools seemed to content themselves with studying
the masterpieces of their predecessors . Scientific intelligence de
creases continually

,
and in more modern times a very deficient Arabic

work of the sixteenth century has been held in great authority.

The mathematical chapters of the B rahma-siddhanta and S iddhanta
S

’
iromani were translated into English by H . T . Colebrooke

,
London

,

18 17 . The Surya-siddhanta was translated by E . Burgess , and anno
tated by W. D . Whitney

,
New Haven

,
Conn .

, 1860 . Mahavi ra ’s
Gonita-Sara-S angraha was published in 191 2 in M adras by M . Rangi
carya.

We begin with geometry
,
the field in which the Hindus were least

proficient. The S ’

ulvasutras indicate that the Hindus
,
perhaps as

early as 800 B . C .
,
applied geometry in the construction of altars .

Kaye 2 states that the mathematical rules found in the S ’

ulvasutras
“ relate to (1)the construction of squares and rectangles , (2)the rela
tion of the diagonal to the S ides

, (3)equivalent rectangles and squares ,
(4)equivalent circles and squares .”A knowledge of the Pythagorean
1The Bakhshal i Manuscript, edited by Rudolf Hoernly in the Indian Antiquary,

xv11, 33
—
48 and 275

—2 79, Bombay, 1888 .

2 G. R. Kaye, op. cit., p. 4 .



86 A HISTORY OF MATHEMATICS

theorem is disclosed in such relations as = 5
2
,

=20
2
,

=39
2
. There is no evidence that these expressions were

obtained from any general rule . I t will be remembered that special
cases of the Pythagorean theorem were known as early as 1000 B . C .

in China and as early as 2000 B . C . in Egypt. A curious expression
for the relation of the diagonal to a square

,
namely

,

1
. l .

1

is explained by Kaye as being an expression of a direct measure
ment”which may be obtained by the use of a scale of the kind named
in one of the S ’ulvasutra manuscripts

,
and based upon the change

ratios 3 , 4 , 34 . I t is noteworthy that the fractions used are all unit
fractions and that the expression yields a result correct to five decimal
places . The S ’ulvasutra rules yield

,
by the aid of the Pythagorean

theorem
,
constructions for finding a square equal to the sum or dif

ference of two squares, they yield a rectangle equal to a given square,
with as/2 and 2a\

/2 as the sides of the rectangle
,
they yield by

geometrical construction a square equal to a given rectangle
,
and

satisfying the relation ab = (b+ [a —i (a—b)2, corresponding
to Euclid II

, 5. In the S ’

ulvasfi tras the altar building ritual explains
the construction of a square equal to a circle . Let a be the S ide of
a square and d the diameter of an equivalent circle

,
then the given

rules may be expressed thus .

1 d = a =d—2d/15, a

d(1 —
8 2 9 6 + 5 2 9

1

6
This third expression may be ob

tained from the first by the aid of the approximation for V 2
, given

above . Strange to say
,
none of these geometrical constructions occur

in later Hindu works
,
the latter completely 1gnore the mathematical

contents of the S ’ulvasu tras.

During the six centuries from the time of Aryabhata to that of
Bhaskara

,
Hindu geometry deals mainly with mensuration . The

Hindu gave no definitions
,
no postulates

,
no axioms

,
no logical chain

of reasoning. His knowledge of mensuration was largely borrowed
from theM editerranean and from China

,
through imperfect channels of

communication . Aryabhata gives a rule for the area of triangle which
holds only for the isosceles triangle . Brahmagupta distinguishes
between approximate and exact areas

,
and gives Heron of Alexan

dria ’s famous formula for the triangular area
,
w/s (s —a)(s—b)(s

Heron ’s formula is given also by M ahavi ra 2 who advanced be

yond his predecessors in giving the area of an equilateral triangle as
Brahmagupta and M ahavi ra make a remarkable extension

of Heron ’s formula by giving w’ (s—a)(s—b)(s—c)(s—d)as the area
of a quadrilateral whose sides are a

, b, c , d ,
and whose semiperimeter

is s . That this formula is true only for quadrilaterals that can be in
1 G . R . Kaye , op. cit.

, p . 7 .

2D . E . Smith
,
in I sis , Vol . 1 , 1913 , pp . 199, 200 .



THE HINDUS 87

scribe
l

'

d In a circle was recognized by Brahmagupta
,
according to Can

tor ’s 1 and Kaye ’s 2 interpretation of Brahmagupta ’S obscure ex
position , but Hindu commentators did not understand the limi tation
and Bhaskara finally pronounced the formula unsound . Remarkable
is Brahmagupta ’s theorem”on cyclic quadrilaterals

,
x
2
: (ad —b)c.

and y
2= (ab—l—cd) where x and

y are the diagonals and a , b, c, d, the lengths of the sides ; also the the
orem that

,
if a

2
+b

2= c
2 and A2

+B
2 then the quadrilateral

(
“ Brahmagupta ’s (aC ,

cB
,
bC , cA)is cyclic and has its

diagonals at right angles . Kaye says : From the triangles (3 , 4 , 5)
and (5, 1 2

, 13)a commentator obtains the quadrilateral (39, 60 , 52 ,
with diagonals 63 and 56 , etc . Brahmagupta (says Kaye)also in

troduces a proof of P tolemy ’s theorem and in doing this follows Dio
phantus (III , 19)in constructing from right triangles (a ,

b
,
c)and

( a , B, y)new right triangles (ay , 67 , c
‘

y)and ( ac , 6c, 7 c)and
uses the actual examples given by Diophantus

,
namely (39, 52 , 65)

and (25 , 60 ,
6 Paralleli sms of this sort Show unmistakably that the

Hindus drew from Greek sources .
In the mensuration of solids remarkable inaccuracies occur in

Aryabhata. He gives the volume of a pyramid as half the product of
the base and the height ; the volume of a sphere as 71-2 r

3
. Aryab

hata gives in one place an extremely accurate value for an viz .

but he himself never utilized it
,
nor did any other Hindu

mathematician before the twelfth century. A frequent Indian prac
tice was to take 7r= 3 , or Bhaskara gives two values —the
above mentioned ‘ accurate 3 9 2 7 and the ‘ inaccurate

,

’ Archimedean
1 2 5 0 ’

value
,

A commentator on L i lavati says that these values were
calculated by beginning with a regular inscribed hexagon

,
and apply

ing repeatedly the formula AD= —AB 2
,
wherein AB is the

side of the given polygon
,
and AD that of one with double the number

of S ides . In this way were obtained the perimeters of the inscribed
polygons of 1 2

, 384 sides . Taking the radius= 100
, the

perimeter of the last one gives the value which Aryabhata used for 7r .

The empirical nature of Hindu geometry is illustrated by Bhaskara ’s
proof of the Pythagorean theorem.

He draws the right triangle four
times in the square

'

of the hypote
nuse

,
so that in the middle there re

mains a square whose side equals
the difference between the two sides
of the right triangle . Arranging this square and the four triangles in
a diflerent way , they are seen , together , to make up the sum of the
square of the two sides . “ Behold !”says Bhaskara

,
without adding

1 Cantor , op. cit.
, Vol . I , 3rd Ed .

,
1907 , pp . 649

—653 .

2 G . R . Kaye, op cit., pp . 20—2 2 .
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another word of explanation . B retschneider conjectures that the
Pythagorean proof was substantially the same as this . Recently i t
has been shown that this interesting proof is not of Hindu origin

,
but

was given much earlier (early in the Christian era)by the Chinese
writer Chang Chun—Ch

’

ing , in his commentary upon the ancient treat
ise

,
the Chou-pei . 1 In another place

,
Bhaskara gives a second dem

onstration of this theorem by drawing from the vertex of the right
angle a perpendicular to the hypotenuse

,
and comparing the two tri

angles thus obtained with the given triangle to which they are similar.
This proof was unknown in Europe till Wallis rediscovered it. The
only Indian work that touches the subj ect of the conic sections is Ma

havi ra ’s book , which gives an inaccurate treatment of the ellipse . It
is readily seen that the Hindus cared little for geometry. Brahma
gupta ’s cyclic quadrilaterals constitute the only gem in their geom
etry.

The grandest achievement of the Hindus and the one which
,
of all

mathematical inventions
,
has contributed most to the progress of

intelligence
,
is the perfecting of the so-called Arabic Notation .

”
That thi s notation did not originate with the Arabs is now admitted
by every one . Until recently the preponderance of authority favored
the hypothesis that our numeral system

,
with its concept of local

value and our symbol for zero
,
was wholly of Hindu origin . Now it

appears that the principal of local value was used in the sexagesimal
system found on Babylonian tablets dating from 1600 to 2300 B . C.

and that Babylonian records from the centuries immediately preced
ing the Christian era contain a symbol for zero which

,
however

,
was

not used in computation . These sexagesimal fractions appear in
P tolemy ’s A lmagest in 130 A . D .

,
where the omicron o is made to des

ignate blanks in the sexagesimal numbers , but was not used as a reg
ular zero . The Babylonian origin of the sexagesimal fractions used by
Hindu astronomers is denied by no one . The earliest form of the In
dian symbol for zero was that of a dot which

,
according to B iihler

,

2

was “ commonly used in inscriptions and manuscripts in order to
mark a blank .

”This restricted early use of the symbol for zero re
sembles somewhat the still earlier use made of i t by the Babylonians
and by P tolemy . I t IS therefore probable that an imperfect notation
involving the principle of local value and the use of the zero was im
ported into India

,
that it was there transferred from the sexagesimal

to the decimal scale and then
,
in the course of centuries

,
brought to

final perfection . If these views are found by further research to be
correct

,
then the name “ Babylonic-Hindu”notation will be more

appropriate than either Arabic”or “Hindu-Arabic .”It appears
1 Yoshio M ikami

,
The Pythagorean Theorem in Archie d. Math. u . Physik ,

3 . S . , Vol . 2 2 , 191 2 , pp . 1
—
4 .

2Quoted by D . E. Smith and L . C . Karpinsk i in their Hindu-Arabic Numerals ,
Boston and London, 191 1 , p . 53 .
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follows :Vasu (a class of 8 gods)+ two+eight+mountains (the 7moun
tain (the 9 digitsH—seven—l—mountains-Hunar
days (half of which equal The use of such notations made it pos
sible to represent a number in several different ways . This greatly
facili tated the framing of verses containing arithmetical rules or sci
entific constants , which could thus be more easily remembered .

At an early period the Hindus exhibited great skill in calculating
,

even with large numbers . Thus
,
they tell us of an examination to

which Buddha
,
the reformer of the Indian religion

,
had to submit

,

when a youth
,
in order to win the maiden he loved . In arithmetic ,

after having astonished his examiners by naming all the periods of
numbers up to the 53d, he was asked whether he could determine the
number of primary atoms which , when placed one against the other,
would form a line one mile in length . Buddha found the required an
swer in this way :7 primary atoms make a very minute grain

“of dust
,

7 of these make a minute grain of dust , 7 of these a grain of dust whirled
up by the wind

,
and so on . Thus he proceeded

,
step by step

,
until he

finally reached the length of a mile . The multiplication of all the fac
tors gave for the multitude of primary atoms in a mile a number con
sisting of I 5 digits . This problem reminds one of the Sand—Counter
of Archimedes .
After the numerical symboli sm had been perfected

,
figuring was

made much easier . M any of the Indian modes of operation diff er
from ours . The Hindus were generally inclined to follow the motion
from left to right

,
as in writing . Thus

, they added the left-hand col
umns first

,
and made the necessary co 'rrections as they proceeded.

For instance
,
they would have added 254 and 663 thus : 8 ,

I I , which changes 8 into 9, 4+3 7 . Hence the sum 91 7 . In
subtraction they had two methods . Thus In 82 1 348 they would say ,
8 from 1 1 = 3 , 4 from 1 1 7 , 3 from Or they would say

, 8 from
1 1 = 3 , 5 from 1 2 = 7 , 4 from In multipl ication of a number by
another of only one digit , say 569 by 5 , they generally said , 5 . 25 ,

which changes 25 into 28
,

hen’ce the 0 must be in
creased by 4 . The product is 2845. In the multiplication with each
other of many-figured numbers , they first multiplied

,
in the manner

just indicated
,
with the left-hand digit of the multiplier , which was

written above the multiplicand
,
and placed the product above the

multiplier . On multiplying with the next digit of the
'

multiplier
,
the

product was not placed in a new row
,
as with us

,
but the first product

obtained was corrected
,
as the process continued , by erasing , when

ever necessary
,
the old digits

,
and replacing them by new ones , until

finally the whole product was obtained . We who possess the modern
luxuries of pencil and paper , would not be likely to fall in love with
this Hindu method . But the Indians wrote “with a cane-pen upon
a small blackboard with a white , thinly liquid paint which made marks
that could be easily erased

,
or upon a white tablet , less than a foot
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square
,
strewn wi th red flour

,
on which they wrote the figures with a

small stick
,
so that the figures appeared white on a red ground .

”1
Since the digits had to be quite large to be distinctly legible , and

S ince the boards were small
,
i t was desirable to have a method which

would not require much space . Such a one was the above method
of multiplication . Figures could be easily erased and replaced by
others without sacrificing neatness . But the Hindus had also other
ways of multiplying

,
of which we mention the following :The tablet

was divided into squares l ike a chess-board . Diagonals were also
drawn

,
as seen in the figure . The multiplication of I 2X 735 : 8820 is

exhibited in the adjoining diagram .

2 According to Kaye ,3 this mode
of multiplying was not of Hindu origin and was
known earlier to the Arabs . The manuscripts
extant give no information of how divisions were
executed.

Hindu mathematicians of the twelfth century
test the correctness of arithmetical computations 8 8 2 0

by ‘ ‘ casting out nines
,

”but this process is not of Hindu origin
,

i t was known to the Roman bishop Hippolytos in the third cen
tury.

In the Bakhshal i arithmetic a knowledge of the processes of com
putation is presupposed . In fractions

,
the numerator is written above

the denominator Without a dividing line . Integers are written as
fractions with the denominator 1 . In mixed expressions the integral

1
part is written above the fraction . Thus

,
1 1 3 . In place of our

they used the word phalam,
abbreviated into pha . Addition was in

dicated by yu ,
abbreviated from yuta . Numbers to be combined

were often enclosed in a rectangle . Thus
, pha 1 2

7
yu jmeans

T
5

f
1 2 . An unknown quantity is sunya,

and is designated thus by a
heavy dot . The word sunya means3

“ empty
,

”and is the word for
zero

,
which is here likewise represented by a dot . This double use of

the word and dot rested upon the idea that a position is “ empty”if
not filled out . It IS also to be considered empty”so long as the num
ber to be placed there has not been ascertained .

4

The Bakhshah arithmetic contains problems of which some are
solved by reduction to unity or by a sort of false position . Example :
B gives twice asmuch as A

,
C three°

times asmuch as B
,
D four times as

much as C ; together they give 132 ; how much did A give? Take 1 for
the unknown (sunya), then A= 1

,
B = 2

, C= 6 , D = 24 , their sum
33. Divide 132 by 33 , and

' the quotient 4 is what A gave .
The method of false posi tion we have encountered before among
1H . Hankel , op. ci t. , 1874 , p . 186 .

2M . Cantor, op. ci t. , Vol . I , 3 Aufl . , 1907 , p . 6 1 1 .

3G . R . Kaye , op. ci t. , p . 34 .

4 Cantor, I , 3 Ed. ,
1907 , pp. 6 13

—6 18 .



92 A HISTORY OF MATHEMATICS

the early Egyptians . With them i t was an instinctive procedure ;
with the Hindus it had risen to a conscious method . Bhaskara uses
it , but while the Bakhshali document preferably assumes 1 as the
unk nown , Bhaskara is partial to 3 . Thus

,
if a certain number is

taken five fo
l

ld, of the product be subtracted
,
the remainder divided

by 10
,
and 1

3 , 3

3
1and z of the original number added , then 68 is ob

tained. What IS the number? Choose 3 , then you get 15, and
1
-1—3—1—3 -1—3 1—

4

7
. Then (68 . 3 48 , t he answer.

We shall now proceed to the consideration of some arithmetical
problems and the Indian modes of solution . A favorite method was
that of inversion . With laconic brevity

, Aryabhata describes i t thus:
“Multiplication becomes division

,
division becomes multiplication;

what was gain becomes loss
,
what loss

,
gain ; inversion .

”
Qui_te diff erent

from th is quotation in style is the following problem from Aryabhata,
which illustrates the method : “ Beautiful maiden with beaming eyes

,

tell me
,
as thou understandst the right method of inversion

,
which

is the number which multiplied by
l
3 , then increased by

3

4 of the prod
uct , divided by 7 , diminished by % of the quotient , multiplied by it
self

,
diminished by 52 , the square root extracted , addition of 8 , and

division by 10
,
gives the number The process consists in begin

ning with 2 and working backwards . Thus
,

v 196
= 14 , and —3 3 28

,
the answer.

Here is another example taken from L i ldvati
,
a chapter in Ebas

kara ’5 great work :“The square root of half '

S

the number of bees in a
swarm has flown out upon a jessamine-bu

,

—sh g of the whole swarm
has remained behind

,
one female bee fli es about a male that 1s buzz

ing within a lotus-flower into which he was allured in the night by its
sweet odor , but is now imprisoned in it . Tell me the number of bees .”
Answer , 72 . The pleasing poetic garb in which all arithmetical prob
lems are clothed is due to the Indian practice of writing all school-books
in verse , and especially to the fact that these problems , propounded
as puzzles

,
were a favorite social amusement . Says Brahmagupta:

“These problems are proposed simply for pleasure ; the wise man can
invent a thousand others

,
or he can solve the problems of others by

the rules given here . As the sun eclipses the stars by his brill iancy
,

so the man of knowledge will eclipse the fame of others in assemblies
of the people if he proposes algebraic problems , and still more if he
solves them .

”
The Hindus solved problems in interest

,
discount

,
partnership

,

alligation , summation of arithmetical and geometric series , and de
vised rul es for determining the numbers of combinations and permu

tations. I t may here be added that chess , the profoundest of all
games

,
had its origin in India . The invention of magic squares is

sometimes erroneously attributed to the Hindus . Among the Chi
nese and Arabs magic squares appear much earlier . The first occur
rence of a mag ic square among the Hindus is at Dudhai , Ihansi, in
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exists between the continuous and discontinuous . Yet by doing so
the Indians greatly aided the general progress of mathematics . “

In

deed
,
if one understands by algebra the application of arithmetical

operations to complexmagnitudes of all sorts
,
whether rational or irra

tional numbers or space-magnitudes
,
then the learned Brahmins of

Hindostan are the real inventors of algebra .

”1
Let us now examine more closely the Indian algebra . In extract

ing the square and cube roots they used the formulas a
2
+

2ab+b
2 and (a+b 3= a

3
+3a

2b+3ab
2
+b3. In this connection Aryab

hata speaks of dividing a number into periods of two and three digits .
From this we infer that the principle of position and the zero in the
numerical notation were already known to him. In figuring with
zeros

,
a statement of Bhaskara is interesting. A fraction whose de

nominator is zero
,
says he

,
admits of no alteration

,
though much be

added or subtracted . Indeed , in the same way , no change takes place
in the infinite and immutable Deity when worlds are destroyed or
created

,
even though numerous orders of beings be taken up or brought

forth . Though in this he apparently evinces clear mathematical no
tions

,
yet in other places he makes a complete failure in figuring with

fractions of zero denominator .
In the Hindu solutions of determinate equations

,
Cantor thinks

he can see traces of Diophantine methods . Some technical terms be
tray their Greek origin . Even ii i t be true that the Indians borrowed
from the Greeks

,
they deserve credit for improving the solutions of

linear and quadratic equations . Recognizing the existence of neg
ative numbers

,
Brahmagupta was able to unify the treatment of

the three forms of quadratic equations considered by Diophantus
,

viz .
,
ax2+bx= c

,
bx+c= ax

,

2
ax

2
+ c= bx

, (a , b and c being pos
itive numbers), by bringing the three under the one general case ,

To S'ridhara i s attributed the “Hindu method”
of completing the square which begins by mul tiplying both sides
of the equation by 4p. Bhaskara advances beyond the Greeks
and even beyond Brahmagupta when he says that “ the square of
a positive

,
as also of a negative number

,
is positive ; that the square

root of a positive number is twofold
, positive and negative. There is

no square root of a negative number
,
for i t is not a square . Kaye

points out
,
however

,
that the Hindus were not the first to give double

solutions of quadratic equations.2 The Arab Al-Khowarizmi of the
ninth century gave both solutions of x2+ 2 1 = 1090. Of equations of
higher degrees

,
the Indians succeeded in solving only some special

cases in which both sides of the equation could be made perfect powers
by the addition of certain terms to each .

Incomparably greater progress than in the solution of determinate
equations was made by the Hindus in the treatment of ind eterminate
equations . Indeterm inate analysis was a subject to which the Hindu

1H . Hankel
,
op. cit. , p. 195.

2 G. R. Kaye, op. cit.
, p . 34.
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mind showed a happy adaptation . We have seen that this very sub
ject was a favorite with Diophantus , and that his ingenuity was al
most inexhaustible in devising solutions for particular cases . But the
glory of having invented general methods in this most subtle branch
of mathematics belongs to the Indians . The Hindu indeterminate
analysis diflers from the Greek not only in method , but also in aim .

The object of the former was to find all possible integral solutions .
Greek analysis

,
on the other hand

,
demanded not necessarily integral

,

but simply rational answers. Diophantus was content with a_single
solution ; the Hindus endeavored to find all solutions possible . Aryab
hata gives solutions in integers to linear equations of the form axi

by
= c

,
where a

, b, c are integers . The rule employed is called the put
verizer. For this , as for most other rules , the Indians give no proof.
Their solution is essentially the same as the one of Euler . Euler ’s

a
to a continued fracti on amounts to the same as

b

the Hindu process of finding the greatest common divisor of a and b
by division . Thi s is frequently called the Diophantine method . Han
kel protests against this name

,
on the ground that D iophantus not

only never knew the method
,
but did not even aim at solutions purely

integral .1 These equations probably grew out of problems in astron
omy. They were applied

,
for instance

,
to determine the time when

a certain constellation of the planets would occur in the heavens .
Passing by the subject of linear equations with more than two um

known quantities
,
we come to indeterminate quadratic equations . In

the solution of they applied the method re- invented
later by Euler

,
of decomposing (ab+ c)into the product of two integers

m.n and of placing x=m—l—b and y= n+a.

Remarkable is the Hindu solution of the quadratic equation cy
2

dx
2—i b. With great keenness of intellect they recognized in the special
case y

2= ax
2
+ 1 a fundamental problem in indeterminate quadratics .

They solved it by the cycl ic method.

“ I t consists
,

”says De Morgan
,

“ in a rule for finding an indefinite number of solutions of y
2= ax

2
+ I

(a being an integer which is not a square), by means of one solution
given or found

,
and of feeling for one solution by making a solution

of y
2= ax

2
+b give a solution of y

2= ax
2
+b

2
. It amounts to the fol

lowing theorem:If p and g be one set of values of x and y in y
2

ax
2
+b

and p
’ and q

’ the same or another set
,
then qp+pq

’ and app
’

+qq
’

are values of x and y in y
2

ax
2
+b

2
. From this it is obvious that one

solution of y
2

ax
2
+ I may be made to give any number , and that if ,

taking b at pleasure
, y

2= ax
2
+b

2 can be solved so that x and y
are divisible by b

,
then one preliminary sol I

‘

Ition of y
2

ax
2
+ I can be

be found . Another mode of trying for solutions is a combination of
the preceding with the cuttaca These calculations were
used in astronomy.

process of reducing

1H. Hankel , op. ci t., p. 196 .
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Doubtless this cyclic method constitutes the greatest invention
in the theory of numbers before the time of Lagrange . The perver
sity of fate has willed it , that the equation y

2= ax
2
+ 1 should now be

called P el l ’s equation; the first incisive work on it is due to Brahmin
scholarship , reinforced , perhaps , by Greek research . I t is a problem
that has exercised the ‘

highest facul ties of some of our greatest modern
analysts . By them the work of the Greeks and Hindus was done over
again ; for , unfortunately , only a small portion of theHindu algebra and
the Hindu manuscripts

,
which we now possess

,
were known in the

Occident. Hankel attributed the invention of the “ cyclic method”
entirely to the Hindus

,
but later hi storians

,
P . Tannery , M . Cantor ,

T . Heath
,
G . R . Kaye favor the hypothesis of ultimate Greek origin .

If the missing parts of Diophantus are ever found
,
light will probably

be thrown upon this question .

Greater taste than for geometry was shown by the Hindus for trig
onometry. Interesting passages are found in Varaha M ihira’

s P ancha

S iddhantika of the sixth century A . D .
,

1 which
,
in our notation for

unit radius
,
gives Sin 30

°

3, sin sin 2‘y

{sin 2 7 ] -l [ I—Sin (90
°—2 10] This is followed by a table of

24 sines , the angles increasing by intervals
“

of (the eighth part
of obviously taken from P tolemy ’s table of chords . However ,
instead of dividing the radius into 60 parts in them anner of P tolemy ,
the Hindu astronomer divides it into 1 20 parts , which dev ice enabled
him to convert P tolemy ’s table of chords into a table of sines without
changing the numerical values . Aryabhata took a still different value
for the radius

,
namely

, 3438 , obtained apparently from the relation
2X 3 . 14 I 6r= The Hindus followed the Greeks and Babylo
nians in the practice of dividing the circle into quadrants

,
each quad

rant into 90 degrees and 5400 minutes—thus dividing the whole circle
into equal parts . Each quadrant was divided also into 24 equal
parts

,
so that each part embraced 2 25 uni ts of the whole circumference ,

and corresponded to 33degrees . Notable is the fact that the Indians
never reckoned

,
like the Greeks

,
with the whole chord of double the arc ,

but always with the sine (j oa)and versed sine. Their mode of calcula
ting tables was theoretically very S imple . The sine of 90

° was equal to
the radius

,
or 3438 ; the sine of 30

° was evidently half that
,
or 1 719.

Aptflfi ng the formula sin
2
a+cos2a= r

2
,
they obtained sin 45

°

2431 . Substituting for cos a its equal sin (90—a), and making a=

they obtained sin 60° 2978. With the sines of 90 , 60 , 45, and 30

as starting-points
,
they reckoned the Sines of half the angles by the

formula ver sin 2 a= 2 sin2a
,
thus obtaining the sines of 2 2°

1 G. R. Kaye, op. cit., p. 10.
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fluence they would have exerted , had they come two or three centu
ries earli er .
At the beginning of the twentieth century , mathematical activ ity
along modern

’

l ines sprang up in India . In the year 1907 there was
founded the Indian M athematical S ociety; in 1909 there was started
at M adras the Journal of the Indian M athematical S oci ety.

1

1 (Three recent writers have advanced arguments tending to disprove the Hindu
orig in of our numerals. We refer ( I)to G . R . Kaye

’
s articles in S cientia, Vol . 24 ,

1918 , pp . 53
—
55 ; in J ournal A siatic Soc . B engal , III , 1907 , pp . 475

—
508 , also VII ,

19 1 1 , pp . 80 1—8 16 : in Indian Antiquary, 19 1 1 , pp . 50
—
56 ; (2)to Carra de Vaux ’

s

article in S cientia
, Vol . 2 1

,
191 7 , pp . 273

—
28 2 ; (3)to a Russian book brought out

by Nikol . Bubnow in 1908 and translated into German in 19 14 by Jos . Lezius .

Kaye claims to Show that the proofs of the H indu origin of our numerals are

largely legendary, that the q uestion has been clouded by a confusion between the

words hindi (Indian)and hindasi (measure geometrical), that the symbols are

not modified letters of the alphabet . We must hold our minds in suspense on

this difli cult q uestion and await further evidence .)



THE ARABS

After the flight of M ohammed from M ecca to M edina in 6 2 2 A . D .
,

an obscure people of Semitic race began to play an important part in
the drama of history . Before the lapse of ten years

,
the scattered

tribes of the Arabian peninsula were fused by the furnace blast of
religious enthusiasm into a powerful nation . With sword in hand the
united Arabs subdued Syria and M esopotamia . Distant Persia and
the lands beyond

,
even unto India

,
were added to the dominions of

the Saracens . They conquered Northern Africa
,
and nearly the

whole Spanish peninsula
,
but were finally checked from further prog

ress in Western Europe by the firm hand of Charles Martel (732 A .

The M oslem dominion extended now from India to Spain ; but a war
of succession to the caliphate ensued

,
and in 755 the Mohammedan

empire was
'

divided
,

—one caliph reigning at Bagdad
,
the other at Cor

dova in Spain . Astounding as was the grand march of conquest by
the Arabs

,
still more so was the ease with which they put aside their

former nomadic life
,
adopted a higher civilization

, and assumed the
sovereignty over cultivated peoples . Arabic was made the written
language throughout the conquered lands . With the rule of the Abba
sides in the East began a new period in the history of learning . The
capital

,
Bagdad

,
situated on the Euphrates

,
lay half-way between

two old centres of scientific thought
,

— India in the East
,
and Greece

in the West. The Arabs were destined to be the custodians of the
torch of Greek science

,
to keep it ablaze during the period of confu

sion and chaos in the Occident
,
and afterwards to pass i t over to the

Europeans . This remark applies in part also to Hindu science . Thus
science passed from Aryan to Semitic races

,
and the n back again to

the Aryan . Formerly i t was held that the Arabs added but little to
the knowledge of mathematics ; recent studies indicate that they must
be credited with novelties once thought to be of later origin .

The Abbasides at Bagdad encouraged the introduction of the
sciences by inviting able special ists to their court

,
irrespective of na

tionality or religious belief . M edicine and astronomy were their fa
vorite sciences . Thus Harun-al-Rashid

,
the most distinguished Sara

cen ruler
,
drew Indian physicians to Bagdad . In the year 772 there

came to the court of Caliph Almansur a Hindu astronomer with as
tronomical tables which were ordered to be translated into Arabic .

These tables
,
known by the Arabs as the S indhind

,
and probably taken

from the B rahma-sphu ta-siddhanta of Brahmagupta
,
stood in great

authority . They contained the important Hindu table of sines .
Doubtless at this time

,
and along wi th these astronomical tables ,
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the Hindu numerals , with the zero and the principle of position , were
introduced among the Saracens . Before the time of Mohammed the
Arabs had no numerals . Numbers were written out in words . Later

,

the numerous computations connected with the financial administra
tion over the conquered lands made a short symboli sm indispensable.
In some localities

,
the numerals of the more civilized conquered na

tions were used for a time . Thus , in Syria , the Greek notation was
retained ; in Egypt , the Coptic . In some cases , the numeral adjec
tives may have been abbreviated in writing. The Diwani—numerals

,

found in an Arabic-Persian dictionary
,
are supposed to be such ab

breviations . Gradually i t became the practice to employ the 28 Ara
bic letters of the alphabet for numerals

,
in analogy to the Greek sys

teni . This notation was in turn superseded by the Hindu notation
,

which quite early was adop ted by merchants
,
and also by writers on

arithmetic. Its superiority was generally recognized , except in as
tronomy,

where the alphabetic notation continued to be used . Here
the alphabetic notation . offered no great disadvantage

,
since in the

sexagesimal arithmetic
,
taken

'

from the A lmagest, numbers of gen
eral ly only one or two places had to be written .

1

As regards the form of the so-called Arabic numerals
,
the state

ment of the Arabic writer Ai-B i runi (died who spent many
years in India

,
is Of interest . He says that the shape of the numer

als
,
as also of the letters in India

,
diff ered in different localities

,
and

that the Arabs selected from the various forms the most suitable . An
Arabian astronomer says there was among people much difference in
the use of symbols

,
especially of those for 5, 6 , 7 , and 8 . The symbols

used by the Arabs can be traced back to the tenth century.
,
We find

material differences between those used by the Saracens in the East
and those used in the West . But most surprising is the fact that the
symbols of both the East and of the West Arabs deviate so extraordi
narily from the Hindu Devanagari numerals (= divine numerals)of
to-day

,
and that they resemble much more closely the apices of the

Roman writer Boethius . This strange similarity on the one hand ,
and dissimilarity on the other

,
is difficult to explain . The most plau

sible theory is the one of Woepcke: ( 1)that about the second cen
tury after Christ

,
before the zero had been invented , the Indian nu

merals were brought to Alexandria , whence they spread to Rome
and also to West Africa ; (2)that in the eighth century , after the no
tation in India had been already much modified and perfected by the
invention of the zero , the Arabs at Bagdad got i t from the Hindus ;
3)that the Arabs of the West borrowed the Columbus-egg , the zero ,
from those in the East

,
but retained the Old forms of the nine numer

als
,
if for no other reason

,
simply to be contrary to their political ene

mies Of the East ; (4)that the old forms were remembered by the West
Arabs to be of Indian origin

,
and were hence called Gubar-numerats

1H . Hank el , op. cit., p. 255.
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In astronomy great activity in original research existed as early as
the ninth century. The religious Observances demanded by Moham
medanism presented to astronomers several practical problems . The
Moslem dominions being of such enormous extent , i t remained in
some localities for the astronomer to determine which way the “

Be

liever”must turn during prayer that he may be facing M ecca . The
prayers and ablutions had to take place at definite hours during the
day and night . This led to more accurate determinations Of tirne. To
fix the exact date for the M ohammedan feasts i t became neces

sary to observe more closely the motions of the moon . In addition to
all this

,
the Old Oriental superstition that extraordinary occurrences

in the heavens in some mysterious way aff ect the progress of human
affairs added increased interest to the prediction of eclipses .1

For these reasons considerable progress was made . Astronomical
tables and instruments were perfected , observatories erected , and a
connected series of observations instituted . This intense love for as
tronomy and astrology continued during the whole Arabic scientific
period . As in India , so here , we hardly ever find a man exclusively
devoted to pure mathematics . M ost of the SO-called mathematicians
were first of all astronomers .
The first notable author of mathematical books was M ohammed

ibn M usa Al -Khowarizmi , who lived during the reign of Caliph Al
Mamun (8 13—83 Our chief source of information about Al-Khow
rizmi is the book of chronicles , entitled Ki tab A i—Fihrist, written by
A i-Nadim

,
about 987 A . D .

,
and containing biographies of learned

men . Al-Khowarizmi was engaged by the caliph in making extracts
from the S indhind

,
in revising the tablets of P tolemy

,
in taking Ob

servations at Bagdad and Damascus , and in measuring a degree of
the earth ’s meridian . Important to us is his work on algebra and
arithmetic . The portion on arithmetic is not extant in the original

,

and it was not till 1857 that a Latin translation of it was found. I t
begins thus : “ Spoken has Algoritmi . Let us give deserved praise to

'

God
,
our leader and defender .”Here the name of the author

, Al

Khowarizmi has passed into A lgoritmi , from which come our modern
word algori thm,

signifying the art of computing in any particular
way

,
and the obsolete form augrim,

used by Chaucer.2 The arith
metic of Khowarizmi , being based on the principle of position and
the Hindu method of calculation

,

“ excels
,
says an Arabic writer

,

“ all others in brevity and easiness
,
and exhibits the Hindu intellect

and sagacity in the grandest inventions .”This book was followed
by a large number of arithmetics by later authors

,
which diff ered

from the earlier ones chiefly in the greater variety of methods . Ara
bian arithmetics generally contained the four operations with inte

1H . Hankel
,
op. cit. , pp . 2 26—2 28 .

2 See L . C . Karpinsk i ,
“
Augrimstones in Modern Language Notes

, Vol . 27 ,
191 2 , pp . 206—209.
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gers and fractions
,
modelled after the Indian processes . They ex

plained the operation Of casting out the o
’

s
,
also the regu la falsa and

the regula duorumfalsorum, sometimes called the rules of
“ false po

sition”and of double position”or double false position
,
by which

algebraical examples could be solved wi thout algebra . The regu la

falsa or falsa positio was the assigning of an assumed value to the
unknown quantity

,
which value

,
if wrong

,
was corrected by some

process like the “ rule of three .

”I t was known to the Hindus and to
the Egyptian Ahmes. Diophantus used a method almost identical
with this . The regu la duorum falsorum was as foll ows :

1 To solve an
equation f (x)V,

assume
,
for the moment

,
two values for x; namely ,

x= a and x= b. Then form f (a)=A and f (b)= 3 ,
and determine the

errors V—A = Ea and V—B =Eb, then the required it

b

i
d
—

2
12°

a b

generally a close approximation
,
but is absolutely accurate whenever

f (x)is a linear function of x.

We now return to Khowarizmi
,
and consider the other part Of his

work
,

—the algebra . This is the first book known to contain this word
itself as title . Really the title consists of two words , al-j ebr w

’
aimu

qabala, the nearest English translation Of which is “ restoration and
reduction .

”By “ restoration”was meant the transposing of negative
terms to the other side of the equation ,

by ‘ ‘ reduction
,
the uniting of

similar terms . Thus
,
x
2—2x= 5x+ 6 passes by al-jebr into x

2=
5x+

2x+ 6 ; and this , by ahnuqabala , into =
.7x+ 6 The work on alge

bra
,
like the arithmetic

,
by the same author

,
contains little that 18

original . I t explains the elementary operations and the solutions of
linear and quadratic equations . From whom did the author borrow
his knowledge of algebra? That i t came entirely from Indian sources
is impossible

,
for the Hindus had no rules like the “ restoration”and

“ reduction .

”They were
,
for instance

,
never in the habit of making

all terms in an equation positive
,
as is done by the process of restora

tion .

”Diophantus gives two rules which resemble somewhat those
of our Arabic author

,
but the probability that the Arab got all his al

gebra from Diophantus is lessened by the considerations that he rec
ognized both roots of a quadratic , while Diophantus noticed only one ;
and that the Greek algebraist

,
unlike the Arab

,
habitually rejected

irrational solutions . It would seem
,
therefore

,
that the algebra of

Al-Khowarizmi was neither purely Indian nor purely Greek . Al

Khowarizimi
’
s fame among the Arabs was great . He gave the

amples x2+ 10x= 39, x
2
+ 2 1 1on

, 3x+4= x
2 which are used by later

authors
,
for instance

,
by the poet and mathematician Omar Khayyam.

“The equation x
2
+ 10x= 39 runs like a thread of gold through the

algebras of several centuries”(L . C . Karpinski). I t appears in the
algebra of ‘ Abu Kami l who drew extensively upon the work of Al

1H . Hankel
,
op. cit. , p . 259.
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Khowarizmi . Abu Kamil , in turn , was the source largely drawn upon
bv the Itahan , Leonardo of P isa , in his book of 1 202 .

The algebra of Al-Khowarizmi contains also a few meagre frag
ments on geometry. He gives the theorem of the right triangle

,
but

proves it after Hindu fashi on and only for the simplest case
,
when the

right triangle is isosceles . He then calculates the areas of the tri
angle

,
parallelogram

,
and circle . For 71 he uses the value 34, and also

the two Indian
, ar
= w/E)and 7r= Strange to say ,

the last value
was afterwards forgotten by the Arabs , and replaced by others less
accurate . Al-Khowarizmi prepared astronomical tables

,
which

,
about

1000 A . D . ,
were revised by Maslama ai-Maj ri ti and are of importance

as containing not only the sine function
,
but also the tangent function .

1

The former is evidently of Hindu origin
,
the latter may be an addi

tion made by Maslama and was formerly attributed to Abu ’lWefa.

Next to be noticed are the three sons of Musa Sakir , who lived in
Bagdad at the court of the Caliph Al-M amun . They wrote several
works

,
of which we mention a geometry containing the well-known

formula for the area of a triangle expressed in terms of its sides. We
are told that one of the sons travelled to Greece

,
probably to collect

astronomical andmathematical manuscripts
,
and that on his way back

he made acquaintance with Tabit ibn Korra . Recognizing in him a
talented and learned astronomer

,
M ohammed procured for him a place

among the astronomers at the court in Bagdad . Tabit ibn Korra

(836—90 1)was born at Harran in M esopotamia . He was proficient
not onl y in astronomy and mathematics

,
but also in the Greek

,
Arabic

,

and Syrian languages . His translations of Apollonius , Archimedes,
Euclid

,
P tolemy

,
Theodosius

,
rank among the best. His dissertation

on amicable numbers (of which each is the sum of the factors of the
other)is the first known specimen of original work in mathematics on
Arabic soil . I t shows that he was familiar wi th the Pythagorean the
ory of numbers . Tabit invented the following rule for finding amicable
numbers

,
which is related to Euclid ’s rule for perfec t numbers: If

p= 3 . 2
"—

1
, q
=
3 .2
”—1—1

,
r= 9. 2

2”—1—
1 (n being a whole number)

are three primes
,
then a= 2

”
pq , b 2

"
r are a pair of amicable numbers .

Thus
,
if n= 2

,
then p 1 1

, q
= 5 , r

=
71 , and a= 2 20

,
b= 284. Tabit

also trisected an angle .
Tabit ibn Korra is the earliest writer outside of China to discuss

magic squares . Other Arabic tracts on this subj ect are due to Ibn
Al-Haitam and later writers . 2

Foremost among the astronomers of the ninth century ranked Al
1 See H . Suter, Die astronomischen Tafeln des Muhammed ibn M ii sa Al

Khwarizmi in der Bearbeitung des Maslama ibn Ahmed Al-Madjriti und der Latein .

Uebersetzung des Athelhard von Bath
,

”
in M e

‘

moi res de l
’
Académie R. des S ciences

et des Lettres de Danemark , Copenhague, 71116 S . , Section des Lettres, t . III
,
no. 1 ,

1914 .

2 See H . Suter, Die Mathematiker u . Astronomen der Araber u . ihre Werke, 1900 ,

PD 36. 93. 136. 139. 140. 146 , 218.
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last Arabic translators and commentators of Greek authors . The fact
that he esteemed the algebra of Mohammed ibn M usa Al-Khowarizimi
worthy of his commentary indicates that thus far algebra had made
little or no progress on Arabic soil . Abu ’l-Wefa invented amethod for
computing tables of sines which gives the sine of half a degree correct
to nine decimal places . He used the tangent and calculated a table of
tangents . In considering the shadow- triangle of sun-dials he intro
duced also the secant and cosecant. Unfortunately

,
these new trigo

nometric functions and the discovery Of the moon ’s variation ex
cited apparently no notice among his contemporaries and followers .
A treatise by Abu ’l-Weia on “ geometric constructions”indicates that
efforts were being made at that time to improve draughting. I t con
tains a neat construction of the corners of the regular poly edrons on
the circumscribed sphere . Here , for the first time

,
appears the con

dition which afterwards became very famous in the Occident
,
that

the construction be effected with a single Opening of the compasses .
Al—Kuhi , the second astronomer at the observatory of the emir at
Bagdad

,
was a close student of Archimedes and Apollonius . He solved

the problem
,
to construct a segment of a sphere equal in volume to

a given segment and having a curved surface equal in area to that of
another given segment . He

,
Al -Sagani , and Al -B iruni made a study

of the trisection of angles . Abu ’ l Jud , an able geometer , solved the
problem bv the intersection of a parabola with an equilateral hyper
bola .

The Arabs had already discovered the theorem that the sum of two
cubes can never be a cube . This is a special case of the last theorem
of Fermat .

”
Abu M ohammed Al -Khojandi of Chorassan thought he

had proved this . His proof
,
now lost

,
is said to have been defective .

Several centuries later B eha-Eddin declared the impossibility of
x
3
+y

3= z
3

. Creditable work in theory of numbers and algebra was
done by Al-Karkhi of Bagdad , who lived at the beginning of the elev
enth century. His treatise on algebra is the greatest algebraic work
of the Arabs . In it he appears as a disciple of Diophantus . He was
the first to operate with higher roots and to solve equations of the
form x

2”+ ax
"= b. For the solution of quadratic equations he gives

both arithmetical and geometrical proofs . He was the first Arabic
author to give and prove the theorems on the summation of the se
rIes :

1
2
+ (1+ g

al

1
3
+ (1+

Al-Karkhi also busied himself with indeterminate analysis . He
showed Skill in handling the methods of Diophantus

,
but added no

thing whatever to the stock of knowledge already on hand . Rather
surprising is the fact that Al -Karkhi ’s algebra Shows no traces what
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ever of Hindu indeterminate analysis . But most astonishing it is
,

that an arithmetic by the same author completely excludes the Hindu
numerals . I t is constructed wholly after Greek pattern . Abu ’l-Wefa

,

also
,
in the second half of the tenth century

,
wrote an arithmetic in

which Hindu numerals find no place . This practice is the very oppo
site to that of other Arabian authors . The question

,
why the Hindu

numerals were ignored by so eminent authors
,
is certainly a puzzle .

Cantor suggests that at one time there may have been rival schools ,
Of which one followed almost exclusively Greek mathematics

,
the

other Indian .

The Arabs were familiar with geometric solutions of quadratic equa
tions. Attempts were now made to solve cubic equations geometri
cally. They were led to such solutions by the study of questions l ike
the Archimedean problem

,
demanding the section of a sphere by a

plane so that the two segments shall be in a prescribed ratio . The
first to state this problem in form of a cubic equation was Al-Mahani

of Bagdad
,
while Abu Ja’far Alchazin was the first Arab to solve the

equation by conic sections . Solutions were given also by A l-Kuhi
,

Al-Hasan ibn Al-Haitam
,
and others . Another diffi cult problem ,

to
determine the S ide of a regular heptagon

,
required the construction of

the Side from the equation x
3—

x
2—

2x+ 1 = 0 . I t was attempted by
many and at last solved by Abu ’l Jud.

The one who did most to elevate to a method the solution of alge
braic equations by intersecting conics , was the poet Omar Khayyam
of Chorassan (about 1045 He divides cubics into two classes

,

the trinomial and quadrinomial
,
and each class into families and spe

cies . Each species is treated separately but according to a general
plan . He believed that cubics could not be solved by calculation , nor
bi—quadratics by geometry . He rejected negative roots and often
failed to discover all the positive ones . Attempts at bi-quadratic
equations were made by Abu ’l-Wefa

,

1 who solved geometrically x4 : a

and x4+ax
3 b.

The solution of cubicequations by intersecting conics was the great
est achievement Of the Arabs in algebra . The foundation to this work
had been laid by the Greeks

,
for it was M enaechmus who first con

structed the roots of x3—a= o or x3 2a
3

0 . It was not his aim to

find the number corresponding to x
,
but simply to determine the side

at of a cube double another cube of S ide a . The Arabs , on the other
hand

,
had another

'

object in view :to find the roots of given numerical
equations . In the Occident

,
the Arabic solutions of cubics remained

unknown until quite recently. Descartes and Thomas Baker invented
these constructions anew. The works of Al-Khayyam

,
Al -Karkhi

,

Abu ’l Jud
,
show how the Arabs departed further and further from

1 L . Matthiessen
, Grundzuge der Anti ken and Modernen Algebra der L itteralen

Gleichungen , Leipzig , 1878 , p . 923 . Ludw ig Matthiessen ( 1830- 1906)was professor
of physics at Rostock .
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the Indian methods
,
and placed themselves more immediately under

Greek influences .
" I f -

With Al-Karkh i and Omar Khayyam
,
mathematics among the

Arabs of the East reached flood-mark , and now it begins to ebb . Be

tween 1 100 and 1300 A . D . come the crusades with war and bloodshed
,

during which European Christians profited much by their contact with
Arabian culture

,
then far superior to their own . The crusaders were

not the only adversaries of the Arabs . During the first half of the
thirteenth century

,
they had to encounter the wild M ongol ian hordes

,

and , in 1 256 , were conquered by them under the leadership of Hulaga .

The caliphate at Bagdad now ceased to exist . At the closeof the four
teenth century still another empire was formed by Timur or Tamer
lane

,
the Tartar . During such sweeping turmoil

,
i t is not surprising

that science declined . Indeed , i t is a marvel that it existed at all.
During the supremacy of Hul agu ,

lived Nasir-Eddin (1 201
a man of broad culture and an able astronomer. He persuaded Hu

lagu to build him and his associates a large Observatory at Maraga.

Treatises on algebra
,
geometry

,
arithmetic

,
and a translation Of Eu

clid
’

s Elements
,
were prepared by him. He for the first time elabo

rated trigonometry independently of astronomy and to such great
perfection that

,
had his work been known

,
Europeans of the fif teenth

century might have spared their labors .1 He tried his skill at a proof
of the paral lel-postulate . His proof assumes that if AB is perpendic
ular to CD at C

,
and if another straight line EDP makes an angle

EDC acute
,
then the perpendiculars to AB

,
comprehended between

AB and EF,
and drawn on the side of CD toward E

,
are shorter and

shorter
,
the further they are fromCD . His proof

,
in Latin translation

,

was published by Wallis in Even at the court of Tamerlane in
Samarkand

,
the sciences were by

no means neglected . A group of
astronomers was drawn to this

B court . Ul eg Beg (1393 a
grandson of Tamerlane

,
was him

self an astronomer. Most prominent at this time was Al -Kashi , the
author Of an arithmetic . Thus

,
during intervals of peace

,
science

continued to be cultivated in the East for several centuries . The
last Oriental writer was Beha-Eddin (1547 His Essence of
A rithmetic stands on about the same level as the work of Mohammed
ibn Musa Khowarizmi

,
written nearly 800 years before .

“Wonderful is the expansive power of Oriental peoples
,
w i th which

upon the wings of the wind they conquer half the world
,
but more

wonderful the energy with which
,
in less than two generations

,
they

raise themselves from the lowest stages Of cultivation to scientifi c
1 B ibliotheca mathematica 7 , 1893 , p . 6 .

2 R . Bonola
, Non-Eucl idean Geometry, transl . by H . S . Carslaw, Chicago, 19 1 7,

pp. 10
- 1 2 .



https://www.forgottenbooks.com/join


1 10 A HISTORY OF MATHEMATICS

From this he derives the formulas for spherical right triangles . This
sine-formula was probably known before this to Tabit ibn Korra and
others .

1 To the four fundamental formulas already given by P tolemy
,

he added a fifth
,
discovered by himself . If a

, b, c, be the sides , and
A

,
B

, C ,
the angles of a spherical triangle

,
right-angled at A

,
then

cos E= cos b sin C . This is frequently called Geber ’s Theorem.

”
Radical and bold as were his innovations in spherical trigonometry

,

in plane trigonometry he followed slavishly the old beaten path of
the Greeks . Not even did he adopt the Indian “ sine and “ cosine

,

”
but still used the Greek “ chord of double the angle .”So painful was
the departure from old ideas

,
even to an independent Arab !

It is a remarkable fact that among the early Arabs no trace what
ever of the use of the abacus can be discovered . At the close of the
thirteenth century

,
for the first time

,
do we find an Arabic writer

,
Ibn

Albanna, who uses processes which are a mixture of abacal and Hindu
computation . Ibn Albanna l ived in Bugia

,
an African seaport

,
and it

is plain that he came under European influences and thence got a
knowledge of the abacus . Ibn Albanna and Abraham ibn Esra be
fore him

,
solved equations of the first degree by the rule of double

false position .

”After Ibn Albanna we find it used by Ai—Kalsadi

and B eha-Eddin (1547 If ox+b= o
,
let m and n be any two

numbers (
“ double false position let also am+b=M,

an+b=N ,

then x= (uM—mN)+ (M—N).
Of interest is the approximate solution of the cubic x3+Q= Px,

which grew out of the computation of x= sin The method is
shown only in this one numerical example . I t is given in M i ram
Chelebi in 1498 , in his annotations of certain Arabic astronomical
tables . The solution is attributed to Atabeddin Jamshid.

3 Write
x= If then a is the first approxima
tion

,
x being snall . We have Q= aP+R ,

and consequently x= a+
(R+a

3) say .

3

Then a+b is the second approxima

tion . We have R= bP+S a
3 and Q= (a+b)P —S a

3
. Hence

x= a+b+ (S a
3
+ (a-l—b)3 P = P

,
say. Here a+b

+ c Is the third approximation
,
and so on . In general

,
the amount of

computation is considerable
,
though for finding x= sin I

° the method
answered very well . This example is the only known approximate
arithmetical solution Of an affected equation due to Arabic writers .
Nearly three centuries before this

,
the Italian

,
Leonardo of P isa

,

carried the solution of a cubic to a high degree of approximation , but
without disclosing his method .

The latest prominent Spanish-Arabic scholar was Al -Kal sadi of
Granada

,
who died in 1486 . He wrote the Raising of the Vei l of the

S ci ence of Gubar . The word “ gubar”meant originally “ dust”and
1 See B ibliotheca mathematica , 2 S .

, Vol . 7 , 1893 , p . 7 .

2 L . Matthiessen , Grundzuge d . Anti/zen u . modernen A lgebra, Leipzig , 1878, p . 275 .

3 See Can tor , op. cit. Vol . I , 3rd Ed.
, 1907 , p . 782 .
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stands here for written arithmetic with numerals
,
in contrast to men

tal arithmetic . In addition , subtraction and mul tiplication , the
result is written above the other figures . The square root was indi
cated by the initial Arabic letter of the word jidre ,

”
meaning root

,

”
particularly “ square root .”He had symbols for the unknown and
had, in fact, a considerable amount of algebraic symbolism. His
approximation for the square root wl a2+b, namely (4a3+3ab)/ (4a2+
b), is believed by S . Gunther to disclose a method of continued frac
tions

,
without our modern notation

,
since

Al-Kalsadi
’

s work excels other Arabic works in
the amount of algebraic symbolism used . Arabic algebra before him
contained much less symboli sm then Hindu algebra . With Nessel
mann1

,
we divide algebras

,
with respect to notation

,
into three classes :

( I)Rhetorical algebras , in which no symbols are used , everything
being written out in words

, (2)Syncopated algebras , in which , as in
SS

,
everything is written out in words

,
except that abbrev ia

sed for certain frequently recurring Operations and ideas
,

algebras , in which all forms and operations are repre

fully developed algebraic symbol ism
,
as for example

,

x
2
+ 10x+7 . According to this classification

,
Arabic works (excepting

those of the later western Arabs), the Greek works of Iambl ichus and
Thymaridas , and the works of the early Italian writers and of Regio
montanus are rhetorical in form ; the works of the later western Arabs ,
of Diophantus and of the later European writers down to about the
middle of the seventeenth century (excepting Vieta

’s and Oughtred
’

s)
are syncopated in form ; the Hindu works and those of Vieta and
Oughtred, and of the Europeans since the middle of the seventeenth
century

,
mbotic in form . It is thus seen that the western Arabs

took an n in matters of algebraic notation
,
and were

inferior predecessors or contemporaries , except the
Hindus .
In the year Columbus discovered America

,
the Moors

lost their last on Spanish soil ; the productive period of
Arabic science was passed .

We have witnessed a laudable intellectual activity among the
Arabs . They had the good fortune to possess rulers who

,
by their

munificence
,
furthered scientific research . At the courts of the ca

l iphs, scientists were supplied with libraries and observatories: A
large number of astronomical and mathematical works were written
by Arabic authors . I t has been said that the Arab's were learned

,

but not original
,
With our present knowledge of their work

,
this

dictum needs revision ° they have to their credit several substantial
accomplishments . They solved cubic equations by geometric con
struction , perfected trigonometry to a marked degree and made nu

1 G . H. F . Nesselmann, Die Algebra der Gr iechen ,
Berl in , 1842 , pp . 301

—
306 .
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merous smaller advances all along the line of mathematics
,
physics

and astronomy . Not least of their services to science consists in this
,

that they adopted the learning of Greece and India , and kept what
they received with care . When the love for science began to grow
in the Occident

,
they transmitted to the Europeans the valuable treas

ures of antiquity. Thus a Semi tic race was , during the Dark Ages ,
the custodian of the Aryan intellectual possessions.
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ance of Bede the Venerable (672—73 the most learned man of hi s
time . He was a native of Wearmouth

,
in England . His works con

tain treatises on the Computus , or the computation of Easter-time ,
and on finger-reckoning . It appears that a finger- symbolism was then
widely used for calculation . The correct determination of the time
of Easter was a problem which in those days greatly agitated the
Church . I t became desirable to have at least one monk at each mon

astery who could determine the day of religious festivals and could
compute the calendar . Such determinations required some knowledge
of arithmetic . Hence we find that the art of calculating always found
some little corner in the curriculum for the education of monks .
The year in which Bede died is also the year in which Alcu in (735

804)was born . Alcuin was educated in Ireland
,
and was called to the

court of Charlemagne to direct the progress of education in the great
Frankish Empire . Charlemagne was a great patron of learning and
of learned men . In the great sees and monasteries he founded schools
in which were taught the psalms

,
writing

,
singing

,
computation (com

putus), and grammar . By compu tus was here meant , probably , not
merely the determination of Easter-time

,
but the art of computation

in general . Exactly what modes of reckoning were then employed
we have no means of knowing . I t is not likely that Alcuin was familiar
with the apices of Boethius or with the Roman method of reckoning
on the abacus . He belongs to that long list of scholars who dragged
the theory of numbers into theology. Thus the number of beings
created by God , who created all things well , is 6 , because 6 is a perfect
number (the sum of its divisors being 1+ 2+ 8

,
on the other

hand
,
is an imperfect number (1+ hence the second origin

of mankind emanated from the number 8
,
which is the number of souls

said to have been in Noah ’s ark .

There is a collection of “ Problems for Quickening the M ind (prop
ositiones ad acuendos iuvenes), which are certainly as old as 1000 A . D.

and possibly older . Cantor is of the opinion that they were written
much earlier and by Alcuin . The following is a specimen of these
“
Problems”:A dog chasing a rabbit , which has a start of 150 feet ,
jumps 9 feet every time the rabbit jumps 7 . In order to determine in
howmany leaps the dog overtakes the rabbit

,
150 is to be divided by 2 .

In this collection of problems
,
the areas of triangular and quadrangular

pieces of land are found by the same formulas of approximation as
those used by the Egyp tians and given by Boethius in his geometry .

An old problem is the “ cistern-problem”(given the time in which
several pipes can fill a cistern singly

,
to find the time in which they

fi ll i t jointly), which has been found previously in Heron , in the Greek
Anthology, and in Hindu works . M any of the problems show that
the col lection was compiled chiefly from Roman sources . The prob
lem which

,
on account of its uniqueness

,
gives the most positive testi

mony regarding the Roman origin is that on the interpretation of a
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will in a case where twins are born . The problem is identical with the
Roman

,
except that diff erent ratios are chosen . Of the exercises for

recreation
,
we mention the one of the wolf

,
goat

,
and cabbage , to be

rowed across a river in a boat holding only one besides the ferry-man .

Query:How must he carry them across so that the goat shall not eat
the cabbage

,
nor the wolf the goat? 1 The solutions of the “ problems

for quickening the mind require no further knowledge than the recol
lection of some few formulas used in surveying

,
the abili ty to solve

linear equations and to perform the four fundamental operations with
integers . Extraction of roots was nowhere demanded ; fractions hardly
ever occur . 2

The great empire of Charlemagne tottered and fell almost imme
diately after his death . War and confusion ensued . Scientific pur
suits were abandoned

,
not to be resumed until the close of the tenth

century
,
when under Saxon rule in Germany and Capetian in France

,

more peaceful times began . The thick gloom Of ignorance commenced
to disappear . The zeal with which the study ofmathematics was now
taken up by the monks is due principally to the energy and influence
of one mam—Gerbert. He was born in Aurillac in Auvergne . After
receiving a monastic education

,
he engaged in study

,
chiefly of mathe

matics
,
in Spain . On his return he taught school at Rheims for ten

years and became distinguished for his profound scholarship . By
King Otto I

,
and his successors Gerbert was held in highest esteem .

He was elected bishop of Rheims
,
then Of Ravenna

,
and finally was

made Pope - under the name of Sylvester II
,
by his former Emperor

Otho III . He died in 1003 , after a life intricately involved in many
political and ecclesiastical quarrels . Such was the career of the great
est mathematician oi the tenth century in Europe . By his contem
poraries his mathematical knowledge was considered wonderful .
M any even accused him Of criminal intercourse with evil spirits .
Gerbert enlarged the stock Of his knowledge by procuring copies

Of rare books . Thus in M antua he found the geometry of Boethius .
Though this is of small scientific value

,
yet it is of great importance

in history. It was at that time the principal book from which Euro
pean scholars could learn the elements of geometry . Gerbert studied
i t with zeal

,
and is generally believed himself to be the author Of a ge

ometry. H . Weissenborn denied his authorship , and claimed that the
book in question consists of three parts which cannot come from one
and the same author. M ore recent study favors the conclusion that
Gerbert is the author and that he compiled it from diff erent sources .3

This geometry contains little more than the one of Boethius
,
but the

fact that occasional errors in the latter are herein corrected shows that

1 S . Gunther , Geschichte des mathem. Unterrichts im deutschen M ittelalter . Berl in ,

1887 , p . 3 2 .

2M . Cantor
,
op. cit.

, Vol . I , 3 . Aufl . ,
1907 , p . 839 .

3 S . Gunther, Geschichte der Mathematik , 1 . Tei l
,
Leipz ig , 1908 , p . 249 .
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the author had mastered the subj ect. The first mathematical paper
of the M iddle Ages which deserves thi s name”says Hankel

,

“ is a
letter of Gerbert to Adalbold,

bishop of Utrecht , in which is explained
the reason why the area of a triangle

,
obtained “ geometrically”by

taking the product of the base by half i ts al titude
,
differs from the

area calculated “ arithmetically
,
according to the formula

used by surveyors
,
where a stands for a side of an equilateral triangle .

He gives the correct explanation that in the latter formula all the
small squares

,
in which the triangle is supposed to be divided

,
are

counted in wholly
,
even though parts of them proj ect beyond it .

D . E . Smith 1 calls attention to a great medi eval number game , called
rithmomachia , claimed by some to be of Greek origin . I t was played
as late as the sixteenth century . I t called for considerable arithmeti
cal ability

,
and was known to Gerbert , Oronce Finé, Thomas Brad

wardine and others . A board resembling a chess board was used . Re

lations l ike 8 1 724
- 3 of 72 , 42 = 36+ 7

1
g of 36 were involved .

Gerbert made a careful study of the arithmetical works of Boethius.
He himself published the first

,
perhaps both

,
of the foll owing two

works
,

—A Smal l Book on theDivision of Numbers
,
and Rule of Compu

tal ion on the Abacus . They give an insight into the methods of calcu
lation practised in Europe before the introduction of the Hindu nu
merals. Gerbert used the abacus , which was probably unknown to
Alcuin . Bernel inus , a pupil of Gerbert , describes i t as consisting Of
a smooth board upon which geometricians were accustomed to strew
blue sand

,
and then to draw their diagrams . For arithmetical pur

poses the board was divided into 30 columns , Of which 3 were reserved
for fractions

,
while the remaining 27 were divided into groups wi th

3 columns in each . In every group the columns were marked respec

tively by the letters C (centum), D (decem), and S (singu laris)or
M (monas). Bernel inus gives the nine numerals used , which are the
apices of Boethius

,
and then remarks that the Greek letters may be

used in their place . By the use of these columns any number can be
written without introducing a zero

,
and all operations in arithmetic

can be performed in the same way as we execute ours without the col
umus , but wi th the symbol for zero . Indeed

,
the methods of adding ,

subtracting
,
and multiplying in vogue among the abacists agree sub

stantial ly with those Of to-day. But in a division there is very great
difference . The early rules for division appear to have been framed
to satisfy the following three conditions : ( I)The use of the multipli
cation table shall be restricted as far as possible ; at least , i t shall never
be required to multiply mentally a figure of two digits by another of
one digit. (2)Subtractions shall be avoided as much as possible and
replaced by additions . (3)The operation shall proceed in a purely.
mechanical way

,
without requiring trials . 2 That i t should be meces

sary to make such conditions seems strange to us ; but it must be re
1 Am. Math. Monthly, Vol . 28, 191 1 , pp. 73

—80 .

2H. Hankel, op. cit. , p . 318.
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Translation of Arabic Manuscripts

By his great erudition and phenomenal activi ty
, Gerbert infused

new lif e into the study not only ofmathematics
,
but also Of philosophy .

Pupils from France , Germany , and I taly gathered at Rheims to enjoy
his instruction . When they themselves became teachers

,
they taught

of course not only the use of the abacus and geometry
,
but also what

they had learned of the philosophy of Aristotle . His philosophy was
known

,
at first

,
only through the writings of Boethius . But the grow

ing enthusiasm for it created a demand for his complete works . Greek
texts were wanting . But the Latins heard that the Arabs

,
too

,
were

great admirers of Peripatetism ,
and that they possessed translations

of Aristotle ’s works and commentaries thereon . This led them finally
to search for and translate Arabic manuscripts . During this search

,

mathematical works also came to their notice
,
and were translated

into Latin . Though some few unimportant works may have been
translated earlier

,
yet the period of greatest activity began about 1 100 .

The zeal displayed in acquiring the M ohammedan treasures of knowl
edge excelled even that of the Arabs themselves

,
when

,
in the eighth

century
,
they plundered the rich coffers of Greek and Hindu science .

Among the earliest scholars engaged in translating manuscripts into
Latin was Athelard of Bath . The period of his activity is the first
quarter of the twelfth century. He travelled extensively in Asia
M inor

,
Egypt , perhaps also in Spain ,

and braved a thousand perils
,

that he might acquire the language and science of the M ohammedans .
He made one of the earli est translations

,
from the Arabic

,
of Euclid ’ s

Elements . He translated the astronomical tables of Al-Khowarizmi .
In 1857 , a manuscript was found in the l ibrary at Cambridge , which
proved to be the arithmetic by Al-Khowarizmi in Latin . This trans
lation also is very probably due to Athelard.

At about the same time flourished P lato of Tivoti or P lato Tiburtinus .

He eff ected a translation of the astronomy of Al-Battani and of the
Sphceri ca of Theodosius .
About the middle of the twelfth century there was a group of Chris
tian scholars busily at work at Toledo

,
under the leadership of Ray

mond
,
then archbishop of Toledo . Among those who worked under

his direction
,
John of S evil le was most prominent . He translated

works chiefly on Aristotelian philosophy . Of importance to us is a
l iber alghoarismi , compiled by him from Arabic authors . The rule for

a c

the divISIon of one fractIon by another Is proved as follows :
ad bc ad

d d

bd bd bc
ThIS '

same explanatIOn Is given by the thIrteenth cen

tury German writer
, Jordanus Nemorarius . On comparing works

like this with those of the abacists
,
we notice at once the most striking

diff erence
,
which shows that the two parties drew from independent
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sources . It is argued by some that Gerbert got his apices and his arith
metical knowledge

,
not from Boethius

,
but from the

‘

Arabs in Spain
,

and that part or the whole of the geometry of Boethius is a forgery
,

dating from the time of Gerbert. If this were the case
,
then the writ

ings of Gerbert would betray Arabic sources
,
as do those of John of

Seville . But no points of resemblance are found . Gerbert could not
have learned from the Arabs the use of the abacus

,
because all evidence

we have goes to Show that they did not employ it . Nor is i t probable
that he borrowed from the Arabs the apices

,
because they were never

used in Europe except on the abacus . In illustrating an example in
division

,
mathematicians of the tenth and eleventh centuries state

an example in Roman numerals
,
then draw an abacus and insert in it

the necessary numbers with the apices . Hence it seems probable that
the abacus and apices were borrowed from the same source . The
contrast between authors like John of Seville

,
drawing from Arabic

works
,
and the abacists , consists in this , that , unlike the latter , the

former mention the Hindus
,
use the term algorism,

calculate with the
zero

,
and do not employ the abacus . The former teach the extraction

of roots
,
the abacists do not ; they teach the sexagesimal fractions used

by th
q
Arabs

,
while the abacists employ the duodecimals of the Ro

mans .
A little later than John of Seville flourished Gerard of Cremona in

Lombardy. Being desirous to gain possession of the A lmagest, he
went to Toledo

,
and there

,
in 1 1 75 , translated this great work of P tol

emy. Inspired by the richness of M ohammedan literature
,
he gave

himself up to its study . He translated into Latin over 70 Arabic works .
Of mathematical treatises

,
there were among these

,
besides the A i

magest, the 15 books Of Euclid , the Sphcer ica of Theodosius , a work of
M enelaus

,
the algebra of Al—Khowarizmi

,
the astronomy of Jabir ibn

Aflah
,
and others less important . Through Gerard of Cremona the

term sinus was introduced into trigonometry . Al-Khawar izmi
’

s al

gebra was translated also by Robert of Chester ; his translation prob
ably antedated Cremona ’s .
In the thirteenth century

,
the zeal for the acquisition of Arabic

learning continued . Foremost among the patrons of science at this
time ranked Emperor Frederick II of Hohenstaufen (died
Through frequent contact with Mohammedan scholars , he became
familiar with Arabic science . He employed a number of scholars in
translating Arabic manuscripts

,
and it was through him that we came

in possession of a new translation of the A lmagest. Another royal
head deserv ing mention as a zealous promoter of Arabic science was
Alfonso X of Castile (died He gathe red around him a number
of Jewish and Christian scholars

,
who translated and compiled astro

nomical works from Arabic sources . Astronomical tables prepared
by two Jews spread rapidly in the Occident

,
and constituted the basis

1M . Cantor , op. cit. , Vol . I , 3 . Aufl . ,
1907 , p . 879, chapter 40 .
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of all astronomical calculation till the sixteenth century . The num
ber of scholars who aided in transplanting Arabic science upon Chris
tian soil was large . But we mention only one

, G iovanni Campano of
Novara (about who brought out a new translation of Euclid

,

which drove the earlier ones from the field
,
and which formed the

basis of the printed editions . 1

At the middle of the twelfth century
,
the Occident was in possession

of the so-called Arabic notation . At the close of the century
,
the

Hindu methods of calculation began to supersede the cumbrous meth
ods inherited from Rome . Algebra

,
with its rules for solving linear

and quadratic equations
,
had been made accessible to the Latins . The

geometry of Euclid
,
the Sphcerica of Theodosius , the astronomy of

P tolemy
,
and other works were now accessible in the Latin tongue.

Thus a great amount of new scientific material had come into the
hands of the Christians . The talent necessary to digest this hetero
geneous mass of knowledge was not wanting. The figure of Leonardo
of P isa adorns the vestibule of the thirteenth century.

It is important to notice that no work either on mathematics or
astronomy was translated direc tly from the Greek previous to the
fif teenth century.

The First Awakening and its S equel

Thus far
,
France and the British Isles have been the headquarters

of mathematics in Christian Europe. But at the beginning of the
thirteenth century the talent and activity of one man was suffi cient to
assign the mathematical science a new home in I taly. This man was
not a monk

,
like Bede

,
Alcuin

,
or Gerbert , but a layman who found

time for scientific study. Leonardo of P isa is the man to whom we
owe the first renaissance of mathematics on Christian soil . He is also
called Fibonacci

,
i .e. son of Bonaccio. His father was secretary at one of

the numerous factories erected on the south and east coast of the M ed

iterranean by the enterprisingmerchants of P isa . He made Leonardo
,

when a boy
,
learn the use of the abacus . The boy acquired a strong

taste for mathematics
,
and

,
in later years

,
during extensive travels in

Egypt
,
Syria

,
Greece

,
and Sicily

,
collected from the various peoples

all the knowledge he could get on this subj ect . Of all the methods of
calculation

,
he found the Hindu to be unquestionably the best . Re

turning to P isa
,
he published

,
in 1 202

,
his great work , the Liber Abaci .

A revised edition of this appeared in 1 2 28 . This work contains the
knowledge the Arabs possessed in arithmetic and algebra , and treats
the subject in a free and independent way . This , together with the
other books of Leonardo

,
shows that he was not merely a compiler

,

nor
,
like other writers of the M iddle Ages

,
a slavi sh imitator of the

form in which the subject had been previously presented. The extent
1H . Hankel , op. cit. , pp . 338, 339.
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British Museum one English manuscript is of about 1230—50 , another
is of 1 246 . The earliest undoubted Arabic numerals on a gravestone
are at Pforzheirn in Baden of 137 1 and one at Ulm of 1388 . The
earliest coins dated in the Arabic numerals are as follows:Swiss 1424,
Austrian 1484 , French 1485 , German 1489, Scotch 1539, Engli sh I 551 .

The earl iest calendar with Arabic figures is that of KObel
,
1518 . The

forms of the numerals varied considerably. The 5 w as the most
freakish . An upright 7 was rare in the earlier centuries .
In the fifteenth century the abacus with its counters ceased to be

used in Spain and Italy . In France it was used later
,
and it did not

disappear in England and Germany before the middle Of the seven
teenth century .

1 The method of abacal computation is found in the
English exchequer for the last time in 1676 . In the reign of Henry I
the exchequer was distinctly organized as a court of law

,
but the finan

cial business Of the crown was also carried on there . The term “
ex

chequer”is derived from the chequered cloth which covered the table
at which the accounts were made up . Suppose the sheriff was sum
moned to answer for the full annual dues in money or in tallies .”
“The liabilities and the actual payments of the sheriff were balanced
by means of counters placed upon the squares of the chequered table

,

those on the one S ide of the table representing the value of the tallies
,

warrants and specie presented by the sheriff
,
and those on the other

the amount for which he was liable
,

”so that it was easy to see whether
the sheriff had met his Obligations or not . In Tudor times “ pen and
ink dots took the place Of counters . These dots were used as late as

The tally”upon which accounts were kept was a peeled
wooden rod split in such a way as to divide certain notches previously
cut in it . One piece Of the tally was given to the payer ; the other piece
was kept by the exchequer. The transaction could be verified easily
by fitting the two halves together and noticing whether the notches
tallied”or nor . Such tallies remained in use as late as 1783 .

In the Winter ’s Tale (IV. Shakespeare lets the clown be embar
rassed by a problem which he could not do without counters . Iago (in
Othel lo, i , 1)expresses his contempt for M ichael Cassio , “ forsooth a
great mathematician

,

”by calling him a “ counter-caster.”3 SO gen
eral

,
indeed

,
says Peacock

,
appears to have been the practice of this

species of arithmetic
,
that its rules and principles form an essential

part of the arithmetical treatises of that day. The real fact seems to
be that the old methods were used long after the Hindu numerals were

1 George Peacock
,

Arithmetic in the Encyclope dia of P ure Mathematics
,

London ,
1847 , p . 408 .

2Article
“
Exchequer in Palgrave

’
s Dictionary of Pol itical Economy, London ,

1894 .

3 For additional information ,
consul t F . P . Barnard

,
The Casting-Counter and

the Counting
-Board, Oxford ,

19 16 . He g ives a l ist of 159 extracts from Eng l ish

inventories referring to counting boards and also photographs of reckoning tables

at Basel and N ifrnberg , of reckoning cloths at Munich, etc.
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in common and general use . With such dogged persistency does man
cli ng to the old !
The Liber Abaci was , for centuries , one of the storehouses from

which authors got material for works on arithmetic and algebra . In
it are set forth the most perfect methods of calculation wi th integers
and fractions

,
known at that time ; the square and cube root are ex

plained
,
cube root nor having been considered in the Christian oeci

dent before ; equations of the first and second degree leading to prob
lems

,
either determinate or indeterminate

,
are solved by the methods

of “ single”or “ double position
,

”and also by real algebra . He recog
nized that the quadratic x2+c=bx may be satisfied by two values of x.

He took no cognizance Of negative and imaginary roots . The book
contains a large number of problems . The following was proposed to
Leonardo of P isa by a magister in Constantinople

,
as a diffi cult prob

lem:If A gets from B 7 denare , then A
’s sum is five-fold B ’

s ; if B gets
from A 5 denare , then B

’s sum is seven-fold A ’s . How much has each?
The Liber Abaci contains another problem

,
which is of historical ih

terest
,
because it was given with some variations by Ahmes

, 3000 years
earlier: 7 old women go to Rome ; each woman has 7 mules , each mule
carries 7 sacks , each sack contains 7 loaves , with each loaf are 7 knives ,
each knife is p

l
ut up in 7 sheaths . What is the sum total of all named ?

Ans . Following the practice of Arabic and of Greek and
Egyp tian writers , Leonardo frequently uses unit fractions . This was
done also by other European wri ters of the M iddle Ages . He ex

plained how to resolve a fraction into the sum Of unit fractions . He
was one of the first to separate the numerator from the denom inator
by a fractional line . Before his time

,
when fractions were written in

Hindu-Arabic numerals
,
the denominator was written beneath the

numerator , wi thout any S ign of separation .

In 1 2 20
,
Leonardo of P isa published his P ractica Geometrico

,
which

contains all the knowledge of geometry and trigonometry transm itted
to him. The writings of Euclid and of some other Gr

’

eek masters were
known to him

,
either from Arabic manuscripts directly or from the

translations made by his countrymen
,
Gerard of Cremona and P lato

of Tivoli . AS previously stated
,
a principal source of his geometrical

knowledge was P lato of Tivolis ’ translation in 1 1 16
,
from the Hebrew

into Latin, of the Liber embadorum of Abraham Savasorda.

2 Leo
nardo ’s Geometry contains an elegant geometrical demonstration of
Heron ’s formula for the area of a triangle

,
as a function of its three

sides ; the proof resembles Heron
’s . Leonardo treats the rich material

before him with Skill
,
some originality and Eucl idean rigor .

Of still greater interest than the preceding works are those contain

1M . Cantor
,
op. cit. , Vol . II , 2 . Aufl .

,
1900 , p . 26 . See a problem in the Ahmes

papyrus bel ieved to be of the same type as this .

2 See M . Curtze, Urkunden zur Geschichte der M athematik I Theil
,
Leipzig , 190 2 ,
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ing Fibonacci ’s more original investigations . We must here preface
that after the publication of the Liber Abaci

,
Leonardo was presented

by the astronomer Dominicus to Emperor. Frederick II of Hohen
staufen . On that occasion

,
John of Palermo

,
an imperial notary ,

proposed several problems
,
which Leonardo solved promptly . The

first (probably an old familiar problem to him)was to find a number x
,

such that x2+ 5 and x
2
5 are each square numbers . The answer is

x= 3 1
5
2 ; for (31 -

5
= (21

7 His masterly SO

lution of this Is given in his l iber quadratorum,
a manuscript which was

not printed
,
but to which reference is made in the second edition of

his Liber Abaci . The problem was not original with John of Palermo ,
since the Arabs had already solved similar ones . Some parts of Leo~
nardo ’s solution may have been borrowed from the Arabs , but the
method which he employed of building squares by the summation of
odd numbers IS original with him.

The second problem proposed to Leonardo at the famous scientific
tournament which accompanied the presentation of this celebrated al
gebraist to that great patron of learning , Emperor Frederick II , was
the solving of the equation x

3
+ 2x

2
+ 10x= 20 . As yet cubic equations

had not been solved algebraically . Instead of brooding stubbornly
over this knotty problem ,

and after many failures still entertaining
new hopes of success

,
he changed his method of inquiry and showed

by clear and rigorous demonstration that the roots of this equation
could not be represented by the Euclidean irrational quantities , or , in
other words

,
that they could not be constructed with the ruler and

compass only. He contented himself with finding a very close ap
proximation to the required root . His work on this cubic is found in
the Flos , together with the solution of the fol lowing third problem f

given him by John Of Palermo :Three men possess in common an un

known sum of money t; the share of the first isE; that of the second , 1;
2 3

that of the third
, é. Desirous of depositing the sum at a safer place ,

each takes at hazard a certain amount ; the first takes x
,
but deposits

only
2

x
,
the second carries y, but deposits only the third takes z, and

3

deposits
z

6
' Of the amount deposited each one must receive exactly 3,

in order to possess his share of the whole sum. Find x, y, z. Leonardo
shows the problem to be indeterminate . Assuming 7 for the sum
drawn by each from the deposit

,
he finds t= 47 , x= 33 , y= I 3 , z

= 1 .

One would have thought that after so brilliant a beginning , the
sciences transplanted from Mohammedan to Christian soil would
have enjoyed a steady and vigorous development . But this was not
the case . During the fourteenth and fifteenth centuries

,
the mathe
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in abbreviations of Italian words
,
such as p for pin (more), m for meno

(less), co for cosa (the unknown x), cc for censo (x2), cece for censocenso
(x
3), “ Our present notation has arisen by almost insensible degrees
as convenience suggested different marks of abbreviation to different
authors ; and that perfect symbolic language which addresses itself
solely to the eye , and enables us to take in at a glance the most com
plicated relations of quantity , is the resul t of a large series of small im
provements .

”
We shall now mention a few authors who lived during the thirteenth

and fourteenth and the first half of the fifteenth centuries .
We begin with the philosophic writings of Thomas Aqu inas (1 2 25

the great I talian philosopher of the M iddle Ages
,
who gave in

the completest form the ideas of Origen on infinity .

t>

Aquinas
’ notion

of a continuum, particularly a linear continuum ,
made it potenl ial ly

divisible to infinity
,
since practically the divisions could not be carried

out to infinity. There was
,
therefore

,
no minimum line . On the other

hand , the point is not a constituent part of the line , since it does not
possess the property of infinite divisibility that parts of a line possess

,

nor can the continuum be constructed out of points . However
,
a

point by its motion has the capacity of generating a line .

2 This con
tinuum held a firm ascendancy over the ancient atomistic doctrine
whi ch assumed matter to be composed of very small

,
indivisible par

ticles . No continuum superior to this was created before the nine
teenth century . Aquinas explains Zeno ’s arguments against motion

,

as they are given by Aristotle
,
but hardly presents any new point of

view . The Englishman
,
Roger Bacon —

1 294] likewise argued
against a continuum of indivisible parts different from points . Re

newing arguments presented by the Greeks and early Arabs
,
he held

that the doctrine of indivisible parts of uniform size would make the
diagonal of a square commensurable with a side . Likewise

,
if through

the ends of an indivisible arc of a circle radii are drawn
,
these radii

intercept an arc on a concentric circle of smaller radius ; from this it
would follow that the inner circle is of the same length as the outer
circle , which is impossible . Bacon argued against infinity . If time
were infinite

,
the absurdity would follow that the part is equal to the

whole . Bacon ’s views were made known more widely through Duns
S cotus (1 265 the theological and philosophical opponent of
Thomas Aquinas . However

,
both argued against the existence of

indivisible parts (points). Duns Scotus wrote on Zeno ’s paradoxies ,
but without reaching new points of view . His commentaries were
annotated later by the Italian theologian

,
Franc iscus de P itigiam

'

s ,

who expressed himself in favor of the admission of the actual infinity
to explain the “

Dichotomy”and the “Achilles
,
but fails to ade

quately elaborate the subj ect Sc‘holastic ideas on infinitv and the
1
J. F . W. Herschel

,

“Mathematics in Edinburgh Encyclope dia .

2 C . R . Wal lner
,
in B ibl iotheca mathematica

, 3 . F Bd. IV
,
1903 , pp . 29, 30 .
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continuum find expression in the writings of Bradwardine
,
the Eng

lish doctor profundis .

1

About the time of Leonardo of P isa (1 200 A . lived the German
monk Jordanu s Nemoran us —

1 who wrote a once famous work
on the properties of numbers

,
printed in 1496 and modelled after the

arithmetic of Boethius . The most trifling numeral properties are
treated with nauseating pedantry and prolixity. A practical arith
metic based on the Hindu notation was also written by him . John
Hal ifax (Sacro Bosco , died 1 256)taught in Paris and made an extract
from the A lmagest containing only the most elementary parts of that
work . This extract was for nearly 400 years a work of great popular
ity and standard authority

,
as was also his arithmetical work , the

Traclalns de axle nnmerandl . Other prominent writers are Albertus
Magnus (1 193?—1 280)and Georg Peurbach (1423-

146 1)in Ger
many. I t appears that here and there some of our modern ideas were
anticipated by writers of the M iddle Ages . Thus

,
N icole O resme

(about 1323 a bishop in Normandy
,
first conceived the notion of

fractional powers
,
afterwards rediscovered by Stevin

,
and suggested a

notation . Since 43= 64 , and 64% 8
, Oresme concluded that 41% 8 .

In his notation
, 4

154 Is expressed
,

or

mathematiciansof the M iddle Ages possessed some idea of a function .

Oresme even attempted a graphic representation . But of a numeric
dependance of one quantity upon another

,
as found in Descartes ,

there is no trace among them.

2

In an unpublished manuscript Oresme found the sum of the infinite
series 3

5
5+ an inf . Such recurrent infinite series were

formerly supposed to have made their first appearance in the eight
eenth century. The use of infinite series is explained also in the Liber
de tripl ici motn ,

by the Portuguese mathematician A lvoras Thomas ,
3

in 1509. He gives the division of a line- segment into parts represent
ing the terms of a convergent geometric series ; that is , a segment AB
is divided into parts such that AB :P IB =P 1B :P 2B P iB :P i+ 1

B Such a division of a line-segment occurs later in Napier ’s
kinematical discussion of logarithms .
Thomas Bradwardine (about 1 290 archbishop of Canter
bury

,
studied star-polygons . The first appearance of such polygons was

with Pythagoras and his school . We next meet with such polygons
in the geometry of Boethius and also in the translation of Euclid from
the Arabic by Athelard of Bath . To England falls the honor of hav
ing produced the earliest European writers on trigonometry. The

1 F. Cajori , Americ. Mat/z. Monthly, Vol . 2 2 , 1915 , pp . 45
—
47 .

2H . W1eleItner 1n B ibl iotheca mal lzemalzca , 3 . S
,
Vol . 13 , 1913 , pp . 1 15

—
145 .

3 See Etudes sur Leonard da Vinci , Vol . III , Paris, 1913 , pp . 393 , 540 , 541 , by
Pierre Duhem ( 186 1 1916)of the Un iversity of Bordeaux ; see also Wieleitner in
B ibl iotheca mathematica, Vol . 14, 1914 , pp . 150

—
168 .



128 A HISTORY OF MATHEMATICS

writings of Bradwardine, of Richard of Wallingford , and John Maud
ith

,
both professors at Oxford

,
and of Simon Bredon ofWinchecombe

,

contain trigonometry drawn from Arabic sources .
The works of the Greek monk Maximus P lanudes (about 1 260

are of interest only as showing that the Hindu numerals were
then known in Greece . A writer belonging

,
like P lanudes , to the By

zantine school , was Manue l Moschopulus who lived in Constantino
ple in the early part of the fourteenth century . To him appears to be
due the introduction into Europe ofmagic squares . He wrote a treatise
on this subj ect . Magic squares were known before this to the Arabs
and Japanese ; they originated w ith the Chinese . M edimval astrol
ogers and physicians believed them to possess mystical properties and
to be a charm against plague

,
when engraved on silver plate .

Recently there has been printed a Hebrew arithmetical work by
the French Jew ,

Levi ben Gerson
,
written in and handed down

in several manuscripts . I t contains formulas for the number of per
mutations and combinations of n things taken 13 at a time . It is worthy
of note that the earliest practical arithmetic known to have been
brought out in print appeared anonymously in Treviso

,
I taly

,
in 1478 ,

and is referred to as the “Treviso arithmetic . Four years later
,
in

1482 , came out at Bamberg the first printed German arithmetic . I t
is by Ul rich Wagner , a teacher of arithmetic at Nurnberg. I t was
printed on parchment

,
but only fragments of one copy are now extant . 2

According to
’

Enestrom
,
Ph . Calandri

’

s De ari thmetrica opnscnlurn ,

Florence
,
1491 , is the first printed treatise containing the word

“
zero

it is found in some fourteenth century manuscripts .
In 1494 was printed the S nmma de A ri thmetica

, Geometria, P ropor
tione et P roportional i ta, written by the Tuscan monk Luca Paciol i
(1445 who

,
as we remarked

,
introduced several symbols in

algebra . This contains all the knowledge of his day on arithmetic ,
algebra , and trigonometry , and is the first comprehensive work which
appeared affi fi fi é

’

f fl baci of Fibonacci . I t contains li ttle of im
portance which cannot

'

be found in Fibonacci ’s great work
,
published

three centuries earlier . Pacioli came in personal touch with two ar
tists who were also mathematicians

,
Leonardo da Vinci 3 (1452—1519)

and P ier del la Francesca (1416 Da Vinci inscribed regular
polygons in circles

,
but did not distinguish between accurate and ap

proximate constructions . I t is interesting to note that da Vinci was
familiar with the Greek text of Archimedes on the measurement of
the circle. P ier della Francesca advanced the theory of perspective

,

and left a manuscript on regular solids which was published by

1 Bibl iotheca mathematica , 3 . S . , Vol . 14 , 1916 , p . 26 1 .

2 See D . E. Smith ,
Rara arithmetica , Boston and London

,
1908 , pp. 3 , 1 2

,
15 ;

F . Unger , M ethodik der P raktischen Arithmetik in Historischer Entwickelung, Leip
zig , 1888 , p . 39.

3 Consult P . Duhem
’

s Etudes sur Leonard dc Vinci , Paris, 1909.
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EUROPE DURING THE SIXTEENTH
,
SEVENTEENTH

AND EIGHTEENTH CENTURIES

We find it convenient to choose the time of the capture of Constan
tinople by the Turks as the date at which the M iddle Ages ended and
Modern Times began . In 1453 , the Turks battered the walls of this
celebrated metropolis with cannon

,
and finally captured the city ; the

Byzantine Empire fell
,
to rise no more . Calami tous as was this event

to the East
,
i t acted favorably upon the progress of learning in the

West . A great number of learned Greeks fled into Italy , bringing with
them precious manuscripts of Greek literature . This contributed
vastly to the reviving of classic learning . Up to this time

,
Greek mas

ters were known only through the often very corrupt Arabic manu
scripts

,
but now they began to be studied from original sources and

in their own language . The first English translation of Euclid was
made in 1570 from the Greek by S ir Henry B i l l ingsley, assisted by
John Dee.

1 About the middle of the fifteenth century
,
printing was

invented ; books became cheap and plentiful ; the printing-press trans
formed Europe into an audience—room. Near the close of the fifteenth
century

,
America was discovered

,
and

,
soon after

,
the earth was cir

cumnavigated. The pulse and pace of the world began to quicken .

M en ’s minds became less servile ; they became clearer and stronger.
The indistinctness of thought , which was the characteristic feature of
mediaeval learning

,
began to be remedied chiefly by the steady cultiva

tion of Pure M athematics and Astronomy . Dogmatism was attacked ;
there arose a long struggle with the authority of the Church and the
established schools of phil osophy. The Copernican System was set
up in opposition to the time-honored P tolemaic System. The long
and eager contest between the two culminated in acrisis at the time
of Galileo

,
and resulted in the victory of the new system. Thus

,
by

slow degrees
,
the minds ofmen were cut adrift from their old scholastic

moorings and sent forth on the wide sea of scientific inquiry , to dis
cover new islands and continents of truth .

The Renaissance

With the sixteenth century began a period of increased intellectual
activity . The human mind made a vast effort to achieve its freedom.

Attempts at its emancipation from Church authority had been made
before

,
but they were stifled and rendered abortive . The first great

and successful revol t against ecclesiastical authority was made in
1 G . B . Halsted in Am. f our . of Math

,
Vol . II, 1879.
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Germany. The new desire for judging freely and independently In

matters of religion was preceded and accompanied by a growing spirit
of scientific inquiry . Thus i t was that

,
for a time

,
Germany led the

van in science . She produced Regiomontanus , Copernicus , Rhwticus
and Kepler , at a period when France and England had , as yet , brought
forth hardly any great scientific thinkers . This remarkable scientific
productiveness was no doubt due

,
to a great extent

,
to the commercial

prosperity of Germany . Material prosperity is an essential condition
for the progress of knowledge . As long as every individual is obliged
to collect the necessaries for his subsistence

,
there can be no leisure

for higher pursuits . At this time
,
Germany had accumulated con

siderable wealth . The Hanseatic League commanded the trade of
the North . Close commercial relations existed between Germany and
Italy. Italy

,
too

,
excelled in commercial activ ity and enterprise .

We need only mention Venice
,
whose glory began with the crusades

,

and Florence
,
with her bankers and hermanufacturers of silk and wool .

These two cities became great intellectual centres . Thus
,
Italy

,
too

,

prod 'uced men in art
,
l iterature

,
and science

,
who shone forth in fullest

splendor . In fact , Italy was the fatherland of what is termed the Re
naissance .

For the first great contributions to the mathematical sciences we
must

,
therefore

,
look to Italy and Germany. In Italy brill iant acces

sions were made to algebra
,
in Germany progress was made in astron

omy and trigonometry.

On the threshold of this new era we meet in Germany with the figure
of John M ueller

,
more general ly called Reg iomontanus ( 1436

Chiefly to him we owe the revival of trigonometry . He studied as
tronomy and trigonometry at Vienna under the celebrated George
Peurbach . The latter perceived that the existing Latin translations
of the Almagest were full of errors , and that Arabic authors had not
remained true to the Greek original . Peurbach therefore began to
make a translation directly from the Greek . But he did not live to
finish it . His work was continued by Regiomontanus , who went be
yond his master . Regiomontanus learned the Greek language from
Cardinal Bessarion

,
whom he followed to Italy

,
where he remained

eight years collecting manuscripts from Greeks who had fled thither
from the Turks . In addition to the translation of and the commen
tary on the A lmagest, he prepared translations of the Conics of Apol
lonius

,
of Archimedes

,
and of the mechanical works of Heron . Regio

montanus and Peurbach adopted the Hindu sine in place of the Greek
chord of double the arc . The Greeks and afterwards the Arabs divided
the radius into 60 equal parts

,
and each of these again into 60 smaller

ones . The Hindu expressed the length of the radius by parts of the
circumference

,
saying that of the 2 1

,
600 equal divisions of the latter

,

i t took 3438 to measure the radius . Regiomontanus , to secure greater
precision , constructed one table of sines on a radius divided into
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parts
,
and another on a radi us divided decirnal ly into

divisions . He emphasized the use of the tangent in trigo
nometry. Following out some ideas of his master , he calculated a
table of tangents . German mathematicians were not the first Euro
peans to use this function . In England it was known a century earlier
to Bradwardine , who speaks of tangent (umbra versa)and cotangent
(umbra recta), and to John Maudith. Even earlier , in the twelfth
century

,
the umbra versa and umbra recta are used in a translation from

Arabic into Latin
,
eff ected by Gerard of Cremona

,
of the Toledian

Tables of Al -Zarkal i
,
who lived in Toledo about 1080 . Regiomontanus

was the author of an arithmetic and also of a complete treatise on
trigonometry

,
containing solutions of both plane and spherical tri

angles . Some innovations in trigonometry
,
formerly attributed to

Regiomontanus
,
are now known to have been introduced by the Arabs

before him. Nevertheless
,
much credit is due to him .

-His complete
mastery of astronomy and mathematics

,
and his enthusiasm for them

,

were of far- reaching influence throughout Germany . So great was his
reputation

,
that Pope Sixtus IV call ed him to I taly to improve the

calendar. Regiomontanus left his beloved city of Nii rnberg for Rome ,
where he died in the following year .
After the time of Peurbach and Regiomontanus

,
trig onometry and—0-0—0

espegial ly‘ the calculation of tables cofitinuedl to occupy German scholg.”
“ n o-o "

ars . More refined astronomicar iflstrm ents were made
,
which gave

observations of greater precision ; but these would have been useless
without trigonometrical tables of corresponding accuracy . Of the sev
eral tables calculated

,
that byGeorg Joachim of Feldkirch in Tyrol , gen

eral ly called Rhaeticus ( 1 514—1567)deserves special mention . He cal
culated a table of S ines with the radius= and from 10

”
to 10
”and

,
later on

,
another with the radius=

and proceeding from 10
" to He began also the construction of

tables of tangents and secants
,
to be carried to the same degree of

accuracy ; but he died before finishing them. For twelve years he had
had in continual employment several calculators . The work was com
pleted in 1596 by his pupil , Val entine O tho (1550? This was
indeed a gigantic work

,

—
a monument of German diligence and inde

fatigable perseverance . The tables were republished in 16 13 by Bar
tholom

'

alus Piti scus £156 1
—16 13)of Heidelberg , who spared no pains

to free the
'

ri ifi
'

eiiY ors . P itiscus was perhaps the first to use the word
“ trigonometry.

”Astronomical tables of so great a degree of accu
racy had never been dreamed of by the Greeks

,
Hindus

,
or Arabs .

That Rhaeticus was not a ready calculator only
,
is indicated by his

views on trigonometrical lines . Up to his time
,
the trigonometric

functions had been considered always with relation to the arc ; he was
the first to construct the right triangle and to make them depend di
rectly upon its angles . It was from the right triangle that Rheeticus
got his idea of calculating the hypotenuse ; i . e. he was the first to plan
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2 2d. Each contestant proposed thirty problems . The one who could
solve the greatest number within fifty days should be the victor . Tar
taglia solved the thirty problems proposed by Floridas in two hours ;
Floridas could not solve any of Tartaglia ’s . From now on

,
Tartaglia

studied cubic equations with a will . In 1541 he discovered a general
solution for the cubic x3i px

2= t
o, by transforming i t into the form

x
3i The news of Tartaglia ’s victory spread all over Italy.

Tartaglia was entreated to make known his method
,
but he declined

to do so
,
saying that after his completion of the translation from the

Greek of Euclid and Archimedes
,
he would publish a large algebra

containing his method . But a scholar fromM ilan
,
named Hieronimo

Cardano (1501 after many solicitations
,
and after giving the

most solemn and sacred promises of secrecy
,
succeeded in obtaining

from Tartaglia a knowledge of his rules . Cardan was a singular mix
ture of genius

,
folly

,
self-conceit and mysticism. He was successively

professor of mathematics and medicine at M ilan
,
Pavia and Bologna

,

In 1570 he was imprisoned for debt . Later he went to Rome , was
admitted to the college of physicians and was pensioned by the pope .
At this time Cardan was writing his A rs Magna , and he knew no

better way to crown his work than by inserting the much sought for
rules for solving cubics . Thus Cardan broke his most solemn vows

,

and publi shed in 1 545 in his A rs M agna Tartaglia
’s solution of cubics .

However
,
Cardan did credit his friend Tartaglia”with the discovery

of the rule . Nevertheless
,
Tartaglia became desperate . His most

cherished hope
,
of giving to the world an immortal work which should

be the monument of his deep learning and power for original research
,

was suddenly destroyed ; for the crown intended for his work had
been snatched away . His first step was to write a history of his in
vention ; but , to completely annih ilate his enemies , he challenged
Cardan and his pupil Lodovico Ferrari to a contest : each party
Should propose thirty-one questions to be solved by the other within
fifteen days . Tartaglia solved most questions in seven days

,
but the

other party did not send in their solutions before the expiration of the
fifth month ; moreover , all their solutions except one were wrong . A
replication and a rejoinder followed . Endless were the problems pro
posed and solved on both sides . The dispute produced much chagrin
and heart-burnings to the parties

,
and to Tartaglia especially

,
who

met with many other disappointments . After having recovered him
self again

,
Tartaglia began

,
in 1556 , the publication of the work which

he had had in his mind for so long ; but he died before he reached the
consideration of cubic equations Thus the fondest wish of his life re
mained unfulfilled . HOW much

’

credit for the algebraic solution of the
general cubic IS due to Tartaglia and how much to Del Ferro it is now
impossible to ascertain definitely . Del Ferro ’s researches were never
published and were lost . We know of them only through the remarks
of Cardan and his pupil L . Ferrari who say that Del Ferro ’s and Tar
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taglia
’

s methods were alike . Certain it is that the customary desig
nation

,

“ Cardan ’s solution of the cubic”ascribes to Cardan what
belongs to one or the other of his predecessors .
Remarkable is the great interest that the solution of cubics excited
throughout I taly. I t is but natural that after this great conquest
mathematicians Should attack bi- quadratic equations . AS in the case
of cubics

,
so here

,
the first impulse was given by Colla

,
who

,
in 1540 ,

proposed for solution the equation x
4
+ 6x

2
+36= 60x. To be sure ,

Cardan had studied particular cases as early as 1539. Thus he solved
the equation 13x

2
x
4
+ 2x

3+ 2x+ 1 by a process s imilar to that em
ployed by Diophantus and the Hindus ; namely , by adding to both
S ides 3x

2 and thereby rendering both numbers complete squares . But

Cardan failed to find a general solution ; i t remained for his pupil
Lodovico Ferrari ( 152 2—1565)of Bologna to make the brilliant dis
covery of the general solution of bi-quadratic equations . Ferrari re
duced Colla ’s equation to the form (x2—l 6)2= 60x+ 6x2. In order to
give also the right member the form of a complete square he added to
both members the expression containing a new un

known quantity y. This gave him 2y)x2+ 60x+
(1 2y—l—y2). The condition that the right member be a complete square
is expressed by the cubic equation (2y+ 6)(1 2y+y2)= 900 . Extract
ing the square root of the bi—quadratic

,
he got x2+6+y=xxf 2y+6

Solving the cubic for y and substituting , i t remained

only to determine x from the resulting quadratic . L . Ferrari pursued
a similar method with other numerical bi-quadratic equations . 1 Car
dan

'

had the pleasure of publishing this discovery in his Ars Magna

in 1545. Ferrari ’s solution is sometimes ascribed to R. B ombel l i , but
he is no more the discoverer of it than Cardan is of the solution called
by his name .

To Cardan algebra Is much indebted . Inhis Ars Magna he takes
notice of negative roots of an equation

,
calling them ficti tious , while

the positive roots are called real . He paid some attention to compu
tations involving the square root of negative numbers , but failed
to recognize imaginary roots . Cardan also observed the diffi culty
in the irreducible case in the cubics

,
which

,
l ike the quadrature of the

circle
,
has S ince “ so much tormented the perverse ingenuity ofmathe

maticians .”But he did not understand its nature . It remained for
Raphae l Bombell i of Bologna , who published in 1572 an algebra of
great merit

,
to point out the reality of the apparently imaginary ex

pression which a root assumes
,
also to assign

‘

i ts value
,
when rational

,

and thus to lay the foundation of a more intimate knowledge of imagi
nary quantities . Cardan was an inveterate gambler . In 1 663 there
was published posthumously his gambler

’s manual
,
De ludo alece ,

1 H . Hankel
,
op. cit.

, p . 368.
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which contains discussions relating to the chances favorable for throw
ing a particular number with two dice and also with three dice. Car
dan considered another problem in probabili ties . Stated in general
terms

,
the problem is :What is the proper division of a stake between

two players
,
if the game is interrupted and one player has taken s 1

points
,
the other sz points , s points being required to win .

1 Cardan
gives the ratio (1+ 2+ + [s 2+ + [s Tartaglia
gives (s+s l

—
s2)/(s+s2

—s Both of these answers are wrong . Car
dan considered also what later became known as the ‘fPetersburg

problem.

”
After the brilliant success in solving equations of the third and

fourth degrees
,
there was probably no one who doubted

,
that wi th

aid of irrationals of hi gher degrees
,
the solution of equations of any

degree whatever could be found . But all attempts at the algebraic
solution of the quintic were fruitless

,
and

,
finally

,
Abel demonstrated

that all hopes of finding algebraic solutions to equations of higher
than the fourth degree were purely Utopian .

Since no solution by radicals of equations of higher degrees could
be found

,
there remained nothing else to be done than the devising of

processes by which the real roots of numerical equations could be
found by approximation . The Chinese method used by them as early
as the thirteenth century was unknown in the Occident . We have
seen that in the early part of the thirteenth century Leonardo of Pisa
solved a cubic to a high degree of approximation , but we are ignorant
of his method . The earliest known process in the Occident of ap
proaching to a root of an affected numerical equation was invented by
Nicolas Chuquet , who , in 1484 at Lyons , wrote a work of high rank ,
entitled Le triparty en la science des nombres . It was not printed until

If then Chuquet takes the intermediate value it;
as a closer approximation to the root x. He finds a series of successive
intermedi ate values . We stated earlier that in 1498 the Arabic writer
M iram Chelebi gave a method of solv ing x3+Q=Px which he attrib
utes to Atabeddin Jamshid. This cubic arose in the computation of
x= SIn

The earl iest printed method of approximation to the roots of af
fected equations is that of Cardan

,
who gave it in the Ars Magna ,

1545, under the title of regu la aurea . It is a skilful application of
the rule of “ false position

,

”and is applicable to equations of any de
gree . This mode of approximation was exceedingly rough , yet this
fact hardly explains why Clavius

,
S tev in and Vieta did not refer to it.

1M . Cantor
,
II

,
2 Aufl . , 1900 , pp . 501 , 520 , 537 .

2 Printed in the Bul letino Boncompagn i , T xiii
,
1880 ; see pp . 653

—654 . See also

F . Cajori ,
“
A H istory of the Arithmetical Methods of Approximation to the

Roots of Numerical Equations of one Unknown Quantity
”
in Colorado Col lege

P ubl ication , General Seri es Nos. 5 1 and 52 , 1910 .
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also to goniometry
,
developing such relations as sin a= sin a

‘)
a. a—

sm (60
°

a), csc
—
ctn a+csc a = tan—

2
w1th the

aid of whi ch he could compute from the functions of angles below
30

° or 4 the functions of the remaining angles below essentially
by addition and subtraction alone . Vieta is the first to apply alge
braie transformation to trigonometry

,
particularly to the multisection

of angles . Letting 2 cos a =x ,
he expresses cos n a as a function of x

for all integers n < 1 1 ; letting 2 sin a =x and 2 S in 2 a =y, he expresses
2x
”‘ 2

sin n a in terms of x and y. Vieta exclaims : “Thus the analysis
of angular sections involves geometric and arithmetic secrets which
hitherto have been penetrated by no one .

”
An ambassador from Netherlands once told Henry IV that France
did not possess a S ingle geometer capable of solving a problem pro
pounded to geometers by a Belgian mathematician

,
Adrianus Ro

manus . I t was the solution of the equation of the forty-fifth degree

4sr
—
3795y

3
+95634y

5
+o4sy

‘11 -

45y
43
+r

45=C

Henry IV called Vieta , who , having al ready pursued S imilar investi
gations , saw at once that this awe- inspiring problem was simply the
equation by which C 2 S in cl)was expressed in terms of y= 2 sinf g d);
that

,
S ince 45=3 . i t was necessary only to divide an angle once

into 5 equal parts , and then twice into 3 ,—a division which could be
eflected by corresponding equations of the fifth and third degrees .
Brilliant was the discovery by Vieta of 23 roots to this equation , in
stead of only one . The reason why he did not find 45 solutions , is
that the remaining ones involve negative S ines , which were unintel
ligible to him . Detailed investigations on the famous old problem
Of the section of an angle into an odd number of equal parts , led Vieta
to the discovery of a trigonometrical solution of Cardan ’s irreducible

case in cubics . He appl ied the equation (2 cos q5)3—3
2 cosqS to the solution of x

3
3a

2
x=a

26
,
when a>3b, by placing x

2a and determining q rom b= 2a cosqb.

The main principle employed by him in the solution of equations
is that of reduction . He solves the quadratic by making a suitable
substitution which will remove the term containing x to the first de
gree . Like Cardan

,
he reduces the general expression of the cubic to

the form then
,
assuming —zz)z and substi

tuting
,
he gets zG—bz3 Putting z

3=y, he has a quadratic .
In the solution of bi—quadratics

,
Vieta still remains true to his principle

of reduction . This gives him the well-known cubic resolvent . He
thus adheres throughout to his favorite principle

,
and thereby in

troduces into algebra a un iformity of method which claims our lively
admiration . In Vieta ’s algebra we discover a partial knowledge of

the relations existing between the coefli cients and the roots of an equa
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tion . He Shows that if the coeffi cient of the second term in an equa
tion of the second degree is minus the sum of two numbers whose
product is the third term

,
then the two numbers are roots of the equa

tion . Vieta rej ected all except positive roots ; hence it was impossible
for him to fully perceive the relations in question .

The most epoch-making innovation in algebra due to Vieta is the
denoting of general or indefinite quantities by letters of the alphabet.
To be sure

,
Regiomontanus and Stifel in Germany

,
and Cardan in

Italy
,
used letters before him

,
but Vieta extended the idea and first

made it an essential part of algebra . The new algebra was called by
him logistica speciosa in distinction to the old logistica numerosa .

Vieta ’s formalism diff ered considerably from that of to-day. The
equation was written by him “

a cubus

+6 in a quadr . 3+a in b quadr . cubo aequal ia a+b cubo .

”In
numerical equations the unknown quantity was denoted by N

,
its

square by Q,
and its cube by C . Thus the equation x3 8x2+ 16x= 40

was written 1 C—8O+ I 6 N (equal . 40 . Vieta used the term “
co

effi cient
,
but it was little used before the close of the seventeenth

century.

1 Sometimes he uses also the term “ polynomial .”Observe
that exponents and our symbol for equality were not yet in use ;
but that Vieta employed the Maltese cross as the short-hand
symbol for addition , and the for subtraction . These two Char
acters had not been in very general use before the time of Vieta .

“ It
is very s ingular

,

”says Hallam
,

“ that discoveries of the greatest con
venience

,
and

,
apparently

,
not above the ingenuity of a village school

master
,
Should have been overlooked by men of extraordinary acute

nes’s lik e Tartaglia
,
Cardan

,
and L . Ferrari ; and , hardly less so that , by

dint of that acuteness
,
they dispensed with the aid of these contriv

anecs in which we suppose that so much of the utility of algebraic ex
pression consists .”Even after improvements in notation were once
proposed

,
i t was with extreme slowness that they were admitted into

general use . They were made oftener by accident than design
,
and

their authors had littlenotion of the effec t of the Change which they
were making . The introduction of the and symbols seems to be
due to the Germans

,
who

,
although they did not enrich algebra dur

ing the Renaissance with great inventions
,
as did the Ital ians , still cul

tivated it with great zeal . The arithmetic of JohnWidmann , brought
out in 1489 in Leipzig , is the earliest printed book in which the and

- symbols have been found . The sign is not restricted by him to
ordinary addition ; i t has the more general meaning

“
et or and”

as in the heading
,

“ regula augmenti decrementi . The S ign is
used to indicate subtraction

,
but not regular ly so . The word “ plus”

does not occur inWidmann ’

s text ; the word
“minus is used only two

or three times . The symbols and are used regularly for addi

1 Encyclopedic des sciences mathémal iques , Tome I , Vol . 2 , 1907 , p . 2 .
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tion and subtraction
,
in in the arithmetic of Grammateus,

(Heinrich Schreiber , died I 525)a teacher at the University of Vienna.
His pupil

, Christofi Rudolfl , the writer of the first text-book on algebra
in the German language (printed in employs these symbols also.

So did Stifel
,
who brought out a second edition of Rudolfl

’

s Coss in
1553 . Thus

,
by slow degrees

,
their adoption became universal . Sev

eral independent paleographic studies of Latin manuscripts of the
fourteenth and fifteenth centuries make it almost certain that the
S ign comes from the Latin et

,
as it was cursively written in manu

scripts just before the time of the invention of printing .

2 The ori
gin of the S ign is still uncertain . There is another short-hand
symbol of which we owe the origin to the Germans . In a manu
script published sometime in the fifteenth century

,
a dot placed

before a number is made to signify the extraction of a root of
that number. This dot is the embryo of our present symbol for the
square root. Christoff Rudolff

,
in his algebra

,
remarks that “ the

radix quadrata is
,
for brevity

,
designated in his algorithm with the

character w/ as V4.

”Here the dot has grown into a symbol much
like our own . This same symbol was used by M i chael S tifel . Our
S ign of equality is due to Robert Recorde (1510—15 the author of
The Whetstone of Wi tte ( I 5 which is the first English treatise on
algebra . He selected this symbol because no two things could be
more equal than two parallel l ines The S ign for division was
first used by Johann Heinrich Rahn

,
a Swiss

,
in his Teutsche A lgebra ,

Zurich
,
1659, and was introduced in England through Thomas

Brancker
’

s translation of Rahn ’s book
,
London

,
1668 .

M ichael Sti fel ( 1486P the greatest German algebraist of the
sixteenth century

,
was born in Esslingen

,
and died in Jena . He was

educated in the monastery of his native place
,
and afterwards be

came Protestant minister . The study of the S ignificance of mystic
numbers in Revelation and in Daniel drew him to mathematics . He
studied German and Italian works

,
and published in 1544 , in Latin ,

a book entitled Arithmetica integra. M elanchthon wrote a preface to
it. Its three parts treat respectively of rational numbers

,
irrational

numbers
,
and algebra . S tifel gives a table containing the numerical

values of the binomial coeffi cients for powers below the 18th . He ob
serves an advantage in letting a geometric progression correspond to
an arithmetical progression

,
and arrives at the designation of integral

powers by numbers . Here are the germs of the theory of exponents
and of logarithms . In 1545 Stifel published an arithmetic in German .

His edition of Rudolff ’s Coss contains rules for solving cubic equations ,
derived from the writings of Cardan .

1 G . Enestrom in B ibliotheca mathematica, 3 . S . , Vol . 9, 1908
—09 , pp . 155

—157 ;
Vol . 14 , 1914 , p . 2 78 .

2 For references see M . Cantor , op. ci t.
,
Vol . I I

,
2 . Ed .

,
1900 , p . 23 1 ; J. Tropfke,

op. ci t. , Vol . I , 1902 , pp . 133, 134 .
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century. From the notes of Pappus , he attempted to restore the miss
ing fif th book of Apollonius on maxima and minima . His Chief work is
his masterly and original treatment of the conic sections

,
wherein he

discusses tangents and asymptotes more fully than Apollonius had
done

,
and applies them to various physical and astronomical problems .

To Maurolycus has been ascribed also the discovery of the inference
bymathematical induction .

1 I t occurs in his introduction to his Opus
cula mathematica , Venice , 1 575 . Later

,
mathematical induction was

used by Pascal in his Trai ledu triangle ari thmétique Processes
akin to mathematical induction

,
some of which would yield the mod

ern mathematical induction by introducing some S light change in the
mode of presentation or in the point of view

,
were given before Mau

rolycus . Giovanni Campano (latinized form ,
Campanus)of Novara

in Italy
,
in his edition of Euclid proves the irrationality of the

golden section by a recurrent mode of inference resulting in a reductio
ad absurdum. But he does not descend by a regular progression from n
to n 1

,
n 2

,
etc .

,
but leaps irregularly over

,
perhaps

,
several integers .

Campano ’s process was used later by Fermat . A recurrent mode of
'

inference is found in Bhaskara’

s
“ cyclic method”of solving inde

terminate equations
,
in Theon of Smyrna (about 130 A . D .)and in

Proclus
’

s process for finding numbers representing the sides and di
agonals of squares ; i t is found in Euclid

’s proof (Elements IX ,
20)that

the number of primes is infinite .
The foremost geometrician of Portugal was Pedro Nunes 2 (1502

1578)or Nonius . He showed that a ship sailing so as to make equal
angles with the meridians does not travel in a straight line , nor usually
along the arc of a great circle

,
but describes a path called the loxo

dromic curve . Nunes invented the “ nonius”and described it in
his De crepuscu l is , Lisbon , 1542 . I t consists in the juxtaposition of
equal arcs

,
one are divided into m equal parts and the other into m+ 1

equal parts . Nonius took m= 89. The instrument is also called
a “ vernier

,

”after the Frenchman P ierre Vern ier , who re- invented i t
in 1631 . The foremost French mathematician before Vieta was P eter
Ramus (1515 who perished in themassacre of S t. Bartholomew.

Vieta possessed great familiarity with ancient geometry . The new

form which he gave to algebra
,
by representing general quantities by

letters
,
enabled him to point .out more easily how the construction of

the roots of cubics depended upon the celebrated ancient problems of
the duplication of the cube and the trisection of an angle . He reached
the interesting conclusion that the former problem includes the solu
tions of all cubics in which the radical in Tartaglia ’s formula is real ,
but that the latter problem includes only those leading to the irredu
cible case .

1 G . Vacca in Bul letin Am. Math. Society, 2 . S .
,
Vol . 16

,
1909 , p . 70 . See also

1 F . Cajori in Vol . 1 5 , pp . 40 7
—
409.

2 See R . Guimaraes, P edro Nunes , Coimpre, 1915.
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The problem of the quadrature of the circle was revived in this age ,
and was zealously studied even by men of eminence and mathematical
ability . The army of circle-squarers became most formidable q ing
the seventeenth century . Among the first to revive this problem was
the German Cardinal N icolaus Cusanus (1401 who had the
reputation of being a great logician . His fallacies were exposed to
full view by Regiomontanus . AS in this case

,
so in others

,
every quad

rator of note raised up ‘ an opposing mathematician : Oronce Fine was
met by Jean Buteo (c . 1492

—
1572)and P . Nunes ; Joseph Scaliger by

Vieta
,
Adrianus Romanus , and Clavius ; a Quercu by Adriaen An

thonisz (1527 Two mathematicians of Netherlands
,
Adrianus

Romanus ( 156 1
—
16 15)and Ludolph van Geu leu (1540 ocen

pied themselves with approximating to the ratio between the circumfer
ence and the diameter. The former carried the value 71 to 15 , the lat
ter to 35 , places . The value of 7r is therefore often named

“
Ludolph

’

s

number.”His performance was considered so extraordinary
,
that the

numbers were cut on his tomb-stone (now lost)in S t . Peter ’s church
yard

,
at Leyden . These men had used the Archimedian method of

in and Circum- Scribed polygons
,
a method refined in 162 1 by Wi l le

brord S nel lius (1580—1626)who showed how narrower limits may be
obtained for 71 without increasing the number of S ides of the poly
gons. Snellius used two theorems equivalent to 1 (2 sin 6 tan 0)A 94

csc 0+cot The greatest refinements in the use of the geo
metrical method of Archimedes were reached by C . Huyghens in his
De ci rcu l i magni tudine inventa , 1654 , and by James Gregory (1638
167 professor at S t . Andrews and Edinburgh

,
in his Exerci tationes

geometri cae, 1668
,
and Vera circu l i et hyperbolae quadratura , 1667 .

Gregory gave several formulas for approximating to 71 and in the
second of these publications boldly attempted to prove by the Ar
chimedean algorithm that the quadrature of the circle is impossible .

Huyghens Showed that Gregory ’s proof is not conclusive
,
although

he himself believed that the quadrature is impossible . Other attempts
to prove this impossibility were made by Thomas Fautat De Lagny
(1660—1 734)of Paris , in 1 727 , Joseph Saurin ( 1659—1 737)in 1720 ,
Isaac Newton in his P rincipia I , 6 , lemma 28 , E . Waring

,
L . Euler

,

1 77 1

That these proofs would lack rigor was almost to be expected
,
as

long as no distinction was made between algebraical and transcen
dental numbers .
The earliest explicit expression for i r by an infinite number of op

erations was found by Vieta. Considering regular polygons of 4 , 8 ,
16 , sides

,
inscribed in a circle of unit r adius

,
he found that the

area of the circle is



144 A HISTORY OF MATHEMATICS

from which we obtain
W I

1 whichmay be derived from Euler
’s formula 1

2
x/i « 5

Sin 0

c059/2 cos9/4 C050/8
Asmentioned earlier , i t wasAdrianus Romanus (156 1—16 15)ofLou

vainwho propounded for solution that equation of the forty—fifth degree
solved by Vieta . On receiving Vieta ’s solution

,
he at once departed for

Paris , tomake his acquaintance with so great amaster . Vieta proposed
to him the Apollonian problem

,
to draw a circle touching three given

circles . “
Adrianus Romanus solved the problem by the intersection of

two hyperbolas but this solution did not possess the rigor of the ancient
geometry . Vieta caused him to see this

,
and then

,
in his turn

,
pre

sented a solution which had all the rigor desirable .

”2 Romanus
did much toward S implifying spherical trigonometry by reducing

,
by

means of certain proj ections , the 28 cases in triangles then considered
to only six .

M ention must here be made of the improvements of the Julian
cal endar . The yearly determination of the movable feasts had for
a long time been connected with an untold amount of confusion . The
rapid progress of astronomy led to the consideration of this subject

,

and many new calendars were proposed . Pope Gregory XIII con
voked a large number of mathematicians

,
astronomers

,
and prelates

,

who decided upon the adoption of the calendar proposed by the Jesuit
Chr istophoru s Clavius ( 1537—16 1 2)of Rome . To rectify the errors of
the Julian calendar it was agreed to write in the new calendar the 15th
of October immediately after the 4th of October of the year 1582 .

The Gregorian calendar met with a great deal of opposition both
among scientists and among Protestants . Clavius , who ranked high
as a geometer

,
met the obj ections of the former most ably and effec

tively; the prejudices of the latter passed away with time .

The passion for the study of mystical properties of numbers de
scended from the ancients to the moderns . M uch was written on
numerical mysticism even by such eminent men as Pacioli and Stifel.
The NumerorumMysteria of Peter Bungus covered 700 quarto pages .
He worked wi th great industry and satisfaction on 666 , which is the
number of the beast in Revelation (xiii , the symbol of Antichrist.
He reduced the name of the impious _Martin Luther to a form whi ch
may express this formidable number . P lacing a= 1

,
b= 2

,
etc .

, k= 10
,

l 20
,
etc .

,
he finds

,
aftermisspelling the name

,
thatM

constitutes the number required .

These attacks on the great reformer were not unprovoked , for his
1 E. W. Hobson , S quaring the Circle, Cambridge, 1913 , pp . 26 , 27 , 3 1 .

2 A . Quetelet , Histoire des S ciences mathématiques cl physiques chez les Belges .

Bruxelles, 1864, p . 137 .
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now began to blossom . Cardinal Richelieu
,
during the reign of Louis

XIII
,
pursued the broad policy of not favoring the opinions of any

sect , but of promoting the interests of the nation . His age was re
markable for the progress of knowledge . It produced that great secu
lar literature

,
the counterpart of which was found in England in the

S ixteenth century . The seventeenth century was made illustrious
also by the great French mathematicians

,
Roberval

,
Descartes

,
Des

argues
,
Fermat

,
and Pascal .

More gloomy is the picture in Germany. The great changes which
revolutionized the world in the S ixteenth century

,
and which led Eng

land to national greatness
,
led Germany to degradation . The first

effects of the Reformation there were salutary . At the close of the
fifteenth and during the sixteenth century

,
Germany had been con

spicuous for her scientific pursuits . She had been a leader in as
tronomy and trigonometry . Algebra also

,
excepting for the discoveries

in cubic equations
,
was

,
before the time of Vieta

,
in a more advanced

state there than elsewhere . But at the beginning of the seventeenth
century

,
when the sun of science began to rise in France

,
it set in Ger

many . Theologic disputes and religious strife ensued . The Thirty
Years ’ War ( 16 18—1648)proved ruinous . The German empire was
Shattered , and became a mere lax confederation of petty despotisms .
Commerce was destroyed ; national feeling died out . Art disappeared ,
and in literature there was only a slavish imitation of French arti
ficiality. Nor did Germany recover from this low state for 200 years ;
for in 1 756 began another struggle , the Seven Years

’ War
,
which

turned Prussia into a wasted land . Thus i t followed that at the be
ginning of the seventeenth century , the great Kepler was the only
German mathematician of eminence , and that in the interval of 200
years between Kepler and Gauss , there arose no great mathematician
in Germany excepting Leibniz .

Up to the seventeenth century
,
mathematics was cul tivated but l i ttle

in Great Britain . During the sixteenth century
,
she brought forth

no mathematician comparable with Vieta
,
S tifel

,
or Tartaglia . But

with the time of Recorde
,
the English became conspicuous for numeri

cal Skil l . The first important arithmetical work of English authorship
was published in Latin in 152 2 by CuthbertTonstal l (1474 He
had studied at Oxford, Cambridge , and Padua , and drew freely from
the works of Pacioli and Regiomontanus . Reprints of his arithmetic
appeared in England and France . After Recorde the higher branches
of mathematics began to be studied . Later , Scotland brought forth
John Napier

,
the inventor of logarithms . The instantaneous appre

ciation of their value is doubtless the resul t of superiority in calcula
tion . In Italy , and especially in France , geometry , which for a long
time had been an almost stationary science , began to be studied with
success . Galileo

,
Torricel li , Roberval , Fermat , Desargues , Pascal ,

Descartes
,
and the English Wallis are the great revolutioners of this
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science . Theoretical mechanics began to be studied . The foundations
were laid by Fermat and Pascal for the theory of numbers and the
theory of probability .

We Shall first consider the improvements made in the art of calcu
lating. The nations of antiquity experimented thousands of years
upon numeral notations before they happened to strike upon the so
called “Arabic notation .

”In the simple expedient of the cipher
,

which was permanently introduced by the Hindus
,
mathematics re

ceived one of the most powerful impulses . I t would seem that after
the “Arabic notation”was once thoroughly understood

,
decimal

fractions would occur at once as an obvious extension of it . But “ i t
is curious to think how much science had attempted in_physical re
search and how deeply numbers had been pondered

,
before it was per

ceived that the all—powerful simplicity of the ‘Arabic notation ’ was as
valuable and as manageable in an infi nitely descending as in an in
finitely ascending progression .

”1 Simple as decimal fractions ap
pear to us

,
the invention of them is not the result of one mind or even

of one age . They came into use by almost imperceptible degrees . The
first mathematicians identified with their history did not perceive
their true nature and importance

,
and failed to invent a suitable no

tation . The idea of decimal fractions makes its first appearance in
methods for approximating to the square roots of numbers . Thus
John of Seville

,
presumably in imitation of Hindu rules

,
adds 2n ci

phers to the number , then finds the square root
,
and takes this as the

numerator of a fraction whose denominator is 1 followed by n ciphers .
The same method was followed by Cardan

,
but it failed to be generally

adopted even by his Italian contemporaries ; for otherwise it would
certainly have been at least mentioned by P ietro Cataldi (died 1626)
in a work devoted exclusively to the extraction of roots . Cataldi

,

and before him Bombelli in 1572 , find the square root by means of
continued fractions—a method ingenious and novel

,
but for practical

purposes inferior to Cardan ’s . Oronce Fine (1494—1 555)in France
(called also

,
Orontius Finaeus), and Wil l iam Buck ley (died about

1550)in England extracted the square root in the same way as
Cardan and John of Seville . The invention of decimals has been
frequently attributed to Regiomontanus

,
on the ground that in

stead Of placing the sinus totuS
,
in trigonometry

,
equal to a multiple

of 60
,
l ike the Greeks

,
he put it= 100

,
ooo . But here the trigonomet

rical lines were expressed in integers , and not in fractions . Though
he adopted a decimal division of the radius

,
he and his successors

did not apply the idea outside of trigonometry and
,
indeed

,
had no

notion whatever of decimal fractions . To S imon S tevin (1548
1620)of Bruges in Belgium ,

a man who did a great deal of work in
most diverse fields of science

,
we owe the first systematic treatment of

decimal fractions . In his La Disme (r585)he describes in very express
1Mark Napier , M emoirs of J ohn Napier of M erchiston . Edinburgh, 1834 .
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terms the advantages , not only of decimal fractions , but also of the
decimal division in systems of weights and measures . Stevin applied
the new fractions “ to all the operations of ordinary arithmetic .”1

‘What he lacked was a suitable notation . In place of our decimal point
,

he used a cipher ; to each place in the fraction was attached the cor
responding index. Thus , in his notation , the number would be
0 1 2 3

591 2 or These indices , though cumbrous in practice , are
of interest

,
because they embody the notion of powers of numbers .

Stevin considered also fractional powers . He says that “

g
”placed

within a circle would mean x
2/3

,
but he does not actually use his nota

tion . This notion had been advanced much earlier by Oresme , but
it had remained unnoticed . Stevin found the greatest common di
visor of x3+x

2 and x
2
+7x+6 by the process of continual division ,

thereby applying to polynomials Euclid ’s mode of finding the greatest
common divisor of numbers

,
as explained in Book VII of his Elements.

Stevin was enthusiastic not only over decimal fractions
,
but also over

the decimal division of weights and measures . He considered it the
duty of governments to establish the latter . He advocated the deci
mal subdivision of the degree . N0 improvement was made in the
notation of decimals till the beginning of the seventeenth century.

After Stevin
,
decimals were used by Joost Burgi (1552 a Swiss

by birth
,
who prepared amanuscript on arithmetic soon after 1592 , and

by Johann Hartmann Beyer , who assumes the invention as his own .

In 1603 , he published at Frankfurt on the Main a Logistica Decimalis .

Historians of mathematics do not yet agree to whom the first intro
duction of the decimal point or comma should be ascribed . Among
the candidates for the honor are Pellos Bii rgi P itiscus
(1608 , Kepler Napier (16 16 , This divergence
of opinion is due mainly to different standards of judgment . If the
requirement made of candidates is not only that the decimal point or
comma was actually used by them, but that they must give evidence
that the numbers used were actually decimal fractions

,
that the point

or comma was with them not merely a general symbol to indicate
a separation , that they must actually use the decimal point in opera
tions including multiplication or div ision of decimal fractions

,
then

it would seem that the honor falls to John Napier , who exhibits such
use in his Rabdologia , 1617 . Perhaps Napier received the suggestion
for this notation from P i tiscus who

,
according to G . EnestrOm

,

2 uses
the point in his Trigonometria of 1608 and 16 1 2 , not as a regular deci
mal point

,
but as a more general S ign of separation . Napier

’
s decimal

point did not meet with immediate adoption . W. Oughtred in 1631

designates the fraction 56 thus , 0 |56 . AlbertGirard, a pupil of S tevin ,
in 16 29 uses the point on one occasion . John Wallis in 1657 writes

1 A . Quetelet , op. cit.
, p . 158 .

2B ibliotheca mathematica, 3 . S .
, Vol . 6 , 1905 , p. 109.
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DE its logarithm . We notice that as the motion proceeds , BC
decreases in geometrical progression

,
while DE increases In arith

metical progression . Let AB=a= 107 , let x=DF, y
=BC, then

d(a—y)
dt

—nat . log y=t+c. When t=o
,
then y=a and c —nat . log a. Again ,

dx

dt
=a be the velocity of the point F,

then x= at. Substituting for

t and c their values and remembering that a= 10
7 and that by defini

tion x=Nap . log y, we get

AC=a—y. The velocity of the point C is y; this gives

Nap . log y= 10
7 nat . log—

y

I t is ev ident from this formula that Napier ’s logarithms are not the
same as the natural logarithms . Napier

’
s logarithms increase as the

number itself decreases . He took the logarithmof sin i . e.

the logarithm of The logarithm of S in or increased from zero
as a decreased from Napier ’s genesis of logarithms from the con
ception of two flowing points reminds us of Newton ’s doctrine of
fluxionS . The relation between geometric and arithmetical progres
sions

,
so skilfully util ized by Napier

,
had been observed by Archi

medes
,
Stifel

,
and others . What was the base of Napier ’s system of

logarithms? To this we reply that not only did the notion of a
“ base”never suggest itself to him

,
but it is inapplicable to his

system . This notion
'

demands that zero be the logarithm of 1 ; in
Napier ’s system

,
zero is the logarithm of 10

7
. Napier ’s great in

vention was given to the world in 16 14 in a work entitled M irifici
logari thmorum canonis descriptio. In i t he explained the nature of
his logarithms

,
and gave a logarithmic table of the natural S ines of

a quadrant from minute to minute . In 16 19 appeared Napier
’s

M irifici logarithmorum canonis constructio, as a posthumous work , in

which his method of calculating logarithms is explained. An English
translation of the Constructio, by W . R . Macdonald

,
appeared in

Edinburgh
,
in 1889.

Henry B riggs (1 556 in Napier ’s time professor of geometry
at Gresham College , London , and afterwards professor at Oxford ,
was so struck with admiration of Napier

’
s book

,
that he left his studies

in London to do homage to the Scottish philosopher . Briggs was de
layed in his journey

,
and Napier complained to a common friend

,

“Ah
,

John
,
M r . Briggs will not come .”At that very moment knocks were

heard at the gate
,
and Briggs was brought into the lord’s chamber .

Almost one-quarter of an hour was spent
,
each beholding the other

wi thout speaking a word . At last Briggs began : “My lord , I have
undertaken this long journey purposely to see your person

,
and to

know by what engine of wit or ingenuity you came first to think of



VIETA TO DESCARTES 151

this most excellent help in astronomy , viz . the logarithms ; but , my
lord

,
being by you found out

,
I wonder nobody found it out before

,

when now known it is so easy . Briggs suggested to Napier the ad
vantage that would resul t from retaining zero for the logarithm of the
whole sine

,
but choosing 10

,
000

0
,
000 ,000 for the logarithm of the roth

part of that same S ine , i . e. of 5
°

44
’ Napier said that he had al

ready thought oi the change
,
and he pointed out a slight improvement

on Briggs ’ idea ; viz. that zero
that of the whole

istic of numbers greater than uni
gested by Briggs . Briggs admitted
invention of “

B riggian logarithms occurred
,
therefore

,

-to Briggs
and Napier independently . The great practical advantage of the new
system was that its fundamental progression was accommodated to
the base

,
10

,
of our numerical scale . Briggs devoted all his energies

to the construction of tables upon the new plan . Nap ier died in 16 1 7 ,
with the satisfaction of having found in Briggs an able friend to bring
to completion his unfinished plans . In 16 24 Briggs published his
Ari thmetica logari thmica ,

‘containing the logarithm s to 14 places of
numbers

,
from 1 to and from to The gap from

to was filled up by that illustrious successor of Napier
and _Briggs , Adrian Vlaca (1600 ? He was born at Gouda in
Holland and lived ten years in London as a bookseller and publisher .

Being driven out by London bookdealers
,
he settled In Paris where he

met opposition again
,
for selling foreign books . He died at The Hague .

John M ilton
,
in his Defens io secunda

,
published an abuse of him .

Vlacq published in 16 28 a table of logarithms from 1 to of
which were calculated by himself . The first publication of
Briggian logarithms of trigonometric functions was made in 16 20 by
Edmund Gunter (1 581—16 26)of London , a colleague of Briggs , who
found the logarithmic S ines and tangents for every minute to seven
places . Gunter was the inventor of the words cosine and cotangent

The word cosine was an abbreviation of complemental sine. The
invention of the words tangent and secant is due to the physician and
mathematician

,
Thomas Finch, a native of Flensburg , who used them

in his Geometria rotundi Basel , 1 583 . Gunter is known to engineers
for his Gunter ’s chain . I t is told of him that “When he was a stu
dent at Christ College

,
i t fell to his lot to preach the Passion sermon

,

which some old divines that I knew did hear
,
but they said that it

was said of him then in the University that our Savior never suffered
so much since his passion as in that sermon

,
it was such a lamented

one .

”1 Briggs devoted the last years of his life to calculating more
extensive B riggian logarithms of trigonometric functions , but he died
in 1631 leaving his work unfinished . It was carried on by Henry G el

1 Aubrey
’

s Brief Lives , Edition A . Clark
,
1898 , Vol . I , p . 276 .
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l ibrand (1597
—
1637)of Gresham College in London , and then pub

l ished by Vlacq at his own expense . Briggs divided a degree into
100 parts , as was done also by N . Roe in 1633 , W . Oughtred in 1657 ,
John Newton in 1658 , but owing to the publication by Vlacq of tr igo
nometrical tables constructed on the old sexagesimal division

,
Briggs ’

innovation did not prevail . Briggs and Vlacq published
‘ four funda

mental works , the results of which have not been superseded by any
subsequent calculations until very recently .

The word “ characteristic
,

”as used in logarithm s
,
first occurs in

Briggs ’ Arithmetica logari thmica , 16 24 ; the word
“mantissa”was in

troduced by John Wallis in the Latin edition of his A lgebra , 1693 ,
p . 41 , and was used by L . Euler in his Introductio in analysin in 1 748 ,
p . 85.

The only rival of John Napier in the invention of logarithms was the
Swiss Joost B iirgi (1552—163 He published a table of logarithms

,

Ari thmetische und Geometrische P rogresstabulen ,
Prague

,
1620 ,

but he
conceived the idea and constructed his table independently of Napier.
He neglected to have it published until Napier ’s logarithms were
known and admired throughout Europe .
Among the various inventions of Napier to assist the memory of
the student or calculator

,
is “Napier

’

s rule of circular parts”for the
solution of Spherical right triangles . I t is

,
perhaps

,
the happiest

example of artificial memory that is known . Napier gives in the
Descriptio a proof of his rule ; proofs were given later by Johann
Heinrich Lambert (1 765)and Leslie Ellis Of the four for
mulas for oblique Spherical triangles which are sometimes called “Na
pier ’s Analogies

,

”only two are due to Napier himself ; they are given
in his Constructio. The other two were added by Briggs in his an
notations to the Constructio.

A modification of Napier ’s logarithms was made by John Speidell ,
a teacher of mathematics in London

,
who published the New Loga

rithmes , London , 16 19, containing the logarithms of S ines , tangents
and secants . Speidell did not advance a new theory . He simply
aimed to improve on Napier

’
s tables by making all logarithms posi

tive . To achieve this end he subtracted Napier ’s logarithmic numbers
from 10

8 and then discarded the last two digits . Napier gave log sin
Subtracting this from 10

8 leaves 52586 148 . Speidell
wrote log sin 52586 1 . I t has been said that Speidel l

’

s logarithms
of 16 19 are logarithms to the natural base e. This is not quite true

,

on account of complications arising from the fact that the logarithms
in Speidel l

’

s table appear as integral numbers and that the natural
trigonometric values (not printed in Speidel l

’

s tables)are likewise
written as integral numbers . If the last five figures in Speidel l

’

s log
arithms are taken as decimals (mantissas), then the logarithms are
the natural logarithms (with 10 added to every negative character

1 R . Mortiz
,
Am. Math. Monthly, Vol . 2 2 , 1915 , p . 22 1 .
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Third Table . Each column is a geometric progression of 2 1 terms

with 1 as the common ratio . The 69 first or top numbers in

the 69 columns themselves constitute a geometric progression hav ing

the rat the first top number being 107 , the second 9900000 ,

and so on . The last number in the 69th column is 4998609 4034 .

Thus this Third Table”gives a series of numbers very nearly
,
but

not exactly in geometrical progression , and lying between 10
7 and

very nearly Says Hutton
,
these tables were “ found in the

most simple manner , by little more than easy subtractions . The
numbers are taken as the S ines of angles between 90

° and Kine
matical considerations yield him an upper and a lower limi t for

' the
logarithm of a given sine . By these limits he obtains the logarithm
of each number in his “Third Table .

”To obtain _the logarithms of
sines between 0

° and 30
° Napier indicates two methods . By one of

them he computes log sin 6 , by the aid of his “ Third
Table and the formula sin 2 S in d sin (90

° A repetition
of this process gives the logarithms of S ines down to and
so on .

Burgi ’s method of computation was more primi tive than Napier
’

s .

In his table the logarithms were printed in red and were called “ red
numbers the antilogarithms were in black . The expressions rn= I on

,

where ro= o, and u = 1
,
2
, 3 ,

indicate the mode of computation . Any term bn of the geometric

series is obtained by adding to the preceding term bn_ 1 ,
the

1

4
th part

of that term. Proceeding thus Burgi arrives at r= 230 ,
270 ,

0 2 2 and
this last pair of numbers being obtained by inter

polation.

In the Appendix to the Constructio there are described three meth
ods of computing logarithms which are probably the result of the
j oint labors of Napier and Briggs . The first method rests on the
successive extractions of fifth roots . The second calls for square
roots only . Taking log and log find the logarithm
of the mean proportion between 1 and 10 . There follows log x 10

log then log
-i and so on . Substantially this method was

used by Kepler in his book on logarithms of 1624 and by V lacq . The
third method in the Appendix to the Constructio lets log 1 = 0

,
log 10=

and takes 2 as a factor 1010 times , yielding a number composed
of 30 10 29996 figures ; hence log
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A famous method of computing logarithms is the so-called radix
method .

”I t requires the aid of a table of radices or numbers of the
form I t with their logarithms . The logarithm of a number is

found by resolving the number into factors of the form

then adding the logarithms of the factors . The earliest appearance
of this method is in the anonymous “Appendix”(very probably due
to Oughtred)to

’

EdwardWright ’s 16 18 edition of Napier
’

s Descriptio.

1

I t is fully developed by Briggs who
,
in his A ri thmetica logari thmica ,

16 24 , gives a table of radices . The method has been frequently re

discovered and given in various forms .

2 A Slight S implification of
Briggs ’ process was given as one of three methods by Robert Flower in
a tract

,
The Radix a new way of making Logari thms , London , 1 77 1 .

He divides a given number by a power of 10 and a S ingle digi t
,
so as

to reduce the first figure to .9, and then multipli es by a procession of
radices until all the digits become nines . The radix method was re
discovered in 1786 b l George A twood (1 746 the inventor of
Atwood ’s machine

,

”in An essay on the A ri thmeti c of Factors , and
again by Zecchini Leonel l i in 1802

,
by Thomas Manning ( 1772

scholar of Caius College
,
Cambridge

,
in 1806 , by Thomas Weddle in

1845 , Hearn in 1847 and Orchard in 1848 . Extensions and variations
of the radix method have been published by Peter Gray (1807?
a writer on life contingencies

,
Thoman

,
A . J . Ellis (1814 and

others . The three distinctmethods of its application are due to Briggs
,

Flower and Weddle .
Another method of computing common logarithms is by the re

peated formation of geometric means . If A = I
,
B = 10 , then C

V AB =3 . 162 278 has the logarithm .5 , D= V BC= 5.6 23413 has the
logarithm .75 , etc . Perhaps suggested by Napier ’ s remarks in the
Constructio, this method was developed by French writers , of whom
Jacques Ozanam ( 1640—1 7 1 7)in 1670 was perhaps the first .

3 Ozanam
is best known for his Recreations mathématiques cl physiques , 1694.

Still diff erent devices for the computation of logarithms were in
vented by Brook Taylor John Long William Jones

,

Roger Cotes Andrew Reid James Dodson Abel
Burja and others . 4

1
J. W. L . Glaisher

,
in Quarterly f our . of Math

’

s , Vol . 46 , 1915 , p . 1 25 .

2 For the detailed history of this method consult also A . J. Ellis in P roceedings
of the Royal S ociety (London), Vol . 3 1 , 188 1 , pp . 398

—
4 13 ; S . Lupton ,

M athematical

Gazette
, Vol . 7 , 1913 , pp . 147

—
1 50 , 1 70

—1 73 ; Ch . Hutton
’

5 Introduction to his

M athematical Tables .

3 See J. W. L . Glaisher In Quarterly J ournal of P ure and Appl . M d th
’

s
,
Vol . 47 ,

1916 pp 249
—
30 1

4 For details see Ch . Hutton
’
3 Introduction to his M athematical Tables

,
al so the

Encyclopedic des sciences mathématiques , 1908 ; I , 23 ,
“
Tables de logarithmes .

”
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After the labor of computing logarithms was practically over
,
the

facile methods of computing by infinite series came to be discovered .

James Gregory , Lord William Brounker ( 16 20 Nicholas Mer

cator (16 20 John Walli s and Edmund Halley are the pioneer
workers . M ercator in 1668 derived what amounts to the infinite
series for log Transformations of this series yielded rapidly
converging results . Wallis in 1695 obtained 1 log (I—z)
z+§ 2

5
+ G . Vega in his Thesaurus of 1 794 lets z= 1/(2y

2

The theoretic view point of the logarithmwas broadened somewhat
during the seventeenth century by the graphic representation

,
both

in rectangular and polar coordinates
,
of a variable and its variable

logarithm . Thus were invented the logarithmic curve and the loga
rithmic spiral . I t has been thought that the earliest reference to the
logarithmic curve was made by the Italian Evangelista Torricelli in
a letter of the year 1644 , but Paul Tannery made it practically certain
that Descartes knew the curve in Descartes described the log
arithmic spiral in 1638 in a letter to P . M ersenne

,
but does not give its

equation
,
nor connect it with logarithms . He describes it as the curve

which makes equal angles with all the radii drawn through the origin .

The name “ logarithmic Spiral”was coined by P i erre Varignon in a
paper presented to the Paris academy in 1704 and published in
The most brilliant conquest in algebra during the sixteenth century

had been the solution of cubic and biquadratic equations . All at
tempts at solving algebraically equations of higher degrees remaining
fruitless

,
a new line of inquiry—the properties of equations and their

roots—was gradually opened up . We have seen that Vieta had at

tained a partial knowledge of the relations between roots and co

efli cients. Jacques P eletier (1517 a French man of letters , poet
and mathematician

,
had observed as early as 1558 , that the root of

an equation is a divisor of the last term . In passing he writes equa
tions with all terms on one S ide

,
and equated to zero . This was done

also by Buteo and Harriot . One who extended the theory of equa
tions somewhat further than Vieta

,
was Albert G irard (1590?

a mathematician of Lorraine . Like Vieta
,
this ingenious author ap

plied algebra to geometry
,
and was the first who understood the use

of negative roots in the solution of geometric problems . He spoke of
imaginary quantities

,
inferred by induction that every equation has

as many roots as there are units in the number expressing i ts degree ,
and first Showed how to express the sums of their powers in terms of
the coefli cients. Another algebraist of considerable power was the
English Thomas Harr iot (1560 He accompanied the first
colony sent out by Sir Walter Raleigh to Virginia . Af ter having sur

1 See G . Loria , B ibl iotheca math , 3 . S . , Vol . 1 , 1900 , p . 75 ; L
’
interme

‘

diaire des

mathématiciens , Vol . 7 , 1900 , p . 95 .

2 For details and references
,
see F . Cajori , History of the Exponential

'
and

Logarithmic Concepts,
”
Am. Math. Monthly, Vol . 20 , 1913, pp. 10

,
1 1 .
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by ZC ' LM . Hence in designating ratio I use not one point but two
points , which I use , at the same time , for division ; thus , for your

I write dy:x=dt:a; for ,dy is to x as dt is to a , is indeed the
same as , dy div ided by x is equal to dt divided by a . From this equa
tion follow then all the rul es of proportion . This conception of
ratio and proportion was far in advance of that in contemporary
arithmetics . Through the aid of Christian Wolf the dot was generally
adopted in the eighteenth century as a symbol of multiplication .

Presumably Leibniz had no knowledge that Harriot in his Artis

analyticw praxis , 163 1 , used a dot for multiplication , as in aaa 3 .

bba=+ 2 .ccc. Harriot ’s dot received no attention
,
not even fromWallis .

Oughtred and some of his English contemporaries , Richard Nor
wood , John Speidell and others were prominent in introducing abbre
viations for the trigonometric functions :s

,
si

,
or sin for sine; s co or

si co for ‘ ‘ sine complement”or cosine, se for secant
,
etc . Oughtred

did not use parentheses . Terms to be aggregated were enclosed be
tween double colons . He wrote x/(A+E)thus , wl q -l—E : The two
dots at the end were sometimes omitted . Thus

,
C :A+B —E meant

(A+B—E).3 Before Oughtred the use of parentheses had been sug
gested by Clavius in 1608 and Girard in 16 29. In fact

,
as early as

1556 Tartaglia wrote x/w’ 2
_

8 ‘FID thus R v . (R 28 men R 10), where
R v . means “ radix universalis

,
but he did not use parentheses in in

dicating the product of two expressions .
1 Parentheses were used by

I . Errard de Bar- le—Duc Jacobo de Billy Richard
Norwood Samuel Foster nevertheless parentheses did
not become popular in algebra before the time of Leibniz and the
Bernoullis .
I t is noteworthy that Oughtred denotes 3—

1

7
and

133, the approxi

mate ratios of the circumference to the diameter
,
by the symbol

S
’ it

occurs in the 1647 edition and In the later editions of his Clovis mathe
maticce. Oughtred

’

s notation was adopted and used extensively by
Isaac Barrow. I t was the forerunner of the notation 7r=

first used by William Jones In 1 706 in his Synopsis palmariorum ma
theseos

, London , 1 706 , p . 263 . L . Euler first used 7r= 3 . 14159
1 737 . In his time

,
the symbol met with general adoption .

Oughtred stands out prominently as the inventor of the circular
and the rectilinear S lide rules . The circular slide rule was described
in print in his book

,
the Ci rcles of P roportion , 1632 . His rectilinear

slide rule was described in 1633 in an Addition to the above work.

But Oughtred was not the first to describe the circular slide rule in
print ; this was done by one of his pupils , Richard Delamain , in 1630 ,
in a booklet , entitled Grammelogia .

2 A bitter controversy arose be
1 G . Enestrom in B ibliotheca mathematica, 3 . S . , Vol . 7 , p . 296 .

2 See F . Cajori , Wi ll iam Oughtred, Chicago and London
,
1916 , p . 46 .
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tween Delamain and Oughtred. Each accused the other of having
stolen the invention from him. M ost probably each was an in
dependent inventor . TO the invention of the rectilinear slide rule
Oughtred has a clear title. He states that he designed his slide rules
as early as 16 2 1 . The Slide rule was improved in England during the
seventeenth and eighteenth centuries and was used quite extensively.

1

Some of the stories told about Oughtred are doubtless apocryphal ,
as for instance

,
that his economical wife denied him the use of a candle

for study in the evening
,
and that he died of joy at the Restoration

,

after drinking “ a glass of sack to his Maj esty ’s health . De Morgan
humorously remarks

,

“ It Should be added
,
by way of excuse

,
that he

was eighty—Six years old .

”
Algebra was now in a state of sufficient perfection to enable Des

cartes and others to take that important step which forms one of the
grand epochs in the history of mathematics

,

—the application of alge
braie analysis to define the nature and investigate the properties of

.

algebraic curves .
In geometry

,
the determination of the areas of curvilinear figures

was diligently studied at this period . Pau l Gu l din ( 1577 a
Swiss mathematician of considerable note

,
rediscovered the following

theorem
,
published in hiS_Centrobaryca , which has been named after

him,
though first found in the Mathematical Col lections of Pappus :

The volume of a solid of revolution is equal to the area of the generat
ing figure

,
multiplied by the Circumference described by the centre of

gravi ty . We Shall see that this method excels that of Kepler and
Cavalieri in following a more exact and natural course ; but it has the
disadvantage of necessitating the determination of the centre of grav
ity

,
which in itself may be a more diffi cult problem than the original

one of finding the volume . Guldin made some attempts to prove his
theorem

,
but Cavalieri pointed out the weakness of his demonstration .

Johannes Kepl er (1 57 1—1630)was a native ofWii rtemberg and im

bibed Copernican principles while at the University of Tubingen . His
pursuit of science was repeatedly interrupted by war

,
religious perse

cution
,
pecuniary embarrassments

,
frequent changes of residence

,

and family troubles . In 1600 he became for one year assistant to the
Danish astronomer

,
Tycho Brahe

,
in the observatory near Prague .

The relation between the two great astronomers was not always of an
agreeable character . Kepler ’s publications are voluminous . His first at
tempt to explain the solar system was made in 1596 , when he thought
he had discovered a curious relation between the five regular solids
and the number and distance of the planets . The publication of this
pseudo-discovery brought him much fame: At one time he tried to
represent the orbit of M ars by the oval curve which we now write in
polar coordinates , p= 2r cos3 0. M aturer reflection and intercourse
with Tycho Brahe and Gal ileo led him to investigations and results

1 See F. Cajori , History of the Logarithmic S lide Rule, New York , 1909 .
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worthy of his genius Kepler
’s laws . He enriched pure mathe

matics as well as astronomy . I t is not strange that he was interested
in the mathematical science which had done him so much service ; for
“ if the Greeks had not cultivated conic sections

,
Kepler could not

have superseded P tolemy .

”1 The Greeks never dreamed that these
curves would ever be of practical use ; Aristaeus and Apollonius
studied them merely to satisfy their intellectual cravings after the
ideal ; yet the conic sections assisted Kepler in tracing the march of
the planets in their elliptic orbits . Kepler made also extended use of
logarithms and decimal fractions

,
and was enthusiastic in diffusing

a knowledge of them . At one time
,
while purchasing wine , he was

struck by the inaccuracy of the ordinary modes of determining the
contents of kegs . This led him to the study of the volumes of solids
of revolution and to the publication of the S tereometria Dol iorum in

16 15. In it he deals first with the solids known to Archimedes and
then takes up others . Kepler made wide application of an old but
neglected idea

,
that of infinitely great and infinitely small quantities.

Greek mathematicians usually shunned this notion
,
but with i tmodern

mathematicians completely revolutionized the science . In comparing
rectilinear figures

,
the method of superposition was employed by the

ancients
,
but in comparing rectilinear and curvilinear figures wi th

each other
,
this method failed because no addition or subtraction of

rectilinear figures could ever produce curvilinear ones . To meet this
case

,
they devised the M ethod of Exhaustion

,
which was long and

difficult ; i t was purely syn thetical , and in general required that the
conclusion should be known at the outset . The new notion

,

of infinity
led gradually to the invention of methods irnmeasurably more power
ful . Kepler conceived the circle to be composed of an infinite number
of triangles hav ing their common vertices at the centre

,
and their

bases in the Circumf erence ; and the sphere to consist of an infinite
number of pyramids . He

'

appl ied conceptions of this kind to the de
termination of the areas and‘ volumes of figures generated by curves
revolving about any line as axis

,
but succeeded in solving only a few

of the simplest out of the 84 problems which he proposed for investi
gation in his S tereometria.

Other points of mathematical interest in Kepler ’s works are (1)the
assertion that the circumference of an ellipse

,
whose axes are 2a and

2b
,
is nearly 7r (2)a passage from which it has been ink n ed

that Kepler knew the variation of a function near its maximum value
to disappear ; (3)the assumption of the principle of continuity (which
diff erentiates modern from ancient geometry), when he shows that
a parabola has a focus at infinity

,
that lines radiating from this ceecus

focus are parallel and have no other point at infinity.

The S tereometria led Cavalieri
,
an Italian Jesuit

,
to the consideration

1Wil liamWhewell
,
History of the Inductive Sciences, 3rd Ed.

, New York , 1858 ,
Vol . I, p . 31 1 .
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There is an important curve
,
not known to the ancients

,
which now

began to be studied with great zeal . Roberval gave it the name of
trochoid

,

”
Pascal the name of “ roulette

,

”Galileo the name of “
cy

cloid . The invention of this curve seems to be due to Charles Bou
vel les who in a geometry publi shed in Paris in 150 1 refers to this curve
in connection with the problem of the squaring of the circle . Galileo
valued i t for the graceful form it would give to arches in architecture .
He ascertained its area by weighing paper figures of the cycloid against
that of the generating circle

,
and found thereby the first area to be

nearly but not exactly thrice the latter . A mathematical determina
tion was made by his pupil

,
Evangel ista Torricelli (1608 who

is more widely known as a physicist than as a mathematician .

By the M ethod of Indivisibles he demonstrated its area to be triple
that of the revolving circle

,
and publ ished his solution . This same

quadrature had been effected a few y ears earlier (about 1636)by
Roberval in France

,
but his solution was not known to the Italians .

Roberval , being a man of irritable and violent disposition
,
unjustly

accused the mild and amiable Torricelli of stealing the proof . This
accusation of plagiarism created so much chagrin with Torricelli that
it is considered to have been the cause of his early death . Vincenzo
Viviani (16 2 2 another prominent pupil of Galileo

,
determined

the tangent to the cycloid . Thi s was accompli shed in France by
Descartes and Fermat.
In France

,
where geometry began to be cultivated with greatest

success , Roberval , Fermat , Pascal , employed the M ethod of Indivis
ibles and made new improvements in it . Gil es P ersone de Roberval
( 1602 for forty years professor of mathematics at the College
of France in Paris

,
claimed for himself the invention of the M ethod of

Indivisibles . Since his complete works were not published until after
his death

,
i t is difli cul t to settle questions of priority . M ontucla and

Chasles are of the Opinion that he invented the method independently
of and earlier than the I talian geometer

,
though the work of the latter

was published much earli er than Roberval ’s . M arie finds it diffi cult
to believe that the Frenchman borrowed nothing whatever from the
Italian

,
for both could not have hit independently upon the word

Indivisibles
,
which is applicable to infinitely small quantities

,
as con

ceived by Cavalieri
,
but not as conceived by Roberval . Roberval

and Pascal improved the rational basis of the M ethod of Indivisibles
,

by considering an area asmade up of an indefinite number of rectangles
instead of lines

,
and a solid as composed of indefinitely small solids

instead of surfaces . Roberval applied the method to the finding of
areas

,
volumes

,
and centres of grav ity. He effected the quadrature

of a parabola of any degree ym a
m‘ 1

x
,
and also of a parabola ym

a
m“ “ n

x
11
. We have already mentioned his quadrature of the cycloid .

Roberval is best known for his method of drawing tangents
,
which

,

however
,
was invented at the same time

,
if not earlier

,
by Torricel li.
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Torricelli ’s appeared in 1644 under the title Opera geometrica . Rober
val gives the fuller exposition of it . Some of his special applications
were published at Paris as early as 1644 in M ersenne

’

s Cogi tata physico
mathemati ca . Roberval presented the full development of the sub
ject to the French Academy

'
Of S Sei-onces in 1668 which published it

in its Mémoi res . This academy had grown out of scientific meetings
held with M ersenne at Paris . I t was founded by M inister Richelieu
in 1635 and reorganiz ed byM inister Colbert in 1666 . M arin M ersenne

( 1588—1648)rendered great services to science . His polite and en

gaging manners procured him many friends
,
including Descartes and

Fermat . He encouraged scientific research
,
carried on an extensive

correspondence
,
and thereby was the medium for the intercommunica

tion of scientific intelligence .
Roberval ’s method of drawing tangents is allied to Newton ’s prin

ciple of fluxions: Archimedes conceived his spiral to be generated by
a double motion . This idea Roberval extended to all curves . P lane
curves

,
as for instance the conic sections

,
may be generated by a point

acted upon by two forces
,
and are the resultant of two motions . If

at any point of the curve the resultant be resolved into its components
,

then the diagonal of the parallelogram determined by them is the tan
gent to the curve at that point . The greatest difficulty connected
with this ingenious method consisted in resolv ing the resultant into
components hav ing the proper lengths and directions . Roberval did
not always succeed in doing this

,
yet his new idea was a great step in

advance . He broke off from the ancient definition of a tangent as
a straight line hav ing only one point in common with a curve

,

—
a defi

n ition which by the methods then available was not adapted to bring
out the properties of tangents to curves of higher degrees ; nor even of
curves of the second degree and the parts they may be made to play
in the generation of the curves . The subj ect of tangents received
special attention also from Fermat

,
Descartes

,
and Barrow

,
and

reached its highest development after the invention of the differential
calculus . Fermat and Descartes defined tangents as secants whose
two points of intersection with the curve coincide ; Barrow considered
a curve a polygon

,
and called one of its sides produced a tangent .

A profound scholar in all branches of learning and a mathematician
of exceptional powers was P ierre de Fermat (1601 He studied
law at Toulouse , and in 1631 was made councillor for the parliament
of Toulouse . His leisure time was mostly devoted to mathematics

,

which he studied with irresistible passion . Unlike Descartes and
Pascal , he led a quiet and unaggressive life . Fermat has left the im
press of his genius upon all branches of mathematics then known .

A great contribution to geometry was his De maximis et minimi s .

About twenty years earlier
,
Kepler had first observed that the incre

ment of a variable , as , for instance , the ordinate of a curve , is evan
escent for values very near a maximum or a m inimum value of the



164 A HISTORY OF MATHEMATICS

variable . Developing this idea
,
Fermat obtained his rule for maxima

andminima . He substituted x+e for x in the given function of x and
then equated to each other the two consecutive values of the function
and divided the equation by e. If e be taken 0

,
then the roots of this

equation are the values of x
,
making the fun ction a maximum or a

minimum. Fermat was in possession of this rule in 1629. The main
difference between it and the rule of the differential calculus is that it
introduces the indefinite quantity e instead of the infinitely small dx.

Fermat made i t the basis for his method of drawing tangents
,
which

involved the determination of the length of the subtangent for a given
point of a curve .

Owing to a want of explicitness in statement
,
Fermat ’s method of

maxima and m inima
,
and of tangents

,
was severely attacked by his

great contemporary
,
Descartes

,
who could never be brought to render

due justice to his merit . In the ensuing dispute
,
Fermat found two

zealous defenders in Roberval and Pascal
,
the father ; whi le C . My

dorge
,
G . Desargues

,
and Claude Hardy Supported Descartes .

Since Fermat introduced the conception of infinitely small differ
ences between consecutive values of a function and arrived at the
principle for finding the maxima and minima

,
i t was maintained by

Lagrange
,
Laplace

,
and Fourier

,
that Fermat may be regarded as the

first inventor of the diff erential calculus . This point is not well taken
,

as will be seen from the words of Poisson
,
himself a Frenchman

,
who

rightly says that the differential calculus “ consists in a system of rules
proper for finding the differentials of all functions

,
rather than in the

use which may be made of these infinitely small variations in the so

lut ion of one or two isolated problems”)
A contemporary mathematician

,
whose genius perhaps equalled that

of the great Fermat
,
was B laise Pascal (16 23 He was born at

Clermont in Auvergne . In 16 26 his father retired to Paris
,
where he

devoted himself to teaching his son
,
for he would not trust his educa

tion to others . Blaise Pascal ’s genius for geometry showed itself when
he was but twelve years old . His father was well skilled in mathe
maties

,
but did not wish his son to study it until he was perfectly

acquainted with Latin and Greek . All mathematical books were
hidden out of his sight . The boy once asked his father what mathe
matics treated of

,
and was answered

,
in general ,

“ that it was the
method of making figures with exactness

,
and of finding out what

proportions they relatively had to one another . He was at the same
time forbidden to talk any more about it

,
or ever to think of it . But

his genius could not submit to be confined within these bounds . Start
ing with the bare fact that mathematics taught the means of making
figures infallibly exact

,
he employed his thoughts about it and with

a piece of charcoal drew figures upon the tiles of the pavement
,
trying

the methods of drawing
,
for example , an exact circle or equilateral

triangle . He gave names of his own to these figures and then formed
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Huygens
,
Wren

,
and Fermat solved some of the questions . The chief

discoveries of ChristopherWren ( 1632 the celebrated architec t
of S t . Paul ’s Cathedral in London

,
were the rectification of a cycloidal

arc and the determination of its centre of gravity. Fermat found the
area generated by an arc of the cycloid . Huygens invented the cy
cloidal pendulum.

The beginning of the seventeenth century witnessed also a revival of
synthetic geometry. One who treated conics still by ancient methods

,

but who succeeded in greatly simplifying many prolix proofs of Apoll o
nius

,
was Claude Mydorge ( 1 585—1647), in Paris , a friend of Descartes .

But it remained for Girard Desargues (1593—1662)of Lyons , and for
Pascal

,
to leave the beaten track and cut out fresh paths . They intro

duced the important method of Perspective . All conics on a cone with
circular base appear circular to an eye at the apex . Hence

'

Desargues

and Pascal conceived the treatment of the conic sections as proj ections
of circles . Two important and beautiful theorems were given by Des
argues :The one is ou the “ involution of the six points

,

”in which a
transversal meets a conic and an inscribed quadrangle ; the other is
that

,
if the vertices of two triangles

,
S ituated either in Space or in

a plane
,
lie on three lines meeting in a point

,
then their S ides meet in

three points lying on a line ; and conversely. This last theorem has
been employed in recent times by Brianchon ,

C . Sturm
, Gergonne,

and Poncelet . Poncelet made it the basis of his beautiful theory of
homological figures . We owe to Desargues the theory of involution
and of transversals ; also the beautiful conception that the two ex

tremities of a straight line may be considered as meeting at infinity ,
and that parallels diff er from other pairs of lines only in having their
points of intersection at infinity. lHe re—invented the epicycloid and
showed its application to the construction of gear teeth

,
a subj ect

elaborated more fully later by La Hire . Pascal greatly admired
Desargues ’ results

,
saying (in his Essais pour les Coniques), I wish to

acknowledge that I owe the little that I have discovered on this sub
ject , to his writings .

”
Pascal ’s and Desargues ’ writings contained

some of the fundamental ideas of modern synthetic geometry . In
Pascal ’s wonderful work on conics

,
written at the age of S ixteen and

now lost
,
were given the theorem on the anharmonic ratio

,
first found

in Pappus
,
and also that celebrated proposition on the mystic hexagon

,

known as “
Pascal ’s theorem

,

”
viz . that the opposite sides of a hexa

gon inscribed in a conic intersect in three points which are collinear.
This theorem formed the keystone to his theory . He himself said
that from this alone he deduced over 400 corollaries , embracing the
conics of Apollonius and many other results . Less gifted than Des
argues and Pascal was Philippe de la H ire ( 1640 At first
active as a painter

,
he afterwards devoted himself to astronomy and

mathematics
,
and became professor of the College de France in Paris .

He wrote three works on conic sections
,
published in 1673 , 1679 and
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1685 . The last of these , the S ectiones Conicae, was best known . La
Hire gave the polar properties of circles , and , by proj ection , transferred
his polar theory from the circle to the conic sec tions . In the construc
tion of maps De la Hire used “ globular”projection in which the eye
is not at the pole of the sphere

,
as in the P tolemaic stereographic pro

jection ,
but on the radius produced through the pole at a distance

r sin 45
° outside the sphere . Globular projection has the advantage

that everywhere on the map there is approximately the same degree
of exaggeration of distances . This mode of projection was modified
by his countryman A . Parent . De la Hire wrote on roulettes

,
on

graphic methods
,
epicy cloids , conch

‘

o
‘

idsr cmd‘ on magic squares . The
labors of De la Hire

,
the genius of Desargues and Pascal

,
uncovered

several of the rich treasures of modern synthetic geometry ; but owing
to the absorbing interest taken in the analytical geometry of Descartes
and later in the differential calculus

,
the subject was almost entirely

neglected until the nineteenth century .

In the theory of numbers no new results of scientific value had been
reached for over 1000 years

,
extending from the times of Diophantus

and the H indus until the beginning of the seventeenth century . But
the illustrious period we are now considering produced men who
rescued this science from the realm of mysticism and superstition

,

in which i t had been so long imprisoned ; the properties of numbers
began again to be studied scientifically. Not being in possession of
the Hindu indeterminate analysis

,
many beautiful results of the

Brahmins had to be re-discovered by the Europeans . Thus a solution
in integers of linear indeterminate equations was re-discovered by the
Frenchman Bachet de M ézir iac (1 58 1 who was the earliest
noteworthy European D iophantist . In 16 1 2 he published P roblemes
plaisants ci délectables qui se font par les nombres , and in 162 1 a Greek
edition of Diophantus with notes . An interest in prime numbers is
disclosed in the so~called M ersenne

’

s numbers
,

”of the form Mp
=

29
—
1
,
with p prime . M arin M ersenne asserted in the preface to his

Cogitata Physico
-M athematica

,
1 644, that the only values of p not

greater than 257 which make MD a prime are 1 , 2 , 3 , 5 , 7 , 13 , 1 7 , 19,
3 1 , 67 , 1 27 , and 257 . Four mistakes have now been detected in
M ersenne

’

s classification
,
viz .

,
M 6 7 is composite ; M 61

,
M 89 and M IO7

are prime . M 181 has been found to be composite . M ersenne gave in
1644 also the first eight perfect numbers 6 , 28 , 496 , 8 1 28 , 23550336 ,
8589869056 , 137438691328 , 2305843008139952 1 28 . In Euclid ’s Ele
ments

,
Bk . 9, Prop . 36 , is given the formula for perfect numbers

2P
‘ 1
(2P where 2P“ 1 -

1 is prime . The above eight perfect numbers
are reproduced by taking p= 2

, 3 , 5 , 7 , 13 , 1 7, 19, 31 . A ninth perfect
number was found in 1885 by P . Seelhoff, for which p= 6 1 , a tenth
in 191 2 by R . E . Powers

,
for which p= 89. The father of the modern

theory of numbers is Fermat. He was SO uncommunicative in dis
position

,
that he generally concealed his methods and made known
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his resul ts only. In some cases later analysts have been greatly
puzzled in the attempt of supplying the proofs . Fermat owned a copy
of Bachet ’s Diophantus , in which he entered numerous marginal notes.
In 1670 these notes were incorporated in a new edition of Diophantus ,
brought out by his son . Other theorems on numbers , due to Fermat ,
were publi shed in his Opera varia (edited by hi s son)and in Wallis

’

s

Commercium epistol icum of 1658 . Of the foll owing theorems , the
first seven are found in the marginal notes:1

(1) is impossible for integral values of x, y, and 2 , when
n> 2 .

This famous theorem was appended by Fermat to the problem of
Diophantus II

, 8 : To divide a given square number into two squares .
”

Fermat ’s marginal note is as foll ows : “On the other hand it is im
possible to separate a cube into two cubes

,
or a biquadrate into two

biquadrates
,
or generally any power except a square into two powers

with the same exponent . I have discovered a truly marvelous proof
of this , which however the margin is not large enough to contain .

”
That Fermat actually possessed a proof is doubtful . N0 general
proof has yet been published . Euler proved the theorem for n =3
and n =4 ; D irichlet for n= 5 and u= 14 , G . Lamé for n= 7 and Kum
mer for many other values . Repeatedly was the theorem made the
prize question of learned societies

,
by the Academy of Sciences in

Paris in 1823 and 1850 , by the Academy of Brussels in 1883 . The
recent history of the theorem foll ows later.
(2)A prime of the form 4u+ 1 is only once the hypothenuse of a

right triangle ; i ts square is twice ; i ts cube is three times , etc . Ex

ample:

(3)A prime of the form 4u+ 1 can be expressed once , and only
once

,
as the sum of two squares . Proved by Euler .

(4)A number composed of two cubes can be resolved into two
other cubes in an infinite multiplicity of ways .
5)Every number is either a triangular number or the sum of two

or three triangular numbers ; either a square or the sum of two , three ,
or four squares ; either a pentagonal number or the sum of two , three ,
four

,
or five pentagonal numbers ; sim ilarly for polygonal numbers

in general . The proof of this and other theorems is promised by
Fermat in a future work which never appeared . This theorem is
also given

,
with others

,
in a letter of 1637 addressed to Pater

M ersenne.

(6)AS many numbers as you please may be found , such that the
square of each remains a square on the addition to or subtraction from
i t of the sum of all the numbers .

1 For a ful ler historical account of Fermat
’
s Diophantine theorems and prob

lems
,
see T. L . Heath

,
Diophantus of A lexandria , 2 . Ed.

,
1910 , pp . 267

—
328 . See

also Annals of M athematics
,
2 . S . , Vol . 18 , 191 7 , pp . 16 1—187 .
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factor of the form 4u+ 1 . From the above supposition i t would follow
that 5 is not the sum of two squares—a conclusion contrary to fact.
Hence the supposition is false , and the theorem is establ ished. Fermat
applied this method of descent with success in a large number of
theorems . By this method L . Euler

,
A . M . Legendre

,
P . G . L . Dirich

let
,
proved several of his enunciations and many other numerical

propositions .
Fermat was interested in magic squares . These squares

,
to which

the Chinese and Arabs were so partial
,
reached the Occident not later

than the fifteenth century. A magic square of 2 5 cells was found by
M . Curtz e in a German manuscrip t of that time . The artist

,
Albrecht

Dii rer exhibits one of 16 cells in 1514 in his painting called
“M elan

Choli e . The above-named B ernhard Frenicle de B essy (about 1602
1675)brought out the fact that the number of magic squares increased
enormously with the order by writing down 880 magic squares of
the order four. Fermat gave a general rule for finding the number of
magic squares of the order n ,

such that
,
for n= 8

,
this number was

but he seems to have recognized the falsity of his
rule . Bachet de Méziriac in his P roblemes plaisants cl délectables ,
Lyon

,
16 1 2

,
gave a rule des terrasses”for writing down magic

squares of odd order . Frenicle de Bessy gave a process for those of
even order . In the seventeenth century magic squares were studied 1

by Antoine Arnauld
,
Jean Prestet

, J . Ozanam ; in the eighteenth cen
tury by Poignard

,
De la Hire

, J . Sauveur
,
L . L . Pajot

, J . J . Rallier
des Ourmes

,
L . Euler and Benjamin Franklin . In a letter B . Franklin

said of his magic square of 162 cells
,

“ I make no question
,
but you

will readily allow the square of 16 to be the most magically magical
of any magic square ever made by any magician .

A correspondence between B . P ascal and P . Fermat relating to a
certain game of chance was the germ of the theory of probabilities

,
.

of which some anticipations are found in Cardan , Tartaglia , J . Kepler
and Galileo . Chevalier de Mere proposed to B . Pascal the funda
mental “

P roblem of Points ,
”2 to determine the probabili ty which

each player has
,
at any given stage of the game , of winning the game .

Pascal and Fermat supposed that the players have equal chances of
winning a S ingle point .
The former communicated this problem to Fermat

,
who studied

it with lively interest and solved it by the theory of combinations , a
theory which was diligently studied both by him and Pascal . The
calculus of probabilities engaged the attention also of C . Huygens .
The most important theorem reached by him was that

,
if A has p

chances of winning a sum a
,
and q chances of winning a sum b

,
then

1 Encyclopedic des sciences math
’
s , T. I

,
Vol . 3 , 1906 , p . 66 .

2 Oeuvres completes de B laise P ascal , T. I , Paris, 1866 , pp. 2 20
—
237 . See also I .

Todhunter, History of the Mathematical Theory of P robabi l i ty, Cambridge and

London ,
1865 , Chapter II .
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he may expect to win the sum
0

1

6

15
2

. Huygens gave his results in

a treatise on probability (16 which was the best account of the
subj ec t until the appearance of Jakob Bernoulli ’s A rs conj ectandi
which contained a reprint of Huygens ’ treatise . An absurd abuse of
mathematics in connection with the probability of testimony was
made by John Craig who in 1699 concluded that faith in the Gospel
so far as it depended on oral tradition expired about the year 800

,

and so far as it depended on written tradition i t would expire in the
year 3150 .

Connected with the theory of probabili ty were the investigations
on mortal ity and insurance . The use of tables of mortality does not
seem to have been altogether unknown to the ancients

,
but the first

name usually mentioned in this connection is Captain John Graunt
who published at London in 1 662 his Natural and P ol i tical Observa

tions made upon the bi l ls of mortal ity, basing his deductions upon
records of deaths which began to be kept in London in 1592 and were
first intended to make known the progress of the plague . Graunt was
careful to publish the actual figures on which he based his conclusions

,

comparing himself , when so doing , to a
“
S illy schoolboy

,
coming to

say his lessons to the world (that peevish and tetchie master), who
brings a bundle of rods

,
wherewith to be whipped for every mistake

he has committed .

”1 Nothing of marked importance was done after
Graunt until 1693 when Edmund Halley

1 published in the Phi lo
sophical Transactions (London)his celebrated memoir on the Degrees
of Mortal i ty of Mank ind wi th an A ttempt to ascertain the P rice of
Annui ties upon Lives . To find the value of an annuity , multiply the
Chance that the individual concerned will be alive after n years by
the present value of the annual payment due at the end of n years ;
then sum the results thus obtained for all values of n from 1 to the
extreme possible age for the life of that individual . Halley considers
also annuities on joint lives .
Among the ancients

,
Archimedes was the only one who attained

clear and correct notions on theoretical statics . He had acquired
firm possession of the idea of pressure

,
which lies at the root of me

chanical science . But his ideas slept nearly twenty centuries , until
the time of S . S tevin and Gal ileo Gal il ei (1564 Stevin deter
mined accurately the force necessary to sustain a body on a plane
inclined at any angle to the horizon . He was in possession of a com
plete doctrine of equilibrium.

,

While Stevin investigated statics
,

Galileo pursued principally dynamics . Galileo was the first to abandon
the idea usually attributed to Aristotle that bodies descend more
q uickly in proportion as they are heav ier ; he established the first law
of motion ; determined the laws of falling bodies ; and , having obtained

1 I . Todhunter
,
History of the Theory of P robabil ity, pp . 38 , 42 .
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a clear notion of acceleration and of the independence of different
motions , was able to prove that proj ectiles move in parabolic curves .
Up to his time i t was believed that a cannon-ball moved forward at
first in a straight line and then suddenly fell vertically to the ground.

Galileo had an understanding of centrifugal forces , and gave a correct
definition of momentum. Though he formulated the fundamental
principle of statics; known as the paral lelogram of forces , yet he did
not fully recognize its scope . The principle of virtual velocities was
partly conceived by Guido Ubaldo (died and afterwards more
fully by Galileo .

Galileo is the founder of the science of dynamics . Among his con
temporaries i t was chiefly the novelties he detected in the sky that
made him celebrated

,
but J . Lagrange claims that his astronomical

discoveries required only a telescope and perseverance
,
while i t took

an extraordinary genius to discover laws from phenomena
,
which we

see constantly and of which the true explanation escaped all earlier
philosophers . Galileo ’s dialogues on mechanics , the Discorsi e demos
trazioni matematiche

,
1638 , touch also the subject of infinite aggregates.

The author displays a keenness of vision and an originality which
was not equalled before the time of Dedekind and Georg Cantor.
Salviati

,
who in general represents Galileo ’s own ideas in these dia

logues , says ,
1 “ infinity and indivisibility are in their very nature in

comprehensible to us .”Simplicio
,
who is the spokesman of Aris

totelian scholastic philosophy
,
remarks that “ the infinity of points

in the long line is greater than the infinity of points in the short line .

”
Then come the remarkable words of Salviati : “This is one of the
diffi cul ties which arise when we attempt

,
with our finite minds

,
to

discuss the infinite
,
assigning to i t those properties which we give to

the finite and unlimited ; but this I think is wrong , for we cannot
speak of infinite quantities as being the one greater or less than or
equal to another. We can only infer that the totality of all
numbers is infinite

,
and that the number of squares is infinite

,
and

that the number of the roots is infinite ; neither is the number of squares
less than the totality of all numbers

,
nor the latter greater than the

former ; and finally the attributes
‘ equal

,

’ ‘ greater
,

’ and ‘
leSS

’ are
not appl icable to infinite

,
but only to finite quantities . One

line does not contain more or less or just as many
'

points as another ,
but each

'

l ine contains an infinite number.”From the time of
Galileo and Descartes to Sir William Hamil ton

,
there was held the

doctrine of the finitude of the human mind and its consequent in
ability to conceive the infinite . A . De Morgan ridiculed this , saying ,
the argument amounts to this

,

“who drives fat oxen should himself
be fat .”
Infinite series

,
which sprang into prominence at the time of the

1 See Gal ileo
’

s Dialogues concerning two new S ciences , translated by Henry Crew
and Alfonso de Salvio

, New York , 1914,
“
First Day,”pp . 30

—
32.
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Descartes considered mathematical studies absolutely pernicious as a
means of internal culture . In a letter to M ersenne

,
Descartes says :

“M . Desargues puts me under obligations on account of the pains
that i t has pleased him to have in me

,
in that he Shows that he is

sorry that I do not wish to study more in geometry
,
but I have re

solved to quit only abstract geometry
,
that is to say

,
the consideration

of questions which serve only to exercise the mind
,
and this

,
in order to

study another kind of geometry
,
which has for its obj ect the explana

tion of the phenomena of nature . You know that all my phy sics
is nothing else than geometry.

”The years between 1629 and 1649
were passed by him in Holland in the study

,
principally

,
of physics

and metaphysics . His residence in Holland Was during the most
brilliant days of the Dutch state . In 1637 he published his Discours
de lo Méthode

,
containing among others an essay of 106 pages on

geometry . His Geometric is not easy reading . An edition appeared
subsequently with notes by his friend De B eaune

,
which were intended

to remove the difficulties . The Geometric of Descartes is of epoch
making importance ; nevertheless we cannot accept M ichel Chasles

’

statement that this work is proles sine matre creata—a child brought
into being without a mother. In part , Descartes

’ ideas are found in
Apollonius ; the application of algebra to geometry is found in Vieta
Ghetaldi , Oughtred ,

and even among the Arabs . Fermat
,
Descartes

contemporary
,
advanced ideas on analytical geometry akin to his

own in a treatise entitled Ad lo'

cos planos cl sol idos isagoge, -which ,
however

,
was not published until 1679 in Fermat

’s Varia opera . In
Descartes ’ Géométrie there is no systematic development of the
method of analytics . The method must be constructed from isolated
statements occurring in different parts of the treatise . In the 32
geometric draw ings illustrating the text the axes of coordinates are
in no case explicitly set forth . The treatise consists of three “ book s .

”
The first deals with “

p roblems which can be constructed by the aid
of the circle and straight l ine only . The second book is on the
nature of curved lines .”The third book treats of the “ construction
of problems solid and more than solid .

”
In the first book it is made

clear
,
that if a problem has a finite number of solutions

,
the final

equation obtained will have only one unknown , that if the final
equation has two or more unknowns , the problem

“ is not wholly
determined .

”1 If the final equation has two unknowns “ then since
there is always an infinity of diff erent points which satisfy the de
mand

,
i t is therefore required to recognize and trace the line on which

all of them must be located”(p . To accomplish this Descartes

C . J. Keyser , Mathematics , 1907 , pp. 20
—
44 ; F . Cajori in Popular S cience Monthly,

191 2 , pp . 360
—
37 2 .

1 Descartes
’

Géome
’

tr ie
,
ed . 1886

, p . 4 . We are here guided by G . Enestrom in

Bibl iotheca mathematica , 3 . S . , Vol . 1 1 , pp . 240
—
243 ; Vol . 1 2 , pp . 2 73 , 2 74 ; Vol . 14 ,

p . 357 , and by H . Wieleitner in Vol . 14 , pp . 24 1
- 243 , 3 29, 330 .
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selects a straight l ine which he sometimes calls a diameter (p . 3 1)
and associates each of its points with a point sought in such a way that
the latter can be constructed when the former point is assumed as
known . Thus

,
on p . 18 he says ,

“

Je choises une ligne droite comme
AB

,
pour rapporter a ses divers points tous ceux de cette l igne courbe

EC .

”Here Descartes follows Apollonius who related the points of
a conic to the points of a diameter

,
by distances (ordinates)which

make a constant angle with the diameter and are determined in length
by the position of the point on the diameter. This constant angle is
with Descartes usually a right angle . The new feature introduced by
Descartes was the use of an equation wi th more than one unknown ,

so
that (in case of two unknowns)for any value of one unknown (ab
scissa), the length of the other (ordinate)could be computed . He
uses the letters x and y for the abscissa and ordinate . He makes it
plain that the x and ymay be represented by other distances than the
ones selected by him (p . that

,
for instance

,
the angle formed by

x and y need not be a right angle . I t is noteworthy that Descartes
and Fermat

,
and their successors down to the middle of the eighteenth

century, used oblique coordinates more frequently than did later
analysts . I t is also notewor

l
thy that Descartes does not formally

introduce a second axis
,
our y-axis . Such formal introduction is found

in G . Cramer ’s Introduction d l ’analyse des l ignes courbes algébriques ,
1 750 ; earlier publications by de Gua , L . Euler ,W . Murdoch and others
contain-only occasional references to a y—axis . The words “ abscissa

,

”
“ ordinate”were not used by Descartes . In the strictly technical
sense of analytics as one of the coordinates of a point

,
the word

“ ordinate”was used by Leibniz in 1694 , but in a less restricted sense
such expressions as ordinatim applicatae occur much earl ier in
F . Commandinus and others . The technical use of “ abscissa”is
observed in the eighteenth century by C . Wolf and others . In the
more general sense of a “

distance”it was used earlier by B . Cavalieri
in his Indivisibles

,
by S tefano degl i Angel i ( 16 23 a professor

of mathematics in Rome
,
and by others . Leibniz introduced the word

;
‘

coOrdinatae
”
in 1692 . To guard against certain current historical

errors we quote the following from P . Tannery : “One frequently
attributes wrongly to Descartes the introduction of the convention
of reckoning coordinates positively and negatively , in the sense in
which we start them from the origin . The truth is that in this respect
the Geometri c of 1637 contains only certain remarks touching the
interpretation of real or false (positive or negative)roots of equations .

If then we examine with care the rules given by Descartes in
his Geometric , as well as his application of them,

we notice that he
adopts as a principle that an equation of a geometric locus is not
valid except for the angle of the coordinates (quadrant)in which it
was established

,
and all his contemporaries do likewise . The extension

of an equation to other angles (quadrants)was freely made in particu
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lar cases for the interpretation of the negative roots of equations ;
but while it served particular conventions (for example for reckoning
distances as positive and negative), i t was in reality quite long in
completely establishing itself

,
and one cannot attribute the honor for

it to any particular geometer.”
Descartes ’ geometry was called analytical geometry

,
partly

because
,
unlike the synthetic geometry of the ancients

,
i t is actually

analytical , in the sense that the word is used in logic ; and partly be
cause the practice had then already arisen

,
of designating by the term

analysis the calculus with general quantities .
The first important example solved by Descartes in his geometry

is the “ problem of Pappus”; viz.

“ Given several straight lines in a
plane

,
to find the locus of a point such that the perpendiculars

,
or more

generally
,
straight lines at given angles

,
drawn from the point to the

given lines
,
Shall satisfy the condition that the product of certain of

them Shall be in a given ratio to the product of the rest .”Of this
celebrated problem

,
the Greeks solved only the special case when the

number of given lines is four
,
in which case the locus of the point

turns out to be a conic section . By Descartes it was solved com

pletely, and it afforded an excellent example of the use which can be
made of his analytical method in the study of loci . Another solution
was given later by Newton in the P rincipia . Descartes illustrates
his analytical method also by the ovals

, now named after him ,

“ cer
taines ovales que vous verrez etre tres-utiles pour la théorie de la
catoptrique .

”These curves were studied by Descartes
,
probably , as

early as 16 29 ; they were intended by him to serve in the construction
of converging lenses

,
but yielded no results of practical value . In

the nineteenth century they received much attention .

1

The power of Descartes ’ analytical method in geometry has been
vividly set forth recently by L . Boltzmann in the remark that the
formula appears at times cleverer than the man who invented it . Of
all the problems which he solved by his geometry

,
none gave him as

great pleasure as his mode of constructing tangents . It was published
earlier than the methods of Fermat and Roberval which were noticed
on a preceding page .

Descartes ’ method consisted in first finding the normal . Through
a given point x

, y of the curve he drew a circle which had its centre
at the intersection of the normal and the x—axis . Then he imposed
the condition that the circle cut the curve in two coincident points
x
, y. In 1638 Descartes indicated in a letter that , in place of the
circle

,
a straight line may be used . This idea is elaborated by Flori

mond de Beaune in his notes to the 1649 edition of Descartes
’

Géométrie.

In finding the point of intersection of the normal and x-axis , Descartes
used the method of Indeterminate Coefficients , of which he bears the
honor of invention . Indeterm inate coeffi cients were employed by

1 See G . Loria Ebene Curvou (F . Schutte), I , 1910 , p. 174.
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of its beautiful properties and the controversies which their discovery
occasioned . Its quadrature by Roberval was generally considered a
brilliant achievement

,
but Descartes commented on it by saying that

any one moderately well versed in geometry might have done this .
He then sent a Short demonstration of his own . On Roberval ’s in
timating that he had been assisted by a knowledge of the solution ,
Descartes constructed the tangent to the curve

,
and challenged

Roberval and Fermat to do the same . Fermat accomplished it , but
Roberval never succeeded in solving this problem ,

which had cost
the genius of Descartes but a moderate degree of attention .

The application of algebra to the doctrine of curved lines reacted
favorably upon algebra . AS an abstract Science , Descartes improved
it by the introduction of the modern exponential notation . In his
Géométrie, 1 637 , he writes

“
ao on a

2 pour multiplier a par soimeme ;

et a
3 pour le multiplier encore une fois par a

,
et ainsi a l ’infini .”

Thus
,
while F . Vieta represented A 3 by “A cubus

”and Stevin x
3

by a figure 3 within a small circle , Descartes wrote a
3

. In his Geometric
he does not use negative and fractional exponents

,
nor l iteral ex

ponents . His notation was the outgrowth and an improvement of
notations employed by writers before him. Nicolas Chuquet

’

s manu
script work

,
Le Triparty en la science des nombres ,

1
1484 , gives 1 2x

3

and rox
5
,
and their product 1 20x

8
,
by the symbols 1 2

3
,
10

5
,
1 20

8

respectively. Chuquet goes even further and writes 1 2x
° and 7x

thus he represents the product of 8x3 and 7x
‘ 1 by 56

2
. J .

Burgi
,
Reymer and J . Kepler use Roman numerals for the exponen

I I
16

repeats the letters ; he writes in his Artis analyti coe praxis

a
"

10 24a
2
+6 254a , thus :aaaa 10 24aa+6 254a .

Descartes ’ exponential notation spread rapidly ; about 1660 or
1670 the positive integral exponent had won an undisputed place in
algebraic notation . In 1656 J . Wallis Speaks of negative and fractional
“ indices

,

”in his A ri thmetica infinitorum,
but he does not actually

tial symbol . J . Burgi writes 16x2 thus Thomas Harriot S imply

write a_ 1 for or a’/s for x/a
—
3

. It was I . Newton who , in his famous

letter to H . Oldenburg
,
dated June 13 , 1676 , and containing his an

nouncement of the binomial theorem ,
first uses negative and fractional

exponents .
With Descartes a letter represented always only a positive number.

I t was Johann Hudde who in 1659 first let a letter stand for negative
as well as positive values .
Descartes also establ ished some theorems on the theory of equa
tions . Celebrated is his rule of signs .

”for determining the number
1 Chuq uet

’

s
“
Le Triparty ,

Bullettino Boncompagni , Vol . 13 , 1880 , p . 740 .
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of positive and negative roots . He gives the rule after pointing out
the roots 2

, 3 , 4 , 5 and the corresponding binomial factors of the
equation x

‘1—
4x

3—
19x

2
+ 106x -

1 20= 0 . His exact words are as
follows .

“On connoit aussi de ceci combien il peut y avoir de vraies racines
et combien de fausses en chaque equation :a savoir i l y en peut avoir
autant de vraies que les S ignes et s

’

y trouvent de fois etre
changes , et autant de fausses qu ’il s ’y trouve de fois deux S ignes
ou deux S ignes qui s ’entre suivent . Comme en la derniere

,
a cause

qu
’apres +x4 il y a qui est un changement du signe en

et apres —19x
2 il y a + ro

,
6x et apres + ro6x il y a —1 20

,
.qui sont

encore deux autres changements
,
ou connoit qu ’il y a tro i s vraies

racines ; et une fausse , a cause que les deux S ignes de 4x3 et 19x
2

s
’

entre—suivent .
This statement lacks completeness . For this reason he has been

frequently criticized . J . Wallis claimed that Descartes failed to
notice that the

“

rule breaks down in case of imaginary roots
,
but

Descartes does not say that the equation always has , but that it may
have

, so many roots . Did Descartes receive any suggestion of his
rule from earlier writers? He might have received a hint from H .

Cardan
,
whose remarks on this subj ect have been summarized by

G . Enestr6m 1
as follows : If m an equation of the second

,
third or

fourth degree , ( 1)the last term is negative , then one variation of S ign
signifies one and only one positive root

, (2)the last term is positive ,
then two variations indicate either several positive roots or none .
Cardan does not consider equations having more than two variations .
G . W . Leibniz was the first to erroneously attribute the rule of signs
to T. Harriot . Descartes was charged by J . Wallis with availing
himself

,
without acknowledgment

,
of Harriot ’s - theory of equations

,

particularly his mode of generating equations ; but there seems to be
no good ground for the charge .
In mechanics , Descartes can hardly be said to have advanced be

yond Galileo . The latter had overthrown the ideas of Aristotle on
this subject

,
and Descartes S imply “ threw himself upon the enemy”

that had already been “ put to the rout .”His statement of the first
and second laws of motion was an improvement in form

,
but his third

law is false in substance . The motions of bodies in their direct impact
was imperfectly understood by Galileo

,
erroneously given by Descartes

,

and first correctly stated by C . Wren
, J . Wallis , and C . Huygens .

One of the most devoted pupil s of Descartes was the learned
P rincess El izabeth, daughter of Frederick V . She applied the new
analytical geometry to the solution of the Apollon ian problem .

”
His second royal follower was Queen Christina , the daughter of Gus
tavus Adolphus . She urged upon Descartes to come to the Swedish
court . After much hesitation he accepted the invitation in 1649.

1 B ibl iotheca mathematica , 3rd S . , Vol . 7 , 1906
—
7 , p . 293 .
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He died at S tockholm one year later . His life had been one long war
fare against the prej udices of men .

I t is most remarkable that the mathematics and philosophy of
Descartes should at first have been appreciated less by his country
men than by foreigners . The indiscreet temper of Descartes alienated
the great contemporary French mathematicians

,
Roberval

,
Fermat

,

Pascal . They continued in investigations of their own
,
and on some

points strongly opposed Descartes . The universities of France were
under stric t ecclesiastical control and did nothing to introduce his
mathematics and philosophy . It was in the youthful universities of
Holland that the effect of Cartesian teachings was most immediate
and strongest.
The only prominent Frenchman who immediately followed in the

footsteps of the great master was Florimond de Beaune (1601 - 165
He was one of the first to point out that the properties of a curve
can be deduced from the properties of its tangent. This mode of
inquiry has been called the inversemethod of tangents . He contributed
to the theory of equations by considering for the first time the upper
and lower limits of the roots of numerical equations .
In the Netherlands a large number of distinguished mathematicians

were at once struck with admiration for the Cartesian geometry.

Foremost among these are van S chooten ,
John de Witt

,
van Heuraet ,

S luze , and Hudde. Fran ciscus van S chooten (died professor
of mathematics at Leyden

,
brought out an edition of Descartes ’

geometry , together with the notes thereon by De Beaune . His chief
work is his Exerci tationes Mathematicce

,
1657 , in which he applies the

analytical geometry to the solution of many interesting and difficul t
problems . The noble-hearted Johann de Witt (1625 grand
pensioner of Holland

,
celebrated as a statesman and for his tragical

end , was an ardent geometrician . He conceived a new and ingenious
way of generating conics

,
which is essentially the same as that by

projective pencils of rays in modern synthetic geometry. He treated
the subj ect not synthetically

,
but with aid of the Cartesian analysis .

René Francois de S luse (16 2 2—1685)and Johann Hudde (1633
1 704)made some improvements on Descartes ’ and Fermat ’s methods
of drawing tangents

,
and on the theory of maxima and minima . With

Hudde
,
we find the first use of three variables in analytical geometry.

He is the author of an ingenious rule for finding equal roots . We
illustrate it by the equation x

3 Taking an arith
metical progression 3 , 2 , of which the highest term is equal to
the degree of the equation

,
and multiplying each term of the equation

respectively by the corresponding term of the progression
,
we get

3x
3—2x

2—8x= 0
,
or 3x

2—
2x This last equation is by one

degree lower than the original one . Find the G O D . of the two
equations . This is x—2 ; hence 2 is one of the two equal roots . Had
there been no common divisor

,
then the original equation would not

1
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ad infini tum and obtained a geometric series that was infinite. How
ever

,
infinite series had been obtained before him by Alvarus Thomas

,

a native of Lisbon
,
in a work

,
Li ber de tripl ici motu ,

and possibly
by others . But St . Vincent was the first to apply geometric series to
the “Achill es”and to look upon the paradox as a question in the
summation of an infinite series . M oreover

,
St . Vincent was the first

to state the exact time and place of overtaking the tortoise . He
spoke of the limit as an obstacle against further advance

,
similar to

a rigid wall . Apparently he was not troubled by the fact that in hi s
theory

,
the variable does not reach i ts l im i t . His exposition of the

“Achilles”was favorably received by G . W . Leibniz and by writers
over a century afterward. The fullest account and discussion of
Zeno ’s arguments on motion that was published before the nineteenth
century was given by the noted French skeptical philosopher

,
P i erre

Bayle, in an article Zenon d’

Elée
”in his Dictionnaire historique et

critique,
The prince of philosophers in Holland

,
and one of the greatest

scientists of the seventeenth century
,
was Christian Huygens (16 29

169 a native of The Hague . Eminent as a physicist and astronomer ,
as well as mathematician

,
he was a worthy predecessor of Sir Isaac

Newton . He studied at Leyden under Frans Van S chooten . The
perusal of some of his earliest theorems led R . Descartes to predict
his future greatness . In 1651 Huygens wrote a treatise in which he
pointed out the fallacies of Gregory S t . Vincent on the subject of
quadratures . He himself gave a remarkably close and convenient
approximation to the length of a circular arc . In 1660 and 1663 he
went to Paris and to London . In 1666 he was appointed by Louis
XIV member of the French Academy of Sciences . He was induced
to remain in Paris from that time until 168 1 , when he returned to hi s
native city

,
partly for consideration of his health and partly on ac

count oi the revocation of the Edict of Nantes .
The majority of his profound discoveries were made with aid of the

ancient geometry
,
though at times he used the geometry of R . Des

cartes or of B . Cavalieri and P . Fermat . Thus , l ike his illustrious
friend

,
Sir Isaac Newton

,
he always showed partiali ty for the Greek

geometry. New ton and Huygens were kindred minds , and had the
greatest admiration for each other . Newton always speaks of him
as the “ Summus Hugenius.

”
To the two curves (cubical parabola and cycloid)previously recti

fied he added a third
,

—the cissoid . A French physician , Claudius
Perrault

,
proposed the question

,
to determine the path in a fixed plane

of a heavy point attached to one end of a taut string whose other end
moves along a straight line in that plane . Huygens and G . W . Leibniz
studied this problem in 1693 , generalized it , and thus worked out the

1H . Wieleitner
,
in Bibliotheca mathematica , 3 . F. ,

Bd. 1914 , 14 , p . 152 .

2 See F . Cajori in Am. M ath. Monthly, Vol . 22 , 1915, pp . 109
—
1 1 2 .
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geometry of the tractrix .

”1 Huygens solved the problem of the
catenary

,
determined the surface of the parabolic and hyperbolic

conoid
,
and discovered the properties of the logarithmic curve and

the solids generated by it . Huygens ’ De horologia oscil latorio (Paris ,
1673)is a work that ranks second only to the P rincipia of Newton
and constitutes historically a necessary introduction to it . The book
opens with a description of pendulum clocks

,
of which Huygens IS the

inventor . Then follows a treatment of accelerated motion of bodies
fall ing free

,
or sl iding on inclined planes

,
or on given curves

,

—cul
minating in the brilliant discovery that the cycloid is the tautochronous
curve . To the theory of curves he added the important theory of
“ evolutes .”After explaining that the tangent of the evolute is
normal to the involute

,
he applied the theory to the cycloid

,
and

showed by simple reasoning that the evolute of this curve is an equal
cycloid . Then comes the complete general discussion of the centre
of oscillation . This subject had been proposed for investigation by
M . M ersenne and discussed by R . Descartes and G . P . Roberval .
In Huygens ’ assumption that the common centre of gravity of a
group of bodies

,
oscillating about a horizontal axis

,
rises to its original

height , but no higher , is expressed for the first time one of the most
beautiful principles of dynamics

,
afterwards called the principle of

the conservation of vis viva . The thirteen theorems at the close of
the work relate to the theory of. centrifugal force in circular motion .

This theory aided Newton in discovering the law of gravitation .

2

Huygens wrote the first formal treatise on probability . He pro
posed the wave—theory of light and with great skill applied geometry
to its development . This theory was long neglected , but was revived
and elaborated by Thomas Young and A . J . Fresnel a century later .
Huygens and his brother improved the telescope by devising a better
way of grinding and polishing lenses . With more effi cient instru
ments he determined the nature of Saturn ’s appendage and solved
other astronomical questions . Huygens ’ Opuscula posthuma appeared
In 1 703 .

The theory of combinations
,
the primitive notions of which go

back to ancient Greece
,
received the attention of Wi l liam Buckley

of Ki ng’s College
,
Cambridge (died 15 and especially of Blaise

Pascal who treats of it in his A ri thmetical Triangle. Before Pascal
,

thi s Triangle had been constructed by N . Tartaglia and M . Stifel .
Fermat applied combinations to the study of probability . The earliest
mathematical work of Leibniz was his De arte combinatoria . The
subject was treated by John Wall is in his A lgebra .

JohnWal lis ( 16 16—1 703)was one of the most original mathemati
cians of his day. He was educated for the Church at Cambridge and en

1 G . Loria
,
Ebene Curvou (F . Schutte)II , 191 1 , p . 188 .

2 E. Duhring , Kr itische Geschichte der A llgemeinen P rincipien der M echanik .

Leipzig , 1887 , p . 135 .
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teredHoly Orders . But his genius was employed chiefly in the study of
mathematics . In 1649 he was appointed Savilian professor of geometry
at Oxford . He was one of the original members of the Royal Society

,

which was founded in 1663 . He ranks as one of the world ’s greatest de
Cipherers ofc ryptic writing .

1 Wallisthoroughly grasped themathemat
ical methods both of B . Cavalieri and R . Descartes . His Conic S ections
is the earliest work in which these curves are no longer considered as
sections of a cone

,
but as curves of the second degree

,
and are treated

analytically by the Cartesian method of co-ordinates . In this work
Wallis Speaks of Descartes in the highest terms

,
but in his Algebra

(1685 , Latin edition 169 he
,
without good reason

,
accuses Descartes

of plagiarizing from T . Harriot . I t is interesting to observe that , in
his A lgebra , Wallis discusses the possibility of a fourth dimension .

Whereas nature
,
says Wallis

,

“
doth not admit of more than three

(local)dimensions i t may justly seem very improper to talk of
a solid drawn into a fourth

,
fi fth

,
sixth

,
or further dimension .

Nor can our fansie imagine how there should be a fourth local dimen

sion beyond these three .

”2 The first to busy himself with the number
of dimensions of space was P tolemy . Wallis felt the need of a method
of representing imaginaries graphically

,
but he failed to discover a

general and consistent representation .

3 He published Nasir—Eddin’s
proof of the parallel postulate and

,
abandoning the idea of equi

distance that had been employed without success by F . Commandino,
C . S . Clavio ,

P . A . Cataldi and G . A . Borel li
,
gave a proof of his own

based on the axiom that
,
to every figure there exists a S imilar figure

of arbitrary magnitude .

4 The existence of similar triangles was as
sumed 1000 years before Wallis by Agamis

,
who was probably a

teacher of Simplicius . We havea lready mentioned elsewhereWal l is
’

s

solution of the prize questions on the cycloid
,
which were proposed by

Pascal .
The Ari thmetica infinitorum,

published in 1655 , is his greatest work .

By the application of analysis to the M ethod of Indivisibles
,
he greatly

increased the power of this instrument for effecting quadratures . He
created the arithmetical conception of a limi t by considering the
successive values of a fraction

,
formed in the study of certain ratios ;

these fractional values steadily approach a limiting value
,
so that

the difference becomes less than any assignable one and vanishes
when the process is carried to infinity . He advanced beyond J . Kepler
by making more extended use of the law of continuity”and placing

1 D . E. Smith in Bull . Am. Math. Soc. , Vol . 24 , 191 7 , p . 82 .

2 G . EnestrOrn in Bibliotheca mathematica , 3 . S . , Vol . 1 2 , 191 1
—1 2

, p . 88 .

3 SeeWal lis
’

A lgebra , 1685 , pp. 264
-
2 73 ; see also EnestrOm in Bibl iotheca mathe

matica , 3 . S .
, Vol . 7 , pp . 263

—
269.

4 R . Bonola , op. cit. , pp . 1 2
-
1 7 . See also F . Engel u . P . Stackel , Theorie der

P aral lell inien von Euclid bis auf Gauss , Leipzig , 1895 , pp . 2 1—36 . This treatise

g ives translations into German of Saccheri , also the essays of Lambert andTaurin-us,
and letters of Gauss.
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responding to x, and the curves represented by the equations y
(1 y= (1—x2)1, y= (1—x2)2, y= (1—x2)3, etc . , are expressed in
functions of the circumscribed rectangles having x and y for their
sides

,
by the quantities forming the series

x
—1x

3
,

x
_
§ x

3
+
1
x
5
,

x 1x
3
+§ x

5
1x

7
,
etc .

When x= 1
,
these values become respectively 1

, 1, 135 , etc . Now
since the ordinate of the circle is y= (1—x

2)i , the exponent of which is
1or the mean value between 0 and 1

,
the question of this quadrature

reduced itself to this . If 0
,
1
,

etc .
,
operated upon by a certain law ,

give 1 , 3
4 8
155 , what will —

1 give
,
when operated upon by the same

law? He attempted to solve this by interpolation ,
a _method first

brought into prominence by him
,
and arrived by a highly complicated

and difficult analysis at the following very remarkable expression :

71
"

2

He did not succeed in making the interpolation itself
,
because he

did not employ li teral or general exponents
,
and could not conceive a

series with more than one term and less than two
,
which it seemed

to him the interpolated series must have . The consideration of this
dimcul ty led I . Newton to the discovery of the B inomial Theorem.

This is the best place to Speak of that discovery . Newton virtually
assumed that the same conditions which underlie the general ex
pressions for the areas given above must also hold for the expression
to be interpolated . In the first place

,
he observed that in each ex

pression the first term is x
,
that x increases in odd powers

,
that thesigns alternate and

,
and that the second terms 1x

3
, 1x

3
, 1x

3
1x

3
,

are in arithmetical progression Hence the first two terms of the

interpolated series must be x
3
He next considered that the de

nominators 1
, 3 , 5, 7 , etc . , are in arithmetical progression , and that

the coefl
‘
icients in the numerators in each expression

’

are the digits
of some power of the number 1 1 ; namely , for the first expression

,
1 1
0

or 1 ; for the second , 1 1
1 or 1

,
1 ; for the third , 1 1

2 or 1
,
2
,
1 ; for the

fourth
,
1 1

3 or 1
, 3 , 3 , 1 ; etc . He then discovered that , having given

the second digit (call i t m), the remaining digits can be found by con
m—o m—r m—2

tInual mul tipl IcatIon of the terms of the seri es

etc . Thus
,
if m= 4 , then 4 . gives 6 ; 6 .

773—2

gives 4 ;
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gives 1 . Applying this rule to the required series
,
since the

second term is we have m 1, and then get for the succeeding
3

coeffi cients in the numerators respectively - 1, “

1
1
111 etc . ;

1x
3
1x

5
1 x

7

hence the required area for the circular segment is x
3 5 7

etc . Thus he found the interpolated expression to be an infinite series ,
instead of one having more than one term and less than two

,
as Wallis

believed it must be . This interpolation suggested to Newton a mode
of expanding (1—x

2)i , or , more generally , (1 into a series . He
observed that he had only to omit from the expression just found the
denominators 1

, 3 , 5, 7 , etc .
,
and to lower each power of x by unity

,

and he had the desired expression . In a letter to H . Oldenburg
(June 13 , Newton states the theorem as follows :The extraction
of roots is much shortened by the theorem

111—217,n
BQ+

where A means the first term
,
P n

,
B the second term

,
C the third

term
,
etc . He verified it by actual multiplication , but gave no regular

proof of it . He gave it for any exponent whatever , but made no dis
tinction between the case when the exponent is positive and integral

,

and the others .
I t Should here be mentioned that very rude beginnings of the bi

nomial theorem are found very early. The Hindus and Arabs used
the expansions of (a+b)2 and (a+b)3 for extracting roots ; Vieta knew
the expansion of but these were the results of S imple multi
plication without the discovery of any law . The binomial coefficients
for positive whole exponents were known to some Arabic and Euro
pean mathematicians . B . Pascal derived the coeffi cients from the
method of what is called the “ arithmetical triangle .”Lucas de
Burgo

,
M . Stifel

,
S . Stevinus

,
H . Briggs , and others , all possessed

something from which one would think the binomial theorem could
have been gotten with a little attention

,

“ if we did not know that
such Simple relations were diffi cul t to discover .”
Though Wallis had obta ined an entirely new expression for 7r , he

was not satisfied with it ; for instead of a finite number of terms yield
ing an absolute value

,
it contained an infinite number

,
approaching

nearer and nearer to that value . He therefore induced his friend , Lord
Brounck er , the first president of the Royal Society

,
to investigate

this subject . Of course Lord B rouncker did not find what they were
after

,
but he obtained the following beautiful equality
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49

2+ etc .

Continued fractions
,
both ascending and descending

,
appear to have

been known already to the Greeks and Hindus
,
though not in our

present notation . Brouncker
’

s expression gave birth to the theory of
continued fractions .
Wallis ’ method of quadratures was diligently studied by his dis

ciples . Lord B rouncker obtained the first infinite series for the area
of the equilateral hyperbola xy= 1 between one of its asymptotes and

1 1 1

the ordinates for x= 1 and x= 2 ; V IZ . the area

Logarithmotechnia (London , 1668)of Nicolaus M ercator is often said
3

to contain the seri es log In realIty It con
2 3

tains the numerical values of the first few terms of that series
,
tak

ing a= . 1
,
also a= .2 1 . He adhered to the mode of exposition which

favored the concrete special case to the general formula . Wallis was
the first to state M ercator ’s logarithmic series in general symbols .
M ercator deduced his results from the grand property of the hyper
bola deduced by Gregory S t . Vincent in Book VII of his Opus geo
metricum

,
Antwerp

, 1647 : If parallels to one asymptote are drawn
between the hyperbola and the other asymptote

,
so that the successive

areas of the mixtilinear quadrilaterals thus formed are equal
,
then

the lengths of the parallels form a geometric progression . Apparently
the first writer to state this theorem in the language of logarithms
was the Belgian Jesui t A lfons Anton de S arasa , who defended Gregory
St . Vincent against attacks made by M ersenne . M ercator showed
how the construction of logarithmic tables could be reduced to the
quadrature of hyperbolic spaces . Following up some suggestions of
Wallis

, Wi l liamNei l succeeded in rectifying the cubical parabola , and
C . Wren in rectifying any cycloidal arc . Gregory St . Vincent , in
Part X of his Opus describes the construction of certain quartic curves ,
often called virtual parabolas of S t . Vincent , one of which has a shape
much l ike a lemniscate and in Cartesian co—ordinates is d2(y

2 —x2)=y4.
Curves of this type are mentioned in the correspondence of C . Huy
gens with R . de Sluse

,
and with G . W . Leibniz .

A prominent English mathematician and contemporary of Wallis
was Isaac Barrow ( 1630 He was professor of mathematics
in London

,
and then in Cambridge

,
but in 1669 he resigned his chair
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Wallis in 1 685 , and Edmund Halley in James Gregory and

Barrow gave also the integral tan 0d 9= log sec 0; B . Caval ieri in

1647 established the integral x
”dx. Simil ar results were obtained

by E . Torricell i
,
Gregory S t. Vincent

,
P . Fermat

,
G . P . Roberval and

B . Pascal . 2 J,

Newton to Eu ler

I t has been seen that in France prodigious scientific progress was
made during the beginning and middle of the seventeenth century .

The toleration which marked the reign of Henry IV and Louis XIII
was accompanied by intense intell ectual activity . Extraordinary con
fidence came to be placed in the power of the human mind . The bold
intellectual conquests of R . Descartes

,
P . Fermat , and B . Pascal en

riched mathematics with imperishable treasures . During the early
part of the reign of Louis XIV we behold the sunset splendor of this
glorious period . Then followed a night of mental effem inacy. This
lack of great scientific thinkers during the reign of Louis XIV may be
due to the S imple fact that no great minds were born ; but , according
to Buckle

,
i t was due to the paternalism

,
to the spirit of dependence

and subordination
,
and to the lack of toleration

,
which marked the

policy of Louis XIV .

In the absence of great French thinkers
,
Louis XIV surrounded

himself by eminent foreigners . O . ROmer from Denmark
,
C . Huygens

from Holland
,
Dominic Cassini from Italy

,
were the mathematicians

and astronomers adorning his court . They were in possession of a
brilliant reputation before going to Paris . Simply because they per
formed scientific work in Paris

,
that work belongs no more to France

than the discoveries of R . Descartes belong to Holland
,
or those of

J . Lagrange to Germany
,
or those of L . Euler and J . V . Poncelet to

Russia . We must look to other countries than France for the great
scientific men of the latter part of the seventeenth century.

About the time when Louis XIV assumed the direction of the
French government Charles II became king of England . At this
time England was extending her commerce and navigation

,
and ad

vancing considerably in material prosperity . A strong intellectual
movement took place

,
which was unwittingly supported by the king.

The age of poetry was soon followed by an age of science and philos
ophy. In two successive centuries England produced Shakespeare
and I . Newton !

1 See F . Cajori in B ibliotheca mathematica , 3 . S . , Vol . 14 , 1915 , pp . 3 1 2
-

3 19.

2H . G . Zeuthen
, Geschichte der Math. (deu tsch v . R . Meyer), Leipzig , 1903 ,

pp . 256 ff .
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Germany still continued in a state of national degradation . The
Thirty Years ’ War had dismembered the empire and brutalized the
people . Yet this darkest period of Germany ’s history produced G . W .

Leibniz
,
one of the greatest geniuses of modern times .

There are certain focal points in history toward which the lines of
past progress converge

,
and from which radiate the advances of the

future . Such was the age of Newton and Leibniz in the history of
mathematics . During fifty years preceding this era several of the
brightest and acutest mathematicians bent the force of their genius
in a direction which finally led to the discovery of the infinitesimal
calculus by Newton and Leibniz . B . Cavalieri , G . P . Roberval

,
P .

Fermat
,
R . Descartes

, J . Wallis
,
and others had each contributed to

the new geometry . So great was the advance made , and so near was
their approach toward the invention of the infinitesimal analysis , that
both ] . Lagrange and P . S . Laplace pronounced their countryman ,
P . Fermat

,
to be the first inventor of it . The differential calculus ,

therefore
,
was not so much an individual discovery as the grand result

of a succession of discoveries by different minds . Indeed , no great
discovery ever flashed upon the mind at once

,
and though those of

Newton will influence mankind to the end of the world , yet it must be
admitted that Pope

’s lines are only a “

poetic fancy
”
:

Nature and Nature ’s laws lay hid in night ;
God said

,

‘Let Newton be
,

’
and all was light .

Isaac Newton (1642—1 727)was born at Woolsthorpe , in Lincoln
shire

,
the same year in which Galileo died . At his birth he was so

smal l and weak that his life was despaired of . His mother sent him
at an early age to a village school

,
and in his twelf th year to the public

school at Grantham . .At first he seems to‘ have been very inattentive
to his studies and very low in the school ; but when , one day , the little
Isaac received a severe kick upon his stomach from a b‘oy who was
above him ,

he labored hard till he ranked higher in school than his
antagonist . From that time he continued to rise until he was

l

the

head boy.

1 At Grantham
,
Isaac showed a decided taste for mechan

ical inventions . He constructed a water- clock
,
a wind-mill

,
a carriage

moved by the person who sat in it
,
and other toys . When he had at

tained his fifteenth year his mother
.

took him home to assist her in
the management of the farm

,
but his great dislike for farmwork and

his irresistible passion for study
,
induced her to send him back to

Grantham , where he remained till his eighteenth year , when he en
tered Trinity College

,
Cambridge Cambridge was the real

birthplace bf Newton ’s genius . Some idea of his strong intuitive
powers may be drawn from the fact that he regarded the theorems of
ancient geometry as self-ev ident truths

,
and that

,
without any pre

liminary study
,
he made himself master of Descartes ’ Geometry. He

1 D . Brewster , The M emoirs of Newton
, Edinburgh, Vol . I , 1855, p. 8 .
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afterwards regarded this neglect of elementary geometry a mistake
in his mathematical studies

,
and he expressed to Dr . H . Pemberton

his regret that “ he had applied himself to the works of Descartes and
other algebraic writers before he had considered the Elements of Euclid
with that attention which SO excellent a writer deserves .”Besides R .

Descartes ’ Geometry, he studied W . Oughtred
’

s Clavis , J . Kepler ’s
Optics , the works of F . Vieta

, van Schooten
’

s M iscel lanies , I . Barrow ’s
Lectures

,
and the works of J . Wallis . He was particularly delighted

with Wallis ’ Arithmetic of Infini tes , a treatise fraught with rich and
varied suggestions . Newton had the good fortune of having for a
teacher and fast friend the celebrated Dr . Barrow , who had been
elected professor of Greek in 1660 ,

and was '

made Lucasian professor
of mathematics in 1663 . The mathematics of Barrow and of Wallis
were the starting-points from which Newton

,
with a. higher power

than his masters ’
,
moved onward into wider fields . Wallis had ef

fected the quadrature of curves whose ordinates are expressed by any
integral and positive power of (1—x

2). We have seen how Wallis
attempted but failed to interpolate between the areas thus calculated ,
the areas of other curves

,
such as that of the circle ; how Newton at

tacked the problem
,
effected the interpolation

,
and discovered the’

Binomial Theorem
,
which afforded a much easier and direct access to

the quadrature of curves than did the method of interpolation ; for
even though the binomial expression for the ordinate be raised to a
fractional or negative power

,
the binomial could at once be expanded

into a series
,
and the quadrature of each separate term of that series

could be effected by the method of Wallis . Newton introduced the
system of literal indices .
Newton ’s study of quadratures soon led him to another and most

profound invention . He himself says that in 1665 and 1666 he con
ceived the method of fluxions and applied them to the quadrature of
curves . Newton did not communicate the invention to any of his
friends till 1 669, when he placed in the hands of Barrow a trac t , en
titled DeAnalysi per E quationes Numero Terminorum Infinitas , which
was sent by Barrow to John Collins

,
who greatly admired it . In

this treatise the principle of fluxions
,
though distinctly pointed out ,

is only partially developed arid explained . Supposing the abscissa to
increase uniformly in proportion to the time

,
he looked upon the area

of a curve as a nascent quantity increasing by continued fluxion in
the proportion of the length of the ordinate . The expression which
was obtained for the fluxion he expanded into a finite or infinite series
of monomial terms

,
to which Wallis ’ rule was applicable . Barrow

urged Newton to publish this treatise ; but themodesty of the author ,
of which the excess

,
if not culpable

,
was certainly in the present in

stance very unfortunate
,
prevented his compliance .”1 Had this tract

John Playfair , Progress Of the Mathematical and Physical Sciences in Eu

padia Britannica, 7th Edition .
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which (time)another space x, by Increasing with an uniform celerity
x
,
measures and exhibits as described : then 2xx will represent the

celerity by which the space y, at the same moment of time , proceeds
to be described ; and contraryw ise.

“ But whereas we need not consider the time here
,
any farther than

it is expounded and measured by an equable local motion ; and be
sides , whereas only quantities of the same kind can be compared to
gether

,
and also their velocities of Increase and decrease

,
therefore

, in

what follows I shall have no regard to time formally considered
,
but

I Shall suppose some one of the quantities proposed
,
being of the same

kind
,
to be increased by an equable fluxion

,
to which the rest may be

referred
,
as it were to time ; and , therefore , by way of analogy , it

may not improperly receive the name of time . In this statement of
Newton there is contained his answer to the obj ection which has been
raised against his method

,
that it introduces into analysis the foreign

idea of motion . A quantity thus increasing by uniform fluxion , is
what we now call an independent variable .

Newton continues : “
Now those quantities which I consider as

gradually and indefinitely increasing
,
I Shall hereafter call fluents , or

flowing quanti ties , and Shall represent them by the final letters of the
alphabet

,
v
,
x
, y,
and z; and the velocities by which every fluent

is increased by its generating motion (which I may call fluxions , or
simply velocities

,
or celerities), I shall represent by the same letters

pointed
,
thus

,
v
,
x
, y,

z. That is
,
for the celerity of the quantity v

I Shall put v
,
and so for the celerities of the other quantities x

, y, and
z
,
I shall put x

, y,
and z

,
respectively .

”I t must here be observed that
Newton does not take the fluxions themselves infinitely small . The
“moments of fluxions

,
a term introduced further on

,
are infinitely

small quantities . These moments
,
as defined and used in the

M ethod of Fluxions , are substantially the differentials of Leibniz . De
M organ points out that no small amount of confusion has arisen from
the use of the wordfluxion and the notation x by all the English writers
previous to 1 704 , excepting Newton and George Cheyne , in the sense
of an infinitely small increment . 1 Strange to say

,
even in the Com

mercium epistol icum the words moment and fluxion appear to be used
as synonymous .
Af ter showing by examples how to solve the first problem , Newton

proceeds to the demonstration of his solution
“The moments of flowing quantities (that is , their indefinitely

small parts
,
by the accession of which

,
in infinitely small portions of

time
,
they are continually increased)are as the velocities of their

flowing or increas ing.

“Wherefore
,
if the moment of any one (as x)be represented by the

product of its celerity x into an infinitely small quantity 0 (i . e. by
1A . De Morgan , On the Early History of Infin itesirnals, in Philosophical

M agazine, November
,
185 2 .
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x0), the moments of the others , v, y, z, will be represented by v0 , yo ,

20 ' because v0 ,
x0

,
yo

,
and 230 are to each other as v

,
x
,
y
,
and

Now S ince the moments , as x0 and yo ,
are the indefinitely little

accessions of the flow ing quantities x and y, by which those quantities
are increased through the several indefinitely little intervals of time

,

it follows that those quantities
,
x and y, after any indefinitely small

interval of time
,
become x+xo and y+y0 , and therefore the equation ,

which at all times indifferently expresses the relation of the flowing
quantities

,
will as well express the relation between x+x0 and y+y0 ,

as between x and y; so that x+x0 and y+y0 may be substituted in
the same equation for those quantities

,
instead of x and y. Thus let

any equation x
3—ax2+axy—y3= 0 be given , and substitute x+x0 for

x
, and y+y0 for y, and there will arise

x
3
+3x

2x0 +3xx0xo+x
3
o
3

dx
2

2axx0 axoxo

+axy+ayxo +ax0y0
+axyo

—
y
3 —

sy
“

ro
—
syyoyo

—
y 0

Now
,
by supposition

,
x
3

ax
2
+axy y

3= 0
,
which therefore

,
being

expunged and the remaining terms being divided by 0
,
there will

remain

3x
2x 2axx+ayx+axy 3y

2
y+3xxx0 axx0+axy0 3yyyo

+x
3
00
—y

3
00= 0 .

But whereas zero is supposed to be infinitely little
,
that it may repre

sent the moments of quantities
,
the terms that are multiplied by it

will be nothing in respect of the rest (termini in com ducti pro nihi lo

possunt haberi cum al i is cal lal i); therefore I rej ect them ,
and there

remains

3x
2x 2axx+ayx+axy 3y

2
y 0

,

as above in Example I‘ Newton here uses infinitesimals .

M uch greater thanegn the first problem were the difficulties en
countered in the sdII

‘
It ion of the second problem,

involving , as it does ,
inverse operations which have been taxing the skill of the best ana
lysts since his time . Newton gives first a Special solution to the second
problem in which he resorts to a rule for which he has given no proof .
In the general solution of his second problem,

Newton assumed
homogeneity with respect to the fluxions and then considered three
cases: (1)when the equation contains two fluxions of quantities and
but one of the fluents ; (2)when the equation involves both the fluents
as well as both the fluxions ; (3)when the equation contains the flu
ents and the fluxions of three or more quantities . The first case is the

dyeasiest since it requires simply the integration of
d} f (

x), to which
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hi s special solution is applicable. The second case demanded
nothing less than the general solution of a di fferential equation of the
first order . Those who know what eff orts were afterwards needed
for the complete exploration of this field in analysis

,
will not depre

ciate Newton ’5 work even though he resorted to solutions In form of
infin ite series . Newton ’5 thi rd case comes now under the solution of
partial differential equations . He took the equation 2x z+xy= 0
and succeeded In finding a particular integral of i t.
The rest of the treatise is devoted to the determination Of maxima

and minima
,
the radius of curvature of curves

,
and other geometrical

applications of his fluxionary calcul us . All this was done previous
to the year 1672 .

It must be observed that in the Method of Fluxions (as well as in
his De Analysi and all earli er papers)the method employed by New
ton is strictly infinitesirnal

,
and in substance like that of Leibniz .

Thus
,
the original conception of the calculus in England

,
as well as

on the Continent
,
was based on infinitesimals. The fundamental

principles of the fluxionary calculus w ere first given to the world in
the P rincipia, but i ts peculiar notation did not appear until publi shed
in the second volume of Wall is ’ A lgebra in 1693 . The exposition
given in the A lgebra was a contribution of Newton ; i t rests on in
finitesimals. In the first edition of the P rincipia (1687)the descrip
tion of fluxions is likewise founded on infini tesimals, but in the second
(1713)the foundation is somewhat al tered . In Book II , Lemma II ,
of the first edition we read: Cave tamen intel lexeris particulas

finitas . Momenta quam primum fini tce sunt magni tudinis , desinunt
esse momenta . Finiri enim repugnat aliquatenus perpetuo eorum
incremento vel decremento. Intel ligenda sunt principia jamjam nas
centia finitarum magnitudinum . In the second edition the two
sentences whi ch we print in i talics are replaced by the foll owing:
“
Particul ar: fini tm non sunt momenta sed quantitates ipsas ex mo

mentis genitw .

”Through the difficulty of the phrases in both ex
tracts

,
this much distinctly appears

, that in the first
,
moments are

infin i tely small quantities . What else they are in the second is not
Clear . 1 In the Quadrature of Curves of 1 704 , the infinitely smal l
quantity is completely abandoned . I t has been shown that in the
M ethod of Fluxions Newton rej ected terms involving the quantity 0

,

because they are infi nitely small compared with other terms . This
reasoning is unsatisfactory ; for as long as 0 is a quantity , though
ever so small

,
this rej ection cannot be made wi thout aff ecting the

result . Newton seems to have felt this , for in the Quadrature of Curves
he remarked that “ in mathematics the minutest errors are not to be
neglected”(errores quam minimi in rebus mathematicis non sunt
contemnendi).
The early distinction between the system of Newton and Leibniz

1A . De Morgan, loc. cit., 1852 .
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apart by a smal l angle from the tangent CH . But when CK co

incides with CH ,
and the lines CE ,

Ec
, cC reach their ultimate

ratios
,
then the points C and c accurately coincide and are one

and the same . Newton then adds that “ in mathematics the

minutest errors are not to be neglected .

”Thi s is plainly a re

jection of the postulates of Leibniz . The doctrine of infinitely
small quantities is here renounced in a manner which would lead
one to suppose that Newton had never held it himself . Thus it
appears that Newton ’s doctrine was diff erent in diflerent periods .
Though

,
in the above reasoning

,
the Charybdis of infinitesimals is

safely avoided
,
the dangers of a Scylla stare us in the face. We are

required to believe that a point may be considered a triangle , or that
a triangle can be inscribed in a point ; nay , that three dissimilar tri
angles become S imilar and equal when they have reached their ulti
mate form In one and the same point .
In the introduction to the Quadrature of Curves the fiuxion of x”

is determined as follows .

In the same time that x
,
by flowing

,
becomes x+0 , the power

x
"becomes i . e. by the method of infinite series

n
2 —

n

xn+nox
n 1+—

2

—
0
2
x
”2

+etc . ,

and the increments

n
2 - n

2

0 and nox"‘

1
+

are to one another as
2

n n
1 to ux”‘ 1

+
2

Let now the increments vanish
,
and their last proportion will be

1 to nxn ‘

I
:hence the fluxion of the quantity x is to the fluxion of the

quantity x"as 1 :nae”—I

“The fluxion of lines
,
straight or curved

,
in all cases whatever

,
as

also the fluxions of superficies , angles , and other quantities , can be
obtained in the same manner by the method of prime and ultimate
ratios . But to establish in this way the analysis of infinite quantities

,

and to investigate prime and ultimate ratios of finite quanti ti es , nas~
cent or evanescent

,
is in harmony with the geometry of the ancients ;

and I have endeavored to Show that
,
in the method of fluxions

,
i t is

not necessary to introduce into geometry infinitely smal l quantities .”
This mode of differentiating does not remove all the difficulties con
nected with the subj ect . When 0 becomes nothing , then we get the

0
ratIO nx

n ‘ I

, t ch needs further elucIdatl on . Indeed, the method
0

of Newton
,
as delivered by himself

,
is encumbered with difficulties
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and objections . Later we Shall state B ishop Berkeley ’s obj ection to
this reasoning . Even among the ablest admirers of Newton

,
there

have been obstinate disputes respecting his explanation of hi s method
of “ prime and ultimate ratios .”
The so-called method of limits is frequently attributed to New
ton

,
but the pure method of limits was never adopted by him as hi s

method of constructing the calculus . All he did was to establish in
hi s P rincipia certain principles which are applicable to that method ,
but which he used for a different purpose . The first lemma of the
first book has been made the foundation of the method of limits

“

Quantities and the ratios of quantities , which in any fini te time
converge continually to equality

,
and before the end of that time ap

proach nearer the one to the other than by any given difference
,
be

come ul tirnately equal .
”

In this
,
as well as in the lemmas follow ing thi s

,
there are obscurities

and diffi culties . Newton appears to teach that a variable quantity
and its limit will ultimately coincide and be equal .
The full title of Newton ’s P rincipia is Phi losophiw Naturalis P rin

cipia Mathematica . I t was printed in 1687 under the direction , and
at the expense

,
of Edmund Halley. A second edition was brought

out in 1 713 with many alterations and improvements , and aecom
panied by a preface from Roger Cotes . It was sold out in a few
months

,
but a pirated edition published in Am sterdam supplied the

demand . The third and last edition which appeared in England during
Newton ’s lifetime was published in 1 726 by Henry Pemberton . The
P rincipia consists of three books , of which the first two

,
constituting

the great bulk of ' the work
,
treat of the mathematical principles of

natural philosophy
,
namely

,
the laws and conditions of motions and

forces . In the third book is drawn up the constitution of the universe
as deduced from the foregoing principles . The great principle under
lying this memorable work is that of universal gravitation . The first
book was completed on April 28

,
1686 . After the remarkably short

period of three months
,
the second book was finished . The third book

is the result of the next nine or ten months ’ labors . I t is only a sketch
of a much more extended elaboration of the subj ect which he had
p lanned , but which was never brought to completion .

The law of gravitation is enunciated in the first book . Its discovery
envelops the name of Newton in a halo of perpetual glory. The cur
rent version of the discovery is as follows : it was‘ conj ectured by
Robert Hooke (1635 C . Huygens

,
E . Halley

,
C . Wren , I . New

ton
,
and others

,
that

,
if J . Kepler ’s third law was true (its absolute

accuracy was doubted at that time), then the attraction between the
earth and other members of the solar system varied inversely as the
square of the distance . But the proof of the truth or falsity of the
guess was wanting . In 1666 Newton reasoned

,
in substance

,
that if

g represent the acceleration of gravity on the surface of the earth , r
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be the earth ’s radius
,
R the distance of the moon from the earth

,
T

the time of lunar revolution
,
and a a degree at the equator

,
then

,
if

the law is true ,
R _4

71
'

2_

T2
’
or _

T2
180a .

The data at Newton ’s command gave
,

R= 6o .4r , T= seconds ,
but a only 60 instead of 691 English miles . This w rong value of a
rendered the calculated value of g smaller than its true value , as
known from actual measurement . It looked as though the law of
inverse squares were not the true law

,
and Newton laid the calculation

aside . In 1684 he casually ascertained at a meeting of the Royal
Society that Jean P icard had measured an arc of the meridian

,
and

obtained a more accurate value for the earth ’s radius . Taking the
corrected value for a

,
he found a figure for g which corresponded to

the known value . Thus the law of inverse squares was verified. In a
scholium in the P rincipia , Newton acknowledged his indebtedness to
Huygens for the laws on centrifugal force employed in his calculation .

The perusal by the astronomer Adams of a great mass of unpub
lished letters and manuscripts of Newton forming the Portsmouth
collection (which remained private property until 1872 , when its
owner placed it in the hands of the University of Cambridge)seems to
indicate that the diffi culties encountered by Newton in the above
calculation were of a diff erent nature . According to Adams , Newton

’s
numerical verification was fairly complete in 1666

,
but Newton had

not been able to determine what the attraction of a spherical shell
upon an external point would be . His letters to E . Halley Show
that he did not suppose the earth to attract as though all its mass
were concentrated into a point at the centre . He could not have
asserted

,
therefore

,
that the assumed law of grav ity was verified by

the figures
,
though for long distances he might have claimed that i t

yielded close approximations . When Halley visited Newton in 1684 ,
he requested Newton to determine what the orbit of a planet would
be if the law of attraction were that of inverse squares . Newton had
solved a similar problem for R . Hooke in 1679, and replied at once
that it was an ellipse . Af ter Halley ’s visit

,
Newton

,
with P icard ’s

new value for the earth ’s radius
,
reviewed his early calculation

,
and

was able to Show that if the distances between the bodies in the solar
system were so great that the bodies might be considered as points ,
then their motions were in accordance with the assumed law of gravi
tation . In 1685 he completed his discovery by showing that a sphere
whose density at any point depends only on the distance from the
centre attracts an external point as though its whole mass were con
centrated at the centre .

Newton ’s unpublished manuscripts in the Portsmouth collection
show that he had worked out

,
by means of fluxions and fluents , his
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by Albert Girard take the explicit form,
as do also the general formula

derived later by E . Waring . Newton uses his formulae for fixing an
upper limit of real roots ; the sum of any even power of all the roots
must exceed the same even power of any one of the roots . He estab
l ished also another limit :A number is an upper limit , if , when sub
stituted for x

,
i t gives to f (x)and to all i ts derivatives the same S ign .

In 1 748 Col in M aclaurin proved that an upper limi t is obtained by
adding unity to the absolute value of the large ‘st negative coefl‘i cient
of the equation . Newton showed that in equations w ith real co
effi cients

,
imaginary roots always occur in pairs . His inventive genius

is grandly displayed in his rule for determining the inferior limi t of the
number of imaginary roots

,
and the superior limi ts for the number

of positive and negative roots . Though less expeditious than Des
cartes ’

,
Newton ’s rule always gives as close

,
and generally closer ,

l imits to the number of positive and negative roots . Newton did
not prove his rule .

Some light was thrown upon it by George Campbell and Colin
M aclaurin

,
in the P hi losophical Transactions , of the years 1 728 and

1 729. But no complete demonstration was found for a century and a
half

,
until

,
at last

,
Sylvester established a remarkable general theorem

which includes Newton ’s rule as a special case . Not without interest
is Newton ’s suggestion that the conchoid be admitted as a curve to
be used in geometric constructions

,
along with the straight line and

circle
,
since the conchoid can be used for the duplication of a cube and

trisection of an angle—to one or the other of which every problem
involving curves of the third or fourth degree can be reduced .

The treatise on M ethod of Fluxions contains Newton
’s method of

approximating to the roots of numerical equations . Substantially
the same explanation is given in his De analysi per cequationes numero
terminorum infini tas . He explains it by working one example , namely
the now famous cubic 1 y

3
2y The earliest printed account

appeared in Wallis ’ Algebra , 1685, chapter 94 . Newton assumes that
an approximate value is already known

,
which differs from the true

value by less than one- tenth of that value . He takes y= 2 and sub
stitutes y

= 2+p in the equation , which becomes p
3
+6p

2
+ 10p

Neglecting the higher powers of p, he gets 1op Taking
he gets From

he gets q= .oo54+r , and by the same process , r= .00004853 .

Finally y= 2+ . 1 .0054 5147 . Newton arranges
his work in a paradigm. He seems quite aware that his method may
fail . If there is doubt

,
he says

,
whether p= . 1 is sufficiently close to

the truth
,
find p from 6p

2
+ rop 1 = o . He does not show that even

th is latter method will always answer. By the same mode of pro
1 For q uotations from New ton

,
see F . Cajori , Historical Note on the Newton

Raphson M ethod of Approximation ,
”
Amer . M ath. Monthly, Vol . 18 , 191 1 , pp . 29
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cedure , Newton finds
,
by a rapidly converging series

,
the value of y

in terms of a and x
,
in the equation y

3
+axy+aay

—x3 2a
3= o .

In 1690 ,
Joseph Raphson (1648 a fellow of the Royal Society

of London
,
published a tract

,
Analysis wquationum universal is . His

method closely resembles that of Newton . The only diff erence is
this

,
that Newton derives each successive step , p, q , r , of approach to

the root
,
from a new equation

,
while Raphson finds it each time by

substitution in the original equation . In Newton ’s cubic
,
Raphson

would not find the second correction by the use of x3+6x2+ 10x 1 = 0
,

but would substitute 2 . 1+q in the original equation , finding q
.0054 . He would then substitute 2 .og46+r in the original equation ,

finding r 53 , and so on . Raphson does not mention
Newton ; he evidently considered the difference suffi cient for his
method to be classed independently . To be emphasized is the fact
that the process which in modern texts goes by the name of New
ton ’s method of approximation

,

”is really not Newton ’s method
,
but

f (a)
Raphson

’

s modification of it . The form now so familiar , a
(a)
was

not used by Newton
,
but was used by Raphson . To be sure

,
Raphson

'

does not use this notation ; he writes f (a)and f ’ (a)out in full as poly
nomials . It is doubtful

,
whether this method Should be named after

Newton alone . Though not identical with Vieta ’s process
,
it re

sembles Vieta ’s . The chief difference l ies in the divisor used . The
divisor is much simpler

,
and easier to compute than Vieta ’s

divisor . Raphson
’
s version of the process represents what J . Lagrange

recognized as an advance on the scheme of Newton . The method is
“ plus S imple que celle de Newton .

”1 Perhaps the name “Newton
Raphson method

”would be a designation more nearly representing
the facts of history . We may add that the solution of numerical
equations was considered geometrically by Thomas Baker in 1684
and Edmund Halley in 1687 , but in 1694 Halley

“ had a very great
desire of doing the same in numbers .”The only difference between
Hall ey’s and Newton ’s own method is that Halley solves a quadratic
equation at each step

,
Newton a linear equation . Halley modified

also certain algebraic expressions yielding approximate cube and
fif th roots

,
given in 1692 by the Frenchman , Thomas Fantet de Lagny

(1660- 17 In 1705 and 1706 Lagny outlines amethod of differences ;
such a method

,
less systematically developed

,
had been previously

explained in England by John Collins . By this method , _if a , b, c ,
are in arithmetical progression

,
then a root may be found approxi

mately from the first
,
second

,
and higher diff erences of f (a), f (b),

f (a),
Newton ’s M ethod of Fluxions contains also Newton’s parallelo

gram
,

”which enabled him ,
in an equation

, f (x , y)= 0 ,
to find a series

1 Lagrange, Resolution des equal . num.
,
1 798 , Note V

, p . 138 .
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in powers of x equal to the variable y. The great utility of this rule
lay in its determining theform of the series ; for , as soon as the law was
known by which the exponents in the series vary

,
then the expansion

could be effected by the method of indeterminate coefficients . The
rule is stil l used in determining the infinite branches to curves

,
or their

figure at multiple points . Newton gave no proof for it
,
nor any clue

as to how he discovered it. The proof was supplied half a century
later

,
by A . G . K

'

astner and G . Cramer
,
independently .

1

In 1704 was published , as an appendix to the Opticks , the -Enu
meratia linearum terti i ordinis , which contains theorems on the theory
of curves . Newton divides cubics into seventy-two Species

,
arranged

in larger groups
,
for which his commentators have supplied the names

“ genera and “ classes
,

”recogniz ing fourteen of the former and seven
(or four)of the latter . He overlooked six Species demanded by his
principles of classification

,
and afterwards added by J . S tirling , Wil

liam Murdoch (1 754 and G . Cramer . He enunciates the re
markable theorem that the five Species which he names “ divergent
parabolas give by their projection every cubic curve whatever . AS

a rule
,
the tract contains no proofs . I t has been the subj ect of frequent

conjecture how Newton deduced his results . Recently we have gotten
at the facts

,
since much of the analysis used by Newton and a few

additional theorems have been discovered among the Portsmouth
papers . An account of the four holograph manuscripts on this sub
jcet has been published by W . W . Rouse Ball

,
in the Transactions of

the London M athematical S ociety (vol . xx , pp . 104 It is inter
esting to observe how Newton begins his research on the classification
of cubic curves by the algebraic method

,
but

,
finding it laborious ,

attacks the problem geometrically, and afterwards returns again to
analysis .
Space does not permit us to do more than merely mention Newton ’ s

prolonged researches in other departments of science . He conducted
a long series of experiments in optics and is the author of the corpus
cular theory of light . The last of a number of papers on optics ,
which he contributed to the Royal Society

,
1687 , elaborates the theory

of “ fits .”He explained the decomposition of light and the theory
of the rainbow . By him were invented the reflecting telescope and
the sextant (afterwards re-invented by Thomas Godfrey of Phila
delphia 2 and by John Hadley). He deduced a theoretical expression
for the velocity of sound in air

,
engaged in experiments on chemistry ,

elasticity
,
magnetism

,
and the law of cooling , and entered upon geo

logical speculations .
During the two years following the close of 1692 , Newton suff ered

1 S . Gunther
, Vermischte Untersuchungen zur Geschichte d. math. Wiss . ,

Leipzig ’

1876 , pp . 136
-
187 .

2 F . Cajori , Teaching and History of Mathematics i n the U . S Washing ton ,
1890 ,

p . 42 .
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went to London , and remained there from January till March . He
there became incidentally acquainted with the mathematician John
Pell , to whom he explained a method he had found on the summation
of series of numbers by their diff erences . Pel l told him that a similar
formula had been published by Gabriel M outon (16 18—1694)as
early as 1670 ,

and then called his attention to N . M ercator ’s work
on the rectification of the parabola . While in London

,
Leibniz ex

hibited to the Royal Society his arithmetical .machine
,
which was

S imilar to B . Pascal ’s
,
but more effi cient and perfect . After his re

turn to Paris
,
he had the leisure to study mathematics more system

atical ly. With indomitable energy he set about removing his igno
rance of higher mathematics . C . Huygens was his principal master.
He studied the geometric works of R . Descartes

,
Honorarius Fabri

,

Gregory St . Vincent
,
and B . Pascal . A careful study of infinite

series led him to the discovery of the following expression for the
ratio of the Circumference to the diameter of the circle

,
previously

discovered by James Gregory:
77

.

1 I l l

z
= I s +s

—
r +s etc .

This elegant series was found in the same way as N . M ercator ’s on
the hyperbola . C . Huygens was highly pleased with i t and urged
him on to new investigations . In 1673 Leibniz derived the series

are tan x=x—1x3+1x3
from which most of the practical methods of computing 7T have been
obtained . This series had been previously discovered by James
Gregory

,
and was used by Abraham S harp ( 1651

—
1 742)under in

structions from E . Halley for calculating i t to 72 places . In 1 706

John M achin ( 1680—17 professor of astronomy at Gresham Col
lege in London , obtained 100 places by using an expression that is
obtained from the relation

—
4
4 are tan —arc tan

211 ,

by substituting Gregory ’s infinite series for
are tan 1and are tan 1 1g .

Machin ’s formula was used In 1874 by Wi l liam S hanks (181 2—1882)
for computing to 707 places .
Leibniz entered into a detailed study of the quadrature of curves
and thereby became intimately acquainted with the higher math
ematics . Among the papers of Leibniz is still found a manuscript
on quadratures

,
written before he left Paris in 1676 , but which was

never printed by him. The more important parts of i t were embodied
in articles published later in the Acta erudi torum.

In the study of Cartesian geometry the attention of Leibniz was
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drawn early to the direct and inverse problems of tangents . The
direct problem had been solved by Descartes for the simplest curves
only ; while the inverse had completely transcended the power of his
analysis . Leibniz investigated both problems for any curve ; he
constructed what he called the triangu lum characteristicum—an

infinitely small triangle between the infinitely small part of the curve
coinciding with the tangent

,
and the diff erences of the ordinates and

abscissas . A curve is here considered to be a polygon . The triangu lum
characteristicum is similar to the triangle formed by the tangent , the
ordinate of the point of contact

,
and the sub- tangent , as well as to

that between the ordinate
,
normal

,
and sub-normal . It was employed

by I . Barrow in England, but Leibniz states that he obtained it from
Pascal . From it Leibniz observed the connection existing between the
direct and inverse problems of tangents . He saw also that the latter
could be carried back to the quadrature of curves . All these results
are contained in a manuscript of Leibniz

,
written in 1673 . One mode

used by him in effecting quadratures was as follows :The rectangle
formed by a sub-normal p and an element a (i . e. infinitely small part
of the abscissa)is equal to the rectangle formed by the ordinate y
and the element l of that ordinate ; or in symbols , pa=yl . _But the
summation of these rectangles from zero on gives a right triangle
equal to half the square of the ordinate . Thus , using Cavalieri

’s no
tation ,

he gets
2
y

omn . pa= omn . yl =
1

2
(omn . meaning omnia , all).

But y=o
’

mn . l ; hence
l omn . l

omn . omn .

This equation is especially interesting
,
since it is here that Leibniz

first introduces a new notation . He says :“ I t will be useful to write

for omn .

,
as l for omn . l , that is , the sum of the l

’

S
”
; he then

writes the equation thus :

From th is he deduced the S implest integrals , such as

Since the symbol of summation raises the dimensions , he con

cluded that the opposite calculus
,
or that of differences d, would
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ya

d

first placed by Leibniz In the denominator
,
because the lowering of

the power of a term was brought about in ordinary calculation by
division . The manuscript giving the above is dated October 29th ,

This
,
then

,
was the memorable day on which the notation

of the new calculus came to be
,

—
a notation which contributed enor

mously to the rapid grow th and perfect development of the calculus .
Leibniz proceeded to apply his new calculus to the solution of
certain problems then grouped together under the name of the In
verse Problems of Tangents . He found the cubical parabola to be
the solution to the following: To find the

'

curve in which the sub
normal is reciprocally proportional to the ordinate . The correctness
of his solution was tested by him by applying to the result the method
of tangents of Baron ReneFrangois de Sluse (16 2 2- 1685)and reason
ing backwards to the original supposition . In the solution of the

x
third problem he changes his notation from

d
to the now usual nota

tion dx. I t is worthy of remark that in these investigations
,
Leibniz

nowhere explains the S ignificance of dx and dy, except at one place
x

In a marginal note : Idem est dx et id est
,
differentia inter duas

d
,

x proximas . Nor does he use the term difierential , but always differ
ence. Not till ten years later

,
in the A cta erudi torum,

did he give
further explanations of these symbols . What he aimed at principally
was to determine the change an expression undergoes when the sym

lower them . Thus
,
if l =ya , then l The symbol d was at

or d is placed before it . I t may be a consolation to students

wrestling with the elements of the differential calculus to know that
it required Leibniz considerable thought and attention 2 to determine

dx
the same as d

jf
. After

dy y

considering these questions at the close of one of his manuscripts
,
he

concluded that the expressions were not the same
,
though he could

not give the true value for each . Ten days later , in a manuscript
dated November 2 1 , 1675 , he found the equation ydx =dxy—xdy,

giving an expression for d(xy), which he observed to be true for all
curves . He succeeded also in eliminating dx from a diff erential
equation

,
so that it contained only dy, and thereby led to the solution

of the problem under consideration .

“ Behold , a most elegant way

whether dx dy is the same as d(xy), and

1 C .J. Gerhardt , Entdeckung der hoheren Analysis . Halle, 1855 , p . 1 25 .

2 C . J. Gerhardt , Entdeckung der Difl
'

erenzialrechnung durch Leibniz, Halle, 1848,
pp . 25, 41 .
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by Leibniz to Tschirnhausen during a controversy which they had
had on this subject . Fearing that Tschirnhausen might claim as his
own and publish the notation and rules of the differential calculus

,

Leibniz decided ,
at last

,
to make public the fruits of his inventions .

In 1684 ,
or nine years after the new calculus first dawned upon the

mind of Leibniz
,
and nineteen years after Newton first worked at

fluxions , and three years before the publication of Newton
’s P rincipia,

Leibniz published , in the Acta eruditorum
,
his first paper on the differ

ential calculus . He was unwilling to give to the world all his treasures ,
but chose those parts of his work which were most abstruse and least
perspicuous . This epoch making paper of only Six pages bears the
title :“Nova methodus pro maximis et minimis

,
itemque tangentibus ,

quae nec fractas nec irrationales quantitates moratur
, et S ingulare

pro illis calculi genus .”The rules of calculation are briefly stated
without proof

,
and the meaning of dx and dy is not made clear.

Printer ’s errors increased the diffi culty of comprehending the subj ect .
It has been inferred from this that Leibniz himself had no definite
and settled ideas on this subj ect . Are dy and dx finite or infinitesimal
quantities? At first they appear

,
indeed

,
to have been taken as finite

,

when he says : We now call any line selected at random dx
,
then

we designate the line which is to dx as y is to the sub- tangent
,
by dy,

which IS the difference of y. Leibniz then ascertains
,
by his calculus

,

in what way a ray of light passing through two differently refracting
media

,
can travel easiest from one point to another

,
and then closes

his article by giv ing his solution
,
in a few words

,
of F . de Beaune ’

s

problem . Two years later (1686)Leibniz published in the A cta

erudi torum a paper containing the rudiments of the integral calculus .
The quantities dx and dy are there treated as infinitely small . He
Showed that by the use of his notation , the properties of curves could
be fully expressed by equations . Thus the equation

y x/zx—x2+

characterizes the cycloid .

1

The great invention of Leibniz
,
now made public by his articles in

the Acta eruditorum,
made little impression upon the mass of mathe

maticians . In Germany no one comprehended the new calculus
except Tschirnhausen

,
who remained indiff erent to it. The author ’s

statements were too Short and succinct to make the calculus generally
understood . The first to take up the study of it were two foreigners

,

the Scotchman John Craig , and the Swiss Jakob (James)Bernoul l i .
The latter wrote Leibniz a letter in 1687 , wishing to be initiated into
the mysteries of the new analysis . Leibniz was then travelling abroad

,

so that this letter remained unanswered till 1690 . James Bernoulli
1 C . J. Gerhardt, Geschichte der M athematik in Deutschland

,
M unchen , 1877,

p . I 59.
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succeeded , meanwhile , by close application , in uncovering the secrets
of the differential calculus without assistance . He and his brother
John proved to bemathematicians of exceptional power . They appl ied
themselves to the new science with a success and to an extent which
made Leibniz declare that it was as much theirs as his . Leibniz
carried on an extensive correspondence with them ,

as well as with other
mathematicians . In a letter to John Bernoulli he suggests , among
other things

,
that the integral calculus be improved by reducing in

tegrals back to certain fundamental irreducible forms . The integra
tion of logarithmic expressions was then studied . The writings of
Leibniz contain many innovations , and anticipations of since prom
nent methods . Thus he made use of variable parameters , laid the
foundation of analysis in situ

,
introduced in a manuscript of 1678 the

notion of determinants (previously used by the Japanese), in his
effort to simplify the expression arising in the elimination of the un
known quantities from a set of linear equations . He resorted to the
device of breaking up certain fractions into the sum of other fractions
for the purpose of easier integration ; he explicitly assumed the prin
ciple of continuity ; he gave the first instance of a S ingular solution ,

”
and laid the foundation to the theory of envelopes in two papers , one
of which contains for the first time the terms co-ordinate and axes of
co-ordinates . Hewrote on osculating curves

,
but his paper contained

the error (pointed out by John Bernoulli , but not admi tted by Leibniz)
that an osculating circle will necessarily cut a curve in four consecutive
points . Well known is his theorem on the n th diff erential coefli cient
of the product of two functions of a variable . Of his many papers on
mechanics

,
some are valuable

,
while others contain grave errors .

Leibniz introduced In 1694 the use of the word function ,
but not in

the modern sense . Later in that year Jakob Bernoulli used the word
in the Leibnizian sense . In the appendix to a letter to Leibniz

,
dated

July 5, 1698 , John Bernoulli uses the word in a more nearly modern
sense: “

earum [applicatarum] quaecunque functiones per al ias appl i
catas PZ expresses. In 1 7 18 John Bernoulli arrives at the definition
of function as a quantity composed in any manner of a variable and
any constants.”(On appelle ici fonction d ’une grandeur variable ,
une quantité composée de quelque maniere que cc soit de cette gran
deur variable et de constantes .)1
Leibniz made important contributions to the notation of mathe

matics . Not only is our notation of the diff erential and integral
calculus due to him

,
but he used the S ign of equality in writing pro

portions thus a :b= c:d. In Leibnizian manuscripts occurs for
similar and z for equal and S imilar”or “ congruent .”2 Says

1 See M . Cantor, op. cit. , Vol . III , 2 Ed . , 190 1 , pp . 2 15 , 2 16 , 456 , 457 ; Encyclo

pe
‘

dic des sciences mathématiques , Tome II , Vol . I , pp. 3
—
5.

2 Leibniz , Werke Ed . Gerhardt
, 3 . Folge, Bd. V , p . 153 . See also J. Tropfke ,

op. cit. , Vol . II , 1903 , p . 1 2 .
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P . E . B . Jourdain ,1
“Leibniz himself attributed all of his mathe

matical discoveries to hi s improvements in notation .

”
Before tracing the further development of the calculus we shall

Sketch the history of that long and bitter controversy between English
and Continental mathematicians on the invention of the calculus .
The question was

,
did Leibniz invent it independently of Newton

,
or

was he a plagiarist?
We must begin with the early correspondence between the parties

appearing in this dispute . Newton had begun using his notation of
fluxions in In 1669 I . Barrow sent John Collins Newton ’s
tract

,
De Analysi per equationes , etc .

The first visit of Leibniz to London extended from the r 1 th of Jan
uary until M arch

, 1673 . He was in the habit of committing to writing
important scientific communications received from others . In 1890

C . J . Gerhardt discovered in the royal library at Hanover a sheet of
manuscript with notes taken by Leibniz during this journey .

3 They
are headed Observata Philosophica in itinere Anglicano sub initium
anni 1673 The shee t is divided by horizontal lines into sections.
The sections given to Chymica, M echanica

,
M agnetica

,
Botanica ,

Anatomica
,
M edica

,
M iscellanea

,
contain extens ive memoranda

,
while

those devoted to mathematics have very few notes . Under Geo
metrica he says only this : Tangentes omnium figurarum . Figurarum
geometricarum explicatio per motum puncti in moto lati . We sus
pect from this that Leibniz had read Isaac Barrow

’s lectures . New ton
is referred to only under Optica . Evidently Leibniz did not obtain a
knowledge of fluxions during this visit to London , nor is it claimed
that he did by his opponents .
Various letters of I . Newton

, J . Collins
,
and others

,
up to the be

ginning of 1676 , state that Newton invented a method by which tan
gents could be drawn without the necessity of freeing their equations
from irrational terms . Leibniz announced in 1674 to H . Oldenburg

,

then secretary of the Royal Society
,
that he possessed very general

analytical methods
,
by which he had found theorems of great im

portance on the quadrature of the circle bymeans of series . In answer ,
Oldenburg stated Newton and James Gregory had also discovered
methods of quadratures , which extended to the circle . Leibniz de
sired to have these methods communicated to him ; and Newton , at
the request of Oldenburg and Collins

,
wrote to the former the cele

brated letters of June 13 and October 24 , 1676 . The first contained
the Binomial Theorem and a variety of other matters relating to
infinite series and quadratures ; but nothing directly on the method of

1 P . E. B . Jourdain ,
The Nature of Mathematics , London , p . 7 1 .

2
J. Edleston ,

Correspondence of S ir I saac Newton and P rofessor Cotes , London ,

1850 , p . xxi ; A . De Morgan ,

“
Fluxions

”
and

“
Commercium Epistolicum in

the P enny Cyclope dia .

3 C . J. Gerhardt,
“
Leibniz in London in S itzungsberichte der K . P reussischen

Academic d. Wissensch. zu Berl in , Feb . ,
1891 .
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ace to a volume of his works that the calculus differential is was New
ton ’s method of fiuxions which had been communicated to Leibniz
in the Oldenburg letters . A review of Wallis ’ works

,
in the Acta

eruditorum for 1696 , reminded the reader of Newton
’s own admission

in the scholium above cited .

For fifteen years Leibniz had enjoyed unchallenged the honor of
being the inventor of his calculus . But in 1699 Fatio de Dui l l t

'

er

(1664—17 a Swiss
,
who had settled in England

,
stated in a mathe

matical paper , presented to the Royal Society , his conviction that
1. Newton was the first inventor ; adding that , whether Leibniz , the
second inventor

,
had borrowed anything from the other

,
he would

leave to the judgment of those who had seen the letters and manu
scripts of Newton . This was the first distinc t insinuation of plagiar
ism. It would seem that the English mathematicians had for some
time been cherishing suspicions unfavorable to Leibniz . A feeling
had doubtless long prevailed that Leibniz

,
during his second visit to

London in 1676 , had or might have seen among the papers of John
Collins

,
Newton ’s Analysts per aquationes , etc . , which contained ap

plications of the fiuxionary method , but no systematic development
or explanation of it . Leibniz certainly did see at least part of this
tract . During the week spent in London

,
he took note of whatever

interested him among the letters’ and papers of Collins . His memo
randa discovered by C . J . Gerhardt in 1849 in the Hanover library
fill two sheets .1 The one bearing on our question is headed Excerpta
ex tractatu Newtoni M sc . de Analysi per aequationes numero ter
minorum infinitas .

”The notes are very brief
,
excepting those De

resolutione cequationurn aflectarurn ,
of which there is an almost com

plete copy . This part was evidently new to him. If he examined
Newton ’s entire tract

,
the other parts did not particularly impress

him. From i t he seems to have gained nothing pertaining to the in
finitesimal calculus . By the previous introduction of his own al

gorithm he had made greater progress than~by what came to his
knowledge in London . Nothing mathematical that he had received
engaged his thoughts in the immediate future

,
for on his way back

to Holland he composed a lengthy dialogue on mechanical subjects .
Fatio de Duillier

’

s insinuations lighted up a flame of discord which
a whole century was hardly suffi cient to extinguish . Leibniz

,
who

had never contested the priority of Newton ’s discovery
,
and who

appeared to be quite satisfied with Newton ’s admission in his scholium
,

now appears for the first t ime in the controversy. He made an ani

mated reply in the Acta erudi torum and complained to the Royal
Society of the injustice done him .

Here the affair rested for some time . In the Quadrature of Curves ,
published 1704 , for the first time

,
a formal exposition of the method

and notation of fluxions was made public . In 1 705 appeared an um
1 C . J. Gerhardt

,

“
Leibniz in London ,”loc. cit.
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favorable review of this in the Acta eruditorum, stating that Newton
uses and always has used fluxions for the differences of Leibniz . This
was considered by Newton ’ s friends an imputation of plagiarism on

the part of their chief , but this interpretation was always strenuously
resisted by Leibniz . John Kei l l ( 1671 professor of astronomy
at Oxford

,
undertook with more zeal than j udgment the defence of

Newton . In a paper inserted in the Phi losophical Transactions of

1 708 , he claimed that New ton was the first inventor of fluxions and
“ that the same , calculus was afterward published by Leibniz , the
name and the mode of notation being changed .

”Leibniz complained
to the secretary of the Royal Society of bad treatment and requested
the interference of that body to induce Keil l to disavow the intention
of imputing fraud. John Keil l was not made to retract his accusation ;
on the contrary

,
was authorized by Newton and the Royal Society

to explain and defend his statement . This he did in a long letter .
Leibniz thereupon complained that the charge was now more open
than before

,
and appealed for justice to the Royal Society and to

Newton himself . The Royal Society
,
thus appealed to as a judge ,

appointed a committee which collected and reported upon a large
mass of documents—mostly letters from and to Newton , Leibniz ,

Wallis
,
Collins

,
etc . This report

,
called the Commercium epistol icum,

appeared in the year 1 71 2 and again in 1 72 2 and 1 725 , with a Recensio
prefixed , and additional notes by Keill . The final conclusion in the
Commercium epistol icum was that New ton was

“ the first inventor .”
But this was not to the point . The question was not whether Newton
was the first inventor

,
but whether Leibniz had stolen the method .

The committee had not formally ventured to assert their belief that
Leibniz was a plagiarist . In the follow ing sentence they insinuated
that Leibniz did take or might have taken

,
his method from that of

Newton:“And we find no mention of his (Leibniz
’s)having any other

Difierential M ethod than Mouton
’

s before his Letter of 2 1st of June,
1677 , which was a year after a Copy of M r. Newton

’

s Letter
,
of the

roth of December
, 1672 , had been sent to P aris to be communicated

to him ; and about four years after M r . Col l ins began to communicate
that Letter to his Correspondents ; in which Letter the M ethod of
Fluxions was suffi ciently describ ’

d to any intelligent Person .

”
About 1850 it was shown that what H . Oldenburg sent to Leibniz
was not Newton ’s letter o f Dec . 10

,
1672 , but only excerpts from it

which omitted Newton ’s method of drawing tangents and could not
possibly convey an idea of fluxions. Oldenburg ’s letter was found
among the Leibniz manuscripts in the Royal Library at Hanover , and
was published by C . J . Gerhardt in 1846 , 1848 , 1849 and 185 and
again later .

1 See Essays on theLife andWork of Newton by Augustus De Morgan ,
edited, w ith

notes and appendices, by Philip E . B . Jourdain ,
Chicago and London

,
19 14 . Jour

dain g ives on p . 10 2 the bibl iography of the publ ications of New ton and Leibniz .
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Moreover
,
when J . Edleston in 1850 published the Correspondence

of S ir Isaac Newton and P rofessor Cotes , it became known that the
Royal Society in 17 1 2 had not one , but two , parcels of Collins . One
parcel contained letters of James Gregory

,
and Isaac Newton ’s letter

of Dec . 10
,
1672 , in full ; the other parcel , which was marked

“To
Leibnitz

,
the 14th of June , 1676 About M r. Gregories remains ,

”
contained an abridgment of a part of the contents of the first parcel

,

with nothing but an allusion to Newton ’smethod described in his
letter of Dec . 10 , 1672 . In the Commercium epistol icum Newton

’s
letter was printed in full and no mention was made of the existence
of the second parcel that was marked “To Leibnitz . Thus the
Commercium epi stol icum conveyed the impression that Newton

’s um
curtailed letter of Dec . 10 , 1672 , had reached Leibniz in which fluxions
“was suffi ciently described to any intelligent person

,

”while as a
matter of fact the method is not described at all in the letter which
Leibniz received .

Leibniz protested only in private letters against the proceeding of
the Royal Society

,
declaring that he would not answer an argument

so weak . John Bernoulli
,
in a letter to Leibniz

,
which was published

later in an anonymous tract
,
is as decidedly unfair towards Newton

as the friends of the latter had been towards Leibniz . John Keill

replied
,
and then Newton and Leibniz appear as mutual accusers in

several letters addressed to third parties . In a letter dated April 9,
1 7 16 , and sent to Antonio Schinella Conti (1677 an Italian
priest then residing in London

,
Leibni z again rem inded Newton of

the admission he hadmade in the scholium ,
which he was now desirous

of disavowing ; Leibniz also states that he always bel ieved Newton ,
but that

,
seeing him connive at accusations which he must have

known to be false
,
i t was natural that he (Leibniz)should begin to

doubt . Newton did not reply to this letter
,
but circulated some re

marks among his friends which he published immediately after hearing
of the death of Leibniz

,
November 14 , 1 7 16 . This paper of Newton

gives the following explanation pertaining to the scholium in question :
He [Leibniz] pretends that in my book of principles I allowed him
the invention of the calculus differential is , independently of my own ;
and that to attribute this invention to myself is contrary to my
knowledge there avowed . But in the paragraph there referred unto
I do not find one word to this purpose .”In the third edition of the
P rincipia , 1 726 , Newton omitted the scholium and substituted in its
place another

,
in which the name of Leibniz does not appear .

National pride and party feeling long prevented the adoption of
impartial opinions in England

,
but now i t is generally admitted by

We recommend J. B . B iot and F . Lefort
’

s edition of the Commercium epistol icum,

Paris
,
1856 , which exhibits all the alterations made in the different reprints of this

publication and reproduces also H . O ldenburg
’

s letter to Le ibn iz of July 26
,
1 6 76 ,

and other important documents bearing on the controversy.
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attention . It was again proposed in 1 716 by Leibniz , to feel the pulse
of the English mathematicians .
This may be considered as the first defiance problem professedly

aimed at the English . Newton solved it the same evening on which
it was delivered to him

,
although he was much fatigued by the day ’s

work at the m int . His solution , as published , was a general plan of
an investigation rather than an actual solution

,
and was

,
on that

account
,
criticised by Johann Bernoulli as being of no value . Brook

Taylor undertook the defence of it
,
but ended by using very repre

hensible language . Johann Bernoulli was not to be outdone in in
civ ility

,
and made a bitter reply. Not long afterwards Taylor sent

an open defiance to Continental mathematicians of a problem on the
integration of a fluxion of complicated form which was known to
very few geometers in England and supposed to be beyond the power
of their adversaries . The selection was injudicious

,
for Johann

Bernoulli had long before explained the method of this and similar
integrations . I t served only to display the skill and augment the
triumph of the followers of Leibniz . The last and most unskilful '

challenge was by John Keill . The problem was to find the path of a
projectile in a medium which resists proportional ly to the square of
the velocity. Without first making sure that he himself could solve
it , Keill boldly chall enged Johann Bernoulli to produce a solution .

The latter resolved the question in very short time
,
not only for a

resistance proportional to the square
,
but to any power of the velocity .

Suspecting the weakness of the adversary
,
he repeatedly offered to

send his solution to a confidential person in London
,
provided Keil l

would do the same . Keill never made a reply
,
and Johann Bernoulli

abused him and cruelly exulted over him .

1

The explanations of the fundamental principles of the calculus
,
as

given by Newton and Leibniz
,
lacked clearness and rigor. For that

reason itmet with opposition from several quarters . In 1694 B ernhard
N ieuwentij t (1654—1 7 18)of Holland denied the existence of differentials
of higher orders and objected to the practice of neglecting infinitely
small quantities . These obj ections Leibniz was not able to meet

drsatisfactorily. In his reply he said the value of
d
_
x
in geometry could

be expressed as the ratio of finite quantities . In the interpretation
of dx and dy Leibniz vacillated .

2 At one time they appear in his
writings as finite lines ; then they are called infinitely small quantities ,
and again

, quantitates inassignabi les , which spring from quanti tates

assignabiles by the law of continuity. In this last presentation Leibniz
approached nearest to Newton.

1John P layfair ,
“
Progress of the Mathematical and Physical Sciences

”
in

Encyclopcedia B r itannica , 7th Ed. , continued in the 8th Ed. by S ir John Leslie.

2 Consult G . Vivanti , I l concetto d
’

Infinitesimo. S aggio storico. Nuova edizione.

Napoli, 1901
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In England the principles of fluxions were boldly attacked by
B ishop_George Berk eley (1685—1 7 the eminentmetaphysician , in
a publication called the Analyst He argued with great acute
ness

,
contending

,
among other things , that the fundamental idea of

supposing a finite ratio to exist between terms absolutely evanescent
“ the ghosts of departed quantities

,

”as he called them—was absurd
and unintelligible . Berkeley claimed that the second and third
fiuxions were even more mysterious than the first fluxion . His con
tention that no geometrical quantity can be exhausted by division is
in consonance with the claim made by Zeno in his “ dichotomy ,

”
and the claim that the actual infinite cannot be realized . M ostmodern
readers recognize these contentions as untenable . Berkeley declared
as axiomatic a lemma involving the shifting of the hypothesis: If x
receives an increment i

,
where i is expressly supposed to be some

quantity
,
then the increment of x”

,
divided by i , is found to be nxn

"
I
+

n (u x
"‘

2i+ If now you take i =0
, the hypothesis is shifted

and there is a manifest sophism in retaining any result that was ob

tained on the supposition that i is not zero . Berkeley ’s lemma found
no favor among English mathematicians until 1803 when Robert
Woodhouse openly accepted it . The fact that correct results are
obtained in the differential calculus by incorrec t reasoning is explained
by Berkeley on the theory of a compensation of errors .”This theory
was later advanced also by Lagrange and L . N . M . Carnot . The
publication of Berkeley ’s Analyst was the most spectacular mathe
matical event of the eighteenth century in England . Practically all
British discussions of fluxional concepts of that time involve issues
raised by Berkeley . Berkeley ’s object in writing the Analyst was to
show that the principles of fluxions are no clearer than those of Chris
tianity. He referred to an “ infidel m I thematician

”
(Edmund Halley),

of whom the story is told 1 that
,
when he jested concerning theological

questions
,
he was repulsed by Newton with the remark

,

“ I have
studied these things ; you have not .

”A friend of B erkeley
,
when on a

bed of sickness
,
refused spiritual consolation , because the great

mathematician Halley had convinced him of the inconceivability of
the doctrines of Christianity . This induced Berkeley to write the
Analyst.

Replies to the Analyst were published by James Juri n (1684—1 750)
of Trinity College

,
Cambridge under the pseudonym of Philalethes

Cantabrigiensis
”and by John Wal ton of Dublin . There followed

several rejoinders. Jurin
’

s defence of Newton ’s fluxions did not meet
the approval of the mathematician , Benjamin Rob ins (1 707
In a Journal

,
called the Republ ic/e of Letters (London)and later in

the Works of the Learned, a long and acrimonious controversy was
carried on between Jurin and Rob ins , and later between Jurin and
Henry Pemberton (1694 the editor of the third edition of

1Mach M echanics
,
1907 , pp . 448

—
449 .
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Newton ’s P rincipia . The question at issue was the precise meaning
of certain passages in the writings of New ton :Did Newton hold that
there are variables which reach their l imits? Jurin answered “Yes”;
Robins and Pemberton answered “No .

”The debate between Jurin
and Robins is important in the history of the theory of limits . Though
holding a narrow view of the concept of a limit Robins deserves credit
for rej ecting all infinitely small quantities and giving a logically quite
coherent presentation of fiuxions in a pamphlet , called A Discourse

concerning the Nature and Certainty of S ir Isaac Newton
’

s Methods of
Fluxions

,
1 735. This and Maclaurin

’

s Fluxions , 1 742 , mark the top
notch of mathematical rigor

,
reached during the eighteenth century

in the exposition of the calculus . Both before and after the period
of eight years

,
1834

—
1842 , there existed during the eighteenth century

in Great Britain a mixture of Continental and British conceptions of
the new calculus

,
a superposition of British symbols and phraseology

upon the older Continental concepts . Newton ’s notation was poor and
Leibniz ’s philosophy of the calculus was poor . The mixture repre

sented the temporary survival of the least fi t of both systems . The

subsequent course of events was a superposition of the Leibniz ian
notation and phraseology upon the limit- concept as developed by
Newton

,
Jurin

,
Robins

,
M aclaurin

,
D

’
Alembert and later writers .

In France M ichel Rol le for a time rej ected the differential calculus
and had a controversy with P . Varignon on the subj ect . Perhaps the
most powerful argument in favor of the new calculus was the con
sistency of the results to which it led . Famous is D ’

Alemhert
’

s advice
to young students :

“Allez en avant
,
et la foi vous viendra .

”
Among the most vigorous promoters of the calculus on the Conti

nent were the B ernoullis . They and Euler made Basel in Switzerland
famous as the cradle of great mathematicians . The fam ily of Ber
noul lis furnished in course of a century eight members who distin
guished themselves inmathematics . We subjoin the following genea
logical table

Ni colaus Bernoul l i , the Father

Jak ob 1654
—
1705 Nicolaus Johann , 1667

—
1748

Nicolaus , 1687
—
1 759 . N i colaus , 1695

—
1726

Dani el , 1 700
—
1782

Johann ,
17 10
—
1790

Dani el
,
Johann ,

1744
—1807 Jakob, 1 759

—1789
Most celebrated were the two brothers Jakob (James)and Johann
(John), and Daniel , the son of John . Jakob and Johann were staunch
friends of G . W . Leibniz and worked hand in hand with him . Jak ob
(James)B ernoul l i (1 654—1 705)was born in Basel . Becoming inter
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noul l i
’

s theorem If where the letters are integers and
t= r+s , is expanded by the binomial theorem,

then by taking n large
enough the ratio of u (denoting the sum of the greatest term and the
n preceding terms and the n following terms)to the sum of the re
maining terms may be made as great as we please . Letting r and s
be proportional to the probability of the happening and failing of an
event in a single trial

,
then i t corresponds to the probability that in nt

trials the number of times the event happens will l ie between n (r 1)
and n (r+ both inclusive . Bernoulli ’s theorem “will ensure him a
permanent place in the history of the theory of probabil ity .

”1 P rom
inent contemporary workers on probability were M ontmort in France
and De M oivre in England . In December

,
1913 , the Academy of

Sciences of Petrograd celebrated/ the bicentenary of the “ law of large
numbers ,

”Jakob Bernoulli ’s A rs conj ectandi having been published
at Basel in 1 7 13 . Of his collected works

,
in three volumes

,
one was

printed in 1 7 13 , the other two in 1 744.

Johann (John)Bernou l l i (1667—1 748)was initiated into mathe
matics by his brother. He afterwards visited France

,
where he met

Nicolas M alebranche
,
Giovanni Domenico Cassini

,
P . de_Lahire , P .

Varignon ,
and G . F . de l ’Hospital . For ten years he occupied the

mathematical chair at Groningen and then succeeded his brother at
Basel . He was one of the most enthusiastic teachers and most suc
cessful original investigators of his time . He was a member of almost
every learned society in Europe . His controversies were almost as
numerous as his discoveries . He was ardent in his friendships

,
but

unfair
,
mean

,
and violent toward all who incurred his dislike—even

his own brother and son . He had a bitter dispute with Jakob on the
isoperimetrical problem. Jakob convic ted him of several paralogisms .
After his brother ’s death he attempted to substitute a disguised solu
tion of the former for an incorrect one of his own . Johann

,

admired
the merits of G . W . Leibniz and L . Euler , but was blind to those of
I . Newton . He immensely enriched the integral calculus by his labors .
Among his discoveries are the exponential calculus

,
the line of sw iftest

descent , and its beautiful relation to the path described by a ray
passing through strata of variable density. In 1694 he explained in
a letter to l ’Hospital the method of evaluating the indeterminate

0

He treated trigonometry by the analytical method , studied

caustic curves and trajectories . Several times he was given prizes
by the Academy of Science in Paris .
Of his sons

,
Nicolaus and Daniel were appointed professors of

mathematics at the same time in the Academy of S t . Petersburg . The
former soon died in the prime of l ife ; the latter returned to Basel in
1733 , where he assumed the chair of experimental philosophy. His

1 1. Todhunter, History of Thear . of Prob., p . 77 .
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first mathematical publication was the solution of a differential equa
tion proposed by J . F . Riccati . He wrote a work on hydrodynamics .
He was the first to use a suitable notation for inverse trigonometric
functions ; in 1 729 he used AS . to represent arcsine ; L . Euler in 1 736

used At for arctangent .1 Daniel Bernoulli ’s investigations on prob
ability are remarkable for their boldness and originality . He pro
posed the theory of moral expectation ,

which he thought would give
results more in accordance with our ordinary notions than the theory
of mathematical probabil ity. He applies his moral expectation to the
so-called “

Petersburg problem”:A throws a coin in the air ; if head
appears at the first throw he is to receive a shilling from B ,

if head
does not appear until the second throw he is to receive 2 shill ings , if
head does not appear until the third throw he is to receive 4 Shillings ,
and so on : required the expectation of A . By the mathematical
theory

,
A ’s expectation is infinite

,
a paradoxical result . A given sum

of money not being of equal importance to every man
,
account should

be taken of relative values . Suppose A starts with a sum a
,
then the

moral expectation in the Petersburg problem is finite
,
according to

Daniel Bernoulli
,
when a is finite ; i t is 2 when a= o

,
about 3 when

a= 10 ,
about 6 when a= The Petersburg problem was discussed

by P . S . Laplace
,
S . D . Poisson and G . Cramer. Daniel Bernoulli ’s

moral expectation has become classic
,
but no one ever makes use

of it . He applies the theory of probability to insurance ; to determine
the mortality caused by small-pox at various stages of life ; to deter
mine the number oi survivors at a given age from a given number of
births ; to determine how much inoculation lengthens the average
duration of life . He Showed how the differential calculus could be
used in the theory of probability . He and L . Euler enjoyed the honor
of hav ing gained or shared no less than ten prizes from the Academy
of Sciences in Paris . Once

,
while travell ing with a learned stranger

who asked his name
,
he said

,

“ I am Daniel Bernoulli .”The stranger
could not believe that his companion actually was that great celebrity ,
and replied “ I am Isaac Newton .

”
Johann Bernou ll i (born 1 710)succeeded his father in the professor

ship of mathematics at Basel . He captured three prizes (on the cap
stan , the propagation of light , and the magnet)from the Academy of

Sciences at Paris . N icolaus Bernou l li (born 1687)held for a time the
mathematical chair at Padua which Galileo had once fi lled . He proved

5
2A 3

2A
In 1742 that bta

—
u

=

Su
—
at

Johann Bernoul l i (born 1 744)at the age

of nineteen was appointed astronomer royal at Berlin
,
and after

wards director of the mathematical department of the Academy . H is

brother Jakob took upon himself the duties of the chair of experi

1 G . Enestrom in B ibliotheca mathematica , Vol . 6 , pp . 3 19
—
3 2 1 ; Vol . 14, p . 78 .

2 I . Todhunter, Hist. of the Theor . of P rob., p . 2 20 .
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mental physics at Basel , previously performed by his uncle Jakob ,
and later was appointed mathematical professor in the Academy at
St . Petersburg.

Brief mention will now be made of some other mathematicians
belonging to the period of Newton

,
Leibniz

,
and the elder Bernoullis .

Gu i llaume Francois Antoine l
’HOSpital (166 1 a pupil of

Johann Bernoulli
,
has already been mentioned as taking part in the

challenges issued by Leibniz and the Bernoullis . He helped power
fully in making the calculus of Leibniz better known to the mass of
mathematicians by the publication of a treatise thereon , the Analyse
des infiniment petits , Paris , 1696 . This contains the method of finding
the limiting value of a fraction whose two terms tend toward zero
at the same time

,
due to Johann B ernoulli .

Another zealous French advocate of the calculus was P ierre Var ig
non (1654 InMem. de P aris , Année MDCCIV,

Paris
,
1 72 2 , he

follows Ja . Bernoulli in the use of polar co-ordinates
, p and w. Letting

x= p and y= lw ,
the equations thus changed represent wholly different

curves . For instance , the parabolas xm=am“
y become Fermatian

Spirals . Joseph S aur in (1659—1 737)solved the delicate problem of
how to determine the tangents at the multiple points of algebraic
curves .\Francms -N1c.ol e (1683 1 758)In 1 71 7 issued an elementary
treatise on finite differences

,
i n which he finds the sums of a consider

able number of interesting series . He wrote also on roulettes
, particu

larly Spherical epicycloids
,
and their rectification . Also interested in

finite differences was P ierre Raymond de M ontmort (1678
His chief writings

,
on the theory of probability; served to stimulate

his more distinguished successor
,
De Moivre . Montmort gave the

first general solution of the Problem of Points ; Jean Pau l de Gua
( 1 7 13

—
1 785)gave the demonstration of Descartes ’ rule of signs , now

given in books . This skilful geometer wrote in 1740 a work on analyt
ical geometry

,
the obj ect of which was to Show that most investiga

tions on curves could be carried on with the analysis of Descartes quite
as easily as with the calculus . He shows how to find the tangents ,
asymptotes

,
and various singular points of curves of all degrees , and

proves by perspective that several of these points can be at infinity.

M iche l Rolle (1652—1 7 19)is the author of a theorem named after him.

That theorem is not found in his Traitad ’

algébre of 1690 , but occurs
in his Methode pour résoudre les egal itez, Paris , The name
“Rolle ’s theorem”was first used by M . W . Drobisch (1802—1896)of
Leipzig in 1834 and by Giusto Bel lavitis in 1846 . HisA lge

‘

bre contains
his “

method of cascades .”In an equation in 7)which he has trans
formed so that its signs become alternately plus and minus

,
he puts

v=x+z and arranges the result according to the descending powers
of x. The coeffi cients of x”, xn ‘

l

,
when equated to zero

,
are

1 See F . Cajori on the history of Rol le
’
s Theorem in B ibl iotheca mathematica ,

3rd S .
, Vol . II, 191 1 , pp. 300

—
313.
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correc t
,
Tschirnhausen concluded that in the researches relating to

the properties of curves the calculus might as well be dispensed with .

After the death of Leibniz there was in Germany not a S inglemathe
matician of note . Christian Wolf (1679—1 7 professor at Halle

,

was ambitious to
'

figure as successor of Leibniz
,
but he forced the

ingenious ideas of Leibniz into a pedantic scholasticism
,
and had the

unenviable reputation of having presented the elements of the arith
metic , algebra , and analysis developed since the time of the Renais
sance in the form of Euclid

,

—of course only in outward form
,
for into

the Spirit of them he was quite unable to penetrate”(H . Hankel).
The contemporaries and immediate successors of Newton in Great

Britain were men of no mean merit . We have reference to R . Cotes ,
B . Taylor

,
L . Maclaurin , and A . de Moivre . We are told that at the

death of Roger Cotes (1682 Newton exclaimed
,

“ If Cotes had
lived

,
we might have known

,
something .

”I t was at the request of
Dr . Bentley that R . Cotes undertook the publication of the segond
edition of Newton ’s P rincipia . His mathematical papers were pub
lished after his death by Robert Smi th

,
his successor in the P lumbian

professorship at Trinity College . The title of the work
,
Harmonia

Mensurarum,
was suggested by the following theorem contained in it:

If on each radius vector
,
through a fixed point 0

,
there be taken a

point R
,
such that the reciprocal of OR be the arithmetic mean of the

reciprocals of OR ] , OR then the locus of R will be a straight
line . In this work progress was made in the application of logarithms
and the properties of the circle to the calculus of fluents. To Cotes
we owe a theorem in trigonometry which depends on the forming of
factors of xn—I . In the Phi losophi cal Transactions of London , pub
lished 1 7 14 , he develops an important formula , reprinted In his Har

monia M ensurarum
,
which In modern notation is i gb= log

sincp. Usually this formula IS attributed to L . Euler . Cotes studied
the curve p

20=az, to which he gave the name
“ lituus . Chief among

the admirers of Newton were B . Taylor and C . Maclaurin . The quar
rel between English and Continental mathematicians caused them to
work quite independently of their great contemporaries across the
Channel .
B rook Taylor (1685—1 731)was interested in many branches of
learning

,
and in the latter part of his life engaged mainly in religious

and philosophic Speculations . His principal work , M ethodus incre

mentorum directa cl inversa
,
London , 1 7 15—17 17 , added a new branch

to mathematics
,
now called finite diff erences

,

”of which he was the
inventor . He made many important applications of it , particularly
to the study of the form of movement of vibrating strings , the reduc
tion of which to mechanical principles was first attempted by him.

This work contains also “Taylor ’s theorem , and , as a Special case
of it

,
what is now called Maclaurin

’

s Theorem .

”Taylor discovered
his theorem at least three years before its appearance in print . He
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gave it in a letter to JohnMachin
,
dated July 26 , 1 7 1 2 . I ts importance

was not recognized by analysts for over fifty years
,
until J . Lagrange

pointed out its power . His proof of it does not consider the question
of convergency

,
and is quite worthless . The first more rigorous proof

was given a century later by A . L . Cauchy . Taylor gave a singular
solution of a differential equation and the method of finding that
solution by differentiation of the diff erential equation . Taylor ’s
work contains the first correct explanation of astronomical refraction .

He wrote also a work on linear perspective
,
a treatise which , l ike his

other writings
,
suffers for want of fulness and clearness of expression .

At the age of twenty- three he gave a remarkable solution of the prob
lem of the centre of oscillation

,
published in 1 7 14 . His claim to

priority was unjustly disputed by Johann Bernoulli . In the Phi lo
sophical Transactions , Vol . 30 , 17 17 , Taylor applies

“Taylor ’s series”
to the solution of numerical equations . He assumes that a rough
approximation

,
a
,
to a root of f (x)= 0 has been found . Let
and x= a+s . He expands by his

theorem , discards all powers of s above the second , substitutes the
values of k , k

’

,
k
”
,
and then solves for s . By a repetition of this

process
,
close approximations are secured . He makes the important

observation .that his method solves also equations involving radicals
and transcendental functions . The first application of the Newton
Raphson process to the solution of transcendental equations was
made by Thomas Simpson in his Essays on M athematicks

,

London
, 1 740 .

The earliest to suggest the method of recurring series for finding
roots was Daniel B ernou l l i (1 700—1782)who in 1 728 brought the
quartic to the form then selected arbitrarily
four numbers A

,
B

,
C , D ,

and a fifth
,
E

,
thus

,

also a sixth by the same recursion formula F= aE+bD+cC+eB

and so on . If the last two numbers thus found are M and N ,
then

x=M + N is an approximate root . Daniel B ernoulli gives no proof ,
but is aware that there is not always convergence to the root . This
method was perfected by Leonhard Euler in his Introductio in analysin

infini torum,
1 748 , Vol . I , Chap . 1 7 , and by Joseph Lagrange in Note

VI of hi s Resolution des equations numériques .

Brook Taylor in 171 7 expressed a root of a quadratic equation in
the form of an infinite series ; for the cubic Frangois Nicole did simi
larly in 1738 and Clairaut in 1746 . A . C . Clairaut inserted the process
in his Elements d’

algébre. Thomas Simpson determined roots by re

version of series in 1 743 and by infinite series in 1 745 . Marquis de
Courtivron (17 15—1785)also expressed the roots in the form of in
finite series

,
while L . Euler devoted several articles to this topic .

1

At this time the matter of convergence of the series did not receiv e
1 For references see F . Cajori , in Colorado College P ublication , General Series 5 1 ,

p . 2 1 2 .
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proper attention
,
except in some rare instances . James Gregory of

Edinburgh
,
in his Vera circu li cl hyperbolce quadratura first

used the terms convergent”and “
divergent”series

,
while William

Brouncker gave an argument which amounted to a proof of the con
vergence of his series

,
noted

,above .
Colin M aclaurin ( 1698—1 746)was elected professor of mathematics

at Aberdeen at the age of nineteen by competitive examination
,
and

in 1 725 succeeded James Gregory at the University of Edinburgh .

He enjoyed the friendship of Newton
,
and

,
inspired by Newton ’s

discoveries
,
he published in 1 719 his Geometria Organica ,

containing
a new and remarkable mode of generating conics

,
known by his name

,

and referring to the fact which became known later as “ Cramer ’s
paradox

,

”that a curve of the n th order is not always determined by
points

,
that the number may be less . A second tract , De

Linearum geometricarum propri etatibus , 1 720 ,
is remarkable for the

elegance of its demonstrations . I t is based upon two theorems : the
first is the theorem of Cotes ; the second is Maclaurin

’

s: If through
any point 0 a line be drawn meeting the curve in n points

,
and at

these points tangents be drawn
,
and if any other line through 0 cut

the curve in R 1, R2 , etc . and the system of n tangents in r l , r g , etc .
,

then 2 This and Cotes ’ theorem are general izations of

theorems of Newton . M aclaurin uses these in his treatment of curves
of the second and third degree

,
culminating in the remarkable theorem

that if a quadrangle has its vertices and the two points of intersection
of its opposite sides upon a curve of the third degree

,
then the tangents

drawn at two opposite vertices cut each other on the curve . He de
duced independently B . Pascal ’s theorem on the hexagram. Some
of his geometrical results were reached independently by Wi l l iam
B raikenridge (about 1 700

—after a clergyman in Edinburgh .

The following is known as the “
Braikenridge

-M aclaurin theorem”:
If the sides of a polygon are restricted to pass through fixed points
while all the vertices but one lie on fixed straight lines , the free vertex
describes a conic section or a straight line . Maclaurin

’
s more general

statement (Phi l . Trans .
,
1 735)is thus :If a polygon move so that each

of its sides passes through a fixed point
,
and if all i ts summits except

one describe curves of the degrees m
,
n
, p, etc . , respectively , then the

free summ itmoves on a curve of the degree 2 mnp which reduces
to mnp when the fixed points all lie on a straight line . Mac

laurin was the first to write on “ pedal curves ,
”a name due to Olry

Terquem (1 782 M aclaurin is the author of an Algebra . The
object of his treatise on Fluxions was to found the doctrine of fluxions
on geometric demonstrations after the manner of the ancients , and
thus

,
by rigorous exposition

,
answer such attacks as Berkeley ’s that

the doctrine rested on false reasoning . The Fluxions contained for
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to the hyperbola . His work on the theory of probability surpasses
anything done by any other mathematician except P . S . Laplace .

His principal contributions are his investigations respecting the
Duration of P lay

,
his Theory of Recurring Series

,
and his extension

of the value of Daniel Bernoulli ’s theorem by the aid of S tirling’s
theorem.

1 His chief works are the Doctrine of Chances , 17 16 , the
M iscel lanea Analytica , 1730 ,

and his papers in the Phi losophical
Transactions . Unfortunately he did not publish the proofs of his
results in the doctrine of chances

,
and J . Lagrange more than fif ty

years later found a good exercise for his skill in supplying the proofs .
A generalization of a problem first stated by C . Huygens has re

ceived the name of “De Moivre
’

s P roblem: Given n dice
,
each

having f faces , determine the chances of throwing any given number
of points . It was solved by A . de M oivre

,
P . R . de M ontmort , P . S .

Laplace and others . De Moivre also generalized the Problem on the
Duration of P lay

,
so that it reads as follows :Suppose A hasm counters ,

and B has n counters ; let their chances of winning in a single game be
as a to b; the loser in each game is to give a counter to his adversary:
required the probability that when or before a certain number of games
has been played, one of the players Will have won all the counters of
his adversary . De Moivre

’
s solution of this problem constitutes his

most substantial achievement in the theory of chances . He employed
in his researches the method of ordinary finite differences , or as he
called i t

,
the method of recurrent series .

A famous theory involving the notion of inverse probability was
advanced by Thomas Bayes . I t was published in the London Philo
sophical Transactions , Vols . 53 and 54 for the years 1763 and 1 764 ,
after the death of Bayes

,
which occurred in 1 76 1 . These researches

originated the discussion of the probabilities of causes as inferred
from observed effects

,
a subject developed more fully by P . S . Laplace .

Using modern symbols
,
Bayes ’ fundamental theorem may be stated

thus :2 If an event has happened p times and failed q times , the
probability that its chance at a single trial lies between a and b is

x? (1—x)q (1—x)? dx.

A memoir of John M ichell On the probable Parallax , and M agni
tude of the fixed Stars”in the London P hi losophical Transactions ,
Vol . 57 I , for the year 1 767 , contains the famous argument for the
existence of design drawn from the fact of the closeness of certain
stars

,
like the P leiades . We may take the six brightest of the

P leiades
,
and

,
supposing the whole number of those stars , which are

equal in splendor to the faintest of these , to be about 1 500 , we shall

1 I . Todhun ter , A History of the Mathematical Theory of Probability, Cambridge
and London , 1865 , pp . 135

—
193 .

2 I . Todhunter, op. cit. , p . 295 .
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find the odds to be near to 1
,
that no six stars

,
out of that

number
,
scattered at random, in the whole heavens , would be wi thin

so small a distance from each other , as the P leiades are .

”

Eu ler , Lagrange, and Laplace

In the rapid development of mathematics during the eighteenth
century the leading part was taken

,
not by the universities , but by

the academies . Particul arly prominent were the academies at Berlin
and Petrograd . This fact is the more singular , because at that time
Germany and Russia did not produce great mathematicians . The
academies received their adornment mainly from the Swiss and
French . I t was after the French Revolution that schools gained their
ascendancy over academies .
During the period from 1 730 to 1820 Sw i tzerland had her L . Euler ;

France
,
her J . Lagrange , P . S . Laplace , A . M . Legendre , and G . Monge .

The mediocrity of French mathematics which marked the time of
Louis XIV was now foll owed by one of the very brightest periods of
all history . England , on the other hand , which during the unpro

ductive period in France had her Newton , could now boas t of no great
mathematician . Except young Gauss , Germany had no great name .
France now waved the mathematical sceptre . Mathematical studies
among the English and German people had sunk to the lowest ebb .

Among them the direction of original research was ill chosen . The
former adh ered with excessive partiality to ancient geometrical
methods ; the latter produced the combinatorial school , which brought
forth nothing of great value .
The labors of L . Euler

, J . Lagrange
,
and P . S . Laplace lay in higher

analysis
,
and this they developed to a wonderful degree . By them

analysis came to be completely severed from geometry . During the
preceding period the effort of mathematicians not only in England ,
but

,
to some extent

,
even on the continent , had been directed toward

the solution of problems clothed in geometric garb , and the results of
calcul ation were usually reduced to geometric form . A change now
took place . Euler brought about an emancipation of the analytical
calculus from geometry and established it as an independent science .

Lagrange and Laplace scrupulously adhered to this separation .

Building on the broad foundation laid for higher analysis and me

chanics by
'

Newton and Leibniz
,
Euler

,
with matchless fertility of

mind
,
erected an elaborate structure . There are few great ideas pur

sued by succeeding analysts which were not suggested by L . Euler ,
or of which he did not share the honor of invention . With , perhaps ,
less exuberance of invention

,
but with more comprehensive genius and

profounder reasoning , J . Lagrange developed the infinitesimal calculus
and put analytical mechanics into the form in which we now know it .

P . S . Laplace applied the calculus and mechanics to the elaboration
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of the theory of universal gravi ta tion
,
and thus

,
largely extending and

supplementing the labors of Newton
,
gave a full analytical discussion

of the solar system. He also wrote an epoch-marking work on Prob
abil i ty . Am ong

,
the analytical branches created during this period

are the calculus of Variations by Euler and Lagrange
,
Spherical Har

monics by Legendre and Laplace
,
and Elliptic Integrals by Legendre .

Comparing the growth of analysis at thi s time with the growth
during the time of K . F . Gauss

,
A . L . Cauchy

,
and recent mathe

maticians
,
we observe an important diff erence . During the former

period we witness mainly a development with reference to form. P lac
ing almost implicit confidence in results of calculation

,
mathemati

cians did not always pause to discover rigorous proofs
,
and were thus

led to general propositions
,
some of which have since been found to

be true in only special cases . The Combinatorial School In Germany
carried this tendency to the greatest extreme

,
they worshipped

formalism and paid no attention to the actual contents of formulae .

But in recent times there has been added to the dexterity in the formal
treatment of problems

,
a much-needed rigor of demonstration . A

good example of this increased rigor is seen in the present use of in
finite series as compared to that of Euler

,
and of Lagrange in his earlier

works .
The ostracism of geometry

,
brought about by the master-minds of

this period
,
could not last permanently . Indeed , a new geometric

school sprang into existence in France before the close of this period .

J . Lagrange would not permi t a single diagram to appear in his
M ecan i que analytique, but thirteen years before his death , G . Monge
published his epoch making Géome’ trie descriptive.

Leonhard Eul er (1 707—1783)was born in Basel . His father , a
minister

,
gave him his first instruction in mathematics and then sent

him to the University of Basel
,
where he became a favorite pupil of

Johann Bernoulli . In his nineteenth year he composed a dissertation
on the masting of ships

,
which received the second priz e from the

French Academy of Sciences . When Johann. Bernoulli ’s two sons ,
Daniel and Nicolaus

,
went to Russia

,
they induced Catharine I , in

1727 , to invite their friend L . Euler to S t . Petersburg , where Daniel ,
in 1 733 , was assigned to the chair ofmathematics . In 1735 the solving
of an astronom ical problem

,
proposed by the Academy

,
for which

several eminent mathematicians had demanded some months ’ time
,

was achieved in three days by Euler with aid of improved methods of
his own . But the effort threw him into a fever and deprived him of
the use of his right eye . With still superiormethods this same problem
was solved later by K . F . Gauss in one hour ! 1 The despotism of
Anne I caused the gentle Euler to Shrink from public affairs and to
devote all his time to science . After his call to Berlin by Frederick the

1W. SartoriusWaltershausen , Gauss , zum Gedachtniss , Leipzig , 1856 .
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but also the Beta and Gamma Functions and other original investi
gations ;Methodus inveniendi l ineas curvas maximi minimive proprietate

gaudentes , 1 744 , which , displaying an amount of mathematical genius
Seldom rivall ed

,
contained his researches on the calculus of variations

to the invention of which Euler was led by the study of the researches
of Johann and Jakob Bernoulli . One of the earliest problems bearing
on this subj ec t was Newton ’s solid of revolution

,
of least resistance

,

reduced by him in 1686 to a diff erential equation . (P rincipia ,
Bk . II

,

Sec . VII
,
Prop . XXXIV

,
Scholium .)Johann Bernoulli ’s problem of

the brachistochrone
,
solved by him in 1697 , and by his brother Jakob

in the same year
,
stimulated Euler . The study of isoperimetrical

curves
,
the brachistochrone in a resis ting medium and the theory of

geodesics
,
previously treated by the elder Bernoullis and others

,
led

to the creation of this new branch of mathematics
,
the Calculus of

Variations . His method was essentially geometrical
,
which makes

the solution of the simpler problems very clear . Euler ’s Theoria
motuum planetarum et cometarum

,
1 744 , Theoria motus lunar, 1 753 ,

Theoria motuum lunae
,
1 772 , are his chief works on astronomy ; S es

lettres a une princesse d
’

A l lemagne sur quelques suj ets de Physique et de
Phi losophi e, 1 770 ,

was a work which enjoyed great popularity .

We proceed to mention the principal innovations and inventions
of Euler . In his Introductio (1 748)every “ analytical expression”in
x,
i . e. every expression made up of powers , logarithms , trigonometric

functions
,
etc .

,
is called a “ function”of x. Sometimes Euler used

another definition of function
,

”namely
,
the relation between y

and x expressed in the x—y plane by any curve drawn freehand , “ libero
manus duetu .

”1 In modified form
,
these two rival definitions are

traceable in all later history . Thus Lagrange proceeded on the idea
involved in the first definition

,
Fourier on the idea involved in the

second .

Euler treated trigonometry as a branch of analysis and consistently
treated trigonometric values as ratios . The term “ trigonometric
function”was introduced in 1 770 by Georg S imon Klugel (1 739—18 1 2)
of Halle

,
the author of a mathematical dictionary.

2 Euler developed
and systematized the mode of writing trigonometric formulas

,
taking ,

for instance
,
the S inus totus equal to 1 . He simplified formulas by

the S imple expedient of designating the angles of a triangle by A
,
B

,
C

,

and the opposite S ides by a
,
b
,
c
,
respectively . Only once before have

we encountered this S imple device . I t was used in a pamphlet pre
pared by Ri . Rawl inson at Oxford sometime between 1655 and
This notation was re- introduced simul taneously with Euler by Thomas
Simpson in England . We may add here that in 1 734 Euler used the
notation f (x)to indicate “ function of x

,
that the use of e as the

1 F . Klein , Elementarmathematik v. hoh. S tandpunkte aus . ,
I
,
Leipzig , 1908 , p . 438 .

2M . Cantor
, op. cit. , Vol . IV , 1908 , p . 4 13 .

3 See F . Cajori in Nature
, Vol . 94 , 19 15, p . 642 .
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symbol for the natural base of logarithms was introduced by him in
that in 1750 he used S to denote the half-sum of the sides of a

triangle
,
that in 1755 he introduced 2 to signify

“ summation ,
”that

in 1 777 he used i for a notation used later by K . F . Gauss .
We pause to remark that in Euler ’s time Thomas S impson (1 710

an able and self- taught English mathematician
,
for many years

professor at the Royal M ilitary Academy at Woolwich
,
and author of

several text-books
,
was active in perfecting trigonometry as a science .

His Trigonometry, London , 1 748 , contains elegant proofs of two
formulas for plane triangles , (a+b)c= cos %(A B):sin §C and (a b):
c= sin %(A—B):cos%C ,

which have been ascribed to the German as
tronomer Karl Brandan Maltweide (1774 who developed them
much later . The first formula was given in different notation by I .

Newton in his Universal Arithmetique; both formulas are given by
Friedrich Wi lhelm Oppel in
Eul er laid down the rules for the transformation of co—ordinates in

space
,
gave a methodic analytic treatment of plane curves and of

surfaces of the second order . He was the first to discuss the equation
of the second degree in three variables

,
and to classify the surfaces

represented by it . By criteria analogous to those used in the classi
fication of conics he obtained five species . He devised a method of
solving biquadratic equations by assuming x= x/ i , with
the hope that it would lead him to a general solution of algebraic
equations . The method of elimination by solv ing a series of linear
equations (invented independently by E . Bézout)and the method of
elimination by symmetric functions

,
are due to him . Far reaching

are Euler ’s researches on logarithms . Euler defined logarithms as
exponents

,

3 thus abandoning the old view of logarithms as terms of
an arithmetic series in one- to-one correspondence with terms of a
geometric series . This union between the exponential and logarithmic
concepts had taken place somewhat earlier . The possibility of de
fining logarithms as exponents had ‘been recogniz ed by John Wallis
in 1685 by Johann Bernoulli in 1694 , but not till 1 742 do we find a
systematic exposition of logarithms

,
based on this idea . I t is given

in the introduction to Gardiner ’s Tables of Logari thms , London , 1742 .

This introduction is “ collected wholly from the papers”of William
Jones . Euler ’s influence caused the ready adoption of the new defin i
tion . That this view of logarithms was in every way a step in advance
has been doubted by some writers . Certain it is that it involves in
ternal diffi culties of a serious nature . Euler threw a stream of light
upon the subtle subject of the logarithms of negative and imaginary
numbers . In 171 2 and 1713 this subj ect had been discussed in a

1 G . Enestrom
,
B ibliotheca mathematica , Vol . 14 , 1913

—1914 , p . 8 1 .

2A . v . Braunmiihl
,
op. ci t.

,
2 . Teil

,
1903 , p . 93; H. Wieleitner in Bibl iotheca

mathematica , 3 . S .
, Vol . 14 , pp . 348 , 349 .

3 See . L . Euler , Introductio, 1 748 , Chap . VI , 10 2 .
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correspondence between G . W . Leibniz and Johann Bernoul li .1 Leib
niz maintained that since a positive logarithm corresponds to a number
larger than unity

,
and a negative logarithm to a positive number less

than unity , the logarithm of 1 was not really true , but imaginary ;
hence the ratio having no logarithm,

is itself imaginary.

M oreover
,
if there really existed a logarithm of 1 , then half of it

would be the logarithm of
—
1
,
a conclusion which he considered

absurd . The statements of Leibniz involve a double use of the term
imaginary:(1)in the sense of non—existent , (2)in the sense of a number
of the type x/T I . Johann Bernoulli maintained that - 1 has a
logarithm . Since dx:x= dx:—x

,
there results by integration

log (x)= log —x); the logarithmic curve y= log x has therefore two
branches

,
symmetrical to the y=axis, as has the hyperbola . The corre

spondence between Leibniz and Johann Bernoulli was first published
in 1 745. In 17 14 Roger Cotes developed in the Phi losophical Trans
actions an important theorem which was republished in his Harmonia
mensurarum In modern notation it is i¢= log (cos ¢+t sin (b).
In the exponential form i t was discovered again by Euler in 1 748 .

Cotes was aware of the periodicity of the trigonometric functions .
Had he applied this idea to his formula

,
he might have anticipated

Euler by many years in showing that the logarithm of a number has
an infinite number of different values . A second discussion of the
logarithms of negative numbers took place in a correspondence be
tween young Euler and his revered teacher

,
Johann Bernoulli

,
in the

years 1 727 Bernoulli argued
,
as before

,
that log x= log —x).

Euler uncovered the diflficul ties and inconsistencies of his own and
Bernoulli ’s views

,
without

,
at that time

,
being able to advance a

satisfactory theory . He showed that Johann Bernoul li ’s expression

4 v i ?

which is incompatible with Bernoulli ’s claim that log Be

tween 1731 and 1 747 Euler made steady progress in the mastery of
relations involving imaginaries . In a letter of Oct . 18

,
1 740 , to

Johann Bernoulli
,
he stated that y= 2 cos x and y=ex\

/ I -e

d2y

22 2

equal to each other . Euler knew the corresponding expression for
sin x. Both expressions are given by him in theM iscel lanea B erol inen
sia

,
1 743 , and again in his Introductio, 1 748 , Vol . I , 104 . He gave the

value 17 V 1

5763 as early as 1 746 , in a letter to Chris
tian Goldbach ( 1690 but makes no reference here to the in

were both integrals of the differential equation +y
= 0 and were

1 See F . Cajori ,
“History of the Exponential and Logarithmic Concepts, Amer

i can Math. M onthly, Vo l . 20
,
19 13 , pp . 39

—
4 2 .

2 See F . Cajori in Am. M ath. Monthly, Vol . 20
,
1913 , pp . 44

—
46 .
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G . W . Leibniz nor Jakob and Johann Bernoulli had entertained any
serious doubt of the correctness of the expression 1+

Guido Grandi (1671—1 742)of P isa went so far as to conclude from
this that In the treatment of series Leibniz ad

vanced a metaphysical method of proof which held sway over the
minds of the elder Bernoullis , and even of Euler .1 The tendency of
that reasoning was to justify results which seem highly absurd to
followers Of Abel and Cauchy . The looseness of treatment can
best be seen from examples . The very paper in which Euler cautions
against divergent series contains the proof that

1 1

0 as follows

n+n
2
+ .

—I
f
l

n it
“

these added give zero . Euler has no hesitation to write 1
—
7

0
,
and no one objected to such results excepting Nicolaus

Bernoulli
,
the nephew of Johann and Jakob . Strange to say

,
Euler

finally succeeded in converting Nicolaus Bernoulli to his own erroneous
views . At the present time it is diffi cult to believe that Euler Should
have confidently written sin qS

—z S in Sin 322—4 sin
0
,
but such examples aff ord striking illustrations of the want of

scientific basis of certain parts of analysis at that time . Euler ’s proof
of the binomial formula for negative and fractional exponents

,
which

was widely reproduced in elementary text-books of the nineteenth
century

,
is faulty . A remarkable development , due to Euler , is what

he named the hypergeometric series
,
the summation of which he

observed to be dependent upon the integration of a linear diff erential
equation of the second order , but it remained for K . F . Gauss to point
out that for special values of its letters

,
this series represented nearly

all functions then known .

Euler gave in 1 779 a series for arc tan x, different from the series of
James Gregory

,
which he applied to the formula 7r= 20 arc tan 1+

8 arc tan 739 used for computing The series was published in 1 798 .

Euler reached remarkable results on the summation of the reciprocal
powers of the natural numbers . In 1 736 he had found the sum of the
reciprocal squares to be 7r2/6 , and of the reciprocal fourth powers to
be

‘ In an article of 1 743 which until recently has been gen
erally overlooked ,

2 Euler finds the sums of the reciprocal even powers
of the natural numbers up to and including the 26th power . Later
he Showed the connection of coeffi cients occurring in these sums with
the Bernoullian numbers”due to Jakob Bernoulli .
Eul er developed the calculus of finite differences in the first chapters

1 R . Reiff , Geschichte der Unendl ichen Reihen ,
Tubingen , 1889 , p . 68 .

2 P . Stackel in B ibl iotheca mathematica, 3 . S .
, Vol . 8, 1907

—8 , pp. 37
—60 .
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of his Institutiones calcul i difierential is , and then deduced the differen
tial calculus from it . He established a theorem on homogeneous func
tions

,
known by his name

,
and contributed largely to the theory of

diff erential equations
,
a subject which had received the attention of

I . Newton
,
G . W . Leibniz

,
and the Bernoullis , but was still unde

veloped. A . C . Clairaut
,
Alexis Fontaine des Bertins ( 1 705

and L . Euler about the same time observed criteria of integrability
,

but Euler in addition showed how to employ them to determ ine in
tegrating factors . The principles on which the criteria rested involved
some degree of obscurity . Euler was the first to make a systematic
study of S ingular solutions of differential equations of the first order .
In 1 736 , 1 756 and 1 768 he considered the two paradoxes which had
puzzled A . C . Clairaut :The first

,
that a solution may be reached by

differentiation instead of integration ; the second , that a singular
solution is not contained in the general solution . Euler tried to es

tablish an a priori rule for determining whether a solution is contained
in the general solution or not . Stimulated by researches of Count
de Fagnano on elliptic integrals

,
Euler established the celebrated

addition- theorem for these integrals . He invented a new algorithm
for continued fractions , which he employed in the solution of the
indeterminate equation ax+by= c. We now know that sub s tantially
the same solution of this equation was given 1000 years earlier , by
the H indus . Euler gave 6 2 pairs of amicable numbers

,
of which 3

pairs were previously known : one pair had been discovered by the
Pythagoreans

,
another by Fermat and a third by Descartes .1 By

giving the factors of the number when n= 5, he pointed out
that this expression did not always represent primes

,
as was supposed

by P . Fermat . He first supplied the proof to “ Fermat ’s theorem
,

and to a second theorem of Fermat
,
which states that every prime

of the form 4n+ 1 is expressible as the sum of two squares in one and
only one way . A third theorem

,

“ Fermat ’s last theorem
,

”that
x
n+y

n= zn , has no integral solution for values of n greater than 2
,

was proved by Euler to be correct when n= 4 and n= 3 . Euler dis
covered four theorems which taken together make out the great law
of quadratic reciprocity

,
a law independently discovered by A . M .

Legendre .

2

In 1 737 Euler showed that the sum of the reciprocals of all prime
numbers is logc (logeoo thereby initiating a line of research on the
distribution of primes which is usually not carried back further than
to A . M . Legendre .

3

In 1741 he wrote on partitions of numbers partitio numerorum

In 1 782 he published a discussion of the problem of 36 offi cers of six
different grades and from six different regiments

,
who are to be placed

1 See B ibl iotheca mathematica , 3 . S . , Vol . 9 , p . 263 ; Vol . 14 , pp . 35 1
—
354 .

2 Oswald Baumgart , Ueber das Quadratische Rcciprocit
'

atsgesetz. Leipzig , 1885 .

3 G . EnestrOm in B ibl iotheca mathematica , 3 . S .
, Vol . 13 , 191 2 , p . 81 .
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in a square in such a way that in each row and column there are six
offi cers

,
all of different grades as well as of diff erent regiments . Euler

thinks that no solution is ob tainable when the order of the square is
of the form 2 mod. 4 . Arthur Cayley in 1890 reviewed what had been
written ; P . A . MacMahon solved it in 1915 . I t is called the problem
of the “ Latin squares

,

”because Euler
,
in his notation

,
used “

n lettres
latines . Euler enunciated and proved a well-known theorem, giving
the relation between the number of vertices

,
faces

,
and edges of cer

tain polyhedra
,
which

,
however

,
was known to R . Descartes . The

powers of Euler were directed also towards the fascinating subj ect
of the theory of probabili ty , in whi ch he solved some diffi cult
problems .
Of no little importance are Euler ’s labors in analytical mechanics .
Says Whewell : “The person who did most ‘

to give to analysis the
generality and symmetry which are now its pride

,
was also the person

who made mechanics analytical ; I mean Euler .
”1 He worked out

the theory of the rotation of a body around a fixed point , established
the general equations ofmotion of a free body

,
and the general equation

of hydrodynamics . He solved an immense number and variety of
mechanical problems

,
which arose in his mind on all occasions . Thus ,

on reading Virgil ’s lines
,

“The anchor drops
,
the rushing keel is staid ,

”
he could not help inquiring what would be the ship ’s motion in such
a case . About the same time as Daniel Bernoulli he published the
P rinciple of the Conservation of Areas and defended the principle of
“ least action

,

”advanced by P . Maupertius . He wrote also on tides
and on sound .

Astronomy owes to Euler the method of the variation of arb itrary
constants . By it he attacked the problem of perturbations

,
explain

ing , in case of two planets , the secular variations of eccentricities ,
nodes

,
etc . He was one of the first to take up with success the theory

of the moon ’s motion by giving approximate solutions to the problem
of three bodies .”He laid a sound basis for the calculation of tables
of the moon . These researches on the moon ’s motion , which captured
two prizes

,
were carried on while he was blind

,
with the assistance of

his sons and two of his pupils . His Mechanica sive motus sci entia

analytice exposita ,
Vol . I

,
1 736 , Vol . II , 1 742 , is , in the language of

Lagrange
,

“ the first great work in which analysis is applied to the
science of movement .
Prophetic was his study of the movements of the earth ’s pole . He
showed that if the axis around which the earth rotates is not coincident
w i th the axis of figure

,
the axis of rotation will revolve about the axis

of figure in a predictable period . On the assumption that the earth
is perfectly rigid he showed that the period is 305 days . The earth
is now known to be elastic . From observations taken in 1884

—
5 ,

1W. Whewell , History of the Inductive Sciences , 3rd Ed .
, Vol . I , New York ,

1858 , p . 363.
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mission to the Academy of Sciences . In 1 754 he was made permanent
secretary of the French Academy . During the last years of his life
he was mainly occupied with the great French encyclopaedia , which
was begun by Denis D iderot and himself . D

’

Alembert declined , in
1 762 , an invitation of Catharine II to undertake the education of her
son . Frederick the Great pressed him to go to Berlin . He made a
visit

,
but declined a permanent residence there . In 1 743 appeared

his Trai té de dynamique, founded upon the important general principle
bearing his name:The impressed forces are equivalent to the effective
forces . D

’
Alembert

’s principle seems to have been recognized before
him by A . Fontaine , and In some measure by Johann Bernoulli and
I . Newton . D

’

Alembert gave it a clear mathematical form and made
numerous applications of it . I t enabled the laws of motion and the
reasonings depending on them to be represen

f

ted in the most general
form

,
in analytical language . D

’

Alembert applied i t in 1 744 in a
treatise on the equilibrium and motion of fluids

,
in 1 746 to a treatise

on the general causes of winds
,
which obtained a prize from the Berlin

Academy . In both these treatises , as also In one of 1 747 , discussing
the famous problem of vibrating Chords , he was led to partial differ
ential equations . He was a leader among the pioneers in the study of

2 2

such equations . To the equation 2721 $332
1

,
arising in the problem

of vibrating chords
,
he gave as the general solution ,

—
at),

and showed that there is only one arbitrary function
,
if y be supposed

to vanish for x= 0 and x= l . Daniel B ernoulli
,
starting with a par

ticular integral given by Brook Taylor , showed that this differential
equation is satisfied by the trigonometric series

7rx 7rt
+

2 7rx 2 7rt

y
= aSIn

-

l
—

. cos -

l
B sin—

l
c. os

and claimed this expression to be the most general solution . Thus
Daniel Bernoulli was the first to introduce “ Fourier ’s series into
physics . He claimed that his solution , being compounded of an in
finite number of tones and overtones of all possible intensities , was
a general solution of the problem. Euler denied its generality

,
on

the ground that
,
if true

,
the doubtful conclusion would follow that

the above series represents any arbitrary function of a variable .
These doubts were dispelled by J . Fourier . J . Lagrange proceeded to
find the sum of the above series , but D

’

Alembert obj ected to his
process

,
on the ground that it involved divergent series .1

A most beautiful result reached by D ’

Alembert
,
with aid of his

principle
,
was the complete solution of the problem of the precession

of the equinoxes
,
which had baffled the talents of the best minds .

1 R . Reiff
,
op. cit. , II . Abschnitt .
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He sent to the French Academy in 1747 , on the same day with A . C .

Clairaut
,
a solution of the problem of three bodies . This had become

a question of universal interest to mathematicians
,
in which each

v ied to outdo all others . The problem of two bodies
,
requiring the

determination of their motion when they attract each other with
forces inversely proportional to the square of the distance between
them ,

had been completely solved by I . Newton . The “ problem of
three bodies”asks for the motion of three bodies attracting each
other according to the law of grav itation . Thus far

,
the complete

solution of this has transcended the power of analysis . The general
differential equations of motion were stated by P . S . Laplace

,
but

the difficulty arises in their integration . The solutions”given at
that time are merely convenient methods of approximation in special
cases when one body is the sun

,
disturbing the motion of the moon

around the earth
,
or where a planet moves under the influence of the

sun and another planet . The most important eighteenth century
researches on the problem of three bodies are due to J . Lagrange . In
1772 a prize was awarded him by the Paris Academy for his Essai
sur le probleme des trois corps . He shows that a complete solution of
the problem requires only that we know every moment the sides of
the triangle formed by the three bodies

,
the solution of the triangle

depending upon two differential equations of the second order and
one differential equation of the third . He found particular solutions
when the triangles remain all similar .
In the discussion of the meaning of negative quantities

,
of the

fundamental processes of the calculus
,
of the logarithms of complex

numbers
,
and of the theory of probabil ity

,
D

’

Alembert paid some
attention to the philosophy of mathematics . In the calculus he
favored the theory of limits . He looked upon infinity as nothing but
a limit which the finite approaches without ever reaching it . His
criticisms were not always happy. When students were halted by
the logical difficulties of the calculus

,
D

’

Alembert would say ,
“Allez

en avant
,
et la foi vous viendra .

”He argued that when the prob
ability oi an event is very small

,
i t ought to be taken 0 . A coin is to

be tossed 100 times and if head appear at the last trial
,
and not before ,

A shall pay B 2
100 crowns . By the ordinary theory B Should give A

1 crown at the start
,
which should not be

,
argues D ’

Alembert , be

cause B will certainly lose . This view was taken also by Count de
Buffon . D

’

Alembert raised other obj ections to the principles
.

of
probability .

The naturalist
, Comte de Bufion ( 1 70 7 wrote an Essai

d
’

ari thmétique morale, 1 777 . In the study -oi the Petersburg problem ,

he let a child toss a coin 2084 times , which produced 10057 crowns ;
there were 106 1 games which produced 1 crown

, 494 which produced
2 crowns and so on .

1 He was one of the first to emphasize the desir
1 For references, see I . Todhunter, History of Theory of P robabil ity, p . 346 .



244 A HISTORY OF MATHEMATICS

ability of verifying the theory by actual trial . He also introduced
what is called local probabili ty by the consideration of problems
that require the aid of geometry . Some studies along thi s line had
been carried on earlier by John Arbuthnot (1658—1735)and Thomas
Simpson in England. Count de Buffon derived the probability that
a needle dropped upon a plane

,
ruled with equidistant

,
parallel lines

,

will fall across one of the lines .
The probability of the correctness of judgments determined by a

majority of votes was examined mathematically by Jean—Antoine
Nicolas Cari tat de Condorcet (1 743 His general conclusions
are not of great importance ; they are that voters must be enlightened
men in order to ensure our confidence in their decisions .1 He held
that capital punishment ought to be abolished

,
on the ground that

,

however large the probability of the correctness of a single decision
,

there will be a large probability that In the course of many decisions
some innocent person will be condemned.

1

Al exis Claude Clairaut (1 7 13 1 765)was a youthful prodigy . He
read G . F . de l ’Hospital

’

s works on the infinitesimal calculus and on
conic sections at the age of ten . In 1 731 was published his Recherches
sur les courbes a double courbure

,
which he had ready for the press

when he was sixteen . It was a work of remarkable elegance and se
cured his admission to the Academy of Sciences when still under legal
age . In 1 731 he gave a proof of the theorem enunciated by I . Newton ,
that every cubic is a projection of

'

one of five divergent parabolas .
Clairaut formed the acquaintance of P ierre Lou is M orean de M auper
tius (1698—1 7 whom he accompanied on an expedition to Lapland
to measure the length of a degree of the meridian . At that time the
shape of the earth was a subj ect of serious disagreement . I . Newton
and C . Huygens.had concluded from theory that the earth was flat
tened at the poles . About 1 7 1 2 Jean-Dominique Cassini (1625—1 7 1 2)
and his son Jacques Cassini (1677—1 756)measured an arc extending
from Dunkirk to Perpignan and arrived at the startling result that
the earth is elongated at the poles . To decide between the conflicting
opinions

,
measurements were renewed . Maupertius earned by his

work in Lapland the title of “ earth flattener
”by disproving the

Cassinian tenet that the earth was elongated at the poles
,
and showing

that Newton was right . On his return , in 1743 , Clairaut published
a work

,
Theorie de lafigure de la Terre, which was based on the results

of C . M aclaurin on homogeneous ellipsoids . I t contains a remarkable
theorem

,
named after Clairaut

,
that the sum of the fractions ex

pressing the ellipticity and the Increase of gravity at the pole 15 equal
to 2—2 times the fraction expressing the centrifugal force at the equator ,
the unit of force being represented by the force of grav ity at the
equator . This theorem is independent of any hypothesis with respect
to the law of densities of the successive strata of the earth . It em

1 I . Todhunter , History of Theory of P rob., Chapter 1 7 .
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To the emperor ’s further question
,
how he attained this mastery , he

said
,

“Like the celebrated Pascal
,
by my own self .

”
In his Cosmological Letters he made some remarkable prophecies

regarding the stellar system. He entered upon plans for a mathe
matical symbolic logic of the nature once outlined by G . W . Leibniz .

In mathematics he made several discoveries which were extended
and overshadowed by his great contemporaries . His first research
on pure mathematics developed in an infinite series the root x of the
equation x

m
+px= q . Since each equation of the form

can be reduced to xm+px= q in two ways , one or the other of the two
resulting series was always found to be convergent

,
and to give a

value of x. Lambert ’s results stimulated L . Euler
,
who extended the

method to an equation of four terms
,
and particularly J . Lagrange

,

who found that a function of a root of a = 0 can be expressed
by the series bearing his name . In 1 76 1 Lambert communicated to
the Berlin Academy a memoir (published in which he proves
rigorously that W is irrational . I t is given in simplified form in Note IV
of A . M . Legendre ’s Geometri c , where the proof is extended to 71

2
.

Lambert proved that if x is rational
,
but not zero

,
then neither e"

nor tan x can be a rational number ; since tan 1r/4= 1 , i t follows that

7r
or 7T cannot be ratIonal . Lambert ’s proofs rest on the expressi on

4

for e as a continued fraction given by L . Euler 1 who in 1737 had sub
stantial ly shown the irrationality of e and e

2
. There were at this

time so many circle squarers that in 1 775 the Paris Academy found it
necessary to pass a resolution that no more solutions on the quadrature
of the circle should be exam ined by its offi cials . This resolution ap
plied also to solutions of the duplication of the cube and the trisection
of an angle . The conv iction had been growing that the solution of
the squaring of the circle was impossible

,
but an irrefutable proof

was not discovered until over a century later . Lambert ’s Freya P er
spective, 1 759 and 1 773 , contains researches on descriptive geometry,
and entitle him to the honor of being the forerunner of M onge . In
his effort to simplify the calculation of cometary orbits , he was led
geometrically to some remarkable theorems on conics , for instance
thi s : “ If in two ellipses having a common major axis we take two
such arcs that their chords are equal

,
and that also the sums of the

radii vectores
,
drawn respectively from the foci to the extremities of

these arcs
,
are equal to each other

,
then the sectors formed in each

ellipse by the arc and the two radii vectores are to each other as the
square roots of the parameters of the ellipses .”2
Lambert elaborated the subject of hyperbolic functions which he

designated by sinh x
,
cosh x

,
etc . He was , however, not the first to

1 R . C . Archibald in Am. Math. Monthly, Vol . 2 1 , 1914 , p . 253 .

2M . Chasles, Geschichte der Geometrie, 1839, p. 183.
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introduce them into trigonometry . That honor falls upon Vincenzo
Riocati (1 70 7 a son of Jacopo Riccati .1

In 1770 Lambert published a 7-place table of natural logarithms
for numbers 1—100 . In 1778 one of his pupils , Johann Karl S chulze,
published extensive tables which included the 48-place table of nat
ural logarithms of primes and many other numbers up to
which had been computed by the Dutch artil lery offi cer , Wolfram.

A feat even more remarkable than Wolfram’s
,
was the computation

of the common logarithms of numbers 1—100 and of all primes from
100 to 1 100

,
to 6 1 places , by Abraham S harp of Yorkshire , who was

some time assistant to Flamsteed at the English Royal Observatory .

They were published in Sharp ’s Geometry Improv
’

d
,
1 71 7 .

John Landen (17 19—1790)was an English mathematician whose
writings served as the starting-point of investigations by L . Euler ,
J . Lagrange

,
and A . M . Legendre . Landen ’s capital discovery , con

tained in a memoir of 1 755 , was that every arc of the hyperbola is
immediately rectified by means of two arcs of an ellipse . In his
“ residual analysis”he attempted to obviate the metaphysical diffi
cul ties of fluxions by adopting a purely algebraic method. J . La
grange ’s Calcul des Fonctions is based upon this idea . Landen Showed
how the algebraic expression for the roots of a cubic equation could
be derived by application of the differential and integral calculus .
M ost of the time of this suggestive writer was Spent in the pursuits
of active l ife .
Of influence in the teaching of mathematics in England was Charles

Hutton (1 737 for many years professor at the Royal M ili tary
Academy of Woolwich . In 1 785 he published his M athematical Tables ,
and in 1 795 his M athematical and Phi losophical Dictionary, the best
work of its kind that has appeared in the English language . His
Elements of Conic S ections , 1 789, is remarkable as being the first work
in which each equation is rendered conspicuous by being printed in
a separate line by itself .2

It is well known that the Newton-Raphson method of approxima

tion to the roots of numerical equations
,
as it was handed down from

the seventeenth century
,
labored under the defec t of insecurity in

the process
,
so that the successive corrections did not always yield

results converging to the true value of the root sought . The removal
of this defect is usually attributed to J . Fourier

,
but he was anticipated

half a century by J . Raym. Mou rrai l le in his Traité de la resolution

des equations en general , M arseille et Paris , 1 768 . Mourraille was for
fourteen years secretary of the academy of sciences in M arseille ; later
he became mayor of the city. Unlike I . Newton and J . Lagrange

,

Mourrail le and J . Fourier introduced also geometrical considerations .
Mourraille concluded that security is insured if the first approximation

1M . Cantor
,
op. cit.

, Vol . IV ,
1908 , p . 4 1 1 .

2M . Cantor, op. cit. , Vol . IV ,
1908 , p . 465.
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a is so selected that the curve is convex toward the axis of x for the
interval between a and the root . He shows that this condition is
suffi cient

,
but not necessary .

1

In the eighteenth century proofs were given of Descartes ’ Rule of
Signs which its discoverer had enunciated without demonstration .

G . W . Leibniz had pointed out a line of proof , but did not actually
give it . In 1675 Jean P restet (1648—1690)published at Paris in his
Elemens des mathématiques a proof which he afterwards acknowledged
to be insuffi cient . In 1 728 Johann Andreas S egner (1 704

—
1 777)pub

l ished at Jena a correct proof for equations hav ing only real roots .
In 1 756 he gave a general demonstration , based on the consideration
that multiplying a polynomial by (x—a)increases the number of
variations by at least one . Other proofs were given by Jean P aul de
Gua deM alves I saacM i lner Fri edrichWi lhelm S t

'

ubner
,

Abraham Gotthelf Kastner Edward Waring J . A .

Grunert K . F . Gauss Gauss showed that
,
if the num

ber of positive roots falls short of the number of variations
,
it does so

by an even number . E . Laguerre later extended the rule to poly
nomials with fractional and incommensurable exponents , and to in
finite series .2 I t was established by De Gua de Malves that the
absence of 2m successive terms indicates 2m imaginary roots , while
the absence of 2m+ 1 successive terms indicates 2m+ 2 or 2m imagin
ary roots

,
according as the two terms between which the deficiency

occurs have like or unlike signs .

Edward Waring (1 734—1 798)was born in Shrewsbury , studied at
M agdalene College

,
Cambridge

,
was senior wrangler in 1757 , and

Lucasian professor of mathematics since 1 760 . He published M is
cel lanea analytica in 1 76 2 , Medi tationes algebraicw in 1770 , P roprietatis

algebraicarum curvarum in 1 772 , and M edi tationes analyticce in 1 776 .

These works contain many new results
,
but are diffi cult of compre

hension on account of his brevity and obscurity of exposition . He is
said not to have lectured at Cambridge

,
his researches being thought

unsuited for presentation in the form of lectures . He adm itted that
he never heard of any one in England

,
outside of Cambridge

,
who had

read and understood his researches .
In his M edi tationes algebraicce are some new theorems on number .
Foremost among these is a theorem discovered by his friend John
Wi lson and universally known as Wilson ’s theorem .

”
Waring gives the theorem

,
known as “Waring’s theorem

,

”that every
integer is either a cube or the sum of 2

, 3 , 4 , 5, 6 , 7 , 8 or 9 cubes , either
a fourth power or the sum of 2

, 3 or 19 fourth powers ; this has
never yet been fully demonstrated . Also without proof is given the
theorem that every even integer is the sum of two primes and every

1 See F . Cajori in Bibl iotheca mathematica
, 3rd S .

, Vol . 1 1
,
19 1 1 , pp . 132

—
137 .

2 For references to the publ ications of these w riters , see F . Cajori in Colorado
Col lege P ublication ,

General Series No . 5 1 , 19 10 , pp . 186 , 187 .
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points
,
or singu lar lines , planes , etc .

, at infi nity occasion the with
drawal to infinity of certain of the intersection points ; and this at a
time when the nature of such S ingularities had not been developed .

”1
Lou is Arbogaste (1 759—1803)of Alsace was professor of mathe

matics at S trasburg . His chief work
,
the Calcu l des Derivations , 1800 ,

gives the method known by his name
,
by which the successive coeffi

cients of a development are derived from one another when the ex
pression is complicated . A . De Morgan has pointed out that the
true nature of derivation is differentiation accompanied by integration .

In this book for the first time are the symbols of operation separated
drfrom those of quantity. The notationn for
(E
is due to him .

M aria Gaetana Agnesi (1 7 18—1799)of M ilan , distinguished as a
linguist

,
mathematician

,
and philosopher

,
filled the mathematical

chair at the University of Bologna during her father ’s sickness .
Agnesi was a somnambulist . Several times it happened to her that
she went to her study

,
while in the somnambulist state

,
made a light

,

and solved some problem she had left incomplete when awake . In
the morning she was surprised to find the solution carefully worked
out on paper .

2 In 1 748 she published her Insti tuzioni Anal itiche,
which was translated into English in 1801 . The “witch of Agnesi

”
or “Versiera”is a cubic curve x2y=a2(a—y)treated in Agnesi ’s In
sti tuzioni , but given earlier by P . Fermat in the form (a2 -~x

2)y= a3.

The curve was discussed by Guido Grandi in his Quadratura ci rculi

et hyperbolce, P isa , 1 703 and In two letters from Grandi to
Leibniz

,
in 17 13 ,q rves resembling flowers are discussed ; in 1 728

Grandi published at Florence his Flores geometrici . He considered
curves in a plane

,
of the type p= r sinnw ,

and also curves on a sphere .
Recent studies along this line are due to Bodo Habenicht
E . W . Hyde H . Wieleitner
The leading eighteenth century historian of mathematics was Jean

Etienne M ontucla (1 725—1799)who published a Histoire des mathe
matiques , in two volumes , Paris , 1 758 . A second edition of these two
volumes appeared in 1799. A third volume , written by M ontucla ,

was partly printed when he died ; the rest of it was seen through the
press by the astronomer Joseph JerOme le Frangois de Lalande

( 1732 who prepared a fourth volume
,
mainly on the history of

astronomy .

4

Joseph Lou is Lagrange (1736 one of the greatest mathe
maticians of all times

,
was born at Turin -and died at Paris . He was

of French extraction . His father , who had charge of the Sardinian
1 H . S . Whi te in Bul l . Am. Math. Soc .

, Vol . 15 , 1909 , p . 33 1 .

2 L
’
Intermédiaire des mathématiciens , Vol . 2 2 , 19 1 5 , p . 241 .

3 G . Loria , Ebene Curven (F . Schiitte), I , 1910 , p . 79 .

4 For details on other mathematical historians, see S . Gunther
’
s chapter in

Cantor, op. cit.
, Vol . IV , 1908 , pp . 1

—
36 .
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military chest
,
was once wealthy

,
but lost all he had in speculation .

Lagrange considered this loss his good fortune
,
for otherwise he might

not have made mathematics the pursuit of his life . While at the
college in Turin his genius did not at once take its true bent . Cicero
and Virgil at first attracted him more than Archimedes and Newton .

He soon came to admire the geometry of the ancients
,
but the perusal

of a tract of E . Halley roused his enthusiasm for the analytical method ,
in the development of which he was destined to reap undying glory .

He now applied himself to mathematics
,
and in his seventeenth year

he became professor of mathematics in the royal military academy at
Turin . Without assistance or guidance he entered upon a course of
study which in two years placed him on a level with the greatest of
his contemporaries . With aid of his pupils he established a society
which subsequently developed into the Turin Academy . In the first
five volumes of its transactions appear most of his earlier papers .
At the age of nineteen he communicated to L . Euler a general method
of dealing with “ isoperimetrical problems

,
known now as the Cal

cuius of Variations . This commanded Euler ’s lively admiration , and
he courteously withh eld for a time from publication some researches
of his own on this subj ect

,
so that the youthful Lagrange might com

plete his investigations and claim the invention . Lagrange did quite
as much as Euler towards the creation of the Calculus of Variations .
As it came from Euler it lacked an analytic foundation

,
and this

Lagrange supplied . He separated the principles of this calculus from
geometric considerations by which his predecessor had derived them .

Euler had assumed as fixed the limits of the integral
,
i . e. the extrem

ities of the curve to be determined
,
but Lagrange removed this re

striction and allowed all co-ordinates of the curve to vary at the same
time . Euler introduced in 1 766 the name

“ calculus of variations ,
”

and did much to improve this science along the lines marked out by
Lagrange . Lagrange ’s investigations on the calculus of variations
were published in 176 2 , 1 771 , 1788 , 1 797 , 1806 .

Another subject engaging the attention of Lagrange at Turin was
the propagation of sound . In his papers on this subj ect in the M is
cel lanea Taurinensia

,
the young mathematician appears as the critic

of I . Newton
,
and the arbiter between Euler and D ’

Alembert . By
considering only the particles which are in a straight line , he reduced
the problem to the same partial diff erential equation that represents
the motions of vibrating strings .
Vibrating strings had been discussed by Brook Taylor , Johann
Bernoulli and his son Daniel , by D

’

Alembert and L . Euler . In solving
the partial differential equations

,
D

’
Alembert restricted himself to

functions which can be expanded by Taylor ’s series
,
while Euler

thought that no restriction was necessary
,
that they could be arbi

trary,
discontinuous . The problem was taken up with great skill by

Lagrange who introduced new points of view ,
but decided in favor of ,
Q
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Euler . Later
,
de Condorcet and P . S . Laplace stood on the side of

D
’

Alembert S ince in their judgment some restriction upon the arbi
trary functions was necessary . From the modern point of view ,

neither D ’
Alembert nor Euler was wholly in the right':D ’

Alembert
insisted upon the needless restriction to functions with a limi tless
number of derivatives

,
while Euler assumed that the diff erential and

integral calculus could be applied to any arbitrary function .

1

I t now appears that Daniel Bernoulli ’s claim that his solution was
a general one (a claim disputed by D

’
Alembert

, J . Lagrange and L .

Euler)was fully justified . The problem of vibrating strings stimu

lated the growth of the theory of expansions according to trigonometric
functions of multiples of the argument . H . Burkhardt has pointed
out that there was also another line of growth of this subj ect

,
namely

the growth in connection with the problem of perturbations
,
where

L . Euler started out with the development of the reciprocal distance
of two planets according to the cosine of multiples of the angle be
tween their radii vectoris .

By constant application during nine years
,
Lagrange

,
at the age

of twenty- S ix
,
stood at the summit of European fame . But his intense

studies had seriously weakened a constitution never robust
,
and though

his physicians induced him to take rest and exercise
,
his nervous

system never fully recovered its tone
,
and he was thenceforth subject

to fi ts of melancholy .

In 1 764 the French Academy proposed as the subject of a prize
the theory of the libration of the moon . I t demanded an explanation ,
on the principle of universal grav itation

,
why the moon always turns

,

with but slight variations
,
the same phase to the earth . Lagrange

secured the prize . This success encouraged the Academy to propose
for a prize the theory of the four satellites of Jupiter

,

—
a problem of

S ix bodies
,
more diffi cult than the one of three bodies previously

treated by A . C . Clairaut
,
D

’

Alembert
,
and L . Euler . Lagrange over

came the diffi culties by methods of approximation . Twenty-four
years afterwards this subj ect was carried further by P . S . Laplace.
Later astronomical investigations of Lagrange are on cometary per
turbations (1 778 and 1 78 and on Kepler ’s problem . His researches
on the problem of three bodies has been referred to previ ously .

Being anxious to make the personal acquaintance of leading mathe
maticians

,
Lagrange visited Paris

,
where he enjoyed the stimulating

delight of conversing with A . C . Clairaut
,
D

’

Alembert , de Condorcet ,
the Abbé Marie

,
and others . He had planned a visit to London , but

he fell dangerously ill after a dinner in Paris
,
and was compel led to

return to Turin . In 1 766 L . Euler left Berlin for S t . Petersburg , and
he pointed out Lagrange as the only man capable of filling the place .

1 For details see H . Burkhardt
’
s Entwicklungen nach osci ll irenden Funktionen

und In tegration der D ifi erentialgleichungen dcr mathematischen P hysik . Leipzig ,
1908 , p . 18 . This is an exhaustive and valuable history of thi s topic .
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self-evident . Other proofs of this were given by J . R . Argand
,
K . F .

Gauss
,
and A . L . Cauchy . In a note to the above work Lagrange uses

Fermat ’s theorem and certain suggestions Of Gauss in eff ecting a com
plete algebraic solution of any binomial equation .

In the Berlin M émoi res for the year 1 767 Lagrange contributed a
paper

, Sur la resolution des e
’

quations nume
’

riques . He explains the
separation of the real roots by substituting for x the terms of the
progression

,
0
,
D

,
2D

,
where D must be less than the least dif

ference between the roots . Lagrange suggested three ways of com
puting D:One way in 1 767 , another in 1 795 and a third in 1 798. The
first depends upon the equation of the squared differences of the roots
of the given equation . E . Waring before this had derived this im
portant equation

,
but in 1 767 Lagrange had not yet seen Waring

’s
writings . Lagrange finds equal roots by computing the highest com
mon factor between f (x)and f ’ (x). He proceeds to develop a new
mode of approximation

,
that by continued fractions . P . A . Cataldi

had used these fractions in extracting square roots . Lagrange enters
upon greater details in his Additions to his paper of 1 767 . Unlike
the older methods of approximation

,
Lagrange ’s has no cases of

failure . Cette méthode me laisse
,
ce me semble , rien adésirer ,

”yet ,
though theoretically perfect

,
i t yields the root in the form of a con

tinued fraction which is undesirable in practice .

While in Berlin Lagrange published several papers on the theory
of numbers . In 1 769 he gave a solution in integers of indeterminate
equations of the second degree

,
which resembles the Hindu cyclic

method ; he was the first to prove , in 1 77 1 ,
“Wilson ’s theorem

,

”enun
ciated by an Englishman , John Wilson , and first published by E .

Waring in his M edi tationes A lgebraicce; he investigated in 1 775 under
what conditions :t 2 and ziz 5 1 and :f: 3 hav ing been discussed by
L . Euler)are quadratic residues , or non- residues of odd prime num
bers , q; he proved in 1 770 Bachet de Méziriac

’

s theorem that every
integer is equal to the sum of four

,
or a less number

,
of squares . He

proved Fermat ’s theorem on xn+y
n=zfl

,
for the case n=4 , also Fer

mat ’s theorem that
,
if a2+b2= c2, then ab is not a square .

In his memoir on Pyramids
,
1 773 , Lagrange made considerable use

of determinants of the third order
,
and demonstrated that the square

of a determinant is itself a determinant . He never
,
however

,
dealt

explicitly and directly with determinants ; he siInply obtained acci
dentally identities which are now recognized as relations between
determinants .
Lagrange wrote much on differential equations . Though the sub
ject of contemplation by the greatest mathematicians (L . Euler

,

D
’
Alembert

,
A . C . Clairaut

, J . Lagrange , P . S . Laplace), yet more
than other branches of mathematics do they resist the systematic
application of fixed methods and principl es . The subject of S ingular
solutions , which had been taken up by P . S . Laplace in 1 771 and 1 774,
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was investigated by Lagrange who gave the derivation of a S ingular
solution from the general solution as well as from the differential
equation itself . Lagrange brought to view the relation of singular
solutions to envelopes . Nevertheless , he failed to remove all mystery
surrounding this subtle subj ect. An inconsistency in his theorems
caused about 1870 a complete reconsideration of the entire theory of
singular solutions . Lagrange ’s treatment is given in his Calcul des
Fonctions , Lessons 14—17 . He generalized Euler ’s researches on total
differential equations of two variables , and of the ninth order ; he
gave a solution of partial differential equations of the first order (Berlin
M emoirs , 1 772 and and spoke of their singular solutions

, ex

tending their solution in M emoirs of 1 779 and 1785 to equations of
any number of variables . The M emoi rs of 1 772 and 1774 were refined
in certain points by a young mathematician Paul Charpit —1784)
whose method of solution was first printed in Lacroix’s Traité du
calcu l

,
2 . Ed.

,
Paris , 18 14 , T . II , p . 548 . The discussion on partial

differential equations of the second order , carried on by D
’

Alembert ,
Euler

,
and Lagrange

,
has already been referred to in our a ccoun t of

D
’

Alembert.

Wh ile in Berlin
,
Lagrange wrote the M écanique Analytique , the

greatest of his works (Paris , From the principle of vi rtual
velocities he deduced

,
with aid of the calculus of variations

,
the whole

system of mechanics so elegantly and harmoniously that it may fitly
be called

,
in Sir William Rowan Hamil ton ’s words

,

“ a kind of scien
tific poem.

”It is a most consummate example of analytic generality.

Geometrical figures are nowhere allowed .

“On ne trouvera point de
figures dans cet ouvrage”(Preface). The two divisions of mechanics
—statics and dynamics—are in the first four sections of each carried
out analogously , and each is prefaced by a historic Sketch of principles .
Lagrange formulated the principle of least action . In their original
form, the equations of motion involve the co-ordinates x

, y,
‘

z, of the
diff erent particles m or dm of the system. But x, y, z, are in general
not independent , and Lagrange introduced in place of them any
variables 5, Ill , cf), whatever , determining the position of the point at
the time . These “ generalized co-ordinates”may be taken to be inde
pendent . The equations of motion may now assume the form

d dT dT

di (75
7
—
8?

“
L P

or when E’
, p, are the partial differential coefli cients with

respect to f , p, of one and the same function V, then the form

d dT dT dV

dt dé
' Eff
—
“
L

E

The latter is par excel lence the Lagrangian form of the equations of
motion. With Lagrange originated the remark that mechanics may
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be regarded as a geometry of four dimensions . To him falls the honor
of the introduction of the potential into dynamics . Lagrange was
anxious to have his M écaniqu e Analytique published in Paris . The
work was ready for print in 1 786 , but not till 1 788 could he find a
publisher , and then only with the condition that after a few years
he would purchase all the unsold copies . The work was edited by
A . M . Legendre .

After the death of Frederick the Great
,
men o f science were no

longer respected in Germany
,
and Lagrange accepted an inv itation

of Louis XVI to migrate to Paris . The French queen treated him
with regard , and lodging was procured for him in the Louvre . But
he was seized with a long attack of melancholy which destroyed his
taste for mathematics . For two years his printed copy of the Me
canique, fresh from the press ,—the work of a quarter of a century ,
lay unopened on his desk . Through A . L . Lavoisier he became in
terested in chemistry , which he found

“ as easy as algebra .

”The
disastrous crisis of the French Revolution aroused him again to ac

tivity. About this time the young and accomplished daughter of the
astronomer P . C . Lemonnier took compassion on the sad

,
lonely

Lagrange
,
and insisted upon marrying him . Her devotion to him

constituted the one tie to life which at the approach of death he found
it hard to break .

He was made one of the commissioners to establish weights and
measures having units founded on nature . Lagrange strongly favored
the decimal subdiv ision . Such was the moderation of Lagrange ’s
character

,
and such the universal respect for him

,
that he was retained

as president of the commission on weights and measures even after
it had been purified by the Jacobins by striking out the names of A . L .

Lavoisier
,
P . S . Laplace

,
and others . Lagrange took alarm at the

fate of Lavoisier , and planned to return to Berlin , but at the estab
l ishment of the Ecole Normale in 1 795 in Paris , he was induced to
accept a professorship . Scarcely had he time to elucidate the founda
tions of arithm etic and algebra to young pupils

,
when the school was

closed . His additions to the algebra of L . Euler were prepared at
this time . In 1 797 the EcoleP olytechnique was founded , with Lagrange
as one of the professors . The earliest triumph of this institution was
the restoration of Lagrange to analysis . His mathematical activity
burst out anew. He brought forth the Thearie desfonctions analytiques

Legons sur le calcu l des fonctions , a treatise on the same lines
as the preceding and the Resolution des equations numeriques

which includes papers published much earlier ; his memoir ,
Nouvel le méthode pour résoudre les equations l itte

’

rales par le moyen des

dill
se

’

ri es
,
publi shed 1 770 , gives the notation for

dx’
which occurs

however much earlier in a part of a memoir by Frangois Daviet de
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derivatives
,
as it was call ed

,
has been generally abandoned . He

introduced a notation of hi s own , but it was inconvenient , and was
abandoned by him in the second edition of his Me

’

canique, in which
he used infinitesimals. The primary object of the The'arie desfonctions
was not attained

,
but its secondary results were far-reaching . I t

was a purely abstract mode of regarding functions
,
apart from geo

metrical or mechanical considerations .
.

In the further development
of higher analysis a function became the leading idea

,
and Lagrange ’s

work may be regarded as the starting-point of the theory of functions
as developed by A . L . Cauchy

,
G . F . B . Riemann

,
K . Weierstrass

,

and others .
The first to doubt the rigor of Lagrange ’s exposition of the calculus

were Abel Burj a (1 752—1816)of Berlin , the two Polish mathematicians
H . Wronski and J . B . S niadecki (1 756 and the Bohemian
B . Bolzano, who were all men of limited acquaintance and influence .

I t remained for A . L . Cauchy really to in itiate the period of greater
rIgor .

Instructive is C . E . P icard ’s characterization of the time of La
grange:“

In all this period
,
especial ly in the second half of the eight

eenth century , what strikes us with adm iration and is also somewhat
confusing

,
is the extreme importance of the applications realized , ,

while the pure theory appeared still so ill assured . One perceives it
when certain questions are raised like the degree of arbitrariness in
the integral of vibrating chords

,
whi ch gives place to an interminable

and inconclusive discussion . Lagrange appreciated these insuffi ciencies
when he published his theory Of analytic functions

,
where he strove

to give a precise foundation to analysis . One cannot too much
admire the marvellous presentiment he had of the rOle which the

functions
,
which with him we call analytic

,
were to play ; but we may

confess that we stand astonished before the demonstration he be
l ieved to have given of the possibility of the development of a function
in Taylor ’s series .”1
In the treatment of infinite series Lagrange displayed in his earlier

writings that laxity common to all mathematicians of his time
,
ex

cepting Nicolaus Bernoulli II and D
’

Alembert. But his later articles
mark the beginning of a period of greater rigor . Thus

,
in the Calcul des

fonctions he gives his theorem on the limits of Taylor
’s theorem. La

grange ’s mathematical researches extended to subj ects which have
not been mentioned here—such as probabilities

,
finite differences ,

ascending continued fractions
,
elliptic integrals . Everywhere his

wonderful powers of generalization and abstraction are made manifest .
In that respect he stood without a peer

,
but his great contemporary

,

P . S . Laplace , surpassed him in practical sagacity. Lagrange was
content to leave the application of his general results to others

,
and

some of the most important researches of Laplace (particularly those
1 Congress of Arts and S cience, St . Louis, 1904, Vol . I , p . 503 .
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on the velocity of sound and on the secular acceleration of the moon)
are impl icitly contained in Lagrange ’s works .
Lagrange was an extremely modest man , eager to avoid contro

versy, and even timid in conversation . He spoke in tones of doubt
,

and his first words generally were
,

“

Je ne sais pas .
”He would never

allow his portrait to be taken
,
and the only ones that were secured

were sketched without his knowledge by persons attending the meet
ings of the Institute.
P ierre S imon Laplace (1749—1827)was born at Beaumont-en-Auge

in Normandy . Very little is known of his early life . When at the
height of his fame he was loath to speak of his boyhood

,
spent in

poverty . His father was a small farmer . Some rich neighbors who
recognized the boy ’s talent assisted him in securing an education .

As an extern he attended the military school in Beaumont
,
where at

an early age he became teacher of mathematics . At eighteen he went
to Paris

,
armed with letters of recommendation to D ’

Alembert
,
who

was then at the height of his fame . The letters remained unnoticed ,
but young Laplace

,
undaunted

,
wrote the great geometer a letter on

the principles of mechanics
,
which brought the following enthusiastic

response : You needed no introduction ; you have recommended your
self ; my support is your due.

”
D

’

Alembert secured him a position
at theEcoleM i litaire of Paris as professor ofmathematics . His future
was now assured , and he entered upon those profound researches
which brought him the title of the Newton of France .

”With
wonderful mastery of analysis

,
Laplace

,
attacked the pending problems

in the application of the law of gravitation .to celestial motions . Dur
ing the succeeding fifteen years appeared most of his original contri
butions to astronomy . His career was one of almost uninterrupted
prosperity. In 1 784 he succeeded E . Bézout as examiner to the royal
artillery

,
and the following year he became member of the Academy

of Sciences . He was made president of the Bureau of Longitude ; he
aided in the introduction of the decimal system, and taught , wi th
J . Lagrange , mathematics in the Ecole Normate. When , during the
Revolution

,
there arose a cry for the reform of everything , even of

the calendar
,
Laplace suggested the adoption of an era beginning with

the year 1 250 ,
when

, according
'

to his calculation , the major axis of
the earth ’s orbit had been perpendicular to the equinoctial line . The
year was to begin with the vernal equinox

,
and the zero meridian was

to be located east of Paris by degrees of the centesimal division
of the quadrant

,
for by this meridian the beginning of his proposed

era fell at m idnight . But the revolutionists rej ec ted this scheme , and
made the start of the new era coincide with the beginning of the
glorious French Republic .1

Laplace was justly admired throughout Europe as a most sagacious

1 Rudolf Wolf
, Geschichte der Aslronomie, Munchen ,

1877 , p . 334 .
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and profound scientist , but , unhappily for his reputation , he strove
not only after greatness in science

,
but also after political honors .

The poli tical career of this eminent scientist was stained by servili ty
and suppleness . After the 18th of Brumaire , the day when Napoleon
was made emperor

,
Laplace ’s ardor for republi can principles suddenly

gave way to a great devotion to the emperor . Napoleon rewarded
this devotion by giving him the post of minister of the interior , but
dismissed him after six months for incapacity. Said Napoleon ,

“ La
place ne saisissait aucune question sous son véritable point de vue ; il
cherchait des subtilités partout

,
n

’
avait que des idées problematiques ,

et portait enfin l ’esprit des infiniment petits jusque dans l ’administra
tion .

”Desirous to retain his allegiance
,
Napoleon elevated him to

the Senate and bestowed various other honors upon him . Neverthe
less

,
he cheerfully gave his voice in 1814 to the dethronement of his

patron and hastened to tender his services to the Bourbons , thereby
earning the title of marquis . This pettiness of his character is seen
in his writings . The first edition of the Systeme du monde was dedi
cated to the Council of Five Hundred . To the third volume of the
M e

’

canique Celeste is prefixed a note that of all the truths contained
in the book

,
the one most precious to the author was the declaration he

thus made of gratitude and devotion to the peace-maker of Europe .

After.this outburst of affection , we are surprised to find in the editions
of the The’ arie analytique des probabi l ités , which appeared after the
Restoration

,
that the original dedication to the emperor is suppressed.

Though supple and servile in politics
,
it must be said that in religion

and science Laplace never misrepresented or concealed his own con
victions however distasteful they might be to others . In mathematics
and astronomy his genius shines with a lustre excelled by few . Three
great works did he give to the scientific world

,

—theMécanique Celeste,
the Exposi tion du systeme du monde, and the Theorie analytique des

probabi l ite
’

s . Besides these he contributed important memoirs to the
French Academy .

We first pass in brief review his astronomical researches . In 1 773
he brought out a paper in which he proved that the mean motions
or mean distances of planets are invariable or merely subj ect to small
periodic changes . This was the first and most important step in his
attempt to establish the stabili ty of the solar system .

1 To I . Newton
and also to L . Euler it had seemed doubtful whether forces so numer
ous

,
so variable in position

,
so diff erent in intensity

,
as those in the

solar system
,
could be capable of maintaining permanently a condition

of equilibrium . Newton was of the opinion that a powerful hand
must intervene from time to time to repair the derangements occa
sioned by the mutual action of the diff erent bodies . This paper was
the beginning of a series of profound researches by J . Lagrange and

1 D . F . J. Arago, Eulogy on Laplace ,
”
translated by B . Powel l , Smithsonian

Report, 1874.
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of celestial motions
,

—treating particularly of motions of comets , of
our moon

,
and of other satellites . The fif th volume opens with a

brief history of celestial mechanics
,
and then gives in appendices the

results of the author ’s later researches . The Me
’

canique Céleste was
such a master-piece

,
and so complete

,
that Laplace

’s immediate suc
cessors were able to add comparatively li ttle . The general part of
the work was translated into German by Johann Karl Burkhardt

(1 773 and appeared in Berlin
, 1800

—
180 2 . Nathaniel B owditch

(1773—1838)brought out an edition in Engli sh , with an extensive com
mentary , in Boston , 1829

—
1839. The Mécanique Celeste is not easy

reading. The diffi culties lie
,
as a rule

,
not so much in the subject

itself as in the want of verbal explanation . A complicated chain of
reasoning receives often no explanation whatever . J . B . Biot , who
assisted Laplace in revising the work for the press

,
tells that he once

asked Laplace some explanation of a passage in the book which had
been written not long before

,
and that Laplace Spent an hour endeavor

ing to recover the reasoning which had been carelessly suppressed
, wi th the remark ,

“
Il est facile de voir.”Notwithstanding the impor

tant researches in the work
,
which are due to Laplace himself , i t

naturally contains a great deal that is drawn from his predecessors .
It is

,
in fact

,
the organized result of a century of patient toil . But

Laplace frequently neglects properly to acknowledge the source from
which he draws

,
and lets the reader infer that theorems and formula:

due to a predecessor are really his own .

We are told that when Laplace presented Napoleon with a copy
of the M écanique Celeste, the latter made the remark ,

“M . Laplace ,
they tell me you have written this large book on the system of the
universe

,
and have never even mentioned its Creator .”Laplace is

said to have replied bluntly
,

“

Je n
’avais pas besoin de cette hy

pothése
—la .

”This assertion
,
taken literally

,
is impious

,
but may it

not have been intended to convey a meaning somewhat diff erent
from its literal one? I . Newton was not able to explain by his law of
gravitation all questions arising in the mechanics of the heavens .
Thus

,
being unable to show that the solar system was stable , and

suspecting in fact that it was unstable
,
Newton expressed the opinion

that the special intervention
,
from time to time

,
of a powerful hand

was necessary to preserve order . Now Laplace thought that he had
proved by the law of grav itation that the solar system is stable

,
and

in that sense may be said to have felt no necessity for reference to the
Almighty .

We now proceed to researches which belong more properly to pure
mathematics . Of these the most conspicuous are on the theory of
probability. Laplace has done more towards advancing this subject
than any one other investigator . He published a series of papers

,

the main results of which were collected in his The’ orie analytique des

probabilite
’

s
,
18 1 2 . The third edition (1820)consists of an introduction
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and two books . The introduction was published separately under
the title , Essai phi losophique sur les probabi l ités , and -is an admirable
and masterly exposition without the aid of analytical formula of the
principles and applications of the science . The fir st book contains
the theory of generating functions

,
which are appli ed , in the second

book
,
to the theory of probability. Laplace gives in hi s work on

probability
'

his method of approximation to the values of definite
integrals . The solution of linear differential equations was reduced
by him to definite integrals . The use of partial difference equations
was introduced into the study of probabili ty by him about the same
time as by J. Lagrange . One of the most important parts of the
work is the application of probability to the method of least squares ,
which is shown to give the most probable as well as the most convem
ient results .
Laplace ’s work on probabili ty is very diffi cult reading , particularly
the part on the method of least squares . The analytical processes
are by no means clearly established or free from error . “N0 one was
more sure of giving the result of analytical processes correctly , and
no one ever took so little care to point out the various smal l con
siderations on which correctness depends”(De M organ). Laplace ’s
comprehensive work contains all of his own researches and much
derived from Other writers . He gives masterly expositions of the
Problem of Points , of Jakob Bernoulli

’s theorem
,
of the problems taken

from Bayes and Count de Buff on . In this work as in his M écanique
Celeste, Laplace is not in the habit of giving due credit to writers that
preceded him. A . De Morgan 1 says of Laplace: There is enough
originating from himself to make any reader wonder that one who
could so well afford to state what he had taken from others , should
have set an example so dangerous to his own claims .”
Of Laplace ’s papers on the attraction of ell ipsoids

,
the most im

portant is the one published in 1 785 , and to a great extent reprinted
in the third volume of the M écanique Celeste. I t gives an exhaustive
treatment of the general problem of attraction of any ellipsoid upon
a particle S ituated outside or upon its surface . Spherical harmonics ,
or the so-called Laplace ’s coeffi cients

,

”constitute a powerful analytic
engine in the theory of attraction

,
in electricity

, and magnetism . The
theory of spherical harmonics for two dimensions had been previously
given by A . M . Legendre . Laplace failed to make due acknow ledg
ment of this

,
and there existed

,
in consequence

,
between the two

great men ,

“ a feeling more than coldness .”The potential function ,
V

, is much used by Laplace , and is Shown by him to satisfy the partial
5
2V 5

2V a
2V

differential equation
hat
—
2 1

1

1737 a?
0 . This is known as Laplace ’s

1 A . De Morgan , An Essay on P robabilities, London , 1838 (date of Preface)
p . II of Appendix I .
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equation , and was first given by him in the more complicated form
whi ch it assumes in polar co-ordinates . The notion of potential was ,
however , not introduced into analysis by Laplace . The honor of
that achievement belongs to J . Lagrange .
Regarding Laplace

’s equation
,
P . E . P icard said in 1904: Few

equations have been the object of so many works as this celebrated
equation . The conditions at the limits may be of divers forms . The
simplest case is that of the calorific equilibrium of a body of which
we maintain the elements of the surface at given temperatures ; from
the physical point of view ,

i t may be regarded as evident that the
temperature

,
continuous within the interior since no source of heat

is there
,
is determined when it is given at the surface . A more general

case is that where the temperature may be given on one portion ,
while there is radiation on another portion . These questions
have greatly contributed to the orientation of the theory of partial
differential equations . They have called attention to types of deter
minations of integrals , which would not have presented themselves
in remaining at a point of view purely abstract .”1
Among the minor discoveries of Laplace are his method of solving
equations of the second

,
third

,
and fourth degrees

,
his memoir on

singular solutions of differential equations
,
his researches in finite

differences and in determinants
,
the establishment of the expansion

theorem in determinants which had been previously given by A . T .

Vandermonde for a special case , the determination of the complete
integral of the linear differential equation of the second order . In
the Mécanique Céleste he made a generalization of Lagrange

’s theorem
on the development of functions in series known as Laplace ’s theorem.

Laplace ’s investigations in physics were quite extensive. We men
tion here his correction of Newton ’s formula on the velocity of sound
in gases by taking into account the changes of elasticity due to the
heat Of compression and cold of rarefact ion ; his researches on the
theory of tides ; his mathematical theory of capillarity ; his explanation
of astronomical refraction ; his formula for measuring heights by the
barometer .
Laplace ’s writings stand out in bold contrast to those of J . Lagrange
in their lack of elegance and symmetry . Laplace looked upon mathe
matics as the tool for the solution of physical problems . The true
result being once reached

,
he devoted little time to explaining the

various steps of his analysis
,
or in polishing his work . The last years

of his life were spent mostly at Arcueil in peaceful retirement on a
country-place

,
where he pursued his studies with his usual vigor

until his death . He was a great admirer of L . Euler , and would often
say

,

“Lisez Euler
,
lisez Euler

,
c ’est notre mai tre a tous .

The latter part of the eighteenth century brought forth researches
on the graphic representation of imaginaries , all of which remained

1 Congress of Arts and S cience, S t . Louis, 1904, Vol . I , p . 506 .
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the Academy of Sciences on March 19, 1 791 , by a committee con
sisting of J . C . Borda , J . Lagrange , P . S . Laplace , G . Monge

,
de Con

dorcet . This subdivision is found in the Francois Cal let (1 744—1798)
logarithm ic tables of 1 795 , and other tables published in France and
Germany . Nevertheless the decimal subdivision of the quadrant did
not then prevail .1 The commission composed of Borda

,
Lagrange

,

Laplace
,
M onge and Condorcet decided upon the ten-mill ionth part

of the earth ’s quadrant as the primitive unit of length . The length
of the second ’s pendulum had been under consideration

,
but was

finally rejected
,
because it rested upon two dissimilar elements

,

gravity and time . In 1799 the measurement of the earth
’s quadrant

was completed and the meter established as the natural unit of length .

Al exandre-Theophi le Vandermonde (1 735—1796)studied music
during his youth in Paris and advocated the theory that all art

'

rested
upon one general law ,

through which any one could become a com

poser with the aid of mathematics . He was the first to give a con
nected and logical exposition of the theory of determinants

,
and may,

therefore , almost be regarded as the founder of that theory. He and J.

Lagrange originated the method of combinations in solving equations .
Adrien Marie Legendre (1 752—1833)was educated at the Col lege

Mazarin in Paris , where he began the study of mathematics under
Abbé Joseph Francois Marie (1 738 His mathematical genius
secured for him the position of professor of mathematics at the mili
tary school of Paris . While there he prepared an essay on the curve
described by projectiles thrown into resisting media (ballistic curve),
which captured a prize off ered by the Royal Academy of Berlin . In
1780 he resigned his position in order to reserve more time for the
study of higher mathematics . He was then made member of several
public commissions . In 1 795 he was elected professor at the Normal
School and later was appointed to some minor government positions .
Owing to his timidity and to Laplace ’s unfriendliness toward him, but
few important public offices commensurate with his abili ty were
tendered to him.

As an analyst , second only to P . S . Laplace and J . Lagrange , Legen
dre enriched mathematics by important contributions

,
mainly on

elliptic integrals
,
theory of numbers

,
attraction of ellipsoids

,
and least

squares . The most important of Legendre ’s works is his Fonctions
el l iptiques , issued in two volumes in 1825 and 1826 . He took up the
subj ect where L . Euler

,
John Landen

,
and J . Lagrange had left it ,

and for forty years was the only one to cultivate this new branch of
analysis

,
until at last C . G . J . Jacobi and N . H . Abel stepped in with

adm irable new discoveries .2 Legendre imparted to the subj ect that
1 For details, see R . Mehmke in J ahresb. d. d. Math. Vereinigung , Leipzig , 1900 ,

pp . 138
—
163 .

2 M . Elie de Beaumont
,
M emoir of Legendre . Translated by C . A. Alexander,

Smithsonian Report, 186 7 .
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connection and arrangement which belongs to an independent science .

Starting with an integral depending upon the square root of a poly
nomial of the fourth degree in x , he Showed that such integrals can be
brought back to three canonical forms , designated by F and

He also undertook the prodigious task of calculating tables of
arcs of the ellipse for different degrees of amplitude and eccentricity

,

which supply the means of integrating a large number of differentials .
An earlier publication which contained part of his researches on
elliptic functions was his Calcul integral in three volumes ( 18 1 1 , 18 16 ,

in which he treats also at length of the two classes of definite
integrals named by him Eulerian . He tabulated the values of log
I
‘

(p)for values of p between 1 and 2 .

One of the earliest subj ects of research was the attraction of sphe
roids

,
which suggested to Legendre the function P", named after him.

His memoir was presented to the Academy of Sciences in 1 783 . The
researches of C . M aclaurin and J . Lagrange suppose the point at
tracted by a spheroid to be at the surface or within the spheroid , but
Legendre showed that in order to determine the attraction of a
spheroid on any external point i t suffices to cause the surface of another
spheroid described upon the same foci to pass through that point .
Other memoirs on el lipsoids appeared later .
In a paper of 1 788 Legendre published criteria for distinguishing

between maxima and minima in the calculus of variations
,
which were

shown
‘

by J . Lagrange in 1 797 to be insufli cient ; this matter was set
right by C . G . J . Jacobi in 1836 .

The two household gods to which Legendre sacrificed with ever
renewed pleasure in the silence of his closet were the elliptic functions
and the theory of numbers . His researches on the latter subject ,
together with the numerous scattered fragments on the theory of
numbers due to his predecessors in this line

,
were arranged as far

as possible into a systematic whole
,
and published in two large quarto

volumes
,
entitled Thearie des nombres

,
1830 . Before the publication

of this work Legendre had issued at divers times preliminary articles .
Its crowning pinnacle is the theorem of quadratic reciprocity , pre
viously indistinctly given by L . Euler without proof

,
but for the first

time clearly enunciated and partly proved by Legendre .

1

While acting as one of the commissioners to connect Greenwich
and Paris geodetically , Legendre calculated the geodetic triangles in
France . This furnished the occasion of establishing formula and

theorems on geodesics
,
on the treatment of the Spherical triangle as

if it were a plane triangle , by applying certain corrections to the
angles

,
and on the method of least squares

,
published for the first

time by him without demonstration in 1806 .

1 O . Baumgart, Ueber aas Quadratische Reciproci lalsgcsetz, Leipzig , 1885 .
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Legendre wrote an Elements de Géome’ trie, 1 794 , which enjoyed
great popularity , being generally adopted on the Continent and in
the United States as a substitute for Euclid . This great modern rival
of Euclid passed through numerous editions ; some containing the
elements of trigonometry and a proof of the irrationality of 71”and 712

With prophetic vision Legendre remarks:“ Il est meme probable que
le nombre 7r .n ’est pasmeme compris dans les irrationelles algébriques ,
c ’est-a—di re qu ’il ne peut pas etre la racine ’dune équation algébrique
d ’un nombre fini de termes dont les coefi cients sont rationels.

”
Much attention was given by Legendre to the subj ect of parallel lines .
In the earlier editions of the Elements

,
he made direct appeal to the

senses for the correctness of the “ parallel-axiom.

”He then attempted
to demonstrate that “ axiom ,

”but his proofs did not satisfy even
himself . In Vol . XII of the M emoirs of the Institute is a paper by
Legendre

,
containing his last attempt at a solution of the problem.

Assuming space to be infinite , he proved satisfactorily that i t is im
possible for the sum of the three angles of a triangle to exceed two
right angles ; and that if there be any triangle the sum of whose angles
is two right angles

,
then the same must be true of all triangles . But

in the next step , to Show that this sum cannot be less than two right
angles

,
his demonstration necessarily failed . If it could be granted

that the sum of the three angles is always equal to two right angles
,

then the theory of parallels could be strictly deduced .

Another author who made contributions to elementary geometry
was the Italian Lorenzo Mascheroni (1 750 He published his
Geometria del compasso (Pavia , 1797 , Palermo , 1903 ;

1 French editions
by A . M . Carette appeared in 1 798 and 18 25 , a German edition by
J . P . Gruson in All constructions are made with a pair of
compasses

,
but without restriction to a fixed radius . He proved that

all constructions possible with ruler and compasses are possible with
compasses alone . I t was J . V . Poncelet who proved in 182 2 that all
such construction are possible with ruler alone

,
if we are given a fixed

circle with its centre in the plane of construction ; A . Adler of Vienna
proved in 1890 that these constructions are possible with ruler alone
whose edges are parallel , or whose edges converge in a point. M asch
eroni claimed that constructions with compasses are more accurate
than those with a ruler . Napoleon proposed to the French mathe
maticians the problem

,
to divide the circumference of a circle into

four equal parts by the compasses only . Mascheroni does this by
applying the radius three times to the circumference ; he obtains the
arcs A B

,
B C

,
C D ; then A D is -

a diameter ; the rest is obvious .
E . W . Hobson (Math. Gazette, March 1

,
1913)and others have shown

that all Euclidean constructions can be carried out by the use of
compasses alone .

1 A l ist of Mascheroni s w riting s is g iven in L
’
Intermédiaire des mathématiciens ,

Vo l . 19, 191 2 , p . 92 .
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tions are formed by giving each fraction a negative coeffi cient in an
equation for its numerator

,
taken positively

,
and for its denominator

the sum of the positive coeffi cients preceding it
,
if moreover unity is

added to each fraction thus formed
,
then the largest number thus

obtainable is larger than any root of the equation . In 182 2 A . A .

Vene , a French ofli cer of engineers , Showed:If P is the largest negative
coefli cient

,
and if S be the greatest coeffi cient among the positive

terms which precede the first negative term
,
then will P + S+ I be a

superior limi t .
Fourier took a prominent part at his home in promoting the Revo

lution . Under the French Revolution the arts and sciences seemed for
a time to flourish . The reformation of the weights and measures was
planned with grandeur of conception . The Normal School was
created in 1 795 , of which Fourier became at first pupil , then lecturer.
His brilliant success secured him a chair in the Polytechnic School ,
the duties of which he afterwards quitted

,
along with G . M onge and

C . L . Berthollet
,
to accompany Napoleon on his campaign to Egypt.

Napoleon founded the Institute of Egypt
,
of which J . Fourier became

secretary . In Egypt he engaged not only in scientifi c work , but dis
charged important political functions ; After his return to France he
held for fourteen years the prefecture of Grenoble . During this
period he carried on his. elaborate investigations on the propagation of
heat in solid bodies

,
published in 182 2 in his work entitled La Theorie

Analytique de la Chaleur . This work marks an epoch in the history of
both pure and applied mathematics . I t is the source of all modern
methods in mathematical physics involv ing the integration of partial
differential equations in problem

s
where the boundary values are

fixed (
“ boundary-value problems ’ Problems of this type involve

L . Euler ’s second definition of a function”in which the relation is
not necessarily capable of being expressed analytically . This concept
of a function greatly influenced P . G . L . Dirichlet . The gem of
Fourier ’s -great book is “ Fourier ’s series . By this research a long
controversy was brought to a close

,
and the fact recognized that any

arbitrary function (i . e. any graphically given function)of a real
variable can be represented by a trigonometric series . The first
announcement of this great discovery was made by Fourier in 1807 ,

n =a)

before the French Academy. The trigonometric series 2 (a,, sin nx+

bn cos nx)represents the function qb(x)for every value of x, if the

coefficients an= <p(x)S in nxdx
,
and b7, be equal to a similar in

tegral . The weak point in Fourier
’

s analysis lies in his failure to
prove generally that the trigonometric series actually converges to
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the value of the function . William Thomson (later Lord Kelvin)
says that on May 1 , 1840 (when he was only sixteen), “ I took Fourier
out of the University Library ; and in a fortnight I had mastered it
gone righ t through it .”Kelvin ’s -whole career was influenced by
Fourier’s work on heat , of which , he said ,

“ i t is diffi cult to say whether
their uniquely original quality , or their transcendant interes t , or their
perennially important instructiveness for physical science , is most
to be praised .

”1 Clerk Maxwell pronounced it a great mathematical
poem. In 1827 Fourier succeeded P . S . Laplace as president of the
council of the Polytechnic School .
About the time of Budan and Fourier

,
important devices were

invented in I taly and England for the solution of numerical equations .
The Italian scientific society in 180 2 offered a gold medal for improve
ments in the solution of such equations ; i t was awarded in 1804 to
Paolo Rufli ni . With aid of the calculus he develops th e theory of
transforming one equation into another whose roots are all diminished
by a certain constant .2 Then follows the mechanism for the practical
computer , and here Ruffini has a device which is simpler than Horner

’s
scheme of 18 19 and practically identical with what is now known as
Horner ’s procedure . Horner had no knowledge of Ruffini ’s memoir.
Nor did either Horner or Rufli ni know that their method had been
given by the Chinese as early as the thirteenth century . Horner ’s
first paper was read before the Royal Society

,
July 1 , 18 19 , and pub

l ished in the Phi losophical Transactions for 18 19. Horner uses L . F . A .

ArbogaSt
’

s derivatives . The modern reader is surprised to find that
Horner ’s exposition involves very intricate reasoning which is in
marked contrast with the S imple and elementary explanations found
in modern texts . Perhaps this was fortunate ; a simpler treatment
might have prevented publication in the Philosophical Transactions .
As it was

,
much demur was made to the insertion of the paper. “The

elementary character of the subject
,

”said T . S . Davies ,
“was the

professed objection ; his recondite mode of treating it was the professed
passport for its admission .

”A second article of Homer on his method
was refused publication in the Philosophical Transactions , and ap

peared in 1765 in the Mathematician
,
after the death of Hom er ; a

third article was printed in 1830 . Both Homer and Ruffini explained
their methods at first by higher analysis and later by elementary
algebra ; both offered their methods as substitutes for the old process
of root-extraction of numbers . Ruflini

’

s paper was neglected and
forgotten . Horner was fortunate in finding two influential champions
of his method—John Radford Young (1 799—1885)of Belfast and A .

De M organ . The Ruffin i-Horner process _has been used widely in
England and the United States

,
less widely in Germany , Austria and

1 S . P . Thompson Life of Wi ll iam Thomson ,
London ,

19 10 , pp . 14 , 689 .

2 See F. Cajori , Horner
’

smethod of approximation anticipated byRuffini , B ul l .

Am. Math. S oc. 2d S .
, Vol . 17 , 191 1 , pp . 409

—
414 .
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Italy , and not at all in France . In France the Newton-Raphson
method has held almost undisputed sway .

1

Before proceeding to the origin of modern geometry we shall speak
briefly of the introduction of higher analysis into Great B ritain . This
took place during the first quarter of the last century . The British
began to deplore the very small progress that science was making in
England as compared with its racing progress on the Continent . The
first Englishman to urge the study of continental writers was Robert
Woodhouse (1 773

—
1827)of Caius College , Cambridge . In 18 13 the

“Analytical Society”was formed at Cambridge . This was a smal l
club established by George Peacock

,
John Herschel

,
Charles Babbage

,

and a few other Cambridge students
,
to promote as it was humorously

expressed by Babbage
,
the principles of pure D-ism

,

”that is the
Leibnizian notation in the calculus against those of dot—age

,
or

of the Newtonian notation . This struggle ended in the introduction

into Cambridge of the notation to the exclusion of the fluxional

notation y . This was a great step in advance
,
not on acco

’

unt of any
great superiority of the Leibnizian over the Newtonian notation , but
because the adoption of the former opened up to English students
the vast storehouses of continental discoveries . Sir William Thom
son

,
P . G . Tait

,
and some other modern writers find it frequently con

venient to use both notations . Herschel
,
Peacock

,
and Babbage

translated
,
in 18 16

,
from the French

,
S . F . Lacroix ’s briefer treatise

on the differential and integral calculus
,
and added in 1820 two

volumes of examples . Lacroix ’s larger work
,
the Tra'i le’ du calcu l

difiérentiel et integral , first contained the term
“ differential coeffi cient”

and definitions of “ definite”and indefinite integrals . I t was one
of the best and most extensive works on the calculus of that time .

Of the three founders of the “Analytical Society
,

”
Peacock afterwards

did most work in pure mathematics . Babbage became famous for
his invention of a calculating engine superior to Pascal ’s . It was
never finished

,
owing to a m isunderstanding with the government ,

and a consequent failure to secure funds . John Herschel , the eminent
astronomer

,
displayed his mastery over higher analysis in memoirs

communicated to the Royal Society on new appl ications of mathe
matical analysis

,
and in articles contributed to cyclopa dias on light ,

on meteorology
,
and on the history of mathematics . In the Philo

sophical Transactions of 18 13 he introduced the notation sin
‘ 1
x

tan
—1
x
,

for arcsin x
,
arctan x

,
He wrote also log

2
x
,
cos

2
x
,

for log (log x), cos (cos x), but in this notation he was anticipated
by Heinrich Burmann -

18 1 7)of M annheim , a partisan of the com
binatory analysis of C . F . Hindenburg in Germany .

1 For references and further detail , see Colorado College Publ ication ,
General Series
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undisputed supremacy . It was reserved for the genius of G . Monge
to bring synthetic geometry in the foreground

,
and to open up new

avenues of progress . His Géométrie descriptive marks the beginning
of a wonderful development of modern geometry.

Of the two leading problems of descriptive geometry
,
the one—to

represent by drawings geometrical magnitudes—was brought to a
high degree of perfection before the time of M onge ; the other—to
solve problems on figures in space by constructions in a plane—had
received considerable attention before his time . His most noteworthy
predecessor in descriptive geometry was the Frenchman Amedee
Frangois Frézier (1682 But i t remained for Monge to create
descriptive geometry as a distinct branch of science by imparting to
it geometric generality and elegance . All problems previously treated
in a special and uncertain manner were referred back to a few general
principles . He introduced the line of intersection of the horizontal
and the vertical plane as the axis of projection . By revolving one
plane into the other around this axis or ground- line

,
many advantages

were gained .

1

Gaspard M onge ( 1 746—1818)was born at Beaune . The construo
tion of a plan of his native town brought the boy under the notice of
a colonel of engineers

,
who procured for him an appointment in the

college of engineers at Mezieres . Being of low birth
,
he could not

receive a commiss ion in the army
,
but he was permitted to enter the

annex of the school
,
where surveying and drawing were taught . Ob

serving that all the Operations connected with the construction of
plans of fortification were conducted by long arithmetical processes ,
he substituted a geometrical method

,
which the commandant at first

refused even to look at ; so short was the time in which it could be
practised that

,
when once exam ined

,
i t was received with avidity.

M onge developed these methods further and thus created his descrip
tive geometry . Owing to the rivalry between the French military
schools of that time

,
he was not permitted to divulge his new methods

to any one outside of this institution . In 1 768 he was made professor of
mathematics at Mezieres . In 1 780 ,

when conversing with two of his
pupils

,
S . F . Lacroix and S . F . Gay de Vernon in Paris

,
he was obliged

to say
,
Al l that I have here done by calculation

,
I could have done

with the ruler and compasses
,
but I am not allowed to reveal these

secrets to you .

”But Lacroix set himself to examine what the secret
could be

,
discovered the processes , and published them In 1 795. The

method was published by M onge himself in the same year
,
first in

the form in which the shorthand writers took down his lessons given
at the Normal School

,
where he had been elected professor

,
and then

again
,
in revised form

,
in the Journal des écotes normales . The next

edition occurred in 1 798
—
1 799. After an ephemeral existence of only

four months the Normal School was closed in 1 795. In the same year
1 Christian Wiener, Lehrbuch der Darstellenden Geometric, Leipzig , 1884 , p . 26 .
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the Polytechnic School was opened
,
in the . establishing of which

Monge took active part . He taught there descriptive geometry until
his departure from France to accompany Napoleon on the Egyptian
campaign . He was the first president Of the Institute of Egypt .
Monge was a zealous partisan of Napoleon and was

,
for that reason

,

deprived of all his honors by Louis XVIII . This and the destruction
of the Polytechnic School preyed heavily upon his mind . He did not
long survive this insult.
Monge ’s numerous papers were by no means confined to descriptive

geometry. His analytical discoveries are hardly less remarkable . He
introduced into analytic geometry the methodic use of th e equation
of a line . He made important contributions to surfaces of the second
degree (previously studied by C . Wren and L . Euler)and discovered
between the theory of surfaces and the integration of partial differ
ential equations , a hidden relation whi ch threw new light upon both
subjects . He gave the diff erential of curves of curvature

,
established

a general theory of curvature
,
and applied it to the ellipsoid . He

found that the validity of Solutions was not impaired when imaginaries
are involved among subsidiary quantities . Usually attributed to
Monge are the centres of similitude of circles and certain theorems

,

which were , however , probably known to Apollonius of Perga .

1 M onge
published the following books:S tatics , 1 786 ; Appl ications de l

’

algebre

a la geome
’

trie, 1805 ; Appl ication de l
’

analyse a la geometric. The last
two contain most of his miscellaneous papers .
Monge was an inspiring teacher

,
and he gathered around him a

large circle of pupils
,
among which were C . Dupin , F . Servois , C . J .

B rianchon , Hachette , J . B . Biot
,
and J . V . Poncelet . Jean Baptiste

Biot (1 774 professor at the College de France in Paris
,
came in

contact as a young man with Laplace
,
Lagrange

,
and M onge . In

1804 he ascended with Gay-Lussac in a balloon . They proved that
the earth ’s magnetism is not appreciably reduced in intensity in
regions above the earth ’s surface . Biot wrote a popular book on
analytical geometry and was active in mathematical physics and
geodesy. He had a controversy wi th Arago who championed A . J .

Fresnel ’s wave theory of light . Biot was a man of strong individuali ty
and great influence .

Charles Dupin ( 1 784 formany years professor of mechanics
in the Conservatoire des Arts et Métiers in Paris , published in 18 13
an important work on Développements de geometric , in which is intro
duced the conception of conjugate tangents of a point of a surface ,
and of the indicatrix .

2 I t contains also the theorem known as “
Du

pin ’S theorem .

”Surfaces of the second degree and descriptive geom
1 R . C . Archibald in Am. Math. Monthly, Vol . 2 2 , 1915 , pp . 6—1 2 ; Vol . 23 , pp . 159

1 6 1 .

2 Gino Loria, Die Hauptsachlisten Theorien der Geometric (F . Schutte), Leipzig ,
1888 , p . 49.



2 76 A HISTORY OF MATHEMATICS

etry were successfully studied by Jean Nicolas P ierre Hochette (1769
who became professor of descriptive geometry at the Poly

technic School after the departure of M onge for Rome and Egypt .
In 182 2 he published hi s Traité de géométrie descriptive.

Descriptive geometry , which arose , as we have seen , in technical
schools in France

,
was transferred . to Germany at the foundation of

technical schools there . G . Schreiber (1 799 professor in Karls
ruhe

,
was the first to spread M onge ’s geometry in Germany by the

publication of a work thereon in 1828—1829
1 In the United States

descriptive geometry was introduced in 18 16 at the M ilitary Academy
in West Point by Claude Crozet

,
once a pupil at the Polytechnic

School in Paris . Crozet wrote the first English work on the subj ect .2

Lazare Nicholas Marguerite Carnot (1753,—1823)was born at
Nolay in Burgundy

, and educated in his native province. He entered
the army , but continued his mathematical studies , and wrote in 1784
a work on machines

,
containing the earli est proof that kinetic energy

is lost in collisions of bodies . With the advent of the Revolution he
threw himself into poli tics

,
and when coalesced Europe

,
in 1 793 ,

launched against France a mill ion soldiers
,
the gigantic task of or

ganizing fourteen armies to meet the enemy was achieved by him.

He was banished in 1 796 for opposing Napoleon
’s coup d

’

etat. The
refugee went to Geneva

,
where he issued , in 1 797 , a work still tre

quently quoted
,
entitled

, Re
’

flexions . sur la M étaphysique du Cal cu l
Infini te

’

simal . He declared himself as an irreconcilable enemy of
kings .”After the Russian campaign he off ered to fight for France

,

though not for the empire . On the restoration he was exiled . He
died in M agdeburg . His Ge’ ométrie de posi tion ,

1803 , and his Essay on

Transversals
, 1806 , are important contributions to modern geometry.

While G . M onge revelled mainly in three-dimensional geometry
,

Carnot confined himself to that of two . By his effort to explain the
meaning of the negative S ign in geometry he established a “ geometry
of position

,
which

,
however

,
is different from the “ Geometrie der

Lage”of to-day . He invented a class of general theorems on pro
jective properties of figures

,
which have since been pushed to great

extent by J . V. Poncelet
,
M ichel Chasles

,
and others.

Thanks to Carnot ’s researches , says J . G . Darboux
,

3 “ the con
ceptions of the inventors of analytic geometry , Descartes and Fermat ,

retook alongside the infinitesimal calculus of Leibniz and Newton
the place they had lost

,
yet should never have ceased to occupy. With

his geometry
,
said Lagrange

,
speaking of M onge , this demon of a man

wi ll make himself immortal .”
While in France the school of G . Monge was creating modern

1 C . Wiener, op. cit. p . 36 .

2 F . Cajori , Teaching and History of Mathematics in U . S .
, Washington ,

1890 ,

pp . 1 14 , 1 1 7 .

3 Congress of Arts and S cience, St . Louis, 1904, Vol . 1 , p . 535 .
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THE NINETEENTH AND TWENTIETH CENTURIES

Introduction

NEVER more zealously and successfully has mathematics been
cultivated than during the nineteenth and the present centuries . Nor
has progress , as in previous periods , been confined to one or two
countries . While the French and Swiss

,
who during the preceding

epoch carried the torch of progress
,
have continued to develop mathe

matics with great success
,
from other countries whole armies of en

thusiastic workers have wheeled into the front rank . Germany awoke
from her lethargy by bringing forward K . F . Gauss , C . G . J . Jacobi

,

P . L . Dirichlet , and hosts of more recent men ; Great Britain
produced her A . De M organ

,
G . Boole

,
W . R . Hamil ton , A . Cayley

,

J . J . Sylvester
,
besides champions who are still living ; Russia entered

the arena with her N . I . Lobachevski ; Norway with N . H . Abel ;
I taly with L . Cremona ; Hungary with her two Bolyais ; the United
S tates with Benjamin Peirce and J . Willard Gibbs .
H . S . White of Vassar College estimated the annual rate of increase

in mathematical publication from 1870 to 1909, and ascertained the
periods between these years when diff erent subjects of research re

ceived the greatest emphasis . 1 Taking the Jahrbuch iiber die Fort
schri tte der M athematik , published since 1871 (founded by Carl Ohrt
mann ( 1839—1885)of the Konigliche Realschule in Berlin and S ince
1885 under the chief editorship of Emil Lampe of the technische
Hochschule in Berlin), and also the Revue S emestriel le, published since
1893 (under the auspices of the Mathematical Society of Amsterdam),
he counted the number of titles

,
and in some cases also the number of

pages filled by the reviews of books and articles devoted to a certain
subj ect of research

,
and reached the following approximate results:

( 1)The total annual pub l ication doubled during the forty years ;
(2)During these forty years , 30 % of the publication was on applied
mathematics

,
25% on geometry , 20 % on analysis

,
18% on algebra ,

7% on history and philosophy ; 3)Geometry , dominated by Pl ii cker
,

his brilliant pupil Klein
,
Clifford

,
and Cayley

,

”doubled its rate of
production from 1870 to 1890 , then fell off a third , to regain most of
its loss after 1899 ; Synthetic geometry reached its maximum in 1887
and then declined during the following twenty years ; the amount of
anal ytic geometry always exceeded that of synthetic geometry , the

1 H . S . White , Forty Years
’
Fluctuations in Mathematical Research, S cience

,

N . S .
, Vol . 42 , 1915 , pp . 105

—1 13 .
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excess being most pronounced since 1887 ; (4)Analysis , which takes
its rise equally from calculus , from the algebra of imaginaries , from
the intuitions and the critically refined developments of geometry

,
and

from abstract logic : the common servant and chief ruler of the other
branches of mathematics

,

”shows a trebling in forty years
,
reaching

its first maximum in 1890 ,
“ probably the culmination of waves set

in motion by Weierstrass and Fuchs in Berlin , by Riemann in Got
tingen

,
by Hermite in Paris , M ittag-Leffi er in S tockholm,

Dini and
Brioschi in I taly ;

”before 1887 much of the growth of analysis is due
to the theory of functions which reaches a maximum about 1887 ,
with a sweep of the curve upward again after 1900 ,

due to the theory
of integral equations and the influence of Hilbert ; (5)Algebra , in
cluding series and groups

,
experienced during the forty years a steady

gain to 25 times its original output ; the part of algebra relating to
algebraic forms

,
invariants

,
etc .

,
reached its ~acme before 1890 and

then declined most surprisingly ; (6)Differential equations increased
in amount S lowly but steadily from 1870

“ under the combined in
fluence of Weierstrass , Darboux and Lie , showing a slight decline
in 1886

,
but “ followed by a marked recovery and advance during the

publication of lectures by Forsyth
,
P icard

,
Goursat and Painlevé ;

”
(7)The mathematical theory of electricity and magnetism remained
less than one- fourth of the whole applied mathematics

,
but rose after

1873 steadily toward one—fourth , by the labors of Clerk Maxwell ,
W . Thomson (Lord Kelvin)and P . G . Tait ; (8)The constant shifting
of mathematical investigation is due partly to fashion .

The progress of mathematics has been greatly accelerated by the
organization of mathematical societies issuing regular periodicals .
The leading societies are as follows : London M athemati cal S oci ety
organized in 1865 , La soci e

’

té mathématique de France organized in
1872 , Edinburgh M athematical S ociety organized 1883 , Ci rcolo mate

matico di P alermo organized in 1884 , American M athematical S oci ety
organized in 1888 under the name of New Y ork M athemati cal S oci ety
and changed to its present name in Deutsche M athematiker

Vereinigung organized in 1890 ,
Indian M athematical S ociety organized

in 1907 , S oci edadMetematica Espaii ola organized in 191 1 , Mathematical

A ssociation of America organized in 1915 .

The number of mathematical periodicals has enormously increased
during the passed century. According to Felix M ii ller 2 there were

,

up to 1700 ,
only 1 7 periodicals containing mathematical articles ;

there were
,
in the eighteenth century

,
2 10 such periodicals , in the

nineteenth century 950 of them.

1 ConsultThomas S . Fiske
’
s address in Bull . Am.Math. S oc. , Vol . 1 1 , 1905 , p . 238 .

Dr . Fiske himself was a leader in the organ ization of the Society.

2 J ahresb. d. deutsch. M athem. Vereinigung , Vol . 1 2 , 1903 , p . 439 . See also G . A .

M il ler in Historical Introduction to Mathematical Literature, New York , 1916 ,
Chaps. I , II .
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A great stimulus toward mathematical progress have been the
international congresses of mathematicians . In 1889 there was held
in Paris a Congres international de bibliographie des sciences mathe
matiques . In 1893 , during the Columbian Exposition , there was held
in Chicago an International Mathematical Congress . But

,
by com

mon agreement , the gathering held in 1897 at Zurich , Switzerland , is
called the “ first international mathematical congress . The Second
was held in 1900 at Paris , the third in 1904 at Heidelberg , the fourth
in 1908 at Rome , the fifth in 1912 at Cambridge in England . The
obj ect of these congresses has been to promote friendly relations

,
to

give reviews of the progress and present state of different branches of
mathematics

,
and to discuss matters of terminology and bibliography.

One of the great co-operative enterprises intended to bring the
results of modern research in digested form before the technical reader
is the Encyklop

'

adie der Mathematischen Wi ssenschaften , the publica
tion of which was begun in 1898 under the editorship ofWi lhelmFranz
Meyer of KOnin erg . Prominent as joint editor was Heinrich Burk

hardt (186 1—1914)of Zurich , later of Munich . In 1904 was begun the
publication of the French revised and enlarged edition under the
editorship of Ju les M ol k (1857—1914)of the University of Nancy .

AS regards the productiveness of modern writers
,
Arthur Cayley

said in 1883 :
1 “ I t is diffi cult to give an idea of the vast extent of

modern mathematics . This word ‘ extent ’ is not the right one :I mean
extent crowded with beautiful detail

,

—not an extent of mere uni
formity such as an objectless plain

,
but of a tract of beautiful country

seen at first in the distance , but which will bear to be rambled through
and studied in every detail of hillside and valley

,
stream

,
rock

,
wood

,

and flower . I t is pleasant to the mathematician to think that in his
,

as in no other science
,
the achievements of every age remain posses

sions forever ; new discoveries seldom disprove older tenets ; seldom
is anything lost or wasted .

If it be asked wherein the utility of some modern extensions of
mathematics lies

,
i t must be acknowledged that it is at present diffi cult

to see how some of them are ever to become applicable to questions
of common life or physical science . But our inability to do this Should
not be urged as an argument against the pursuit of such studies . In

the first place
,
we know neither the day nor the hour when these

abstract developments will find application in the mechanic arts
,
in

physical science
,
or in other branches of mathematics . For example

,

the whole subj ect of graphical statics
,
so useful to the practical em

g ineer , was made to rest upon von Staudt
’

s Geometri c der Lage,
’ W . R .

Hamil ton ’s “ principle of varying action has its use in astronomy ;
complex quantities

,
general integrals

,
and general theorems in inte

gration offer advantages in the study of electricity and magnetism.

1 Arthur Cayley, Inaugural Address before the British Association ,
1883 , Re

port, p . 25 .
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of positive construction . Chemistry
,
in a modern spirit

,
is stretching

out into mathematical theories ; Will ard Gibbs , in his memoir on the
equilibrium of chemical systems

,
has led the way ; and , though his

way is a path which chemists find strewn wi th the thorns of analysis
,

his work has rendered , incidentally , a real service in co ordinating
experimental results belonging to physics and to chemistry . A new
and generalized theory of stati stics is being constructed

,
and a school

has grown up which is applying them to biological phenomena . Its
activi ty , however , has not yet met with the sympathetic goodwill of
all the pure biologists ; and those who remember the quality of the
discussion that took place last year at Cambridge between the biome
tricians and some of the biologists will agree that , if the new school
should languish

,
it will not be for want of the tonic of criticism.

”
The great characteristic of modern mathematics is i ts generalizing
tendency . Nowadays little weight is given to isolated theorems

,

says J . J . Sylvester , except as aff ording hints of an unsuspected new
sphere of thought

,
like meteorites detached from some undiscovered

planetary orb of speculation .

”In mathematics
,
as in all true sciences

,

no subj ect is considered in itself alone
,
but always as related to

,
or

an outgrowth of
,
other things . The development of the notion of

continuity plays a leading part in modern research . In geometry
the principle of continuity

,
the idea of correspondence

,
and the theory

of proj ection constitute the fundamental modern notions . Continuity
asserts itself in a most striking way in relation to the circular points
at infinity in a plane . In algebra the modern idea finds expression
in the theory of linear transformations and invariants

,
and in the

recognition of the value of homogeneity and symmetry.

H . F . Baker 1 said in 1913 that , with the aid of groups a complete
theory of equations which are soluble algebraically can be given .

But the theory of groups has other applications . The group of
interchanges among four quantities which leave unaltered the product
of their six diff erences is exactly sim ilar to the group of rotations of a
regular tetrahedron whose centre is fixed

,
when its corners are inter

changed among themselves . Then I mention the historical fact that
the probl em of ascertaining when that well-known diff erential equa
tion called the hypergeometric equation has all its solutions expressible
in finite terms as algebraic functions

,
was first solved in connection

with a group of similar kind . For any linear differential equation it is
of primary importance to consider the group of interchanges of its
solutions when the independent variable

,
starting from an arbitrary

point
,
makes all possible excursions

,
returning to its initial value.

There is
,
however

,
a theory of groups different from those so far

referred to
,
in which the variables can change continuously ; this alone

is most extensive
,
as may be judged from one of its lesser applications,

the familiar theory of the invariants of quantics . M oreover
,
perhaps

1 Report British Ass
’

n (Birmingham), 1913 , London , 1914, p . 371 .
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the most masterly of the analytical discussions of the theory of
geometry has been carried through as a particular application of the
theory of such groups .”

“ If the theory of groups illustrates how a unifying plan works in
mathematics beneath the bewildering detail

,
the next matter I refer

to well shows what a wealth
,
what a grandeur

,
of thought may spring

from what seem slight beginnings . Our ordinary integral calculus is
well-nigh powerless when the result of integration is not expressible
by algebraic or logarithmic functions . The attempt to extend the
possibilities of integration to the case when the function to be inte
grated involves the square root of a polynomial of the fourth order ,
led first

,
after many efforts

,
to the theory of doubly-periodic

functions . To-day this is much simpler than ordinary trigonometry
,

and
,
even apart from its applications

,
i t is quite incredible that it

Should ever again pass from being among the treasures of civilized
man . Then , at first in uncouth form

,
but now clothed with delicate

beauty
,
came the theory of general algebraical integrals

,
of which the

influence is spread far and wide ; and with it all that is systematic
in the theory of plane curves

,
and all that is associated with the con

ception of a Riemann surface . After this came the theory of multiply
periodic functions of any number of variables

,
which

,
though still

very far indeed from being complete
,
has

,
I have always fel t , a maj esty

of conception which is unique. Quite recently the ideas evolved in
the previous history have prompted a vast general theory of the
classification of algebraical surfaces according to their essential prop-3
erties, which is opening endless new vistas of thought .

”
The nineteenth century and the beginning of the twentieth century
constitute a period when the very foundations of mathematics have
been re-exam ined and when fundamental principles have been worked
out anew . Says H . F . Baker:1 “ I t is a constantly recurring need of
science to reconsider the exact implication of the terms employed ;
and as numbers and functions are inevitable in all measurement

,
the

precise meaning of number , of continuity , of infinity , of limit , and
so on

,
are fundamental questions . These notions have many

p itfalls I may cite . the construction of a function which is
continuous at all points of a range

,
yet possesses no definite differential

coeffi cient at any point . Are we sure that human nature is the only
continuous variable in the concrete world , assuming it be continuous ,
which can possess such a vacillating character? We could take
out of our life all the moments at which we can say that our age is a
certain number of years , and days , and fractions of day , and still
have appreciably as long to live ; this would be true , however often ,
to whatever exactness

,
we named our age

,
provided we were quick

enough in naming it . These inquiries have been associated
also with the theory of those series which Fourier used so boldly , and

1 H . F . Bak er , loc. cit.,p . 369 .
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so wickedly
,
for the conduction of .heat . Like al l discoverers , he took

much for granted . Precisely how much is the problem . This problem
has led to the precision of what is meant by a function of real variables ,
to the question of the uniformconvergence of an infinite series , as
you may see in early papers of Stokes , to new formulation of the
conditions of integration and of the properties of multiple integrals ,
and so on . And i t remains still incompletely solved .

Another case in which the suggestions of physics have caused
grave disquiet to the mathematicians is the problem of the variation
of a definite integral . N0 one is likely to underrate the grandeur of '

the aim of those who would deduce the whole physical history of the
world from the single principle of least action . Everyone must be
interested in the theorem that a

, potential function , with a given
value at the boundary of a volume

,
is such as to render a certain in

tegral , representing , say , the energy , a minimum. But in that pro
portion one desires to be sure that the logical processes employed are
free from obj ection . And

,
alas ! to deal only with one of the earliest

problems of the subj ect
,
though the finally sufficient conditions for

a minimum of a simple integral seemed settled long ago
,
and could

be applied
,
for example

,
to Newton ’s celebrated problem of the

solid of least resistance , i t has since been shown to be a general fact
that such a problem cannot have any definite solution at all . And

,

although the principle of Thomson and Dirichlet
,
which relates to

the potential problem referred to
,
was expounded by Gauss , and

accepted by Riemann , and remains to-day in our standard treatise
on Natural Philosophy

,
there can be no doubt that

,
in the form in

which it was originally stated
,
i t proves just nothing. Thus a new

investigation has been necessary into the foundations of the principle .
There is another problem

,
closely connected with this subj ect

,
to

which I would allude : the stability of the solar system . For those
who can make pronouncements in regard to this I have a feeling of
envy ; for their methods , as yet , I have a quite other feeling. The
interest of this problem alone is sufli cient to justify the craving of
the Pure M athematician for powerful methods and unexceptionable
rigour.”
There are others who view this struggle for absolute rigor from a
different angle . Horace Lamb in 1904 spoke as follows :

1 “ a traveller
who refuses to pass over a bridge until he has personally tested the
soundness of every part of it is not likely to go very far ; something
must be risked

,
even in M athematics . I t is notorious that even in

this realm of ‘ exact ’ thought
,
discovery has often been in advance of

strict logic
,
as in the theory of imaginaries

,
for example

,
and in the

whole province of analysis of which Fourier ’s theorem is a type .

”
Says Maxime BOcher:2 “There is what may perhaps be cal led the
1 Address before Section A

,
B ritish Ass

’
n
,
in Cambridge, 1904 .

2Maxime Bocher in Congress of Arts and S cience, St. Louis, 1904 , Vol . I , p . 472 .
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independently G . Frege
,
have been able to make a rather Short

list of logical conceptions and principles upon which i t would seem
that all exact reasoning depends .”But the validity of logical prin
ciples must stand the test of use , and on this point we may never be
sure . Frege and Bertrand Russell independently buil t up a theory of
arithmetic

,
each starting with apparently self-evident logical prin

ciples . Then Russell discovers that his principles
,
applied to a very

general kind of logical class
,
lead to an absurdi ty. There is evident

need of reconstruction somewhere . After all
,
are we merely making

successive approximations to absolute rigor?
A . B . Kempe ’s definition is as fol lows :1 “Mathematics is the

science by which we investigate those characteristics of any subj ect
matter of thought which are due to the conception that it consists
of a number of di ff ering and non-diff ering individuals and pluralities .”
Ten years later M axime Bocher modified Kempe ’s definition thus :2
“ If we have a certain class of obj ects and a certain class of relations

,

and if the only questions which we investigate are whether ordered
groups of those obj ects do or do not satisfy the relations

,
the results

of the investigation are called mathematics . Bocher remarks that
if we restrict ourselves to exact or deductive mathematics

,
then

Kempe ’s definition becomes coextensive with B . Peirce ’s .
Bertrand Russell

,
in his P rinciples of Mathematics

,
Cambridge

,

1903 , regards pure mathematics as consisting exclusively of deduc
tions “ by logical principles from logical principles .”Another def
inition given by Russell sounds paradoxical

,
but really expresses the

extreme generality and extreme subtleness of certain parts of modern
mathematics : “M athematics is the subj ect in which we never know
what we are talking about nor whether what we are saying is true .”3
Other definitions along similar lines are due to E . Papperitz

G . I telson and L . Couturat

Synthetic Geometry

The confli ct between synthetic and analytic methods in geometry
whi ch arose near the close of the eighteenth century and the beginning
of the nineteenth has now come to an end. Neither S ide has come
out victorious . The greatest strength is found to lie , not in the sup
pression of either

,
but in the friendly rivalry between the two

,
and in

the stimulating influence of the one upon the other . Lagrange prided
himself that in his M ecanique Analytique he had succeeded in avoiding
all figures ; but since his time mechanics has received much help from
geometry .

M odern syn thetic geometry was created by several investigators
about the same time . I t seemed to be the outgrowth of a desire for

1 Proceed. London Math. Soc. , Vol . 26 , 1894 , p. 15 .

2M . Bocher , op. ci t. , p . 466 .

3 B . Russell in International Monthly, Vol . 4 , 190 1 , p . 84.



SYNTHETIC GEOMETRY 287

general methods which Should serve as threads of Ariadne to guide
the student through the labyrinth of theorems

,
corollaries , porisms ,

and problems . Synthetic geometry was first cultivated by G . M onge
,

L . N . M . Carnot
,
and J . V . Poncelet in France ; i t then bore rich fruits

at the hands of A . F . Mobius and Jakob Steiner in Germany and
Switzerland

,
and was finally developed to still higher perfection by

M . Chasles in France
,
von S taudt in Germany , and L . Cremona in

Italy .

Jean Victor Poncelet (1 788 a native of M etz
,
took part in

the Russian campaign
,
was abandoned as dead on the bloody field

of Krasnoi
,
and taken prisoner to Saratoff . Deprived there of all

books , and reduced to the remembrance of what he had learned at
the Lyceum at M etz and the Polytechnic School

,
where he had studied

with predilection the works of G . M onge
,
L . N . M . Carnot

,
and C . J.

Brianchon ,
he began to study mathematics from i ts elements . He

entered upon original researches which afterwards made him illus
trions . While in prison he did for mathematics what Bunyan did for
literature—produced a much-read work , which has remained of great
value down to the present time . He returned to France in 1814 , and
in 182 2 published the work in question , entitled , Trai té des P roprie

’

tés

proj ectives des figures . In i t he investigated the properties of figures
which remain unaltered by proj ection of the figures . The projection
is not effected here by parallel rays of prescribed direction , as with
G . Monge , but by central projection . Thus perspective proj ection

,

used before him by G . Desargues , B . Pascal , I . Newton
,
and J . H .

Lambert
,
was elevated by him into a fruitful geometric method .

Poncelet formulated the so-called principle of continui ty, which asserts
that properties of a figure which hold when the figure varies according
to definite laws wi ll hold also when the figure assumes some limi ting
position .

“
Poncelet

,
Says J . G . Darboux ,

1 “ could not content himself with
the insuffi cient resources furnished by the method of projections ; to
attain imaginaries he created that famous principle of continuity
which gave birth to such long discussions between him and A . L .

Cauchy . Suitably enunciated
,
this principle is excellent and can

render great serv ice . Poncelet was wrong in refusing to present i t
as a S imple consequence of analysis ; and Cauchy, on the other hand ,
was not w il ling to recognize that his own obj ections , appl icable with
out doubt to certain transcendent figures

,
were without force in the

applications made by the author of the Trai té des proprie
’

te
’

s proj ec
tives .

”
J . D . Gergonne characterized the principle as a valuable

instrument for the discovery of new truths
,
which nevertheless did

notmake stringent proofs superfluous .

2 By this principle of geometric
1 Congress of Arts and Science, St . Louis

,
1904 , Vol . I , p . 539 .

2 E . Kotter
, Die Entwickelung der synthetischen Geometric von Monge bis auf

S tavdt, Leipzig , 190 1 , p . 1 23 .
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continuity Poncelet was led to the consideration of points and lines
which vanish at infinity or becomé imaginary. The inclusion of such
ideal points and lines was a gift which pure geometry received from
analysis

,
where imaginary quantities behave much in the same way

as real ones . Poncelet elaborated some ideas of De Lahire
,
F . Servois

,

and J . D . Gergonne into a regular method—the method of recipro

cal polars . To him we owe the Principle of Duality as a consequence
of reciprocal polars . As an independent principle it is due to Gergonne.

Darboux says that the significance of the principle of duality which
was “ ‘

a li ttle vague at first
,
was sufficiently cleared up by the dis

cussions which took place on this subj ect between J . D . Gergonne ,

J . V. Poncelet and J.. Pl ii cker. It had the advantage of making
correspond to a proposition another proposition of wholly diff erent
aspect. “This was a fact essentially new. To put it in evidence

,

Gergonne invented the system ,
which since has had so much success ,

of memoirs printed in double columns with correlative propositions
in juxtaposition”(B arboux).
Joseph D iaz G ergonne (1 771—1859)was an offi cer of artillery , then

professor of mathematics at the lyceum in Nimes and later professor
at M ontpelli er. He solved the Apollonian Problem and claimed
superiority of analytic methods over the synthetic . Thereupon
Poncelet publ ished a purely geometric solution . Gergonne and Ponce
let carried on an intense controversy on the priority of discovering
the principle of duality . No doubt

,
Poncelet entered this field earlier ,

while Gergonne had a deeper grasp of the principle . Some geometers ,
particularly C . J . Brianchon ,

entertained doubts on the general val id
ity of the principle . The controversy led to one new result , namely ,
Gergonne

’
s considerations of the class of a curve or surface , as well

as its order.

1 Poncelet wrote much on applied mechanics . In 1838

the Faculty of Sciences was enlarged by his election to the chair of
mechanics .
J . G . Darboux says that , presented in opposition to analytic

geometry
,
the methods of Poncelet were not favorably received by

the French analysts . But such were their importance and their
novelty

,
that without delay they aroused

,
from divers sides

,
the

most profound researches .”M any of these appeared in the Annales
de mathe

’

matiques , published by J . D . Gergonne at Nimes from 1810

to 183 1 . During over fifteen years this was the only journal in the
world devoted exclusively to mathematical researches . Gergonne
“ collaborated

,
often against their will

,
with the authors of thememoirs

sent him
,
rewrote them

,
and sometimes made them say more or less

than they would have wished . Gergonne, having become rector
of the Academy of M ontpellier

,
was forced to suspend in 183 1 the

publication of his journal . But the success i t had obtained
,
the taste

for research it had contributed to develop , had commenced to bear
1 E. Kotter, op. cit. , pp . 160—164.
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Jak ob S teiner (1796 the greatest geometrician since the
time of Euclid ,

”was born in Utzendorf in the Canton of Bern . He
did not learn to write till he was fourteen . At eighteen he became a
pupil of Pestalozzi . Later he studied at Heidelberg and Berlin .

When A . L . Crelle started , in 1826 , the celebrated mathematical
journal bearing his name

,
Steiner and Abel became leading con

tributors. Through the influence of C . G . J . Jacobi and others
,
the

chair of geometry was founded for him at Berlin in 1834 . This posi
tion he occupied until his death

,
which occurred after years of bad

health .

In 1832 Steiner published his Systematische Entwickelung der Ab
hangigkeit geometrischer Gestalten von einander

,

“ in which is uncovered
the organism by which the most diverse phenomena (Erscheinungen)
in the world of space are united to each other .”Here for the first
time

,
is the principle of duality introduced at the outset . This book

and von Staudt ’s lay the foundation on which synthetic geometry in
its later form rested . The researches of French mathematicians

,
cul

minating in the remarkable creations of G . M onge
, J . V . Poncelet

and J . D . Gergonne , suggested a unification of geometric processes .
This work of “ uncovering the organism by which the most different
forms in the world of space are connected with each other

,
this ex

posing oi a small number of very simple fundamental relations in
which the scheme reveals itself

,
by which the whole body of theorems

can be logically and easily developed”was the task which S teiner
assumed . Says H . Hankel:1 “ In the beautiful theorem that a conic
section can be generated by the intersection of two proj ective pencils
(and the dually correlated theorem referring to proj ective ranges),
J . Steiner recognized the fundamental principle out of which the
innumerable properties of these remarkable curves follow

,
as it were

,

automatically with playful ease .

”Not only did he fairly complete
the theory of curves and surfaces of the second degree

,
but he made

great advances in the theory of those of higher degrees .
In the Systematische Entwickelungen (1832)Steiner directed atten
tion to the complete figure obtained by joining in every possible way
six points on a conic and showed that in this hexagrammum mysticum
the 60 “

Pascal lines”pass three by three through 20 points (
“ Steiner

points which lie four by four upon 15 straight lines P lucker
J . Pl ii cker had sharply criticized Steiner for an error that had crept
into an earlier statement (1828)of the last theorem . Now ,

Steiner
gave the correc t statement

,
but without acknowledgment to P l ii cker.

Further properties of the hexagrammum mysticum are due to T. P .

Kirkman
,
A . Cayley and G . Salmon . The Pascal lines of three hexa

gons concur in a new point Kirkman There are 60 Kirk
man points . Corresponding to three Pascal l ines which concur in a
Steiner point

,
there are three Kirkman points which lie upon a straight

1 H . Hankel
,
Elemente der P roj ectivischen Geometric, 1875 , p . 26 .
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line Cayley line There are 20 Cayley lines which pass four by
four through 15

“ Salmon points .”Other new properties of the mystic
hexagon were obtained in 1877 by G . Veronese and L . Cremona .

1

In Steiner ’s hands synthetic geometry made prodigious progress .
New discoveries followed each other so rapidly that he often did not
take time to record their demonstrations . In an article in Grel le’s
Journal on Allgemeine Eigenschaften Algebraischer Curven he gives
without proof theorems which were declared by L . O . Hesse to be
“ like Fermat ’s theorems

,
riddles to the present and future genera

tions . Analytical proofs of some of them have been given S ince by
others

,
but L . Cremona finally proved them all by a synthetic method .

Steiner discovered synthetically the two prominent properties of a
surface of the third order ; viz . that it contains twenty- seven straight
lines and a pentahedron which has the double points for its vertices
and the lines of the Hessian of the given surface for its edges . This
subj ect will be discussed more fully later. Steiner made investigations
by synthetic methods on maxima and minima

,
and arrived at the

solution of problems which at that time surpassed the analytic power
of the calculus of variations . I t will appear later that his reasoning
on this topic is not always free from criticism .

Steiner generalized Malfatti
’

s problem.

2 Giovanni Francesco Mal

fatti (1731
—
1807)of the university of Ferrara , in 1803 , proposed the

problem
,
to cut three cylindrical holes out of a three- sided prism in

such a way that the cylinders and the prism have the same altitude
and that the volume of the cylinders be a maximum . This problem
was reduced to another

,
now generally known as Malfatti

’

s problem :

to inscribe three circles in a triangle so that each circle will be tangent to
two sides of the triangle and to the other two circles . Malfatti gave an
analytical solution

,
but Steiner gave without proof a construction

,

remarked that there were thirty- two solutions
,
generalized the problem

by replacing the three lines by three circles
,
and solved the analogous

problem for three dimensions . This general problem was solved
analytically by C . H . Schellbach (1809—1892)and A . Cayley and by
R . F . A . Clebsch with the aid of the addition theorem of elliptic
functions .3 A simple proof of S teiner ’s construction was given by
A . S . Hart of Trinity College

,
Dublin

,
in 1856 .

Of interest is S teiner ’s paper
, Ueber die geometrischen Constructionen ,

ausgefiihrt mi ttels der geraden Linie und eines festen Kreises

in which he shows that all quadratic constructions can be effected
with the aid of only a ruler

,
provided that a fixed circle is drawn once

for all . It was generally known that all l inear constructions could be
eff ected by the ruler

,
without other aids of any kind . The case of

1 G . Salmon ,
Conic S ections , 6th Ed . ,

1879, Notes
, p . 382 .

2 Karl Fink
, A Br ief Hi story of M athematics

,
transl . bvW. W. Beman and D . E .

Smith , Chicago , 1900 , p . 256 .

3 A . Wittstein , zur Geschichte des Malfatti
’

schen P roblems , Nordlingen ,
1878 .
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cubic constructions
,
calling for the determination of three unk nown

elements (points)was worked out in 1868 by Ludwig Hermann Kor

tum (1836—1904)of Bonn , and Stephen Smith of Oxford in two re

searches which received the Steiner prize oi the Berlin Academy ; i t
was shown that if a conic (not a circle)is given to start with , then all
such constructions can be done with a ruler and compasses . Franz
London (1863—191 7)of Breslau demonstrated in 1895 that these cubic
constructions can be effected with a ruler only

,
as soon as a fixed

cubic curve is once drawn .

1

F . Bu tzberger
2 has recently pointed out that in an unpublished

manuscript , Steiner disclosed a knowledge of the principle of inver
sion as early as 1824 . In 1847 Liouville called it the transformation
by reciprocal radii . After S teiner this transformation was found
independently by J . Bel lav itis in 1836 , J . W . Stubbs and J . R . Ingram
in 1842 and 1843 , and by William Thomson (Lord Kelvin)in 1845.

Steiner ’s researches are confined to synthetic geometry . He hated
analysis as thoroughly as J . Lagrange disliked geometry . S teiner ’s
Gesamm-

elte Werke were published in Berlin in 188 1 and 1882 .

M iche l Chas les (1 793—1880)was born at Epernon , entered the Poly
technic School of Paris in 18 1 2

,
engaged afterwards in business

,
which

he later gave up that he might devote all his time to scientific pursuits .
In 1841 he became professor of geodesy and mechanics at the Ecole
polytechnique ; later ,

“
P rofesseur de Géométrie supérieure a la Facul te

des Sciences de Paris . He was a voluminous writer on geometrical
subjects . In 1837 he published his admirable Apergu historique sur

l
’

origine et te développement des méthodes en ge
’

ome
’

trie, containing a
history of geometry and

,
as an appendix

,
a treatise sur deux principes

généraux de la Science .

”The Apergu historique is still a standard
historical work ; the appendix contains the general theory of Homog
raphy (Collineation)and of duality (Reciprocity). The name duality
is due to J . D . Gergonne . Chasles introduced the term anharmonic
ratio

,
corresponding to the German Doppelverha

'

l tniss and to Clifford ’s
cross-ratio. Chasles and J . Steiner elaborated independently the
modern synthetic or proj ective geometry. Numerous originalmemoirs
of Chasles were published later In the Journal de l ’Ecole P olytechnique.

He gave a reduction of cubics , different from Newton
’s in this

,
that

the five curves from which all others can be proj ected are symmetrical
with respect to a centre . In 1864 he began the publication , in the
Comptes rendus

,
of articles in which he solves by his “method of

characteristics”and the “ principle of correspondence”an immense
number of problems . He determined , for instance , the number of
intersections of two curves in a plane . The method of characteristics
contains the basis of enumerative geometry .

As regards Chasles ’ use of imaginaries
, J . G . Darboux says: Here

,

1 J ahresb. d. d. Math. Vereinigung , Vol . 4 , p . 163 .

2 Bull . Am. Math. S oc.
, Vol . 20 , 1914, p . 414 .
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The labors of Chasles and Steiner raised synthetic geometry to an
honored and respected position by the side of analysis .
Karl Georg Christian vonS taudt (1 798—1867)was born in Rothen

burg on the Tauber , and at his death , was professor in Erlangen . His
great works are the Geometric dcr Lage, N ii rnberg , 1847 , and his
Bei trage zur Geometric der Lage, 1856

—
1860 . The author cut loose

from algebraic formula and from metrical relations
,
particularly the

anharmonic ratio of J . Steiner and M . Chasles
,
and then created a

geometry of position , which is a complete science in itself , independent
of all measurements . He Shows that proj ective properties of figures
have no dependence whatever on measurements

,
and can be estab

lished without any mention of them. In his theory of “ throws”or
“Wiirfe,

”he even gives a geometrical definition of a number in its
relation to geometry as determining the position of a point . Gustav

Kohn of the University of Vienna about 1894 introduced the throw
as a fundamental concept underlying the proj ective properties of a
geometric configuration

,
such that

,
according to a principle of duality

of this geome try
,
throws of figures appear in pairs of reciprocal throws ;

figures of reciprocal throws form a complete analogy to figures of
equal throws . Referring to Voli Staudt ’s numerical co-ordinates

,

defined without introducing distance as a fundamental idea
,
A . N .

Whitehead said in 1906 :
“The establishment of this result is one of

the triumphs of modern mathematical thought .”
The Beitrage contains the first complete and general theory of

imaginary points
,
l ines

,
and planes in proj ective geometry. Repre

sentation of an imaginary point is sought in the combination of an
involution with a determinate direction , both on the real line through
the point . While purely proj ective

,
von Staudt

’
s method is inti

mately related to the problem of representing by actual points and
lines the imaginaries of analytical geometry . Says Kotter:1 Staudt
was the first who succeeded “

in subjecting the imaginary elements to
the fundamental theorem of projective geometry

,
thus returning to

analytical geometry the present which
,
in the hands of geometri

cians
,
had led to the most beautiful results .”Von Staudt ’s geometry

of position was for a long time disregarded
,
mainly

,
no doubt

,
because

his book is extremely condensed . An impulse to the study of this
subj ect was given by Culmann ,

who rests his graphical statics upon
the work of von Staudt . An interpreter of von Staudt was at last
found in Theodor Reye of Strassburg

,
who wrote a Geometri c der

Lage in 1868 .

The graphic representation of the imaginaries of analytical geom
etry was systematically undertaken by C . F . M aximi l ien M arie (1819

who worked
,
however , on entirely diff erent lines from those

of von Staudt . Another independent attempt was made in 1893 by
F . H . Loud of Colorado

‘
Col lege .

1 E . Kotter, op. cit., p . 1 23 .
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Synthetic geometry was studied with much success by Lu igi Cre
mona ( 1830 who was born in Pavia and became in 1860 pro
fessor of higher geometry in Bologna , in 1866 professor of geometry and
graphical statics in M ilan

,
in 1873 professor of higher mathematics

and director of the engineering school at Rome . He was influenced
by the writings of M . Chasles , later he recogniz ed von S taudt as the
true founder of pure geometry . A memoir of 1866 on cubic surfaces
secured half of the Steiner priz e from Berlin

,
the other half being

awarded to Rudolf Sturm
,
then of Bromberg . Cremona used the

method of enumeration with great effect . He wrote on plane curves .
on surfaces

, on birational transformations of plane and solid space .

The birational transformations
,
the simplest class of which is now

called the “ Cremona transformation ,
”proved of importance , not

only in geometry
,
but in the analytical theory of algebraic functions

and integrals . I t was developed more fully by M . NOther and others .
H . S . White comments on this subj ect as follows :1 “ Beyond the
linear or proj ective transformations of the plane there were known
the quadric inversions of Ludwig Immanuel M agnus ( 1 790—186 1)of
Berlin

,
changing lines into conics through three fundamental points

and those exceptional points into singular lines
,
to be discarded .

Cremona described at once the highest generalization of these trans
formations , one-to—one for all points of the plane except a finite set
of fundamental points . He found that it must be mediated by a
net of rational curves ; any two intersecting in one variable point ,
and in fixed points

,
ordinary or multiple

,
which are the fundamental

points and which are themselves tranformed into singular rational
curves of the same orders as the indices of multiplicity of the
points . When the fundamental points are enumerated by classes
according to their several indices

,
the set of class numbers for the in

verse transformation is found to be the same as for the direc t
,
but

usually related to different indices . Tables of such rational nets of
low orders were made out by L . Cremona and A . Cayley , and a
wide new vista seemed opening (such indeed it was and is)when si
mul taneously three investigators announced that the most general
Cremona transformation is equivalent to a succession of quadric
transformations of Magnus ’s type . This seemed a climax

,
and a

set-back to certain expectations .”Cremona ’s theory of the trans
formation of curves and of the correspondence of points on curves
was extended by him to three dimensions . There he showed how a
great variety of particular transformations can be constructed

,

“ but
anything like a general theory is still in the future .

”Ruled surfaces
,

surfaces of the second order
,
space-curves~ of the third order , and

the general theory of surfaces received much attention at his hands .
He was interested in map

-drawing
,
which had engaged the attention

of R . Hooke , G . M ercator
, J . Lagrange , K . F . Gauss and others . For

1 Bul l . Am. Math. S oc .
, Vol . 24, 19 18 , p . 242 .
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a one-one correspondence the surface must be unicursal
,
and this is

suffi cient . L . Cremona is associated with A . Cayley
,
R . F . A . Clebsch

,

M . NOther and others in the development of this theory .

1 Cremona ’s
writings were translated into German by M aximi l ian Curtze ( 1837

professor at the gymnasium in Thorn . The Opera matematiche
di Luigi Cremona were brought at M ilan in 1914 and 1915.

One of the pupils of Cremona was G iovanni Battista Guccia (1855
He was born in Palermo and studied at Rome under Cremona .

In 1889 he became extraordinary professor at the
’

University of Pal
ermo , in 1894 ordinary professor . He gave much attention to the
study of curves and surfaces . He is best known as the founder in
1884 of the Circolo matematico di P alermo, and director of its Rendi
conti . The society has become international and has been a powerful
stimulus for mathematical research in Italy .

Karl Cu lmann (182 1 professor at the Polytechnicum in Zu
rich

,
published an epoch-making work on Die graphische S tatik , Zurich ,

1864 , which has rendered graphical statics a great rival of analytical
statics . Before Cu lmann ,

B arthele
’

my-Edouard Cousinc
’

ry (1790—1851)
a civil engineer at Paris

,
had turned his attention to the graphi cal

calculus
,
but hemade use of perspective

,
and not ofmodern geometry .

2

Culmann is the first to undertake to present the graphical calculus
as a symmetrical whole

,
holding the same relation to the new geom

etry that analytical mechanics does to higher analysis . He makes
use of the polar theory of reciprocal figures as expressing the relation
between the force and the funicular polygons . He deduces this rela
tion without leav ing the plane of the two figures . But if the polygons
be regarded as proj ections of lines in space

,
these lines may be treated

as reciprocal elements of a Nullsystem .

”This was done by Clerk
Maxwel l in 1864 , and elaborated further by L . Cremona . The graphi
cal calculus has been applied by O. M ohr of Dresden to the elastic
line for continuous spans . Henry T. Eddy (1844 then of the
Rose Polytechnic Institute

,
now of the University of M innesota , gives

graphical solutions of problems on the maximum stresses in bridges
under concentrated loads

,
with aid of what he calls “ reaction poly

gons .”A standard work
,
La S tati que graphique, 1874 , was issued by

Maurice Levy of Paris .
Descriptive geometry [reduced to a science by G . Monge in France ,

and elaborated further by his successors
,
J . N . P . Hachette

,
C . Dupin ,

Theodore Olivier (1 793
—
1853)of Paris , Ju lcs de la Cournerie of Paris]

was soon studied also in other countries . The French directed their
attention mainly to the theory of surfaces and their curvature ; the
Germans and Swiss

,
through Guido Schreiber (1799—1871)of Karls

1 P roceedings of the Roy. S oc. of London ,
Vol . 75 , London , 1905, pp. 277

2 79 .

2 A . Jay du Bois , Graphical S tatics , New York , 1875 , p . xxxn ; M . d
’

Ocagne, Traité

dc Nomographie, Paris , 1899 , p . 5 .
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and centroid of a triangle are collinear , lying on the
“ Euler line .

H . C . Gossard of the University of Oklahoma showed in 1916 that
the three Euler lines of the' triangles formed by the Euler line and the
sides

,
taken by twos

,
of a given triangle , form a triangle triply per

spective with the given triangle and having the same Euler line . Con
spicuous among the new developments is the

“ nine-point circle
,
the

discovery of which has been erroneously ascribed to Euler . Among
the several independent discoverers is the Englishman

,
B enj amin

B evan —
1838)who proposed in Leybourn ’

s M athematical Repository,
I
, 18 , 1804 , a theorem for proof which practically gives us the nine
point circle . The proof was supplied to the Reposi tory , I , Part 1 ,

p . 143 , by John Butterworth, who also proposed a problem ,
solved by

himself and John Whi tley; from the general tenor of which it appears
that they knew the circle in question to pass through all nine points .
These nine points are explicitly mentioned by C . J . B rianchon and
J . V . Poncelet in Gergonne

’

s Annales of 182 1 . In 182 2 , Karl Wi lhelm
Feucrbach (1800 professor at the gymnasium in Erlangen ,
published a pamphlet - in which he arrives at the nine-point circle ,
and proves the theorem known by his name

,
that this circle touches

the incircle and the three excircles . The Germans call i t Feuerbach ’

s

Circle .

”The last independent discoverer of this remarkable circle , so '

far as known , is T. S . Davies , in an article of 1827 in the Phi losophical
M agazine, II , 29

—
31 . Feuerbach ’s theorem was extended by Andrew

S earlc Hart (18 1 1 fellow of Trinity College
,
Dublin , who

Showed that the circles which touch three given circles can be dis
tributed into sets of four all touched by the same circle.
In 1816 August Leopold Crel le published in Berlin a paper dealing

with certain properties of plane triangles . He showed how to deter
mine a point 0 inside a triangle , so that the
angles (taken in the same order)formed by
the lines joining it to the vertices are equal .
In the adjoining figure the three marked angles
are equal . If the construction is made so that
angle Q ’

AC=Q
’

CB =O
’

BA
,
then a second point

B Q
' is obtained . The study of these new
angles and new points led Crel le to exclaim:

It is indeed wonderful that so simple a figure as the triangle is
so inexhaustible in properties . How many as yet unknown proper
ties of other figures may there not be !

”Investigations were made
also by Karl Friedri ch Andreas Jacobi (1795

—
1855)of Pforta and

some of his pupils , but after his death , in 1855 , the whole
matter was forgotten . In 1875 the subject was again brought before
the mathematical public by Henri B rocard (1845 whose re

searches were followed up by a large number of investigators in France ,
England and Germany . Unfortunately , the names of geometricians
which have been attached to certain remarkable points , l ines and
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circles are not always the names of the men who first studied their
properties . Thus

,
we speak of “ Brocard points”and “ Brocard

angles
,

”but historical research brought out the fact
,
in 1884 and 1886

,

that these were the points and lines which had been studied by A . L .

Crel le and K . F . A . Jacobi . The “ Brocard Circle”is Brocard ’s own
creation . In the triangle ABC

,
let ( 2 and Q ’ be the first and second

“ Brocard point .
”Let A ’ be the intersection of B9 and CQ ’

; B
' of

AO
’ and CO and AO . The circle passing through A

'

B
’

,
C ’ is the Brocard circle . A ’B ’C ’ is “ Brocard ’s first triangle .

Another lik e triangle
,
A ’ ’
B

’ ’
C

’ is called “ Brocard ’s second triangle .

The points A"
,
B"

,
C”

,
together with Q ,

Q
’

,
and two other points

,

lie in the circumference of the Brocard circle .

”
In 1873 Emi le Lemoine (1840 the editor of l ’Interme’diai re

des mathématiciens , called attention to a particular point within a plane
triangle which has been variously called the “ Lemoine point

,

”
sym

median point
,

”and Grebe point
,

”named after ErnstWi lhelm Grebe
(1804—1874)of Kassel . If CD is so drawn
as to make angles a and b equal

,
then one

of the two lines AB and CD is . the anti
paral lel of the other , with reference to C

the angle O . Now OE ,
the bisector of

AB
,
is the median and OF , the bisector of

the anti-parallel of AB
,
is called the sym

median (abbreviated from syme
’

trique dc la

médianc). The point of concurrence of the
three symmedians in a triangle is called ,
after Robert Tucker (1832—1905)of University College School in Lon
don

,
the symmedian point .”John Sturgeon M ackay ( 1843—1914)of

Edinburgh has pointed out that some of the properties of this point ,
brought to light since 1873 , were first discovered previously to that



300 A HISTORY OF MATHEMATICS

date . The anti-parallels of a triangle which pass through its sym
median point , meet its S ides in six points which lie on a circle

,
call ed

the “ second Lemoine circle .”The “ first Lemoine circle”is a special
case of a “Tucker circle”and concentric with the “Brocard circle .”
The “Tucker circles”may be thus defined . Let DF’=FE ’

=ED
’

let , moreover , the following pairs of lines he anti-parallels to each
other :AB and ED ’

,
BC and FE ’

,
CA and DF’

; then the six points
D

,
D

’ E
,
E ’

,
F
,
F ’

,
l ie on a “Tucker

c ircle . Vary the length of the equal
anti-parallels

,
and a family of Tucker

circles”is obtained . Allied to these
are the Taylor circles

,
due to H . M .

Taylor of Trinity College
,
Cambridge .

Still different types are the
“M ackay

circles
,

”and the Neuberg circles
due to Joseph Neuberg (1840 of

C Luxemburg . A systematic treatise on

this topic
,
DieB rocardschcn Gebi lde, was

written by Albrecht Emmerich
,
Berlin

,
1891 . Of the almost in

numerable mass of new theorems on the triangle and circle , a great
number is given in the Treatise on the Ci rcle and the Sphcrc, Oxford ,
1916 , written by J . L . Coolidge of Harvard University.

Since 1888 E . Lemoine of Paris developed a system
,
called geomet

rographics , for
'

the purpose of numerically comparing geometric con
structions with respect to their S implicity . Coolidge calls these
“ the best known and least undesirable tests for the simplicity
of a geometrical construction”; A . Emch declares that “ they are

hardly of any practical value
,
in so far as they do not indicate how to

S impl ify a construction or how to make it more accurate .”
A new theorem upon the circumscribed tetraedron was propounded
in 1897 by A . S . Bang and proved by Job . Gehrke . The theorem is :
Opposite edges of a circumscribed tetraedron subtend equal angles at
the points of contact of the faces which contain them . I t has been
the starting-point for extended developments by Franz M eyer , J .

Neuberg and H . S . White .1

Link-motion

The generation of rectilinear motion first arose as a practical prob
lem in the design of steam engines . A close approximation to such
motion is the “ parallel motion”designed by James Watt in 1 784:

In a freely jointed quadrilateral ABCD ,
with the S ide AD fixed , a

point M on the side BC moves in nearly a straight line . The equa
tion of the curve traced by M

,
sometimes called “Watt ’s curve ,

”
was first derived by the French engineer

,
Frangois Marie dc P rony

1 Bul l . Am. Math. Soc., Vol . 14, 1908 , p . 2 20.



https://www.forgottenbooks.com/join


302 A HISTORY OF MATHEMATICS

The barrister at law
,
Alfred Bray Kempe of London showed in 1876

that a link-motion can be found to describe any given algebraic curve ;
he is the author of a popular booklet , How to draw a S traight Line,
London

,
1877 . Other articles of note on this subj ect were prepared

by Samuel Roberts
,
Arthur Cayley , W . Woolsey Johnson

,
V . Ligu ine

of the University of Odessa , and G . P . X . Koenigs of the Ecole Poly
technique In Paris . The determination of the linkage with minimum
number of pieces by which a given curve can be described is still an
unsolved problem .

Paral lel Lines , Non—Euclidean Geometry and Geometry of n Dimensions

During the nineteenth century very remarkable generalizations were
made

,
which reach to the very root of two of the oldest branches

of mathematics
,

— elementary algebra and geometry . In geometry
the axioms have been searched to the bottom

,
and the con

clusion has been reached that the defined by. Euclid ’s axioms
is not the only possible non-m ictory space . Euclid proved
(I , 2 7)that “ if a straight line falling on two other straight lines make
the alternate angels equal to one another

,
the two straight lines shall

be parallel to one another .”Being unable to prove that in every
other case the two lines are not parallel

,
he assumed this to be true in

what is now generally called the 5th.

“ axiom
,

”by some the 1 1 th or
the 1 2th “ axiom .

”
Simpler and more obvious axioms have been advanced as sub

stitutes . As early as 1663 , John Wallis of Oxford recommended:
“ To

any triangle another triangle
,
as large as you please

,
can be drawn

,

which is S imilar to the given triangle .

”G . Saccheri assumed the ex
istence of two similar , unequal triangles . Postulates similar to Wallis ’

have been proposed also by J . H . Lambert
,
L . Carnot , P . S . Laplace ,

J . Delboeuf. A . C . Clairaut assumes the existence of a rectangle ;
W . Bolyai postulated that a circle can be passed through any three
points not in the same straight line

,
A . M . Legendre that there existed a

finite triangle whose angle—sum is two right angles
, J . F . Lorenz and

Legendre that through every point within an angle a line can be
drawn interescting both sides , C . L . Dodgson that in any circle the
inscribed equilateral quadrangle is greater than any one of the seg
ments which lie outside it . But probably the S implest is the assump
tion made by Joseph Fenn in his edition of Euclid ’s Elements

,
Dub

lin
,
1 769, and again sixteen years later byWilliamLudlam (17 18—1

vicar of Norton
,
and adopted by John P layfair:“ Two straight lines

which cut one another can not both be parallel to the same straight
line .

”It is noteworthy 1 that this axiom is distinctly stated in
Proclus

’
s note to Euclid , I , 31 .

But the most numerous efforts to remove the supposed defect in
1T. L . Heath, The Thirteen Books of Eucl id

’

s Elements , Vol . I , p. 220.
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Euclid were attempts to prove the parallel postulat ries
of esperate but fruitless endeal qr , thefi hol di idea the
min s of several

'

friathé
-

maticians
_
that a geometry might be built up

the:paiallel—axiom . While A . M . Legendre Still
endéaY Of

'

ed tOe
’

stablish the axiom by rigid proof , Lobachevsk i brought
out a publication which assumed the contradictory of that axiom

,

and which was the first of a series of articles destined to clear up Oh

scurities in the fundamental concepts , and greatly to extend the field
of geometry .

Nicholau s Ivanovich Lobachevsk i (1 793—1856)was born at Ma

karici
,
in Nizhn i at Kasan

,
and from 1827

to 1846 was professor and rector of the University of Kasan . His views
on the foundation of geometry were first set forth in a paper laid before
the physico-mathematical department of the University of Kasan in
February

, 1826 . This paper was never printed and was lost . His
earliest publication was in the Kasan Mcssengcr for 1829, and then in
the Gelehrte S chriften der Universitat Kasan

,
1836

—
1838 , under the

title ,
“
New Elements of Geometry

, w ith a complete theory of Par
allels . Being in the Russian language

,
the work remained unknown to

foreigners , but even at home i t attracted no notice . In 1840 he pub
l ished a brief statement of his researches in B erlin

,
under the title

,

Geometrische Untersuchungen zur Theorie der Paral lel l inicn . Loba
chevski constructed _an

“ imaginary geometry
,
as he called i t

,
which

has beéIT
'

désc
'

ribed by W . K:Clifford as “ quite simple , merely Euclid
without the vicious assumption .

”A remarkable part of this geometry
is this

,
that through a point an indefinite number of lines can be drawn

in a plane
,
none~of which g iven__l ine in the same plane. A similar

syk temfi if geometry was deduced independently by the Bolyais in
Hungary

,
who called it “ absolute geometry.

”
Wolfgang Bolyai de Bolya (1 775—1856)was born in Szekler-Land ,

Transylvania . After studying at Jena
,
he went to Gottingen

,
where

he became intimate with K . F . Gauss
,
then nineteen years old . Gauss

used to say that Bolyai was the only man who fully understood his
views on the metaphysics of mathematics . Bolyai became professor
at the Reformed College of M aros-Vasarhely , where for forty-seven
years he had for his pupils most of the later professors of Transyl
vania . The first publications of this remarkable genius were dramas
and poetry. Clad in old- time planter ’s garb

,
he was truly original in

his private life as well as in his mode of thinking. He was extremely
modest . No monument , said he , should stand over his grave , only an
apple- tree

,
in memory of the three apples ; the two of Eve and Paris ,

which made hell out of earth , and that of I . New ton , which elevated
the earth again into the circle of heavenly bodies .1 His son

,
Johann

1 F . Schmidt , Aus dem Leben zweier ungarischer Mathematiker Johann und

Wolfgang Bolyai von Bolya , Grunert
’

s Archiv, 1868. Franz Schmidt ( 1827
1901)was an architect in Budapest.
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Bolyai (1802 was educated for the army
,
and distinguished

hir
'

n
'

self as a profound mathematician , an impassioned violin—player ,
and an expert fencer . He once accepted the challenge of thirteen
Offi cers on condition that after each duel he might play a piece on his
violin

,
and he vanquished them all .

The chief mathematical work of Wolfgang Bolyai appeared in
two volum es

,
1832

—
1833 , entitled Tentamen j uventutem studiosam in

clementa matheseos pura introduccndi . I t is followed by an ap
pendix composed by his son Johann . Its twenty-six pages make the
name of Johann Bolyai immortal . He published nothing else

,
but he

left behind one thousand pages of manuscript .
While Lobachevsk i enjoys priority of publication , it may be that

Bolyai developed his system somewhat earlier . Bolyai Satisfied him
h l—g

self of the non-contradictory character of his new geometry on or beH

fore there Is some doubt whether Lobachevski had reached this
point in 1826 . Johann Bolyai ’s father '

seems to have been the only
person in Hungary who really appreciated the merits of his son ’s
work . For thi rty-five years this appendix, as also Lobachevsk i

’

s

researches
,
remained in almost entire oblivion . Finally Richard

Baltzer of the University of Giessen , in 1867 , cal led attention to the
wonderful researches .
In 1866 J . Hoii el translated Lobachevski ’s Geometrische Unter

suchungen into French . In 1867 appeared a French translation of
Johann Bolyai ’s Appendix. In 1891 George Bruce Halsted , then of
the University of Texas

,
rendered these treatises easily accessible to

American readers by translations brought out under the titles of
J . Bolyai ’s The S cience Absolute of Space and N . Lobachevski

’

s Geo

metr ical Researches on the Theory of P arallels of 1840 .

The Russian and Hungarian mathematicians were not the only
ones to whom pangeometry suggested itself. A copy of the Tentamen
reached K . F . Gauss

,
the elder Bolyai ’s former roommate at Gottingen ,

and this Nestor of German mathematicians was surprised to discover
in it worked out what he himself had begun long before

,
only to leave

it after him In hi s papers . As early as 1 792 he had started on researches
of that character . His letters Show that In 1 799 he was trying to prove
a priori the reality of Euclid

’s system ; but some time within the next
thi rty years he arrived at the conclusion reached by Lobachevski
and Bolyai . In 1829 he wrote to F . W . Bessel

,
s tating that hi s “ con

viction that we cannot found geometry completely a priori has be
come

,
if possible

,
still firmer

,

”and that “ if number is merely a product
of our mind

,
Space has also a real ity beyond our mind of whi ch we

'

cannot fully foreordain the laws a priori . The term non Eucl idean

geometry is due to Gauss . It is surprising that thefi rsf _
m

l impses of
non-Euclidean geometry were had In the eighteenth_century. Geron

nimo S accheri (1667 a Jesui t father of M ilan
,
in 1 733 wrote
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contemporary researches on parallel lines due to A . M . Legendre in
France .
The researches of K . F . Gauss , N . I . Lobachevsk i and J . Bolyai

have been considered by F . Kl ein as constitutirig
c '

the first p eriod In

the history of non-Euclidean geometry . It is a period In which the
syhthetic meflIOds of elementary geometry were in vogue . The
second period embraces the researches of G . F . B . Riemann

,
H . Hehn

holtz
,
S . Lie and E . Beltrami

,
and employs the methods of differential

geometry . It was in 1854 that Gauss heard from his pupil , Riemann ,
a marvellous dissertation whi ch considered the foundations of geome
try from a new point of view . Riemann was not familiar with Lo
bachevski and Bolyai . He developed the notion of n-ply extended
magni tude

,
and the measure-relations of which a manifoldness of n

dimensions is capable , on the assumption that every line may be
measured by every other . Riemann applied his ideas to space . He
taught us to distinguish between ‘

.

‘
finfinite

extent .”According to him we have In our mind a more general notion
of space, i . c. a notion of non-Euclidean space

,
but we learn by axpe

rience that our physical space is
,
if not exactly

,
at least to a high degree

of approximation
,
Euclidean space . Riemann ’S profound dissertation

was not published until 186 7 , when it appeared in the Go
’

ttingen Ab

handlungen . Before this the idea of n dimensions had suggested itself
under various aspects to P tolemy

, J . Wallis
,
D

’

Alembert
, J . Lagrange

,

J . Plii cker
,
and H . G . Grassmann . The idea of time as a fourth di

mension had occurred to D ’
Al embert and Lagrange . About the same

time wi th Riemann ’s paper
,
others were published from the pens of

H . Helmholtz and E . B eltrami . This period marks the beginning
of lively discussions upon this subj ect . Some writers—J . Bellavitis

,

for example—were able to see in non-Euclidean geometry and n

dirnensional space nothi ng but huge caricatures , or diseased out
growths of mathematics . H . Helmholtz’s article was

'

entitled That

sachen
,
welche der Geometric zu Grunde l iegen ,

1868
,
and contained

many of the ideas of Riemann . Helmholtz popul arized the subj ect in
lectures

,
and in articles for various magazines . Starting with the

idea of congruence
,
and assuming the free mobility of a rigid body éfid

the return unchanged to its original position after rotation about an
axis

,
he proves that the square of the line element 15 a homogeneous

function of the second degree in the diff erentials . Helmholtz ’s
investigations were carefully examined by S . Lie who reduced the
Riemann-Helmholtz problem to the following form: To determ ine
all the continuous groups in space which

,
in a bounded region

,
have

the property of displacements. There arose three types of groups
,

Sommervill e is the author of a Bibliography of non-Eucl idean geometry incl uding
the theory of parallels , thefoundations of geometry, and space of n dimensions , London ,
191 1 .

1 D . M . Y . Sommervil le , op. cit. , p . 195.
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which characterize the three geometries of Euclid
,
of N. I . Lobachev

ski and J . Bolyai , and of F . G . B . Riemann .

1

Eugeni o Beltrami (1835 born at Cremona
,
was a pupil of

F . Brioschi? " He wasprofessor at Bologna as a colleague of L . Cremona
,

at P isa as an associate of E . Betti
,
at Pav ia as a co-worker w ith F .

Casorati
,
and since 1891 at Rome where he Spent the last years of

his career
,
uno degli illustri maestri dell ’ analisi in Italia .

”Beltrami
wrote in 1868 a classical paper

,
S aggio di interpretazione del la geometria

non-encl idea (Gi orn . di Matem.
,

which is analytical (and , lik e
several other papers

,
Should be mentioned elsewhere were we to adhere

to a strict separation between synthesis and analysis). He reached
the brilliant and surprising conclusion that in part the theOremS

'

of
" w

non-Euclidem geometry find thei r freal ization upon
,

surfaces of con
stant neg at ive curvature. He studied , also , surfaces of constant
posi tive curvature

,
and

‘

ended with the interesting theorem that
the “

space
'

o f constant positive curvature is contained in the space
of constant

‘

negative curvature . These researches of Beltrami
,
H .

Helmhol tz
,
and G . F . B . Riemann culminated in the conclusion that

on sur faces of constant curvature we may have three geometries ,
the non-Euclidean on a surface of constant negative curvature

,

the spherical On
'

a surface of constant positive curvature
,
and the

Euclidean geometry on a surface of zero curvature . The three ge
ometries do not contradict each other

,
but are members of a system

,

a geometrical trinity . The ideas of hyper-Space were brill iantly ex
pounded and popularised in England by Clifford .

William Kingdon Clifford (1845—1879)was born at, Exeter , edu
cated at Trinity College, Cambridge , and from i 871 until

'

his death
professor of applied mathematics in University College

,
London . His

premature death left incomplete several brilliant researches
"

which
he had entered upon . Among these are his paper On Classification
of Loci and his Theory of Graphs . He wrote articles On the Canonical
Form and Dissection of a Riemann

’
s S urface, on B iqnaternions , and

an incomplete work on the Elements of Dynamic. He gave exact
meaning in dynamics to such familiar words as spin

,

”“ twist
,

”
“ squi rt

,

”“whi rl .”The theory of polars of__curves and surfaces was
generalized by him and by Reye . His

g
classification of loci , 1878 ,

beiiIn enerab study ‘

of curves
,
Was an introduction to the study

of__ni i imensional Space in a directipn mainly; proj ective . This study
has been

"

continued since chi efly by
"

G. Veronese of Padua , C . Segre
of Turin

,
E . Bertini

,
F . Aschi eri , P . Del Pezzo of Naples .

Beltrami ’s researches on non-Euclidean geometry were followed
,

in 1871 , by important investigations of Felix Klein , resting upon
Cayley ’s S ixthMemoir on Quantics , 1859. The development of geom
etry in the first half of the nineteenth century had led to the separation

1 Lie
,
Thearie der Transformationsgruppen ,

Bd. III
,
Leipzig , 1893 , pp . 437

-

543 ;
Bonola , op. ci t. , p . 154.
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of this science into two parts: the geometry of position or descriptive
geometry which dealt with properties that are unaffected by projec
tion

,
and the geometry of measurement in whi ch the fundamental

notions of di stance
,
angle

,
etc , are changed by proj ection . Cayley ’

S

S ixth M emoir brought these strictly segregated parts together again
by his definition of distance between two points . The question
whether i t is not possible so to express the metrical properties of
figures that they will not vary by proj ection (or linear transformation)
had been solved for special projections by M . Chasles

, J . V . Poncelet
,

and E . Laguerre
,
but i t remained for A . Cayley to give a general

solution by defining the distance between two points as an arbitrary
constant multiplied by the logarithm of the anharmonic ratio in which
the line joining the two points is divided by the fundamental quadric .
These researches

,
applying the principles of pure projective geometry

,

mark the third period in the development of non-Euclidean geometry .

Enlarging upon this notion
,
F . Klein Showed the independence of

projective geometry from the parallel-axiom
,
and by properly choosing

the law of the measurement of distance deduced from proj ective
geometry the spherical , Euclidean , and pseudospherical geometries ,
named by him respectively the elliptic

,
parabolic

,
and hyperbolic

geometries . This suggestive investigation was followed up by numer
ous writers , particularly by G . Battaglini of Naples

,
E . d

’

Ovidio of
Turin

,
R . de Paolis of P isa

,
F . Aschieri

,
A . Cayley , F . Lindemann of

Munich
,
E . Schering of Gottingen

,
W . Story of Clark University

,

H . Stahl of Tubingen , A . Voss of M unich
,
Homersham Cox

,
A. Buch

heim.

1 The notion of parallelism applicable to hyperbolic Space was
the only extension of Euclid ’s notion of parallelism until Clifford dis
covered in elliptic Space straight lines which possess most of the prop
erties of Euclidean parallels , but differ from them in being skew . Two
lines are right (or left)parallel , if they cut the same right (or left)
generators of the absolute . Later F . Klein and R . S . Ball made
extensive contributions to the knowledge of these lines . M ore re

cently E . Study of Bonn , J . L . Coolidge of Harvard University
,
W .

Vogt of Heidelberg and others have been studying this subject . The
methods employed have been those of analytic and synthetic geometry
as well as those of diff erential geometry and vectorial analysis .2 The
geometry of n dimensions was studied along a line mainly metrical
by a host of writers

,
among whommay be mentioned Simon Newcomb

of the Johns Hopkins University , L . Schl
'

afli of Bern , W . I . Stringham
( 1847—1909)of the University of California , W . Killing of Munster ,
T . Craig of the Johns Hopkins

,
Rudolf Lipschitz (1832—1903)of Bonn .

R . S . Heath of B irmingham and W . Kill ing investigated the kinematics
and mechanics of such a Space . Regular solids in n-dimensional space
were studied by Stringham

,
Ellery W . Davis (1857—1918)of the

1 G . Loria , Die hanptsachlichsten Theori en der Geometrie, 1888 , p . 10 2 .

Bull . Am. Math. S oc., Vol . 1 7 , 19 1 1 , p . 3 15 .
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Analytisch
-Geometrische Entwi cklungen in two volumes . Therein he

adopted the abbreviated notation [used before him In a more restricted
way by Etienne Bobil lier (1 797 professor of mechanics at
Chalons sur-Marne] , and avoided the tedious process of algebraic
elimination by a geometric consideration . In the second volume the
principle of duality is formulated analytically. With him duality and
homogeneity found expression already in his system of co-ordinates .
The homogenous or trilinear system used by him is much the same as
the co-ordinates of A . F . Mobius. In the identity of analytical opera
tion and geometric construction Pl iicker looked for the source of his
proofs . The System der Analytischen Geometrie, 1835 , contains a
complete classification of plane curves of the third order

,
based on the

nature of the points at infinity. The Thearie der A lgebraischen Curven ,

1839, contains , besides an enumeration of curves of the fourth order ,
the analytic relations between the ordinary singularities of plane
curves known as “

P lucker’s equations
,

”by which he was able to
explain “

Poncelet ’s paradox.

”The discovery of these relations is
,

says A . Cayley ,
“ the most important one beyond all comparison in

the entire subj ect of modern geometry.

”The four Plucker equa
tions have been expressed in different forms . Cayley studied higher
singularities of plane curves . M . W . Haskell of the University of
California

,
in 1914, Showed from the P lucker equations that . the

maximum number of cusps possible for a curve of order m is the
greatest integer in m (m (except when m i s 4 and 6 , in which
case the maximum number is 3 and and that there is always a
self-dual curve with this maximum number of cusps .
Certain interrelations of the various geometrical researches of the

first half and middle of the nineteenth century are brought out by
J . G . Darboux in the following passage:1 “While M . Chasles

, J .

Steiner
,
and

,
later

,
von Staudt , were intent on constituting a

rival doctrine to analysis and set in some sort altar against altar
,

J . D . Gergonne , E . Bobillier
,
C . Sturm ,

and above all J . Pl ii cker
,
per

fected the geometry of R . Descartes and constituted an analytic sys
tem in a manner adequate to the discoveries of the geometers . I t is
to E . Bobill ier and to J . Pl ii ck er that we owe the method called
abridged notation . Bobillier consecrated to i t some pages truly new

in the last volumes of the Annales of Gergonne . Pl iicker commenced
to develop it in his first work

,
soon followed by a series of works where

are established in a ful ly conscious manner the foundations of the
modern analytic geometry. It is to him that we owe tangential co
ordinates

,
trilinear co-ordinates

,
employed with homogeneous equa

tions , and finally the employm ent of canonical forms whose validity
was recognized by the method

,
so deceptive sometimes

,
but so fruit

ful
,
cal led the enumeration of constants .

”
In Germany J . P l iicker

’
s researches met with no favor. His method

1 Congress of Arts and S cience, St . Louis, 1904, Vol . 1, pp . 541 , 542 .
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was declared to be unproductive as compared with the synthetic
method of J . Steiner and J . V . Poncelet ! His relations with C . G . J .

Jacobi were not altogether friendly . S teiner once declared that he
would stop writing for Crel le’s Journal if P lucker continued to con
tribute to it .

1 The result was that many of Pl ii ck er ’s researches were
published in foreign journals

,
and that his work came to be better

known in France and England than in his native country . The charge
was also brought against Pl ii cker that

,
though occupying the chair

of physics
,
he was no physicist . This induced him to relinquish

mathematics
,
and for nearly twenty years to devote his energies to

physics . Important discoveries on Fresnel ’s wave-s urface , magnetism,

spectrum-analysis were made by him . But towards the close of his
life he returned to his first love

,

—mathematics
,

—and enriched it with
new discoveries . By considering Space as made up of lines he created
a “

new geometry of space .

”Regarding a right line as a curve in~
volving four arbitrary parameters

,
one has the whole system of lines

in space . By connecting them by a single relation , he got a
“ complex”

of lines ; by connecting them with a twofold relation , he got a
“ con

g ruency of lines . His first researches on this subj ect were laid before
the Royal Society in 1865. His further investigations thereon ap

peared in 1868 in a posthumous work entitled Neue Geometrie des

Raumes gegru
'

ndet auf die B etrachtung der geraden Linie als Koumele

ment, edited by Felix Klein . Pl iick er
’

s analysis lacks the elegance
found in J . Lagrange

,
C . G . J . Jacobi

,
L . O . Hesse

,
and R . F . A .

C lebsch . For many years he had not kept up with the progress of
geometry

,
so that many investigations in his last work had already

received more general treatment on the part of others . The work
contained

,
nevertheless

,
much that was fresh and original . The theory

of complexes of the second degree
,
left unfinished by P lucker , was

continued by Felix Klein
,
who greatly extended and supplemented

the ideas of—hlS master .
Ludw ig Otto Hes se (18 1 1—1874)was born at Konigsberg , and
studied at the university of his native place under F . W . Bessel , C . G . J .

Jacobi
,
F . J . Richelot

,
and F . Neumann . Having taken the doctor ’s

degree in 1840 ,
he became docent at Konigsberg , and in 1845 extraor

dinary professor there . Among his pupils at that time were Heinrich

Durege (182 1—1893)of Prague , Carl Neumann , R . F . A . Clebsch ,
G . R . Kirchhoff . The Konigsberg period was one of great activity
for Hesse . Every new discovery increased his zeal for still greater
achievement . His earliest researches were on surfaces of the second
order , and were partly synthetic . He solved the problem to construct
any tenth point of such a surface when nine points are given . The
analogous problem for a conic had been solved by Pascal by means
of the hexagram . A difficult problem confronting mathematicians
of this time was that of elimination . J . P lucker had seen that the

1 Ad . D ronk e
,
J ul ius P lu

‘

cker
,
Bonn

,
187 1 .
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main advantage of his special method in analytic geometry lay in
the avoidance of algebraic elimination . Hesse , however , showed how
by determinants to make algebraic elim ination easy . In his earl ier
results he was anticipated by J . J . Sylvester

,
who published his dialytic

method of elimination in 1840 . These advances in algebra Hesse
applied to the analytic study of curves of the third order . By linear
substitutions

,
he reduced a form of the third degree In three variables

to one of only four terms
,
and was led to an important determinant

involv ing the second differential coeffi cient of a form of the third
degree

,
called .the “Hessian .

”The “Hessian”plays a leading part
in the theory of invariants , a subj ec t first studied by A . Cayley.

Hesse showed that his determinant gives for every curve another
curve

,
such that the double points of the first are points on the second ,

r “Hessian .

”S imilarly for surfaces (Crel le , M any of the
most important theorems on curves of the third order are due to
Hesse . He determined t he curve of the 14th order , which passes
through the 56 points of contact of the 28 bi- tangents of a curve of
the fourth order . His great memoir on this subj ect (Crelle , 1855)
was published at the same time as was a paper by J . Steiner treating
of the same subj ect .
Hesse ’s income at Konigsberg had not kept pace with his growing

reputation . Hardly was he able to support himself and family . In
1855 he accepted a more lucrative position at Halle , and in 1856 one
at Heidelberg . Here he remained until 1868

,
when he accepted a

posi tion at a technic school In M unich .

1 At Heidelberg he revised
and enlarged upon his previous researches

,
and published In 186 1 his

Vorlesungen tiber die Analytische Geometrie des Raumes , insbesondere
uber Flachen . 2 . Ordnung . M ore elementary works soon followed.

While in Heidelberg he elaborated a principle
,
his “

Uebertragungs

princip .

”According to thi s
,
there corresponds to every point in a

plane a pair of points in a line
,
and the proj ective geometry of the

plane can be carried back to the geometry of points in a line .
The researches of Plii ck er and Hesse were continued in England

by A . Cayley
,
G . Salmon

,
and J . J . Sylvester . I t may be premised

here that among the early writers on analytical geometry in England
was James Booth (1806 whose chief results are embodi ed in hi s
Treatise on S ome New Geometrical M ethods, and James M acCu l lagh

(1809 who was professor of natural phi losophy at Dublin ,
and made some valuable discoveries on the theory of quadrics . The
influence of these men on the progress of geometry was insign ificant,
for the interchange of scientific results between diflerent nations was
not so complete at that time as might have been desired . In further
illustration of this

,
we mention that M . Chasles in France elaborated

subjects whi ch had previously been disposed of by J . Steiner in Ger
many

,
and Steiner published researches which had been given by
1 Gustav Bauer , Geda

'

chtnissrede auf Otto Hesse
,
Munchen , 1882 .
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Clebsch had shown how elliptic functions could be advantageously
applied to M alfatti

’

s problem . The idea involved therein
,
viz . the use

of higher transcendentals in the study of geometry
,
led him to his great

est di scoveries . Not onl y did he apply Abelian functions to geometry,
but conversely

,
he drew geometry into the servi ce of Abelian functions .

Clebsch made liberal use of determinants . His study of curves and
surfaces began with the determination of the points of contact of lines
which meet a surface in four consecutive points . G . Salmon had
proved that these points lie on the intersection of the surface with a
derived surface of the degree 1 1n

—
24, but his solution was given in

inconvenient form. Clebsch
’
s investigation thereon is amost beautiful

piece of analysis .
The representation of one surface upon another (Flachenabbildung),
so that they have a ( 1 , 1)correspondence , was thoroughly studied for
the first time by Clebsch . The representation of a Sphere on a plane
is an old problem whi ch drew the attention of P tolemy , Gerard M er

cator
, J . H . Lambert

,
K . F . Gauss , J . L . Lagrange . Its importance in

the construction of maps is obvious . Gauss was the first to represent
a surface upon another w i th a view of more easily arriving at its
properties . -J . P lucker

,
M . Chasles

,
A . Cayley

,
thus represented. on a

plane the geometry of quadric surfaces ; Clebsch and L . Cremona
,
that

of cubic surfaces . Other surfaces have been studied in the same way
by recent wri ters

,
particularly M ax Nother of Erlangen

,
Angelo

A rmenante (1844—1878)of Rome , Fel ix Klein ,
Georg H . L . Korndorfer ,

Ettore Caporal i (1855—1886)of Naples, H . G. Zeuthen of Copenhagen .

A fundamental question which has as yet received only a partial an
swer is this :What surfaces can be represented by a (1 , 1)correspond
ence upon a given surface? This and the analogous question for
curves was studied by C lebsch . Higher correspondences between
surfaces have been investigated by A . Cayley and M 1Nother. Im
portant bearings upon geometry has Riemann ’s theory of birational
transformations . The theory of surfaces has been studied by Joseph
Alfred S erret 5)professor at the Sorbonne in Paris , Jean
Gaston Darboux of Paris , John Casey (1820—1891)of Dublin , Wi l l iam
Roberts (1817—1883)of Dublin , Heinrich S chrb

'

ter (1829
—
1892)of

Breslau
,
Elwin B runo Christofiel (1829 professor at Zurich ,

later at S trassburg . Chri‘stoffel wrote on the theory of potential , on
minimal surfaces , on the so-called transformation of

"

Christoff el , of

isothermic surfaces , on the general theory of curved surfaces . His
researches on surfaces were extended by Jul iusWeingarten 1836

—
1910)

of the University of Freiburg and Hans von Mangoldt of Aachen , in
1882 . AS we shall see more ful ly later, surfaces of the fourth order
were investigated by E . E . Kummer , and Fresnel

’ s wave- surface ,
studi ed by W . R . Hamil ton , is a particular case of Kummer

’ s quartic
surface

,
with sixteen double points and sixteen S ingular tangent planes .1

1 A . Cayley, Inaugural Address, 1883 .
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Prominent in these geometric researches was Jean Gaston Dar
boux (1842 He was born at Nimes

,
founded in 1870 ,

with the
collaboration of Gu i l laume Jules Hoitel ( 1823—1886)of Bordeaux and
Jules Tannery,

the Bul letin des sciences mathématiques et astronomiques ,
and was for half a century conspicuous as a teacher . In 1900 he
became permanent secretary of the Paris Academy of Sciences

,
in

which position he was succeeded after his death by Emi l P icard . By
his researches

,
Darboux enriched the synthetic , analytic and infin

i tesimal geometries
,
as well as rational mechanics and analysis . He

wrote Legons sur la the
’

orie gene
’

rale des surfaces et les appl ications

géome
’

triques du calcul infinitesimal , Paris , 1887—1896 , and Legons sur

les systemes orthogonaux ct les coordonnees curvil ignes , Paris , 1898 . He
investigated triply orthogonal systems of surfaces

,
the deformation

of surfaces and rolling of applicable surfaces
,
infinitesimal deforma

tion
,
spherical representation of surfaces

,
the development of the

moving axes of co-ordinates
,
the use of imaginary geometric elements ,

the use of isotropic cylinders and developables ;
1 he introduced

pentaspherical coordi nates .
Eisenhart says : “

B arboux was a strong advocate of the use of
imaginary elements in the study of geometry. He believed that their
use was as necessary in geometry as in analysis . He has been im
pressed by the success with which they have been employed in the
solution of the problem of minimal surfaces . From the very beginning
he made use in his papers of the isotropic line

,
the null sphere (the

isotropic cone)and the general isotropic developable . In his first
memoir on orthogonal systems of surfaces he Showed that the envelope
of the surfaces of such a system

,
when defined by a Single equation ,

is an isotropic developable . Darboux gives to Edouard Com
bescure (1819—P)the credit of being the first to apply the considera
tions of kinematics to the study of the theory of surfaces with the
consequent use of moving co-ordinate axes . But to Darboux we ar
indebted for a realization of the power of this method

,
and for i ts

systematic development and exposition . Darboux
’

s ability was
based on a rare combination of geometrical fancy and analytical
power. He did not sympathize with those who use only geometrical
reasoning in attacking geometrical problems

,
nor with those who feel

that there is a certain vi rtue in adhering strictly to analytical proc
esses . In common with M onge he was not content with dis
coveries

,
but fel t that i t was equally important to make di sciples .

Like thi s di stinguished predecessor he developed a large group of
geometers

,
including C . Guichard

,
G . Koenigs

,
E . Cosserat

,
A . De

moulin
,
G . Tzitzeica

,
and G . Demartres . Their brilliant researches

are the best tribute to his teaching .

”
Proceeding to the fuller consideration of recent developments

,
we

1Am.

’

Math. Monthly, Vol . 24 ,
101 7 , p . 354 . See L . P . Eisenhart

’
s

“
Darboux

’
s

Contribution to Geometry
”
in B ul l . Am. Math. S oc .

, Vol . 24 , 1918 , p . 2 27 .
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quote from H . F . Baker ’s address before the International Congress
held at Cambridge in 191 2 :

1 “The general theory of Higher Plane
Curves would be impossible without the notion of the genus of a
curve . The investigation of Abel of the number of independent in
tegrals in terms of which his integral sums can be expressed may thus
be held to be of paramount importance for the general theory . This
was further emphasized by G . F . B . Riemann ’s consideration of the no
tion of birational transformation as a fundamental principle . After
thi s two streams of thought were to be seen . First R . F . A . Clebsch

remarked on the existence of invariants for surfaces
,
analogous to the

genus of a plane curve . This number he defined by a double integral ;
i t was to be unaltered by birational transformation of the surface .
Clebsch

’

S idea was carried on and developed by M . Noether . But
also A . Brill and Noether elaborated in a g eometrical form the
results for plane curves which had been obtained with transcen

dental considerations by N . H . Abel and G . F . B . Riemann . Then
the geometers of Italy took up Noether

’
s work with very remark

able genius
,
and carried i t to ‘a high pitch of perfection and clear

ness as a geometrical theory . In connection therewith there arose
the important fact

,
which does not occur in Noether ’s papers

,
that

i t is necessary to consider a surface as possessing two genera ; and
the names of A . Cayley and H . G . Zeuthen Should be referred to at
this stage . But at this time another stream was running in France .
E . Picard was developing the theory of Riemann integrals—S ingle
integrals

,
not double integrals— upon a surface . How long and

laborious was the task may be j udged from the fact that the publica
tion of P icard ’s book occupied ten years—and may even then have
seemed to many to be an artificial and unproductive imitation of
the theory of algebraic integrals for a curve . In the light of subse
quent events

,
P icard ’s book appears likely to remain a permanent

landmark in the history of geometry. For now the two streams ,
the purely geometrical in Italy

,
the transcendental in France

,
have

united. The results appear to me at least to be of the greatest im
portance . The work of E . Picard in question is the The’ arie des
fonctions algébriques de deux variables indépendantes , which was brought
out in conj unction with Georges Simart between the years 1897 and
1906 .

H . F . Baker proceeds to the enumeration of some individual re
sults: Guido Castelnuovo of Rome has shown that the deficiency of
the characteris tic series of a linear system of curves upon a surface can
not exceed the diff erence of the two genera of the surface . Federigo
Enriques of Bologna has completed this result by showing that for an
algebraic system of curves the characteristic series is complete . Upon
this resul t

,
and upon E . Picard ’s theory of integrals of the second

1 Proceed. of the 5th I ntern . Congress , Vol . I , Cambridge , 19 13 , p . 49 . For more

detail
,
consul t H . B . Baker in the P roceed . of the London Math. S oc . , Vol . 1 2 , 191 2 .
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theory of cubic surfaces . This waS
'

done later also by L . Cremona and
R . Sturm

,
between whom in 1866 the S teiner prize”was divided.

An elegant notation was invented by Andrew Hart , but the notation
which has met with general adoption was advanced by L . Schlafli of
Bern in 1858 i t i s that of the double Six. Schlafli

’

s double six theorem
,

proved by him and by many others S ince , i s as follows:
“ Given five

lines a
,
b, c, d, e whi ch meet the same straight line X ; then may any

four of the five lines be intersected by another line . Suppose that
A

,
B

,
C

,
D

,
E are the other lines intersecting (b, c , d, e), (c, d, e, a),

(d, e, a ,
b), (e, a , b, c), and (a , b, c, d)respectively. Then A

,
B

,
C , D ,

E
will all be met by one other straight line x.

”
L . Schlafli first considered a divi sion of the cubic surfaces into

species
,
in regard to the reality of the 2 7 lines . His final classification

was adopted by A . Cayley. In 1872 R . F . A . C lebsch constructed a
model of the diagonal surface with 2 7 real lines , whi le F . Klein “

es

tablished the fact that by the principle of continuity all forms of real
surfaces of the third order can be derived from the particular surface
having four conical points ;

”he exhibi ted a complete set of models
of cubic surfaces at the World ’s Fai r in Chi cago in 1894 . In 1869
C . F . Geiser showed that the projection of a cubic surface from a point
upon i t

,
on a plane of proj ection parallel to the tangent plane at that

point , i s a quarti c curve ; and that every quartic curve can be generated
i n this way .

“The theory of varieties of the third order, says A .

Henderson
,
that is to say

,
curved geometric forms of three dimen

sions contained in a Space of four dimensions
,
has been the subject

of a profound memoir by Corrado S egre (1887)of Turin . The depth
and fecundity of thi s paper i s evinced by the fact that a large pro
portion of the proposi tions upon the plane quartic and i ts bitangents,
Pascal ’ s theorem

,
the cubic surface and i ts 2 7 lines , Kummer

’s sur
face and i ts configuration of sixteen singular points and planes

,
and on

the connection between these figures
,
are derivable from proposi tions

relating to Segre ’s cubic variety
,
and the figure of six points or spaces

from which i t Springs . Other investigators into the properties of thi s
beautiful and important locus in space of four dimensions and some of
its consequences are G . Castelnuovo and H . W . Richmond.

”
In 1869 C . Jordan first proved “ that the group of the problem of

the trisection of hyperelliptic functions of the first order is isomorphi c
with the group of the equation of the 2 7th degree , on which the 27
lines of the general surface of the third

'

degree depend .

”In 1887 F .

Klein sketched the effective reduction of the one problem to the other
,

while H . M aschk e
,
H . Burkhardt

,
and A . Witting completed the work

outlined by Klein . The Galois group of the equation of the 2 7 l ines
was investigated also by L . E . Dickson

,
F . Kuhnen

,
H . Weber

,
E

Pascal
,
E . Kasner and E . H . Moore .

Surfaces of the fourth order have been studied less thoroughly than
those of the third . J . Steiner worked out properties of a surface of the
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fourth order in 1844 when he was on a journey to Italy ; that surface
bears this name

,
and later received the attention of E . E . Kummer .

In 1850 Thomas Weddle
1 remarked that the locus of the vertex of a

quadric cone passing through six given points is a quartic surface
and not a twisted cubic as M . Chasles had once stated . A . Cayley
gave a symm etric equation of the surface in 186 1 . Thereupon Chasles
in 186 1 showed that the locus of the vertex of a cone whi ch divides
six given segments harmonically is also a quartic surface ; thi s more
general surface was identified by Cayley with the Jacobian of four
q uadrics , the Weddle surface corresponding to the case in which the
four quadrics have S ix common points . P roperties of the Weddle sur
face were studied also by H . Bateman The plane section of a
Weddle surface is not an arbitrary quartic curve

,
but one for which an

invariant vanishes . Frank Morley proved that the curve contains an
infini ty of configurations B 6

,
where i t is cut by the lines on the sur

face .

In 1863 and 1864 , E . E . Kummer entered upon an intensive study
of surfaces of the fourth order . Noted is the surface named after him
which has 16 nodes . The various shapes it can assume have been
studied by Karl Rohn of Leipzig . I t has received the attention of
many mathematicians

,
including A . Cayley , J . G . Darboux ,

F . Klein
,

H . W. Richmond
,
O . Bolza

,
H . F . Baker

,
and J . I . Hutchinson .

2 I t has
been known for some time that Fresnel ’s wave surface is a case of
Kummer ’s S ixteen nodal quartic surface ; al so it is known that the
surface

'

of a dynamical medium possessing certain general properties
is a type of Kummer

’s surface which can he derived from Fresnel ’s
surface by means of a homogeneous strain . Kummer ’s quartic surface
as a wave surface is treated by H . Bateman The general
Kummer ’s surface appears to be the wave surface for a medium of a
purely ideal character .
F. R . Sharpe and C . F . Craig of Cornell University have studied

birational transformations which leave the Kummer and Weddle

s
urfaces invariant , by the application of a theory due to F. Severi

Quintic surfaces have been investigated at intervals , since 1862 ,
principally by L . Cremona , H . A . Schwarz

,
A . Clebsch

,
M . Noether

R . Sturm
, J . G . Darboux

,
E . Caporali

,
A . Del Re , E . Pascal

,
John E .

Hill and A . B . Basset . No serious attempt has been made to enumer
ate the different forms of these surfaces .
Ruled surfaces with isotropic generators have been considered by
G . M onge

, J . A . Serret
,
S . Lie and others . L . P . Eisenhart of Princeton

determines such a surface by the curve in which it is cut by a plane
and the directions of the projections on the plane of the generators

1 Camb. 69“ Dublin Math. J our .
, Vol . 5 , 1850 , p . 69.

2 Consult R . W. H . T. Hudson ( 1876 Kummer
’

s Quartic S urface, Cam
bridge, 1905.
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of the surface . In th is way a ruled surface of this type is determined
by a set of lineal elements

,
in a plane

,
depending on one parameter .

While the classification of cubic curves was given by I . Newton
and their general theory was well under way two centuries ago , the
theory of quartic curves was not pursued vigorously until the time
of J . Steiner and L . O . Hesse . Neglecting the classification of quartic
curves due to L . Euler

,
G . Cramer and E . Waring

,
new classifications

have been made
,
either according to their genus (Geschlecht)3 , 2 , 1 , 0 ,

or according to topologic considerations studied by A . Cayley in
1865 , H . G . Zeuthen Christian Crone (1877)and others .
J . Steiner in 1855 and L . O . Hesse began researches on the 28 double
tangents of a general quartic ; 24 inflections were found , of which
G . Salmon conjectured and H . G . Zeuthen proved that at most 8 are
real . An enumeration (containing nearly 200 graphs)of the funda
mental forms of quartic curves “when proj ected so as to cut the line
infinity the least possible number of times”was given in 1896 by Ruth
Gentry (186 2 then of Bryn M awr College .

Curves of the fourth order have received attention for many years .
More recently a good deal has been written on special curves of the
fifth order by Frank M orley , Alfred B . Basset

,
Virgil Snyder

,
Peter

Field
,
and others .

Gino Loria of the University of Genoa
,
who has written extensively

on the history of geometry
,
and the history of curves in particular ,

has advanced a theory of panalgebraic curves , which are in general
transcendental curves . By definition , a panalgebraic curve must
satisfy a certain differential equation . A book of reference on curves
was published by Gomes Teixei ra in 1905 at M adrid under the title
Tratado de las curvas especiales notables .

The infinitesimal calculus was first applied to the determination
of the measure of curvature of surfaces by J . Lagrange , L . Euler

,
and

Jean Baptiste M arie M eusnier (1 754—1 793)of Paris , noted for his
military as well as scientific career . M eusnier

’

s theorem
,
relating to

curves drawn on an arbitrary surface
,
was extended by S . Lie and in

1908 by E . Kasner . The researches of G . Monge and E . P . C . Dupin
were eclipsed by the work of K . F . Gauss

,
who disposed of this difli cul t

subj ect in a way that opened new vistas to geometricians . His treat
ment is embodied in the Disqu isi tiones generales ci rca superficies curvas
(1827)and Untersuchungen uber Gegenstande der hoheren Geodasie of
1843 and 1846 . In 1827 he established the idea of curvature as it is
understood to-day . Both before and after the time of Gauss various
definitions of curvature of a surface had been advanced by L . Euler ,
M eusnier

,
M onge

, and Dupin , but these did not meet with general
adoption . From Gauss ’ measure of curvatu re flows the theorem of
Johann August Grunert (1797 professor in Greifswald

,
and

founder in 1841 of the Archiv der M athemati k und P hysi k , that the
arithmetical mean of the radii of curvature of all normal sections
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The metric part of differential geometry occupied the attention
of mathematicians S ince the time of G . M onge and K . F . Gauss

,
and

has reached a high degree of perfection . Less attention has been
given until recently to projective diff erential geometry

,
particularly

to the diff erential geometry of surfaces . G . H . Halphen started with
the equation y=f (x)of a curve and determined functions of y, dy/dx,
d2y/dx

2
,
etc .

,
which are left invariant when x and y are subj ected to

a general proj ective transformation . His early formulation of the
problem is unsymmetrical and unhomogeneous. Using a certain
system of partial diff erential equations and the geometrical theory
of semi-covariants

,
E . J . Wilczynski obtained homogeneous forms

,

such forms being deduced later also by Halphen .

1 Wilczynski treats
of the proj ective diff erential geometry of curves and ruled surfaces

,

these surfaces being prerequisite for his theory of Space curves . Wil
czynsk i treated ruled surfaces by a system of two linear homogeneous
differential equations of the second order . The method was extended
to five-dimensional space by E . B . Stouffer of the University of Kan
sas ? Developable surfaces were studied by W . W . Denton of the
University of Illinois . Belonging to projective differential geometry
are J . G . Darboux

’

s conjugate triple systems which are generalized
notions of the orthogonal triple systems . The proj ective diff erential
geometry of triple systems of surfaces

,
of one-parameter families of

Space curves and conjugate nets on a curved surface
,
and allied topics

,

were studied by Gabriel M arcus Green (1891 of Harvard
University.

Differential projective geometry of hyperspace was greatly advanced
by C . Guichard who introduced two elements depending on two va

riables ; they are the reseau and the congruence. D iff erential geometry
of hyperspace was greatly enriched since 1906 by Corrado Segre of
Turin

,
and by other geometers of I taly

,
particularly Gino Fano of

Turin and Federigo Enriques of Bologna ; 3 also by A . Ranum of
Cornell

,
C . H . Sisam then of Illinois and C . L . E . M oore of the Massa

chusetts Institute of Technology .

The use of vector analysis in diflerential geometry goes back to
H . G . Grassmann and W . R . Hamilton

,
to their successors P . G . Tait ,

C . Maxwell , C . Burali-Forti , R . Rothe and others . These men have
introduced the terms “ grad

,

”“
div ,

”“ rot .”A geometric study of
trajectories with the aid of analytic and chiefly contact transforma
tions was made by Edward Kasner of Columbia University in his
Princeton Colloquium lectures of 1909 on the

“ differential—geometric
aspects of dynamics .”

1 See E.J.Wilczynsk i in New Haven Colloquium,
1906 . New Haven , 1910 , p. 156 ;

also his P roj ective Di_[j
'

erential Geometry of Curves and Ruled S urfaces , Leipzig , 1906 .

2 Bul l . Am. Math. S oc .
, Vol . 18 , p . 444 .

3 See Enrico Bompiani in P roceed. 5 th I ntern . Congress , Cambridge, Cambridge,
19 13 , Vol . II , p . 22 .
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Analysis S i tus

Various researches have been brought under the head of analysis
S i tus .”The subj ect was first investigated by G . W . Leibniz , and
was later treated by L . Euler who was interested in the problem to
cross all of the seven bridges over the
Pregel river at Konigsberg without passing 7twice over any one

,
then by K . F . Gauss ,

whose theory of knots (Verschlingungen) D § Q
has been employed more recently by Jo
hann Benedict Listing (1808—1882)of Gottingen , Oskar Simony
of Vienna

,
F . Dingeldey of Darmstadt , and others in their topologic

studies .”P . G . Tait was led to the study of knots by Sir Wil liam
Thomson ’s theory of vortex atoms . Through Rev . T . P . Kirkman
who had studied the properties of polyhedra

,
Tait was led to study

knots also by the polyhedral method ; he gave the number of forms
of knots of the first ten orders of knottiness . Higher orders were
treated by Kirkman and C . N . Little . Thomas P enyngton Kirkman 1

(1806—1895)was born at Bolton , near Manchester . During boyhood
he was forced to follow his father ’s business as dealer in cotton and
cotton waste . Later he tore away

,
entered the University of Dublin

,

then became vicar of a parish in Lancashire . AS a mathematician
he was almost entirely self- taught . He wrote on pluquaternions In

volving more imaginari es than i
, j , k , on group theory , on mathe

matical mnemon i cs producing what De M organ called “ the most
curious crocket I ever saw

,

”on the problem of the “ fifteen school
girls”who walk out three abreast for seven days

,
where i t is requi red

to arrange them daily so that no two shall walk abreast more than
once . This problem was studied also by A . Cayley and Sylvester

,

and is related to researches of J . S teiner .
Another unique problem was the one on the coloring of maps

,
first

mentioned by A . F . Mobius in 1840 and first seriously considered by
Francis Guthrie and A . De M organ . How many colors are necessary
to draw any map so that no two countries having a line of boundary
in common Shall appear in the same color? Four different colors
are found experimentally to be necessary and suffi cient , but the proof
is diffi cul t. A . Cayley in 1878 declared that he had not succeeded
in obtaining a general proof . Nor have the later demonstrations by
A . B . Kempe

,
P . G . Tait , P . J . Heawood of the University of Durham

,

W . E . Story of Clark University , and J . Peterson of Copenhagen
removed the difli cul ty.

2 Tait ’s proof leads to the interesting con
clusion that four colors may not be suffi cient for a map drawn on a
multiply-connected surface like that of an anchor ring . Further
studies of maps on such surfaces , and of the problem in general , are

1 A . M acfarlane , Ten Bri tish Mothematicians , 1916 ; p . 1 22 .

2W. Ahrens , Unterhaltungen and Spi ele, 190 1 , p . 340 .
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due to O . Veblen (191 2)and G . D . Birkhoff On a surface of
genus zero “ i t is not known whether or not only four colors always
sufli ce .

”A S imi lar question considers the maximum possible number
of countries

,
when every country touches every other along a line .

Lothar Heff ter wrote on thi s conundrum
,
in 1891 and again in later

articles
,
as did also A . B . Kempe and others . In the hands of Riemann

the analysis S i tus had. for i ts obj ect the determination of what remains
unchanged under transformations brought about by a combination
of infinitesimal di stortions . In continuation of his work

,
Walter Dyck

of M unich wrote on the analysis Si tus of three-dimensional Spaces .
Researches of this sort have important bearings in modern mathe
maties

,
particularly in connection with correspondences and di ff er

ential equations .1

Intrinsic Co—ordinates

AS a reaction against the use of the arbitrary Cartesian and polar
co-ordinates there came the suggestion from the philosophers K . C . F .

Krause (1 781 A . Peters (1803—1876)that magnitudes inherent
to a curve be used

,
such as s

,
the length of arc measured from a fixed

point
,
and (0, the angle which the tangent at the end of s makes with

a fixed tangent . Wi l l iam Whewel l (1 794-
1866)of Cambridge , the

author of theHistory of the Inductive S ciences , 1837—1838 , introduced in
1849 the name

“ intrinsic equation”and pointed out its use in study
ing successive evolutes and involutes . The method was used by Wil
liam Walton (1813—190 1)of Cambridge , J . J . Sylvester in 1868

, J .

Casey in 1866
,
and others. Instead of using s and 50, other writers

have introduced the radius of curvature p , and have used either s
and p,

or go and p . The co-ordinates ( (p, p)were employed by
L . Euler and several nineteenth century mathematicians , but alto
gether the co—ordinates (s , p)have been used most . The latter were
used by L . Euler in 1 741 , by Sylvestre Francois Lacroix (1 765
by Thomas Hill (18 18—1891 , who was at one time president of Harvard
College), and in recent years especially by Ernesto Cesaro of the
University of Naples who published in 1896 his Geometria intrinseca
whi ch was translated into German in 1901 by G . Kowalewski under
the title

,
Vorlesungen uber natitrl iche Geometrie ? Researches along

this line are due also toAmedee M annheim (1831—1906)of Paris , the
designer of a well-known Sl ide rule .
The application of intrinsic or natural co-ordinates to surfaces is

less common . Edward Kasner
3 said in 1904 that in the

“ theory of
surfaces

,
natural co—ordinates may be introduced so as to fit into the

1 SeeJ. Hadamard, Four Lectures on Mathematics del ivered at Columbia Universitv
i n 1911 , New York , 19 15 , Lecture III .

20m information is drawn from E. Wol ffing
’

s article on Naturl iche Koor

d inaten
”
in B ibl iotheca mathematica , 3 . S .

, Vol . I , 1900 , pp . 14 2
—159 .

3 Bull . Am. M ath. S oc . , Vol . 1 1 , 1905 , p . 303 .
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seem desirable to depart from our empirical notions so far as to allow
the term curve to be applied to a region

,
more restricted definitions

of i t become necessary . C . Jordan demanded that a curve
Should have no double points in the interval aS tS b. Schon

flies regards a curve as the frontier of a region . 0 . Veblen defines i t
in terms of order and linear continui ty . W . H . Young and Grace C .

Young in their Theory of S ets of P oints define a curve as a plane set
of points

,
dense nowhere in the plane and bearing other restrictions ,

yet such that it may consist of a net-work of arcs of Jordan curves .
Other curves of previously unheard of properties were created as
the resul t of the generalization of the function concept . The con

n =oo

tinuous curve represented by y= 2 b”cos n(anx), where a is an even
integer 1

,
b a real positive number 1

,
was shown by Weierstrass 1

to possess no tangents at any of its points when the product ab exceeds

a certain limi t ; that is , we have here the startling phenomenon of a
continuous function which has no derivative . As Christian Wiener
explained in 188 1

,
this curve has countless oscillations withi n every

finite interval . An intuitively simpler curve was invented by Helge
v . Koch of the University of S tockholm in 1904 (Acta math ,

Vol . 30 ,
1906 , p . 145)which is constructed by elementary geometry , is con
tinuous

,
yet has no tangent at any of i ts points ; the arc between any

two of i ts points is infinite in length . While this curve has been repre
sented analytically

,
no such representation has yet been found for

the so- called H-curve of Ludwig Boltzmann of Vienna
,

in Math. Annalen ,
Vol . 50 , 1898 , which is continuous , yet tangentless .

The adjoining figure shows its construction . Boltzmann used it to
visualize theorems in the theory of gases .

Fundamental P ostulates

The foundations of mathematics
,
and of geometry in particular ,

received marked attention in Italy. In 1889 G . Peano took the novel

1 P . du Bois-Reymond Versuch einer K lassification der w il lkurl ichen Funk

tionen reel ler A rgumente ,
”Grelle, Vo l . 74 , 1874 , p . 29 .
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view that geometric elements are mere things , and laid down the
principle that there Should be as few undefined symbols as possible .

In 1897—9 his pupil Mario Pieri (1860—1904)of Catania used only two
undefined symbols for proj ective geometry and but two for metric
geometry. In 1894 Peano considered the independence of axioms .
By 1897 the Italian mathematicians had gone so far as to make i t a
postulate that points are classes . These fundamental features elab
orated by the Itali an school were embodied by David Hilber t of
Gottingen

,
along with important novel considerations of his own

,
in

his famous Grundlagen der Geometrie, 1899. _A fourth enlarged edi tion
of thi s appeared in 1913 . E . B . Wilson says in praise of Hilbert: The
archimedean axiom

,
the theorems of B . Pascal and G . Desargues

,
the

analysis of segments and areas
,
and a host of things are treated either

for the first time or in a new way
,
and with consummate skill . We

should say that i t was in the technique rather than in the philosophy
of geometry that Hilbert created an epoch .

”1 In Hilbert ’s Space of
1899 are not all the points which are in our Space , but only those that,
starting from two given points

,
can be constructed with rul er and

compasses . In his space
,
remarks Poincaré

,
there is no angle of

So in the second edi tion of the Grundlagen ,
Hilbert introduced the

assumption of completeness
,
which renders his space and ours the

same . Interesting is Hilber t’s treatment of non-Archimedean geom
etry where all hi s assumptions remain true save that of Archimedes ,
and for which he created a system of non-Archimedean numbers .
This non-Archimedean geometry was first conceived by Gi useppe
Veronese (1854 professor of geometry at the University of
Padua . Our common space is only a part of non-Archimedean
Space . Non—Archimedean theories of proportion were given in 1902 by
A . Kneser of B reslau and in 1904 by P . J . Mollerup of Copenhagen .

Hilbert devoted in his Grundlagen a chapter to Desargues ’ theorem.

In 190 2 F . R . M oulton of Chi cago outlined a simple non-Desarguesian

plane geometry .

In the United States
,
George Bruce Halsted based his Rational

Geometry, 1904 , upon Hilbert
’s foundations . A second

,
revised edition

appeared in 1907 . One of Hilbert ’s pupils
,
Max W . Dehn , showed

that the omission of the axiom of Archimedes (Eudoxus)gives rise
to a semi-Euclidean geometry in which S imilar triangles exist and their
sum is two right angles

,
yet an infinity of parallels to any straight

l ine may be drawn through any given point .
Systems of axioms upon which to build proj ective geometry were

first studied more particularly by the Italian school—G . Peano , M .

P ieri , Gino Fano of Turin . This subj ect received the attention also
of Theodor Vahlen of Vienna and Friedrich Schur of Strassburg.

Ax ioms of descriptive geometry have been considered mainly by
1 Bu ll . Am. Math. S oc .

, Vol . 1 1
,
1904 , p . 77 . Our remark s on the Ital ian School

are drawn from Wilson ’
s article .
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I talian and American mathematicians
,
and by D . Hilbert. The

introduction of order was achieved by G . Peano by taking the class
of points whi ch lie between any two points as the fundamental idea ,
by G . Vailati and later by B . Russell , on the fundamental conception
of a class of relations or class of points on a straight line , by O . Veblen
(1904)on the study of the properties of one single three- term relation
of order . A . N . Whitehead 1 refers to O . Veblen ’s method : “This
method of conceiving the subject results in a notable simplification

,

and combines advantages from the two previous methods . While
D . Hil bert has six undefined terms (point , straight line , plane , between ,
paral lel

,
congruent)and twenty-one assumptions , Veblen gives only

two undefined terms (point , between)and only twelve assumptions .
However

,
the derivation of fundamental theorems is somewhat

harder by Veblen ’s axioms . R . L . Moore showed that any plane
satisfying Veblen ’s axioms I—VIII , XI is a number-plane and con
tains a system of continuous curves such that , with reference to these
curves regarded as straight lines

,
the plane is an ordinary Euclidean

plane.
In 1907 , Oswald Veblen and J . W . Young gave a completely in

dependent set of assumptions for proj ective geometry
,
in which points

and undefined classes of points called lines have been taken as the
undefined elements . Eight of these assumptions characterize general
projective Spaces ; the addition of a ninth assumption yields properly
projective Spaces ?

Axioms for line geometry based upon the line as an undefined
element and “ intersection”as an undefined relation between un

ordered pairs oi elements
,
were given in 1901 by M . P ieri of Catania ,

and in S impler form
,
in 1914 by E . R . Hedrick and L . Ingold of the

University of M issouri .
Text-books built upon some such system of axioms and possessing

great generality and scientific interest have been written by Federigo
Enriques of the University of Bologna in 1898 , and by O . Veblen
and J . W . Young in 1910 .

Geometric Models

Geometrical models for advanced students began to be manu
factured about 1879 by the firm of L . Brill in Darmstadt . Many
of the early models

,
such as Kummer ’s surface

,
twisted cubics

,
the

tractrix of revolution
,
were made under the direction of F . Klein and

Alexander von Brill . Since about 1890 this firm developed into that
of Martin Schilling ( 1866—1908)of Leipzig. The catalogue of the
firm for 191 1 described some 400 models . Since 1905 the firm of
B . G. Teubner in Leipzig has offered models designed by Hermann

1 The Axioms of Descriptive Geometry, Cambridge, 1907, p . 2 .

2 Bul l . Am. Math. S oc . , Vol . 14, 1908 , p . 251 .
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afl=ax
‘

y
, (C) (D) (E) apply

to the general exponent ax , and finds that (A), (B)and (E)are incom
plete equations , since the left members have

“many
,
many more”

values than the right members , although the right-hand values (infi nite
in number)are all found among the “ infi nite times infinite”values on
the left ; that (C)and (D)are complete equations for the general case.
A failure to recogniz e that equation E is incomplete led Thomas
Clausen (180 1—1885)of Altona to a paradox (Grel le’s Jou rnal , Vol . 2 ,
1827 , p . 286)which was stated by E . Catalan in 1869 in more con
densed form

,
thus : e2n7r i=e2n7f i , where m and n are distinct integers .

Raising both sides to the power 5, there results the absurdi ty ,
e mW= e

—mr
. Ohm introduced a notation to designate some particular

value of at
,
but he did not introduce especially the particular value

which is now called the “ principal value .

”Otherwi se his treatment
of the general power is mainly that of the present time

,
except

,
of

course
,
in the explanation of the irrational . From the general power

Ohm proceeds to the general logarithm
,
having a complex number

as its base . I t is seen that the Eulerian logarithms served as a step
ladder leading to the theory of the general power ; the theory of the
general power

,
in turn , led to a more general theory of logarithms

having a complex base .

The Philosophical Transactions (London , 1829)contain two articles
on general powers and logarithms—one by John Graves

,
the other

by John Warren of Cambridge . Graves
,
then a young man of 23 ,

was a class-fellow of William Rowan Hamilton in Dublin . Graves
became a noted jurist . Hamilton states that reflecting on Graves ’s
ideas on imaginaries led him to the invention of quaternions . Graves
obtains log Thus Graves claimed that gen
eral logarithms involve two arbitrary integers

,
m and m’

,
instead

of simply one
,
as given by Euler . Lack of explicitness involved

Graves In a discussion with A . De M organ and G . Peacock , the out
come of which was that Graves wi thdrew the statement contained
in the title of his paper and implying an error in the Eulerian theory

,

whi le De M organ admitted that if Graves desired to extend the idea
of a logarithm so as to use the base eI + 2m7r i

,
there was no error in

volved In the process . Sim ilar researches were carried on by A . J . H .

Vincent at Lille
,
D . F . Gregory

,
De Morgan , W . R . Hamilton and

G . M . Pagani (1796—1855)but their general logarithmic systems ,
involving complex numbers as bases , failed of recognition as useful
mathematical inventions .1 We pause to Sketch the life of De M organ .

Augu stu s De M organ (1806—187 1)was born at Madura (M adras),
and educated at Trinity College

,
Cambridge . For the determination

of the year of his birth (assumed to be In the nineteenth century)he
proposed the conundrum

,

“ I was x years of age in the year x2. His
1 For references and full er details see F . Cajori in Am. Math. Monthly, Vol . 20

,

1913 , pp . 1 75
—182 .
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scruples about the doctrines of the established church prevented him
from proceeding to the M . A . degree , and from sitting for a fellowship .

I t is said of him
,

“ he never voted at an elec tion , and he never visited
the House of Commons

,
or the Tower , or Westminster Abbey .

”In
1828 he became professor at the newly established University of
London

,
and taught there until 1867 , except for five years , from 1831

1835. He was the first president of the London Mathematical Society
which was founded in 1866 . De M organ was a unique

,
manly char

acter
,
and pre—eminent as a teacher . The value of his original work lies

not so much in increasing our stock of mathematical knowledge as in
putting it all upon a more logical basis . He felt keenly the lack of close
reasoning in mathematics as he received it . He said once :“We know
that mathematicians care no more for logic than logicians for mathe
matics . The two eyes of exact science are mathematics and logic :
the mathematical sect puts out the logical eye

,
the logical sect puts

out the mathematical eye ; each believing that it can see better with
one eye than with two .

”De M organ analyzed logic mathematically ,
and studied the logical analysis of the laws

,
symbols

,
and operations

of mathematics ; he wrote a Formal Logic as well as a Double Algebra ,

and corresponded both with Sir William Hamil ton
,
the metaphysician

,

and Sir William Rowan Hamil ton
,
the mathematician . Few con

temporaries were as profoundly read in the history of mathematics
as was De M organ . N0 subj ect was too insignificant to receive his
attention . The authorship of “ Cocker ’s Arithmetic”and the work
of circle-squarers was investigated as m inutely as was the history of
the calculus . Numerous articles of his lie scattered in the volumes of
the P ennyandEnglishCyclopwdias. In the article “ Induction (M athe

first printed in 1838 , occurs , apparently for the first time
,

the name “mathematical induction”; i t was adopted and popularized
by I . Todhunter

,
in his Algebra . The term “

induction”had been used
by John Wallis“ in 1656 , in his A ri thmetica infini torum; he used the
induction”known to natural science . In 1686 Jacob Bernoulli
criticised him for using a process which was not binding logically and
then advanced in place of i t the proof from n to n+ 1 . This is one of the
several origins of the process of mathematical induction . FromWallis
to De M organ

,
the term “ induction”was used occasionally in mathe

matics
,
and in a double sense

, ( I)to indicate incomplete inductions of
the kind known in natural science

, (2)for the proof from n to n+ 1 . De
Morgan ’s “mathematical induction assigns a distinct name for the
latter process . The Germans employ more commonly the name “ voll
standige Induktion ,

”which became current among them after the use
of it by R . Dedekind in his Was sind und was sol len die Zahlen ,

1887 .

De M organ ’s Difi erential Calcu lus , 1842 , is still a standard work , and
contains much that is original with the author . For the Encyclopaedia
M etropoli tana he wrote on the Calculus of Functions (giving principles
of symbolic reasoning)and on the theory of probability . In the Cal
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culus of Functions he proposes the use of the slant l ine or “ solidus
for printing fractions in the text ; this proposal was adopted by G . G
Stokes in Cayley wrote Stockes ,

“ I think the ‘ solidus ’ looks
very well indeed it would give you a strong claim to be President
of a Society for the prevention of Cruelty to P rinters .”2
Celebrated is De M organ ’s Budget of P aradoxes , London , 1872 , a

second edition of which was edited by David Eugene Smith in 1915.

De M organ published memoirs
,
On the Foundation of Algebra”

in the Trans . of the Cambridge Phi l . S oc. , 184 1 , 1842 , 1844 and 1847 .

The ideas of George Peacock and De Morgan recognize the possi
bility of algebras which differ from ordinary algebra . Such algebras
were indeed not slow in forthcoming

,
but

,
like non-Euclidean geometry

,

some of them were slow in finding recognition . This is true of H . G .

Grassmann
’

s
,
G . Bel lavitis

’

s
,
and B . Peirce ’s discoveries

,
but W . R .

Hamilton ’s quaternions met with immediate appreciation in England .

These algebras off er a geometrical interpretat ion of imaginaries .
Wil liam Rowan Hami lton (1805—1865)was born of Scotch parents

in Dublin . His early education
,
carried on at home

,
was mainly in

languages . At the age of thirteen he is said to have been familiar with
as many languages as he had lived years . About this time he came
across a copy of I . Newton ’s Universal Arithmetic . After reading that

,

he took up successively analytical geometry
,
the calculus

,
Newton ’ s

P rincipia , Laplace
’s M écanique Celeste. At the age of eighteen he pub

l ished a paper correcting a mistake in Laplace ’s work . In 1824 he
entered Trinity College

,
Dublin

,
and in 1827 , while he was still an

undergraduate , he was appointed to the chair of astronomy. C . G . J .

Jacobi met Hamil ton at the meeting of the British Association at
Manchester in 1842 and addressing Section A ,

called Hamilton le

Lagrange de votre pays . Hamilton ’s early papers were on optics .
In 1832 he predicted conical refraction , a discovery by aid of mathe
matics which ranks with the discovery of Neptune by U . J . J . Le
Verrier and J . C . Adams . Then followed papers on the P rinciple of
Varying Action (1827)and a general method of dynamics (1834
He wrote also on the solution of equations of the fifth degree

,
the

hodograph
,
fluctuating functions

,
the numerical solution of differential

equations .
The capital discovery of Hamil ton is his quaternions

,
in which his

study of algebra culminated . In 1835 he published in the Transactions
of the Royal Irish Academy his Theory of Algebraic Couples . He re
garded algebra “ as being no mere art

,
nor language

,
nor primarily

1 G . G . Stokes, Math. and Phys . Papers , Vol . I . Cambridge , 1880 , p . V II ; see also

J. Larmor, M emoir and S cie. Corr . of G . G . S tokes , Vol . I , 1907 , p. 397 .

2An earl ier use of the sol idus in des ignating fractions occurs in one of the very
first text books published in Cal ifornia

,
viz .

,
the Defin icion de las pr incipales

operaciones de arismética by Henri Cambuston ,
26 pages printed at M onterey in

1843 . The solidus appears S l ightly curved .
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extended as was predicted . The change in notation made in France
by Jules Hoii el and by C . A . Laisant has been considered in England
as a wrong step

,
but the true cause for the lack of progress is perhaps

more deep-seated . There is indeed great doubt as to whether the
quaternionic product can claim a necessary and fundamental place
in a system of vector analysis . Physicists claim that there is a loss
of naturalness in taking the square of a vector to be negative .
Widely different opinions have been expressed on the value ‘ of

quaternions . While P . G . Tait was an enthusiastic champion of this
science

,
his great friend

,
William Thomson (Lord Kelvin), declared

that they
,
though beautifully ingenious

,
have been an unmixed

evil to those who have touched them in any way
,
including Clerk

M axwell .”1 A . Cayley
,
writing to Tait in ‘

1874, said ,
“ I admire the

equation d 0'=uqdpq
“

I extremely—it is a grand example of the pocket
map.

”Cayley admi tted the conciseness of quaternion formulas , but
they had to be unfolded into Cartesian form before they could be
made use of or even understood . Cayley wrote a paper “ On Co-or

dinates versus Quaternions
”in the P roceedings of the Royal Society

of Edinburgh
,
Vol . 20

,
to which Tait replied “On the Intrinsic Nature

of the Quaternion M ethod .

In order to meet more adequately the wants of physicists
,
J . W.

Gibbs and A . Macfarlane have each suggested an algebra of vectors
with a new notation . Each gives a definition of his own for the
product of two vectors

,
but in such a way that the square of a vector

is posi tive. A third system of vector analysis has been used by Ol iver
Heaviside in his electrical researches .
What constitutes the most desirable notation in vector analysis

is still a matter of dispute . Chief
,
among the various suggestions

,
are

those of the American school
,
started by J . W . Gibbs and those of the

German-Italian school . The cleavage is not altogether along lines
of nationality. L . Prandl of Hanover said in 1904:

“After long delib
cration I have adopted the notation of Gibbs

,
writing a b for the

inner (scalar), and a><b for the outer (vector)product . If one ob
serves the rule that in “a multiple product the outer product must be
taken before the inner

,
the inner product before the scalar

,
then one

can write with Gibbs a b><c and ab. c without giving rise to doub t
as to the meaning.

”2
In the following we give German-Italian notations first

,
the equiv

alent American notation (Gibbs
’)second . Inner product a Ib , a. b ;

vector-product ab , a><h ; also abc , a b><c ; ab c , ab Icd,
ab 2, ab . cd , R . M ehmke

said in 1904:
“The notation of the German-Italian school is far pref

erable to that of Gibbs not only in logical and methodi cal , but also
in practical respects .

1 S . P . Thompson , Life of Lord Kelvin
, 19 10 , p . 1 138.

2 J ahresb. d . (1. M ath. Vereinig .

,
Vol . 13 , p . 39.
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In 1895 P . Molenbroek of The Hague and S . Kimura
,
then at Yale

University
,
took the first steps in the organization of an International

Association for Promoting the S tudy of Quaternions and Allied
Systems of M athematics . P . G . Tait was elected the first president

,

but could not accept on account of fail ing heal th . Alexander Mac

farlane (1851—1913)of the University of Edinburgh , later of the
University of Texas and of Lehigh University

,
served as secretary of

the Association and was its president at t he time of his death .

At the international congress held in Rome in 1908 a committee
was appointed on the unification of vectorial notations but at the
time of the congress held in Cambridge in 191 2 no defini te conclusions
had been reached .

Vectorial notations were subjects of extended discussion in L ’

En 2

seignement mathe
’

matique, Vols . 1 1
—
14 , 1909

—
191 2 , between C . Burali

Forti of Turin
,
R . M arcolongo of Naples , G . Comberiac of Bourges

,

H . C . F . Timerding of Strassburg, F . Klein of Gottingen
,
E . B .

Wilson of Boston
,
G . Peano of Turin

,
C . G . Knott of Edinburgh

,

Alexander M acfarlane of Chatham in Canada
,
E . Car vallo of Paris

,

and E . Jahnke of Berlin . In America the relative values of notations
were di scussed in 1916 by E . B . Wilson and V . C . Poor .
We mention ‘two topics outside of ordinary physics in which vector

analysis has figured . The generalization of A . Einstein
,
known as

the principle of relativi ty
,
and its interpretation by H . M inkowski

,

have opened new points of Vi ew . Some of the queer consequences of
this theory disappear when kinematics is regarded as identical with
the geometry of four-dimensional Space . H . M ink owski and

,
following

him
,
Max Abraham

,
used vector analysis in a limi ted degree

,
M in

kowsk i usually preferring the matrix calculus of A . Cayley . A more
extended use of vector analysis was made by Gilbert N . Lewis of the
University of California who introduced in his extension to four di
mensions some of the original features of H . G . Grassmann

’
s system.

A “
dyname

”is
,
according to J . Plucker (and others)a system of

forces applied to a rigid body. The English and French call i t a
“
torsor . In 1899 this subject was treated by the Russian A . P .

Kotjelnikoff under the name of proj ective theory of vectors . In 1903
E . Study of Greifswald brought out his book

,
Geometrie der Dynamen ,

in which a line-geometry and kinematics are elaborated , partly by
the use of group theory

,
which are carried over to non-Euclidean

spaces ; Study claims for hi s system somewhat greater generality
than is found in Hamil ton ’s quaterni ons and W. K . Clifford ’s bi
quarternions.

Hermann Gunther Grassmann (1809—1877)was born at S tettin ,
attended a gymnasium at hi s native place (where his father was
teacher of mathematics and physics), and studied theology in Berlin
for three years. His intellectual interests were very broad . He started
as a theologian

,
wrote on physics

,
composed texts for the study of
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German
,
Latin

,
and mathematics

,
edi ted a political paper and a mis

sionary paper , investigated phonetic laws, wrote a di ctionary to the
Rig-Veda

,
translated the Rig-Veda in verse

,
harmonized folk songs

in three voices
,
carried on successfully the regul ar work of a teacher

and brought up nine of his eleven chi ldren—all this in addi tion to the
great mathematical creations whi ch we are about to describe . In
1834 he succeeded J . Steiner as teacher ofmathematics in an industrial
school in Berlin

,
but returned to Stettin in 1836 to assume the duti es

of teacher of mathematics
,
the sciences

,
and of religion in a school

there .

1 Up to thi s , time his knowledge of mathematics was pretty
much confined to what he had learned from hi s father

,
who had

written two books on “Raum lehre”and “
GrOssenlehre.

”But now
he made his acquaintance with the works of S . F . Lacroix

, J . L . La
grange

,
and P . S . Laplace . He noticed that Laplace ’s resul ts coul d

be reached in a Shorter way by some new ideas advanced in his father ’s
books

,
and he proceeded to elaborate this abridged method

,
and to

apply it in the study of tides . He was thus led to a new geometric
analysis. In 1840 he had made considerable progress in its develop
ment

,
but a new book of Schleiermacher drew him again to theology.

In 1842 he resumed mathematical research , and becoming thoroughly
convi nced of the importance of hi s new analysis

,
decided to devote

himself to i t. It now became his ambition to secure a mathematical
chair at a university

,
but in thi s he never succeeded. In 1844 ap

peared his great classical work , the Lineale Ausdehnungslehre, whi ch
was full of new and strange matter

,
and so general

,
abstract

,
and out

of fashion in i ts mode of exposition
,
that i t could hardly have had

less influence on European mathematics during i ts first twenty years
,

had it been published in China. K . F . Gauss
, J . A . Grunert , and A . F .

Mobius glanced over it
,
praised it

,
but complained of the strange

terminology and its
“ philosophi sche Allgemeinh eit.

”Eight years
afterwards

,
C . A . B retschneider of Gotha was said to be the only

man who had read it through . An article in Grel le’s Journal , in
whi ch Grassmann eclipsed the geometers of that time by constructing

,

with aid of hi s method
,
geometrically any algebraic curve

,
remained

again unnoticed . Need we marvel if Grassmann turned his attention
to other subjects

,

—to Schleiermacher ’s philosophy
,
to politics

,
to

phi lology? S till
,
articles by him continued to appear in Grel le’s

Journal
,
and in 1862 came out the second part of his Ausdehnungslehre.

It was intended to show better than the first part the broad scope of
the Ausdehnungslehre

,
by considering not only geometric applica

tions
,
but by treating also of algebraic functions

,
infinite series

,
and

the di fferential and integral calculus . But the second part was no
more appreciated than the first . At the age of fifty-three , thi s won
derful man

,
with heavy heart

,
gave up mathematics

,
and directed hi s

energies to the study of Sanskri t
,
achieving in philology resul ts which

1 Victor Schlegel , Hermann Grassmann , Leipzig , 1878 .
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woode spoke of i t in Dublin as somethi ng above and beyond 4nions .
I have not seen i t

,
but Sir W . Hamil ton of Edinburgh used to say

that the greater the extension the smaller the intention .

Multiple algebra was powerfully advanced by B . Peirce
,
whose

theory is not geometrical , as are those of W . R . Hami l ton and H . G .

Grassmann . Benjamin P eirce (1809—1880)was born at Salem ,
M ass

,

and graduated at Harvard College
,
having as undergraduate carried

the study of mathematics far beyond the limi ts of the college course .

When N . Bowditch was preparing his translation and commentary
of the M écanique Celeste, young Peirce helped in reading the proof
Sheets . He was made professor at Harvard in 1833 , a posi tion whi ch
he retained until his death . For some years he was in charge of the
Nautical A lmanac and superintendent of the United S tates Coast
Survey . He published a series of college text-books on mathematics

,

an Anal ytical M echanics
,
1855, and calculated, together wi th Sears

C . Walker of Washington
,
the orbi t of Neptune. Profound are his

researches on L inear A ssociative Algebra . The first of several papers
thereon was read at the first meeting of the American Association
for the Advancement of Science in 1864 . Lithographed copies of a
memoir were distributed among friends in 1870 , but so small seemed
to be the interest taken in thi s subj ect that the memoir was not

printed until 1881 (Am. Jour . Math.

,
Vol . IV

,
No . Peirce works

out the mul tiplication tables
,
first of single algebras , then of double

algebras
,
and so on up to sextuple

,
making in all 16 2 algebras

,
which

he Shows to be possible on the consideration of symbols A
,
B

,
etc .

,

which are linear functions of a determinate number of letters or units
i
, j , k , l , etc .

,
with coefficients which are ordinary analytical magni

tudes
,
real or imaginary

,

—the letters i
, j , etc .

,
being such that every

binary combination i 2
,
ij , j i , etc .

,
is equal to a linear function of the

letters
,
but under the restriction of satisfying the associative law .

1

Charles S . P eirce
,
a son of Benjamin Peirce

,
and one of the foremost

writers on mathematical logic
,
Showed that these algebras were all

defective forms of quadrate algebras which he had previously dis
covered by logical analysis

,
and for which he had devised a simple

notation . Of these quadrate algebras quaternions is a simple example ;
nonions i s another . C . S . Peirce showed that of all linear associative
algebras there are only three in which division is unambiguous. These
are ordinary Single algebra

,
ordinary double algebra

,
and quaternions

,

from whi ch the imaginary scalar is excluded . He Showed that his
father ’s algebras are operational and matricular . Lectures on mul tiple
algebra were delivered by J . J . Sylvester at the Johns Hopkins Uni
versity

,
and published in various journals . They treat largely of the

algebra of matrices .
While Benjamin Peirce ’s comparative anatomy of linear algebras

was favorably received in England
,
it was criticised in Germany as

1 A . Cayley,
Address before British Association , 1883 .
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being vague and based on arbitrary principles of classification . Ger
man writers along this line are Eduard Study and Georg W . Scheffers.

An estimate of B . Peirce ’s linear associative algebra was given in
1902 by H . E . Hawkes , 1 who extends Peirce

’s method and shows its
full power . In 1898 Elie Cartan of the University of Lyon used the
characteristic equation to develop several general theorems ; he ex
hibits the semi -simple, or Dedekind , and the pseudo-nu l , or nilpotent ,
Sub algebras ; he shows that the structure of every algebra may be
represented by the use of double units

,
the first factor being quad

rate
,
the second non—quadrate . Extensions of B . Peirce ’s results were

made also by Henry Taber . Olive C . Hazlett gave a classification of
nilpotent alegbras .

As Shown above , C . S . Peirce advanced this algebra by using the
matrix theory. Papers along this line are due to F . G . Frobenius and
J . B . Shaw. The latter “ shows that the equation of an algebra de
termines its quadrate units

,
and certain of the di rect units ; that the

other units form a nilpotent system which with the quadrates may
be reduced to certain canonical forms . The algebra is thus made a
sub-algebra under the algebra of the associative units used in these
canonical forms . Frobenius proves that every algebra has a Dede
k ind sub-algebra , whose equation contains all factors in the equation
of the algebra , This is the semi- simple algebra of Cartan . He also
Showed that the remaining units form a nilpotent algebra whose units
may be regu larized

”
(J . B . Shaw). M ore recently

, J . B . Shaw has
extended the general theorems of linear associative algebras to such
algebras as have an infinite number of units .
Besides the matrix theory

,
the theory of continuous grOups has been

used in the study of linear associative algebra . This isomorphism
was first pointed out by H . Poincare the method was followed
by Georg W . Scheffers who classifi ed algebras as quaternionic and
non-quaternionic and worked out complete lists of all algebras to
order five . Theodor Mol ien ,

in 1893 , then In Dorpat , demonstrated
“ that quaternionic algebras contain independent quadrates

,
and that

quaternionic algebras can be classified according to non-quaternionic
types
”
(J . B . Shaw). An elementary exposition of the relation between

l inear algebras and continuous groups was given by L . E . Dickson 2 of
Chicago . This relation “ enables us to translate the concepts and
theorems of the one subj ect into the language of the other subj ect .
It not only doubles our total knowledge , but gives us a better insight
into either subj ect by exhibiting it from a new point of view .

”The
theory of matrices was developed as early as 1858 by A . Cayley in an
important memoir which , in the opinion of J . J. Sylvester , ushered in

1H. E. Hawkes in Am. J our . Math , Vol . 24 , 190 2 , p . 87 . We are using also

J. B . Shaw
’

s Synopsis of L inear Associative A lgebra , Washington , D . C . , 190 7 ,

Introduction . Shaw g ives bibl iography.

2 Bull . Am. Math. S oc . , Vol . 2 2 , 1915 , p . 53 .
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the reign of Algebra the Second . W . K . Clifford ,
‘ Sylvester

,
H . Taber,

C . H . Chapman , carried the investigations much further. The origi
nator of matrices is really W . R . Hamil ton , but his theory , published
in his Lectures on Quaternions , is less general than that of Cayley.

The latter makes no reference to Hamilton .

The theory of determ inants 1 was studied by HoenéWronski (1 778
185 a poor Polish enthusiast

,
l iv ing most the time in France , whose

egotism and wearisome style tended to attract few followers , but who
made some incisive criticisms bearing on the philosophy of mathe
matics ? He studied four Special forms of determinants , which were
extended by Heinrich Ferdinand S cherk ( 1798—1885)of Bremen and
Ferdinand S chweins (1 780

—
1856)of Heidelberg . In 1838 Liouville

demonstrated a property of the special ' forms which were called
wronskians”by Thomas M uir in 188 1 . Determinants received the
attention of Jacques P . M . B inet (1 786—1856)of Paris , but the great
master of this subject was A . L . Cauchy . In a paper (Jour . de l

’

ecole

P olyt. , IX .
,
16)Cauchy developed several general theorems . He in

troduced the name determinant, a term used by K . F . Gauss in 1801 in

the functions considered by him. In 1826 C . G . J . Jacobi began using
this calculus

,
and he gave brilliant proof of its power . In 1841 he

wrote extended memoirs on determinants in Grel le’s Journal , which
rendered the theory easily accessible . In England the study of l inear
transformations of quantics gave a powerful impulse . A . Cayley de
veloped skew-determinants and Pfaffians

,
and introduced the use of

determinant brackets
,
or the familiar pair of upright lines . The more

general consideration of determinants whose elements are formed from
the elements of given determinants was taken up by J . J . Sylvester
( 1851)and especially by L . Kronecker who gave an elegant theorem
known by his name .

3 Orthogonal determinants received the atten
tion of A . Cayley in 1846 , in the study of n2 elements related to each
other by equations

,
also of L . Kronecker

,
F . Brioschi and

others . M aximal values of determinants received the attention of
J . J . Sylvester and especially of J . Hadamard (1893)who
proved that the square of a determinant is never greater than the
norm-product of the lines .
Anton Puchta (1851—1903)of Czernowitz in 1878 and M . Noether
in 1880 showed that a symmetric determinant may be expressed as
the product of a certain number of factors

,
linear in the elements .

Determinants which are formed from the minors of a determinant
were investigated by J . J. Sylvester in 1851 , to whom we owe the

1 Thomas M uir
,
The Theory of Determinants in the Historical Order of Develop

ment [V0] . I] , 2nd Ed .
,
London ,

1906 ; Vol . II , Period 184 1 to 1860 , London , 191 1 .

M uir was Superintendent
-General of Education in Cape Colony.

2 On Wronski , see J. Bertrand in J ournal des S avants , 1897. and in Revue des

Deux-Mondes
,
Feb .

,
1897 . See also L

’
Interme

‘

diaire des M athematiciens , Vol . 23 ,
19 16 , pp . 1 13 , 164

—
16 7 , 18 1

—
183 .

3 E . Pascal
,
Die Determinanten ,

transl . by H . Leitzmann
,
1900 , p . 10 7 .
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1808 . The symbol E to express identity was first used by G . F . B .

Riemann .

1

Modern higher algebra is especially occupied with the theory of
l inear transformations . Its development is mainly the work of A.

Cayley and J . J . Sylvester .
Arthur Cayley (182 1 born at Richmond

, in Surrey , was
educated at Trinity College

,
Cambridge . He came out Senior Wrang

ler in 1842 . He then devoted some years to the study and practice
of law. While a student at the bar he went to Dublin and , alongside
of G . Salmon

,
heard W . R . Ham ilton ’s lectures on quaternions . On

the foundation of the Sadlerian professorship at Cambridge , he ac
cepted the offer of that chair , thus giv ing up a profession promising
wealth for a verymodest provision , but which would enable him to give
all his time to mathematics . Cayley began his mathematical publica
tions in the Cambridge M athemati cal Journal while he was still an
undergraduate . Some of his most brilliant discoveries were made
during the time of his legal practice . There is hardly any subj ect
in pure mathematics which the genius of Cayley has not enriched

,
but

most important is his creation of a new branch of analysis by his
theory of invariants . Germs of the principle of invariants are found
in the writings of J . L . Lagrange

,
K . F . Gauss

,
and particularly of

G . Boole ,
'

who showed
,
in 1841 , that invariance is a property of dis

criminants generally , and who applied it to the theory of orthogonal
substitution . Cayley set himself the problem to determine a priori
what functions of the coefli cients of a given equation possess this prop
erty of invariance , and found , to begin with , in 1845, that the so

called hyper-determinants”possessed it . G . Boole made a number
of additional discoveries . Then J . J . Sylvester began his papers in the
Cambridge andDubl in l ll athematical Journal on the Calculus of Forms.
After this

,
discoveries followed in rapid succession . At that time Cay

ley and Sylvester were both residents of London
,
and they stimulated

each other by frequent oral communications . I t has often been dif
ficu l t to determine how much really belongs to each . In 1882 , when
Sylvester was professor at the Johns Hopkins University

,
Cayley

lectured there on Abelian and theta functions .
Of interest is Cayley ’ s method of work . A . R . Forsyth describes i t
thus : “When Cayley had reached his most advanced generalizations
he proceeded to establish them di rectly by some method or other

,

though he seldom gave the clue by which they had first been obtained
a proceeding which does not tend tomake hi s papers easy reading.

His li terary style is direct
,
simple and clear . His legal training had

an influence
,
not merely upon his mode of arrangement but also upon

his expression ; the resul t is that his papers are severe and present a
curious contrast to the luxuriant enthusiasm which pervades so many

1 L . Kronecker
, Vor lesungen u

’

ber Zahlentheorie, 190 1 , p . 86 .
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1 Curiously
,
Cayley took little interest inof Sylvester ’s papers .”

quaternions .
James Joseph Sylvester (1814—1897)was born in London . His

father ’s name was Abraham Joseph ; hi s eldes t brother assumed in
America the name of Sylvester

,
and he adopted this name too . About

the age of 16 he was awarded a prize of $500 for solving a question
in arrangements for contractors of lotteries in the United S tates ?

In 1831 he entered S t. John
’s College

,
Cambridge

,
and came out

Second Wrangler in 1837 , George Green being fourth . Sylvester ’s
Jewish origin incapaci tated him from taking a degree . From 1838 to
1840 he was professor of natural philosophy at what is now University
College

,
London ; in 1841 he became professor of mathematics at the

Universi ty of Virginia . In a quarrel with two of his s tudents he slightly
wounded one of them with a metal pointed cane

,
whereupon be re

turned hurriedly
,
to England . In 1844 he served as an actuary ; in

1846 he became a student at the Inner Temple and was called to the
bar in 1850 . In 1846 he became associated with A . Cayley ; often
they walked round the Courts of Lincoln ’s Inn

,
perhaps di scussing

the theory of invariants
,
and Cayley (says Sylvester)“ habitually

discoursing pearls and rubies . Sylvester resumed mathematical
research. He

,
Cayley and Will iam Rowan Hamil ton entered upon

discoveries in pure mathematics that are unequalled in Great Britain
S ince the time of I . Newton . Sylvester made the friendship of G . Sal
mon whose books contributed greatly to bring the resul ts of Cayley
and Sylv ester withi n easier reach Of the mathematical public . From
1855 to 1870 Sylvester was professor at the Royal M ili tary Academy
at Woolwich

,
but showed no great efficiency as an elementary teacher .

There are stories of hi s housekeeper pursuing him from home carrying
his collar and necktie . From 1876 to 1883 , he was professor at the
Johns Hopkins University

,
where he was happy in being free to teach

whatever he wished in the way he thought best . He became the first
editor of the American Journal of Mathematics in 1878 . In 1884 he
was elected to succeed H . J . S . Smi th in the chair of Savil ian professor
of geometry at Oxford

,
a chair once occupied by Henry Briggs

,
John

Wallis and Edmund Halley.

Sylvester sometimes amused himself writing poetry . His Laws of
Verse is a curious booklet . At the reading

,
at the Peabody Institute

in Bal timore
,
of his Rosalind poem

,
consisting of about 400 l ines all

rhyming with “ Rosalind
,

”he first read all his explanatory footnotes
,

so as not to interrupt the poem ; these took one hour and a-half. Then
he read the poem i tself to the remnant of hi s audi ence.

1 Proceed -London Royal S ociety, Vol . 58 , 1895 , pp
‘

. 23 , 24.

2H. F . Baker
’
s Biographical Notice in The Collected M ath. Papers of J . J . Syl

vester , Vol . IV , Cambridge , 191 2 . We have u sed also P . A . MacM ahon
’

s notice in

Proceed. Royal S oc . of London , Vol . 63 , 1898 , p . ix. For Sylvester
’

s activ ities in

Bal timore
,
see Fabian Frank lin in J ohns Hopkins Univ. Circulars

,
June

,
1897 ; F .
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Sylvester
’s first papers were on Fresnel ’s optic theory

,
1837 . Two

years later he wrote on C . S turm ’s memorable theorem . Sturm
once told him that the theorem originated in the theory of the com

pound pendulum . S timulated by A . Cayley he made important in
vestigations on modern algebra . He wrote on elimination

,
on trans

formation and canonical forms
,
in whi ch the expression of a cubic

surface by five cubes i s given
,
on the relation between the minor de

terminants of linearly equivalent quadratic functions
,
in whi ch the

notion of invariant factors is implicit
,
whi le in 1852 appeared the

first of hi s papers on the principles of the calcul us of forms. In a
reply that he made in 1869 to Huxley who had claimed that mathe
matics was a science that knows nothi ng of observation

,
induction

,

invention and experimental verification
,
Sylvester narrated his per

sonal experience : “ I discovered and developed the whole theory of
canonical binary forms for odd degrees

,
and

,
as far as yet made out

,

for even degrees too
,
at one eveni ng S itting

,
with a decanter of port

wine to sustain nature ’s flagging energies
,
in a back offi ce in Lincoln ’s

Inn Fields . The work was done
,
and well done

,
but at the usual

cost of racking thought—a brain on fire
,
and feet feeling

,
or feelingless

,

as if plunged in an ice-pail . That n ight we slept no more.

”His reply
to Huxley is interesting reading and bears strongly on the qualities
of mental activity involved in mathemati cal research .

,

In 1859 he
gave lectures on partitions

,
not published until 1897 . He wrote on

partitions again in Baltimore . In 1864 followed his famous proof
of Newton ’s rule . A certain fundamental theorem in invariants
which had formed the basis of an important section of A . Cayley ’s
work

,
but had resisted proof for a quarter of a century was demon

strated by Sylvester in Baltimore . Noteworthy are hi s memoirs on
Chebichev

’

s method concerning the totality of prime numbers wi thin
certain limi ts

,
and his latent roots of matrices . His researches on

invariants
,
theory of equations , multiple algebra , theory of numbers ,

linkages
,
probability

,
constitute important contributions to mathe

matics. His final studi es
,
entered upon after his return to Oxford

,

were on reciprocants or functions of diff erential coeffi cients whose
form is unal tered by certain linear transformations of the variables

,

and a generalization of the theory of concomi tants . In 191 1 , G .

Greenh ill told reminiscently 1 how Sylvester got everybody interested
in reciprocants

,

“ now clean forgotten”; “One day after
,
Sylvester

was noticed walking alone
,
addressing the sky

,
asking it:‘

Are Recipro

cants Bosh? Berry of King’s says the Reciprocant is all Bosh ! ’

There was no reply
,
and Sylvester himself was tiring of the subj ect

,

and so Berry escaped a castigation . But recently I had occasion
from the Aeronautical point of view to work out the theory of a Vortex

Cajori , Teaching and H istory of Mathematics in the Un ited S tates , Washing ton , 1890 ,

pp . 26 1- 2 7 2 .

1Malhematical Gazette
,
Vo l . 6

,
19 1 2 , p . 108 .
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analysis . With Abbé Barnaba Tortol ini (1808—1874)he founded in
1858 the Annal i di matematica pura ed appl icata . Among his pupils
at Pavia were L . Cremona and E . Beltrami . V . Volterra narrates 1

how F . Brioschi in 1858 , with two other young Italians, Enrico B etti
( 1823 later professor at the Universi ty of P isa , and Fel ice
Casorati (1835 later professor at the University of Pavia

,

started on a journey to enter into relations wi th the foremost mathe
maticians of France and Germany .

“The scientific existence of Italy
as a nation dates from this j ourney. It is to the teaching

,
labors

,

and devotion of these three
,
to their influence in the organization of

advanced studies , to the friendly scientific relations that they insti
tuted between Italy and foreign countries, that the existence of a
school of analysts in Italy is due .

”
In Germany the early theory of invariants

,
as developed by Cayley

,

Sylvester
,
and Salmon In England

,
Hermi te In France and F . Brioschi

in Italy
,
did not draw attention until 1858 when S ieg fried Heinrich

Aronhold (1819—1884)of the technical high school in Berlin pointed
out that Hesse ’s theory of ternary cubic forms of 1844 involved in
variants by which that theory could be rounded out . F . G . Eisenstein
and J . Steiner had also given early publication to isolated develop
ments involving the invariantal idea . In 1863 Aronhold gave a
systematic and general exposition of invariant theory
He and Clebsch used a notation of their own , the symbolical notation ,
diff erent from Cayley ’s

,
which was used in the further developments

of the theory in Germany . Great developments were started about
1868

,
when R . F . A . C lebsch and P . Gordan wrote on types of binary

forms
,
L . Kronecker and E . B . Christoff el on bilinear forms

,
F . Klein

and S . Lie on the invariant theory connected with any group of linear
substitutions . Paul Gordan (1837 -

191 2)was born at Erlangen and
became professor there . He produced papers on finite groups

,
par

ticu larly on the simple group of order 168 and its associated curve
y
3 3
z+z x+x

3
y
= 0 . His best known achievement is the proof of the

existence of a complete system of concomitants for any given binary
form.

2 While Clebsch aimed In his researches to devise methods by
which he could study the relationships between invariantal forms
(Formenverwandtschaft), the chief aim of Aronhold was to examine
the equivalence or the linear transformation of one form into another .3

Investigations along this line are due to E . B . Christoffel
,
who showed

that the number of arbitrary parameters contained in the substitution
coefficients equals that of the absolute invariants of the form

,
K.

Weierstrass who gave a general treatment of the equivalence of two

1 Bull . Am. Math. S oc.

, Vol . 7 , 1900 , p . 60 .

2 Nature, Vol . 90 , 1913 , p . 597 .

3We are using Franz M eyer , Bericht uber den gegenwartigen Stand der In

variantentheorie
”
in the

“

J ahresb. d. d. M ath. Vereinigung , Vol . I , 1890
—
9 1 ,

pp . 79
- 292 . See p . 99.
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linear systems of bilinear and quadratic forms , L . Kronecker who ex
tended the researches Oi Weierstrass and had a controversy with C .

Jordan on certain discordant results , J . G . Darboux who~in 1874 gave
a general and elegant derivation of theorems due to K . Weierstrass
and L . Kronecker , G . Frobenius who applied the transformation of
bilinear forms to “

Pfaff ’s problem”:To determine when two given
linear differential expressions of n terms can be converted one into
the other by subj ecting the variables to general point transformations .
The study of invariance of quadratic and bilinear forms from the

stand-point of group theory was pursued by H . Werner S .

Lie (1885)and W . Killing Finite binary groups were exam
ined by H . A . Schwarz and Felix Klein . Schwarz is led to the
problem

,
to find “ all spherical triangles whose symmetric repetitions

on the surface of a Sphere give rise to a finite number of spherical
triangles differing in position ,

”and deduces the forms belonging
thereto . Without a knowledge of what Schwarz and W . R . Hamilton
had done

,
Klein was led to a determination of the finite binary linear

groups and their forms . Representing transformations as motions
and adopting Riemann ’s interpretation of a complex variable on a
Spherical surface

,
F . Klein sets up the groups of those rotations which

bring the five regular solids into coincidence with themselves
,
and the

accompanying forms . The tetrahedron , octahedron and icosahedron
lead respectively to 1 2

,
24 and 60 rotations ; the groups in question

were studied by Klein . The icosahedral group led to an icosahedral
equation which stands in intimate relation with the general equation
of the fifth degree. Kleinmade the icosahedron the centre of his theory
of the quintic as given in his Vorlesungen u

'

ber das I kosaeder und die

Auflb
‘

sung der Gleichungen funften Grades , Leipzig , 1884.

Finite substitution groups and their forms
,
as related to linear

diff erential equations
,
were investigated by R . Fuchs (Crel le, 66 , 68)

in 1866 and later . If the equation has only algebraic integrals
,
then

the group is finite
,
and conversely. Fuchs ’s researches on this topic

were continued by C . Jordan
,
F . Klein

,
and F . Brioschi . Finite ternary

and higher groups have been studied in connection with invariants by
F . Klein who in 1887 made two such groups the basis for the solution
of general equations of the sixth and seventh degrees . In 1886 F . N .

Cole , under the guidance of Klein , had treated the sextic equation in
the Am. Jour . of Math.

,
Vol . 8 . The second group used by Klein was

studied with reference to the 140 lines in space , to which it leads , by
H . M aschke in 1890 .

The relationship of invariantal forms , the study of which was
initiated by A . Cayley and J . J . Sylvester , received S ince 1868 em
phasis in the writings of R . F . A . Clebsch and P . Gordan . Gordan
proved in Crel le, Vol . 69, the finiteness of the system for a S ingle
binary form . This is known as “ Gordan ’s theorem .

”Even in the
later simplified forms the proof of it is involved

,
but the theorem
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yields practical methods to determine the existing systems . G .

Peano in 188 1 generalized the theorem and applied it to the cor
respondences”represented by certain double-binary forms . In 1890

D . Hilbert
,
by using only rational processes

,
demonstrated the finite

ness of the system of invariants arising from a given series of any forms
in n variables . A modification of this proof which has some advantages
was given by W . E . Story of Clarke University . Hilbert ’s research
bears on the number of relations called syzygies

,
a subj ect treated be

fore this time by A . Cayley , C . Hermi te
,
F . Brioschi

,
C . Stephanos

of Athens
, J . Hammond , E . Stroh

,
and P . A . MacMahon .

The symbolic notation in the theory of invariants
,
introduced by

S . H . Aronhold and R . F . A . Clebsch
,
was developed further by P . Gor

dan
,
E . Stroh , and E . Study in Germany . English writers endeavored

to make the expressions in the theory of forms intuitively evident by
graphic representation

,
as when Sylvester in 1878 uses the atomic

theory
,
an idea applied further by W . K . Clifford . The symbolic

method in the theory of invariants has been used by P . A . MacMahon

in the article Algebra”in the eleventh edition of the Encyclopaedia
B ritannica ,

and by J . H . Grace and A . Young in their A lgebra of In
variants

,
Cambridge

, 1903 . Using a method in C . Jordan ’s great
memoirs on invariants

,
these authors are led to novel results

,
notably

to “ an exact formula for the maximum order of an irreducible co
variant of a system of binary forms .”A complete syzygetic theory
of the absolute orthogonal concomitants of binary quantics was con
structed by Edwin B . Elliott of Oxford by a method that is not sym
bolie

,
while P . A . MacMahon in 1905 employs a symbolic calculus in

volving imaginary umbrae for similar purposes . While the theory
of invariants has played an important role in modern algebra and
analytic proj ective geometry

,
attention has been directed also to its

employment in the theory of numbers . Along this line are the re
searches oi L . E . Dickson in the M adison Col loquium of 1913 .

The establishment of criteria by means of which the irreducibility
of expressions in a given domain may be ascertained has been inves
tigated by F . T . v. Schubert K . F . Gauss , L . Kronecker , F . W.

P . SchOnemann ,
F . G . M . Eisenstein , R . Dedekind

,
G . Floquet , L .

Konigsberger , E . Netto , O . Perron
,
M . Bauer , W . Dumas and H.

Blumberg. The theorem of SchOnemann and Eisenstein declares that
if the polynomial xn+c 1 x”" 1

+ —f—cn with integral coefficients is
such that a prime p divides every coeffi cient c l , c”, but p2 does
not go into cn , then the polynomial is irreducible in the domain of
rational numbers . This theorem may be regarded as the nucleus of
the work of the later authors . Floquet and KOnigsberger do not
l imit themselves to polynom ials

,
but consider also linear homogeneous

differential expressions . Blumberg gives a general theorem which
practically includes all earlier results as special cases .1

1 For bibliography see Trans . Am. Math. Soc .
, Vol . 1 7 , 1916 , pp . 51 7

—
544.
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in 1813 in his book Refless ioni intorno al la soluzione dell
’

equazioni

algebraiche, was substantially the same as that given later by P i erre
LaurentWantzel 1 (18 14 but only the second par t ofWantzel

’

s

simplified proof resembles Rufli ni ’s ; the first part is modelled after
Abel ’s . Wantzel

,
by the way

,
deserves credi t for having given the

first rigorous proofs (Liouvi lle, Vol . 2
,
1837 , p. of the im

possibility of the trisection of any given angle by means of ruler and
compasses

,
and of avoiding the irreducible case”in the algebraic

solution of irreducible cubic equations . Wantzel was répéti teur at
the Polytechnic School in Paris . As a student he excelled both in
mathematics and languages . Saint-Venant said of him:

“Ordinarily
he worked evenings

,
not lying down until late ; then he read , and took

only a few hours of troubled sleep
,
making alternately wrong use of

coffee and opium
,
and taking his meals at irregular hours until he

was married . He put unlimi ted trust in hi s constitution
,
very strong

by nature
,
which he taunted at pleasure by all sorts of abuse . He

brought sadness to those who mourn his premature death .

”
Ruffi ni ’s researches on equations are remarkable as containing

anticipations of the algebraic theory of groups ? Rufli ni
’
s

“ per
mutation”corresponds to our term “ group .

”He divided groups into
“
S imple”and “ complex

,

”and the latter into intransitive
,
transitive

imprimitive
,
and transitive primi tive groups . He established the

important theorem for which the name “
Ruflfini

’
s theorem”has

been suggested
,

3 that a group does not necessarily have a subgroup
whose order is an arbitrary divisor of the order of the group . The
collected works of Ruffini are published under the auspices of the
Circolo Matematico di Palermo ; the first volume appeared in 1915
with notes by Ettore Bortolotti of Bologna . A transcendental solu
tion of the quintic involving elliptic integrals was given by Ch . Her
mite (Compt. Rend.

,
1858 , 1865, After Hermi te ’ s first publica

tion
,
L . Kronecker

,
in 1858, in a letter to Hermite , gave a second

solution in whi ch was obtained a simple resolvent of the S ixth degree.
Abel ’s proof that higher equations cannot always be solved alge

braical ly led to the inquiry as to what equations of a given degree
can be solved by radicals. Such equations are the ones discussed by
K . F . Gauss in considering the division of the circle . Abel advanced
one step further by proving that an irreducible equation can always
be solved in radi cals , if , of two of its roots , the one can be expressed
rationally in terms Of the other

,
provided that the degree of the equa

tion is prime ; if i t is not prime , then the solution depends upon that
of equations of lower degree. Through geometrical considerations

,

1 E. Bortolotti
, Influenza , etc .

,
190 2 , p . 26 . Wantzel

’
s proof is given in Nouvelles

Annales Mathématiques , Vol . 4 , 1845 , pp . 57
—65 . See also Vol . 2

, pp . 1 1 7
—
1 27 . The

second part ofWantzel
’

s proof, involving substitution- theory, is reproduced in J. A .

Serret
’

s A lgebre supérieure.

2H . Burkhardt, in Zei tschr . f . M athematik u . P hys ik , Suppl . , 1892 .

3 G . A . M i l ler
,
In B ibl iotheca mathematica, 3 . F . Vol . 10

,
1909
—
19 10 , p . 318 .
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L . O . Hesse came upon algebraically solvable equations of the ninth
degree

,
not included in the previous groups . The subject was power

fully advanced in Paris by the youthful Evariste Galois (18 1 1 -
183

He was born at Bourg- laflf eifi e
‘

,
near Paris . He began to exhi bit

most extraordi nary mathematical genius after his fifteenth year .
His was a short sad and pestered life . He was twice refused ad

mittance to the Ecole Polytechnique
,
on account of inability to meet

the (to him)trivial demands of examiners who failed to recogni ze
his geni us . He entered the Ecole Normale in 1829, then an inferior
school . Proud and arrogant

,
and unable to see the need of the cus

tomary detailed explanations , hi s career in that school was not smooth .

Drawn into the turmoil of the revolution of 1830 ,
he was forced to

leave the Ecole Normale. After several months spent in prison
,
he

was killed In a duel over a love affair . Ordinary text-books he di s
posed of as rapidly as one would a novel . He read J . L . Lagrange ’s
memoirs on equations

,
also writings of A . M . Legendre

,
C . G . J .

Jacobi
,
and N . H . Abel . As early as the seventeenth year he reached

resul ts of the highest importance . Two memoirs presented to the
Academy of Sciences were lost . A brief paper on equations in the
Bul letin de Fe

’

russac
,
1830 , Vol XIII , p . 428 , gives results which seem

to be applications of a general theory . The night before the duel he
wrote his scientific testament in the form of a letter to Auguste Cheva
lier

,
containing a statement of themathematical results he had reached

and ask ing that the letter be published
,
that Jacobi or Gauss pass

judgment , not on their correctness , but on their importance .
”Two

memoirs found among his papers were published by J . Liouvill e in
1846 . Further manuscrip ts were published by J . Tannery at Paris
in 1908 . As a rule Galois did not fully prove his theorems . It was
only with difficulty that Liouv ille was able to penetrate into Galois ’

ideas . Several commentators worked on the task of filling out the
lacunae in Galois’ exposition . Galois was the first to use the word
“ group”in a techni cal sense

,
in 1830 . He divided groups into simple

and compound
,
and observed that there is no simple group of any

composite order less than 60 . The word “ group”was used by A .

Cayley in 1854 , by T . F . Kirkman and J . J . Sylvester in Galois
proved the importan t theorem that every invariant subgroup gives
rise to a quotient group which exhibits many fundamental properties
of the group . He showed that to each algebraic equation corresponds
a group of substitutions which reflects the essential character of the
equation . In a paper published in 1846 he established the beautiful
theorem: In order that an irreducible equation of prime degree be
solvable by radicals

,
it is necessary and suff icient that all i ts roots be

1 See l ife by Paul Dupuy In Annales de l
’

ecole normale supérieure, 3 . S .
,

.Vol XIII ,
1896 . See also E. Picard, Oeuvres math. d

’

Evariste Galois , Paris, 1897 ; J. Pierpont ,
B ul letin Am. M ath. S oc.

,
2 . S .

, Vol . IV ,
1898 , pp . 33 2

—
340 .

2 G . A. Miller in Am. Math. Monthly, Vol . XX , 1913 , p. 18 .
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rational in any two of them . Galois ’ use of substitution groups to
determine the algebraic solvabili ty of equations

,
and N . H . Abel ’s

somewhat earlier use of these groups to prove that general equations
of degrees higher than the fourth cannot be solved by radicals

,
fur

ni shed strong incentives to the vigorous cultivation of group theory.

It was A . L . Cauchy who entered this field next . To Galois are due
also some valuable results in relation to another set of equations

,

presenting themselves in the theory of elliptic functions
,
viz.

,
the

modular equations . To Cauchy has been given the credit of being
the founder of the theory of groups of fini te order

,

1 even though funda
mental results had been prev iously reached by J . L . Lagrange

,
Pietro

Abbati (1 786 P . Ruffini
,
N . H . Abel

,
and Galois . Cauchy ’s

first publication was in 1815, when he proved the theorem that the
number of distinct values of a non- symmetric function of degree n
cannot be less than the largest prime that divides n

,
without becom

ing equal to 2 . Cauchy
’s great researches on "groups appeared in hi s

Exercises d
’

analyse et de physi que mathématique, 1844 , and in articles
in the Paris Comptes Rendus , 1845

—
1846 . He did not use the term

“ group
,

”but he uses (x y z u v w)and other devices to denote sub
stitutions

,
uses the terms cycl ic substitution

,

”“ order of a substitu
tion

,

”“ identical substitution
,

”“ transposition
,

”“ transitive
,

”“
in

transit ive .

”In 1844 he proved the fundamental theorem (stated
but not proved by E . Galois)which is known as Cauchy ’s theorem”:
Every group whose order is divisible by a given prime number pmust
contain at least one subgroup of order p. This theorem was later
extended by L . Sylow . A . L . Cauchy was the first to enumerate the
oiders of the possible groups whose degrees do not exceed six

,
but thi s

enumeration was incomplete . At times he fixed attention on prop
erties of groups without immediate concern as regards applications

,

and thereby took the first steps toward the consideration of abstract
groups . In 1846 J . Liouville made E . Galois ’ researches better known
by publication of two manuscripts . At least as early as 1848 J. A .

Serret taught group theory in Paris . In 1852 , Enrico B etti of the
University of P isa published in the Annal i of B . Tortol ini the first
rigorous exposition of Galois ’ theory of equations that made the
theory intelligible to the general public . The first account of i t given
in a text-book on algebra is in the third edition of J . A . Serret

’
s Alge

bre
,
1866 .

In England the earliest studies in group theory are due to Arthur
Cayley and William R . Hamilton . In 1854 A . Cayley published a
paper in the Phi losophi cal M agazine which is usually accepted as
founding the theory of abstract groups

,
although the idea of abstract

groups occurs earl ier in the papers of A . L . Cauchy , and Cayley
’s

1 Our account of Cauchy
’
s researches on groups is drawn from the article of G . A .

M iller in Bi bl iotheca Wl athernatica , Vol . X . 1909
—
19 10 , pp . 3 1 7

—
3 29 , and that of

Josephine E. Burns in Am. Math. Monthly, Vol . XX ,
19 13 , pp . 141

—148.
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substitutions of n letters which are commutative with every substitu
tion of a regular group G on the same n letters constitute a group
which is S imilar to G . To Jordan is due the fundamental concept of
class of a substitution group and he proved the constancy of the
factors of composition . He also proved that there is a finite number
of primitive groups whose class is a given number greater than 3 ,
and that the necessary and suffi cient condition that a group be solvable
is that its factors of composition are prime numbers .1 Prominent
among C . Jordan ’s pupils is Edmont Moi l let (1865 editor of
L

’
Intermediaire des mathématiciens

,
who has made extensive contribu

tions .
In Germany L . Kronecker and R . Dedekind were the earliest to

become acquainted with the Galois theory. Kronecker refers to it
in an article published in 1853 in the B eri chte Of the Berlin Academy.

Dedekind lectured on it in GOttingen in 1858 . In 1879
—
1880 E . Netto

gave lectures in Strassburg . His S ubsti tutionstheorie, 1882 , was trans
lated into Italian in 1885 by Giuseppe Battagl ini ( 1826—1894)of the
University of Rome

,
and into Engl ish in 1892 by F. N . Cole, then at

Ann Arbor . The book placed the subj ec t within easier reach of the
mathematical public .
In 1862—1863 Ludw ig Sylow (1832—1918)gave lectures on substitu
tion groups in Christiania

,
Norway , which were attended by Sophus

Lie . Extending a theorem given nearly thirty years earlier by A. L
Cauchy ,

Sylow obtained the theorem known as “ Sylow ’s theorem
Every group whose order is divisible by pm,

but not bypm“ , p being a
prime number

,
contains 1+hp subgroups of order pm. About twenty

years later this theorem was extended still further by Georg Frobenius
( 1849—191 7)of the University of Berlin , to the eff ec t that the number
of subgroups is kp+ 1

, k being an integer , even when the order of the
group is divisible by a higher power of p than pm. Sophus Lie took
a very important step by the explicit application of the group concept
to new domains and the creation of the theory of continuous groups.
Marius SOphus Lie (1842—1899)2 was born in Nordfjordeide in Nor
way . In 1859 he entered the University of Christiania , but not until
1868 did this slowly developing youth display marked interest in
mathematics . The writings of J . V. Poncelet and J . P lucker awakened
his genius . In the winter of 1869—1870 he met Felix Klein in Berlin
and they published some papers of j oint authorship . The summer of
1870 they were together in Paris where they were in close touch with
C . Jordan and J . G . Darboux. I t was then that Lie discovered his
contact-transformation which changes the straight lines of ordinary
space over into spheres . This led him to a general theory of trans
formation . At the outbreak oi the Franco-Prussian war

,
F . Klein

1 G . A . M il ler in B ibliotheca mathematica , 3 . S . , Vo l . X ,
1909
—
19 10 , p . 3 23 .

2 F . Engel in B ibliotheca mathematica
, 3 . S . , Vol . I , 1900 , pp . 166—204 ; M . Nother

in M ath. Annalen , Vol . 53 , pp . 1—4 1 .
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left Paris ; S . Lie started to travel afoot through France into Italy ,
but was arrested as a spy and imprisoned for a month until Darboux
was able to secure his release . In 1872 he was elected professor at the
University of Christiania , with all his time available for research . In
1871

—
1872 he entered upon the study of partial differential equations

of the first order
,
and in 1873 he arrived at the theory of transforma

tion groups
,
according to which finite continuous groups are applied

to infinitesimal transformations . He considered a very general and
important kind of transformations called contact- transformations ,
and their application in the theory of partial differential equations
of the first and second orders . As his group theory and theories of
integration met with no appreciation

,
he returned in 1876 to the study

of geometry—minimal surfaces
,
the classification of surfaces according

to the transformation group of their geodetic lines . The starting of
a new journal , the Archivfor Mathematik og Natu rvidenskab

,
in 1876 ,

enabled him to publish his results promptly . G . H . Halphen
’

s pub
l ications of 1882 on diff erential invariants induced Lie to ‘

direct at
tention to his own earlier researches and their greater generality . In
1884 Friedrich Engel was induced by F . Klein and A . Mayer to go to
Christiania to assist Lie in the preparation of a 3 treatise

,
the Theorie

der Transformationsgruppen , 1888—1893 . Lie accepted in 1886 a
professorship at the University of Leipzig . In 1889

—
1890 over-work

led to insomnia and depression of spirits . While he soon recovered
his power for work , he ever afterwards was over- sensitive and mis
trustful of his best friends . With the aid of Engel he published in
1891 a memoir on the theory Of infinite continuous transformation
groups . In 1898 he returned to Norway where he died the following
year. Lie ’s lectures on Diflerentialgleichungen ,

given in Leipzig
,
were

brought out in book form by his pupil , Georg S cheffers , in 1891 . In
1895 F . Klein declared that Lie and H . Poincaré were the two most
active mathematical investigators of the day . The following quota
tion from an article written by Lie in 1895 indicates how his whole
soul was permeated by the group concept :1 “ In this century the
concepts known as substitution and substitution group

,
transforma

tion and transformation group , operation and operation group ,
invariant

,
differential invariant

,
and differential parameter

,
appear

continually more clearly as the most important concepts of mathe
matics. Wh ile the curve as the representation of a function of a
single variable has been the most important object of mathematical
investigation for nearly two centuries from Descartes

,
while on the

other hand
,
the concept of transformation first appeared in this

century as an expedient in the study of curves and surfaces
,
there

has gradually developed in the last decades ageneral theory of trans
formations whose elements are represented by the transformation

1 Berichte d. Koenigl . S aechs . Gesel l schaft, 1895 ; translated by G . A . M iller in Am
M ath. Monthly, Vol . III , 1896 , p . 296 .
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itself while the series of transformations , in particular the transforma
tion groups

,
constitute the obj ec t .”

In close association with S . Lie in the advancement of group theory
and its applications was Fel ix Klein (1849 He was born at
Dusseldorf in Prussia and secured hi s

”

doctorate at Bonn in 1868 . After
studying in Paris , he became privat—docent at Gottingen in 1871 ,
professor at Erlangen in 1872 , at the Technical High School in Mu

nich in 1875, at Leipzig in 1880 and at Gottingen in 1886 . He has been
active not only in the advancement of various branches of mathemat

ics
,
but also in work of organization . Famous for laying out lines of

research is hi s Erlangen paper of 1872 , Vergleichende B etrachtungen

uber neuere geometr ische Forschungen . He became member of the com
mission on the publication of the Encyklop

'

cidie der mathematischen
Wissenschaften and editor of the fourth volume on mechani cs , also
editor of M athematische Annalen

,
1877 , and in 1908 president of the

International Commission on the Teaching of M athematics . AS an
inspiring lecturer on mathematics he has wielded a wide influence
upon German and American students . About 191 2 he was forced by
ill-heal th to discontinue his lectures at GOttingen ,

but in 1914 the ex
citement of the war roused him to activi ty

,
much as J . Lagrange was

aroused at the outbreak of the French Revolution
,
and Klein resumed

lecturing . He has constantly emphasized the importance of both
schools of mathematical thought

,
namely

,
the intuitional school

,
and

the school that rests everythi ng on abstract logic . In his opinion
,

“ the intuitive
g
rasp and the logical treatment should not exclude

,

but should supplement each other .
”

S . Lie ’s method of treating differential invariants was further in
vestigated by K . Zorawski in Acta M ath.

,
Vol . XVI

,
1892
—
1893 . In

190 2 C . N . Haskins determined the number of functionally independ
ent invariants of any order

,
while A . R . Forsyth obtained the invariants

for ordinary Euclidean Space . Diff erential parameters have been
investigated by J . Edmund Wright of Bryn M awr College .

1 Lie ’ s
theory of invariants of finite continuous groups was attacked on logi
cal grounds by E . S tudy of Bonn , in 1908 . The validi ty of this eriti
c ism was partly admi t ted by F . Engel .
Another method of treating differential invariants

,
originally due

to E . B . Christoflel
,
has been called by G . Ricci and T . Levi—Civita

of Padua “ covariant derivation
, (M athematische Annalen ,

Vol . 54 ,
A third method was introduced by H . M aschke 2 who used a

symbolism S imilar to that for algebraic invariants .
Henry W . S tager published in—1916 A Sylow Factor Tablefor thefirst

Twelve Thousand Numbers:For every number up to 1 200 the divisors
of the form p(kp+ 1)are given , where p i s a prime greater than 2 and

1We are using J. E . Wright
’
s Invariants of Quadratic Difi

'

erential Forms
,
1908 ,

pp 5
- 8

2 Trans . Am. Math. S oc .
, Vol . 1 , 1900 , pp . 197

—
204 .
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L . E . Dickson 1 said in 1900 : When a problem has been exhibited
in group phraseology , the possibility of a solution of a certain char
acter or the exact nature Of i ts inherent difli culties is determined by a
study of the group of the problem. As the chemist analyzes
a compound to d etermine the ul timate elements composing i t

,
so the

group- theorist decomposes the group of a given problem into a chain
of simple groups . Much labor has been expended in the de
termination oi simple groups . For continuous groups of a fini te
number of parameters

,
the problem has been completely solved by

W . Killing and E . J . Cartan with the resul t that all such simple
groups

,
aside from five isolated ones

,
belong to the systems investi

gated by Sophus Lie , viz .

,
the general proj ective group

,
the pro

jective g roup of a linear complex, and the projective group leaving
invariant a non-degenerate surface of the second order . The cor
responding problem for infinite continuous groups remains to be
solved . With regard to finite simple groups

,
the problem has been

attacked In two directions . O . Holder
,

2 F . N . Cole
,

3W. Burn side
,

G . H . Ling
,
and G . A . M iller

“

have shown that the only S imple groups
of composite orders less than 2000 are the previously known S imple
groups of orders 60

, 504 , On the other hand
,

var ious infinite systems of finite simple groups have been determined .

The cyclic groups of prime orders and the al ternating group of n
letters (n> 4)have long been recognized as S imple groups . The other
known systems of fini te S imple groups have been discovered in the
study of linear groups . Four systems were found by C . Jordan

,

(Traité des substitutions)in his study of the general linear , the abelian ,
and the two hypoabelian groups , the field of reference being the set
of residues of integers with respect to a prime modulus p. Generaliza
tions may be made by employing the Galois field of order p" (desig
nated GF composed of the p”Galois complexes formed wi th a
root of a congruence of degree n irreducible modulo p. Groups of
linear substi tutions in a Galois field were studied by E . Betti

,
E .

M athieu
,
and C . Jordan ; but the structure of such groups has been

determined only in the past decade . The simplicity of the group of
unary linear fractional substi tutions in a Galois field was first proved
by E . H . Moore (Bul letin Am. Math. S oc .

,
Dec .

,
1 893)and shortly

afterward by W . Burnside . The complete generalization of C . Jor
dan ’s four systems of S imple groups and the determination of three
new triply- infinite systems have been made by the writer”(i . e. by

1 See L . E . Dick son in Compte vendu du II . Congr . intern , Pari s , 1900. Paris,
190 2 , pp . 2 25 , 2 26 .

2 O . Holder proved in Math. Annalen
,
189 2 , that there are only two S imple groups

of composite order less than 200 , viz . ,
those of order 60 and 168 .

3 F . N . Cole In Am . J our Math ,
1893 found that thei c could be only three such

groups between orders 200 and 66 1
,
viz .

,
of orders 660 .

4W. Burnside showed that there was on ly one Simple group of composite order

between 66 1 and 109 2 .
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L . E . Dickson in Aside from the cyclic and alternating groups
,

the known systems of finite simple groups have been derived as quo
tient-groups in the series of composition of certain linear groups .
M iss I . M . Schottenfels of Chicago showed that i t is possible to con
struct two simple groups of the same order .
The determination of the smallest degree (the class of any of the

non- identical substitutions of primi tive groups whi ch do not include
the alternating group was taken up by C . Jordan and has been called
“ Jordan ’s problem .

”It was continued by Alfred Bochert of Breslau
and E . M aillet . Bochert proved in 1892 : If a substitution group of
degree n does not include the alternating group and is more than
S imply transitive

,
i ts Cl’ass exceeds in—r

,
if i t i s more than doubly

transitive i ts class exceeds 3n 1
,
and if i t is more than triply transi

tive its class is not less than %n—1 . E . Maillet showed that when
the degree of a primi tive group is less than 20 2 its class cannot be ob
tained by diminishing the degree by unity unl ess the degree is a power
of a prime number. In 1900 W . Burnside proved that every transitive
permuta tion group in p symbols , p being prime , is either solvable
or doubly transitive.
As regards linear groups

,
G . A . M iller wrote in 1899 as follows .

The linear groups are of extreme importance on account of their
numerous direc t applications . Every group of a finite order can
clearly be represented in many ways as a linear substitution group
since the ordinary substitution (permutation)groups are merely
very special cases of the linear groups . The general question of rep
resenting such a group with the least number of variables seems to
be far from a complete solution . I t is closely related to that of de
termining all the linear groups of a finite order that can be represented
with a small number of variables . Klein was the first to determine all
the finite binary groups (in 1875)while the ternary ones were con
sidered independently by C . Jordan (1880)and H . Valentiner

The latter discovered the important group of order 360 which was
omi tted by Jordan and has recently been proved (by A . Wiman of
Lund)S imply isomorphic to the alternating group of degree 6 . H .

M aschk e has considered many quaternary groups and established
,

in particular
,
a complete form system of the quaternary group of

51840 linear substitutions . HeinrichM aschke (1853—1908)was born
in Breslau

,
studied in Berlin under K . Weierstrass

,
E . E . Kummer

,

and L . Kronecker
,
later in Gottingen under H. A . Schwarz

, J . B .

Listing
,
and F . Klein . He entered upon the study of group theory

under Klein . In 1891 he came to the United States , worked a year
with the Weston Electric Co .

,
then accepteda place at the University

of Chicago .

Linear groups of finite order
,
first treated by Felix Klein

,
were

later used by him in the extension of the Galois theory of algebraic
equations

,
as seen in his Ikosaeder . AS stated above

,
Klein ’s de
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termination of the linear groups in two variables was followed by
groups in three variables

,
developed by C . Jordan and H . Valentiner

and by groups of any number of variables
,
treated by C .

Jordan . Sp
'

ecial linear groups in four variables were di scussed by E .

Goursat (1889)and G . Bagnera of Palermo The complete
determination of the groups in four variables

,
aside from intransi tiv

and monomial types , was carried through by H . F . Blichfeldt of Le
land S tanford University .

1 Says B lichfeldt: There are
,
in the main ,

four distinct principles employed in the determination of the groups
in 2

, 3 or 4 variables :(a)the original geometrical process of Klein .

(b)the processes leadi ng to a diophantine equation , which may be
approached analytically (C . Jordan or geometrically (H . Valen
tiner

,
G . Bagnera

,
H . H . M i tchell); (c)

.

a process involving the relative
geometrical properties of transformations whi ch represent homologies
and like forms (H . Valentiner

,
G . Bagnera

,
H . H . M itchell (d)

a process developed from the properties of the multipliers of the trans
formations

,
which are roots of unity (H . F . Blichfeldt). A new prin

ciple has been added recently by L . Bieberbach
,
though i t had already

been used by H . Valentiner in a certain form . Independent of
these principles stands the theory of group characteristics, of which
G . Frobenius is the discoverer .”
There is a marked diff erence between finite groups of even and of

odd order ? AS W . Burn side points out
,
the latter admi t no self

inverse irreducible representation
,
except the identical one ; all irre

ducible groups of odd order in 3 , 5 or 7 symbol s are soluble . G . A .

M iller proved in 190 1 that no group of odd order with a conjugate
set of operations containing fewer than 50 members could be simple.
W . Burnside proved In 190 1 that transitive groups of odd order whose
degree IS less than 100 are soluble . H . L . Rietz In 1904 extended thi s
last resul t to groups whose degrees are less than 243 . W . Burnside
has shown that the number of prime factors in the order of a simple
group of odd order cannot be less than 7 and that is a lower
limi t for the order of a group of odd degree

,
i f S imple . These results

suggest that
,
perhaps

,
simple groups of odd order do not exist . Recent

researches on groups
,
mainly abstract groups

,
are due to L . E . Dickson

,

Le Vavasseur
,
M . Potron

,
L . I . Neikirk

,
G . Frobenius

,
H . Hilton ,

A . Wiman
, J . A . de Séguier , H . W . Kuhn , A . Loewy

,
H . F . Blichfeldt

,

3

W . A . Manning
,
and many others . Extensive researches on abstract

groups have been carried on by G . A . M iller of the Universi ty of
Illinois . In 1914 he showed , for instance , that a n on-abelian group
can have an abelian group of isomorphisms by proving the existence

1We are using H . F . B l ichfeldt
’
s Finite Col l ineation Groups , Chicago, 1917,

pp 1 74
—
1 77 .

2W. Burnside , Theory of Groups of Finite Order , 2 . Ed. , Cambridge , 191 1 , p . 503 .

3 Consul t G . A . M il ler ’s Third Report on Recent P rogress in the Theory of

Groups of Finite O rder
”
in Bul l . Am. Math. S oc .

, Vol . 14 , 1907 , p . 1 24 .
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then the exact number of positive roots is ascertainable from the
variations of Sign in the series . M ichel Fekete and Georg POIya,
both of Budapest

,
use —

x)n for the same purpose ?
The theory of equations commanded the attention of Leopold

Kroneck er (1823 He was born in Liegnitz near Breslau
,

studied at the gymnasium of his native town under Kummer , later
in Berlin under C . G . J . Jacobi

, J . Steiner
,
and P . Dirichl et

,
then in

Breslau again under E . E . Kummer . Though for eleven years after
1844 engaged in business and the care of his estates , he did not neglect
mathematics

,
and his fame grew apace . In 1855 he went to Berlin

where he began to lecture at the Univers ity in 186 1 . He was a very
stimulating and interesting lecturer . Kumr

'

ner
,
K . Weiers trass

,
and

L . Kronecker constitute the triumv irate of the second mathematical
school in Berlin . This school emphasized severe rigor in demonstra
tions . L . Kronecker dwelt intensely upon arithmetization which
repressed as far as possible all space representations and rested solely
upon the concept of number

,
particularly the positive integer . He

displayed manysided talent and extraordinary abili ty to penetrate
new fields of thought . “ But

,

”says G . Frobenius
,

2 “ conspicuous as
his achievements are in the different fields of number research

,
he

does not quite reach up to A . L . Cauchy and C . G . J . Jacobi in analy
SiS

,
nor to B . Riemann and Weierstrass in function- theory

,
nor to

Dirichl et and Kummer in number- theory .

”Kronecker ’s papers on
algebra

,
the theory of equations and elliptic functions proved to be

diffi cult reading . A more complete and simplified exposition of his
results was given by R . Dedekind and H . Weber . Among the finest
of Kronecker ’s achievements

,

”says Fine
,

3 “were the connections
whi ch he established among the various di sciplines in which he worked:
notably that between the theory of quadratic forms of negative deter
minant and elliptic functions

,
through the S ingu lar moduli which give

rise to the complex multiplication of the elliptic functions
,
and that

between the theory of numbers and algebra , by hi s arithmetical
theory of the algebraic equation .

”He held to the view that the theory
of fractional and irrational numbers could be buil t upon the integral
numbers alone .

“Die ganze zahl
,

”said he
,
schuf der liebe Gott

,

alles Uebrige ist M enschenwerk .

”Later he even denied the existence
of irrational numbers . He once paradoxically remarked to Linde
mann : “Of what use is your beautiful research on the number i r?

Why cogitate over such problems
,
when really there are no irrational

numbers whatever?”
In 1890—1891 L . Kronecker developed a theory of the algebraic equa

tion with numerical coeffi cients
,
whi ch he did not live to publish .

From notes of Kronecker ’s lectures
,
H . B . Fine of Princeton prepared

1 Bull . Am . M ath. S oc .
, Vol . 20 , 1913 , p . 20 .

2 G . Frobenius , Gediichtni ssrede auf Leopold Kronecker , Berlin , 1893 , p . 1 .

3 Bul l . Am. Math. S oc.
, Vol . I , 1892 , p . 1 75.
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an address in 1913 giving Kronecker
’s unpublished results ? “All

who have read Kronecker ’s later writings
,

”says Fine
,

“ are familiar
with his contention that the theory of the algebraic equation in its
final form must be based solely on the rational integer

,
algebraic

numbers being excluded and only such relations and operations being
admi tted as can be expressed in finite terms by means of rational
numbers and therefore ultimately by means of integers . These lec
tures of 1890—91 are chi efly concerned with the development of such
a theory

,
and in particular with the proof of two theorems which

therein take the place of the fundamental theorem of algebra as
commonly stated .

S olution of Numeri cal Equations

Jacques Charles Francois S turm (1803 a native of Geneva
,

Switzerland
,
and the successor of Poisson in the chair of mechanics

at the Sorbonne
,
published in 1829 hi s celebrated theorem determining

the number and situation of real roots of an equation comprised
between given limi ts . De M organ has said that this theorem “

is the
complete theoretical solution of a difficul ty upon whi ch energies of
every order have been employed since the time of Descartes .”S turm
explains in that article that he enjoyed the privi lege of readi ng Four
ier

’

s researches whi le they were still in manuscript and that his own
discovery was the resul t of the close study of the principles set forth
by Fourier . In 1829 S turm published no proof . Proofs were given
in 1830 by Andreas von Ettinghausen (1 796—1878)of Vienna , in
1832 by Charles Choquet et M athi as M ayer in their Algebre , and in
1835 by S turm himself . According to J . M . C . Duhamel

,
S turm ’s

discovery was not the resul t of observation
,
but of a well -ordered

line of thought as to the kind of function that woul d meet the re

q uirements . According to J . J . Sylvester
,
the theorem “ stared him

(Sturm)in the face in the midst of some mechanical investigations
connected with the motion of compound pendulums .”Duhamel and
Sylvester both state that they received their information from Sturm
di rectly . Yet their statements do not agree . Perhaps both statements
are correct

,
but represent different stages in the evolution of the dis

covery in Sturm
’s mind ?

By the theorem of S turm one can ascertain the number of complex
roots, but not their location . That limitation was

,
removed in a bril

l iant research by another great Frenchman
,
A . L . Cauchy . He dis

covered in 1831 a general theorem which reveals the number of roots ,
whether real or complex

,
which lie within a given contour . This

theorem makes heavier demands upon the mathematical attainments
1 Bull . Am. Math. Soc . , Vol . 20 , 19 14 , p . 339 .

2 Consu l t also M . Bocher ,
“
The published and unpubl ished Work of Charles

S turm on algebraic and di ff erential Eq uations
”
in Bull . Am. Math. S oc .

, Vol . 18
,

191 2 , pp. 1—18 .
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of the reader
,
and for that reason has not the celebrity of Sturm’

s

theorem. But i t enlisted the lively interest of men like S turm
, J .

Liouville
,
and F . Moigno .

A remarkable article was published in 1826 by Germinal Dandelin
(1794

—
1847)in the memoirs of the Academy of Sciences of Brussels .

He gave the conditions under which the Newton-Raphson method of
approximation can be used with security . In this part of his research
he was anticipated by both Mourrail le and J . Fourier . In another
part of his paper (the second supplement)he is more fortunate ; there
he describes a new and masterly device for approximating to the roots
Of an equation

,
which constitutes an anticipation of the famous

method of C . H . Graffe . We must add here that the fundamental
idea of Graff e ’

s method is found even earlier
,
in the M iscel lanea

analytica ,
1 76 2 , of Edward Waring . If a root lies between a and b,

a
—b< 1 , and a is on the convex side of the curve

,
then Dandel in

puts x=a+y and transforms the equation into one whose root y is
small . He then multiplies f (y)by f ( -

y)and Obtains
,
upon writing

y
2= z

,
an equation of the same degree as the original one

,
but whose

roots are the squares of the roots of the equation f (y)= 0 . He remarks
that this transformation may be repeated , so as to get the fourth ,
eighth

,
and higher powers

,
whereby the moduli of the powers of the

roots diverge suffi ciently to make the transformed equation separable
into as many polygons as there are roots of distinc t moduli . He ex
plains how the real and imaginary roots can be obtained . Dandel in

’

s

research had the misfortune of being buried in the ponderous tomes
of a royal academy . Only accidentally did we come upon this antici
pation of

'

the method of C . H . Graffe . Later the Academy of Sciences
of B erlin offered a prize for the invention of a practical method of
computing imaginary roots . The prize was awarded to Carl Heinrich

Grafi e (1799 professor of mathematics in Zurich
,
for his paper

,

published in 1837 in Zurich , entitled , Die Auflosung der h
’

o
‘

heren

numerischen Gleichungen . This contains the famous Graffe method ,
”

to which reference has been made . Graffe proceeds from the same
principle as did Mor itz Abraham S tern of Gottingen in
the method of recurrent series

,
and as did Dandel in . By the

'

process
of involution to higher and higher powers

,
the smaller roots are caused

to vanish in comparison to the larger . The law by which the new

equations are constructed is exceedingly S imple . If
,
for example

,

the coeffi cient of the fourth term of the given equation is a 3, then
the corresponding coefli cient of the first transformed equation is
a2—2a2a4+ 2a 1a 5

—
2as. In the computation of the new coefficients ,

Graffe uses logarithms . By this remarkable method all the roots ,
both real and imaginary , are found S imultaneously , without the
necessity of determining beforehand the number of real roots and
the location of each root . The discussion of the case of equal imaginary
roots

,
omitted by Graffe , was taken up by the astronomer J . F . Encke
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and Italian mathematicians have placed the determination of real
and Imaginary roots of numerical equations by the method of infinite
series within reach of the practical computer . The methods them
selves indicate the number of real and imaginary roots

,
so that one

can dispense with the application of Sturm ’s theorem here just as
easily as one can in the Dandelin-Graffe method . Considerable at
tention has been given to the solution of special types—trinomial
equations—by G . Dandel in K . F . Gauss (1840 , J .

Bel lavitis Lord John M ’
Laren The last three used

logarithms of sums and differences , which were first suggested by
G . Z . Leonelli in 1802 and are often called “ Gaussian logarithms .
The extension of the Gaussian method to quadrinomials was under
taken by S . Gundelfinger in 1884 and 1885 , Carl Faerber in 1889, and
Alfred Wiener in 1886 . The extension of the Gaussian method to
any equation was taken up by R . M ehmke

,
professor in Darmstadt ,

who published in 1889 a logarithmic-graphic method of solving nu
merical equations

,
and in 1891 a more nearly arithmetical method of

solution by logarithms . The method is essentially a mixture of the
Newton-Raphson method and the regula falsi , as regards its theoretical
basis . Well known is R . M ehmke

’

s article on methods of computation
in the Encyklopadie der mathematischen Wissenschaften ,

Vol . 1
,
p . 938 .

Magic S quares and Combinatory Analysi s

The latter part of the nineteenth century witnesses a revival of
interest in methods of constructing magic squares . Chief among the
writers on this subj ec t are J . Horner S . M . Drach
Th . Harmuth W . W . R . Ball E . M aillet E . M .

Laq uiere (1880)E . Lucas E . M cClintock Magic
squares of the diabolic”type , as Lucas calls them ,

are designated
“

pandiagonal
”by M cCl in tock . These and S imilar forms are called

Nasik squares by A . H . Frost . An interesting book
,
Magic S quares

and Cubes
,
Chicago

,
1908 , was prepared by the American electrical

engineer
,
W . S . Andrews . S till more recent is the Combinatory Anal

ysis , Vol . I , Cambridge , 1915 , Vol . II , 1916 , by P . A . M acMahon
,

which touches the subj ect of magic squares. Says MacMahon :
“ In

fact
,
the whole subj ect of M agic Squares and connected arrange

ments of numbers appears at fir st Sight to occupy a position whi ch is
completely isolated from other departments of pure mathematics .
The Object of Chapters II and III is to establish connecting links
where none previously existed . This is accomplished by selecting
a certain diff erential operation and a certain algebraical fun ction ,
I
,
p . VIII .

“The ‘
Probleme des Rencontres ’ can be discussed in the same

manner . The reader will be familiar with the old question of the
1 Encyclopedic des sciences mathém. F. I , Vol . 2 , 1906 , pp . 67

—
75 .
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letters and envelopes . A given number of letters are written to dif
ferent persons and the envelopes correctly addressed but the letters
are placed at random in the envelopes . The question is to find the
probability that not one letter is put into the right envelope . The
enumeration connected with this probability question is the first
step that must be taken in the solution of the famous problem of the
Latin Square

,

”I
,
p . IX .

The problem of the Latin Square : The q uestion is to place n dif
ferent letters a

,
b
, c, in each row of a square of n2 compartments

in such wise that
,
one letter being in each compartment

,
each column

involves the whole of the letters . The number of arrangements is
required . The question is famous because

,
from the time of Euler

to that of Cayley inclusive
,
i ts solution was regarded as being beyond

the powers of mathematical analysis. It is solved without difficul ty
by the method of diff erential Operators of whi ch we are speaking .

In fact it is one of the simplest examples of the method whi ch is Shewn
to be

l

capable of solving questions of a much more recondi te charac
ter .”
The extension of the prin ciple of magic squares of the plane to three
dimensional Space has commanded the attention of many . M ost
successful in thi s field were the Austrian Jesui t Adam Adamandus
Kochansky the Frenchman Josef Sauveur the Germans
Th . Hugel , (1859)and Hermann Scheffl er
In Vol . II

,
Major MacMahon gives a remarkable group of identities

discovered by S . Ramanujan of Cambridge which have applications
in the partitions of numbers

,
but have not yet been established by

rigorous demonstration .

Analysis

Under this head we find i t convenient to consider the subj ects of
the differential and integral calculus

,
the calculus of variations

,
in

finite series
,
probabili ty

,
differential equations and integral equations .

An early representative of the critical and philosophical school of
mathematicians of the nineteenth century was Bernard Bolzano

(1781 professor of the philosophy of religion at P rague . In
1816 he gave a proof of the binomial formula and exhibited clear
notions on the convergence of series . He held advanced views on
variables

,
continui ty and limi ts . He was a forerunner of G . Cantor .

Noteworthy is his posthumous tract
,
P aradoxien des Unendl ichen

(Preface , edi ted by his pupil
,
Fr . Pi'ihonsky. Bolzano ’s writings

were overlooked by mathematicians until H . Hankel called attention
to them.

“He has everything
,

”says Hankel
,

“ that can place him
in thi s respect [notions on infinite series] on the same level with Cauchy ,
only not the art pecul iar to the French of refining their ideas and
communicating them in the most appropriate and taking manner .

1 P . A. MacMahon, Combinatory Analysis , Vol . I , Cambridge, 1915 , p. ix.
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So it came about that Bolzano remained unknown and was soon for
gotten .

”H . A . Schwarz in 1872 looked upon Bolzano as the inventor
of a l ine of reasoning further developed by K . Weierstrass . In 1881

O . Stolz declared that all of Bolzano ’s writings are remarkable
“ inasmuch as they start with an unbiassed and acute criticism of the
contributions of the older literature .

”1
A reformer of our science who was eminently successful in reaching
the ear of his contemporaries was Cauchy .

Augu stin
-Lou is Cauchy

2
(1 789—1857)was born in Paris , and re

ceived his early education from his father . J . Lagrange and P . S .

Laplace
,
with whom the father came in frequent contact

,
foretold

the future greatness of the young boy . At the Ecole Centrale du
Pantheon he excelled In ancient classical studies . In 1805 he entered
the Ecole Polytechnique

,
and two years later the Ecole des Ponts et

ChauSSées . Cauchy left for Cherbourg in 1810
,
in the capacity of

engineer . Laplace ’s M e
’

canique Ce
’

leste and Lagrange ’s Fonctions
Analytiques were among hi s book companions there . Considerations
of health induced him to return to Paris after three years . Yielding
to the persuasions of Lagrange and Laplace

,
he renounced engineering

in favor of pure science . We find him next holding a professorship at
the Ecole Polytechnique . On the expul sion of Charles X ,

and the
accession to the throne of Louis Philippe in 1830 , Cauchy , being
exceedingly conscientious

,
found himself unable to take the oath de

manded of him . Being
,
in consequence

,
deprived of his positions

,
he

went into voluntary exile . At Fribourg in Switzerland , Cauchy re

sumed his studies
,
and in 1831 was induced by the king of P iedmont

to accept the chair of mathematical physics
,
especially created for him

at the University of Turin . In 1833 he obeyed the call of hi s exiled
king

,
Charles X

,
to undertake the education of a grandson

,
the Duk e

of Bordeaux. This gave Cauchy an opportunity to visit various parts
of Europe

,
and to learn how extensively his works were being read.

Charles X bestowed upon him the title of Baron . On his return to
Paris in 1838 , a chair in the College de France was offered to him,

but the oath demanded of him prevented his acceptance . He was
nominated member of the Bureau ‘of Longitude

,
but declared ineligible

by the ruling power . During the political events of 1848 the oath was
suspended

,
and Cauchy at last became professor at the Polytechnic

School . On the establishment of the second empire , the oath was re
instated

,
but Cauchy and D . F . J . Arago were exempt from i t . Cauchy

was a man of great piety
,
and in two of his publications staunchly de

fended the Jesuits .
Cauchy was a prolific and profound mathematician . By a prompt

publication of his results
,
and the preparation of standard text-books ,

he exercised a more immediate and beneficial influence upon the great
1 Consul t H . Bergman , Das Philosophische Work Bernard Bolzanos

,
Halle, 1909 .

2 C . A . Valson, La Vie cl les travaux du Baron Cauchy, Paris, 1868.
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bined wi th the indefinite equations in order to determine completely
the maxima and minima of mul tiple integrals

,
was awarded a prize by

the French Academy in 1845 , honorable mention being made of a
paper by C . E . Delaunay . P . F . Sarrus

’

s method was S implified by
A . L . Cauchy . In 1852 Gaspare Mainardi (1800—1879)of Pavia at
tempted to exhibit a new method of discriminating maxima and
minima , and extended C . G . J . Jacobi ’s theorem to double integrals .
Mainardi and F . Brioschi showed the value of determ inants in ex

hibiting the terms of the second variation . In 186 1 Isaac Todhunter

(1820—1884)of St . John ’s College , Cambridge , published his valuable
work on the History of the P rogress of the Calcu lus of Variations , which
contains researches of his own . In 1866 he published amost important
research

,
developing the theory of discontinuous solutions (discussed

in particular cases by A . M . Legendre), and doing for this subj ect what
P . F . Sarrus had done for multiple integrals .
The following are the more important older authors of systematic
treatises on the calculus of variations

,
and the dates of publication:

Robert Woodhouse
,
Fellow of Caius College , Cambridge , 1810 ;

Richard Abbatt in London
,
1837 ; John Hewitt Jel lett (18 17

once Provost of Trinity College
, Dublin , 1850 ; GeorgWilhehn Strauch

(181 1 of Aargau in Switzerland
,
1849 ; Frangois M oigno (1804

1884)of Paris , and Lorentz Leonard Lindelof (1827—1908)of the
University of Helsingfors

,
in 186 1 ; Lewis Buffett Carll in 1881 .

Carll (1844 was a blind mathematician
,
graduated at C0

lumbia College in 1870 and in 1891
—
1892 was assistant in mathematics

there .

That
,
of all plane curves of given length

,
the circle includes a maxi

mum area
,
and of all closed surfaces of given area , the sphere encloses

a maximum volume
,
are theorems considered by Archimedes and

Zenodorus
,
but not proved rigorously for two thousand years until

K . Weierstrass and H . A. Schwarz . Jakob Steiner thought he had
proved the theorem for the circle . On a closed plane curve different
from a circle four non-cyclic points can be selected . The quadrilateral
ob tained by successively joining the S ides has its area increased when
it is so deformed (the lunes being kept rigid)that its vertices are
cyclic . Hence the total area is increased , and the circle has the maxi
mum area . Oskar Perron of Tubingen pointed out in 1913 by an ex
ample the fallacy -of this proof:Let us “prove”that 1 is the largest of
all positive integers . N0 such integer larger than 1 can be the maxi
mum

,
for the reason that its square is larger than itself . Hence , I

must be the maximum. Steiner ’s “ proof”does not prove that among
all closed plane curves of given length there exists one whose area is a
maximum.

1 K . Weierstrass gave a simple general existence theorem
applicable to the extremes of continuous (stetige)functions . Themax

imal property of the Sphere was first proved rigorously In 1884 by
1 See W. B laschke In J ahresb. d. deutsch. Math. Vereinig . Vol . 24, 1915, p. 195.
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H . A . Schwarz by the aid of results reached by K . Weierstrass in the
calculus of variations . Another proof , based on geometrical theorems ,
was given in 190 1 by Hermann M inkowski .
The subj ect of minimal surfaces , which had received theattention of

J . Lagrange
,
A . M . Legendre

,
K . F . Gauss and G . M onge

,
in later

time commanded the special attention of H . A . Schwarz . The blind
physicist of the University of Gand , Joseph Plateau (180 1 in
1873 described a way of presenting these surfaces to the eye by means
of soap bubbles made of glycerine water . Soap bubbles tend to be
come as thick as possible at every point of their surface

,
hence to make

their surfaces as small as possible . M ore recent papers on minimal
surfaces are by Harris Hancock of the University of Cincinnati .
Ernst Pascal of the University of Pavia expressed himself In 1897

on the calculus of variations as fOl lows :1 “ It may be said that this de
velopment [the finding of the diff erential equatio S which the unknown
functions in a problem must satisfy] closes with J . Lagrange

,
for the

later an’alysts turned their attention chiefly to the other
,
more dif

ficult problems of this calculus . The problem is finally disposed of
,

if one considers the Simplicity of the formulas which arise ; wholly dif
ferent is this matter

,
if one considers the subj ect from the standpoint

of rigor of derivation of the formulas and the extension of the domain
of the problems to which these formulas are applicable . This last
is what has been done for some years . I t has been found necessary to
prove c ertain theorems which underlie those formulas and which the
first workers looked upon as axioms

,
which they are not .”This new

field was first entered by I . Todhunter
,
M . Ostrogradski , C . G . J .

Jacobi , J . Bertrand , P . du Bois Reymond , G . Erdmann
,
R . F . A .

Clebsch , but the Incisive researches which mark a turning-point in the
history Of the subj ect are due to K . Weierstrass . As an illustration
of Weierstrass ’s method of communicatiing many of his mathematical
results to others , we quote the following from O . Bolza:2 “

Unfortu

nately they [results on the calculus of variations] were given by Weier
strass only in his lectures [since and thus became known only
very slowly to the general mathematical public . Weierstrass ’s
results and methods may at present be considered as generally known ,
partly through dissertations and other publications of his pupils

,

partly through A . Kneser
’

s Lehrbuch der Variationsrechnung (Braun
schweig

,
partly through sets of notes of

which a great number are in circulation and copies of which are ac
cessible to every one in the library of the M athematische Verein
at Berlin , and in the Mathematische Lesezimmer at Gottingen .

Under these circumstances I have not hesitated to makeuse of Weier
strass ’s lectures just as if they had been published in print .”Weier
strass applied modern requirements of rigor to the calculus of varia

1 E. Pascal , Die Variationsrechnung , ubers. v . A . Schepp ,
L eipzig , 1899 , p. 5

2 O . Bolza, Lectures on the Calculus of Variations , Chicago , 1904, pp. ix , xi .
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tions in the study of the first and second variation . Not only did he
give rigorous proofs for the first three necessary conditions and for the
sufficiency of these conditions for the so-called “weak”extremum

,

but he also extended the theory of the first and second variation to
the case where the curves under consideration are given in parameter
representation . He discovered the fourth necessary condition and a
suffi ciency proof for a so-called strong”extremum

,
which gave for

the first time a complete solution by means of a new method
,
based 011

the so- called Weierstrass’s construction .

”1 Under the stimulus of
Weierstrass

,
new developments , were made by A . Kneser

,
then of

Dorpat
,
whose theory is based on the extension of certain theorems

on geodesics to extremals in general
,
and by David Hilbert of Gift

tingen
,
who gave an “

a priori existence proof for an extremum of a
definite integral—a discovery of far- reaching importance

,
not only for

the Calculus of Variations
,
but also for the theory of differential

equations and the theory of functions (O . Bolza). In 1909 Bolza
published an enlarged German edition of his calculus of variations

,

including the results of Gustav v . Escherich of Vienna
,
the Hilbert

method of proving Lagrange ’s rule of multipliers (multiplikator- regel),
and the J . W . Lindeberg of Helsingfors treatment of the isoperimetric
problem . About the same time appeared J . Hadamard ’s Calcul des
variations recuel l ies par M . Frechet, Paris , 1910 . Jacques Hadamard

( 1865 was born at Versailles , is editor of the Annales sci entifiques
de l

’

e
’

cole normale supérieure. In 191 2 he was appointed professor of
mathematical analysis at the Ecole Polytechnique of Paris as successor
to Camille Jordan . In the above mentioned book he regards the cal
culus of variations as a part of a new and broader “ functional calculus ,
along the lines followed also by V. Volterra in his functions of lines .
This functional calculus was initiated by M aurice Frechet of the Uni
versity of Poitiers in France . The authors include also researches by
W . F . Osgood . Other prominent researches on the calculus of varia
tions are due to J . G.Darboux ,

E . Goursat , E . Zermelo
,
H . A . Schwarz ,

H . Hahn , and to the Americans H . Hancock
,
G . A . Bliss

,
E . R . Hedrick ,

A . L . Underhill , Max Mason . Bliss and Mason systematically ex

tended the Weierstrassian theory of the calculus of variations to
problems in Space .
In 1858 David B ierens de Haan (182 2—1895)of Leiden published his

Tables d
’

Inte
’

grales De
’

finies . A rev ision and the consideration of the
underlying theory appeared in 1862 . It contained 8339 formulas .
A critical examination of the latter

,
made by E . W . Sheldon in 191 2 ,

showed that it was “ remarkably free from error when one imposes
proper limitations upon constants and functions , not stated by Haan .

The lectures on definite integrals
,
delivered by P . G . L . Dirichlet

in 1858 , were elaborated into a standard work in 1871 by Gustav
Ferdinand M eyer of Munich .

1This summary is taken from O . Bolza, op. cit., Preface.
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Abel . His letter to his friend B . M . Holmboe (1826)contains severe
criticisms . It is very in teresting reading

,
even to modern students.

In his demonstration of the binomial theorem he established the
theorem that if two series and their product series are all convergent

,

then the product series will converge towards the product of the
sums of the two given series . Thi s remarkable resul t would dispose
of the whole problem of mul tiplication of series if we had a universal
practical criterion of convergency for semi-convergent series . Since
we do not possess such a criterion

,
theorems have been recently es

tablished by A . Pringsheim of M unich and A . VOSS now of M un ich
which remove in certain cases the necessity of applying tests of con
vergency to the product series by the application of tests to easier
related expressions . A . Pringsheim reaches the following interesting
conclusions:The product of two conditionally convergent series can
never converge absolutely

,
but a conditionally convergent series

,
or

even a divergent series
,
mul tiplied by an absolutely convergent series

,

may yield an absolutely convergent product .
The researches ofN . H . Abel and A . L . Cauchy caused a considerable

stir . We are told that after a scientific meeting in which Cauchy
had presented his first researches on series

,
P . S . Laplace hastened

home and remained there in seclusion until he had examined the
series in hi s M e

’

canique Celeste. Luckily
,
every one was found to be

convergent ! We must not conclude
,
however

,
that the new ideas

at once displaced the old . On the contrary
,
the new views were

generally accepted only after a long struggle . AS late as 1844 A . De

Morgan began a paper on “ divergent series”in
’

this style :“ I believe
it will be generally admitted that the heading of this paper describes
the only subj ect yet remaining

,
of an elementary character

,
on whi ch

a serious schi sm exi sts among mathematicians as to the absolute
correctness or incorrectness of results .”
First in time in the evolution ofmore delicate criteria of convergence

and divergence come the researches of Josef Ludwig Raabe (180 1
1859)of Zurich , in Crel le, Vol . IX ; then follow those of A . De M organ
as given in his calculus . A . De Morgan established the logarithmic
criteria whi ch were di scovered in part independently by J . Bertrand.

The forms of these criteria
,
as given by J . Bertrand and by Ossian

Bonnet
,
are more convenient than De M organ ’s . It appears from

N . H . Abel ’s posthumous papers that he had anticipated the above
named writers in establishing logarithmi c criteria . It was the Opin
ion of Bonnet that the logarithmic criteria never fail ; but P . Du
Bois—Reymond and A . Pringsheim have each discovered series demon
strably convergent in whi ch these criteria fail to determine the con
vergence . The criteria thus far alluded to have been called by Pring
sheim special criteria , because they all depend upon a comparison of
the nth term of the series with special functions a", n n (log etc.
Among the first to suggest general criteria , and to consider the subject



ANALYSIS 375

from a still wider poin t of view ,
culminating in a regul ar mathematical

theory
,
was E . E . Kummer . He established a theorem yieldi ng a test

consisting of two parts
,
the first part of whi ch was afterwards found

to be superfluous . The study of general criteria was continued by
Ulisse Dini (1845—1918)of Pisa , P . Du Bois-Reymond

,
G. Kohn of

Vienna
,
and A . Pringsheim . Du Bois-Reymond div ides criteria into

two classes:criteria of thefirst kind and criteria of the second kind
,
ac

cording as the general nth term,
or the ratio of the (n+ 1)th term and

the nth term
,
is made the basis of research . E . E . Kummer ’s is a

criterion of the second kind . A criterion of the first kind
,
analogous

to this
,
was invented by A . Pringsheim. From the general criteria

established by Du Bois-Reymond and Pringsheim respectivel y, all
the Special criteria can be derived. The theory of Pringsheim is very
complete

,
and off ers

,
in addi tion to the criteria of the fir st kind and

second kind
,
entirely new criteria of a third kind

,
and also generalized

criteria of the second kind
,
whi ch apply

,
however

,
only to series with

never increasing terms . Those of the thi rd kind rest main ly on the
consideration of the limit of the diff erence either of consecutive terms
or of their reciprocals . In the generalized criteria of the second kind
he does not consider the ratio of two consecutive terms

,
but the ratio

of any two terms however far apart
,
and deduces

,
among others

,
two

criteria previously given by Gustav Kohn and W . Ermakoff respec

tively.

It is a strange vicissitude that divergent series
,
which early in the

nineteenth century were supposed to have been banished once for
all from rigorous mathematics

,
Should at i ts close be invited to return .

In 1886 T . J . Stieltjes and H . Poincaré Showed the importance to
analysis of the asymptotic series

,
at that time employed in astronomy

alone . In other fields of research G . H . Halphen
,
E . N . Laguerre , and

T . J . Stiel tjes have encountered particular examples in which , a whole
series being divergent , the corresponding continued fraction was
convergent . In 1894 H . Padenow of Bordeaux , established the possi
bility of defining , in certain cases , a function by an entire divergent
series . This subj ect was taken up also by J . Hadamard in 1892 ,
C . E . Fabry in 1896 and M . Servant in 1899. Researches on divergent
series have been carried on also by H . Poincaré, E . Borel

,
T . J . S tieltjes ,

E . Cesaro
,
W . B . Ford of M ichigan and R . D . Carmichael of Illi

nois. Thomas-J ean S tieltj es (1856—1894)was born in Zwolle in
Holland , came in 1882 under the influence of Ch . Hermite , became a
French citizen , and later received a professorship at the University
of Toulouse . Stieltj es was interested not only in divergent and con
ditionally convergent series , but also in G .F . B . Riemann ’s Cfunction
and the theory of numbers .
Difficult questions arose in the study of Fourier ’s series . 1 A . L .

1 Arnold Sachse
, Versuch einer Geschichte der Darstellung wi llkitrl icher Fnuk

tionen einer variablen durch tri
‘

gonometrische Reihen , Gottingen ,
18 79 .
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Cauchy was the first who felt the necessity of inquiring into its con
vergence . But his mode of proceeding was found by P . G . L . Dirichl et
to be unsatisfactory . Dirichlet made the first thorough researches
on this subj ect (Grel le, Vol . IV). They culm inate in the result that
whenever the function does not become infinite

,
does not have an

infinite number of discontinuities , and does not possess an infinite
number of maxima and minima

,
then Fourier ’s series converges toward

the value of that function at all places , except points of discontinuity ,
and there it converges toward the mean of the two boundary values .
L . Schlafli of Bern and P . Du BoiS-Reymond expressed doubts as to
the correctness of the mean value

,
which were

,
however

,
not well

founded . D irichlet
’

s conditions are sufli cie
‘

nt , but not necessary.

Rudolf Lipschitz (1832 of Bonn
,
proved that Fourier ’s series

still represents the function when the number of discontinuities is
infinite

,
and established a condition on which it represents a function

having an infinite number of maxima and minima . Dirichlet
’

s belief
that all continuous functions can be represented by Fourier ’s series
at all points was Shared by G . F . B . R iemann and H . Hankel

,
but

was proved to be false by Du Bois-Reymond and H . A . Schwarz.

A . Hurwitz Showed how to express the product of two Ordinary Fourier
series in the form of another Fourier series . W . W . Kii stermann

solved the analogous problem for double Fourier series in which a
relation involving Fourier constants figures vitally . For functions
of a single variable an analogous relation is due to M . A . Parseval
and was proved by him under certain restrictions on the rfature of
convergence of the Fourier series involved . In 1893 de la Vallée
Poussin gave a proof requiring merely that thefunction and its square
be integrable . A . Hurwitz in 1903 gave further developments . M ore
recently the subj ec t has commanded general interest through the re
searches of Frigyes Riesz and Ernst Fischer (Riesz-Fischer theorem)?
Riemann inquired what properties a function must have

,
so that

there may be a trigonometric series which , whenever it is convergent ,
converges toward the value of the function . He found necessary
and sufficient conditions for this . They do not decide

,
however

,

whether such a series actually represents the function or not. Rie
mann rejected Cauchy ’s definition of a definite integral on account of
its arbitrariness

,
gave a new definition

,
and then inquired when a

function has an integral . His researches brought to light the fact
that continuous functions need not always have a differential coeffi
cient . But this property

,
which was shown by K . Weierstrass to be

long to large classes of functions
,
was not found necessarily to exclude

them from being represented by Fourier ’s series . Doubts on some of
the conclusions about Fourier1s series were thrown by the observation ,
made by Weierstrass

,
that the integral of an infinite series can be

shown to be equal to the sum of the integrals of the separate terms
1 Summary taken from Bull . Am. Math. Soc.

, Vol . 2 2 , 1915 , p . 6 .
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ities ,
1 through the use of illustrations with urns that were exactly

alike and contained black and white balls in different numbers and
different ratios , the observed event being the drawing of a white ball
from any one of the urns. For the same purpose Johannes von Kr ies ,
in his P rinzipien derWahrscheinlichkeitsrechnung, Freiburg i . B . , 1886 ,
used as an illustration six equal t ubes , of which one had the S ign
on one S ide , another had it on two S ides

,
a third on three S ides and

finally the sixth on all six sides . All other sides were marked w ith a 0 .

Nevertheless , obj ections to certain applications by Bayes
’ Theorem

have been raised by the Danish actuary J . Bing in the Tidsskrift for
M atematik

,
1879, by Joseph Bertrand in his Calcul des probabi lite

’

s
,

Paris , 1889, by Thorwald Nicolai Thiele (1838—1910)of the observa
tory at Copenhagen in a work published at Copenhagen in 1889 (an
English edition of which appeared under the title Theory of Observa
tions , London , 1903)by George Chrystal (1851—191 1)of the Univer
sity of Edinburgh , and others

? AS recently as 1908 the Danish
philosophic writer Kroman has come out in defence of Bayes . Thus
it appears that

,
as yet , no unanim ity of j udgment has been reached

in this matter . In determining the probability of alternative c
’auses

deduced from observed events there is often need of evidence other
than that which is afforded by the observed event . By inverse prob
ability some logicians have explained induction . For example

,
if a

man ,
who has never heard of the tides

,
were to go to the shore of the

Atlantic Ocean and witness on m successive days the rise of the sea
,

then
,
says Adolphe Quetelet of the observatory at B russels , he would

m+ 1

m+2

that the sea would rise next day . Putting m=o
,
i t is seen that this

view rests upon the unwarrantable assumption that the probability
of a totally unknown event is 3, or that of all theories proposed for
investigation one-half are true . William Stanley Jevons (1835—1882)
in his P rinciples of S cience founds induction uponthe theory of inverse
probability

,
and F . Y . Edgeworth also accepts it in his M athematical

P sychics . Daniel B ernoulli ’s “moral expectation ,
”which was elab

orated also by Laplace
,
has received little attention from more recent

French writers . Bertrand emphasizes its impracticabil ity ; Poincaré,
in hi s Calcul des probabi lite

’

s
,
Paris , 1896 , disposes of it in a few words.3

The only noteworthy recent addi tion to probabili ty is the subject
of local probability

,

”developed by several Engli sh and a few Amer
ican and French mathematicians . G . L . L . Buffon

’
s needl e problem

is the earliest important problem on local probability ; i t received the
1 Encyclope dia Motrep. II

,
1845 .

2We are using Emanuel Czuber
’

s Entwickelung der Wahrscheinl ichkeitstheorie in
the J ahresb. d . deutsch. M athematiker -Verein igung , 1899 , pp . 93

—
105 ; also Arne

Fisher, The M athematical Theory of P robabi l ities , New York
,
19 15 , pp . 54

—
56 .

3 E. Czuber, op. cit.
, p . 1 2 1 .

be entitled to conclude that there was a probability equal to
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consideration of P . S . Laplace , of Emil e Barbier in the years 1860

and 1882
,
of M organ ‘W . Crofton (1826—191 5)of the mili tary school

at Woolwich
,
who in 1868 contributed a paper to the London Phi l

osophical Transactions , Vol . 1 58 , and in 1885 wrote the article
“
Prob

ability”in the Encyclopedia B rittann ica , ninth edition . The name
“ local probability”is due to Crofton . Through considerations of
local probability he was led to the evaluation of certain definite in
tegrals .

Noteworthy is J . J . Sylvester ’s four point problem: To find the
probability that four points taken at random within a given boundary

,

shall form a re-entrant quadrilateral . Local probability was studied
in England also by A . R . Clarke

,
H . M cCol l

,
S . Watson

, J . Wolsten

holme
,
W . S . Woolhouse ; in France also by C . Jordan and E . Lemoine ;

in America by E . B . Seitz . Rich collections of problems on local prob
ability have been published by Emanuel Czuber of Vienna in his
Geometrische Wahrscheinl ichkeiten und M ittelwerte

,
Leipzig

,
1884 , and

by G . B . M . Zerr in the Educational Times , Vol . 55, 1891 , pp . 137
192 . The fundamental concepts of local probability have received the
special attention of Ernesto Cesaro (1859—1906)of Naples ?
Criticisms occasionally passed upon the principles of probabili ty

and _lack of confidence in theoretical resul ts have induced several
scientists to take up the experimental side

,
which had been emphasized

by G . L . L . Buffon . Trials of this sort were made by A . De M organ
,

W . S . Jevons , L . A . J . Quetelet , E . Czuber
,
R . Wolf

,
and Showed a

remarkably close agreement with theory . In Buffon ’
s needle prob

lem
,
the theoretical probability involves This and S imilar expres

sions 2 have been used for the empirical determination of Attempts
to place the theory of probability on a purely empirical basis were
made by John Stuart M il l John Venn (1834 and
G . Chrystal . M ill ’s induction method was put on a sounder basis
by A . A . Chuproff in a brochure , Die S tatistik als Wi ssenschaft. Em

pirical methods have commanded the attention of another Russian ,
v . Bortk ievicz .

In 1835 and 1836 the Paris Academy was led by S . D . Poisson ’s
researches to discuss the topic

,
whether questions of morality could be

treated by the theory of probability. M . H . Navier argued on the
affi rmative

,
while L . Poinsot and Ch . Dupin denied the applicabili ty

as “ une sorte d’

aberration de l ’esprit ;
”they declared the theory

applicable only to cases where a separation and counting of the cases
or events was possible . John Stuart M ill opposed it ; Joseph L . F
Bertrand (182 2 p rofessor at the College de France in Paris
and J . v . Kries are among more recent writers on this topic ?

1 See Encyclopédie des sci ences math. I
,
20 p . 23 .

2 E . Czuber , op. cit.
, pp . 88—91 .

3 Consult E . Czuber
,
op. cit.

, p . 14 1 ; J. S . M ill
, System of Logic, New York , 8th

Ed .
,
1884, Chap . 1 8 , pp . 379

—
387 ;J. v . Kries

,
op. cit. , pp . 253

—
259.
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Among the various applications of probability the one relating to
verdicts of j uries

,
decisions of courts and results of elections is specially

interesting . This subj ect was studied by Marqui s de Condorcet
,

P . S . Laplace
,
and S . D . Poisson . To exhi bit Laplace ’s method of

determining the worth of candidates by combining the votes
,
M . W .

Crofton employs the fortuitous division of a straight line . Thi s in
volves

,
however

,
an a priori distribution Of values covering evenly

the whole range from 0 to 100 . Experience Shows that the normal
law of error exhibits a more correct distribution . On this point Karl
Pearson produced a most important research ? He took a random
sample of n individuals from a population of N members and derived
an expression for the average difference in character between the pth
and the (p+ 1)th individual when the sample is arranged in order of
magnitude of the character. H . L . Moore of Columbia University
has attempted to trace Pearson ’s theory in the statistics relating to
the effi ciency of wages (Economic Journal , Dec .

,

Early statistical study was carried on under the name of political
arithmetic”by such writers as Captain John Graunt of London (1 662)
and J . P . S

'

ussmilch
,
a Prussian clergyman Application of the

theory of probabili ty to statistics was made by Edmund Halley
,

Jakob Bernoulli
,
A . De Moivre

,
L . Euler

,
P . S . Laplace

,
and S . D .

Poisson . The establishment of offi cial statistical societies and statis
tical offices was largely due to the influence of the Belgian astronomer
and statistician

,
Adolphe Quete let (1 796—1874)of the observatory

at Brussels
,

“ the founder of modern statistics . Quetelet
’
s
“ average

man
”
in whom “ all processes correspond to the average results

obtained for. society
,
who “ could be considered as a type of the

beautiful
,
has given rise to much critical discussion by Harold

Westergaard J . Bertillon A . de Foville in his “ homo
medius”of 1907 , Joseph Jacobs in his the M iddle American”
and “ the M ean Englishman .

”2
Quetelet

’

s visit in England led
to the organization

,
in 1833, of the statistical section of the British

Association for the Advancement of Science
,
and in 1835 of the S tatis

tical Society of London . Soon after
,
in 1839, was formed the Amer

ican Statistical Society . Quetelet
’
s best researches on the application

of probabili ty to the physical and social sciences are given in a series
of letters to the duk e of Saxe-Coburg and Gotha

,
Lettres sur la theorie

des probabil ités Brussels , 1846 . He laid emphasis on the “ law of
large numbers

,
which was advanced also by the Frenchman S . D .

Poisson and discussed by the German W . Lexis the Scandi
navians H . Westergaard and Carl Charlier

,
and the Russian P afnuti

Liwowich Chebichev (182 1—1894)of the University of Petrograd . To
Chebichev we owe also an interesting problem:A proper fraction being

1 “
Note on F

A

ranciS Calton
’

s Problem
,
B iometrica

,
Vol . I

, pp . 390
—
399.

2 See Franz ZIzek ’
s S tatistical Averages , transl . by W. M . Persons, New York ,

19 13 ; P 374
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general and adequate mathematical methods for the analysis of
biological statistics . To him are due the terms “mode

,

”“ standard
deviation”and “ coefficient of variation .

”Before him the “ normal
curve”of errors had been used exclusively to describe the distribution
of chance events . This curve is symmetrical

,
but natural phenomena

sometimes indicate an asymmetrical di stribution . Accordingly
Pearson

,
in his Contributions to the Theory of Evolution ,

1899, de
veloped skew frequency curves . About 1890 the Georg M endel law
of inheritance became generally known and caused some modification
in the application of statistics to heredity. Such a readjustment was
effected by the Dan ish botanist W . Johannsen ?

The first study of the most advantageous combinations of data
of observation is due to Roger Cotes

,
in the appendix to hi s Harmonia

mensurarum
,
1 72 2 , where he assigns weights to the observations.

The use of the arithmetic mean was advocated by Thomas Simpson
in a paper “An attempt to Show the advantage arising by taking the
mean of a number of observations

,
in practical astronomy

,

”2 also by
J . Lagrange in 1 773 and by Daniel Bernoulli in 1 778 . The first
printed statement of the principle of least squares was made in 1806

by A . M . Legendre
,
without demonstration . K . F . Gauss had used

it still earlier
,
but did not publish it until 1809. The first deduction

of the law of probability of error that appeared in prin t was given in
1808 by Robert Adrain in the Analyst, a journal published by himself
in Philadelphi a . Of the earlier proofs given of this law

,
perhaps the

most satisfactory is that of P . S . Laplace. K . F . Gauss gave two
proofs . The first rests upon the assumption that the arithmetic
mean of the observations is the most probable value . Attempts to
prove this assumption have been made by Laplace

, J . F . Encke
A . De Morgan G . V . Schiaparelli

,
E . J . Stone and A .

Ferrero Valid criticisms upon some of these investigations were
passed by J . W . L . Glaisher . 3 The founding of the Gaussian proba
bility law upon the nature of the observed errors was attempted by
F . W . Bessel G . H . L . Hagen J . F . Encke P . G .

Tait and M . W . Crofton That the arithmetic mean
,

taken as the most probable value
,
i s not under all circumstances

compatible with the Gaussian probabilty law has been Shown by
Joseph Bertrand In his Calcul des probabi l ités and by others .
The development of the theory of least squares along practical lines
is due mainly to K . F . Gauss

, J . F . Encke , P . A . Hansen
,
Th . Gallo

way
, J . Bienayme

, J . Bertrand
,
A . Ferrero

,
P . P izzetti .5 Simon

1 Quart. Pub. Am. S tat. Ass
’

n , N . S , Vol . XIV,
r914 , p . 45.

2M iscellaneous Tracts , London ,
1 757 .

3 Land. Astr . S oc. M em. 39, 1 87 2 , p . 75 ; for further references, see Cyklopadie d.

Math. Wiss .

,
I D 2

, p . 7 7 2 .

‘1 Consult E . L . Dodd
,
Probabil ity of the Arithmetic Mean

,
etc .

, Annals of
Mathematics , 2 . S .

, Vol . 14 , 1913 , p . 186 .

5 E . Czuber , op. cit. , p . 1 79 .
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Newcomb of Washington advanced a generalized theory of the
combination of observations so as to obtain the best resul t

,

”1 when
large errors arise more frequently than is allowed by the Gaussian
probability law . The same subj ect was treated by R . Lehmann
Filhes in Astronomische Nachrichten

,
1887 .

A criterion for the rejection of doubtful observations 2 was given
by Benjamin Peirce of Harvard . It was accepted by the American
astronomers B . A . Gould (1824 W . Chauvenet (1820
and J . Winlock (1826 but was criticised by the English as
tronomer G . B . Airy . The prevailing feeling has been that there
exists no theoretical basis upon which such criterion can be rightly
established .

The application of probability to epidemiology was first considered
by Daniel Bernoulli and has more recently commanded the atten
tion of the English statisticians William Farr (1807 John
Brownlee

,
Karl Pearson

,
and Sir Ronald Ross . Pearson studied

normal and abnormal frequency curves . Such curves have been
fitted to epidemics by J . Brown lee in 1906 , S . M . Greenwood in 191 1

and 1913 , and Sir Ronald Ross in
Some interest attaches to the discussion of whist from the stand

point of the theory of probability
,
as is contained in William Pole ’s

Philosophy of Whist, New York and London , 1883 . The problem
is a generalization of the game of treize”or recontre

,

”treated
by P ierre R . de Montmort in 1 708 .

Difierential Equations . D-ifl
’

erence Equations

Criteria for distingui shing between singular solutions and particular
solutions of diff erential equations of the first order were advanced
by A . M . Legendre

,
S . D . Poisson

,
S . F . Lacroix

,
A . L . Cauchy , and

G . Boole . After J . Lagrange
,
the c-discriminant relation commanded

the attention of Jean Marie Constant Duhamel (1 797—1872)of Paris ,
C . L . M . H . Navier

,
and others . But the entire theory of S ingular

solutions was re- investigated about 1870 along new paths by J . G .

Darboux
,
A . Cayley

,
E . C . Catalan

,
F . Casorati , and others. The

geometric side of the subj ect was considered more minutely and the
cases were explained in which Lagrange ’s method does not yield
S ingular solutions . Even these researches were not al together satis
factory as they did not furnish necessary and suffi cient conditions
for singular solutions which depend on the diff erential equation alone
and not in anyway upon the general solution . Return ing to more
purely analytical considerations and building on work

'

of Ch . Briot
and J . C . Bouquet of 1856 , Carl Schmidt

‘

of Giessen in 1884, H . B .

Fine of Princeton in 1890 , and M eyer Hamburger (1838—1903)of
1 Am. J our . Math

, Vol . 8 , 1886 , p . 343 .

2 Gould Astr . J our .
,
II

, 1852 .

3 Nature, Vol . 97, 1916 , p . 243 .
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Berlin brought the problem to final solutions . Active in this line
were also John M uller Hill and A . R . Forsyth

?

The first scientific treatment of partial differential equations was
given by J . Lagrange and P . S . Laplace . These equations were in
vestigated in more recent time by G . M onge

, J . F . Pfaff
,
C . G . J .

Jacobi , Emile Bour (1831—1866)of Paris , A . Weiler
,
R . F . A . Clebsch ,

A . N . Korkine of St. Petersburg , G . Boole
,
A . M eyer

,
A . L . Cauchy ,

J . A . Serret
, Sophus Lie , and others . In 1873 their reseaches , on

partial diff erential equations of the fi rst order
,
were presented in

text-book form by Paul M ansion
,
of the University of Gand . Pro

ceeding to the consideration of some detail , we remark that the keen
researches of Johann Friedri ch Pfaff (1 765- 1825)marked a decided
advance . He was an intimate friend of K. F . Gauss at Go

' ttingen .

Afterwards he was with the astronomer J . E . Bode . Later he became
professor at Helmstadt

,
then at Halle . By a peculiar method

,
Pfaff

found the general integration of partial differential equations of the
first order for any number of variables . Starting from the theory of
ordinary diff erential equations of the first order in n variables , he
gives first their general integration

,
and then considers the integra

tion of the partial differential equations as a particular case of the
former

,
assuming

,
however

,
as known

,
the general integration of

differential equations of any order between two variables . His re
searches led C . G . J . Jacobi to introduce the name “

Pfaflian prob
lem.

”From the connection
,
observed by W . R . Hamil ton

,
between

a system of ordinary differential equations (in analytical mechanics)
and a partial differential equation , C . G . J . Jacobi drew the conclu
sion that

,
of the series of systems whose successive integration Pfaff ’s

method demanded , all but the first system were entirely superfluous.
R . F . A . Clebsch considered Pfaff ’s problem from a new point of view ,

and reduced it to systems of simultaneous linear partial differential
equations

,
which can be establ ished independently of each other with

out any integration . Jacobi materially advanced the theory of dif
ferential equations of ' the first order . The problem to determine un
known functions in such a way that an integral containing these func
tions and their diff erential coefficients , in a prescribed manner , Shall
reach a maximum or minimum value , demands , in the first place

,

the vanishing of the first variation of the integral . This condition
leads to differential equations , the integration of which determines the
functions . To ascertain whether the value is a maximum or a mini
mum

,
the second variation must be examined. This leads to new and

difli cul t differential equations , the integration of which , for the simpler
cases

,
was ingeniously deduced by C . G . J . Jacobi from the integra

tion of the differential equations of the first variation . Jacobi ’s
solution was perfected by L . O Hesse , while R . F . A . Clebsch extended

1We have used S . Rothenberg , Geschichte der singu laren Losungen in

Abit . 2 . Gesek . d. Math. Wissensch. (M . Can tor), Heft XX , 3 . Leipzig , 1908 .
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prim itive is obtained by the use of processes
,
that sometimes are frag

mentary in theory
,
usual ly are tentative in practice and nearly always

are indirect in the sense that they are compounded of a number of
formal operations having no organic relation with the primitive.
In such circumstances is the primi tive completely comprehen

sive of all the integrals belonging to the equation?”A . M . Ampere in
1815 propounded a broad definition of a general integral—one in
which the only relations

,
which subsist among the variables and the

derivatives of the dependent variable and which are free from the
arbitrary elements in the integral

,
are constituted by the diff erential

equation itself and by equations deduced from i t by differentiation .

This definition is incomplete on various grounds . E . Goursat gave in
1898 a S imple instance to show that an integral satisfying all of Am
pere ’s requirements was not general . A second definition of a general
integral was given in 1889 by J. G . B arboux , based on A . L . Cauchy ’ s
existence- theorem: An integral is general when the arbitrary ele
ments which it contains can be Specialized in such a way as to provide
the integral established in that theorem. This definition

,
according

to A . R . Forsyth , calls for a more careful discussion of obvious and
latent singularities .
There are three principal methods of proceeding to the construc
tion of an integral of partial differential equations of the second order

,

which lead to success in special cases . One method given by P . S .

Laplace in 1 777 applies to linear equations with two independent
variables . I t can be used for equations of order higher than the
second . I t has been developed by J . G . Darboux and V . G . Imshenet

ski
, 1872 . A second method , originated by A . M . Ampere , while

general in Spirit and in form
,
depends upon individual skill unassisted

by critical tests . Later researches along this line are due to E . Borel
(1895)and E . T . Whittaker A third method is due to J . G .

Darboux and includes
,
according to A . R . Forsyth ’ s classification

,

the earlier work of M onge and G . Boole . AS first given by J . G . Dar
boux in 1870 ,

i t applied only to the case of two independent variables ,
but it has been extended to equations of more than two independent
variables and orders higher than the second ; it is not universally
effective . “ Such then

,

”says Forsyth
,

“ are the principal methods
hitherto devised for the formal integration of partial equations of the
second order . They have been discussed by many mathematicians
and they have been subj ected to frequent modifications in details:
but the substance of the processes remains unaltered .

”
Instances are known in ordinary linear equations when the primitives

can be expressed by definite integrals or by means of asymptotic
expansions

,
the theory of which owes much to H . Poincaré. Such

instances within the region of partial equations are due to E . Borel .
G . F . B . Riemann had remarked in 1857 that functions expressed

by K. F . Gauss ’ hypergeometric series F (a , ,8 , y, x), which satisfy
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a homogeneous linear diff erential equation of the second order with
rational coeffi cients

,
might be utilized in the solution of any lin ear dif

ferential equation ? Another mode of solving such equations was due
to Cauchy and was extended by C . A . A . Briot and J . C . Bouquet)and
consisted in the development into power series . The fertil ity of the
conceptions of G . F . B . Riemann and A . L . Cauchy with regard to
differential equations is attested by the researches to which they have
given rise on the part of Lazarus Fuchs (1833—1902)of Berlin . Fuchs
was born in M oschin

,
near Posen

,
and became professor at the Uni

versity of Berlin in 1884. In 1865 L . Fuchs combined the two methods
in the study of linear differential equations:One method using power
series

,
as elaborated by A . L . Cauchy

,
C . A . A . Briot

,
and J . C . Bou

quet ; the other method using the hypergeometric series as had been
done by_G . F . B . Riemann . By this union Fuchs initiated a new
theory of linear diff erential equations ? Cauchy ’s development into
power- series together with the calcul des limites

,
afforded existence

theorems which are essentially the same in nature as those relating to
diff erential equations in general . The S ingular points of the linear
differential equation received attention also from G . Frobenius in
1874, G . Peano in 1889, M . Bocher in 190 1 . A second approach to
existence theorems was by successive approximation , first used in
1864 -by J . Caqué

,
then by L . Fuchs in 1870 , and later by H . Poin

careand G . Peano . A third line
,
by interpolation

,
is originally due to

A . L . Cauchy and received special attention from V. Volterra in 1887.

The general theory of linear diff erential equations received the atten
tion of L . Fuchs

,
and of a large number of workers

,
including C . Jordan

,

V . Volterra
,
and L .

'

Schlesinger . Singular places where the solutions
are not indeterminate were investigated by J . Tannery

,
L . Schlesinger

,

G . J . Wallenberg
,
and many others . Ludwig Wilhelm Thome (1841

1910)of the University of Greifswald , discovered in 1877 what he
called normal integrals . Divergent series which formally satisfy dif
ferential equations

,
first noticed by C . A . A . Briot and J . C . Bouquet

in 1856 , were first seriously considered by H . Poincaré in 1885 who
pointed out that such series may represent certain solutions asymp
totical ly. Asymptotic representations have been examined by A .

Kneser E . P icard J . Horn and A . Hamburger
A special type of l inear diff erential equation

,
the “ Fuchsian

type
,
with coeffi cients that are single-valued (eindeutig), and the

solutions of which have no points of indeterminateness
,
was investi

gated by Fuchs
,
and i t was found that the coeffi cients of such an equa

tion are rational functions of x. Studies based on analogies of linear
differential equations with algebraic equations , first undertaken by

1We are using L . Schlesinger , Entwickelung d. Theorie d. linearen Differential

gleichungen seit 1865 , Leipzig and Berl in ,
1909 .

2We are using here a report by L . Schlesinger in J ahresb. d. d.Math. Vereinigung,
Vol . 18, 1909, pp. 133

—
260.
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N . H. Abel , J . Liouville and C . G . J . Jacobi
,
were pursued later by P .

Appell by E . P icard who worked under the influence of S .

Lie’s theory of transformation groups
,
and by an army of workers in

France
,
England

,
Germany

,
and the United States . The consideration

of differential invariants enters here . Lamé’s differential equation ,
considered by him in 1857 , was taken up by Ch . Hermite in 1877 and
soon after in still more generalized form by L . Fuchs

,
F . Brioschi ,

‘

E . P icard
,
G . M . M ittag-Leffi er and F . Klein .

The analogies of linear di ff erential equations wi th algebraic func
tions

,
problems of inversion and uniformi zation

,
as well as questions

involving group theory received the attention of the analysts of the
second half of the century .

The theory of invariants associated with linear di ff erential equations
as developed by Halphen and by A . R . Forsyth is closely connected
with the theory of functions and of groups . Endeavors have thus
been made to determine the nature of the fun ction defined by a di f
ferential equation from the diff erential equation i tself

,
and not from

any analytical expression of the fun ction
,
Obtained first by solv ing

the differential equation . Instead of studying the properties of the
integrals of a differential equation for all the values of the variable

,

investigators at first contented themselves with the study of the prop
erties in the vicinity of a given point . The nature of the integrals
at S ingular points and at ordinary points is entirely diff erent . Charles
AugusteA lbertB riot (18 1 7—1882)‘and Jean Claude Bouquet (1819—1885)
both of Paris

,
studi ed the case when

,
near a singular poin t

,
the dif

Q
dx

the development in series of the integrals for the particular case of
l inear equations . H . Poincaré did the same for the case when the
equations are not linear

,
as also for partial differential equati ons of

the first order . The developments for ordinary points were given
by A . L . Cauchy and S ophie Kovalevski (1850 M adame
Kovalevski was born at Moscow ,

was a pupil of K . Weierstrass and
became professor of Analysis at Stockholm.

Henri P oincaré (1854—191 2)was born at Nancy and commenced
hi s studies at the Lycée there . While taking high rank as a student

,

he did not di splay exeeptional precocity . He attended the Ecole
Polytechnique and the Ecole Nationale Supérieure des M ines in Paris ,
receiv ing his doctorate from the University of Paris in 1879. He be
came instructor in mathematical analysis at the University of Caen .

In 1881 he occupied the chair of physical and experimental mechanics
at the Sorbonne

,
later the chair of mathematical physics and

,
after

the death of F . Tisserand
,
the chair of mathematical astronomy and

celestial mechanics . Although he did not reach old age , he published
numerous books and more than 1500 memoirs . Probably neither

ferential equations take the form (x—xo) L . Fuchs gave
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noran t . Every day I seated myself at my work table and Spent an
hour or two there

,
trying a great many combinations

,
but I arrived at

no result . One night when
,
contrary to my custom ,

I had taken black
coff ee and I could not Sleep

,
ideas surged up in crowds . I felt them as

they struck against one another until two of them stuck together
,
so

to Speak
,
to form a stable combination . By morning I had established

the existence of a class of fuchsian functions
,
those whi ch are derived

from the hypergeometric series . I had merely to put the resul ts in
Shape

,
which only took a few hours.”1

Poincaré enriched the theory of integral s . The attempt to express
integrals by developments that are always convergent and not limited
to particular points in a plane necessitates the introduction of new
transcendents

,
for the old functions permi t the integration of only a

small number of differential equations. H . Poincaré tried this plan
with l inear equations

,
which were then the best known

,
having been

studied in the vicinity of given points by L . Fuchs
,
L . W . Thome

,
G .

Frobenius
,
H . A . Schwarz

,
F . Klein , and G . H . Halphen . Confining

himself to those with rational algebraical coefli cien ts
,
H . Poincaré was

able to integrate them by the use of functions named by him Fuch

sians ? He divided these equations into “ families .”If the integral
of such an equation be subj ected to a certain transformation

,
the

resul t will be the integral of an equation belonging to the same family.

The new transcendents have a great analogy to elliptic functions ;
while the region of the latter may be divided into parallelograms , each
representing a group, the former may. be divided into curvilinear
polygons

,
so that the knowledge of the function inside of one polygon

carries with i t the knowledge of i t inside the others . Thus H . Poin
care arrives at what he calls Fuchsian groups . He found

,
moreover

,

that Fuchsian functions can be expressed as the ratio of two trans
cendents (theta-fuchsians)in the same way that elliptic functions can
be . If, instead of linear substitutions with real coeffi c ients , as em
ployed in the above groups

,
imaginary coeffi cients be used

,
then dis

continuous groups are obtained
,
which he called Kleinians . The ex

tension to non- l inear equations of the method thus applied to linear
equations was begun by L . Fuchs and H . Poincaré.

Much interest attaches to the determination of those l inear differ
ential equations which can be integrated by simpler functions

,
such

as algebraic
,
elliptic

,
or Abelian . This has been studied by C . Jordan

,

P . Appell of Paris , and H . Poincare.

Pau l Appell (1855 was born in Strassburg . After the an
nexation of Alsace to Germany in 187 1 , he emigrated to Nancy to
escape German citizenship . Later he studied in Paris and in 1886

1 H . Poincaré, The Foundations of S cience, transl . by G . B . Halsted
,
The Science

Press , New York and Garrison , N . Y .
,
19 13 , p . 387 .

2 Henri Poincaré, Notice sur l es Travaux S cientifiques de Henri P oincare, Paris,
1886 , p . 9 .
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became professor of mechanics there . His researches are in analysis
,

function theory
,
infinitesimal geometry and rational mechanics .

Whether an ordinary differential equation has one or more solutions
which satisfy certain terminal or boundary conditions

,
and

,
if so

,
what

the character of these solutions is , has received renewed attention
the last quarter century by the consideration of finer and more remote
questions ? Existence theorems , oscillation properties , asymptotic
expressions

,
development theorems have been studied by David Hil

bert of Gottingen , Maxime Bocher of Harvard , Max Mason of the
University of Wisconsin

,
M auro P icone of Turin

,
R . M . E . M ises of

Strassburg
,
H . Weyl of Gottingen and especially by George D . Birk

hoff of Harvard . Integral equations have been used to some extent
in boundary problems of one dimension ;

“ this method would seem ,

however
,
to be chiefly valuable in the cases of two or more dimensions

where many of the S implest questions are still to be treated .

”
A standard text-book on Differential Equations , including original

matter on integrating factors
,
S ingular solutions , and especially on

symbolical methods , was prepared in 1859 by G . Boole .
A Treatise on Linear Difierential Equations (1889)was brought out

by Thomas Craig of the Johns Hopkins University. He chose the
algebraic method of presentation followed by Ch . Herm ite and H .

Poincaré, instead of the geometric method preferred by F . Klein and
H . A . Schwarz . A notable work , the Traite d

’

Analyse, 1891
—
1896 ,

was published byEmile P icard of Paris , the interest of which was made
to centre in the subj ect of differential equations . A second edition
has appeared .

Simple difference equations or finite differences were studied by
eighteenth century mathematicians. When in 1882 H . Poincaré de
veloped the novel notion of asymptotic representation , he applied i t
to linear diff erence equations . In recent years a new type of problem
has arisen in connection with them. I t looks now as if the continuity
of nature

,
which has been for so long assumed to exist

,
were a fiction

and as if discontinuities represented the realities . “ I t seems almost
certain that electricity is done up in pellets

,
to which we have given

the name of electrons . That heat comes in quanta also seems prob
able .”2 Much of theory based on the assumption of continuity may
be found to be mere approximation . Homogeneous linear difference
equations

,
not intimately bound up with continuity

,
were taken up in

dependently by investigators widely apart . In 1909 Niels Erik Nor
lund of the University of Lund In Sweden , Henri Galbrun of l

’Ecole
Normale In Paris and

,
in 191 1 , R . D . Carmichael of the University of

Illinois entered this field of research . Carmichael used a method of
successive approximation and an extension of a contour integral due to

1 See a historical summary by Maxime Becher in Proceed. of the 5th i ntern . Cou

gres s, Cambridge, 191 2 , Vol . I , Cambridge , 1913 , p . 163 .

2 R . D . Carmichael In S cience
, N . S . Vol . 45 , 191 7 p . 472 .
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C . Guichard . G . D . Birkhoff of Harvard made important contribu
tions showing the existence of certain intermediate solutions and of the
principal solutions . The asymptotic form -of these solutions is de
termined by him throughout the complex plane . The extension to
non-homogeneous equations of results reached for homogeneous ones
has been made by K. P . Williams of the University of Indiana ?

Integral Equations, Integro
-difierential Equations , General Analysis ,

Functional Cal cu lus

The mathematical perplexities which led to the invention of integral
equations were stated by J . Hadamard 2 in 191 1 as follows :

“ Those
problems (such as D irichlet

’

s)exercised the sagacity of geometricians
and were the obj ect of a great deal of important and well-known work
through the whole of the nineteenth century . The very variety of
ingenious methods applied Showed that the question did not”cease to
preserve its rather mysterious character. Only in the last years of
the century were we ab le to treat it with some clearness and under
stand its true nature . Let us therefore inquire by what device
this new view of Dirichlet’s problem was obtq

ined . I ts peculiar and
most remarkable feature consists in the fact that the partial differential
equation is put aside and replaced by a new sort of equation

,
namely

,

the integral equation . This new method makes the matter as clear
as it was formerly obscure . In many circumstances inmodern analysis

,

contrary to the usual point of view
,
the operation of integration proves

a much simpler one than the operation of derivation . An example of
thi s is given by integral equations where the unknown function is
written under such signs of integration and not of diff erentiation . The
type of equation which is thus obtained is much easier to treat than
the partial differential equation . The type of integral equations
corresponding to the plane Dirichlet problem is

d>(x) Mr)K (W)dy

where (b is the unknown function of x in the interval (A ,
B), f and K

are known functions
,
and A is a known parameter. The equations

of the elliptic type in many-dimenS Ional space give similar integral
equations

,
containing however multiple inte rals and several inde

pendent variables . Before the introduction of
5
equations of the above

type
,
each step in the study of elliptic partial diff erential equations

seemed to bring with it new diflficul ties . [But] an equation such
as ( I) gives al l the required results at once and for all the pos
sible types of such problems . Previously

,
in the calculation of

1 Trans . Am. Math. Soc . , Vol . 14 , 19 13 , p . 209.

2
J . Hadamard

,
Four Lectures on Malhematics del ivered at Columbia University in

191 1 , New York , 1915 , pp . 1 2—15.
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Maxime Bécher (1867—1918)was born in Boston and graduated
at Harvard in 1888 . Af ter three years of study at Gottingen he re
turned to Harvard where he was successively instructor , assistant
professor and professor of mathematics . He was president of the
American Mathematical Society in 1909

—
1910 . Among his works are

Reihenentwickelungen der Potential
- theorie, 1891 , enlarged in 1894, and

Legons sur les M e
’

thodes de S turm,
containing the author ’s lectures de

livered at the Sorbonne in 1913
—1914.

A . Voss in 1913 stresses the value of integral equations thus :
1

In the last ten years the theory of integral equations has
attained extraordinary importance

,
because through them problems

in the theory of differential equations may be solved whi ch previously
coul d be disposed of only in Special cases . We abstain from sketching
their theory

,
which makes use of infini te determinants that belong

to linear equations with an infinite number of unknowns, of quadratic
forms with infinitely many variables

,
and which has succeeded in

throwing new l ight upon the great problems of pure and applied
mathematics

,
especially of mathematical physics .

Important advances along the line of a general analysis and its
application to a generalization of the theory of linear integral equa
tions have been made since 1906 by E . H . Moore of the University
of Chicago ? From the existence of analogies in different theories he
infers the existence of a general theory comprising the analogous
theories as special cases . He proceeds to a “ unification

,

”resul ting
,

first
,
from the recent generalization of the concept of independent

variable effected by passing from the consideration of variables defin ed
for all points in a given interval to that of variables defined for all
points in any given set of points lying in the range of the variable

,

secondly, from the consideration of functions of an infin i te as well
as a fin ite number of variables

,
and

,
thirdly

,
from a still fui ther gen

eral ization which leads him to “fun ctions of a “ general variable .

”
E . H . Moore ’s general theory includes as special cases the theories of
E . I . Fredholm

,
D . Hilbert

,
and E . Schmi dt . G . D . Birkhoff in 191 1

presented the following birds ’-eye View of recent movements:3 Since
the researches of G . W . Hill

,
V . Volterra

,
and E . I . Fredholm in the

direction of extended linear systems of equations
,
mathematics has

been in the way of great development. That attitude of mind which
conceives of the function as a generalized point

,
of the method of

successive approximation as a Taylor ’s expansion in a function va

riable
,
of the calcul us of variations as a limi ting form of the ordinary

algebraic problem of maxima and minima is now crystallizing into a
new branch of mathematics under the leadership of S . P incherle

, J.

1 A . Voss, Ueber das Wesen d. Math , 1913 , p . 63 .

2 See P roceed. 5th Intern . Congress of Mathematicians
, Cambridge, 1913 , Vol . I,

p . 230 .

3 Bull . Am. Math. Soc. , Vol . 1 7 , 191 1 , p . 4 15 .
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Hadamard
,
D . Hilbert

,
E . H . Moore

,
and others . For thi s field

Professor M oore proposes the term ‘General Analysis
,

’ defined as
‘ the theory of systems of classes of functions

,
functional Operations

,

etc .
,
i nvolving at least one general variable on a general range .

’ He
has fixed attention on the most abstract aspect of this field by con
sidering functions of an absolutely general variable. The nearest
approach to a similar investigation is due to M . Fréchet (Paris thesis,

who restricts himself to variables for which the notion of a
limiting value is valid.

”Researches along the line of E . H . M oore ’s
“ General Analysis”are due to A . D . P i tcher of Adelbert College and
E . W . Chi ttenden of the University of Illinois . In his “ General
Analysis”Moore defines “ complete independence”of postulates
whi ch has received the further attention of E . V . Huntington

,
R . D .

Beetle
,
L . L . Dines

,
and M . G . Gaba.

V . Volterra discusses integro—differential equations “which involve
not only the unknown functions under signs of integration but also
the unknown functions themselves and their derivatives

,
and shows

their use in mathematical physics . G . C . Evans of the Rice Institute
extended A . L . Cauchy ’s existence theorem for partial differential
equations to integro-differential equations of the “ static type”in
which the variables of differentiation are different from those of in
tegration . M ixed linear integral equations have been discussed by
W . A . Hurwitz of Cornell University.

The S tudy of integral equations and the theory of point sets has led
to the development of a body of theory called functional calculus .
One part of this is the theory of the functions of a line . As early as
1887 Vito Vol terra of the University of Rome developed the funda
mental theory of what he called functions depending on other func
tions and functions of curves . Any quantity which depends for its
value on the arc of a curve as a whole is called a function of the line.
The relationships of functions depending on other functions are
called “

fonctionel les by J . Hadamard in his Legons sur le calcul des

variations
,
1910 , and

“ functionals”by English writers . Functional
equations and systems of functional equations have received the atten
tion of Griffith C . Evans of the Rice Institute

,
Luigi Sinigallia of

Pavia
,
Giovanni L . T . C . Giorgi of Rome

,
A . R . Schweitzer of Chicago

,

Eric H . Neville of Cambridge
,
and others . Neville solves the race

course puzzle oi covering a circle by a set of five circular discs. Says
G . B . M athews:1 “We must express our regret that English math
ematics is so predominantly analytical . Cannot some one

,
for in

stance
,
give uS a truly geometrical theory of J . V . Poncelet ’s poristic

polygons
,
or of von Staudt’s thread-constructions for conicoids?”In

the theory of functional equations
,

“ a single equation or a system of
equations expressing some property is taken as the definition of a
class of fun ctions whose characteristics

,
particular as well as collective

,

1Nature, Vol . 97 , 19 16 , p . 398 .
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are to be developed as an outcome of the equations (E . B . Van

Vleck).
An important general ization of _Fourier series has been made

,

and we have a great class of expansions in the so—called orthogonal
and biorthogonal functions arising in the study of differential and
integral equations . In the field of diff erential equations the most

,
irnportant class of these functions was first defined in a general and
explicit manner (in 1907)by G . D . Birkhoff of Harvard Univer
sity; and their leading fundamental properties were developed by
him.

”1 In boundary value problems of differential equations which
are not self-adjoint , b iorthogonal systems of functions play the same
rOle as the orthogonal systems do in the self-adjoint case . Anna J .

Pell established theorems for biorthogonal systems analogous to those
of F . Riesz and E. Fischer for orthogonal systems .

Theories of I rrational s and Theory of Aggregates

The new non-metrical theories of the irrational were called forth
by the demands for greater rigor . The use of the word “ quantity
as a geometrical magnitude without reference to number and also
as a number whi ch measures some magnitude was disconcerting

,
es

pecial ly as there existed no safe ground for the assumption that the
same rul es of operation applied to both . The metrical view of number
involved the entire theory of measurement whi ch assumed greater
difl

‘
i cul ties w i th the advent of the non-Euclidean geometries . In at

tempts to construct arithmetical theories of number
,
irrational num

bers were a source of trouble . It was not satisfactory to operate with
irrational numbers as if they were rational . What are irrational
numbers? Considerable attention was paid to the definition of them
as limi ts of certain sequences of rational numbers . A . L . Cauchy in
hi s Cours d

’Analyse, 182 1
,
p . 4 , says

“ an irrational number is the
limi t of diverse fractions which furnish more and more approximate
values of i t .”Probably Cauchy was satisfied of the existence of
irrationals on geometric grounds . If not

,
his exposition was a rea

soning in a circle . To make this plain
,
suppose we have a develop

ment of rational numbers and we desire to define l imit and also irra
tional number . With Cauchy we may say that

“when the successive
values attributed to a variable approach a fixed value indefinitely
so as to end by di ff ering from i t as l i ttle as is wished

,
this fixed value

is called the limi t of all the others .”Since we are still confined to
the field of rational numbers

,
this limi t

,
if not rational

,
is non-existent

and fictitious. If now we endeavor to define irrational number as a
l imi t

,
we encoun ter a break-down in our logical development . It

became desirable to define irrational number arithmetically without
reference to limits . This was achieved independently and at almos t

1 R. D . Carmi chael in S cience, N . S .
, Vol . 45 , 1917, p . 471 .
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tional
,
has been placed upon a basis entirely independent of measur

able magnitude
,
and pure analysi s is regarded as a scheme whi ch deals

with number only
,
and has

, per se, no concern with measurable quan
tity. Analysis thus placed uponan arithmetical basis is characterized
by the rej ection of all appeals to our Special intuitions of Space

,
time

and motion
,
in support of the possibil i ty of i ts operations”(E . W .

Hobson). The arithmetization of mathematics , whi ch was in progress
during the entire nineteenth century

,
but mainly during the time of

Ch . Meray
,
L . Kronecker

,
and K . Weierstrass, was characterized by

E . W . Hobson in 1902 in the following terms :
1 “ In some of the text

books in common use in this country
,
the symbol 00 is still used as if

i t denoted a number
,
and one in all respects on a par with the fini te

numbers . The foundations of the integral calculus are treated as if
Riemann had never lived and worked . The order in which double
limits are taken is treated as immaterial

,
and in many other respects

the critical results of the last century are ignored”
“ The theory of exact measurement in the domain of the ideal ob

jectS of abstract geometry is not immediately derivable from intui tion ,
but is now usually regarded as requiring for its development a previous
independent investigation of the nature and relations of number.
The relations of number having been developed on an independent
basis

,
the scheme is applied by the help of the principle of congruency,

or other equivalent principle
,
to the representation of extensive or

intensive magnitude . This complete separation of the notion
of number

,
especially fractional number

,
from that of magnitude

,

involves
,
no doubt

,
a reversal of the historical and psychological

orders . The extreme arithmetizing school
,
of which

,
perhaps

,

L . Kronecker was the founder
,
ascribes reality

,
whatever that may

mean
,
to integral numbers only, and regards fractional numbers as

possessing only a derivative character
,
and as being introduced only

for convenience of notation . The ideal of this school is that every
theorem of analysis Should be interpretable as giving a relation be
tween integral numbers only”

“The true ground of the difli culties of the older analysis as regards
the existence of l imits

,
and In relation to the application to measur

able quantity
,
lies in its inadequate conception of the domain of

number
,
in accordance with whi ch the only numbers really defin ed

were rational numbers . This inadequacy has now been removed by
means of a purely arithm etical definition of irrational numbers, by
means of which the continuum of real numbers has been set up as
the domain of the independent variable in ordinary analysis. Thi s
definition has been given in the main in three forms—one by E . Heine
and G . Cantor , the second by R . Dedekind

,
and the third by K .Weier

strass . Of these the first two are the simplest for working purposes
,

and are essentially equivalent to one another ; the difference between
1 Proceed. London Math. S oc.

,
Vol . 35, 1902 , pp . 1 17

- 139 ; see p. 1 18.
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them is that
,
while Dedekind defines an irrational number by means

of a section of all the rational numbers
,
in the Heine-Cantor form of

definition a selected convergent aggregate of such numbers is em
ployed . The essential change introduced by thi s definition of irra
tional numbers is that , for the scheme of rational numbers , a new
scheme of numbers is substituted , in which each number , rational or
irrational

,
i s defined and can be exhibited in an indefinitely great

number of ways , by means of a convergent aggregate of rational
numbers. By thi s conception of the domain of number the root
diffi culty of the older analysis as to the existence of a limi t is turned ,
each number of the continuum being really defined in such a way that
it itself exhibits the limi t of certain classes of convergent sequences .

It Shoul d be observed that the criterion for the convergence of an
aggregate is of such a character that no use is made in i t of infinitesi
mals

,
definite fin ite numbers alone being used in the tests . The old

attempts to prove the existence of limits of convergent aggregates
were

,
in defaul t of a previous arithmetical definition of irrational

number
,
doomed to inevitable failure . In such applications of

analysis—as
,
for example

,
the rectification of a curvc; the length of

the curve is defined by the aggregate formed by the lengths of a proper
sequence of inscribed polygons . In case the aggregate is not
convergent

,
the curve is regarded as not rectifiable.

“ It has in fact been shown that many of the properties of functions
,

such as continuity
,
diff erentiability

,
are capable of precise definition

when the domain of the variable is not a continuum
,
prov ided

,
how

ever
,
that domain is perfect ; this has appeared clearly in the course

of recent investigations of the properties of non-dense perfect aggre
gates

,
and of fun ctions of a variable whose domain is such an aggre

gate .”
In 191 2 Philip E . B . Jourdain of Fleet

,
near London

,
characterized

theories of the irrational substantially as follows :1 “Dedekind ’s
theory had not for its obj ect to prove the existence of irrationals :
i t Showed the necessity

,
as Dedekind thought

,
for the mathematician

to create them. In the idea of the creation of numbers
,
Dedekind

was followed by O . S tolz ; but H . Weber and M . Pasch showed how
the supposition of this creation could be avoided :H . Weber defined
real numbers as sections (S chnitte)in the series of rationals ; M . Pasch
(like B . Russell)as the segments which generate these sections . In
K . Weierstrass’ theory

,
irrationals were defined as classes of rationals .

Hence B . Russell ’s obj ections (stated in his P rinciples of Mathematics ,
Cambridge

,
1903 , p . 282)do not hold against it , nor does Russell

seem to credi t Weierstrass and Cantor with the avoidance of quite
the contradiction that they did avoid. The real objection to Weier
strass ’ theory,

and one of the objections to G . Cantor ’s theory
,
is

1 P . E . B . Jourdain , On Isoid Relations and Theories of Irrational Number in

International Congress of Mathematicians , Cambridge , 191 2 .
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that equality has to be re—defined. In the various arithmetical theories
of irrational numbers there are three tendencies: (a)the number is
defined as a logical entity—a class or an operation as wi th K .

Weierstrass
,
H . Weber

,
M . Pasch

,
B . Russell

,
M . P ieri ; (b)i t is

“ created
,

”or
,
more frankly

,
postulated

,
as with R . Dedekind

,
O .

Stolz
,
G . Peano

,
and Ch . Meray ; (c)i t is defined as a S ign (for what,

is left indeterminate), as with E . Heine
,
G . Cantor

,
H . Thomae

,
A .

Pringsheim. In the geometrical theories
,
as with Paul du Bois

Reymond , a real number is a sign for a length . In B . Russell ’s theory
it appears to be equally legitimate to define a real number in various
ways .
”

The theory of aggregates (M engenlehre , théorie des ensembles ,
theory of sets)owes its development to the endeavor to clarify the
concepts of independent variable and of function . Formerly the

notion of an independent variable rested on the naive concept of the
geometric continuum. Now the independent variable is restricted
to some aggregate of values or points selected out of the continuum .

The term function was destined to receive various definitions . J .

Fourier advanced the theorem that an arbitrary function can be
represented by a trigonometric series . P . G . L . Dirichlet looked upon
the general functional concept as equivalent to any arbitrary table of
values . When G . F . B . Riemann gave an example of a function ex

pressed analytically which was discontinuous at each rational point ,
the need of a more comprehensive theory became evident . The first
attempts to meet the new needs were made by Hermann Hankel and
Paul du Bois-Reymond . The Al lgemeine Funktionentheorie lof du
Bois—Reymond brilliantly sets forth the problems in philosophical
form

,
but it remained for Georg Cantor to advance and develop the

necessary ideas
,
involving a treatment of infinite aggregates . Even

though the infinite had been the subj ec t of philosophic contemplation
for more than two thousand years

,
G . Cantor hesitated for ten years

before placing his ideas before the mathematical public . The theory
of aggregates sprang into being

,
as a science

,
when G . Cantor intro

duced the notion of enumerable”aggregates ? G . Cantor began his
publications in 1870 ; in 1883 he published his Grundlagen einer al l

gemeinen M annichfaltigkei tslehre In 1895 and 1897 appeared in
Mathemati sche Annalen his Beitrage zur B egrundung der transfini ten
M engenlehre

2 These researches have played a most conspicuous rOle
not only In the march of mathematics toward logical exactitude

,
but

also in the realm of philosophy .

G . Cantor ’s theory of the continuum was used by P . Tannery in
1885 in the search for a profounder view of Zeno

’s arguments against

1A . Schoenflies , Entwickelung der M engenlehre und ihrer Anwendungen , gemeinsam
nzi t Hans Hahn herausgegeben ,

Leipzig u . Berlin ,
19 13 , p . 2 .

2Translated into Eng l ish by Phi lip E. B . Jourdain and publ ished by the Open

Court Publ . Co .

,
Chicago, 1915 .



https://www.forgottenbooks.com/join


46 2 A HISTORY OF MATHEMATICS

in 1906 , relates to the aggregate of decimal fractions between 0 and 1

which can be defined by a finite number of words ; a new decimal frac
tion can be defined

,
which is not included in the previous ones .

Bertrand Russell discovered another paradox
,
given in his P rin

ciples of M athematics
,
1903 , pp . 364

—
368 , 10 1 which is stated by

Philip E . B . Jourdain thus: If w is the class of all those terms x such
that x is not a member of x

,
then

,
if w is a member of w ,

it is plain that
w is not a member of w; while if w is not a member of w ,

it is equally
plain that w is a member of w .

”1 These paradoxes are closely allied
to the Epimenides puzzle”:Epimenides was a Cretan who said that
all Cretans were liars . Hence

,
if his statement was true he was a liar .

H . Poincare and B . Russell attribute the paradoxes to the open and
clandestine use of the word “ all .”The difli cul ty lies in the definition
of the word “M enge .

”
Noteworthy among the attempts to place the theory of aggregates

upon a foundation that will exclude the paradoxes and antinomies that
had arisen

,
was the formulation in 1907 of seven restricting axioms

by E . Zermelo in Math. Annalen
,
65 , p . 26 1 .

Jul ius Kanig (1849 the Hungarian mathematician
,
in bi

Neue Grundlagen der Logik , A ri thmetik und Mengenlehre, 1914 , speaks
of E . Zermelo

’

s axiom of selection (Auswahlaxiom)as being reall y
a logical assumption

,
not an axiom in the old sense

,
whose freedom

from contradiction must be demonstrated along with the other
axioms . He takes pains to steer clear of the antinomies of B . Russell
and C . Burali-Forti . For a discussion of the logical and philosophical
questions involved in the theory of aggregates

,
consult the second

edition of E . Borel ’s Lecons sur la théorie des fonctions , Paris , 1914 ,
note IV

,
which gives letters written by J . Hadamard

,
E . Borel , H .

Lebesgue
,
R . Baire

,
touching the validity of Zermelo

’
s demonstration

that the l inear continuum is well-ordered . A set of axioms of ordinal
magnitude was given by A . B . Frizell in 191 2 at the Cambridge
Congress .
In the treatment of the infinite there are two schools . Georg Cantor

proved that the continuum is not denumerable ; J . A . Richard
,
con

tending that no mathematical entity exists that is not definable in a
finite number of words

,
argued that the continuum is denumerable.

H . Poincaré claimed that this contradiction is not real
,
since J . A .

Richard employs a non-predicative definition ? H . Poincaré,3 in
di scussing the logic of the infinite

,
states that

,
according to the first

school
,
the pragmatists

,
the infinite flows out of the finite ; there is an

infinite
,
because there is an infinity of possible finite things . Accord

ing to the second school
,
the Cantorians

,
the infinite precedes the

finite ; the finite is obtained by cutting off a small piece of the infinite .
1 P . E . B . Jourdain ,

Contri butions , Chicago ,
19 15 , p . 206 .

2 Bu l l . Am . Math. S oc .
,
Vol . 1 7 , 19 1 1 , p . 193 .

3 S cientia , Vol . 1 2 , 191 2 , pp. 1
—
1 1 .



ANALYSIS 403

For pragmatists a theorem has no meaning unless it can be verified ;
they reject indirect proofs of existence ; hence they reply to E . Zermelo
who proves that Space can be converted into a well-ordered aggregate
(wohl geordnete M enge):Fine , convert it ! We cannot carry out this
transformation because the number of operators is infinite . For
Cantorians mathematical things exi st independently of man who may
think about them ; for them cardinal number is no mystery . On the
other hand

,
pragmatists are not sure that any aggregate has a cardinal

number
,
and when they say that the Machtigk eit of the continuum

is not that of the whole numbers
,
they mean simply that it is im

possible to set up a correspondence between these two aggregates
,

which could not be destroyed by the creation of new points in Space .
If mathematicians are ordinarily agreed among themselves

,
it is

because of confirmations which pass final judgment . In the logic of
infinity there are no confirmations .

E . J . Brouwer of the University of Amsterdam
,
expressing views

of G . Mannoury, said in 191 2 that to the psychologist belongs the
task of explaining “why we are averse to the SO-called contradictory
systems in whi ch the negative as well as the positive of certain propo
si tions are valid

,

”that the intuitionist recognizes only the exi stence
of denumerable sets”and “ can never feel assured of the exactness of
mathematical theory by such guarantees as the proof of its being
non-contradictory

,
the possibility of defining its concepts by a finite

number of words
,
or the practical certainty that it will never lead to

misunderstanding in human relations .”1 A . B . Frizell showed in
1914 that the field of denumerably infinite processes is not a closed
domain—a concept which the intuitionist refuses to recognize

,
but

which “ need not disturb an intui tionist who cuts loose from the prin
cipium contradi ctionis. M ore recent tendencies of research In this
field are described by E . H . M oore :2 “ From the linear continuum
with its infinite vari ety of functions and corresponding singularities
G . Cantor developed his theory of classes of points (Punktmengenlehre)
with the notions:limit-point

,
derived class

,
closed class

,
perfect class

,

etc .
,
and hi s theory of classes in general (allgemeine M engenl ehre)with

the
‘

notions:cardinal number
,
ordinal number , order- type , etc . These

theories of G . Cantor are permeating Modern M athematics . Thus
there is a theory of functions on point-sets

,
in particular

,
on perfect

point- sets
,
and on more general order- types

,
while the arithmetic

of cardinal numbers and the algebra and function theory of ordinal
numbers are under development .

“Less techni cal generalizations or analogues of functions of the
continuous real variable occur throughout

‘

the various doctrines and
applications of analysis . A function of several variables is a function
of a S ingle multipartite variable ; a distribution of potential or a field

1 L . E .J. Brouwer in Bull . Am. Math. S oc .
, Vol . 20 ,

19 13 , pp.

2New Haven Colloquium,
1906 , New Haven , 19 10 , p . 2- 4.
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of force is a function of position on a cuve or surface or region ; the
value of the definite integral of the Calculus of Variations is a func
tion of the variable function entering the definite integral ; a curvilinear
integral is a function of the path of integration ; a functional operation
is a fun ction of the argument function or functions ; etc . , etc .

“A mul tipartite variable itself is a function of the variable index
of the part . Thus a finite sequence :x1 ; xn , of real numbers is a
function x of the index i

,
V i z (i = 1 ; n). S imi larly,

an infinite sequence :x l ; of real numbers is a function x
of the index n

,
viz.

, (u= 1 ; 2 ; Accordingly
,
n - fold

algebra and the theory of sequences and of series are embraced in
the theory of functions .

“
AS apart from the determination and extension of notions and

theories in analogy with simpler notions and theories
,
there is the

extension by direct generalization . The Cantor movement is in this
direction . Finite generalization

,
from the case u= 1 to the case n=u

,

occurs throughout Analysis
,
as

,
for instance

,
in the theory of func

tions of several independent variables . The theory of functions of a
denumerable infinity of variables is another step in thi s direction .

1

We notice a more general theory dating from the year 1906 . Recog
nizing the fundamental role played by the notion l imit-element (num
ber

,
point

,
fun ction

,
curve

,
etc .)in the various Special doctrines , M .

Fréchet has given
,
with extensive applications

,
an abstract generaliza

tion of a considerable part of Cantor ’s theory of classes of points and
of the theory of continuous functions on classes of points . Fréchet
considers a general ClaSS

’

P of elements p with the notion limit defined
for sequences of elements . The nature of the elements p is not Speci
fied ; the notion l imi t is not explicitly defined ; i t is postulated as de
fined subj ect to specified conditions . For particular applications
explicit definitions satisfying the conditions are given . The
functions considered are either functions

,
u, of variables p of Specified

character or functions p. on ranges P with postulated features:e. g.

l imi t; distance; element of condensation; connection ,
of specified char

acter . E . H . M oore ’s own form of general analysis of 1906 considers
functions p, of a general variable p on a general range P ,

where this
general embraces every well-defined particul ar case of variable and
range .
Early in the development of the theory of point sets i t was pro

posed to associate with them numbers that are analogous to those
representing lengths

,
areas

,
volumes ? On account of the great arbi

trariness of thi s procedure
,
several different definitions of such num

bers have been given . The earliest were given in 1882 by H . Hankel
and A . Harnack . Another definition due to G . Cantor (1884)was
generalized by H . M inkowski in 1900 . More precise measures were

1 D . Hilbert , 1906 , 1909 .

2 Encyclopédie des sciences mathématiques , Tome II, Vol . I , 191 2 , p. 150 .
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(Riemann
’s integral)admits a finite number of discontinuities but

an infinite number only under certain narrow restrictions . A totally
discontinuous function—for example

,
one equal to zero in the rational

points whi ch are everywhere dense in the interval of integration
,

and equal to 1 in the rational points which are likewise everywhere
dense—is not integrable a la Riemann . The restriction became a
very hampering one when mathematicians began to realize that the
analytic world in whi ch theorems are deducible does not consist
merely of hi ghl y civ ilized and continuous functions . In 1902 Lebesgue
with great penetration framed a new integral which is identical with
the integral of Riemann when the latter is applicable but is immeasur

ably more comprehensive . It will
,
for instance

,
include the totally

discontinuous function above mentioned . This new integral of
Lebesgue is proving itself a wonderful tool . I might compare it with
a modern Krupp gun ,

so easily does it penetrate barriers which before
were impregnable .

”Instructive is also the description of this move
ment

,
as given by G . A . Bliss :1 “Volterra has pointed out

,
in the

introductory chapter of his Legons sur les fonctions des l ignes
the rapid development which is taking place in our notions of infinite
processes

,
examples of which are the definite integral limi t

,
the solu

tion of integral equations
,
and the transition from functions of a

finite number of variables to functions of lines . In the field of in
tegration the classical integral of Riemann , perfected by Darboux

,

was such a convenient and perfect instrument that it impressed itself
for a long time upon the mathematical public as being somethi ng
unique and final . The advent of the integrals of T . J . Stiel tj es and H .

Lebesgue has shaken the complacency of mathematicians in thi s
respect

,
and

,
with the theory of linear integral equations

,
has given

the S ignal for a re-examination and extension of many of the types of
processes which Vol terra calls passing from the finite to the infinite.
It should be noted that the Lebesgue integral is only one of the evi
dences of this restlessness in the particular domain of the integration
theory . Other new defin itions of an integral have been dev ised by
Stiel tj es

,
W . H . Young

, J . P ierpont
,
E . Hellinger

, J . Radon
,
M .

Fréchet
,
E . H . Moore

,
and others . The definitions of Lebesgue

,

Young
,
and P ierpont

,
and those of S tiel tj es and Hellinger

,
form two

rather well defined and distinc t types , while that of Radon is a gen
eral ization of the integrals of both Lebesgue and Stieltj es . The

efforts of Frechet and M oore have been directed toward definitions
valid on more general ranges than sets of points of a line or higher
spaces

,
and whi ch include the others for Special cases of these ranges.

Lebesgue and H . Hahn
,
with the help of somewhat complicated

transformations
,
have shown that the integrals of S tiel tj es and Hel

1 G . A . Bl iss , Integrals of Lebesgue . Bull . Am. Math. Soc .
,
Vol . 24 , 1917 , pp . 1

47 . See also T . H . Hildebrandt, loc. cit. , Vol . 24 , pp . 1 13
—144, who g ives bibliogra

phy
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linger are expressible as Lebesgue integrals . Van Vleck has
remarked that a Lebesgue integral is expressible as one of S tieltj es
by a transformation much S impler than that used by Lebesgue for
the opposite purpose

,
and the S tiel tj es integral so obtained is readily

expressible in terms of a Riemann integral . Furthermore the
S tieltj es integral seems distinctly better sui ted than that of Lebesgue
to certain types of questions

,
as is well indi cated by the original

‘problem of moments ’ of S tiel tj es
,
or by a generalization of it which

F . Riesz has made . The conclusion then seems to be that one
Should reserve judgment

,
for the present at least as to the final form

or forms which the integration theory is to take .

Mathematical Logic

Summariz ing the history of mathematical logic
,
P . E . B . Jourdain

says :1 “ In somewhat close connection with the work of Leibniz
stands the work of Johann Heinrich Lambert

,
who sought —not very

successfully—to develop the logic of relations. Toward the middl e
of the nineteenth century George Boole independently worked out
and published hi s famous calculus of logic . Independently of
him or anybody else

,
Augustus De M organ began to work out logic

as a calculus
,
and later on

,
taking as his guide the maxim that logic

should not consider merely certain kinds of deduction but deduction
qui te generally

,
founded all the essential parts of the logic of relations .

William Stanley Jevons cr iticised and popularized Boole ’s work ; and
Charles S . Peirce (1839 M rs. Christine Ladd-Frankl in

,
Richard

Dedekind
,
Ernst Schroder (1841 Hermann G . and Robert

Grassmann
,
Hugh MacCol l

,
John Venn

,
and many others

,
either

developed the work of G . Boole and A . De Morgan or bui l t up systems
of calculative logic in modes which were largely independent of the
work of others . But it was in the work of Gottlob Frege , Gui seppe
Peano

,
Bertrand Russell

,
and Alfred North Whitehead

,
that we find

a closer approach to the l ingua characteristica dreamed of by Leibniz .

We proceed to a few details .
“
Pure mathematics

,

”says B . Russell
,

2 “was di scovered byBoole
in a work which he called The Laws of Thought His
work was concerned with formal logic

,
and this Is the same thing as

mathematics .”George Boole (1815—1864)became In 1849 professor
in Queen

’s College
,
Cork

,
Ireland . He was a native of Lincoln , and

a self-educated mathematician of great power . In his boyhood he
studied

,
unaided

,
the classical

'

languages .

3 While teaching school he
pursued modern languages and entered upon the study of J . Lagrange
1 TheMonist, Vol . 26 , 1916 , p . 522 .

2 I nternational Monthly, 190 1 , p . 83 .

3 See A . Macfarlane
, Ten Bri tish M athematicians , New York ,

19 16 . Boole
’

s

Laws of Thought was republ ished in 191 7 by the Open Court Publ . Co . ,
under the

edi torship of P . E. B . Jourdain .
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and P . S . Laplace . His treatises on Difierential Equations (18 and
Finite Dif erences (1860)are works of merit .
A point of view different from that of G . Boole was taken by Hugh

MacCol l (1837—1909)who was led to his system of symbolic logic by
researches on the theory of probability . While Boole used letters to
represent the times during whi ch certain propositions are true , Mac

Col l employed the proposi tion as the real un i t in symbolic reasoning
.

1

When the variables In the Boolean algebra are interpreted as proposi
tions

,
C . I . Lewis of the University oi

1

California worked out a matrix
algebra for implications .
Wh en the investigation of the principles of mathematics became

the chief task of logical symbolism
,
the aspect of symbolic logic as a

calcul us ceased to be of such importance . Friedrich Ludwig Gottlob
Frege (1848 of the University of Jena entered thi s field. Con
sidering the foundations of arithm etic he inqui red how far one could
go by conclusions which rest merely on the laws of general logic .

Ordinary language was found to be unequal to the accuracy requ ired.

So knowing nothing of the work of hi s predecessors
,
except G . W.

Leibniz
,
he devised a symbolism and in 1879 published hi s Begrifls

schrift, and in 1893 his Grundgesetze der Ar ithmetik . Says P . E . B .

Jourdain : Frege criticised the notion which mathematicians denote
by the word ‘ aggregate ’ (M enge), and particularly the views of
Dedekind and Schroder . Neither of these authors distingui shed the
subordination of a concept under a concept from the falling of an
obj ect under a concept ; a distinction upon which Peano rightly laid so
much stress

,
and which is

,
indeed

,
one of the most characteristic

features of Peano ’s system of ideography .

”Ernst Schroder of Karls
ruhe had published in 1877 his A lgebra der Logik and John Venn his
Symbol ic Logic in 1881 .

“
Peano ’s first publication on mathematical logic followed the

lines of Schroder ’s work of 1877 very closely. An excellent exposition
in Peano ’s Calcolo geometrico secondo l

’

Ausdehnungslehre di H . Grass

mann
,
Turin

,
1888

,
of the geometrical calculus of A . F . MObius

,
H . G .

Grassmann
,
and others was preceded by an introduction treating of

the Operations of deductive logic
,
which are very analogous to those

of ordi nary algebra and of the geometrical calcul us . The signs of
logic were sometimes used in the later parts of the book

,
though this

was not done systematically
,
as it was in many of Peano ’s later works”

(Jourdain). In 1891 appeared under G . Peano ’s editorship
,
the first

volume of the Rivista di Matematica which contains articles on mathe
matical logic and its applications , but this kind of work was carried
on more fully in the Formulai re de mathématiques of which the first
volume was published in 1895. This was proj ected to be a classified
collection of mathematical truths

,
written wholly in Peano ’s symbols:

1 For details see Phi lip E . B . Jourdain in Quarterly J our . of Math.
, Vol . 43 , 191 2,

p . 2 19.
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classes and the geometrical theory of points . This topic received a

re- statement and an extension in 1905 from the pen of Josiah Royce
(1855 professor of philosophy at Harvard University . Royce
contends that “ the entire system of the relationshi ps of the exact
sciences stands in a much closer connection with the simple principles
of symbolic logic than has thus far been generally recognized .

”
There exists divergence of opinion on the value of the notation of
the calculus of logic . Says A . Voss:1 “As far as I am able to survey
the practical results of mathematical logic

,
they run aground at every

real application
,
on account of the extreme complexity of its formulas ;

by a comparatively large expenditure of effort they yield almost
trivial results

,
which

,
however

,
can be read off with absolute certainty.

Only in the discussion of purely mathematical questions
,
i . e. relations

between numbers
,
does it

,
in P eano ’s Formulaire prove itself

to be a real power
,
probably replaceable by no other mode of ex

pression . By some even this is called into question .

Alessandro Padoa of the Royal Technical Institute of Genoa said
in 191 2 :

2 “ I do not hope to suggest to you the sympathetic and touch
ing optimism of Leibniz

,
who

,
prophesying the triumphal success of

these researches
,
affi rmed: ‘ I dare say that this is the last effort of

the human mind
,
and

,
when this proj ect shall have been carried out

,

all that men will have to do will be to be happy
,
since they will have

an instrument that will serve to exal t the intellect not leSS than the
telescope serves to perfec t their vision .

’ Although for some fifteen
years I have given myself up to these studies

,
I have not a hope so

hyperbolic ; but I delight in recalling the candor of this master who ,
absorbed in scientific and philosophic investigations

,
forgot that the

majority of men sought and continue to seek happiness in the feverish
conquest of pleasure , money , and honors . M eanwhile we Should
avoid an excessive scepticism , because always and everywhere , there
has been an élite—to -day less restricted than in the past—which was
charmed by

,
and delights now in

,
all that raises one above the con

fused troubles of the passions
,
into the imperturbable immensity of

knowledge , whose horizons become the more vast as the wings of
thought become more powerful and rapid .

”
In 1914 an international congress of mathematical philosophers was

held in Paris
,
with Emil Boutroux as president . Unfortunately the

great war nipped this promising new movement in the bud . Recent
books on the philosophy of mathematics are M . Winter ’s La méthode
dans la philosophic dcs mathematics , Paris , 191 1 , Léon Brunschvicg

’
s

Les élapcs dc la phi losophic mathématique, Paris , 191 2 , and J . B .

Shaw ’s Lectures on the Philosophy of Mathematics
,
Chicago and Lon

don
,
1918 .

1 A . Voss , Ueber das Wesen der Mathematik , Leipzig u . Berlin , 2 . Aufl . ,
1913 ,

p . 28 .

2 Bull . Am. Math. S oc .
, Vol . 20 , 1913 , p . 98 .
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Theory of Functions

We begin our sketch of the vast progress in the theory of functions
by considering investigations which center about the Special class
called elliptic functions . These were richly developed by N . H . Abel
and C . G . J . Jacobi .
Niels Henrik Abel (1802—1829)was born at Findoé in Norway , and
Was prepared for the university at the cathedral school in Christiania .

He exhibited no interest in mathematics until 18 18 , when B . Holmboe

became lecturer there
,
and aroused Abel ’s interest by assigning original

problems to the Class . Like C . G . J . Jacobi and many other young
men who became eminent mathematicians , Abel found the first exer
cise of his talent in the attempt to solve by algebra the general equa
tion of the fifth degree . In 182 1 he entered the University in Chris
tiania. The works of L . Euler , J . Lagrange

,
and A . M . Legendre

were Closely studied by him. The idea of the inversion of elliptic
functions dates back to this time . His extraordinary success in
mathematical study led to the off er of a stipend by the government

,

that he might continue his studies in Germany and France . Leaving
Norway in 1825, Abel visited the astronomer , H . C . Schumacher

,
in

Hamburg
,
and Spent S ix months In Berlin

,
where he became intimate

with August Leopol d Crel le (1 780—1855)and met J . Steiner . En

couraged by Abel and J . Steiner
, Crelle started his journal in 1826 .

Abel began to put some of his work in Shape for print . His proof
of the impossibility of solv ing the general equation of the fif th degree
by radicals

,

—first printed in 1824 in a very concise form,
and diff i cult

of apprehension ,—was elaborated in greater detail , and published in
the first volume . He investigated also the question

,
what equations ‘

are solvable by algebra and deduced important general theorems
thereon . These results were published after his death . M eanwhile
E . Galois traversed this field anew . Abel first used the expression ,
now called the “ Galois resolvent”; Galois himself attributed the idea
of it to Abel . Abel showed how t

1

o solve the class of equations
, now

called “Abelian .

”He entered alsoupon the subject of infinite series
( particularly the binomial theorem ,

of which he gave in Crel le’s
Journal a rigid general investigation), the study of functions , and of
the integral calculus . The obscurities everywhere encountered by him
owing to the prevailing loose methods of analysis he endeavored to
clear up . For a short time he left Berlin for Freiberg , where he had
fewer interruptions to work

,
and it was there that he made researches

on hyperelliptic and Abelian functions . In -July
, 1826 , Abel left

Germany for Paris without having met K .

-F. Gauss ! Abel had sent
to Gauss his proof of 1824 of the impossibility of solving equations of
the fifth degree

,
to which Gauss never paid any attention . This S light ,

and a haughtiness of spirit which he associated with Gauss
,
prevented

the genial Abel from going to GOttingen . A similar feeling was enter
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tained by him later against A .
-L . Cauchy . Abel remained ten months

in Paris . He met there P . G . L . Dirichlet , A . M . Legendre
,
A . L .

Cauchy
,
and others

,
but was little appreciated . He had already pub

l ished several important memoirs in Crel lc’s Journal , but by the
French this new periodical was as yet hardly known to exist

,
and

Abel was too modest to speak of his own work . Pecuniary embarrass
ments induced him to return home after a second short stay in Berlin .

At Christiania he for some time gave private lessons
,
and served as

docent . Crelle secured at last an appointment for him at Berlin ;
but the news of it did not reach Norway until after the death of
Abel at Froland ? Ch . Hermite is said to have remarked : “Abel a
laissé aux mathématiciens de quoi travailler pendant cent cinquante
ans .”
At nearly the same time with Abel

,
C . G . J . Jacobi published articles

on elliptic functions . A . M . Legendre ’s favorite subj ect , so long
neglected

,
was at last to be enriched by some extraordinary discov

eries . The advantage to be derived by inverting the elliptic integral
of the first kind and treating it as a function of its amplitude (now
called elliptic function)was “

recognized by Abel , and a few months
later also by Jacobi . A second fruitful idea

,
also arrived at inde

pendently by both
,
is the introduction of Imaginaries leading to the

observation that the new functions simulated at once trigonometric
and exponential functions . For it was shown that while trigonometric
functions had only a real period

,
and exponential only an imaginary

,

elliptic functions had both sorts of periods . These two discoveries
were the foundations upon which Abel and Jacobi

,
each in his own

way
,
erected beautiful new structures . Abel developed the curious

expressions representing el liptic functions by infini te series or quo
tients of infinite products . Great as were the achievements of Abel
in elliptic functions

,
they were eclipsed by his researches on what are

now called Abelian functions . Abel ’s theorem on these functions was
given by him in several forms , the most general of these being that
in his M e

’

moi re sur unc propriete
'

géne
’

rale d
’

unc classe tres-étendue de

fonctions transcendentes The history of this memoir is inter
esting . A few months after his arrival in Paris

,
Abel submitted it to

the French Academy . A . L . Cauchy and A . M . Legendre were ap
pointed to examine it ; but said nothing about it until after Abel

’s
death . In a brief statement of the discoveries in question , publi shed
by Abel in Crel lc’s Jou rnal , 1829, reference is made to that memoir.
This led C . G . J . Jacobi to inquire of Legendre what had become of it .
Legendre says that the manuscript was so badly written as to be
illegible

,
and that Abel was asked to hand in a better copy

,
which he

1 C . A . Bjerknes, Niels-Heurih Abel , Tableau de sa vie cl de son action scientifiquc ,
Paris

,
1885 . See also Abel (N . H .)M émor ial publ ié d l ’occasion du centenaire de sa

naissance. Kristiania also N . H . Abel . S a vie el son Oeuvre, par Ch. Lucas (16

Pesloiian , Paris, 1906 .
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who Showed that the theorem is deducible from symmetric functions
of the roots of equations and partial fractions ?

Two editions of Abel ’s works have been published : the first by
Berndt M ichael Holmboe (1 795—1850)of Christiania in 1839, and the
second by L . Sylow and S . Lie in 1881 . During the few years of work
allotted to the young Norwegian

,
he penetrated new fields of research .

Abel ’s published papers stimulated researches containing certain
results previously reached by Abel himself in his then unpublished
Parisian memoir . We refer to papers of Christian Jii rgensen (1805
186 1)of Copenhagen , Ole Jacob Broch (1818—1889)of Christiania,
Ferdinand Adolf M inding ( 1806—1885)of Dorpat , and G . Rosenhain .

Some of the discoveries of Abel and Jacobi were anticipated by
K . F . Gauss . In the Disquisi tiones Ari thmeticce he observed that
the principles which he used in the division of the circle were ap
plicable to many other functions

,
besides the circular

,
and particularly

to the transcendents dependent on the integral

Jacobi 2 concluded that Gauss had thirty years earlier considered the
nature and properties of elliptic functions and had discovered their
double periodicity. The papers in the col lected works of Gauss con
firm this conclusion .

Car l Gustav Jacob Jacob i (1804—1851)was born of Jew ish parents
at Potsdam . Lik e many other mathematicians he was initiated into
mathematics by reading L . Euler . At the University of B erlin , where
he pursued his mathematical studies independently of the lecture
courses

,
he took the degree of Ph .D . in 1825. After giving lectures

in Berlin for two years
,
he was elected extraordinary professor at

Konigsberg
,
and two years later to the ordinary professorship there .

After the publication of his Fundamenta Nova in 1829 he Spent some
time in travel

,
meeting Gauss in GOttingen ,

and A . M . Legendre
,

J . Fourier
,
S . D . Poisson

,
in Paris . In 1842 he and his colleague ,

F . W . Bessel
,
attended the meetings of the British Association , where

they made the acquaintance of English mathematicians . Jacobi
was a great teacher . “ In this respect he was the very opposite of his
great contemporary Gauss , who disliked to teach , and who was any
thing but inspiring .

”
Jacobi ’s early researches were on Gauss ’ approximation to the

value of definite integrals
, partial differential equations , Legendre

’s
coeffi cients , and cubic residues . He read Legendre

’s Exercises
,
which

give an account of elliptic integrals . When he returned the book to
the l ibrary

,
he was depressed in spirits and said that important books

generally excited in him new ideas
,
but that this time he had not

been led to a S ingle original thought. Though S low at first, his ideas

1 G . B . Mathew s in Nature
, Vol . 95 , 19 15 , p . 2 19 .

2 R. Tucker,
“ Carl Friedrich Gauss,

”
Nature, April , 1877 .



THEORY OF FUNCTIONS 415

flowed all the richer afterwards . Many of his discoveries in elliptic
functions were made independently by Abel . Jacobi communicated
his first researches to Grel le’s Journal . In 1829, at the age of twenty
five, he published his Fundamenta Nova Theorice Functionum El lip
ticarum

,
which contains in condensed form the main resul ts in elliptic

functions . This work at once secured for him a wide reputation . He
then made a closer study of theta—functions and lectured to his pupils
on a new theory of elliptic functions based on the theta-functions . He
developed a theory of transformation which led him to a multitude
of formula containing q , a transcendental function of the modulus ,
defined by the equation He was also led by it to consider
the two new functions H and O ,

which taken each separately with
two different arguments are the four (S ingle)theta-functions desig
nated by the 6 1, 9 2, 9 3, 6 4

? In a short but very important memoir
of. 1832 , he shows that for the hyperelliptic in tegral of any class the
direct functions to which Abel ’s theorem has reference are not func
tions of a single variable

,
such as the ell iptic sn , cn ,

dn
,
but functions

of p variables
? Thus in the case p= 2

,
which Jacobi especially con

siders , i t is shown that Abel
’s theorem has reference to two functions

v), A1(u , v), each of two variables , and gives in effect an addition
theorem for the expression of the functions
v+v

’)algebraically in terms of the functions Mu
,
v), A1(u , v), Mu

’

,

By the memoirs of N . H . Abel and Jacobi i t may be con
sidered that the notion of the Abelian function of p variables was
established and the addition-theorem for these functions given . Re

cent studies touching Abelian functions have been made by K . Weier
strass , E . P icard

,
M adame Kovalevsk i , and H . Poincaré. Jacobi ’s

work on differential equations
,
determinants

,
dynamics

,
and the

theory of numbers is mentioned elsewhere .
In 1842 C . G . J . Jacobi visited Italy for a few months to recuperate

his health . At this time the Prussian government gave him a pension ,
and he moved to Berlin

,
where the last years of his life were Spent .

Among those who greatly extended the researches on functions
mentioned thus far was Char les Hermite (182 2 who was born
at Dieuze in Lorraine ? He early manifested extraordinary talent for
mathematics . Neglecting the regular courses of study , he read in
Paris with greatest ardor the masterpieces of L . Euler , J . Lagrange

,

K . F . Gauss , and C . G . J . Jacobi. In 1842 he entered the Ecole Poly
technique . From birth he had suffered from an infirmity of the right
leg and had to use a cane . On this account he was declared ineligible
to any government position given to graduates of the Ecole . Hermite ,
therefore

,
left at the end of the first year . A letter to Jacobi displayed

his mathematical genius
,
but the necessity of taking examinations

Whi ch he held en horreur compelled him to descend from his lofty
1 Arthur Cayley , Inaugural Address before the British Association ,

1883 .

2 Bull . Am. Math. S oc.
, Vol . 13, 1907 , p . 182 .
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mathematical speculations and take up the irksome details prepara
tory to examinations . In 1848

‘

he became examinateur d’

admission
and répétiteur d’

analyse at the Ecole Polytechnique . In that position
he succeeded P . L . Wantzel . That year he married a sister of his
friend , Joseph Bertrand . In 1869, at the age of forty-seven , he became
professor and at length reached a position befi tting his talents . At
the Sorbonne he succeeded J . M . C . Duhamel as professor of higher
algebra . He occupied the chair at the Ecole Polytechnique until
1876 , at the Sorbonne until 1897. For many years he had been re

garded as the venerated chief among French mathematicians . Hermite
had no fondness for geometry . His researches are confined to algebra
and analysis . He wrote on the theory of numbers

,
invariants and

covariants
,
definite integrals

,
theory of equations

,
elliptic functions

and the theory of functions . Of his collected works
,
or Oeuvres ,

Vol . III appeared in 191 2 , edited by E . P icard . In the theory of
functions he was the foremost French writer of his day

,
since A . L .

Cauchy . He has given an entirely new S ignificance to the use of
definite integrals in the theory of functions :we name the develop
ments of the properties of the gamma-function which have been thus
initiated .

Elliptic functions
,
considered on the Jacobian rather than on the

Weierstrassian basis
,
was a favorite study of Hermite . To him is

due the reduction of an elliptic integral to its canonical form by means
of the syzygy among the concomitants of a binary quartic . His in
vestigations on modular functions and modular equations are of the
highest importance . I t was Hermite who discovered pseudo-periodic
functions of the second kind

,
and developed their properties . In a

memoir that may be fairly described as classical ,
‘ Sur quelques appli

cations des fonctions elliptiques ’ in the Comptes Rendus , 1877
—
1882 ,

he applied these functions to the integration of the unspecialized form
of Lamé’s differential equation ; and elliptic functions generally were
appl ied in that memoir to obtain the solution of a number of physical
problems”(A . R . Forsyth).
In 1858 Hermite introduced in place of the variable q of Jacobi a

new variable w connected with it by the equation so that w
ik

’

/h, and was led to consider the functions gb(o), Moi), x(w).1
Henry Smith regarded a theta-function with the argument equal to
zero

,
as a function of w. This he called an omega- function , While

the three functions (Mm), x(w), are his modular functions .
Researches on theta-functions with respect to real and imaginary
arguments have been made by Ernst M eissel (1826—1895)of Kiel ,
J . Thomae of Jena

,
Alfred Enneper (1830—1885)of GOttingen . A

general formula for the product of two theta-functions was given in
1854 by H . SchrOter (1829—1892)of Breslau . These functions have

1 Arthur Cayley, Inaugural Address, 1883 .
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al izations analogous to those of Weierstrass on elliptic functions have
been made by Felix Klein on hyperelliptic functions .
Standard works on elliptic functions have been published by C . A .

A . Briot and J . C. Bouquet by L . KOnigsberger , A . Cayley,
Heinri chDurcge (182 1

—
1893)of Prague , and others .

Jacobi ’s work on Abelian and theta-functions was greatly extended
by Adolph GOpel (18 1 2) professor in a gymnasium near Pots
dam,

and Johann Georg Rosenhain (1816—1887)of KOnigsberg .

GOpel in his Theor iae transcendentium primi ordinis adumbratio levis

(Crel le, 35, 1847)and Rosenhain in several memoirs established each
independently

,
on the analogy of the single theta-fun ctions , the fun c

tions of two variables
,
called double theta-functions

,
and worked out

in connection with them the theory of the Abelian functions of two
variables . The theta-relations established by GOpel and Rosenhain
received for thirty years no further development

,
notwithstanding

the fact that the double theta series came to be of increasing impor
tance in analytical

,
geometrical

,
and mechanical problems

,
and that

Ch . Hermi te and L . KOnigsberger had considered the subj ect of trans
formation . Finally

,
the investigations Of C . W . Borchardt , treating

of the representation of Kummer ’s surface by GOpel
’

s
‘ biquadratic

relation between four theta-functions of two variables
,
and researches

of H . H . Weber
,
F . Prym,

Adolf Krazer
,
and M artin Krause of Dres

den led to broader views . Carl Wilhelm Borchardt (18 17—1880)was
born in Berlin

,
studied under P . G . L . Dirichlet and C . G . J . Jacobi

in Germany
,
and under Ch . Hermite

,
M . Chasles

,
and J . Liouville

in France . He became professor in Berl in and succeeded A . L . Crel le

as editor of the Journal fur Mathematik . M uch of his time was given
to the applications of determinants in mathematical research.

Friedrich P rym (1841
—
1915)studied at Berlin , GOttingen ,

and Hei
delberg . He became professor at the Polytechnicum in Zurich , then at
Wurzburg . His interest lay in the theory of functions . Researches
on double theta- functions

,
made by A . Cayley

,
were extended to

quadruple theta—functions by Thomas Craig (1855 professor
at the Johns Hopkins University. He was a pupil of J . J . Sylvester .
While lecturing at the University he was during 1879

—
188 1 connected

th the United S tates Coast and Geodetic Survey. For many years
he was an edi tor of the American Journal of Mathematics .

Starting with the integrals of the most general form and considering
the inverse fun ctions corresponding to these integrals (the Abelian
functions of p variables), G . F . B . Riemann defined the theta-functions
of p variables as the sum of a p- tuply infinite series of exponentials ,
the general term depending on p variables . Riemann Shows that the
Abelian functions are algebraically connected with theta-functions of
the proper arguments

,
and presents the theory in the broadest form ?

1 Arthur Cayley, Inaugural Address, 1883 .
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He rests the theory of the multiple theta-functions upon the general
principles of the theory of functions of a complex variable .
Through the researches of A . Brill of Tubingen , M . Nother of

Erlangen
,
and Ferdinand Lindemann of M unich , made in connection

with Riemann-Roch ’s theorem and the theory of residuation
,
there

has grown out of the theory of Abelian functions a theory of algebraic
functions and point-groups on algebraic curves .

General Theory of Functions
1

The history of the general theory of functions begins with the
adoption of new definitions of a function . AS an inheritance from the
eighteenth century

, y was called a function of x,
if there existed an

equation between these variables which made it possible to calculate
y for any given value of x lying anywhere between oo and 00 .

We have seen that L . Euler sometimes used a second , more general ,
definition

,
which was adopted by J . Fourier and which was translated

by P . G . L . Dirichlet into the language of analysis thus :y is called a
function of x,

if y possess one or more definite values for each of cer
tain values that x is assumed to take in an interval xo to x1. In func
tions thus defined

,
there need be no analytical connection between

y and x, and it becomes necessary to look for possible discontinuities .
This definition was still further emphasized and generalized later .
after the . introduction of the theory of aggregates . There a fun ction
need not be defined for each point in the continuum embracing all
real and complex numbers

,
nor for each point in an interval

,
but only

for the points x in some particular set of points . Thus
, y is a function

of x
,
if for each point or number in any set of points or numbers x ,

there corresponds a point or number in a set y.

P . G . L . Dirichlet lectured on the theory of the potential and thereby
made this theory more generally known in Germany. In 1839 K . F .

Gauss had made researches on the potential ; in England George
Green had issued his fundamental memoir as early as 1828 . Dir
ichlet

’

s lectures on the potential became known to G . F . B . Riemann
Who made it of fundamental importance for the whole of mathe
matics. Before considering Riemann we must take up A . L .

Cauchy.

J . Fourier ’s declaration that any given arbitrary function can be
represented by a trigonometric series led Cauchy to a new formulation
of the concepts continuous

,

”“ limiting value”and “ function .

”In his
Cours d’

Analyse, 182 1
,
he says : “The function f (x)i s continuous

between two given limits
,
if for each value of x that lies between

these limits
,
the numerical value of the difference f (x+ —

f (x)di
minishes with a. in such a way as to become less than every finite
number (Chap . II

,
With S . F . Lacroix and A . L . Cauchy there

are indications of a tendency to free the functional concep t from an ac
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tual representation ? Although in his earlier wr itings Slow to recognize
the importance of imaginary variables , Cauchy later entered deeply
into the treatment of functions of complex variables

,
not in a geometri

cal form as found in C . Wessel , J . R . Argand
,
and K. F . Gauss

,
but

rather in analytical form. He carried on integrations through imag
inary fields . While L . Euler and P . S . Laplace had declared the order
of integration in double integrals to be immaterial

,
A . L . Cauchy

showed that this was true only when the expression to be integrated
does not become indeterminate in the interval (Mc

’

moire sur la the
’

orie

des inte
’

grales de
’

fin ies , read 1814 , printed
If between two paths of integration

,
in the complex plane

,
there

lies a pole
,
then the diff erence between the respective integrals can be

represented by means of a résidu de la fonction” a concept of
undoubted importance known as the calculus of residues . In 1846

he showed that if X and Y are continuous functions of x and ywithin

a closed area
,
t dxdy, Where

the left integral extends over the boundary and the right integral
over the inner area of the complex plane ; he considers integration
along a closed path surrounding a “ pole

,

”and later along a closed
path surrounding a lin e on which the function is discontinuous

,
as

for instance log x for x<o when the function changes by 2 7I'i in crossing
the x-axis . The fundamental theorem of Cauchy ’s theory of series
was given in 183

“A function can be expanded in an ascending power
series in x

,
as long as the modulus of x is less than that for which the

function ceases to be finite and continuous .”In 1840 the proof of this
theorem is made to rest on the theorem of mean value . Cauchy

,

J . C . F . Sturm
,
and J . Liouville had carried on discussions as to

whether the continuity of a function was sufficient to insure i ts ex
pandibil ity or whether that of its derivativemust be demanded as well.
In 1851 Cauchy concluded that the continuity of the derivative must
be demanded . A function f (z), which is single-valued for z=x+iy
was called by Cauchy “

monotyp ique ,
”later “monodrome

,

”by Briot
and Bouquet “

mono trope
,

”by Hermi te “ un iforme
,

”by the Germans
“ eindeutig .

”Cauchy called a function “monogen when for every
2 in a region i t had only one derivative value

,

“
synectique

”if i t is
monodromic and monogenic and does not become infinite . Instead
of “

synectique C . A . A . Briot and J . C . Bouquet
,
and later French

writers say “ holomorph
,

”also “meromorph
”when the function has

“ poles”in the region .

Some parts of Cauchy ’s theory of functions were elaborated by
P . M . H . Laurent and Victor Alexandre Puiseux (1820 both

1 A . B rill und M . Noether , Entwicklung der Theorie der algebraischen Func

t ionen in alterer und neuerer Zeit ,”J ahresb. d. (1. Math. Vereinig .
, Vol . 3 , 1892

—
1893 ,

p . 16 2 . We are mak ing extensive use of this historical monog raph .
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Paris
,
where he made the acquaintance of French mathematicians .

The delicate state of his health induced him to go to I taly three times .
He died on his last trip at Selasca , and was buried at Biganzolo .

Like all of Riemann ’s researches
,
those on functions were profound

and far- reaching . A decidedly modern tendency was his mode of in
vestigating functions . In the words of E . B . Van Vleck:1 “He [Rie
mann] presents a strange antithesis to his contemporary countryman ,
Weierstrass . Riemann bases the function theory upon a property
rather than upon an algorism—to wit

,
the possession of a differential

coeffi cient by the function in the complex plane . Thus at a stroke
i t is freed from dependence upon a particular process like the power
series of Taylor . His celebrated memoir upon the P -function is a.
characteristic development of a whole Schar (family)of functions
from their mutual relations .”
G . F . B . Riemann laid the foundation for a general theory of func

tions of a complex variable . The theory of potential
,
which up to

that time had been used only in mathematical physics
,
was applied

by him in pure mathematics . He accordingly based his theory

o
2
u a

?
“

of functions on the partial di ff erent ial equation
,

b

—
x

—
g W

=Au=o ,

which must hold for the analytical function w=u+iv of z=x+iy.

I t had been proved by P . G . L . D irichlet that (for a plane)there is
always one

,
and only one

,
function of x and y, which satisfies Au=o ,

and which
,
together with its diff erent ial quotients of the first two

orders
,
is for all values of x and y within a given area one—valued and

continuous
,
and which has for points on the boundary of the area

arbitrarily given values .2 Riemann called this “Dirichlet’s principle,
”

but the same theorem was stated by Green and proved analytically by
Sir William Thomson . I t follows then that w is uniquely determined
for all points within a closed surface

,
if u is arbitrarily given for all

points on the curve
,
whilst v is given for one point within the curve.

In order to treat the more complicated case where 10 has n values for
one value of z

,
and to observe the conditions about continuity

,
Rie

mann invented the celebrated surfaces
,
known as “Riemann ’s sur

faces
,
consisting of n coincident planes or sheets

,
such that the pas

sage from one sheet to another is made at the branch-points
,
and that

the n sheets form together a multiply- connected surface
,
which can

be dissected by cross-cuts into a singly- connected surface . The n
valued function w becomes thus a one-valued function . Aided by
researches of Jacob Luroth (1844—1910)of Freiburg and of R . F . A .

Clebsch , W . K . Clifford brought Riemann ’s surface for algebraic func
tions to a canonical form

,
in which only the last two of the n leaves

are multiply-connected
,
and then transformed the surface into the

1 Bul l . Am. Math. Soc .
, Vol . 23 , 1916 , p . 8 .

2 O . Henrici
“
Theory of Functions

,

”
Nature, Vol . 43 , 1891 , p . 32 2 .
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surface of a solid with p holes . This surface with p holes had been
considered before Clifford by A . Tonelli , and was probably used by
Riemann himself . 1 A . Hurwitz of Zi

’

i rich discussed the question
,
how

far a Riemann ’s surface is determinate by the assignment of its number
of sheets

,
its branch-points and branch- lines .

Riemann ’s theory ascertains the criteria which will determine an
analytical function by aid of i ts discontinuities and boundary condi
tions

,
and thus defines a function independently of a mathematical

expression . In order to show that . two diff erent expressions
,

are
identical

,
i t is not necessary to transform one into the other

,
but it is

suffi cient to prove the agreement to a far less extent
,
merely in certain

critical points .
Riemann ’s theory

,
as based on Dirichlet ’s principle (Thomson

’s
theorem), is not free from obj ections which have been raised by L .

Kronecker
,
K . Weierstrass , and others . In consequence of this ,

attempts have ' been made to graft Riemann ’s speculations on the
more strongly rootedmethods of K . Weierstrass . The latter developed
a theory of functions by starting

,
not with the theory of potential ,

but with analytical expressions and operations . Both applied their
theories to Abelian functions

,
but there Riemann ’s work is more

general .2

Following a suggestion found in Riemann ’s Habilitationsschrift H .

Hankel prepared a tract
, Unendli ch oft osci l l irende and unstetige Funk

l ianen ,
Tubingen , 1870 ,

giving functions which admi t of an integral ,
but where the existence of a differential coefficient remains doubtful .
He supposed continuous curves generated by the motion of a point
to and fro with infinitely numerous and infinitely small oscillations ,
thus presenting “ a condensation of singularities”at every point

,
but

possessing no definite direction nor diff erential coeffi cient . These
novel ideas were severely criticised

,
but were finally cleared up by

K . Weierstrass ’ well-known rigorous example of a continuous curve
totally bereft of derivatives . Hermann Hankel (1839—1873)satisfied
at Leipzig the gymnasium requirements in ancient languages by read
ing the ancient mathematicians in the original . He studied at Leipzig
under A . F . MObius , at GOttingen under G . F . B . Riemann

,
at B erlin

under K . Weierstrass and L . Kronecker . He became professor at
Erlangen and Tiibingen . The interest of his lectures was enhanced
by his emphasis upon the history of his subject .

‘

In 1867 appeared his
Theorie der Complexen Zahlensysteme. His brilliant Geschichte der
Matheman

'

k in Altertl mm and M i ttelalter came out in 1874 as a post
humous publication .

Karl We ierstrass (1815—1897)was born in Ostenfelde
,
a village in

Westphalia . He attended a gymnasium at Paderborn where he became
interested in the geometric researches of J . Steiner . He entered the

1Math. Annalen
,
Vol . 45 , p . r4 2 .

2 O . Henrici
, Nature, Vol . 43 , 189 1 , p . 3 23 .
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University of Bonn as a student in law but all by himself he
,

studied
also mathematics

,
particularly P . S . Laplace . Wilhelm Diesterweg

and J . P lucker , who lectured in Bonn , did not influence him. Seeing
in a student note-book a transcript of Christof Gudermann’

s lectures
on elliptic transcendents

,
Weierstrass went in 1839 to Munster , where

he was during one semester the only student to attend Gudermann ’

s

lectures on thi s topic and on analytical spherics . Christof Gudermann
(1798—1851)whose researches on hyperbolic functions led to a func
tion tan“ 1

(sink x), called the Gudermannian ,”was a favorite teacher
of Weierstrass . Then he became a gymnasium teacher at Munster,
then at Deutsch—Krone in western P russia where he taught science ,
also gymnastics and writing , and final ly

‘

at Braunsberg where he
entered upon the study of Abelian functions . I t is told that he missed
one morning an eight-o ’clock class . The director of the gymnasium
went to his room to ascertain the cause

,
and found him working

zealously at a research which he had begun the evening before and
continued through the night , being unconscious that morning had
come . He asked the director to excuse his lack of punctuality to
his class

,
for he hoped soon to surprise the world by an important

discovery. While at B raunsberg he received an honorary doctorate
from Konigsberg for scientific papers he had published . In 1855 E . E .

Kummer went from Breslau to Berlin ; he expressed it as his opinion
that the paper on Abelian functions was not suffi cient guarantee that
Weierstrass was the proper man to train young mathematicians at
Breslau . SO Ferdinand Joachimsthal (18 18—186 1)was appointed
there

,
but Kummer secured for Weierstrass in 1856 a position at the

Gewerbeakademie in B erlin and at the same time an Extraordinariat
at the University . The former he held until 1864 when he received an
Ordinariat at the University as successor to the aged M artin Ohm.

In that year E . E . Kummer and Weierstrass organized an offi cial
mathematical seminar

,
P . G . L . Dirichlet having held before this a

private seminar . It is noteworthy that Weierstrass did not begin his
university career as a professor until his forty-ninth year

,
a time when

many scientists cease their creative work . K . Weierstrass , E . E .

Kummer
,
and L . Kronecker added lustre to the University of Berlin

which previously had been made famous by the researches of P . G . L .

Dirichlet
, J . Steiner

,
and C . G . J . Jacobi . Especially through Weier

strass unprecedented stress came to be put upon rigor of demon
stration . The movement toward arithmetization of mathematics re
ceived through Kronecker and Weierstrass its greatest emphasis . The
number-concept

,
especially that of the positive integer

,
was to become

the sole foundation , and the space—concept was to be rej ected as a.
primary concept .
As early as 1849 Weierstrass began to investigate and write on

Abelian integrals . In 1863 and 1866 he lectured on the theory of
Abelian functions and Abelian transcendents . No authorized publi
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A . Hurwitz
,

1 applies to two theories
,
that of A . L . Cauchy and G . F . B .

Riemann
,
and that of K . Weierstrass . The two emanate from di f

ferent definitions of a function . J . Lagrange
,
in hi s The’ orie des fonc

tions analytiques had tried to prove the incorrect theorem that every
continuous (stetige)function can be expanded in a power series. K .

Weierstrass called every function “ analytic when it can be expanded
into a power series

,
whi ch is the centre Of Weierstrass ’ theory of ana

lytic functions . All properties of the function are contained in nnce in
the power series

,
with its coefficients c 1, c2, c”, The behav ior

of a power series on the circle of convergence C had received considera
tion long before this time . N . H . Abel had demonstrated that the
power series having a determinate value in a point on the circle of
convergence C tends uniformly toward that value when the variable
approaches that point along a path which does not touch the circle.
If two power seri es involve a complex variable

,
whose circles of

convergence overlap
,
so that the two series have the same value for

every point common to the too circul ar areas
,
then Weierstrass calls

each power series a direct continuation of the other . Using several
such series

,
K . Weierstrass introduces the idea of a monogenic system

of power series and then gives a more general definition of analytic
function as a function which can be defined by a monogenic system
of power series . In 1872 the Frenchman Ch . Meray gave independ
ently a similar definition . In case of a uniform (eindeutige)function ,
the points in a complex plane are either within the circle of conver
gence of the power series in the system or else they are without. The
totality of the former points consti tutes the field of continui ty”
(Stetigk eitsbereich)of the function . Thi s field constitutes an ag

gregate Of
‘ ‘ inner ’ ’ points that i s dense

,
if this continuum is given

,

then there exist always single valued analytic functions possessing
this field of continuity

,
as was first proved by G . M . M ittag-Leffier

,

later by C . Runge and P . Stackel . The points on the boundary of
this field

,
called “ singular points

,
constitute by themselves a set

Of points
,
by the properties of which K . Weierstrass classifies the

function This classification was studied also by C . Gui chard
(1883)and by G . M . M ittag—Lefiler , making use of theorems on point
sets

,
as developed in 5 by G . Cantor and by I . O . Bendixson

and E . Phragmén ,
both of S tockholm. Thus

,
transfinite numbers

began to play a part in the theory of functions . Single-valued analytic
functions resolve themselves into two classes , the one class in which
the singular points form an enumerable (abzahlbares)aggregate , the
other class in which they do not .
Abel had proposed the problem

,
if one supposes the power series

convergent for all positive values less than r
,

find the limit to
whi ch the function tends when x approaches r . The first sub
stantial advance to a solution Of Abel ’s problem was made in 1880
1A.Hurwitz in Vern. des I . Intern . Congr .

, Zurich, 1897 , Leipzig , 1898, pp . 91
—1 1 2.
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by G . Frobenius and in 1882 by O . Holder
,
but neither of them

developed condi tions that are both necessary and suffi cient for
the establishment of the convergence of their expressions . Finally
in 1892 J. Hadamard obtained expressions which include those of
G . Frobenius and O . Holder and determined the conditions un der
whi ch they converge on the circle of convergence . The problem pre
sented itself now thus :To set up analytic expressions of the complex
variable 90 that are linear in the constants c”and also represent the
function given by the power series

,
or rather a branch of thi s function

in a field D
,
in such a manner that they converge uniformly in the in

terior of D and diverge in the exterior . The first important step
toward the resolution of this matter was taken in 1895 by E . Borel
who proved that the expression

00

l im 2 (co+c1x+
to: 00 v o

converges not only in all regular points (points réguliers)of the circle
of convergence of the power series

,
but even beyond that

,
within a

summation polygon . E . Borel held the view that his formula gave the
sum of the power series even for points where it di verges . This inter
pretation of Borel

’ s resul ts was resisted by Go'staM ognns M i ttag-Lefiler
(1846 Of S tockholm

,
the founder 1 Of the journal Acta mathe

matica, and of a M athematical Institute (in 1916)to further mathe
matical research in the Scandinavian countries . M i ttag-Leffier con
ducted important researches along the above line . E . Borel ’s statement
implies that hi s formula extends the boundaries of the theory of ana
lytic functions beyond the classic region

,
which is denied by M ittag

Leffler . The latter published in 1898 studies on a problem more gen
eral than that of Borel . If a ray ap revolves about a through an angle
2 7r , the variable di stance ap always exceeding a fixed value l

,
a sur

face is generated whi ch M ittag-Leffler calls a star (Stern)with the
center a . A star E is called a convergence star (Konvergenzstern)for a
definite arithmetical expression

,
if the latter converges uniformly for

each region within E
,
but diverges for every outside point . He shows

that to each analytic function there corresponds a principal star
,
and

that there is an infinite number of arithmetical expressions for a given
star. Equivalent results were obtained by C . Runge . E . Borel gave
in 191 2 an example of an analytic function which , by an extension of
the concept of a derivative so as to pass to the limi t not through all
the neighboring points but only through those belonging to certain
dense aggregates

,
has a certain l inear continuation beyond the do

main of existence. Studies of monogenic
"

uniform functions along
the line of E . Borel and G . M . M ittag-Leffl er have been made also
by G . Vivanti

,
Marcel Riesz

,
Ivar Fredholm

,
and E . Phragmén .

1 See G . M . M ittag-Lefi
’

i er in A l l i del IV Congr . Intern , Roma , 1908 . Roma
,
1909 ,

Vol . I , p . 69 . Here M ittag-Lefii er g ives a summary of recent resul ts.
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Interesting is the manner in which K . Weierstrass in Berlin and
G . F . B . Riemann in Gottingen influenced each other . We have
seen that Weierstrass defined functions of a complex variable by the
power series and avoids geometrical means . Riemann begins with
certain differential equations in the region of mathematical physics.
In 1856 Riemann was urged by his friends to publish a resume of
his researches on Abelian functions

,
be it ever so crude

,

”because
Weierstrass was at work on the same subject . Riemann ’s publication
induced Weierstrass to withdraw from the press a memoir he had
presented to the Berlin Academy in 1857 , because , as he himself says ,
Riemann published a memoir on

'

the same problem which rested on
entirely different foundations from mine

,
and did not immediately

reveal that in its results it agreed completely with my own . The
proof of this required investigations which were not quite easy

,
and

took much time ; after this difficulty had been removed a radical
remodelling of my dissertation seemed necessary .

”In 1875 Weier
strass wrote H . A . Schwarz:“The more I ponder over the principles
of the theory Of functions—and I do so incessantly—the stronger
grows my conviction that it must be buil t up on the foundation of
algebraical truths

,
and that

,
therefore

,
to employ for the truth of

simple and fundamental algebraical theorems the ‘ transcendental
,

’

if I may say so , is not the correct way , however enticing prima vista

the considerations may be by which Riemann has discovered many
of the most important properties of algebraical functions .”This
refers mainly to the “Thomson-Dirichlet Principle ,

”the validity of
which depended on a certain minimum theorem which was shown
by Weierstrass to rest upon unsound argument .
It has been objected that K . Weierstrass ’ definition of analytic

functions is based on power series . A . L . Cauchy ’s definition
,
which

was adopted by G . F . B . Riemann
,
is not open to this objection

,
but

labors under the burden of requiring at the start the most diffi cult
forms of the theory of limits . According to A . L . Cauchy a function
is analytic (his

“ synectic”)if i t possesses a single-valued differential
coeffi cient . Using Cauchy ’s integral theorem (Integralsatz), it fol lows
that the synectic function admits not only of a single-valued diff eren
tiation but also of a single-valued integration . Giacinto Morera
( 1856—1909)of Turin Showed that the synectic function might be
defined by the single-valued integration . More recent researches ,
1883

—
1895 , which aim at a rigorous exposition of A . L . Cauchy ’s

integral theorem
,
are due to M . Falk

,
E . Goursat , M . Lerch

,
C . Jor

dan
,
and A . Pringsheim. Cauchy ’s theoremmay be stated :If the func

tion f (z)is synectic in a continuum in which every simply closed

curve forms the boundary of an area , then the integral

always zero
,
if it is extended over a closed curve which li es wholly
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veritable functions possessing the necessary properties of continuity.

We are , therefore , no longer content with the probabilities off ered
by the reasoning long classic .

’

David Hilbert in 1899 spoke as foll ows 1 “
Dirichlet

’
s principle

owed its celebrity to the attractive simplicity of its fundamental
mathematical idea

,
to the undeniable richness of its possible appl ica

tions in pure and appli ed mathematics and to its inherent persuasive
power . But after Weierstrass ’ criticism of it

, Dirichlet
’

s principle
was considered as only of historical interest and discarded as a means
of solving the boundary—value problem . C . Neumann deplores that
this beautiful principle of D irichlet , formerly used so much , has no
doubt passed away forever . Only A . Brill and M . Noether arouse
new hopes in us by giving expression to the conviction that Dirichl et ’s
principle , being so to speak an imitation of nature , may sometime
receive new life in modified form .

”Hilbert proceeds thereupon to
rehabilitate the Principle

,
which involves a special problem in the cal

culus of variations . Dirichlet
’
s procedure was briefly thus :On the

xy plane erect at the points of the boundary curve perpendiculars the
lengths of which represent the boundary values . Among the surfaces
z=f (x,y)which are bounded by the space-curve thus obtained , select the

2

one for which the value of the integral ] f)
is a minimum . As shown by the calculus of variations , that surface
is necessarily a potential surface . By reference to such a procedure
G . F . B . Riemann thought he had settled the existence of the solution
of boundary—value problems. But K . Weierstrass made it plain that
among an infinite number of values there does not necessarily exist
a minimum value ; a minimum surface may therefore not exist . D .

H ilbert generalizes D irichlet ’s principle in this manner:“Every prob
lem of the calculus of variations has a solution , as soon as restricting
assumptions suitable to the nature of the given boundary conditions
are satisfied and if necessary

,
the concept of the solution receives a

fitting extension . D . Hilbert shows how this may be used in finding
rigorous

,
yet S imple

,
existence proofs . In 190 1 i t was used in disserta

tions prepared by E . R . Hedrick and C . A . Noble .
Taking a birds ’ eye view Of the development of the theory of func
tions during the nineteenth century s ince the time of A . L . Cauchy

,

James P ierpont said in 1904
2 “Weierstrass and Riemann develop

Cauchy ’s theory along two distinct and original paths . Weierstrass
starts with an explicit analytic expression

,
a power series

,
and defines

his function as the totality of its analytical continuations . No appeal
is made to geometric intuition

,
his entire theory is strictly arithmetical .

Riemann growing up under Gauss and Dirichlet
,
not only rel ies largely

1 J ahresb. d. d. Math. Verein ig .
, Vol . 8 , 1900 , p . 185.

2 Bull . Am. Math. S oc.
,
2 . S .

, Vol . 1 1 , 1904 , p . 137 .
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on geometric intuition , but also does not hesitate to impress mathe
matical physics into his serv ice . Two noteworthy features of his
theory are the many- leaved surfaces named after him ,

and the ex

tensive use of conformal representation. The history of functions
as first developed is largely a theory of algebraic functions and their
integrals . A general theory Of functions is only S lowly evolved . For
a long time the methods of Cauchy , Riemann , and Weierstrass were
cultivated along distinct lines by their respective pupils . The schools
of Cauchy and Riemann were first to coalesce . The entire rigor
which has recently been imparted to their methods has removed all
reason for founding

,
as Weierstrass and his school have urged

,
the

theory of functions on a single algorithm ,
viz.

,
the power series . We

may therefore say that at the close of the century there is only one
theory of functions

,
in which the ideas of its three great creators are

harmoniously united .

”
The study of existence theorems

,
particularly in the theory of alge

braie functions and the calculus of variations
,
began with Cauchy.

For implicit functions he assumed that they were expressible as power
series

,
a restriction removed by U . Dini of P isa . Simplifications are

due to R . Lipschitz of Bonn . Existence theorems of sets of implicit
functions were studied by G . A . B liss of Chicago in the Princeton
Colloquium of 1909. By means of a Sheet of points B liss deduces
from an initial solution at an ordinary point a Sheet of solutions
somewhat analogous to K. Weierstrass ’ analytical continuation of a
branch of a curve .

Accompanying and immediately following Riemann ’s time there
was a development Of the theory of algebraic functions

,
that was

partly geometric in character and not purely along the line of function
theory . A . Brill and M . Noether l in 1894 marked five directions of
advance:First

,
the geometrico-algebraic direction taken by G . F . B .

Riemann and G . Roch in the years 1862—1866
,
then by R . F . A .

Clebsch 1863 to 1865 , by Clebsch and P . Gordan since 1865 and since
187 I by A . Brill and M . Noether ; second, the algebraic direction ,
followed by L . Kronecker and K . Weierstrass S ince 1860 ,

more gen
eral ly known S ince 1872 , and in 1880 taken up by E . B . Christoffel ;
third, the invariantal direction , represented since 1877 by H . Weber

,

M . Noether E . B . Christoffel
,
F . Klein , F . G . Frobenius and F .

Schottky ; Fourth, the arithmetical direction of R . Dedekindand H .

Weber since 1880 , of L . Kronecker since 188 1
,
Of K. W . S . Hensel and

others ; Fifth, the geometrical direction taken by C . Segre and G .

Castelnuovo since 1888 .

Hermann Amandus S chwarz ( i 84s of Berl in a pupil of K .

Weierstrass , has given the conform representation (Abbi ldung)Of
various surfaces on a circle . G . F . B . Riemann had given a general
theorem on the conformation of a given curve with another curve.

1A . Brill and M . Noether, J ahrb. d. d. Math. Vereinigung, Vol . 3 , p . 287 .
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In transforming by aid Of certain substitutions a polygon bounded
by circular arcs into another also bounded by Circular arcs

,
Schwarz

was led to a remarkable differential equation t), where
( Mu ,

t)is the expression which Cayley called the Schwarzian deriva
tive

,
and which led J . J . Sylvester to the theory of reciprocants.

Schwarz ’s developments on minimum surfaces
,
his work on hyper

geometric series , his inquiries on the existence of solutions to important
partial diff erential equations under prescribed conditions

,
have se

cured a prominent place in mathematical literature .
Modular functions were at first considered merely as a by-product

of elliptic functions
,
growing out of the study of transformations .

Af ter the epoch making creations of E . Galois and G . F . B . Riemann ,
the subject of elliptic modular functions was developed into an in

dependent theory
,
mainly by the efforts of H . Poincaré and F . Kl ein ,

which stands in Close relation to the theory of
'

numbers
,
algebra and

synthetic geometry. F . Klein began to lecture on this subject in
1877 ; researches bearing upon this were pursued also by his then
pupils W . Dyck , Joseph Gierster , and A .Hurwitz . One of the problems
of modular functions is

,
to determ ine all subgroups of the linear group

(ax-H8) where a , B,

‘

Y , 8 are integers and a8—5 7 740.

F . Klein ’s Vorlesungen ither das Ikosxder , Leipzig , 1884 , is a work
along this line . AS an extended continuation of that are F . Klein ’s
Vorlesungen fi ber die Theorie der el l iptischen Modnlfnnctionen ,

gotten
out by Robert Fricke (Vol . I

,
1890 , Vol . II , 1892)and as a still

further generalization we have the theory of the general l inear auto
morphic functions

,
developed mainly by F . Klein and H . Poincaré.

In 1897 , under the joint authorship of Robert Fricke and Felix Klein ,
there appeared the first volume of the Vorlesungen ilber die Theorie
der Antomorphen Functionen ,

the second volume of which did not ap
pear until 191 2 , after the theory had come under the influence of the
critical tendencies due to K . Weierstrass and G . Cantor

,
and after

E . P icard and H . Poincaré had brought out further incisive researches .
I t has been noted that F . Klein ’s own publications on these topics
are in the order in which the subj ect itself sprang into existence.
“Historically

,
the theory of automorphic functions developed from

that of the regular solids and modular functions . At least this is the
path which F . Klein followed under the influence of the well-known
researches of Schwarz

.

and of the early publications of H . Poincare.

If H . Poincaré brings in also other considerations , namely the arith
metic methods of Ch . Hermite and the function-theoretical
problems of Fuchs with regard to single valued inversion of the solu
tions of linear diff erential equations of the second order (eindeutige
Umkehr der Losungen these topics in turn go back to the very
regions of thought fromwhich have grown the theories of the regular
solids and the elliptic modular functions . H . Poincaré published
on this subj ect inM ath. Annalen

,
Vol . 19, Sur les fonctions uniformes
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Theory of Numbers

Mathematics , the queen of the sciences , and arithmetic , the queen
of mathematics .”Such was the dictum of K . F . Gauss

,
who was

destined to revolutionize the theory of numbers . When asked who
was the greatest mathematician in Germany

,
P . S . Laplace answered

,

Pfaff . When the questioner said he should have thought Gauss was ,
Lap lace replied ,

“
P faff i s by far the greatest mathematician in Ger

many ; but Gauss i s the greatest in all Europe .

”1 Gauss is one of
the three greatest masters of analysis

,

—J . Lagrange , P . S . Laplace , K.

F . Gauss . Of these three contemporaries he was the youngest . While
the first two belong to the period in mathematical history preceding
the one now under consideration

,
Gauss i s the one whose writings may

truly be said to mark the beginning of our own epoch . In him that
abundant fertility of invention

,
displayed by mathematicians of the

preceding period
,
is combined with rigor in demonstration which is too

often wanting in their writings
,
and which the ancient Greeks might

have envied . Unlike P . S . Laplace
,
Gauss strove in his writings after

perfection of form . He rivals J . Lagrange in elegance
,
and surpasses

this great Frenchman in rigor. Wonderful was his richness of ideas ,
one thought followed another so quickly that he had hardly time to
write down even the most meagre outline . At the age of twenty
Gauss had overturned old theories and Old methods in all branches of
higher mathematics ; but little pains did he take to publish his results ,
and thereby to establish his priority . He was the first to observe
rigor in the treatment of infinite series

,
the first to fully recognize

and emphasize the importance
,
and to make systematic use of de

terminants and of imaginaries , the first to arrive at the method of
least squares

,
the first to observe the double periodicity of elliptic

functions . He invented the heliotrope and
,
together with W . Weber

,

the bifilar magnetometer and the declination instrument . He t e

constructed the whole of magnetic science .
Karl Friedrich Gauss 2

(1777 the son of a bricklayer
,
was

born at Brunswick . He used to say
,
jokingly

,
that he could reckon

before he could talk . The marvellous aptitude for calculation of the
young boy attracted the attention of Johann M artin Bartels (1769

afterwards professor of mathematics at Dorpat
,
who brought

him under the notice of Charles William
,
Duke of Brunswick . The

duke undertook to educate the boy
,
and sent him to the Collegium

Carolinum. His progress in languages there was quite equal to that
in mathematics . In 1 795 he went to Gottingen , as yet undecided
whether to pursue philology ‘ or mathematics . Abraham Gotthelf
K

’

astner (1719 then professor of mathematics there
,
and now

chiefly remembered for his Geschichte der Mathematik was not
1 R . Tucker , Carl Friedrich Gauss, Nature, Vol . 15 , 1877 , p . 534 .

2W. SartoriusWal tershausen
, Gauss , zumGedachtniss, Leipzig , 1856 .
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a teacher who could inspire Gauss , though Kastner
’s German con

temporaries ranked him high and admired his mathematical and
poetical ability . Gauss declared that Kastner was the first mathe
matician among the poets and the first poet among the mathemati
cians. When not quite nineteen years old Gauss began jotting down
in a copy-book very brief Latin memoranda of his mathematical dis
coveries. This diary was published in Of the 146 entries , the
first is dated M arch 30 ,

1796 , and refers to his discovery of a method
of inscribing in a circle a regular polygon of seventeen S ides . This dis
covery encouraged him to pursue mathematics . He worked quite
independently of his teachers

,
and while a student at GOttingen made

several of his greatest discoveries . Higher ari thmetic was his favorite
study . Among his small circle of intima te friends was Wolfgang
Bolyai . After completing his course he returned to Brunswick . In
1 798 and 1 799 he repaired to the university at Helmstadt to consult
the library , and there made the acquaintance of J . F . Pfaff

,
a mathe

matician of much power . In 1807 the Emperor of Russia offered Gauss
a chair in the Academy at St . Petersburg

,
but by the advice of the

astonomer Olbers
,
who desired to secure him as director of a proposed

new Observatory at GOttingen ,
he declined the off er

,
and accepted

the place at GOttingen . Gauss had a marked obj ection to a mathe
matical chair

,
and preferred the post of astronomer

,
that he might

give all his time to science . He spent his life in GOttingen in the midst
of continuous work . In 1828 he went to Berlin to attend a meeting
Of scientists , but after this he never again left GOttingen ,

except in
1854 , when a railroad was opened between Gottingen and Hanover .
He had a strong will

,
and his character showed a curious mixture of

self-conscious dignity and child-like simplicity . He was l ittle com
municative , and at times morose . Of Gauss ’ collec ted works

,
or

Werke
,
an eleventh volume was planned in 1916 , to be biographical and

bibliographical in character.
A new epoch in the theory of numbers dates from the publication
of his Disquisitiones Arithmeticce, Leipzig , 1801 . The beginning of
this work dates back as far as 1795. Some of its results had been
previously given by J . Lagrange and L . Euler, but were reached inde
pendently by Gauss

,
who had gone deeply into the subject before he

became acquainted with the writings of his great predecessors . The
Disquisi tionesAri thmetica? was already in print when A . M . Legendre ’s
Theorie des Nombres appeared. The great law of quadratic reciprocity,
given in the fourth section of Gauss’ work

,
a law which involves the

whole theory of quadratic residues
,
was discovered by him by in

duction before he was eighteen
,
and was p roved by him one year

later . Afterwards he learned that L . Euler had imperfectly enunciated
that theorem, and that A . M . Legendre had attempted to prove it,

1 Gauss
’

wi ssenschaftliche Tagebuch, 1 796—18 14 . M it Anmerkungen herausgege
ben von Felix Klein

, Berlin ,
190 1 .
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but met with apparently insuperable difficulties . In the fifth section
Gauss gave a second proof of this

“

gem
”of higher arithm etic . In

1808 followed a thi rd and fourth demonstration ; in 18 1 7 , a fifth and
sixth . No wonder that he fel t a personal attachment to thi s theorem.

Proofs 1 were given also by C . G . J . Jacobi
,
F . Eisenstein

, J . Liouville
,

Victor Amedee Lebesgue (1 791—1875)of Bordeaux ,
Angelo Genocchi

(18 17—1889)of the University of Turin , E . E . Kummer
,
M . A . Stern

,

Christian Zeller (182 2—1899)of M arkgroningen , L . Kronecker
,
Victor

Jacovlevich Bouniakovsk i (1804—1889)of Petrograd , Ernst Schering
( 1833—1897)of GOttingen ,

Julius Peter Christian Petersen (1839—1910)
of Copenhagen

,
E . Busche

,
Th . Pepin

,
Fabian Franklin

, J . C . Fields
,

and others . Quadratic reciprocity
“ stands out not only for the in

fluence it has exerted in many branches
,
but also for the number of

new methods to which it has given birth (P . A . MacMahon). The
solution of the problem of the representation of numbers by binary
quadratic forms is one of the great achievements of Gauss . He created
a new algorithm by introducing the theory of congruences . The fourth
section of the Disqu isitiones Arithmeticce, treating of congruences of
the second degree

,
and the fifth section

,
treating of quadratic forms

,

were
,
until the time of C . G . J . Jacobi , passed over with universal

neglect
,
but they have S ince been the starting-point of a long series

of important researches . The seventh or last section
,
developing the

theory of the division of the circle
,
was received from the start with

deserved enthusiasm
,
and has since been repeatedly elaborated for

students . A standard work on Kreistheilung was published in 1872

by Paul Bachmann
,
then of Breslau .

The equation for the division of the circle and the construction of
a regular polygon of n Sides

,
n being prime , can be solved by square

root extractions alone
,
always and only when n - I is a power of 2 .

Hence such regul ar polygons can be constructed by ruler and com
pas 'ses when the prime number n is 3 , 5, I 7 , 257 , but cannot
be constructed when n is 7 , I I , I3 , The resul ts may be stated also
thus:The Greeks knew how to inscribe regul ar polygons whose sides
numbered 2m

,
2m. 3 , 2

m
. 5 and I 5. Gauss added in 1801 that the

construction is possible when the number of Sides n is prime and of
the form L . E . Dickson computed that the number of such
inscriptible polygons for n 100 i s 24, for n 2 300 is 37 , for n 2 1000 is
52 , for n 2 is 206 .

Three classical constructions of the regul ar inscribed polygon of
seventeen S ides have been given :one by J . Serret in hi s Algebra , II,
547 , another by von Staudt in Crelle, Vol . 24 , and a third by L .

Gérard in Math. Annalen
,
Vol . 48 using compasses only . The

analytic solution
,
as outlined by Gauss

,
was actually carried out for

the regular polygon Of 257 Sides by F . J . Richelot of Konigsberg in
four articles in Crel le, Vol . 9. For the polygon of sides thi s

1 O . Baumgart , Ueber dos Quadratische Reciprocitatsgesetz, Leipzig , 1885.
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numbers by 2
, 4 , 6 , and 8 squares . Next come the researches of P . G .

L . Dirichl et , the expounder of Gauss , and a contributor of rich results
of his own .

Peter Gustav Lejeune Diri chl et 1 (1805—1859)was born in Duren ,
attended the gymnasium in Bonn

,
and then the Jesui t gymnasium

in Cologne . In 182 2 he was attracted to Paris by the names of P . S .

Laplace
,
A . M . Legendre

, J . Fourier
,
D . S . Poisson

,
and A . L . Cauchy.

The facilities for a mathematical education there were far better
than in Germany

,
where K . F . Gauss was the only great figure . He

read in Paris Gauss ’ Disquisi tiones Arithmetica
,
a work which he

never ceased to admire and study. M uch in it was simplified by
D irichlet

,
and thereby placed withi n easier reach of mathematicians .

His first memoir on the impossibility of certain indeterminate equa
tions of the fifth degree was presented to the French Academy in 1825.

He Showed that P . Fermat ’s equation
,
xn+y

n=zn
,
cannot exist when

n= 5 , Some parts of the analysis are
,
however

,
A . M . Legendre ’s .

Dirichl et
’
s acquaintance with J . Fourier led him to investigate Four

ier
’

s series . He became docent in Breslau in 1827 . In 1828 he ac
cepted a position in Berlin , and finally succeeded K . F . Gauss at
Gottingen in 1855. The general principles on which depends the
average number of classes of binary quadratic forms of positive and
negative determinant (a subj ect first investigated by Gauss)were
given by Dirichlet in a memoir

,
Ueber die Bestimmung der. mittleren

Werthe in der Zahlentheorie
,
1849. More recently F . M ertens of Graz

,

Since 1894 Of Vienna
,
determined the asymptotic values of several

numerical functions . Dirichlet gave some attention to prime num
bers . K . F . Gauss and A . M . Legendre had given expressions denoting
approximately the asymptotic value of the number of primes inferior
to a given limit

,
but i t remained for G . F . B . Riemann in his memoir

,

Ueber die Anzahl der P rimzahlen unter einer gegebenen Gr
‘

o
’

sse
,
1859,

to give an investigation of the asymptotic frequency of primes which
is rigorous . Approaching the problem from a diff erent di rection , ~
P . L . Chebichev

,
formerly professor in the University of S t . Petersburg,

established
,
in a celebrated memoir

,
S ur les Nombres P remiers

,
1850 ,

the existence of limi ts within which the sum of the logarithms of the
primes P

,
inferior to a given number x

,
must be comprised .

2 He
proved that

,
if n> 3 , there is always at least one prime between n

and 2n—2 (inclusive). This theorem i s sometimes called “ Bertrand ’s
postulate

,

”
S ince J . L . F . Bertrand had previously assumed i t for

the purpose of proving a theorem in the theory of substitution groups .
This paper depends on very elementary considerations

,
and

,
in that

respect
,
contrasts strongly with Riemann ’s

,
which involves abstruse

theorems of the integral calcul us. H . Poincaré’s papers, J . J . Syl
1 E. E . Kummer , Gedachtnissrede auf Gustav P eter Lej eune-Diri chlet, Berlin ,

1860 .

2H . J. Stephen Smith
“
On the Present S tate and Prospects of some Branches of

Pure Mathematics,
”
P roceed. London Math. S oc . , Vol . 8 , 1876 , p . 1 7 .
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vester
’
s contraction of Chebichev ’

s limi ts
,
with reference to the dis

tribution of primes , and researches of J . Hadamard (awarded the
Grand prix of are among the later researches in this line .
G . F . B . Riemann had advanced six properties relating to

00 1

(s)=2 where s= o+ti ,

none of which he was able to prove .1 In 1893 J . Hadamard proved
three of these , thereby establishing the existence of null-places in
Riemann ’s zeta-function ; H . von Mangoldt of Danzig proved in 1895
a fourth and in 1905 a fifth of Riemann ’s six properties . The remain
ing one , that the roots of {(s)in the strip 0 0

'

S I , have all the rea l
part remains unproved

,
though progress in the study of this case

has been made by F . M ertens and R . v . Sterneck . If x is a positive
number

,
and if 7r(x)denotes the number of primes less than x,

then
what Landau calls the “prime-number theorem (Primzahlsatz)
states that the ratio of 7r(x)to x/log x approaches 1 as x increases
without end . A . M . Legendre , K . F . Gauss

,
and P . G . L . Dirichlet

had guessed this theorem. As early as 1 737 L . Euler2 had given an
analogous theorem

,
that 2 1/p approaches log (log p), where the sum

mation extends over all primes not greater than p. The prime-number
theorem was proved in 1896 by J . Hadamard and Charles Jean de la
Vallée Poussin of Louvain , in 190 1 by Nils Fabian Helge von Koch
of Stockholm

,
in 1903 by E . Landau , now of Gottingen , in 1915 by

G . H . Hardy and J . E . Littlewood of Cambridge . Hardy discovered
an infinity of zeroes of the zeta- function with the real part E .

Landau simplified Hardy ’s proof .
G . F . B . Riemann ’s zeta - function {(s)was first studied on account

of its fundamental importance in the theory of prime numbers , but i t
has become important also in the theory of analytic functions in
general . In - 1909 E . Landau published his Handbuch der Lehre von

der Vertei lung der P rimzahlen . In 191 2 he pronounced the following
four questions to be apparently incapable of answer in the present
state of the science of numbers: (1)Does u2+ 1 for integral values of
n represent an infinite number of primes? (2)C . Goldbach ’s theorem:

Can prime values of p and p
’ be found to satisfy m=p+p

’ for each
evenm larger than 2 ? (3)Has 2 p p

1 an infinite number of solutions
in primes? (4)Is there between n

2 and (n+ i)z at least one prime for
every positive integral n?
The enumeration of prime numbers has been undertaken at differ
ent times by various mathematicians . Factor tables , giving the least
factor of every integer not divisible by 2 , 3 , or 5 , did not extend above

previous to the year 181 1
,
when Ladislaus Chernac published

his Cri brum ori thmeticum at Deventer in Netherlands , which gives
1 For details

, consult E . Landau in P roceed. 5th Intern . Congress , Cambridge, 191 2 ,
Vol . 1

,
1913 , p . 97 .

2 G . EnestrOm in Bi bliotheca mathematica, 3 . S . , Vol . I 3 , p . 8 1 .
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factors for numbers up to J . Ch . Burckhardt (1773—1815)
published factor tables in Paris

,
in 18 17 for the numbers 1 to

in 1814 for the numbers 1020000 to 2028000 ,
in 1816 for the numbers

to J.

-
.mes Glaisher (1809—1903)published factor

tables at London , in 1879 for the numbers to in
1880 for numbers to in 1883 for the numbers

to Zacharias Dase (1824—186 1)published factor
tables at Hamburg

,
in 186 2 for the numbers to in

1863 for the numbers to in 1865 for the numbers
to In 1909 the Carnegie Institution of Washing

ton published factor tables for the first ten mill ions
,
prepared by D .

N . Lehmer of the University of California . Lehmer gives the errors
discovered in the earlier publications . Historical details about factor
tables are given by Glaisher in his Factor Table. FourthM il l ion ,

1879.

M iscellaneous contributions to the theory of numbers were made
by A . L . Cauchy. He showed

,
for instance

,
how to find all the infinite

solutions of a homogeneous indeterminate equation of the second
degree in three variables when one solution is given . He established
the theorem that if two congruences

,
which have the same modulus

,

admit of a common solution
,
themodulus is a divisor of their resultant.

Joseph Liouvill e (1809 professor at the College de France ,
investigated mainly questions on the theory of quadratic forms of two ,
and of a greater number of variables . A research along a different
l ine proved to be an entering wedge into a subj ect which S ince has
become of vital importance . In 1844 he proved (Liouvi l le

’

s Journol ,
Vol . 5)that neither e nor e2 can be a root of a quadratic equation with
rational coefficients . By the properties of convergents of a continued
fraction representing a root of an algebraical equation with rational ‘

coeffi cients he established later the existence of numbers—the so

called transcendental numbers—which cannot be roots of any such
equation . He proved this also by another method . A still different
approach is due to G . Cantor . P rofound researches were instituted
by Ferdinand Gotthold Eisenstein ( 1823—18 of Berlin . Ternary
quadratic forms had been studied somewhat by K . F . Gauss

,
but the

extension from two to three indeterminates was the work of Eisen
stein who

,
in his memoir , Neue Theoreme o

’

er hoheren A rithmetic,
defined the ordinal and generic characters of ternary quadratic forms
of uneven determinant ; and , in case of definite forms , assigned the
weight of any order or genus . But he did not publish demonstrations
of his results . In inspecting the theory of binary cubic forms , he was
led to the discovery of the first covariant ever considered in analysis .
He showed that the series of theorems

,
relating to the presentation

of numbers by sums of squares , ceases when the number of squares
surpasses eight . Many of the proofs omitted by Eisenstein were sup
plied by Henry Smith , who was one oi the few Englishmen who de
voted themselves to the study of higher arithmetic .
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mathematics , Smith once proposed a toast , Pure mathematics ;
may it never be of any use to any one .

”
Ernst Eduard Kummer (18 10 professor in the University

of Berlin is Closely identified with the theory of numbers. P . G . L .

D irichlet 5 work on complex numbers of the form o+i b, introduced
by K . F . Gauss

,
was extended by him

,
by F . Eisenstein , and R . Dede

kind . Instead of the equation x
4

the roots of whi ch yield
Gauss ’ units , F . Eisenstein used the equation x

3 and complex
numbers a+bp ( p being a cube root of unity), the theory of which
resembles that of Gauss ’ numbers . E . E . Kummer passed to the
general case x" 1 = 0 and got complex numbers Of th e form a=o 1A 1+

a2A 2+a 3A 3+ were or are whole real numbers , and A ; roots of the
above equation . Euclid ’s theory of the greatest common divisor is
not applicable to such complex numbers

,
and their prime factors can

not be defined in the same way as prime factors of common integers
are defined . In the effort to overcome this diffi culty

,
E . E . Kumme

was led to introduce the conception of “ ideal numbers . These
ideal numbers have been applied by G . Zolotarev of St. Petersburg
to the solution of a problem of the integral calculus

,
left unfinished by

Abel . 1 J . W. R . Dedekind of Braunschweig has given in the second
edition of Dirichlet ’s Vorlesungen uber Zahlentheori e a new theory
of complex numbers

,
in which he to some extent dev iates from the

course of E . E . Kummer , and avoids the use of ideal numbers . De
dekind has taken the roots of any irreducible equation with integral
coeffi cients as the units for his complex numbers . F . Klein in 1893
introduced S implicity by a geometric treatment of ideal numbers .

Fermat
’

s Last Theorem,
Waring

’
s Theorem

E . E . Kummer ’s ideal numbers owe their origin to his efforts to
prove the impossibility of solv ing in integers Fermat

’s equation
xn-l-y

n=an for n> 2 . We premise that some progress in proving this
impossibil ity has been made by more elementary means . For in
tegers x, y, z not divisible by an Odd prime n , the theorem has been
proved by the Parisian mathematician and philosopher S ophie Ger
main (1776—1831)for n < i oo ,

by Legendre for n < 2oo , by E . T. Mail
let for n< 2 23 , by Dmitry M irimanoff for n< 257 , by L . E . Dickson
for n <7000 .

2 The method used here is due to Sophie Germain and
requires the determination of an odd prime p for which xn+y

n+

W25 0 (mod. p)has no solutions , each not divisible by p, and n i s not
the residue modulo p of the nth power of any integer . E . E . Kum
mer ’s results rest on an advanced theory of algebraic numbers which he

1H .J. S . Smith ,

“
On the Present State and Prospects of Some Branches of Pure

Mathematics,
”
P roceed. London Math. S oc. , Vol . 8 , 1876 , p . 1 5 .

2 See L . E . Dickson in Annals of Mathematics , 2 . S .
, Vol . 18 , 191 7 , pp . 16 1—187 .

See also L . E. D ick son in Atti del I V. Congr . Roma
,
1908, Roma

,
1909 , Vol . II,

p . 1 72 .



THEORY OF NUMBERS 443

helped to create . Once at an early period he thought that he had a com
plete proof . He laid it before P . G . L . Dirichlet who pointed out that

,

although he had proved that any numberf a), where a is a complex u ‘h

root of unity and n is prime
,
was the product of indecomposable factors

,

he had assumed that such a factorization was unique , whereas this was
not true in ‘general .1 After years of study

,
E . E . Kummer concluded

that this non-uniqueness of factorization was due to f ( a)being too
small a domain of numbers to permit the presence in it of the true prime
numbers . He was led to the creation of his ideal numbers

,
the ma

chinery of which
,
says L . E . Dickson , 2 is so delicate that an expert

must handle it with the greatest care
,
and (is)nowadays chiefly of

historical interest in view of the simpler and more general theory of
R . Dedekind .

”By means of his ideal numbers he produced a proof
of Fermat ’s last theorem

,
which is not general but excludes certain

particular values of n
,
which values are rare among the smaller values

of u ; there are no values of n below 100
,
for which E . E . Kummer ’s

proof does not serve . In 1857 the French Academy of Sciences
awarded E . E . Kummer a prize of 3000 francs for his researches on
complex integer
The first marked advance since Kummer was made by A . Wieferich
ofM iin ster , in Grel le

’

s Journol , Vol . 136 , 1909, who demonstrated that
if p is prime and 219

—
2 is not divisible by p

2
,
the equation xP+yP=zP

cannot be solved in terms of positive integers which are not mul

tiples of p. Waldemar M eissner of Charlottenburg found that 210—2
is divisible by p

2 when p= 1093 and for no other prime p less than
2000 . Recent advances toward a more general proof of Fermat ’s
last theorem have been made by D . M irirnanoff of Geneva , G . Fro
benius of Berl in

,
E . Hecke of Gottingen , F . Bernstein of Gottingen

,

Ph . Furtwangler of Bonn , S . Bohnicek and H . S . Vandiver of Phila
delphia . Recent eff orts along this line have been stimulated in part
by a bequest of marks made in 1908 to the Konigliche Gesell
schaft der Wissenschaften in Gottingen , by the mathematician F . P .

Wolfskehl of Darmstadt
,
as a prize for a complete proof of Fermat ’s

last theorem. Since then hundreds of erroneous proofs have been
published . Post-mortems over proofs which fall still-born from the
press are being held in the Sprechsaal of the Archiv der Mathematik
und Physik .

At the beginning of the present century progress was made in prov
ing another celebrated theorem ,

known as “Waring ’s theorem. In
1909 A . Wieferich of Munster proved the part which Says that every
positive integer is equal to the sum of not more than 9 positive cubes .
He established also

,
that every positive integer is equal to the sum

of not more than 37 (according to Waring , i t is not more than 19)
positive fourth powers

,
while D . Hilbert proved in 1909 that , for

1 Festschrift 2. Feier des I OO . Geburtstages Eduard Kummers , Leipzig , 1910 , p . 2 2 .

2 Bull . Am. Math. Soc. , Vol . 1 7 , 191 1 , p . 371 .
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every integer n> 2 (Waring had declared
”
for every integer n> 4),

each positive integer is expressible as the sum of positive nth powers ,
the number of which l ies within a limit dependent only upon the
value of n . Actual determinations of such upper lim its have been
made by A . Hurwitz

,
E . T . Maill et , A . Fleck

,
and A . J . Kempner.

Kempner proved in 191 2 that there is an infi nity of numbers which
are not the sum of less than 4 . 2

n

positive 2nth powers , n22 .

Other Recent Researches . Number Fields

Attracted by E . E . Kummer ’s investigations , his pupil , Leopold
Kroneck er (1823—1891)made researches which he applied to algebraic
equations . On the other hand , efforts have been made to utilize in
the theory of numbers the results of the modern higher algebra.

Following up researches of Ch . Hermite , Pau l Bachmann of Munster ,
now of Weimar

,
investigated the arithmetical formula which gives

the automorphics Of a ternary quadratic form .

1 Bachmann is the
author of well-known texts on Zahlentheori e

,
in several volumes

,
which

appeared in 1892 , 1894 , 1872 , 1898 , and 1905 , respectively . The prob
lem of the equivalence of two positive or definite ternary quadratic
forms was solved by L . Seeber ; and that of the arithmetical auto
morphics of such forms , by F . G . Eisenstein . The more diffi cult prob
lem of the equivalence for indefinite ternary forms has been investi
gated by Eduard Selling of Wi ’i rzburg . On quadratic forms of four
or more indeterminates little has yet been done . Ch . Hermite showed
that the number of non-equivalent Classes of quadratic forms hav ing
integral coefficients and a given discriminant is finite , while Zolotarev
and Al exander Kork ine (1837 both of St . Petersburg , investi
gated the minima of positive quadratic forms . In connection with
binary quadratic forms , H . J . S . Smith established the theorem that
if the joint invariant of two properly primitive forms vanishes , the
determinant of either of them is represented primitively by the dupli
cate of the other .
The interchange of theorems between arithmetic and algebra is

displayed in the recent researches of J . W . L . Glaisher ( 1848
of Trinity College and J . J . Sylvester . Sylvester gave a Constructive
Theory of Partitions

,
which received additions from his pupils , F.

Franklin , now of New York city , and George Stetson Ely
for many years examiner in the U . S . Patent Offi ce.
By the introduction of “ ideal numbers”E . E . Kummer took a

first step toward a theory of fields of numbers . The consideration of
super fields (OberkOrper)from which the properties of a given field
of numbers may be easily derived is due mainly to R . Dedekind and
to L . Kronecker . Thereby there was opened up for the theory of
numbers a new and wide territory which is in close connection with

1H . J. S . Smith in Proceed. London Math. S oc .
,
Vol . 8, 1876 , p . 13 .
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Anatole Lucas ( 1842—1891)of Paris , FortunéLandry (1799—P), A . J . C .

Cunningham
,
F . W . P . Lawrence and D . N . Lehmer .

Transcendental Numbers . The I nfinite

Building on the resul ts previously reached by J . Liouville , Ch .

Hermite proved in 1873 in the Comptes Rendus , Vol . 77 , that e is
transcendental

,
while F . Lindemann in 1882 (Ber . Akod. Berl in)

proved that 7r is transcendental . Ch . Hermite reached his result by
showing that oem+ben+ce 7+ 0 cannot subsist

,
where m

,
n
,
r
,

o
, b, c, are whole numbers ; F . Lindemann proved that this equa
tion cannot subsist when m

, n ,
r
,

o
,
b
,
c are algebraic numbers ,

that in particular
, e

i x+ 1 = 0 cannot subsist if x is algebraic . Couse
quently 7r cannot be an algebraic number . But , starting with two
points

, (0 , 0)and (1 , a third point (a , 0)can be constructed by the
aid of ruler and compasses only when a is a certain special type of
algebraic number that is obtainable by successive square root extrac
tions . Hence the point ( 7T, 0)cannot be constructed , and the “ quad
rature of the circle”is impossible . The proofs of Ch . Hermite and F .

Lindemann involved complex integrations and were complicated .

Simplified proofs were given by K . Weierstrass in 1885, Th J . Stieltj es
in 1890 ,

D . Hilbert , A . Hurwitz
,
and P . Gordan in 1896 (Math. An

nolen ,
Vol . F . M ertens in 1896 , Th . Vahlen in 1900 ,

H . Weber
,

F . Enriques
,
and E . W . Hobson in 191 1 . G . B . Halsted says of the

circle ,
“ John Bolyai squared it in non-Euclidean geometry and Linde

mann proved no man could square it in Euclidean geometry.

That there are many other transcendental numbers beside e and 7r

is evident from the researches of J . Liouville , E . Maillet
,
G . Faber

and Aubrey J . Kempner
,
who give new forms of infinite series which

define transcendental numbers . Of interest are the theorems estab
l ished in 1913 by G . N . Bauer and H . L . Slobin of M inneapolis , that
the trigonometric functions and the hyperbolic functions represent
transcendental numbers whenever the argument is an algebraic num
ber other than zero

,
and vice versa

,
the arguments are transcendental

numbers whenever the functions are algebraic numbers . 1

The notions of the actually infinite have undergone radical change
during the nineteenth century . As late as 1831 K . F . Gauss expressed
himself thus : “ I protest against the use Of infinite magnitude as
something completed

,
which in mathematics is never permissible.

Infinity is merely a fogon de porter , the real meaning being a limi t
which certain ratios approach indefinitely near , while others are per
mitted to increase without restriction .

”2 Gauss ’ contemporary , A . L .

Cauchy
,
likewise rejected the actually infinite

,
being influenced by

1 Rendiconti d. Circolo Moth. di Palermo, Vol .
33
8 , 19 14 , p. 353 .

2 C . F . Gauss , Brief on Schumacher, Werke, d. 8 , 2 16 ; q uoted from Moritz ,
Mcmorobil io mathematica , 19 I 4, p. 337.
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the eighteenth century philosopher of Turin , Father Gerdil .1 In 1886

Georg Cantor occupied a diametrically opposite position , when he
said : In spite of the essential difference between the conceptions of
the potential and the actual infinite , the former S ignifying a variable

finite magnitude increasing beyond all finite limits
,
while the latter

is a fixed
, constant quantity lying beyond all finite magnitudes

,
i t

happens only too often that the one is mistaken for the other .
Owing to a justifiable aversion to such i l legitimate actual infinities
and the influence of the modern epicuric

-materialistic tendency
,
a

certain horror infini ti has grown up in extended scientific circles ,
which finds its classic expression and support in the letter of Gauss

,

yet it seems to me that the consequent uncritical rejection of the
legitimate actual infinite is no lesser violation of ' the nature of things

,

which must be taken as they are .

”2
In 1904 Charles Emile Picard of Paris expressed himself thus:3

Since the concept of number has been Sifted
,
in it have been found

unfathomable depths ; thus , i t i s a question still pending to know ,
be

tween the two forms
,
the cardinal number and the ordinal number

,

under which the idea Of number presents itself
,
which of the two is

anterior to the other
,
that is to say

,
whether the idea of number prop

erly so called is anterior to that of order
,
or if i t is the inverse . It

seems that the geometer-logician neglects too much in these questions
psychology and the lessons unciv ilized races give us ; i t would seem to
result from these studies that the priority is with the cardinal number .”

Appl ied Mathemotics. Celestial Mechanics

Notwithstanding the beautiful developments of celestial mechanics
reached by P . S . Laplace at the close of the eighteenth century , there
was made a discovery on the first day of the nineteenth century which
presented a problem seemingly beyond the power of that analysis .
We refer to the discovery of Ceres by Giuseppe Piazzi in Italy

,
which

became known in Germany just after the philosopher G . W . F . Hegel
had published a dissertation proving a priori that such a discovery
could not be made. From the positions of the planet observed by
P iazzi its orbi t could not be satisfactorily calculated by the old
methods , and it remained for the genius of K . F . Gauss to devise a
method of calculating elliptic orbits which was free from the assumption
of a small eccentricity and incl ination . Gauss ’ method was developed
further in his TheoriaM otus . The new planet was re-discovered with
aid of Gauss ’ data by H . W . M . Olbers

,
an astronomer who promoted

science not only by his own astronomical studies
,
but also by discern

1 See F . Cajori ,
“History of Zeno '

s Arguments on Motion , Am. Math. Monthly,
Vol . 2 2 , 1915 , p . 1 14 .

2 G . Cantor, Zum Problem des -

actualen Unendlichen
, Natur und Ofi enbarung ,

Bd. 32 , 1886
, p . 2 26 ; q uoted from Moritz , M emorabil ia mathematica, 1914, p . 337.

3 Congress of Arts and S cience, St. Louis, 1904, Vol . I , p. 498 .
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ing and directing towards astronomical pursuits the genius of F . W .

Bessel .
FriedrichWilhe lm Besse l 1 (1784—1846)was a native of M inden in

Westphalia . Fondness for figures
,
and a distaste for Latin grammar

led him to the choice of a mercantile career . In his fifteenth year he
became an apprenticed clerk in Bremen

,
and for nearly seven years

he devoted his days to mastering the details of his business
,
and part

of his nights to study . Hoping some day to become a supercargo on
trading ex peditions

,
he became interested in observations at sea.

With a sextant constructed by him and an ordinary clock he deter
,‘
mined the latitude of Bremen . His success in this inspired him for
astronomical study . One work after another was mastered by him

,

unaided
,
during the hours snatched from sleep . From old observa

tions he calculated the orbi t of Halley ’s comet . Bessel introduced
himself to H . W . M . Olbers

,
and submitted to him the calculation

,

which Olbers immediately sent for publication . Encouraged by 01
bers

,
Bessel turned hi s back to the prospect of affluence

,
chose poverty

and the stars , and became assistant in J . H . SchrOter
’

s observatory at
Lilienthal . Four years later he was chosen to superintend the con
struction of the new observatory at Konigsberg .

2 In the absence of
an adequate mathematical teaching force , Bessel was obliged to lecture
on mathematics to prepare students for astronomy . He was relieved
of this work in 1825 by the arrival of C . G . J . Jacobi . We shall not
recount the labors by which Bessel earned the title of founder of
moder npractical astronomy and geodesy. As an observer he towered
far above K . F . Gauss

,
but as a mathematician he reverently bowed

before the genius of his great contemporary. Of Bessel ’s papers
,
the

one of greatest mathematical interest is an Untersuchung des Theils

der plouctarischen S to
‘

rungen ,
welchcr ous dcr Bewegung der Sonne

entsteht
” in which he introduces a class of transcendental

functions
,

much used in applied mathematics
,
and known as

“ Bessel ’s functions .”He gave their principal properties
,
and con

structed tables for their evaluation . It has been observed that Bes
sel ’s functions appear much earlier in mathematical literature .

3 Such
functions of the zero order occur in papers of Daniel Bernoulli (1732)
and L . Euler on vibration of heavy strings suspended from one end.

All of Bessel ’s functions of the first kind and of integral orders occur
in a paper by L . Euler (1 764)on the vibration of a stretched elastic
membrane . In 1878 Lord Rayleigh proved that Bessel

’s functions
are merely particular cases of Laplace ’s functions . J . W . L . Glaisher
illustrates by Bessel ’s functions his assertion that mathematical

1 Bessel als Bremcr Il arzdlungslehrl ing , B remen , 1890 .

Frantz , Festrede ous Veranlassung von Bessel
’

s hundcrtj ahrigcm Geburtstag,
Konig sberg , 1884 .

3 Maxime Bocher , A bit ofMathematical History, B ul l . of theN . Y . Math. Soc.
,

\o l . l l , 1893 , p. 107 .
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of its particular mode of evolution . He traced back the changes in
the figures of the earth and moon , until they united into one pear
shaped mass. This theory received confirmation in 1885 from a paper
in Acta moth.

,
Vol . 7 by H . Poincaré in which he enunciates the prin

ciple of exchange of stabilities . H . Poincaré and Darwin arrived at
the same pear-shaped figure

,
Poincaré tracing the process of evolution

forwards
,
Darw in proceeding backwards in time . Questions of

stability of this changing pear-shaped figure occupied Darwin ’s later
years. Researches along the same line were made by one of his
pupils

,
James H . Jeans of Trinity College , Cambridge .

About the same time that George Darwin began his researches
,

George Wi lliam H il l (1838—1914)of the Nautical Almanac Offi ce
in Washington began to study the moon . Hill was born at Nyack ,
New York

,
graduated at Rutgers College in 1859, and was an as

sistant in the Nautical Almanac Office from his graduation till 1892 ,
when he resigned to pursue further the original researches which
brought him distinction . In 1877 he published Researches on Lunar

Theory, in which he discarded the usual mode of procedure in the
problem of three bodies

,
by which the problem is an extension of the

case of two bodies. Following a suggestion of Euler
,
Hill takes the

earth finite
,
the sun of infinite mass at an infinite distance

,
the moon

infinitesimal and at a finite distance . The differential equations which
express the motion of the moon under the limitations adopted are
fairly simple 1 and practically useful . “ It is this idea of Hill ’s that
has so profoundly changed the whole outlook of celestial mechanics .
H . Poincaré took it up as the basis of his celebrated prize essay of
1887 on the problem of three bodies and afterwards expanded his
work into the three volumes

,
Les méthodes nouvel les de lo mécanique

céleste,
”
1892

—1899. I t seems that at first G . H . Darwin paid little
attention to Hill ’s paper ; Darwin often spoke of his diffi cul ties in
assimilating the work of others . However in 1888 he recommended
to E . W. Brown

,
now professor at Yale

,
the study of Hill . Nor does

Darwin seem to have studied closely the “ planetesimal hypothesis”
of T . C . Chamberlin and F . R . Moulton of the University of Chicago.

A marked contrast between G . H . Darwin and H . Poincaré lay in
the fact that Darwin did not undertake investigations for their
mathematical interest alone

,
while H . Poincaré and some of his

followers in applied mathematics have less interest in the phenomena
than in the mathematical processes which are u sed by the student
of the phenomena . They do not expect to examine or predict physical
events but rather to take up the Special classes of functions, differen
tial equations or series which have been u sed by astronomers or phy
sicists

,
to examine their properties

,
the validity of the arguments and

the limitations which must be placed on the results”(E . W . Brown).
1We are using E . W. B rown

’

s article in S cientific Papers by S ir C. II . Darwin,
Vol . V ,

1916 , pp. xxxiv—lv.
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Prominent in mathematical astronomy was Simon Newcomb

(1835 the son of a country school teacher. He was born at Wal
lace in Nova Scotia . Although he attended for a year the Lawrence
Scientific School at Harvard University

,
he was essentially self-taught .

In Cambridge he came in contact with B . Peirce
,
B . A . Gould

, J . D.

Runkle
,
and T. H . Safford . In 186 1 he was appointed professor in

the United States Navy ; in 1877 he became superintendent of the
American Ephemeris and Nautical Almanac Office . This position
he held for twenty years. During 1884

—1895 he was also professor
of mathematics and astronomy at the Johns Hopkins University

,

and editor of the American Journol of Mothematics . His researches
were mainly in the astronomy of position , in which line he was pre
eminent. In the comparison between theory and observation

,
in

deducing from large masses of observations the results which he
needed and which would form _a basis of comparison with theory ,
he was a master . As a supplement to the Nauticol A lmanac for 1897
he published the Elements of the Four Inner planets, and the Funda
mental Constants of Astronomy , which gathers together Newcomb

’s
life-work .

1 For the unravelling of the motions of Jupiter and Saturn
,

S . Newcomb enlisted the services of G . W . Hill. All the publications
of the tables of the planets

,
except those of Jupiter and Saturn

,
bear

Newcomb ’s name . These tables supplant those of Leverrier. S . New
comb devoted much time to the moon . He investigated the errors in
Hansen ’s lunar tables and continued the lunar researches of C . E.

Delaunay. Brief reference has already been made to G . W. Hill ’s
lunar work and his contribution of an elegant paper on certain possible
abbreviations in the computation of the long-period of the moon ’s
motion due to the direc t action of the planets and made elaborate
determination of the inequalities of the moon s motion due to the
figure of the earth . He also computed certain lunar inequalities due
to the action of Jupiter .
The mathematical discussion of Saturn ’s rings was taken up first

by P . S . Laplace
,
who demonstrated that a homogeneous sol id ring

could not be in equilibrium
,
and in 1851 by B . Peirce , who proved

their non-solidity by showing that even an irregular solid ring could
not be in equilibrium about Saturn . The mechanism of these rings
was investigated by James Clerk Maxwel l in an essay to which the
Adams prize was awarded. He concluded that they consisted of an
aggregate of u as a
speculation in eight
eenth century tically
demonstrated as the only possible solution
The progress in methods of computing planetary

,
asteroidal

,
and

cometary orbits has proceeded along two more or less distinct lines ,
1 E. W. B rown in Bul l . Am. Math. S oc. , Vol . 16 , 19 10 , p . 353 .

2W. W. Bryant, A History of Astronomy, London , 1907 , p . 233.
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the one marked out by P . S . Laplace
,
the other by K . F . Gauss . 1 La

place ’s method possessed theoretical advantages
,
but lacked practical

applicability for the reason that in the second approximation the
results of the first approximation could be used only in part and the
computation had to be gone over largely anew . To avoid this labor
in finding asteroidal and cometary orbits

,
Heinrich W. M . Olbers

( 1758- 1840)and K . F . Gauss devised more expeditious processes for
carrying out the second approximation . The Gaussian procedure
was refined and simplified by Johann Franz Encke (1 791
Francesco Carl ini (1783 F . W . Bessel , P . A . Hansen

,
and es

pecial ly by Theodor von Oppolzer (1841—1886)of Vienna whose
method has been used by practical astronomers down to the present
day . Most original among the new elaborations of Gauss ’ method is
that of J . Wil lard Gibbs of Yale , which employs vector analysis and ,
though rather complicated

,
yields remarkable accuracy even in the

first approximation . Gibbs ’ procedure was modified in 1905 by J .

Frischauf of Graz. P . S . Laplace ’s method has attracted mathemati
cians by its elegance. It received the

'

attention of A . L . Cauchy
,

Antoine Yvon Vil larceau (1813—1883)of the Paris Observatory ,
Rodolphe Radau of Paris

,
H . Bruns of Leipzig , and H . Poincaré. Paul

Harzer of Kiel and especially Armin Otto Leuschner Of the University
of Califor nia made striking advances in rendering Laplace ’s method
available for rapid computation . Leuschner adopts from the start
geocentric co ordinates and considers the effects of the perturbating
body in the very first approximation ; i t is equally applicable to plane
tary and to cometary orbits .2

P roblem of Three Bodies

The problem of three bodies has been treated in various ways since
the time of J . Lagrange

,
and some decided advance towards a more

complete solution has been made . Lagrange
’s particular solution

based on the constancy of the relative distances of the three bodies ,
one from the other (called by L . O . Hesse the reduced problem of
three bodies)has recently been modified by Carl L . Charlier of the
observatory at Lund

,
in which the mutual distances are replaced

by the distances from the centre of gravity.

3 This new form possesses
no marked advantage . “Theoretical interest in the Lagrangian solu
tions has been increased

,
says E . O . Lovett

,

“ by K . F. Sundman
’
s

theorem that the more nearly all three bodies in the general problem
tend to collide simultaneously

,
the more nearly do they tend to as

sume one or the other of Lagrange ’s configurations ; practical
1We are using an article by A . Venturi in Rivista di Astronomia , June , 1913 .

2 For a ful ler historical account, see A . O . Leuschner in S cience, N . S . , Vol . 45 ,
19 17. pp. 57 1

—
584 .

3We are drawmg from L . O . Lovett
’

s l he Problem of Three Bodi es in S ci ence,
N . S .

, Vol . 29, 1909, pp . 81—91 .
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has been given
,
but Poincare showed that solutions exist in which

the motion is purely periodic , and therefore that in them at least no
disaster of collision or indefinite departure from the central mass will
ever occur”(F . R . Moulton). A startling result was Poincaré’s dis
covery that some of the series which have been used to calculate the
positions of the bodies of the solar system are divergent . An exam
ination of the reasons why the divergent series gave suffi ciently ac

curate resul ts gave rise to the theory of asymptotic series now applied
to the representation of many functions. Does the ultimate diver
gence of the series throw doubt upon the stability of the solar system?
H . Gylden thought that he had overcome the difficulty

,
but H . Poin

care Showed that in part i t still exists .
‘ Following Poincaré’s lead

,

E . W . B rown has formulated the sufficient conditions for stability in
the n-body problem. T . Levi-Civita worked out criteria in which
the stabili ty is made to depend upon that of a certain point trans
formation associated with the periodic function . He proved the
existence of zones of instability surrounding Jupiter ’s orbit . The
new methods in celestial mechanics have been found useful in com
puting the perturbations Of certain small planets. Material advances
in the problem of three bodies were made by Karl F . Sundman of
Helsingfors in Finland

,
in a memoir which received a prize of the

Paris Academy in 1913. This research is along the path first blazed
by P . Painlevé, continued by T . Levi-Civita and others.
In the transformation and reduction of the three-body problem

,
a

principal rOle has been played by the ten known integrals, namely,
the Six integrals of motion of the centre of gravity

,
three integrals of

angular momentum
,
and the integral of energy . The question of

further progress in this reduction is vitally related to the non-existence
theorems of H . Bruns

,
H . Poincaré

,
and P . Painlevé. H . Bruns demon

strated that the n-body problem admits of no algebraical integral
other than the ten classic ones

,
and H . Poincaré proved the non

existence of any other uniform analytical integral .”Other researches
on these non-existence theorems are due to P . Painlevé

,
D . A . Gravé,

and K . Bohlin .

E . P icard expresses himself as follows 1 “What admirable recent
researches have best taught them [analysts] is the immense diffi cul ty
of the problem ; a new way has , however , been opened by the study
of particular solutions , such as the periodic solutions and the asymp
totic solution which have already been utilized . I t is not perhaps
so much because of the needs of practice as in order not to avow it
self vanquished

,
that analysis will never resign itself to abandon

,
with

out a decisive victory , a subjec t where i t has met so many brilliant
triumphs ; and again , what more beautified field could the theories
new-born or rejuvenated of the modern doctrine of functions find ,
to essay their forces

,
than this classic problem of n bodies?”

1 Congress of Arts and S cience, St. Louis, 1904, Vol . I , p. 5 12.
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Among valuable text-books on mathematical astronomy of the
nineteenth century rank the following works :Monuol of Spherical
an d P ractical Astronomy by Wi l l iam Chauvenet P ractical and

Spherical Astronomy by Robert
’

Main of Cambridge , Theoreticol As
tronomy by Jomes C . Watson of Ann Arbor Traite

’

éléznentoire

de Me
‘

conique Celeste of II. Resol of the Ecole Polytechnique in Paris ,
Cours d

’
Astronomie de l

’
Ecole P olytechnique by Faye, Trai te

’

deMecani

que Celeste by F. F. Tisserand , Lehrbuch der Bahnbestimmung by T.

Oppolzer , Mathematische Theorien der P lanetenbewegung by O. Dziobek ,
translated into English by M . W . Harrington and W . J . Hussey.

General Mechanics

During the nineteenth century we have come to recognize the ad
vantages frequently arising from a geometrical treatment of me
chanical problems . To L . Poinsot, M . Chasles , and A . F . Mobius we
owe the most important developments made in geometrical mechanics .
Lou is Poinsot (1 777—18 a graduate of the Polytechnic School in
Paris

,
and for many years member of the superior council of public

instruction
,
published in 1804 his Elements de S tatique. This work

is remarkable not only as being the earliest introduction to synthetic
mechanics

,
but also as containing for the first time the idea of couples

,

which was applied by Poinsot in a publication of 1834 to the theory
of rotation . A clear conception of the nature of rotary motion was
conveyed by Poinsot ’s elegant geometrical representation by means
of an

“

ellipsoid rolling on a certain fixed plane . This construction was
extended by J . J . Sylvester so as to measure the rate of rotation of the
ellipsoid on the plane.
A particular class of dynamical problems has recently been treated

geometrically by S ir Robert S tawell Ball (1840—1913)at one time
astronomer royal of Ireland

,
later Lowndean Professor of Astronomy

and Geometry at Cambridge . His method is given in a work entitled
Theory of S crews , Dublin , 1876 , and in subsequent articles . Modern
geometry is here drawn upon

,
as was done also by W . K . Clifford

in the related subj ec t of B i—quaternions. Arthur Buchheim ( 1859
of Manchester showed that H . G . Grassmann

’
s Ausdehnungs

lehre supplies all the necessary materials for a simple calculus of screws
to the

J.

Lagrange by S . D . Poisson
,
Sir William Rowan Hamil ton , C . G . J .

Jacobi
,
M adame Koalevsk i , and others . J . Lagrange had established

the “Lagrangian form”of the equations of motion . He had given a
theory of the variation of the arbitrary constants which , however ,
turned out to be less fruitful in results than a theory advanced by S . D .
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Poisson .

l Poisson ’s theory of the variation of the arbitrary constants
and the method of integration thereby afforded marked the first
onward step S ince J . Lagrange . Then came the researches of Sir
William Rowan Hamil ton . His discovery that the integration of the
dynamic diff erential equations is connected with the integration of a
certain partial differential equation of the first order and second degree

,

grew out of an attempt to deduce
,
by the undulatory theory

,
results

in geometrical optics previously based on the conceptions of the emis
sion theory . The Phi losophical Transactions of 1833 and 1834 contain
Hamilton ’s papers

,
in which appear the first applications to mechanics

of the principle of varying action and the characteristic function ,
established by him some years previously . The object which Hamil ton
proposed to himself is indicated by the title of his first paper

,
viz .

,

the discovery of a function by means of which all integral equations
can be actually represented . The new form obtained by him for the
equation of motion is a result of no less importance than that which
was the professed obj ect of the memoir. Hamil ton

’s method of ih
tegration was freed by C . G . J . Jacobi of an unnecessary complica
tion

,
and was then applied by him to the determination of a geodetic

line on the general ellipsoid . With aid of elliptic co-ordinates Jacobi
integrated the partial diff erential equation and expressed the equation
of the geodetic in form of a relation between two Abelian integrals .
C . G . J . Ja cobi applied to differential equations of dynamics the theory
of the ultimate multiplier . The differential equations of dynamics are
only one of the classes of diff erential equations considered by Jacobi .
Dynamic investigations along the lines of J . Lagrange

,
Hamilton

,
and

Jacobi were made by J . Liouville
,
Adolphe Desboves

, (18 18 -
1888)

of Amiens
,
Serret , J . C . F . Sturm

,
M ichel Ostrogradski

, J . Bertrand
,

William Fishburn Donkin (1814—1869)of Oxford , F . Brioschi
,
leading

up to the development of the theory of a system of canonical integrals .
An important addition to the theory of the motion of a solid body

about a fixed point was made by Madame S oph ie Kovalevsk i 1850

who discovered a new case in which the differential equations
of motion can be integrated . By the use of theta-functions of two
independent variables She furnished a remarkable example of how
the modern theory of functions may become useful in mechanical
problems . She was a native of M oscow ,

studied under K . Weierstrass
,

obtained the doctor ’s degree at Gottingen , and from 1884 until her
death was professor of higher mathematics at the University of Stock
hohn . The research above mentioned received the Bordin prize
of the French Academy in 1888 , which was doubled on account of
the exceptional merit of the paper .
There are in vogue three forms for the expression of the kinetic
energy of a dynamical system:the Lagrangian

,
the Hamiltonian

,
and

1 Arthur Cayley ,
Report on the Recent Progress of Theoretical Dynamics,

Report British Ass
’

n for 185 7 , p . 7 .
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instance , by the contents of E . J . Routh ’s Dynamics , which contains
the results of twenty years of research along that line in England and

,

in comparison with the German school
,
emphasizes a concrete and

practical treatment . To make these treasures more readily accessible
to German students , Routh

’s text was translated into German by
Adolf Schepp ( 1837—1905)of Wiesbaden in 1898. Particularly strong
was Routh in the treatment of small oscillations of systems ; the
technique of integration of linear differential equations with con
stant coeffi cients is highly developed

,
except that

, perhaps , the extent
to which the developments are valid may need closer examination .

This is done in F . Klein and A . Sommerfeld ’s Theorie des Kreisels ,
1897
—1910 . This last work gives attention to the theory of the top ,

the history of which reaches back to the eighteenth century.

In 1 744 Serson started on a ship (that was lost), to test the prae
ticabil ity of the artificial horizon furnished by the pol ished surface
of a top . This idea has been recently revived by French navigators.

1

Serson
’

s top induced J . A . Segner of Halle in 1755 to give precision
to the theory of the Spinning top

,
which was taken up more fully by

L . Euler in 1 765 and then by J . Lagrange . L . Euler considers the
motion on a smooth horizontal plane . Later come the studies due
to L . Poinsot , S . D . Poisson

,
C . G . J . Jacobi , G . R . Kirchhoff , Eduard

Lottner (1826—1887)of Lippstadt , Wilhelm Hess
,
Clerk Maxwell

,

E . J . Routh and finally F . Klein and A . Sommerfeld . In 1914 G .

Greenhill prepared a Report on Gyroscopic Theory
2 which is of more

direct interest to engineers than is Klein and Sommerfeld ’s Theorie des
Kreisels

,
developed by the aid of the theory of functions Of a complex

variable . Among recent practical applications of gyroscopic action
are the torpedo exhibited before the Royal Society of London in 1907
by Louis Brennan

,
also Brennan ’s monorail system , and the methods

of steadying ships and aircraft , devised by the American engineer
Elmer A . Sperry and by Otto Schlick in Germany.

Among the deviations of a proj ectile from the theoretic parabolic
path there are two which are of particular interest. One is a Slight
bending to the right , in the northern hemisphere , owing to the rotation
of the earth ; it was explained by S . D . Poisson (1838)and W . Ferrel

The other is due to the rotation of the projectile ; i t was oh
served by I . Newton in tennis balls and applied by him to explain
certain phenomena in his corpuscular theory of light ; i t was known
to Benjamin Robins and L . Euler . In 1794 the Berlin academy
offered a prize for an explanation of the phenomenon

,
but no satis

factory explanation appeared for over half a century . S . D . Poisson
in 1839 (Journ . école polyt. , T . 27)studied the eff ect of atmospheric

1 See A . G . Greenhill in Verhandl . m . Intern . Congr .
, Heidelberg, 1904, Leipzig ,

1905 , p . 100 . We are summarizing this article .

2Advi sory Committeefor Aeronautics, Reports and M emoranda, No . 146 , London,
1914 .
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friction against the rotating sphere
,
but finally admitted that friction

was not sufficient to explain the deviations . The difference in the
pressure of the air upon the rotating sphere also demands attention .

An explanation on this basis , which was generally accepted as valid
was given by H . G. Magnus (1802—1870)of Berlin , in Poggendorff ’s
Annalen , Vol . 88 , 1853 . In connection with golf-balls the problem
was taken up by Tait .
Peter Guthr ie Tait (183 1—190 1)was born at Dalkeith , studied at
Cambridge and came out Senior Wrangler in 1854 , which was a sur
prise

,
as W . J . Steele had been generally ahead in college examinations .

From 1854
—1860 Tait was professor of mathematics at Belfast , where

he studied quaternions ; from 1860 to his death he held the chair of
Natural Philosophy at Edinburgh . Tait found the problem of the
flight of the golf ball capable of exact statement and approximate
solution . One of his sons had become a bril liant golfer . Tait at first
was scoffed at when he began to offer explanations of the secret of
long driving. In 1887 (Notu re

, 36 , p . 502)he Shows that “ rotation”
played an important part , as established experimentally by H . G .

Magnus (18 Says P . G . Tait:“ In topping
,
the upper part of the

ball is made to move forward faster than does the center
,
consequently

the front of the ball descends in virtue of the rotation
,
and the ball

itself skews in that direction . When a ball is undercut it gets the
opposite spin to the last

,
and

,
in consequence , i t tends to deviate up

wards instead of downwards . The upward tendency often makes the
path of a ball (for a part of its course)concave upwards in spite of
the effects of gravity . P . G . Tait explained the influence of
the underspin in prolonging not only the range but also the time of
flight . The essence of his discovery was that without spin a ball
could not combat gravity greatly

,
but that with Spin it could travel

remarkable distances . He was fond of the game while H . Helmholtz
(who was in Scotland in 187 1)could see no fun in the leetle hole .
P . G . Tait generaliz ed in 1898 the Josephus problem and gave the
rule for n persons , certain v of which shall be left after each mmman
is picked out.
The deviations of a body falling from rest near the surface of the
earth have been considered in many memoirs from the time of P . S .

Laplace and K . F . Gauss to the present . All writers agree that the
body will deviate to the eastward with respect to the plumb- l ine hung
from the initial point , but there has been disagreement regarding the
deviation measured along the meridian . Laplace found no meridional
deviation

,
Gauss found a small dev iation toward the equator . Re

cently this problem has commanded the attention of writers in the
United States . R. S . Woodward, president of the Carnegie Institution
in Washington , found in 1913 a deviation away from the equator .
F. R. Moulton of the University of Chicago found in 1914 a formula
indicating a southerly deviation . W. H . R

'

o
'

ver of Washington Uni
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versity in St . Louis has
,
since 1901 , treated the subj ect in several

articles which indicate southerly deviations . He declares that “ no
potential function is known that fits all parts of the earth

,

”“ that
the formula of Gauss , the three formula of Comte de Sparre [Lyon ,

the formula of Professor F . R . Moulton
,
and my first formul a ,

are all special cases of my general formula .

”1

Fluid Motion

The equations which constitute the foundation of the theory of
fluid motion were fully laid down at the time of J . Lagrange

,
but the

solutions actually worked out were few and mainly of the irrotational
type . A powerful method of attacking problems in fluid motion is
that of images

,
introduced in 1843 by G . G . Stokes of Pembroke Col

lege
,
Cambridge . I t received little attention until Sir William Thom

son ’s discovery of electrical images
,
whereupon the theory was ex

tended by G . G . Stokes
,
W . M . Hicks

,
and T . C . Lewis .

G eorge Gabrie l S tok es (18 19—1903)was born at Skreen , County
Sligo

,
in Ireland . In 1837 , the year of Queen Victoria

’s accession
,
he

commenced residence at Cambridge
,
where he was to find his home

,

almost without intermission
,
for S ixty- six years . At Pembroke College

his mathematical abilities attracted attention and in 1841 he graduated
as Senior Wrangler and first Smi th ’s priz eman . He distinguished
himself along the lines of applied mathematics . In 1845 he published
a memoir on Friction of Fluids in M otion .

”The general motion of
a medium near any point is analyzed into three constituents—a mo
tion of pure translation

,
one of pure rotation and one of pure strain.

Similar results were reached by H . Helmholtz twenty-three years
later . In applying his results to viscous fluids

,
Stokes was led to

general dynamical equations
,
previously reached from more Special

hypotheses by L . M . H . Navier and S . D . Poisson . Both Stokes and
G . Green were followers of the French school of applied mathemati
cians . Stokes applies his equations to the propagation

'

of sound
,
and

Shows that viscosity makes the intensity of sound diminish as the
time increases and the velocity less than i t would otherwise be
especially for high notes . He considered th e two elastic constants in
the equations for an elastic solid to be independent and not reducible
to one as is the case in Poisson ’s theory . Stokes ’ position was sup
ported by Lord Kelvin and seems now generally accepted . In 1847
Stokes examined anew the theory of oscillatory waves . Another
paper was on the effect of internal friction of fluids on the motion of
pendulums . He assumed that the viscosity of the air was propor
tional to the density

,
which was shownlater by M axwell to be erro

neous . In 1849 he treated the e ther as an elastic solid in the study of
diffraction . He favored Fresnel ’s wave theory of light as opposed to

1 See Washington Univers ity S tudi es , Vol . 111, 1916 , pp . 153
—
168 .
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of Edinburgh for a Channel of any uniform section . Sir George B .

Airy
,
in his treatise on Tides and Waves

,
discarded mere approxima

tions
,
and gave the exact equation on which the theory of the long

wave in a channel of uniform rectangular section depends . But he
gave no general solutions . J . M cCowan of University College at
Dundee discussed this topic more fully

,
and arrived at exact and com

plete solutions for certain cases . The most important application of
the theory of the long wave is to the explanation of tidal phenomena
in rivers and estuaries .
The mathematical treatment of solitary waves was first taken up

by S . Earnshaw in 1845 , then by G . G . Stokes ; but the first sound
approximate theory was given by J . Boussinesq in 1871 , who obtained
an equation for their form

,
and a value for the velocity in agreement

with experiment . Other methods of approximation were given by
Lord Rayleigh and John M cCowan . In connection with deep-water
waves

,
Osborne Reynolds (1842—191 2)of the University ofM anchester

gave in 1877 the dynamical explanation for the fact that a group of
such waves advances with only half the rapidity of the individual
waves .
The solution of the problem of the general motion of an ellipsoid
in a fluid is due to the successive labors of George Green
R . F . A . Clebsch and Carl Anton Bjerknes (1825—1903)of
Christiania The free motion of a solid in a liquid has been
investigated by W . Thomson (Lord Kelvin), G . R . Kirchhoff

,
and

Horace Lamb . By these labors
,
the motion of a S ingle solid in a fluid

has come to be pretty well understood
,
but the case of two solids in a

fluid is not developed so fully . The problem has been attacked by
W . M . Hicks .
The determination of the period of oscillation of a rotating liquid
spheroid has important bearings on the question of the origin of the
moon . G . H . Darwin ’s investigations thereon

,
viewed in the light of

G . F . B . Riemann ’s and H . Poincaré’s researches , seem to disprove
P . S . Laplace ’s hypothesis that the moon separated from the earth
as a ring

,
because the angular velocity was too great for stabil ity ;

G . H . Darwin finds no instability .

The explanation of the contracted vein has been a point of much
controversy

,
but has been put in amuch better light by the application

of the principle of momentum,
originated by W. Froude and Lord

Rayleigh . Rayleigh considered also the reflection of waves
,
not at

the surface of separation of two uniform media
,
where the transition

is abrupt
,
but at the confines of twomedia between which the transition

is gradual .
The first serious study of the circulation of winds on the earth ’s
surface was instituted at the beginning of the second quarter of the last
century by Wi l l iam C . Redfield (1 789

—
18 an American meteorolo

gist and railway projector, James P ol lard Espy (1786—1860)of Wash
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ington ,
through whose stimulus the present United States Weather

Bureau was started and HeinrichWi lhelm Dove (1803—1879)of Berlin ,
followed by researches by S ir Wi l l iam Reid (1 791—1858)a British
major-general who developed his circular theory of hurricanes while in
the West Indies , Henry Piddington (1 797

—
1858)a British commander

in the mercantile marine who accumulated data for determining the
course of storms at sea and originated the term“ cyclone

,

”and El ias
Loomis (181 1 -

1889)of Yale University . But the deepest insight into
the wonderful correlations that exist among the varied motions of the
atmosphere was obtained by William Ferrel (18 1 7 He was
born in Fulton County

,
Pa .

,
and brought up on a farm. Though in

unfavorable surroundings
,
a burning thirst for knowledge spurred

the boy to the mastery of one branch after another . He attended
Marshall College

,
Pa.

,
and graduated in 1844 from Bethany College .

While teaching school he became interested in meteorology and in
the subj ect of tides . In 1856 he wrote an article on

“ the winds and
currents of the ocean .

”The following year he became connected
with the Nantical A lmanac. A mathematical paper followed in 1858

on the motion of fluids and solids relative to the earth ’s surface .

The subj ect was extended afterwards so as to embrace the mathe
matical theory of cyclones , tornadoes , water-spouts , etc . In 1885
appeared his Recent Advances in M eteorology. In the Opinion of
Ju lius Harmof Vienna , Ferrel has

“ contributed more to the advance
of the physics of the atmosphere than any other l iving physicist or
meteorologist .”
W . Ferrel taught that the air flows in great spirals toward the poles ,

both in the upper strata of the atmosphere and on the earth ’s surface
beyond the 3oth degree of latitude ; while the return current blows at
nearly right angles to the above Spirals

,
in the middle strata as well

as on the earth ’s surface
,
in a zone comprised between the parallels

30
° N . and 30

0 S . The idea of three superposed currents blowing spirals
was first advanced by James Thomson (182 2 brother of Lord
Kelvin

,
but was published in very meagre abstract .

W . Ferrel ’s views have given a strong impulse to theoretical re
search in America

,
Austria

,
and Germany . Several objections raised

against his argument have been abandoned
,
or have been answered

by W . M . Davis of Harvard . The mathematical analysis of F . Waldo
of Cambridge

,
M ass .

,
and of others

,
has further confirmed the accuracy

of the theory. The transport of Krakatoa dust and observationsmade
on clouds point toward the existence of an upper east current on the
equator

,
and Josef M . Pernter (1848—1908)of Vienna has mathe

matical ly deduced from Ferrel
’s theory the existence of such a current .

Another theory of the general circulation of the atmosphere was
propounded by Werner Siemens (1816—1892)of Berlin , in which an
attempt is made to apply thermodynamics to a

'

erial currents . Im

portant new points of view have been introduced by H . Helmholtz ,
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who concluded that when two air currents blow one above the. other
in different di rections

,
a system of air waves must arise in the same

way as waves are formed on the sea . He and Anton Oberbeck (1846
1900)of Tubingen showed that when the waves on the sea attain
lengths of from 16 to 33 feet , the air waves must attain lengths of from
10 to 20 miles

,
and proportional depths. Superposed strata would

thusmixmore thoroughly
,
and their energy would be partly di ssipated.

From hydrodynamical equations of rotation H . Hehnhol tz established
the reason why the observed velocity from equatorial regions ismuch
less in a latitude of

,
say

,
20

° or than it would be were the move
ments unchecked . Other important contributors to the general theory
of the circulation of the atmosphere are Max MOller of Braunschweig
and Luigi de Marchi of the University of Pavia . The source -of the
energy of atmospheric disturbances was sought by W . Ferrel and Th .

Reye in the heat given off during condensation . Max Margul es of the
University of Vienna Showed in 1905 that thi s heat energy contributes
nothing to the kinetic energy of the winds and that the source of
energy is found in the lowering of the centre of gravity of an air column
when the colder air assumes the lower levels

,
whereby the potential

energy is diminished and the kinetic energy increased .

1 Asymmetric
cyclones have been studi ed especially by Luigi de Marchi of Pavia.

Anticyclones have received attention from Henry H . Clayton of the
Blue Hill Observatory

,
near Boston

,
from Julius Hann of Vienna

,
F.

H . Bigelow of Washington
,
and Max Margules of Vienna .

S ound. Elasticity

About 1860 acoustics began to be studied with renewed zeal . The
mathematical theory of pipes and vibrating strings had been elabo
rated in the eighteenth century by Daniel Bernoulli

,
D

’

Alembert ,
L . Euler

,
and J . Lagrange . In the first part of the present century

P . S . Laplace corrected Newton ’s theory on the velocity of sound in
gases ; S . D . Poisson gave a mathematical discussion of torsional
vibrations ; S . D . Poisson

,
Sophie Germain

,
and Charles Whea tstone

studied Chladni ’s figures ; Thomas Young and the brothers Weber
developed the wave-theory of sound . S ir J . F. W. Herschel (1792
1871)wrote on the mathematical theory of sound for the Encyclo
predio M etropol itana, 1845. Epoch-making were H . Helmholtz ’s
experimental and mathematical researches . In his hands and Ray
leigh ’s

,
Fourier ’s series received due attention . H . Helmholtz gave

the mathematical theory of beats
,
diff erence tones

,
and summation

tones . Lord Rayle igh (John William Strutt)of Cambridge (born
1842)made extensive mathematical researches in acoustics as a part
of the theory of vibration in general . Particular mention may be
made of his discussion of the disturbance produced by a spherical

1 Encyklopc
'

idie der Math. Wissenschaften ,
Bd. VI , 1 , 8, 191 2, p . 216 .
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and left him suspended by a thin cord to a nail in the wall in order to
protect him from perishing under the teeth of the carnivorous and un
clean animals that roamed on the floor . Poisson used to add that his
gymnastic efforts when thus suspended caused him to swing back and
forth

,
and thus to gain an early familiarity with the pendul um,

the
study of whi ch occupied him much in his maturer life . His father
destined him for the medi cal profession , but so repugnant was thi s
to him that he was permitted to enter the Polytechnic School at the
age of seventeen . His talents excited the interest of J . Lagrange and
P . S . Laplace . At eighteen he wrote a memoir on finite differences
which was printed on the recommendation of A . M . Legendre . He
soon became a lecturer at the school

,
and continued through life to

hold various government scientific posts and professorships . He pre
pared some 400 publications , mainly on applied mathematics . His
Trai tedeM e

’

canique, 2 vols . , 18 1 1 and 1833 , was long a standard work.

He wrote on the mathematical theory of heat
,
capillary action

,
proba

bility of judgment , the mathematical theory of electricity and mag
netism

,
physical astronomy

,
the attraction of ellipsoids

,
defini te in

tegral s, series , and the theory of elasticity. He was considered one
of the leading analysts of hi s time . The story is told that in 1802 a
young man

,
about to enter the army

,
asked Poisson to take $100 in

safe-keeping .

“All right
,

”said Poisson
,
set i t down there and let

me work ; I have much to do .

”The recrui t placed the money-bag on
a Shelf and Poisson placed a copy of Horace over the bag

,
to hide it.

Twenty years later the soldi er returned and asked for his money,
but Poisson remembered nothing and asked angrily: You claim
to have put the money in my hands?

”“No
,

”replied the soldier
,

“ I put in on this shelf and you placed this book over it.”The soldier
removed the dusty copy of Horace and found the $100 where they had
been placed twenty years before .

His work on elasticity is hardly excelled by that of A . L . Cauchy
,

and second only to that of B . de Saint-Vena
’

nt . There is hardly a
problem in elasticity to which he has not contributed

,
while many of

his inquiries were new . The equilibrium and motion of a circular plate
was first successfully treated by him. Instead of the definite integrals
of earlier writers

,
he used preferably finite summations . Poisson ’s

contour conditions for elastic plates were objected to by Gustav
Kirchhoff of Berlin

,
who established new conditions . But Thomson

(Lord Kelvin)and P . G . Tait in their Treatise on Notural Philosophy
have explained the discrepancy between Poisson

’s and Kirchhoff ’s
boundary conditions

,
and established a reconciliation between them .

Important contributions to the theory of elasticity were made by
A . L . Cauchy . To him we owe the origin of the theory of stress , and
the transition from the consideration of the force upon a molecule
exerted by its neighbors to the consideration of the stress upon a
small plane at a point . He anticipated G . Green and G . G . Stokes
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in giving the equations of isotropic elasticity with two constants .
The theory Of elasticity was presen ted by Gabrio P iola of Italy ac

cording to the principles of J . Lagrange ’s M échonique Analytique, but
the superiority of thi s method over that of Poisson and Cauchy is far
from evident . The influence of temperature on stress was first ih
vestigated experimen tally by Wilhelm Weber of Gottingen

,
and

afterwards mathematically by J . M . C . Duhamel , who , assum ing
Poisson ’s theory of elasticity

,
examined the alterations of form whi ch

the formula undergo when we allow for changes of temperature . W .

Weber was also the first to experiment on elastic after- strain . Other
important experiments were made by different scientists , which dis
closed a wider range of phenomena

,
and demanded a more compre

hensive theory . Set was investigated by Franz Joseph von Gerstner
(1 756—183 of Prague and Eaton Hodgkinson of University College ,
London , while the latter physicist in England and Louis Joseph Vicat
(1786—186 1)in France experimented extensively on absolute strength .

L . J . Vicat boldly attacked the mathematical theories of flexure be
cause they failed to consider shear and the time-element . As a result

,

a truer theory of flexure was soon propounded by B . de Saint-Venant.
J . V . Poncelet advanced the theories of resilience and cohesion .

Gabriel Lamé (1 795—1870)was born at Tours , and graduated at
the Polytechnic School . He was called to Russia with B . P . E . Clap
eyron and others to superintend the construction of bridges and roads .
On hi s return

,
in 1832 he was elected professor of physics at the Poly

technic School . Subsequently he held vari ous engineering posts and
professorships in Paris . As engineer he took an active part in the con
struction of the first railroads in France . Lamé devoted his fine mathe
matical talents mainly to mathematical physics . In four works :
Legons sur les fonctions inverses des transcendantes et les surfaces isother
mes; S ur les coordonnées curvi l ignes et leurs diverses appl ications; S ur
la the

’

orie analytique de lo choleur ; S ur la the
’

oriemothe
’

motique de l
’
élos

ticité des corps sol ides (185 and in various memoirs he displays fine
analytical powers ; but a certain want of physical touch sometimes re
duces the value of his contributions to elasticity and other physical
subjects . In considering the temperature in the interior of an el lip
soid under certain conditions

,
he employed

'

functions analogous to La
place ’s functions

,
and known by the name of “ Lamé’s functions .”

A problem in elasticity called by Lamé’s name
,
viz.

,
to investigate

the conditions for equilibrium of a Spherical elastic envelope subject
to a given distribution of load on the bounding Spherical surfaces

,
and

the determination of the resulting shifts is the only completely general
problem on elasticity which can be said to be completely solved . He
deserves much credit for his derivation and transformation Of the
general elastic equations

,
and for his application of them to double

refraction . Rectangular and triangular membranes were Shown b y
him to be connected with questions in the theory of numbers . H.
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Burkhardt 1 i s of the opinion that the importance of the classic
period of French mathematical physics

,
about 1810—1835, is often

undervalued but that the direction it took finally under the leader
ship of Lame was unfortunate . “ By his (Lamé

’s)taste for algebraic
elegance he was misled to prefer problems which are of interest in pure
rather than applied mathematics ; he went so far as to require of tech
nical men the study of number theory

,
because the determination of

the S imple tones of a rectangular plate with commensurable sides
calls for the solution of an indeterminate quadratic equation .

”
Continuing our ou tline of the hi story of elasticity

,
we Observe that

the field of photo-elasticity was entered upon by G . Lamé, F . E . Neu
mann

,
and Clerk Maxw ell . G . G . S tokes

,
W . Wertheim

,
R . Clausius

,

and J . H . Jel lett , threw new light upon the subj ect of
“ rari-constancy”

and multi—constancy
,

”which has long divided elasticians intotwo Op
posing factions . The uni- constant isotropy of L . M . H . Navier and
S . D . Poisson had been questioned by A . L . Cauchy , and was severely
criticised by G . Green and G . G . Stokes .
Barré de Saint-Venant (1 797 ingénieur des ponts et chaus
sees

,
made it hi s life-work to render the theory of elasticity of prae

tical value . The charge brought by practical engineers
,
like Vicat

,

against the theorists led Saint-Venant to place the theory in its true
place as a gu ide to the practical man . Numerous errors commi tted
by his predecessors were removed . He corrected the theory of flexure
by the con sideration of slide

,
the theory of elastic rods of double

curvature by the introduction of the third moment
,
and the theory

of torsion by the discovery of the distortion Of the primitively plane
section . His results on torsion abound in beautiful graphic illustra
tions . In case of a rod

,
upon the side sur faces of whi ch no forces act

,

he showed that the problems of flexure and torsion can be solved
,

if the end- forces are distributed over the end-surfaces by a definite
law . R . F . A . C lebsch

,
in his Lehrbuch der Elasticitot

,
1862

,
showed

that this problem is reversible to the case of side—forces without end
forces . Clebsch 2 extended the research to very thin rods and to very
thin plates . B . de Saint-Venant considered problems arising in the
scientific design of buil t-up artillery , and his solution of them differs
considerably from G . Lamé’s solution

,
whi ch was popularized by W . J.

M . Rankine
,
and much used by gun-designers . In Saint-Venant ’s

translation into French of Clebsch ’
s Elasticitot

,
he develops extensively

a double—suffix notation for strain and stresses . Though often advan
tageous, this notation is cumbrous , and has not been generally adopted.

Korl P earson
,
Galton professor of eugenics at the University of London

,

in his early mathematical studies
,
examined the permissible limi ts of

the application of the ordinary theory of flexure of a beam.

1 J ahresb. d. d. Math. Vereinigung , Vol . 1 2 , 1903 , p . 564 .

2 Alfred Clebsch, Versuch ei ner Darlegung und Wu
‘

rdigung seiner wissenschaftl ichen
Leistungen von einigen seiner Freunde, Leipzig , 1873 .
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many by C .

'

G . J . Jacobi
,
L . Dirichlet

,
Franz Ernst Neumann (1798

1895)who was professor of physics and mineralogy in Konigsberg,
his son Carl Neumann (1832 Elwin Bruno Christoffel (1829
1900)of the University of S trassburg , R . Dedekind

,
Gustav Bauer

(1820—1906)of M unich , Gustav Mehler (1835—1895)of Elbing in West
Prussia

,
and Karl Baer (1851 . of Kiel . Especially active was

Eduard Heine (182 1- 1881)of the University of Halle , the author of
the Hondbuch der Kugelfunktionen , 1861 , 2 . Ed . 1878

—1881 . The chi ef
representative in the cultivation of this subj ect , in Switzerland , was
L . Schl

'

afli of the University of Bern ; in Belgium,
was Eugene Catalan

of the University of Liege ; in Italy, was E . Beltrami ; in the United
States

,
was W . E . Byerly of Harvard University. In France there

were S .

‘D . Poisson , G . Lamé
,
T. J . Stieltj es , J . G . Darboux, Ch .

Hermite
,
Paul Mathieu

,
Hermann Laurent (1841 Professor at

the Pp lytechnic School in Paris whose researches gave rise to contests
of pr iority with German writers . In Great Britain spherical har
monies received the attention of Thomson

, (Lord Kelvin)and P . G .

Tait in their Naturat Philosophy of 1867 , and of Sir William D . Niven
of Manchester

,
Norman Ferrers (1829—1903)of Cambridge , E . W.

Hobson of Cambridge
,
A . E . H . Love of Oxford

,
and others.

Light, Electricity, Heat
,
P otential

G . F . B . Riemann ’s opinion that a science of physics only exists since
the invention of differential equations finds corroboration even in this
brief and fragmentary outline of the progress of mathematical physics .
The undulatory theory of light

,
first advanced by C . Huygens , owes

much to the power of mathematics: by mathematical analysis its
assumptions were worked out to their last consequences. Thomas
Y oung

1
( 1 773—1829)was the first to explain the principle of inter

ference
,
both of light and sound

,
and the first to bring forward the

idea of transverse vibrations in light waves . T . Young ’s explanations
,

not being verified by him by extensive numerical calculations
,
at

tracted little notice
,
and it was not until Augu stin Fresnel (1 788

1827)applied mathematical analysis to a much greater extent than
Young had done

,
that the undulatory theory began to carry convie

tion . Some of Fresnel ’s mathematical assumptions were not satis
factory ; hence P . S . Laplace

,
S . D . Poisson

,
and others belonging to

the strictly mathematical school
,
at first disdained to consider the

theory. By their opposition Fresnel was spurred to greater exertion .

D . F . J . Arago was the first great convert made by Fresnel . When
polarization and double refraction were explained by T . Young and
A . Fresnel

,
then P . S . Laplace was at last won over. S . D . Poisson

drew from Fresnel ’s formula the seemingly paradoxical deduction

1 Arthur Schuster, The Influence of Mathematics on the Prog ress of Physics,
Nature, Vol . 25 , 188 2 , p . 398 .
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that a small circular disc , illuminated by a luminous point , must cast
a shadow with a bright spot in the centre . But this was found to be
in accordance with fact . The theory was taken up by another great
mathematician , W . R . Hamilton , who from hi s formula predicted
conical refraction

,
verified experimentally by Humphrey Lloyd . These

predictions do not prove
,
however

,
that Fresnel ’s formula are correct

,

for these prophecies might have been made by other forms of the
wave-theory . The theory was placed on a sounder dynamical basis
by the writings of A . L . Cauchy

, J . B . Biot
,
G . Green

,
C . Neumann

,

G . R . Kirchhoff
, J . MacCullagh, G . G . Stokes

,
B . de Saint Venant

,

Emile Sarrau ( 1837—1904)of the Polytechnic School in Paris , Ludwig
Lorenz (1829 1891)of Copenhagen , and Sir William Thomson (Lord
Kelvin). In the wave- theory , as taught by G . Green and others

,
the

luminiferous ether was an incompressible elastic solid
,
for the reason

that fluids could not propagate transverse vibrations . But
,
according

to G . Green
,
such an elastic solid would transmit a longitudinal dis

turbance with infinite velocity . G . G . Stokes remarked , however , that
the ether might act like a fluid in case of finite disturbances

,
and like

an elastic solid in case of the infinitesimal disturbances in light prop
agation . A . Fresnel postulated the density of ether to be different in
different media

,
but the elasticity the same , while C . Neumann and

J . MacCul lagh assumed the density uniform and the elasticity different
in all s ubstances . On the latter assumption the direction of vibration
lies in the plane of polarization

,
and not perpendicular to it

,
as in the

theory of A . Fresnel .
While the above writers endeavored to explain all optical properties

of a medium on the supposition that they arise entirely from diff erence
in rigidity or density of the ether in the medium

,
there is another

school advancing theories in which the mutual action between the
molecules of the body and the ether is considered the main cause of
refraction and dispersion .

1 The chief workers in this field were J .

Boussinesq , W . Sellmeyer
,
H . Helmhol tz

,
E . Lommel

,
E . Ketteler ,

W . Voigt , and Sir William Thomson (Lord Kelvin)in his lectures
delivered at the Johns Hopkins University in. 1884 . Neither this nor
the first-named school succeeded in explaining all the phenomena .

A third school was founded by C . Maxwell . He proposed the electro
magnetic theory

,
which has received extensive development recently .

It will be mentioned again later. According to Maxwell ’s theory
,
the

direction of vibration does not lie exclusively in the plane of polariza
tion , nor in a plane perpendicular to it , but something occurs in both
planes—a magnetic vibration in one

,
and an electric in the other .

G . F . Fitzgerald and F . T . Trouton in Dublin verified this conclusion
of C . Maxwell by experiments on electro—magnetic waves .
Of recent mathematical and experimental contributions to optics

,

1 R. T. Glazebrook , “Report on Optical Theories, Report British Ass
’
n for 1885 ,

p . 2 13 .
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mention must be made of Henry Augustus Rowland (1848 who
was professor of physics at the Johns Hopkins University and his
theory of concave gratings

,
and of A . A . M ichelson ’s work on interfer

ence
,
and his application of interference methods to astronomical

measurements .
A function of fundamental importance in the mathematical theories

of electricity and magnetism is the “ potential .”I t was first used by
J . Lagrange in the determination of gravitational attractions in 1 773.

Soon after
,
P . S . Laplace gave the celebrated differential equation ,

6
2V 6

2V 6
2V

6x
2
by

2 M2

which was extended by S . D . Poisson by writing—4 7rk in place of

zero in the right-hand member of the equation
,
so that i t applies not

only to a point external to the attracting mass
,
but to any point what

ever. The first to apply the potential function to other than gravita
tion problems was George Green (1793 He introduced it into
the mathematical theory of electricity and magnetism. Green was a
self-educated man who started out as a baker

,
and at his death was

fellow of Caius College
,
Cambridge . In 1828 he publi shed by private

subscription at Nottingham a paper entitled Essay on the appl ication
of mathematical analysis to the theory of electrici ty and magnetism.

About 100 copies were printed . It escaped the notice even of English
mathematicians until 1846 , when William Thomson (Lord Kelvin)had
it reprinted in Grel le’s Journal , vols . xl iv . and xlv . I t contained what is
now known as “ Green ’s theorem”for the treatment of potential.
M eanwhile all of Green ’s general theorems had been rediscovered by
William Thomson (Lord Kelvin), M . Chasles , J . C . F . Sturm

,
and

K . F . Gauss . The term potential function is due to G . Green . W. R .

Hamil ton used the word force—function ,
while K . F . Gauss , who about

1840 secured the general adoption of the function , called it simply
potential . G . Green wrote papers on the equilibrium of fluids , the
attraction of ellipsoids

,
on the reflection and refraction of sound and

light . His researches bore on questions previously considered by
S . D . Poisson . K . F . Gauss proved what C . Neumann has called
Gauss ’ theorem of mean value”and then considered the question of
maxima and minima of the potential .1

Large contributions to electricity and magnetism have been made
by Will iam Thomson later S ir Will iam Thomson and Lord Kelvin
(1824 He was born at Belfast , Ireland , but was of Scotch de
scent . He and his brother James studied in Glasgow . From there he
entered Cambridge

,
and was graduated as Second Wrangler in 1845.

WilliamThomson
, J. J . Sylvester , C .M axwell ,W . K . Clifford

, and J. J.

Thomson are a group of greatmen who were Second Wranglers at Cam
bridge . At the age of twenty—two W . Thomson was elected professor
1 For details see Max Bacharach, Geschichte der Potentialtheorie, Gottingen, 1883.
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electro-static induction in submarine cables . The subject of the
screening effect against induction , due

‘ to Sheets of different metals ,
was worked out mathematically by Horace Lamb and also by Charles
Niven . W . Weber ’s chief researches were on electro-dynamics . H.

Helmholtz in 1851 gave the mathematical theory of the course of in
duced currents in various cases . Gustav Robert Kirchhoff 1 ( 1824

who was professor at B reslau
,
Heidelberg and since 1875 at

Berlin
,
investigated the distribution of a current over a flat conductor,

and also the strength of current in each branch of a network of linear
conductors .
The entire subj ect of electro-magnetism was revolutionized by
James Clerk M axwel l (1831 Hewas born near Edinburgh ,
entered the University of Edinburgh

,
and became a pupil of Kelland

and Forbes . In 1850 he went to Trinity College , Cambridge , and
came out Second Wrangler

,
E . Routh being Senior Wrangler. Max

well then became lecturer at Cambridge , in 1856 professor at Aber
deen , and in 1860 professor at King ’s College

,
London . In 1865 he

retired to private l ife until 187 1 , when he became professor of physics
at Cambridge . M axwell not only translated into mathematical lan
guage the experimental results of M ichael Faraday

,
but established

the electro-magnetic theory of light
,
S ince verified experimentally by

H . R . Hertz . His first researches thereon were published in 1864.

In 187 1 appeared his great Treatise on Electricity and Mognetism.

He constructed the electro—magnetic theory from general equations
,

which are established upon purely dynamical principles
,
and which

determine the state of the electric field . I t is a mathematical discus
sion of the stresses and strains in a dielectric medium subj ected to
electro-magnetic forces . The electro-magnetic theory has received
developments from Lord Rayleigh

, J . J . Thomson , H . A . Row land ,
R . T . Glazebrook , H . Helmholtz , L . Boltzmann

,
O . Heaviside

, J . H .

Poynting
,
and others . Hermann von He lmholtz ( 182 1—1894)was

born in Potsdam
,
studied medicine

,
was assistant at the charity hos

pital in Berl in
,
then a mil itary surgeon

,
a teacher of anatomy

,
a pro

fessor of physiology at Konigsberg , at Bonn and at Heidelberg. In

187 1 he went to Berlin as successor to Magnus in the chair of physics.
In 1887 he became director of the new Physikalisch-Technische
Reichsanstal t . AS a young man of twenty-S ix he published the now
famous pamphlet Ueber die Erhaltung der Kraft. His work on Tonemp
findung was written in Heidelberg. After he went to Berlin he was
engaged chiefly on inquiries in electricity and hydrodynamics . Helm
holtz aimed to determine in what direction experiments should be
made to decide between the theories of W . Weber , F . E . Neumann

,

G . F . B . Riemann
,
and R . Clausius

,
who had attempted to explain

electro-dynamic phenomena by the assumption of forces acting at a
distance between two portions of the hypothetical electrical fluid,

1W. Voig t , Z um Gedii chtniss von G. Kirchhofi
'

, GOttingen , 1888 .
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the intensity being dependent not only on the distance
,
but also on

the velocity and acceleration ,—and the theory of M . Faraday and
C . Maxwell , which discarded action at a distance and assumed stresses
and strains in the dielectric . His experiments favored the British
theory. He wrote on abnormal dispersion

,
and created analogies

between electro-dynamics and hydrodynamics . Lord Rayleigh com
pared electro-magnetic problems with their mechanical analogues ,
gave a dynamical theory of diffraction , and applied Laplace

’s coeffi
cients to the theory of radiation . H . Rowland made some emenda
tions on G . G . Stokes ’ paper on diff raction and considered the pro
pagation of an arbitrary electro-magnetic disturbance and spherical
waves of light . Electro-magnetic induction has been investigated
mathematically by Oliver Heaviside

,
and he showed that in a cable

it is an actual benefit . O . Heaviside and J . H . Poynting have reached
remarkable mathematical results in their interpretation and develop
ment of Maxwell ’s theory . Most of Heaviside

’

s papers have been
published since 1882 ; they cover a wide field .

One part of the theory of capillary attraction
,
left defective by P . S .

Laplace
,
namely

,
the action of a solid upon a liquid

,
and the mutual

action between two liquids
,
was made dynamically perfect by K . F .

Gauss . He stated the rule for angles of contact between liquids and
solids . A similar rule for liquids was established by Franz Ernst
Neumann . Chief among more recent workers on the mathematical
theory of capillarity are Lord Rayleigh and E . Mathieu .

The great principle of the conservation of energy was established
by Robert Mayer (18 14 a physician in Heilbronn , and again
independently by Ludw ig A . Colding of Copenhagen , J . P . Joule , and
H . Helmholtz . James Prescott Jou le (1818—1889)determined ex
perimental ly the mechanical equivalent of heat . H . Helmholtz in
1847 applied the conceptions of the transformation and conservation
of energy to the various branches of physics

,
and thereby linked to

gether many well-known phenomena . These labors led to the aban
donment of the corpuscular theory of heat . The mathematical treat
ment of thermic problems was demanded by practical considerations .
Thermodynamics grew out of the attempt to determine mathemati
cally how much work can be gotten out of a steam engine . Sadi

Nicolas Leonhard Carnot (1796—1832)of Paris , an adherent of the
corpuscular theory

,
gave the first impulse to this . The principle

known by his name was published in 1824 . Though the importance
of his work was emphasized by B . P . E. Clapeyron ,

i t did not meet
with general recognition until it was brought forward by William
Thomson (Lord Kelvin). The latter pointed out the necessity of
modifying Carnot ’s reasoning so as to bring it into accord with the
new theory of heat . William Thomson showed in 1848 that Carnot

’

s

principle led to the conception of an absolute scale of temperature .

In 1849 he published
“ an account of Carnot ’s theory of the motive
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power of heat
,
with numerical resul ts deduced from Regnaul t ’s ex

periments .”In February
,
1850 , Rudolph Claus ius (182 2 then

in Ziirich (afterwards professor in Bonn), communicated to the Berl in
Academy a paper on the same subject which contains the P rotean
second law of thermodynamics . In the same month Wil liam John
M . Rank in e ( 1820 professor of engineering and mechanics
at Glasgow ,

read before the Royal Society of Edinburgh a paper in
which he declares the nature of heat to consist in the rotational mo
tion of molecules , and arrives at some of the results reached previously
by R . Clausius . He does not mention the second law of thermody
namics

,
but in a subsequent paper he declares that it could be derived

from equations contained in his first paper . His proof of the second
law is not free from objections . In March , 1851 , appeared a paper
of William Thomson (Lord Kelvin)which contained a perfectly
rigorous proof of the second law . He obtained it before he had seen
the researches of R . Clausius . The statement of this law

,
as given by

Clausius
,
has been much criticised

,
particularly by W . J . M . Rankine ,

Theodor Wand
,
P . G . Tait , and Tolver Preston . Repeated efforts to

deduce it from general mechanical principles have remained fruitless.
The science of theormodynamics was developed with great success
by W . Thomson , Clausius , and Rankine . As early as 1852 W . Thom
son discovered the law of the dissipation of energy

,
deduced at a

later period also by R . Clausius . The latter designated the non
transformable energy by the name entropy, and then stated that the
entropy of the universe tends toward a maximum . For entropy
Rankine used the term thermodynamic function . Thermodynamic
investigations have been carried on also by Gustav Adolph Hirn ( 18 15
1890)of Colmar , and H . Helmhol tz (monocyclic and polycyclic sys
tems). Valuable graphic methods for the study of thermodynamic
relations were devised by J . W . Gibbs of Yale College .

Jos iah Wil lard Gibbs (1839—1903)was born in New Haven , Conn . ,

and spent the first five years after graduation mainly in mathematical
studies at Yale . He passed the winter of 1866—1867 in Paris , of 1867
1868 in Berl in , of 1868—1869 in Heidelberg , studying physics and
mathematics . In 1871 he was elected professor ofmathematical physics
at Yale . “His direct geometrical or graphical bent is shown by the at
traction which vectorial modes of notation in physical analysis exerted
over him

,
as they had done in a more moderate degree over C . Max

well . Greatly influenced by Sadi Carnot , by William Thomson (Lord
Kelvin)and especially by R . Clausius , Gibbs began in 1873 to pre
pare papers ou the graphical expression of thermodynamic relations ,
in which energy and entropy appeared as variables . He discusses the
entropy-temperature and entropy-volume diagrams

,
and the volume

energy-entrOpy surface (described in C . Maxwell ’s Theory of Heat).
Gibbs formulated the energy-entropy criterion of equilibrium and
stability

,
and expressed it in a form applicable to complicated problems
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Clausius (in J . P . Joule dropped his speculations on this
subj ect when he began his experimental work on heat . A . K . Kronig
explained by the kinetic theory the fact determined experimentally
by Joule that the internal energy of a gas is not altered by expansion
when no external work is done . R . Clausius took an important step
in supposing that molecules may have rotary motion , and that atoms
in a molecule may move relatively to each other . He assumed that
the force acting between molecules is a function of their distances

,

that temperature depends solely upon the kinetic energy of molecular
motions

,
and that the number of molecules which at any moment are

so near to each other that they perceptibly influence each other is
comparatively SO small that it may be neglected . He calculated the
average velocities ofmolecules , and explained evaporation . Objections
to his theory

,
raised by C . H . D . Buy ’s-Ballot and by Emil Jochmann

,

were satisfactorily answered by R . Clausius and C . Maxwell , except in
one case where an additional hypothesis had to be made . C . Maxwell
proposed to himself the problem to determine the average number
of molecules

,
the velocities of which lie between given limits . His

expression therefor constitutes the important law of distribution of
velocities named after him. By this law the distribution of molecules
according to their velocities is determined by the same formula (given
in the theory of probability)as the distribution of empirical observa
tions according to the magnitude of their errors . The average mo
lecular velocity as deduced by C . Maxwell diff ers from that of R .

Clausius by a constant factor . C . Maxwell ’s first deduction of this
average from his law of distribution was not rigorous . A sound deriva
tion was given by O . E . M eyer in 1866 . C . M axwell predicted that
so long as Boyle ’s law is true , the coeffi cient of viscosity and the coeffi
cient of thermal conductivity remain independent of the pressure .
His deduction that the coeffi cient of viscosity Should be proportional
to the square root of the absolute temperature appeared to be at
variance with results obtained from pendulum experiments . Thi s
induced him to alter the very foundation of his kinetic theory of gases
by assuming between the molecules a repelling force varying inversely
as the fifth power of their distances . The founders of the kinetic
theory had assumed the molecules of a gas to be hard elastic spheres ;
but Maxwell , in his second presentation of the theory in 1866 , went
on the assumption that the molecules behave like centres of forces .
He demonstrated anew the law of distribution of velocities ; but the
proof had a flaw in argument

,
pointed out by L . Boltzmann , and

recognized by C . Maxwell , who adopted a somewhat different form
of the distributive function in a paper of 1879, intended to explain
mathematically the effects observed in Crookes ’ radiometer . L . Boltz
mann gave a rigorous general proof of M axwell ’s law of the distribu
tion of velocities .
None of the fundamental assumptions in the kinetic theory of gases
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leads by the laws of probability to r esults in very close agreement
with observation . L . Boltzmann tried to establish kinetic theories
of gases by assuming the forces between molecules to act according to
different laws from those previously assumed . R . Clausius

,
C . Max

well
,
and their predecessors took the mutual action of molecul es in

collision as repulsive
,
but L . Boltzmann assumed that they may be

attractive. Experiments of J . P . Joule and Lord Kelvin seem to sup
port the latter assumption .

Among the later researches on the kinetic theory is Lord Kelvin
’s

disproof of a general theorem of C . M axw ell and L . Boltzmann
,
as

serting that the average kinetic energy of two given portions of a
system must be in the ratio of the number of degrees of freedom of
those portions .
In recent years the kinetic theory of gases has received less attention ;

it is considered inadequate since the founding of the quantum hypothe
sis in physics.

Relativity

Profound and startling is the theory of relativi ty . On the theory
that the ether was stationary it was predicted that the time requi red
for light to travel a given di stance forward and back would be different
when the path of the light was parallel to the motion of the earth in its
orbit from what i t was when the path of the light was perpendicular .
In 1887 A . A . M ichelson and E . W. M orely found experimental lythat
such a difference in time did not exi st . More generally

,
the resul ts

of this and other experiments indicate that the earth ’s motion through
space cannot be detected by observations made on the earth alone .
In order to explain M ichelson and Morley ’s negative result and at
the same time save the stationary-ether theory

,
H . A . Lorentz con

structed in 1895 a
“ contraction hypothesis,

”according to which amov
ing solid contracts slightly long itudional ly. This same idea occurred
independently to G . F . Fitzgerald. In 1904 and in his Columbia Uui
versityLectures Lorentz aimed to

’ reduce the electromagnetic equations
for a moving system to the form of those that hold for a system at
rest. Instead of x

, y, z, t he introduced new independent variables ,

viz.
,
x
'=)x'y(x—vi), y=hy, z

'=he, t
’=Ava—fix), where 7 depends

upon velocity of light c and of the moving body v
,
and Ais a numerical

coefficient such that
, )x=1 when v=o. His fundamental equations

turned out to be invariant under this now called Lorentz transforma
tion .

”In 1906 H . Poincaré made use of this transformation for the
treatment of the dynamics of the electron and also of universal gravi
tation .

1 In 1905 A . Einstein published a paper on the electrodynam
ics of moving bodies in Annalen der Physik , Vol . 1 7 , aiming at perfect

1 L. Silberstein ,
The Theory of Relativi ty, London , 1914, p. 87 .
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reciprocity or equivalence of a pair of mov ing systems
,
and investi

gating the whole problem from the bottom
,
carefully considering the

matter of “ simul taneous”events in two di stant places ; he has suc
ceeded in giving plausible support to and a striking interpretation
of Lorentz ’

s transformations . Einstein Opened the way to the modern
“ theory of relativity .

”He developed it somewhat more fully in 1907.

A fundamental point of view in his theory was that mass and energy
are proportional . For the purpose of taking accoun t of gravitational
phenomena

,
Einstein generalized his theory by assuming that mass

and weight are also proportional
,
so that

,
for example

,
a ray of light

is attracted by matter . The mathematical part of Einstein ’s theory
,

as developed by M . Grossmann in 1913 , employs quadratic differential
forms and the absolute calculus of Gregorio Ricci of Padua. Another
remarkable speculation was brought out in 1908 by Hermann M in
kowski who read a lecture on Roum und Zei t

,
in which he maintained

that the new views of space and time
,
developed from experimental

considerations
,
are such that “ space by itself and time by itself sink

into the shadow and only a kind of union of the two retains self-de
pendence . No one notices a place

,
except at some particular time ,

nor time except at a particular place . A system of values x
, y, z, t

he calls a “world point”(Weltpunk t); the life-path of a material point
in four—dimensional space is a “world line .

”The idea of time as a
fourth dimension had been conceived much earlier by J . Lagrange in
his Theorie des fonctions analytiques and by D

’

Alembert in his article
“Dimension”in Diderot ’s Encyclopédie, 1 1 754 H . M inkowski con
siders the group belonging to the di fferential equation for the propaga
tion of waves of l ight . HermannM inkowski (1864 was born at
Alexoten in Russia , studied at Konigsberg and Berlin , held associate
professorships at Bonn and Konigsberg and was promoted to a full
professorship at KOnigsberg in 1895. In 1896 he went to the poly
technic school at Zurich and in 1903 to Gottingen . The importance
which H . M inkowski

,
starting with the principle of relativity in the

form given it by Einstein
,
has given to the Lorentzian transforma

tions by the introduction of a four dimensional manifoldness or space
time-world

,
has been made intuitively evident by a number of writers

,

particularly F . Klein L . Heti ter A . Brill and
H. E . Timerding F . Klein said:“What the modern physicists
call theory of relativity ’ is the theory of invariants of the fourth di
mensional space-time region x

, y, z, t (M inkowski
’
5 world)in relation

to a definite group Of col l ineations
,
namely the ‘Lorentz g—roup .

2

A novel presentation aiming at great precision was given in 1914 by
Alfred A . Robb who on the idea of “ conical order”and 2 1 postulates
builds up a system in which the theory of Space becomes absorbed in
the theory of time . A philosophical discussion of relativity, mechan
1 R . C . Archibald in Bull . Am. Math. Soc. , Vol . 20 , 19 14 , p . 4 10 .

2Klein in J ahresb. d. d. Moth. Verein , Vol . 19, 1910 , p . 287 .
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(181 1—1892)in which the di stances of points from the origin are not
necessarily proportional to the actual values of the data , but may be
other functions of them

,
j udi ciously chosen . In the product 2122=Z3,

the variables and 212 are brought in correspondence , respectively,
with the straight lines x= log zl , y

= log 22, SO that x+y= log 23,

which represents the straight lines perpendi cul ar to the bisectors of the
angle between the co-ordinate axes . Advances along thi s line were
made by J . M assau of the University of Ghent , in 1884 , and E . A .

Lallemand in 1886 . The Scotch Captain Patrick Weir in 1889 gave
an azimuth diagram which was an anticipation of a spherical triangle
nomogram . But the real creator of nomography i s M aur ice d

’

Ocogne

of the Ecole Polytechnique in Paris
,
whose first researches appeared in

1891 ; his Traite de nomographie came out in 1899. The principle of
anamorphosis

,
by successive generalizations

,
has led to the con

sideration of equations representable not only by two systems of
straight lines parallel to the axes of co-ordinates and one other uh ~
restricted system of straight lines

,
but by three systems of straight

lines under no such restrictions.”D
’

Ocagne also studied equations
representable by means of systems of circles . He has introduced the
method of collinear points by which ‘ ‘ it has been possible to represent
nomographically equati ons of more than three variables , of which
the previ ous methods gave no convenient representation .

1

Mothematical Tables

The increased accuracy now attainable in astronomical and geodetic
measurements and the desire to secure more complete elimination of
errors from logarithmic tables , has led to recomputations of logarithm s .
Edward Sang of Edinburgh published in 1871 a 7-place table of com
mon logarithms of numbers to These were mainly derived
from hi s unpublished 28-place table of logarithms of primes to
and composite numbers to and his 15-place table from
to In 1889 the Geographical Institute of Florence issued a
photographi c reproduction of G . F . Vega ’ s Thesaurus of 1 794 (10
figures). Vega had computed A . Vlacq

’

s tables anew
,
but his last

figur e was unreliable . In 1891 the _French Government issued 8
place tables which were derived from the unpublished Tables du
Cadastre (14—places , 1 2 correct)whi ch had been computed near the
Close of the eighteenth century under the supervision of G . Riche de
Prony. These tables give logarithms of numbers to and of
sines and tangents for

3every
10 centesimal seconds , the quadrant being

di vided centesirnal ly.

3 Prony consulted A . M . Legendre and other
1D

’
ocagne in Napier Tercentenary Memorial Volume, London , 1915 , pp. 279

283 . See also D
’

Ocagne , Le calcul s impl ifié, Paris , 1905 , pp . 145
—153 .

2 E. M . Horsburgh , Napier Tercentenary Celebration Handbook , 19 14 , pp . 38
—
43 .

3 This and similar information is drawn from J. W. L . G laisher in Napier Ter

centenary Memorial Volume, London ,
1915, pp . 71

—
73 .
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mathematicians on the choice of methods and formulas
,
and entrusted

the computation of primary results to professional calculators
,
whi le

the task of filling the rest Of the columns beyond the primary results
was performed by assistants apt merely in performing addi tions”
by the use of themethod of di fferences . It is curious

,

”says D ’

Ocagne

to note that the majority of these assistants had been recruited from
among the hair-dressers whom the abandonment of the powdered wig
in men ’s fashion had deprived of a livelihood .

”
In 1891 M . J . deM e izabel—Tamborrel published at Paris tables of

logarithms of numbe to 1 25 000 (8 places)and —anes and/ tangents
(7 or 8 places)for every millionth of the circumference , which were
almost wholly derived from original 10-place calculations . W. W.

Dufii eld published in the Report of the U . S . Coast and Geodetic Sur
vey, 1895

—
1896 , a I O-place table of logarithms of numbers to 100 000

,

in 1910 , 8
-place tables of numbers to and trigonometric tables

to every sexagesimal second were published by J . Bouschinger and

J . P eters of S trassburg . A special machi ne was constructed for the
computation of these tables. In 191 1 H . Andoyer of Paris published a.
14

-place table of logarithm s of sines and tangents to every 10 sex
agesimal seconds.

“This table was derived from a complete recalcula
tion

,
made entirely by M Andoyer himself , ,without any assistance ,

personal or mechanical .
In recent years a demand has arisen for tables giving the natural

values of sines and cosines. In 191 1 J . Peters published in Berlin such
a table extending from 0

° to and carried to 2 1 decimals
,
for every

10 sexagesimal seconds (and for every second of the first six degrees).
Extensive tables of natural values

,
first computed by Rhaeticu s and

publi shed in 1613 , were abandoned after the invention of logarithms,
but are now returning in use again

,
since they are better fitted for the

growing practice of calculating directly by means of machines and
without resort to logarithms .
The decimal division of angles has been agitated again in recent

years. In 1900 R . M ehmke made a report to the German Mathema

tiker Vereinigung.

1 Why are degrees preferred to radians in practical
trigonometry? Because

,
on account of the periodicity of the trig

onometric functions
,
we frequently would have to add and subtract

or 2 71 whi ch are irrational numbers and therefore obj ectionable .

The sexagesimal subdivision of the degree which resulted in great
harmony among the Babylonians who used the sexagesimal notation
of numbers and fractions

,
and the sexagesimal divisions of the day

,

hour and minute
,
is less desirable now that we have the decimal

notation of numbers . There has been some difference of opinion
among advocates of the decimal system

'

in angul ar measurement
,
what

uni t should be chosen for the decimal subdivision . In 1864 Y von

1 See J ohresb. d. d. Math. Vereinigung, Leipzig , Vol . 8 , Part 1
,
1900 , p . 139 .



484 A HISTORY OF MATHEMATICS

Vi llorceau ,
at a meeting of the Bureau of Longitudes in Paris , sug~

gested the decimal subdiv ision of the entire circumference
,
whi le in

1896 Bouquet de la Crye preferred the semi-circumference . R. M ehmke

argues that whatever the unit may be that is subdivided , the four
arithmetical operations with angles would be materially simplified,
interpolation in the use of trigonometric tables would be easier

,
the

computation of the lengths of arcs would be Shorter. If the right
angle is the unit that is subdivided

,
then the reduction of large angles

to corresponding acute angles can be effected merely by the subtrac
tion of the integers 1

,
2
, 3 , The determination of supplementary or

complementary angles is less laborious . A more convenient arrange
ment of trigonometric tables was claimed by G . J . Houel and greater
comfort in taking observations was promised by J . Delambre . Never
theless

,
no decimal division of angles is at the present time threatened

with adoption
,
not even in France .

A very Specialized kind of logarithms
,
the so-called Gaussian loga

rithms
,

”which give log (o+b)and log (o—b), when log a and log b
are known

,
were first suggested by the Italian physicist Guiseppe

Zecchini Leonell i (1 776—1847)in his Theorie des logarithmes , Bordeaux
1803 ; the first table was published by K . F . Gauss in 181 2 in Zach’

s

M onatl iche Korrespondenz. It is a 5-place table . More recent tables
are the 6-place tables of Carl Bremiker (1804—1877)of the geodetic
institute of Berlin

,
Siegmund Gundelfinger (1846—1910)of Darmstadt ,

and George William Jones (1837—191 1)of Cornell University, and the
7
-place table of T . Wittstein .

Proceeding to hyperbolic and exponential functions
,
we mention

the 7-place tables of log 16 sinh x and log 16 cosh x prepared by Christoph
Gudermann of Munster in 1832 , the 5-place tables by Wilhelm
Ligowski (182 1—1893)of Kiel in 1890 ,

the 5-place tables by G . F .

Becker and C . E . Van Orstrand in their Smi thsonian M athemoti cal
Tables

,
1909. Tables for sinh x and cosh x were published by Ligowsk i
Burrau Dale , Becker , and Van Orstrand. In the Cam

bridge Phi losophical Transactions , Vol . 13 , 1883 , there are tables for
log e 5 and ex by J . W . L . Glaisher

,
for e

‘

x by F . W . Newman.

G . F . Becker and C . E . Van Orstrand also give tables for these
functions .
An isolated matter of interest is the origin of the term radian

,

used with trigonometric functions . I t first appeared in print on
June 5 , 1873 , in examination questions set by James Thomson at
Queen

’s Col lege
,
Belfast . James Thomson was a brother of Lord

Kelv in . He used the term as early as 187 1 , while in 1869 Thomas
M uir

,
then of St . Andrew ’s University , hesitated between “ rad

,

”
“ radial”and radian .

”In 1874 T . M uir adopted “ radian after
a consultation with James Thomson .

1

1Nature, Vol . 83 , pp. 156 , 2 17 , 459, 460 .
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a small pflrtion of it was put together before his death . This engine
was intended to evaluate any algebraic formula

,
for any given values

of the variables . In 1906 H . P . Babbage
,
a son of Charles Babbage ,

completed part of the engine
,
and a table Of 25 mul tiples of 7r to 29

figures was published as a specimen of its work .

1

Planimeters have been designed independently and in many dif
ferent ways . I t is probable that J . M . Hermann designed one in 1814.

Planimeters were devised in 1824 by Gonel la in Florence , about 1827
by Johannes Oppikoffer (1783—1859)2 of Bern and constructed by
Ernst in Paris

,
about 1849 by Wetli of Vienna and improved by the

astronomer Peter Andreas Hansen of Gotha , about 1851 by Edward
Sang of Edinburgh and improved by Clerk Maxwell

, J . Thomson and
Lord Kelvin . All of these were rotation planimeters . Most noted of
polar planimeters are that of JakobAmsler (1823—191 2)and those con
structed by Coradi of Zurich . J . Amsler was at one time privatdocent
at the University of Zurich

,
later manufacturer of instruments for

precise measurements . He invented his polar planirneter in 1854 ,
his

account of it was published in 1856

Another interesting class of instruments
,
called integraphs has

been invented by Abdank Abakanovicz (1852—1900)in 1878 and by C .

Vernon Boys 3 in 1882 . These instruments draw an “ integral curve”
when a pointer is passed round the periphery of a figure whose area is
required . M ore recently numerous integraphs have been invented
through the researches of E . Pascal of the University of Naples . Thus
in 191 1 he designed a polar integraph for the quadrature of differential
equations .

1Napier Tercentenary Celebration Handbook , 19 14 , p . 1 27 .

2Morin
,
Les Apparei ls d

’

Intégration ,
19 13 . See E . M . Horsburgh , op. cit. , p. 190 .

3 Boy s in Phil . Mog . , 188 2 ; Abdank Abakanow icz , Les I ntégraphes , Paris, 1886 .

See also H . S . Hele Shaw , Graphic M ethods in M echanical Science
”
in Report of

British Ass
’

n for 1892 , pp. 373
—
531 ; E. M . Horsburgh, Handbook , pp . 194

—
206 .
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23 , 182

Acta eruditorum,
founded ,

209

Adam, Ch. , 1 77

Adams, J . C . , 449; 200 , 332

Adler, A ., 268

Adrain, R ., 382

Agami s, 48 , 184
Ag gregates, theory of, 24, 66 , 17 2 , 3 25, 326 ,

396
—
406 ; Enumerable, 66

, 400 . S ee

Point-sets
Agnesi, M . G ., 250 ; Witch; 250

Ag rimensores, 66
Ahmes, 7. 9

—14. 1 6. 44. 1 23

Ahrens, W.
, 323

Aida Ammel , 8 1
Airy. J B 449; 383. 462

Ajima Chokuyen , 81

Akhmim papyrus, 14

Al-Battani , 105 ; 1 18

Albertus Magnus, 1 27

Al—Biruni , 100 , 10 1 , 105 , 106
Alchazin, 107
Alcuin, 1 14 ; 1 16 , 1 20

Alembert, Jean le Rond d
’

, S ee D
’

Alembert

Al exander, C . A .,
266

Alexander the Great, 7
Alexandrian School , first , 29—45 ; second , 45

52

Alfonso X
, 1 19

Algebra, Arabic, 10 2
—104 , 106 , 1 20 . Chinese

73 , 75 . Egyptian, 13 , 14. Greek , 56

62 . Hindu , 93
—
96 , 103 . Japanese , 79.

Laws of, 2 73 . Linear associative, 285 ,

338 , 339. Modern developments , 3 29

366 . Multiple , 289, 338, 339, 344 . Of

Renaissance, 137
- 141 . Origin of word ,

103 . Rhetorical , syncopated and sym
bolic, 1 1 1 ; the science of time, 333 . S ee

Ausdehnung slehre, Covariants, Equa
tions , Invariants, Quaternions

Algebra of logic , 285
Algorithm ,

1 19 . Orig in of word, 102

Al-Hasan ibn Al
-Haitam, 104 , 107

Al~Kalsadi, 1 10 , 1 1 1

Al~Karkhi , 106 , 107
Al—Kashi , 108
Al-Khojandi , 106
Al—Khowarizmi, 102 106 , 108, 1 18,

1 19

Al-Kuhi , 105
—107

Allman, G . J ., 16 ; 30

Almagest , see Ptolemy
AI—Mahani , 107

Al-Majriti, 109
Ai-Nadim, 102

Al-Nirizi
, 48

Al—Sagani , 105 , 106
Al~Zarkali , 13 2

Amasis, King , 15
Arnicable numbers , 56 , 104, 109, 239
Ampere, A. M .,

281 , 386 , 425
Amsler, J 486

Amyclas , 29
Analemma, 48

Analysis, method of, 26 , 27 , 29 . Modern,

367
-

41 1

Analysis Situs , 2 1 1 , 285 , 3 23 , 324
Analytic functions, 257 , 258, 425

—
428, 439

Analytic geometry, 40 , 159, 1 62 , 1 63 , 1 67,

1 73
—184. 2 24. 27s. 276. 293—295. 3093329

Anaxagoras, 1 7 ; 25
Anaximander, 16

Anaximenes, 17
Andoyer, H ., 483

Andrade, J ., 405

Andrews, W . S ., 366

Angeli , Stefano delg i, 175
Anger, C . T., 449

Ang le, trisection of. S ee Trisection
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Angle, vertical , 1 6

Anharmonic ratio . S ee Cross—ratio
Annuities, 1 7 1

Anthonisz , A. , 73 , 143

An tinomies , 286 , 40 1 , 402 , 409
Anti-paral lel , 299 , 300

Antiphon , 23 ; 24 , 5 1

Apices of Boethius , 52 , 68 , 100 , 1 14, 1 1 6 ,

Apol lonian problem, 41 , 144 , 179 , 288

Apollonius , 38
—
43 ; I , 30 , 3 1 , 33 , 5 1 , 55 , 10 1 ,

104 , 106 , 109 , 13 1 , 142 , 166 , 1 74, 1 75 , 18 1 ,

275

Appell . P 390 ; 388. 405

Approximations to roots of equations . S ee

Numerical equations
Aquinas, Th, 1 26 ; 1 6 1

Arabic notation . S ee Hindu-arabic nu

meral s

Arabs, 99
—
1 1 2

Arago , D . F . J . 260 ,
2 69, 275 , 368 , 44 1 , 470

Arbogaste, L 250 ; 27 1

Arbuthnot, J ., 244

Archibald, R . C . , 33 , 41 , 246 , 275 , 30 1 , 480

Archimedes 34
—
39 ; I . 28. 30. 3 1. 33. 4 1 . 42 .

5 1 . 54. 73. 77. 90 . 101. 104. 106. 1 28. 13 1.

143 , 150 , 17 1 , 18 1 , 2 2 1 , 3 1 7 , 3 70 . Archi

medean postulate, 35 , 3 27 . Archime~

dean problem, 107 . Archimedian spira l ,

36 , 1 63 . Cattle-

problem, 59 . M ensura

tion of the circle, 54 . Sand counter, 54,

78. 90

Archytas. 19; 20. 25. 27. 37. 53

Arenarius, 54, 78, 90

Argand. J R .. 265 ; 254. 349. 420

Aristaeus, 29, 39

Aristophanes, 17

Aristotle. 29; 7. 9. I s. 23. S I . 55. 1 18.

1 26
,
1 29, 1 6 1 , 1 79, 285 , 397 . On dyna

mics, 17 1 . H is Physics, 23 , 29
Arithmetic , Arabic , 10 2—104 , 108, 1 1 1 .

Babylonian, 4
—
7 . Chinese, 7 1

—
74, 7 6 , 77 .

Egyptian, 9
—14 . Greek , 18 , 19, 3 2 , 52

62 . Hindu , 85 , 90
—
93 . Japanese , 78 , 79 .

M iddleAges , 1 14 . Renaissance, 1 25, 1 2 7,
1 28 . Roman,

63
—68

Arithmetical machines, 206 , 27 2 , 483 , 485 ,

486 a

Arithmetical progression , 5 , 1 2 , 13 , 58, 75 ,

Arithmetical triang le, 76 , 183 , 187
Arithmetization, 362 , 398, 369, 424

Armenante, A . , 3 14

Arnauld, A . , 1 70

Arneth A . , 97

Aronhold S . H ., 346 ; 348

Arrow , 23

Aryabhata, 85 ; 86 , 87 , 89, 92 , 94
—
96

Arzela, C .

, 377

Aschieri , F 289, 307 , 308

Ascoli , G . , 405

Astroid, 269
Astrolabe, 48

Astronomy, Arabic , 102 , 104, 109 . Baby
ionian , 7

—
9 . Chinese, 76 , 7 7 . C reek , 16 ,

19, 43 , 46
—
48. Hindu , 83 , 84, 95 . Mod

em. 130. 13 1. 159. 1 60. 280. 289. 437. 450.

45 1
—
455

Asymptotes , 40 , 142 , 177 , 185 , 188, 224

Asymptotic solutions of equations, 391 , 392 ,
454

Asymptoticvalues, 438

Atabeddin Jamshid, 1 10

Athelard of Bath, 1 18

Atomic theory, 1 26

Atwood , G ., 155

Aubrey, 15 1

Augustine , St . ,
67

Ausdehnungslehre, 336 , 337
Axioms, Geometrical , 1 1 , 26 , 3 1 , 3 2, 48,

108 , 184, 302 , 303 , 305 , 308 . Algebraical ,

409

Babbage, C ., 485 ; 272 , 405, 486

Babbag e, H . P ., 486

Babylonians, 2 , 4
—8 , 1 7

Bacharach, M . , 47 2

Bachet ( le Méziriac , 1 67 ; 168, 170 , 254

Bachmann, P .; 444 ; 436

Back lund, A. V ., 32 1 , 325

Bacon, R ., 1 26

Baer, K ., 470

Bagnera, G . , 360

Baillet , J ., 14

Baire , R . , 40 1 , 402

Baker, H . F., 3 17 , 3 19, 343 . Quoted , 282 ,

Baker, Th. , 107 , 203

Bakhshali arithmetic , 84, 85, 89, 91 , 92

Bal l , R . S . , 455 ; 308

Bal l , W . W . R 204

Ballistic curve, 266

Baltzer, H . R . , 3 2 1 ; 304 , 341

Banachievitz , T., 453

Bang , A . S . , 300

Barbier, E. , 341 , 379

Bar- le-Duc , Eward. S ee Eward de Bar-le
Duc

Barnard, F . P ., 1 22

Barr, A ., 301

Barrow ,
I ., 188

—190 ; 158, 163 , 192 , 207 , 2 1 2
Bartels, J. M ., 434

Basset , A . B ., 3 19 , 3 20 , 457 , 46 1 , 469

Bateman, H.
, 3 19

Battag lini, G ., 354; 308
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Bonola , R ., 48 , 108 , 184, 307

Boole. G 407 ; 278. 281 . 285. 342. 383. 384.

Booth, J ., 3 1 2

Bopp, K ., 181

Borchardt , C . W. , 418; 425

Borda, J. C ., 266

Borel , E., 375 , 386, 40 1 . 402 . 404. 427, 481 .

Quoted, 389
Borelli , G . A . , 184

Bortkewich, L . v . S ee Bortk ievicz

Bortkievicz , V . , 3 79, 381

Bortolotti , E. , 349, 350

Bosmans, H .
, 77

Bouguer,
P ., 157 , 273

Boundary-value problems, 2 70 , 284, 39 1 ,

Bouniakovski , V. J ., 436

Bouquet , J . C . , 388 ; 241 , 383, 387 , 418, 420
Bouquet de la Grye, 484
Bour, E .

, 384

Boussinesq , J . , 462 , 469 , 47 1

Bohtroux, E . , 4 10

Boutroux, P ., 429

Bouvell es, C . , 162

Bowditch, N 262 ; 338

Bowley, A . L . , 381

Boys, V . , 486

Brachistochrone, 234
Bradwardi ne, T. , 1 27 ; 1 16, 1 28 , 13 2 , 16 1

Brahmagupta. 85 ; 7 1. 86. 87. 92. 94. 97. 99

Brai kenridge, W. , 228

Brancker, T., 140 , 169

Braunmuhl , A. v. 48 ; 137 , 235 , 481

Bredon, S . , 128

Bremiker, C ., 484

Brennan, L ., 458

Bret, J . J ., 269

Bretschneider, C . A., 9 ; 88 , 336

Brewster, D ., 191 , 193 , 201 , 46 1

Brianchon, C . J 166, 2 75 , 287 , 288, 298

Briggs.H.. 155. 187. 343

Bri ll. A 293. 3 13 . 3 1 6. 328. 419. 430. 43 1

480

Brill L . 309, 328

Bring , E . S ., 349

Brioschi. F.. 345
-
347 ; 279. 307. 340. 341.

347. 348. 36 1. 370. 388. 413. 417. 456

Briot, C . . 388 ; 24 1 , 383 , 387 , 4 18 , 420

Brisson. M . J .,
265

Brocard, H ., 298; 299 ; B . points, 299

B . angles, 299; B . circle, 299, 300

Broch, O . J ., 414

Broden, T ., 433

Brouncker, W., 156 ; 1 69 , 187 , 188 , 2 28

Brouwer, L . E . J .
, 403 , 433

Brown , C ., 3 29

Brown.E. W. 450. 45 1. 453. 454. Quoted.
450

Brownl ee, J .W., 383

Brunel , H . M . , 30 1

Bruno, Faade, 345
Bruns.H 452. 454

Brussels academy of sciences, 168

Bryant , W.W. , 451

Bryson of Heraclea, 23 ; 24
Bubnow, N ., 98

Buchanan, D ., 453
Buchheim, A .

, 455 ; 308

Buck le, H . T., 190

Buck ley, W. , 147 ; 183
Budan, F .

‘

D ., 269, 27 1

Bufi
'

on, Count de, 243 , 244 , 263 , 378, 379

Buhler, 88

Bungus, P . , 144

Burckhardt, J . C . H . , 440

Burali -Forti , C . , 289, 3 2 2 , 335 , 401 , 40 2 , 408

Burgess , E . , 85
Burgi. J .. 152 ; 137. 148. 154. 178

Burja, A ., 155 , 258

Burkhardt, H ., 280 ; 350 , 252 , 3 18 . Quoted,

Burkhardt, J . P ., 262

Burmann
, H . , 272

Burmester, L .,
297

Burns, J . B ., 352

Burnside.W., 357. 358. 359. 360

Burrau
, 484

Burroughs, 485
Busche, E., 436

Buteo, J . , 143 , 156

Butterworth, J 298

Butzberger, F., 292

Buy
’
s-Ballot , C . H . D . , 478

Byerly, W . E., 470

Cajori , F., 3 , 24, 1 27 , 156, 174, 182 , 190 , 20 2 ,

224. 248. 27 1. 339 . 344. 447

Calandri, Ph., 1 28

Calculate, orig in of word, 64
Calculating eng ine. S ee Arithmetical ma

chine.

Calculus, S ee Differential C ., Integral C .

Calcul us integral is, the name , 22 1

Cal culus of functions, 405
Cal culus of residues, 420

Cal culus of variations, 23 2 , 234, 25 1 , 255 ,
2 67. 281. 291. 394. 3 13. 367. 369

—
37 2.

404. 405. 430. 43 1. 437

Calendars , 8 , 66, 70, 76, 78, 1 14 , 1 2 2 , 13 2 ,

144

Cal let, F., 266

Callisthenes, 7
Cambuston, H ., 33 2

Campano, G ., 1 20 ; 142
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Campbell , G ., 202

Cantor. G 397
—
494; 24. 67. 172. e8s. 325.

367. 400. 404. 409. 426. 432. 440. 44 7 .

Quoted. 447
Cantor.M .,

6 ; 10. 13. 14. 42. 63. 87. 91. 96.

101 , 105, 106 , 1 10, 1 14, 1 15, 1 17, 1 19, 123,

140. 2 1 1. 247. 249. 269. 384

Capella, M .,
1 13

Capelli , A ., 365

Capillarity,
264

Caporali , B ., 3 14; 3 19

Caqué, J ., 387

Cardau. H4 134
—136 ; 145. 147.

1 70, 179, 181 , 182 , 184, 185
Carette, A. M .,

268

Carlini
,
F 452

Carl] , L . B ., 370

Carmichael , R . D ., 391 , 396 . Quoted , 391

Carnot, L . N . M .,
276 ; 46, 2 19, 22 1 , 287 ,

Carnot. S .. 475. 476 ; 473

Carra de Vaux, 98
Carslaw , H . S ., 48, 108 , 465
Cartan , E . J ., 339, 358

Carvallo, B ., 335, 365

Casey. J .. 3 14; 324

Casorati , F 346 ; 307 , 383

Cassini D .
,
244 ; 190 , 2 2 2 , 245 , 451

Cassmi J . ,
244

Cassini 5 oval , 2 2 1 , 245
Cassiodorius , 68, 1 13
Castellano, F 409

Castelnuovo, G . , 3 16 ; 3 1 7 , 3 18, 431

Casting out nines, 59 , 91 , 103

Catalan, E . C ., 34 1 ; 330, 383 , 470

Cataldi , P . A. , 147 , 184, 254
Catenary, 183 , 2 17

Cattle problem, 59, 60

Cauchy, A. L ., 368
—
370 ; 227 , 232 , 238, 249 ,

253. 258. 26s. 287. 337. 340. 34 1. 349.

354. 36 1
-

363. 367. 373. 374. 376. 383

389. 395. 396.405. 4 12. 416. 417. 419. 420.

426. 428. 430.43 1 . 438. 440. 446. 452. 46 1.

465
—
468, 47 1 , 473 . Cauchy

’

s theorem on

g roups, 352 . Cours d
’

analyse, 369, 373 .

Tests of convergence of series, 373
Caustic curves , 2 22, 2 25
Caval ieri, B ., 16 1 , 162 ; 79, 159, 162, 1 65 ,

Cayley.A ., 342
-

348 ; 240. 278. 290. 291. 293.

295
-

320.

323. 332
—
335. 338

—
340. 35 1

—
353. 36 1. 383.

415. 432. 456 . Cayley line. 291.
Quoted, 280. Sixth memoir on quantics,

Celestial element method, 75
—80

Center of gravity, 289

491

Center of oscil lation, 183 , 227

Center of similitude of circles , 275
Centrifugal force , 17 2 , 183 , 200 , 244

Ceséro. E.. 324. 375. 379

Ceva, G .,
277

Chamberlin , T. C ., 450

Champollion, 1 1

Chance . S ee Probability
Chandler, S . C . , 241

Chang Ch
’

iu-chien, 73
Chang Chun-Ch

’

ing , 88

Chang T eens. 7 1 ; 97

Characteristic triang le, 18g , 207
Chapman,

C . H. , 340

Charlier, C . , 380, 452 , 453

Charpit, P ., 255

Chasles. M . , 292
- 294; 33. 39

-
41. 43. 162.

174. 246. 276. 287 . 295. 297. 31 2.

Chauvenet, W., 383 ; 455

Chebichev, P . L ., 380 ; 30 1 , 344 , 438

Ch
’

eng Tai-wei, 76

Chernac, L . , 439

Chevalier de Mere, 170

Cheyne, G . , 194

Child, J . M ., 189

Ch
’

in Chiu—shao, 74; 75

Chinese , 7 1- 77 ; 1 7 , 84 . Solution of equa
tion5. 74. 75. 27 1 . Mag ic sq uareS .

Ching Ch
’

ou~ch
’

ang , 7 1

Chi ttenden, E . W., 395

Chin-Chang , 7 1

Chl adni , 464
Choquet , C ., 363

Chou-pet} 7 1
Chree, C ., 46 1 , 469

Christina, Queen , 179

Christofiel , E . B . , 3 14 ; 346 , 356 , 43 1 , 470

Chrystal. G ., 3 78 ; 3 79

Chuproff, A . A ., 379

Chuq uet , N . , 1 25 , 178

Chu Shi h-Chieh, 75 ; 76

Cipher, origin of term ,
1 2 1

Circle , 20 , 2 2 , 23 , 25 , 4 2 , 104 , 143 , 297
-
3oo ,

370 . N ine-point Circle, 298 . D ivision
of. 107. 350. 4 14. 435. 436

C ircle-squarers, 1 , 33 1 . S ee Quadrature of

the circle .

Circular points at infini ty, 282
Circumference, 297
Cissoid, 42 , 5 1 , 182

Clairaut , A. C . ,
244 ; 2 27 , 2 29 , 239, 242 , 245 ,

252 , 302, 457 . His differential equat ., 245
Clapeyron , B . P . E., 467 , 475

Clarke. A . R ., 379

Classes, theory of, 4 10

Clausen, T .
, 330 ; 2 2
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Clausius R 476 ; 468. 474. 477
-

479

Clavius, C . , 144 ; 47 , 143 , 158 , 18 1 , 184

C layton ,
H . H .

, 464

C lebsch, R . F. A . , 3 13 , 3 14 ; 29 1 , 296 , 3 1 1 ,

3 16. 3 18. 345
—
348. 384.

42 2. 43 1. 457. 469

Cliflord.W K. 307 ; 278. 303. 308. 3 17.333.

Cockle, J . , 32 1

Colburn , Zerah , 169
Colding , L . A ., 475

Cole. F . N .
,

‘

347 . 354. 358

Colebrooke, H . T., 85

Colla. 133. 135
Collins, J . , 192 , 193 , 203 , 209, 2 1 2

—2 16
Colson, J . , 193

Combescure, E. , 3 15

Combinations, theory of, 1 28 , 1 70 ,
183 , 2 2 1

Combinatorial school , 23 1 , 23 2

Commandinus, F., 14 1 ; 1 75 , 184

Commercium epistolicum (Collins
’)194 ,

Commercium epistolicum (Walli s
’)168 .

Compensation of errors, 2 19
Complex variables, 420 , 422

Comte, A ., 285

Conchoid, 42 , 5 1 , 202

Condorcet , N . C . de, 244 ; 252 , 266 , 380

Cone. 27. 33. 39. 46. 79. 141. 3 19
Congresses, international . S ee Interna

tional c.

Coru
'

CS. 2 7. 29. 33.
—
4 1 . 88. 14 1.

142 , 160
,
165
—
167 , 18 1 , 184, 246 ; Con

jugate diameters , 41 ; Foci , 40 , 41 , 1 60 ;

Generation of, 180 , 2 28 ; Names ellipse,

parabola , hyperbola, 39 ; Name latus

rectum , 40

Conoid, 36

Conon, 34; 36

Conservation of areas, 240

Conservation of vi s viva or energy , 183
Constructions, 2

,
2 1 , 2 2 , 27 , 47 , 84, 86 ,

106 , 297 , 300 , 3 10 , 336 , 436 ; By com

passes only,
268 ; By insertion , 36 ; By

ruler and compasses, 1 24 , 174 , 177 , 202 ,

292 , 350 , 436 , 446 ; By ruler and fixed
circle, 29 1 ; By sing le opening of com

passes, 106 ; Of maps, 295 ; Of regular

polygons 47. 1 28

Contact~transformation, 354, 355
Conti , A . S ., 2 16

Continued fractions, 1 1 1 , 147 , 188, 246 , 258 ,

375

Continuity, 2 2
, 24, 29, 94 , 160 , 184, 185 ,

2 1 1 , 2 18 , 282 , 283 , 287 , 3 18, 3 26 , 367 , 39 1 ,

399. 4 19
—
42 1. 426

Continuum.
24. 35. 1 26. 285. 397. 398.

400 ; Well-ordered, 401 ;Not denumerable,
402

Convergence of series. S ee Series

Convergence of aggregates, 398

Convergent series, use of term, 228, 237
Coolidge, J . L . , 300 , 308

Coordinates, 40 , 42 , 1 74, 175 , 184, 2 1 1 , 235,
289. 294. 3 2 1. 3 24. 482 ; El liptic,
456 ; Generalized, 255 ; Homogeneous, 297
Intrinsic, 3 24 ; Oblique, 1 74 ; Pentaspher

ical , 3 15 ; Polar, 2 2 1 ; Tangential , 3 10 ;
Trilinear, 3 10 ; Movable axes, 32 1

Copernicus, N 46 , 130 ,
13 1

Cosserat , E. , 3 15 , 3 25

Cotes, 2 26 ; 199, 236 , 382 ; Theorem of,
2 28

Counters
,
1 2 2

Counting board, 75 , 90, 91 , 1 22

Courant , R ., 433

Cournot, 281

Courtivron
,
2 27

Cousin P ., 429

Cousinery, B . E. ,
296

Couturat, L .,
286

Covenants. 345. 348. 349. 356. 417. 440

Cox, H . , 308

Craig , C . F., 3 19

Craig , J . , 1 7 1 , 2 10

Craig , T., 4 18 ; 308 , 391 , 46 1

Cramer, G .,
241 ; 1 75 , 204, 223 , 3 20 ; C.

paradox, 2 28

Crelle, A . , 4 1 1 ; 289 , 290 , 298 , 299, 418

Cremona, L .,
295 , 296 ; 278 , 287 , 291 , 307 ,

3 14, 3 18 , 3 19, C. transformation ,

295

Crew , H . , 172

Crofton ,
M .W. , 3 79; 380, 382

Crone, C ., 3 20

Cross-ratio , 166 , 289, 293 , 294, 297 , 308

Crozet, C .
,
276

C tesibius, 43
Cube, duplication of, S ee Duplication
Cube root , 7 1 , 74, 1 23

Cubic curves, 204, 2 28, 2 29, 244 , 249, 295 ,

3 20

Cubic equations, 74, 107 , 1 10 , 1 1 1 , 124, 133
138. 140. 142. 177. 247. 35°

Culmann , K . , 296 ; 294, 297

Cuneiform wri ting , 4, 7 , 8

Cunningham, A. J . C ., 446

Curtze, M .,
296 ; 73 , 1 23 , 1 70

Curvature, theory of, 275 , 296 , 3 20 , 321

Curves, 163 , 202 , 204, 206 , 207 , 209 , 224,

2 26. 2 28. 235. 244. 250. 275. 295. 3 18
-
3 20.

3 2 1 ; Algebraic, 302 , 4 19; Ball istic , 266 ;

Catenary,
183 , 2 1 7 ; Caustic curves, 2 22 ,

2 25 ; Class of curves, 288 ; Conchoid, 42 ,
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263 , 391 , 393 . S ee Partial difierential

equations, Singular solutions , D ifierential
calculus, Integral calculus , Three bodies

(problem of).
Difl

'

erential geometry, 306 , 3 15 , 3 2 1 , 3 2 2

D ifi
'

erential invariants , 345, 355, 356, 388

Dingeldey, F 3 23

Dini. 375 ; 279. 3 77. 43 1
Dinostratus, 27 ; 2 1

D iocles, 42
D iodorus, 9, 34

D iogenes Laertius, 9 , 16
Dionysodorus, 45
Diophantine analysis , 62 , 81 , 95 , 168

Diophantus, 60- 62 ; 45. 48. 5 1. 87. 93
—
95.

10 1 , 103 , 105 , 106 , 1 1 1 , 135 , 1 67 , 168,

401

Directrix, 50
D irichlet, P . G . L ., 438 ; 1 68, 170 , 270 ,

278,

357. 362. 37 2. 376. 377. 392. 4 18.

419. 42 1 . 429. 439. 470 ;

D principle. 284. 392. 42 2. 428. 4 29. 430.

D iscriminant (name)345
Distance, 308
D ivergent series, 228, 237 , 238 , 242
D ivision of circle, 107 , 350 , 4 14, 435 , 436

Division of numbers, 7 , 73 , 1 17 , 1 19
Diwani-numerals, 100
D

’

Ocagne, M .
, 482 ; 483 , 485

Dodd ,
E . L .

, 382

Dodgson , C . L . , 302

Dodson, J ., 155

Donkin,
W . F. , 456 ; 465

Dositheus, 34
Dostor, G . J . , 341

Double false position . S ee Fal se position

Dove, H .W., 463

D
’

Ovidio , E. , 308, 341

Drach, S . M ., 366

Drobisch, M .W., 224

Dronke, A ., 3 1 1

Duality, principle of, 288 , 290 , 294, 3 10

Dubois-Ayme, 273
Dufii eld, W . W. , 483

Duhamel , J . M . C . , 383 ; 363 , 369, 416 , 467

Duhem, P . , 1 27 ; 1 28

Diihring , E ., 183

Duillier. S ee Fatio de Duill ier

Dulaurens, F 225

Dumas, W., 348

Duns Scotus, 1 26
Duodecimals, 63 , 64, 1 1 7 , 1 19
Dupin , C ., 275 ; 296 , 3 20 , 3 79 ; D . theorem,

275

Dupl ication of a cube , 2 , 19 , 20 , 2 1 , 2 7 , 38 ,

42 ; 142 7 I 771 20 2) 340

Dupuy, P ., 35 1

Durege, H ., 3 1 1 ; 418

Durer, A ., 141 ; 170 , 145

Dyck .W., 3 24. 3 29. 43 2

Dyname. 335
Dynamics, 1 7 1 , 17 2 , 183 , 223 , 255 ,
33 2 , 477 . S ee Potential

Dziobek , O . , 453 , 455
Earnshaw , S ., 462

Earth, figure and size of, 102 , 2 29 , 281
Earth, rig idi ty of, 240 , 469

Ecole normale founded, 256
Ecole polytechnique founded ,

256

Eddy, H . T. ,
296

Edgeworth, F . Y ., 3 78 , 381

Edleston , J ., 2 1 2 , 2 16

Eells, W . C . , 70

Egyptians, 9
—
15 , 17

—19
Ehrenfest, 481

Einstein, A . , 335 , 479 , 480 , 481

Eisenhart , L . P . , 3 19, 3 2 1 ; Quoted, 3 15
E isenlohr

,
A . , 9 , 10

Eisenlohr, F 369.

Eisenstein, F . G ., 440 ; 346 , 348, 4 17 , 42 1 ,

Elastic curve , 2 2 1 , 296

Elasticity, 460 , 464
—
470

Eliminant, 249
Elimination, 3 1 1 , 3 1 2 , 361

E lizabeth, Princess , 179
El liott , E . B ., 348

E llipsoid, attraction of, 2 29, 244 , 263 , 266 ,

Ell iptic functions, 2 25 , 23 2 , 239 , 291 , 3 13 ,

3 14. 362. 390. 44 1. 4 14
-

4 17. 434. 437 ;

Addition-theorem, 291 ; Double periodi

city, 414

Elliptic integrals , 239, 258, 266
, 267 , 414

El lis, A . J ., 155

Ellis, L ., 152

Ely, G . S ., 444

Emsh, A ., 300

Emmerich, A ., 300

Encke. J F 452 ; 382. 437
Encyclopédie des sciences math., 280

Encyk lopadie d. math . Wiss ., 280

Enestrom, G ., 1 28, 140 , 148, 158, 1 73 , 174,

1 79. 184. 2 2 1. 2 23. 2 25. 233. 235. 239.

439

Engel. F 355. 356

Enneper, A ., 416 , 417

Enriques, F., 3 16 , 3 17, 3 22 , 3 28 , 446, 481

Entropy, 476

Enumerative geometry,
292 , 293 , 295

Envelopes, theory of, 2 1 1

Epicycloids, 141 , 1 66 , 2 24
Epimenides puzzle, 40 2
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Epping. I . 8

Equations , theory of, 138 , 139 , 156 , 20 1 , 249 ,
253. 254. 264. 344. 347. 349

-

366 ; Abelian.

41 1 ; Cubic, 74 , 107 , 1 10 ,
1 1 1 , 1 24,

133
—137 , 140 , 1 77 , 247 ; irreducible case ,

135 , 138, 142 , 350 ; Every e . has a

root. 3. 237. 253. 349; Functional. 395.

405 ; Indeterminate, 60 , 73 , 74, 94
—
96 , 106 ,

1 24. 167. 441 ; Linear. 13. 103 . 2 1 1.

393. 394; Modular. 352. 416. 41 7 ; Nega

tive roots of, 176 ; Of squared difi’ erences,
249, 254; Resultant of, 249; Rule of signs,
1 78 , 1 79, 20 1 , 2 24, 248 ; Quadratic , 13 ,

57 ; 74. 75. 94. 95. 103 . 106. 107. 138 ;

Quartic, 6 1. 1o7. 75. 1 77. 235. 135. 138 ;

Resolvents, 138 ; Quintic , 253 , 33 2 , 349,

350 , 4 1 1 ; solution by ell iptic integrals,

350 . See D ifferential e. , Integral e .,

numerical e

Equipollences, 337
Eratosthenes, 38 ; 2 1 , 30, 34, 58. His

“
sieve,
”
58

Erdmann, G ., 37 1

Ermakofl , W. , 3 75

Errard de Bar-le-Duc, I . , 158

Escheri ch, G ., V .
, 3 7 2

Espy, J . P .
, 462

Ether, theory of, 460 , 461

Ettinghausen , A . V . , 363

Eucl id, 29
—
34; 18. 2 2. 25. 29. 39. 46. 53. 59.

10 1. 1 23. 184. 268. 353. 442

Euclid
’

s Elements, 15 , 18 , 19, 27 , 28—35 , 44 ,
472 50 , S I ) 57: 58) 67 7 86 ; 1047 108 1 1 18

129. 130. 142. 148. 165. 167. 192.
205 , 2 26 , 30 2 , 303 , 307 ; Euclid

’

s Data, 33 ;
Elements in China, 7 7 ; Algebra, 61

Eudemian summary, 15 , 16 , 18, 26, 28, 30

Eudemus, 15. 57

Eudoxus, 28 ; 15. 25. 27. 30. 3 1. 3 2. 35. 42.
3 27

Euler, Lv 232
—242 ; 62 , 95 3 143 7 144 9 152 7

190 , 2 20 , 2 2 2 , 2 23 , 225
—2 27 , 23 1 ,

23 2: 245
—247 , 249, 2572 2 64,

270. 275. 297. 3 20. 3 2 2. 3 24. 3 29. 330.

353. 365. 369. 373. 377. 380. 38 1. 389. 405.

464 , 465 , 477 ; Euler
’
s Algebra , 233 ;Analy

sis situs, 323 ; Euler l ine, 298 ; Infinite
series, 373 ; Institutiones calcul i difi

'

, 233 ,

239 ; Institutiones calcul i int , 233 , 239 ;

Integrating factors, 239; Introductio in

analysin , 2 27 , 233 , 241 ; Magic squares,
1 70 ; Mechan ica, 240 ; M ethodus inven iendi

l ineas curvas, 234; Method of elimina
tion,

25 ; Number-theory, 1 68—170 , 239 ;

Polyedra, 240 ; Quadratic reciprocity ,
239

Symmetric functions, 235 ; Thearia mo

495

tuum lunae, 234; Tkearia malaum plane

tarum, 234

Eutocius 5 1 ; 38. 44. 53.
'

54

Evans, G . C .
, 395

Evolutes, 41 , 183
Exchequer, 1 2 2
Exhaustion , method and process of, 23 , 24 ,

109. 160. 1 6 1

Exhaustion , ori gin of name, 181

Exponential calculus , 2 2 2

Exponents , 140 , 148 , 149 , 178 , 187 , 235 ;

Fractional , 238 , 247 ; Imaginary ,

2 25 ; Literal , 192 ; Negative, 185 , 238
Faber, G . , 429, 446

Fabri , H ., 206

Fabry, C . E., 375
Faerber, C ., 366

Fagnano, Count de, 2 25 ; 239
Falk , M ., 428

Falling bodies, 17 1 , 183
False position, 1 2 , 13 , 91 , 93 , 103 , 137 , 366 ;

Double, 44, 103 , 1 10 , 1 23
Fano, G ., 3 2 2.

Faraday.M .,

Farkas, J ., 405

Farr, W. , 383

Fatio de Duil lier, 2 14
Faye.H 455

Fechner, G . T. , 381

Fekete , M ., 362

Felt, D . E . , 485
Fenn , J ., 302

Fermat, P . de, 1 63
—170 ; 142 , 146 , 147 , 162 ,

1 74
—1 77 , 180 -182 , 189

—191 , 239 , 250 , 276 ,

Fermat
’
s theorem, 1 69, 239 , 254

Fermat ’s last theorem, 106 , 1 68, 239, 254 ,

Ferrari. L 135 ; 134. 139. 253

Ferrel.W 463 ; 449. 458. 464
Ferrero, A ., 382

Ferrets, N 470

Ferro, S . del . S ee Del Ferro , S .

Ferroni , P . , 2 2 1

Feuerbach, K . W., 298

Fibonacci . S ee Leonardo of Pisa

Fiedler, W.,
297 ; 3 13

Field, P ., 3 20

Fields, J . C . , 436

Fifteen school g irls, problem of, 323
Finck , Th ., 151

Fine, H . B . , 362 , 383 ; Quoted, 362
Finger symbolism,

63 , 65 , 68, 1 14

Finite differences, 2 24, 2 26, 230 , 238, 258,

264. 466

Fink , K ., 291

Fischer, B ., 376 , 396
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Fisher, A . , 378

Fiske, T . S . , 279

Fite , W . B . , 357

Fitzgerald, G . F ., 471 , 479

Fleck , A . , 444

Floquet , G .
, 348

Floridas, 133 , 134
Flower, R .,

155

Fluen
‘

ts , 193 , 194 , 195 , 200, 2 13

Fluxions , 150 , 192
—
197 , 200 , 2 10 , 2 13 , 2 28,

247 ; Controversy on invention , 2 1 2—2 18 ;
Berkeley

’

s attack on ,
2 19, 2 20 ; Compen

sation of errors in, 2 19
Folium of Descartes, 1 77 , 229
Foncenex, D . le. , 237 ; 257

Fonctionelles, 395 , 405
Fontaine , A . , 239 ; 242

Ford, W . B . , 375

Forsyth.A . R . , 279. 345. 356. 384. 385. 386.

388 , 433 ; Quoted, 28 1 , 416 , 342

Foster, S ., 158

Foucault, J . B . L . , 473

Fourier, J . , 269
—2 7 1 ; 164, 234, 242 , 247 , 28 1 ,

4 18. 473 ;

Analyse des équations, 269, 284 ; Fourier
’

s

serieS. 242 . 2 70. 283. 375
—
37 7. 393. 396.

46 1 , 465 ; Fourier
’

s theorem, 269 , 284,

438 ; Theorie analytique de la chaleur, 2 70 ,

27 1

Fourth dimension , 184, 256 , 3 18 , 335 , 480

Fovil le , A . de, 380

Fractions: Duodecimal , 63 , 64 , 1 17 , 1 19 ;

Partial , 2 1 1 ; Rational , 2 2 ; Sexagesimal ,

5 , 54 , 483 ; Unit-fractions, 1 2 , 14 , 44 , 7 1 ,

1 23 ; Continued, 1 1 1 , 147 , 188 , 246 , 258 ,

3 75 ; Roman,
64 ; Chinese, 7 1 ; Decimal ,

5 , 1 19 , 147 , 148 ; Fractional line , 1 23
Francesca,

P ier della , 1 28

Frank l in , B . , 170

Frank lin , Christine Ladd, 407
Frank lin. F.. 343. 345. 436. 444

Frantz , J . , 448

Fréchet.M . , 37 2. 393. 394. 404
—
406

Fredholm. E I 393 ; 394. 34 1. 427. 469

Frege , G ., 408 ; 286 , 407 , 409

Frenicle de Bessy , 169 , 170

Fresnel. A. J . 470. 47 1 ; 183. 275. 3 1 1. 3 14.

3 19. 333. 344. 460. 465. 473

Frézier, A . F., 274

Fricke. R . , 417. 43 2. 433

Friedlein , G . , 64 ; 65

Frischauf, J 452

Frizel l , A . B .
, 402 , 403

Frobenius F G . , 354 ; 339. 341. 347. 353.

357 . 360. 362. 387. 390. 427. 43 13 443 ;

Quoted , 362

Frost , A . H ., 366

Froude , W., 457 ; 462

Fuchs, L .. 387 ; 385. 388. 390. 432

Fuchs. R ., 279. 347

Fuete
‘

r, R . , 445

Fuj ita Sadasuk e, 81
Functional calculus, 392, 395
Functionals, 395
Functions, 1 27 , 2 1 1 , 234, 238 , 258, 270, 284,
388. 389. 400. 445. 446 ; Abelian

f .. 281. 3 13. 342. 390. 4 1 1. 412. 415. 418.

4 19, 42 1 , 423 , 424 ; Algebraic, f. , 295 , 418,

430. 43 1 ; Analytic. f.. 257. 258. 425
-

428.

439; Arbitrary, f . , 242 , 25 1 , 25 2 , 258, 270,

4 19 ; Automorphic f. , 43 2 ; Bessel f. , 448;
Beta f. , 234; Calcul us of, 33 1 , 33 2 ; Com

plex variables, 420, 4 2 2 ; Defini tion of, 270,
3 26 , 400 , 4 19; Fuchsian f., 389, 390 ;

Gamma f . , 234 , 4 16 ; Hyperbolic f. , 246 ,

424, 484; Hyperelliptic f., 281 , 41 1 , 4 18 ;

Modular f. , 4 16 , 41 7 , 43 2 ; Multiply

periodic f. , 283 ; Non
-difi

'

erentiable f. , 3 26 ;

F . on point sets, 403 , 404 ; Orthogonal f.,

396 ; Potential f. , 284, 422 ; Sigma f., 417 ;
Symmetric f. , 293 , 36 1 , 414 ; Theta, 342 ,

4 15 , 416 , 4 18 . S ee Elliptic functions

Trigonometric f., 234, 236 ; Zeta f., 439.

Funicular polygons, 296

Furstenau , E ., 341 , 365

Furtwang ler, P . H ., 443 , 445
Fuss, P . H., 157 , 237 , 249

Gaba, M . G ., 395

Galbrun ,
H . , 39 1

Galileo , 17 1, 17 2 ; 37 , 80 , 130, 146, 159, 161 ,
16 2 , 1 70 , 179, 2 23

Galloway , T ., 382

Galois. E . 35 1 ; 352. 358. 41 1. 43 2.

445 ; G . resolvent , 4 1 1 ; G . g roup, 3 18

Galton,
F., 381 ; 380

Garbieri, G . , 341

Gardiner, 235
Gauss. K . F1. 434—439; 3. 6. 62. 146. 169.

184. 23 1. 23 2. 235. 237. 238. 248. 253. 265.

336. 340. 342. 348
—
35 1. 353. 36 1. 366.

448. 45 2. 459. 460. 469. 47 2. 475. 484;

Disqu is itiones arithmeticae, 435
—
43 7 ; Non

eucl idean geometry, 303
—
306 ; Thearia

motus. 437. 44 7
Gay de Vernon , S . F 274

Gay-Lussac, 275
Geber, 109
Gehrke, J ., 300

Geiser, C . F.
, 3 18

Gel librand, H . , 15 1
—15 2

Geminus. 44; 39. 42. 4s. 47. 48
General Analysis , 392 , 394 , 395
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Gylden. 453 ; 454

Haan, D . B . de, 372

Haas , A . , 3 21

Habeni cht , B ., 250

Hachette, J . N . P ., 276 ; 275 , 296

Hadamard. J 37 2 ; 3 24. 340. 375. 395. 402.

427. 439; Quoted. 392
Hadley, J 204

Hagen, G . H. L . , 382

Hahn. 429

Hahn, Ph. M ., 485

Halifax, J . , 1 27

Hallam, 139

Halley. E. 156 ; 38. 41. 17 1. 190. 199. 200.

Halphen. G . H .3 13 ; 293.3 21.3 2 2.

375. 388. 390. 4 r7
Halsted. G . B 130. 304. 327. 389. 390. 425 ;
Quoted, 446

Hamburger, A ., 387

Hamburger, M ., 383

Hamel , G ., 405

Hami lton , W. , 17 2 , 1 73 , 273 , 278, 331

Hamilton, W . R . , 33 2 ; 255 , 280 , 3 14 , 3 22 ,

349. 384. 352. 353. 455. 456. 47 1. 473.

477 ; Conical refraction , 332 , 47 1 ; Ham il

tonian group , 357

Hammond. J 345. 348

Hancock , H ., 37 1 , 37 2

Hankel. H. 423 ; 10. 25. 52. 5 7. 6 2. 91. 93

96 , 10 2 , 105, 1 15 , 1 20 , 1 29, 135 , 14 1 , 2 26 ,

273. 337. 341. 367. 3 76. 400. 404. 423 ;

Principle of permanence, 337 ; Quoted,

Hansen, P . A ., 449; 382 , 45 1 , 452 , 486

Il anus, P . H ., 341

Hann. J 463. 464

Hardy, A . S ., 265
Hardy, C ., 164

Hardy, G . H ., 439

Harkness, J ., 433

Harnack .A ., 404

Harmonics, theory of, 40, 46

Harmuth, Th., 366

Harpedonaptae, 10 , 25
Harrington, M . W. , 455

Harriot. T., 156. 157 ; 137. 141. 149. 158.

178. 179. 184
Hart , A. S ., 298; 291, 3 18

Hart , H., 30 1

Hartogs, F. M ., 401 , 429

Harzer, P ., 452

Haskell , M .W. , 3 10

Haskins , C . N ., 356

Hatzidak is, N ., 32 1

Hawkes, H . E ., 339

C
‘
D
\

Hayashi , T . , 78, 82

Hazlett , O . C ., 339

Hearn , 155

Heat , theory of, 270 , 391 , 470
-
479

Heath,
R . S . , 308

Heath, T. L . , 3 2 , 41 , 60 ,
62 , 168, 302

Heaviside. 0. 475

Heawood, P . J . , 3 23

Hebrews, 7 , 17
Hecke, E., 433

Hecker, J .
, 349

Hedrick , E . R ., 3 28 , 3 72 , 430

Heflter, L . , 3 24, 480

Hegel. 447
Heiberg. J . H 34. 35. 44

Heine. E ., 377 ; 397. 398. 400 . 470

Hellinger, E ., 406

Helmholtz , R . 474
-

47 7 ; 459. 460. 46 1. 463.

Henderson, A . , 3 1 7 , 3 18

Henrici, O ., 42 2 , 423

Henry, J °2 473

Hensel , K . W . S . , 43 1 , 445

Héngone, P . , 205

Hermann
, J . M .

, 486

Hermes, O . , 436

Hermite. C .. 4 15. 4 16 ; 4. 7. 279. 345. 346.

3 75. 388. 4 13.

Hermotimus , 28

Hero. S ee Heron
Herodiani c signs , 5 2
Herodianus, 5 2

Herodotus, quoted, 9 , 1 1
Heron, 42: 542 6 1 7 66 , 84: 86: 1012 1 142

13 1

Heron the Younger, 43
Herschel , J . F . W. , 464 ; 1 26 , 27 2 , 405
Hertz ,

H . R .
,
28 1 , 474

Hertzian waves, 393
Hess , W., 458

Hesse, L . O ., 3 1 1 , 3 1 2 ; 3 13 , 3 20 , 341 , 346,

Hesse] , L . O . ,
291

“ Hessian,
”
3 1 2 , 345

Hettner, G ., 425

Heuraet , H . van , 181

Hexagon,
6
, 18 , 1 66 , 2 28, 290 , 291 , 3 18,

3 27

I l exagrammum mysticum. S ee Hexagon

Heywood, H . B . , 383

H icks, W . M . , 460 , 462

H ieratic writing , 1 1

Hierog lyphi cs , 1 1

446 ; (2uoted. 430
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Hildebrandt, T. H. , 406

Hill , C . F. , 1 2 1

H il l. G . W. , 450 ; 394. 341. 451. 453

Hill , J . E. , 3 19

H ill , J . M ., 384
Hill , Th. , 324

Hilprecht , H . V ., 7

Hilton , H. , 360

H indenburg , C . F. , 3 73 ; 272

Hindu-Arabic numerals , 2
, 5 2 , 68, 88

—
90 ,

98, 100 , 10 1 , 107 , 120, 1 2 1 , 1 28 , 147

H indus , 83—98 ; 2 , 8 ; Geometry, 83—86
H ipparchus. 43 ; 5. 45

-

47. 141. 48 1

Hippasus , 19
Hippias of Elis , 2 1

Hippocrates of Chios, 2 1 ; 22 , 23 , 25 , 26 , 30 ,

Hippolytos
Hippopede, 42

Hirn, G . A ., 476

History of Math
’

s, why studied, 1
—
3

Hobson, E . W.,
2 2

, 144 , 268 , 446 , 470 ;

Quoted, 398
Hodgkinson, E., 467

Hodograph, 332
Hoernly, R ., 85

Holder.0 . 357. 358. 427
Holmboe , B ., 414 ; 3 74 , 41 1

Holzmann , W., 141

Homography. 293
Homological figures, 166
Hooke, R ., 199, 200 ,

295

Hopital , G . F . A. S ee Hospital
Hoppe.R ., 309 ; 453

Horn, J 387

Horner, J ., 366

Horner, W . G ., 75
Homer

’

s method, 7 2 , 74, 75 , 27 1 , 365
Horsburgh, E . M ., 3 29 , 482 , 485 , 486

Hospital , G . F . A . l
’

, 2 24 ; 177, 2 13 , 2 17 ,

Houel. J 3 15 ; 304. 334. 369. 484
Hsu. 77

Hudde, J ., 180 ; 178 , 181 , 193

Hudson, R . W . H . T., 3 19

Hug el , Th. , 367

Hughes, T. M . P . , 74

Humbert, M . G . , 3 17

Hunain ibn Ishak , 101

Huntington. E . V., 357.

Hunyadi, E ., 341

Hurwitz. A 376. 423. 426. 432. 444. 445.

446

Hurwitz , W . A ., 395

Hussey, W . J ., 455

Hutchinson, J . I ., 3 19

Hutton, C .,
247 ; 154, 155
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Huxley. 344
Huygens, C ., 182 , 183 ; 143 , 166 , 169

- 17 1 ,

173. 179. 188. 190. 199. 200. 205. 206.
2 17 , 2 2 1 , 2 25 , 230 , 244 , 470 ; Cycloidal

pendulum, 166

Hyde , E . W. ,
250 , 337

Hydrodynamics, 223 , 240 , 242

Hydrostatics , 3 7
Hypatia, 50 ; 3 1

Hyperbola , 185 , 188 , 206 , 247 ; Equil ateral ,
188 . S ee Conics

Hyperbolic functions , 246 , 424 , 484
Hyperelliptic functions , 28 1 , 41 1 , 418
Hypergeometric equation, 282

Hypergeometric series, 185 , 238 , 373 , 385 ,

386

Hyperspace . S ee Geometry of n dimensions
Hypsicles, 58 ; 5. 3 2. 42. 43. 101

Iamblichus, 59; 6 , 9, 19, 45 , 1 1 1

Ibbetson,
W . J . , 469

Ibn Albanna , 1 10

Ibn Al-Haitam, 104 , 107 , 109

Ibn Junos, 109
Ideal numbers, 442 , 443
Ikeda, 80

Imag inaries , 2 25 , 226 , 229 , 236 , 237 , 275,
2 79. 284. 288. 292

—294. 3 15. 332.390.420.
434

Imaginary roots, 1 23 , 135 , 156 , 1 79, 202 ,

248 , 249, 363
—
365 ; Graphi c representa

tion of, 184, 237 , 264, 265
Imamura Chi sho, 79
Impact , 1 79
Imshenets k i, W . G . , 385 ; 386

Incommensurables , 2 2 , 28 , 3 1 , 3 2 , 57 , 1 26 ;

Indeterminate coeffi cients , 176 , 204

Indeterminate equations , 60 , 73 , 74 , 94
—
97 ,

106 , 1 24 , 167 , 44 1 ; Of second degree , 6 2

Indeterminate form 222 . 2 24

Indian notation. See Hindu-Arabic

Indicatrix, 275
Indivisibles, 1 26 , 161 , 16 2 , 165 , 172 , 175 ,

184
Induction 169 , 331

Infini te products, 186 , 187 , 4 17
Infinite series , 75 , 77 , 80 , 8 1 , 106 , 1 27 , 1 72 ,

18 1 , 187 , 188, 192 , 193 , 196 , 206
, 2 1 2 ,

2 27. 23 2. 238. 246. 248. 257. 258. 36 1.

367. 3 73. 425. 434. 4 1 1 ; Convergence of.

2 27. 249. 270. 284. 367 . 373
—
375 . 4 17

Infinitely small , 160 , 165 , 194
—
198, 207 ,

2 10, 2 18 2 20 , 237

Infinitesimals, 24, 35 , 48 , 49 , 5 1 , 181 , 189,

Infinitesimal calculus. S ee D ifferential
calculus

Infinity,
23 , 24 , 66 , 1 26 , 160 , 166 , 1 77 , 184 ,



5cx3 IIJIDIB}(

185. 2 19. 237. 241. 243. 257. 283. 287.

Ingold, L ., 328 , 333

Ingram, J . R . , 292

Insurance , 1 7 1 , 2 23

Integral calculus, 3 , 79 , 8 1 , 16 1 , 209 , 2 10 ,

Integral equations, 392—394 , 405 , 406 , 4 13
Integrals, 36. 3 16. 3 76. 386 . 388. 424;

Algebraic, 283 ; Defini te , 189 , 237 , 263 ,

Ell iptic , 239 , 258 , 266 , 267 , 414; Eul erian,

267 , 27 2 ; Hyperell iptic , 4 13 , 415 ; Lebes

gue , 406 , 407 ; M ultiple , 284 , 392 ; Pier
pont , 406 ; Radon , 406 ; Riemann, 406 , 407

Integraphs, 486

Integrations ante—dating the calculus, 189

Integro-difi
'

erential equations, 392 , 395 ,

405

International commission on teaching , 356

International congresses, 280

Interpolation , 186 , 187 , 192

Invariants, 282 , 3 1 2 , 3 16 , 3 19 , 3 2 1 , 342

348. 349. 35 1 . 355. 356. 388. 4 17. 444 ;

Name 345
Inverse method of tangents, 180 , 207

—209
Inversion ,

Hindu method of, 92

Inversion (in geometry), 292
Involute , 183

Involution of points, 50 , 166

Ionic school , 15
-
1 7

Irrationals, 2
, 19 ,

2 2
, 3 2 , 43 , 57 , 6 1 , 86 , 93 ,

94. 103. 133. 140. 330 . 396
—
400. 483 ;

First use of word, 68
Irrational roots . S ee Roots

Ishak ibn Hunain , 10 1

Isidorus , 5 1 , 1 13 , 1 2 1

Isochronous curve , 2 1 7 , 2 2 1

Isomura Ki ttoku , 79

Isoperimetrical figures, 42 , 2 2 1 , 222 , 234, a

25 1

Isothermic surfaces, 3 14
Itelson , G ., 286

Ivory, J ., 273 ; 469 ; His theorem, 273

Jabir ibn Aflah, 109 ; 1 19
Jacobi, C . G . J . , 4 14 , 415 ; 266 , 278 , 289, 290,

42 1. 424. 425. 429. 436. 43 7. 441. 448.

455. 458. 469. 470 ; Jacobian. 345 ; Theory
of u ltimate multiplier, 456

Jacobi , K . F . A .
,
298 ; 299

Jacobo de Bil ly, 158

Jacobs, J . , 380

Jahnke, E . , 335

J ahrbuch uber die Fo-rtschritte der M ethe

matik , 2 78

Janni , G ., 341

Japanese , 78—82
Jastremsk i , 381
Jeans, J . H . , 450

Jellett. J H .. 370 ; 457. 468

Jerard of Cremona , 1 19 ; 1 23

Jerrard, G . B . , 349

Jevons, W . S . , 378 ; 28 1 , 407

Joachim, G .
, S ee Rhaeticus

Joachimsthal , F 424

Jochmann, E. , 478

Johanson , A . M . , 433

John of Palermo, 1 24
John of Seville , 1 18 ; 1 19, 147
Johnson, W. W. , 302

Joly. C . J 333

Jones , C . W. , 484

Jones, W. , 155 , 158, 235
Jordan.C .. 3 18.3 25. 3 26 .347. 348. 353. 354.

357
—
360. 379. 390. 428 ; Jordan curve.

3 25 , 3 26 ; Jordan
’

s problem, 359

Jordanus Nemorarius , 1 18

Josephus, F . , 79

Josephus problem, 79, 459

Joubert P .
, 4 17

Joul e. J P .. 475 ; 477
—
479

Jourdain, P . E . B . , 205 , 2 12 , 2 15 , 257 , 399 ,

400. 401. 402 ; Quoted. 407. 408. 409
J ournal des S avans founded, 209

J ournal of the Indian Math. S ociety, 98

Journals 82 , 98 , 209, 2 73 , 278, 288,

Jupiter
’

s satellites, 25 2

Jurgensen , C . , 414

Jurin J . 2 19 ; 369

Kant I . , 26 1 , 449

Karpi nski , L . C . , 68 , 88, 89 , 102 , 103 , 1 21

Karsten , W . J . G .
,
237 ; 265

Kasner, E ., 3 18 , 3 20, 3 2 2 ; Quoted, 324
Kastner, A . G .

, 434, 435 ; 204 , 248

Kaye. G R . 84
—87. 96

—
98

Keill , J ., 2 15 ; 2 16 , 2 18

Kelland, P .
, 46 1 ; 474

Kelvin , Lord (Sir W illiam Thomson), 472 ,
473 ; 2 7 1. 27 2. 279. 292. 3 23. 329.

479, 486 ; Thomson
’

s principle , 284, 422 ,

428
—
430 , 433 , 473 ; Tide-calculating ma

chine, 3 29 ; Vortex atoms, 3 23
Kempe.A B .. 286. 30 2. 323. 3 24. 409

Kempner.A . J 444. 446

Kepler. J 159
—16 1 ; 13 1. 145. 146. 148. 154.

163 , 170 , 178, 184, 192 , 199

Kepler
’

s problem,
25 2

Ketteler, C . , 47 1

Keyser, C . J . , 66 , 1 74, 285

Khayyam,
Omar

,
103 , 108
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Least resistance (solid of), 201 , 234 , 284
Least squares , 263 , 266 , 267 , 2 73 , 382 , 434
Lebesgue. V A 405 ; 341. 369. 401. 402 .

Lebon, E., 389

Legendre, A. M ., 266- 268 ; 231 , 23 2 , 246,

247. 256. 263. 306. 349. 35 1. 370.

37 1. 382. 383. 385. 405.41 1
-

4 13 . 4 17. 435.

438. 439. 442. 466. 469. 473. 482 ; Crim e

trie, 268, 302 ; L . coeffi cients, 414; Num
ber theory, 170, 239

Lehmann-Pil he
’

s , R ., 383 , 453
Lehmer, D . N ., 440 , 446

Leibniz , G.W., 205
—2 19; 3 , 51 , 80 , 146 , 158,

173 . 1 75. 179. 182. 183. 188.

191 , 193 , 196
—198, 2 20, 2 2 2 , 2 24, 2 26,

236
- 239. 246. 248. 257. 3 23 . 369.

408, 410, 485 ; De arte combinatoria, 205 ;

Notation of calculus, 207 , 208
, 2 10 ;

Other notations, 2 1 1 , 1 57 ; Controversy
with Newton , 2 12

—2 18
Leitzmann , H ., 340 I

Lemniscate, 188, 2 2 1 , 245
Lemoine, E . ,

299; 300 , 379; L . point, 299 ;

L . circle, 300

Lemonnier, P . C . , 256

Leodamas, 28

Leon, 28 ; 30

Leonardo de Vinci, 1 28
Leonardo of Pisa , 1 20—1 25 ; 13 , 104, 1 10 ,

1 20
—
1 25 , 1 27 , 1 28 , 141

Leonelli , G . Z . , 484; 155 , 366

Lerch ,
M . , 428

Lesl ie, J ., 2 18, 145
Leuschner, A . O ., 452

Le Vavasseur . See Vavasseur , Le
Lever,

‘

37

Leverrier. U . J I 449 ; 33 2 . 451

Levi ben Gerson , 1 28

Levi-Civi ta.T.. 333. 356. 433. 453 . 454
Levy.M .. 469 ; 296

Lewis, C . I ., 408

Lewis, G . N ., 335 , 481

Lewis, T. C ., 460

Lexis, W., 381 ; 380 ; D ispersion theory, 381

Lezius, J 98

L
’

Hospital . S ee Hospital

Li Ch
’

unféng , 7 1

Lie. S .. 354 ; 2 79. 306. 307. 3 19. 3 20. 3 2 1 .

Quoted. 355
Light , corpuscular theory of, 204; Wave

theory of, 183

Ligowski ,W., 484

Lignine, V ., 302

Li lavati , 85 , 87 , 92

Lil ienthal, R . V ., 321

Limits, 24, 182 , 184 , 198, 2 20 , 243 , 257, 283 ,

Lindeberg , J . W. , 37 2

Lindelo
'

f, L . L . , 3 70

Lindemann , F 308 , 362 , 419 , 446

Linear transformations, 282 , 289, 340 , 342

Ling . G . H .. 357. 358

Link ages, 300—302 , 344
Linteria, 2 2 1

Liouville. J 440 ; 292. 32 1. 340. 35 1. 352.

364. 388. 393. 4 13. 4 18. 420. 436. 44 1.

446. 456. 473

Lipkin , 301

Lipschitz .R. 308 ; 3 76. 43 1. 449. 46 1

Listing . J B 3 23 ; 359

Little, C . N ., 3 23

Littlewood, J . E., 439

Lituus, 2 26
Liu Hui , 7 1 , 73
Lloyd, H ., 47 1

Lobachevsk i , N . I . , 303 ; 278 , 304, 306 , 307 ,

425

Local probability, 244

Local value, principle of, 5 , 69 , 78 , 88 , 94 ,
100

,
102

Loewy, A ., 360

Logarithmic curve , 156 , 183 , 236

Logarithmic series, 188
Logarithmic spiral , 156 , 2 2 1
Logarithms, 140 , 149

—
156 , 189 , 235 ; Com

mon, 15 1 ; Computation of, 153
—156 , 188

radix method, 153 , 155 Characteristic ,

152 ; L . of cross-ratio, 293 ; L . of imagina

ries; 2 25 , 235
—23 7 , 243 , 330 ,

Gaussian ,

”
484, Natural l , 150 , 152 , 153 ; 247 ; Man

tissa , 152 ; In China, 7 7 ; Logarithmi ;

curve, 156 , 183 , 236 ; Logarithmic spiral ,

156 , 2 2 1 ; Logarithmi c tables, 482 , 483
Log ic, 2 2 , 205 , 246

Lommel , E. , 449, 47 1

London,
F 292

Long. I .. 155

Longomontanus, C . , 169
Loomis, E ., 463

Lorentz , H . A . , 479, 481

Lorenz , J . F 302

Lorenz , L ., 47 1

Loria. 0. 7. 2 2. 42. 156. 1 76. 177. 183. 245.

Lottner, E . , 458

Lotze, R . H ., 309

Loud, F . H . ,
294

Love, A . E . H . , 470

Lovett, E . O . ; Quoted, 452, 453
Loxodromic curve, 142
Loxodromic spiral , 22 1
Lucas, E., 446 ; 366
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Lucas de Burgo , 1 25 , 187

Lucretius , T. , 66

Ludlam, W. , 302

Ludolph Van Ceul en. See Van Ceulen

Lunar theory . S ee Moon

Lune, squar ing of, 2 2, 57

Lupton, S ., 155

Luroth, J ., 42 2 ; 377

Mac Cullagh, J . , 3 12 ; 46 1 , 47 1

Mac Coll , H ., 408 ; 379 , 407

Macdonald, W. R. , 150

Macfarlane. A. 335 ; 3 23. 334. 407. 441

Mach E., 37 ; 2 19

Machin , J ., 206 ; 227

Mack ay , J . S .,
299 ; M . circle, 300

Maclaurin , C ., 2 28 , 2 29 ; 1 77 , 202 , 2 20 , 2 26 ,

267. 273. 277. 293. 369. 37 7 ; M
theorem, 2 26 , 2 28, 3 65

Mac Mahon. P A 240. 343. 345. 348. 366.

436

MacM illan , W .D ., 433 , 453

Magic circles, 76 , 77, 79, 80

Magic cubes, 79, 81

Magic squares. 76. 77. 79. 80. 92. 93. 104
1 28. 141 . 145. 167. 366. 367

Mag ic wheels , 79
Magnus, H . G . , 459

Magnus, L . I . , 295

Mahavira, 85 ; 86 , 88 , 96 , 97
Maillet. E ., 354; 357. 359. 366. 442. 444 .

446

Main, R . , 455
Mainardi, G., 370

M
’

Laren, J . , 366

Malebranche , N ., 222

Malfatti G . F., 29 1 ; 349

Malfatti s problem, 8 1 , 291 , 3 14

Mangoldt , H . von, 3 14, 439

Mannheim, A ., 3 24

Manning , Th., 155

Manning , W. A ., 360

Mannoury, G ., 403

Mansion, P ., 384

Map coloring , 3 23 , 3 24
Map construction , 48 , 167 , 295 , 3 14
Marchi , L . de, 464
Marcolongo, R ., 335, 469
Margetts, 481

Margules, M ., 464

Marie, Abbé, 266 ; 252

Marie, M . ,
294; 43 , 162

Mascheroni , L . , 268 ; 47 , 269
Maschke.H .. 359 ; 3 18. 333 . 347. 356

Maslama al-Majri ti , 104
Mason, M ., 37 2 , 391

Massau , J . , 482

Mathematical induction , 142

503

Mathematical periodicals. See Journals

Mathematical physics , 392
—
394

Mathematical seminar , 424
Mathematical societies. S ee Societies

Mathematical Tables , 482
—
484

Mathematics, definition of, 285 , 286

Mathews , G . B . , 395 , 414, 44 5

Mathieu. E. 353 ; 4 17. 358. 469. 475

Mathieu, P . , 470

Matrices. 335. 337. 338. 339. 340. 344. 408

Matthiessen , L . , 107 , 1 10 , 253

Maudith, J ., 128, 13 2

Maupertius, P ., 244 ; 240 , 477

Maurolycus, 141 ; 142 , 145

Maxima and minima, 3 2 , 40 , 81 , 142 , 160 ,

163 , 164 , 180 , 193 , 196 , 2 10 , 22g , 267 ,

291. 394. 370 . 376. 384

Waxweu’ C 's 474
-

479 ; 27 1 7 279, 281 , 296 7

3 2 2. 333. 334. 337. 45 1. 458. 460. 46 1. 468.

47 1. 47 2. 477. 479. 486

Maya. 69. 70

Mayer. A .. 425 ; 355

Mayer, M ., 363

Mayer. R .. 475 ; 449

McCl intock , E. , 365 ; 360

McColl , H. S ee MacColl , H.

M cCowan , 462

Mean Value , theorem of, 420

Measurement , 4 1 ; In Projective Geometry,

294 ; In theory of irrationals , 397 ; Of

areas, 455

Mechanics , 19, 37 , 1 7 1 , 17 2 , 1 79,

2 29, 23 1 , 240 ,
242 , 255 , 260 ,

276 , 288, 296 ,

307. 308. 338. 384. 391 . 447
—
464. 47 7. 481 ;

Theory of top , 458 ; Fluid motion, 460

464 ; Least action, 240 , 255 S ee Statics,
Dynamics

M ehler, G . , 470

Mehmk e, R ., 266 , 366 , 483 , 484
Mei Ku-ch

’

éng , 77
M eissel , E . , 4 16

M eissner, W. , 443

Melanchthon , 140

Menaechmus, 27 ; 29 , 39 , 40 , 107

M endizabel-Tamborrel , M . J . de , 483
M enelaus , 46 , 47 ; 1 19 ; Lemma, 46

Meng oli , P ., 1 73

Mensuration in Euclid, 33 ; in Boethius, 67 ;
in China, 7 1

Méray. C .. 397 ; 400. 426

Mercator, G ., 189, 295 , 3 14

M ercator, N . , 156 ; 188 , 206

Meridian measured, 200 ,
244; Zero merid

ian,
259

Mersenne, P . , 156 , 163 , 168 , 174, 1 77 , 18 1 ,

183 , 188 ; M . numbers , 1 67
Mertens.F 373.438.439.446
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Meteorology, 462
—
464

Method of exhaustion . S ee Exhaustion

Method of fluxions , 194 , 196 . S ee Fluxions

M ethod of tangents, 5 1 , 1 63 , 164 , 1 7 7 , 180 ,

189 , 193 , 207 , 209 , 2 1 2 ; Inverse method

of, 180 , 207
—209

M etius , A .
, 73

M etric system , 256 , 259 , 265 , 266

Meusni er
, J . B . M . , 3 20

Meyer, A ., 384

M eyer, G . F., 37 2

Meyer, 0 . E . , 461 ; 469, 478

M eyer, R .
,
190

Meyer, W . F. , 280 , 300 , 346

Méziriac . S ee Bachet de Méziriac
M ichell

, J .
,
230

M ichelson , A . A . , 465 , 47 2 , 479

M ikami
,
Y . , 7 1 , 78

—8 1 , 88
M ill . J S .. 379 ; 1 73

M iller. G . A ., 82. 2 79. 34 1. 350. 35 1
-

355.

M ilner, I . , 248

M inchin , G . M . , 457

M inding , F . A .
, 4 14; 3 2 1

M inimal surfaces . S ee Surfaces, minimal
M inkowsk i.H 480 ; 335. 37 1. 445.

481

M iran Chelebi , 1 10

M irimanofi , D . , 442 , 443

M ises, R . M . E .
, 39 1

M itchell , H . H . , 360

M ittag -Lefii er
, G . M . , 4 27 ; 279 , 388, 426

M itzscherling , A . , 437

M iyai Antai, 81

Mobius , A . F.
,
289 ; 287 , 297 , 3 10 , 3 23 , 336 ,

Models (geometric), 3 28 , 329
Modular equations

, 3 52 , 416 , 417

Modulus, first use of term,
265

Mohr, O .

,
296

Moigno , F.
, 3 70 ; 241 , 364

Moivre, A . de. S ee De Moivre

Molenbroek , P ., 335
Molien , Th. , 339

Molk
, J .,

280

Moller
,
M ., 464

Mollerup ,
P . J . , 3 27

Mollweide
, K . B .,

235 ; 437
Moments of fiuxions

,
194

Moments of quantities, 195 , 196
Momentum, 17 2

Monge, G . , 274, 275 ; 4 1 , 23 1 , 23 2 , 246 , 266 ,

Montmort, P . R . de , 2 24; 2 2 2 , 230 , 383

Montucla , J . F. ,
250 ; 16 2 , 185

Moon
,
theory of, 105 , 204 , 240 , 245 , 259 , Neumann ,

F.
, 3 1 1 , 3 13

260. 262. 449. 450. 451 . 453. 462 ; Libra

tion of, 25 2 ; Variation of, 106

M oore, C . L . E . , 3 2 2

Moore. E . H . , 3 18. 3 25. 357. 358. 394. 395.

404. 405 ; Quoted. 403
Moore, H . L . , 380

Moore, R . L . , 3 25 , 3 28

Morera, G . , 428

Mod Kambei Shigeyoshi , 78

Morin,

Moritz. R 4 152 . 345. 446. 447
Morley, E . W., 479

Morley. F 3 19. 3 20. 433

Morley, S . G .,
69

Mortality, 1 7 1

Moschopulus, M . , 1 28

Moser, L . , 381

Motion
, laws of, 1 7 1 , 179, 199

Moulton. F R .. 3 2 7. 450. 453. 459. 460 ;

Quoted.
Mourrail le , J . R . , 247 , 269, 364

Mouton , G .
,
206 ; 2 15

Mui r.Th.
, 340. 34 1. 484

Muller, F., 279

M uller, J . S ee Reg iomontanus
Muller, J . H . , 485

Muller, R . , 30 1

Multiple points, 295
Mu Niko, 77

Muramatsu , 79

Musa
'

Saki r, 104
Musical proportion , 6

Mydorge, C . , 1 66 ; 164
Nachreiner, V .

, 341

Nagelsbach, H ., 341 , 365

Napier. J 149
—
1 55 ; 1 2 7 . 14s. 146. 148;

Analog ies , 15 2 ; Ru le of circular parts, 152

Nap ier, M ., 147

Napoleon I , 3 1 , 268 , 270 ,
2 75 , 276

Nascent quantities, 192
Nasir-Eddin , 108

Nau , M . F., 89

Navier, M . H . , 465 ; 3 79 , 383 , 460 , 46 1 , 468

Nebular hypothesis, 260 , 450

Negative numbers, 6 1 , 7 1 , 75 , 93 , 94, 107 ,

1 23 , 138 , 14 1 , 276 , 289

Neik irk , L . I ., 360

Neil , W. , 18 1 ; 188

Nek rasoff , P ., 365

Nemorarius , J ., 1 27 ; 1 18

Neocleides , 28

Nesselmann , G . H . F. , 62 , 1 1 1

Netto, E. 341 . 348. 3 54. 425

Neuberg , J . , 300 ; his circle , 300

Neumann C .. 470 ; 3 1 1. 3 2 1. 393. 430. 449.
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Homer, 74 , 75 , 27 1 365 ; Infinite deter
minants , 365 ; Infinite series , 227 , 365 ;

Japanese , 80 , 8 1 ; Leonardo of Pisa, 1 24 ;

Newton , 203 ; Raphson , 203 ; Recent re

searches, 363
-

366 . S ee Alg ebra, Equa
tions, Roots

Nunez , P . , 142 ; 143

Obenrauch, F . J ., 297

Oberbeck , A . , 464

Ocagne. S ee D ’

ocag ne

Odhner , W. T . , 485
Oenopides , 17 ; 15
Ohm, G . S ., 281

Ohm , M . , 329; 330 , 424

Ohrtmann , C . , 278

Olbers. H . W . M . 452 ; 435 . 437. 44 7.

448

Oldenburg , H ., 1 78 , 187 , 2 1 2
—2 14, 2 15

Olivier, T .
,
296

Omar Khayyam, 103 , 107

Oppel , F .W.,
235

Oppert , 8

Oppikoffer, J ., 486

Oppolzer.T . v .. 452 ; 455
Orchard, 155

Ordinate, 1 75
Oresme, N . , 127 ; 148

Orig en, 67 , 1 26

Orontius, 1 16

Orthocenter, 297

Oscillation , center of, 183
Osculating curves, 2 1 1

Osgood.W . F. 37 2. 405. 433

Ostrog radski , M ., 369 , 37 1 , 456

Otho, V ., 73 , 13 2

Otto, V. S ee Otho
, V

Oughtred, W. , 157
—
159; 1 1 1 , 137 , 148 , 152 ,

153. 155. 174. 192 . 481

Ovals of Descartes , 1 76
Ovidio, E . d

’

, 308

Ozanam , J .,
1 70 ,

15 5
71

. approximations to, 7. 10. 35. 7 1. 73 . 77.
79

- 8 1. 87. 186. 206
. 238. 104. 143. 483.

486 ; Determination of, 1 7 , 185 , 2 25 , 238 ;
Notation of, 158 ; Proved irrational , 246 ,

268 ; Proved transcendental , 2
,
143 , 36 2 ,

Pacioli , L ., 1 28
—130 ; 125, 133 , 141 , 144, 146

Padé, H .
, 375

g
admanabha, 85
adoa, A . , quoted, 410
Pagani , G . M .

, 330

Painlevé. P .. 279. 389. 453. 454
Pajot , L . L .

,
170

Palatine anthology, 59, 60

Paolis
,
R . de, 308

Papperitz , E .,
286

Pappus. 49. so ; 45. 54. 55.
142 , 166 ; Problem of 50

Parabola, 162 , 17 7 , 185 , 188, 206, 224

Cubical , 182 , 188, 208 ; Divergent, 204,

244; Semi-cubical , 181 ; Focus of, 50

Paradoxes , 400 , 409 . S ee Zeno
Paral lel l ines , 166 , 302 , 303 , 3 27 ; Defined,

48 . S ee Parallel postulate, Euclid, Non

eucl idean geometry
Parallel motion, 300
Parallel postulate, 32 , 48, 108 , 184, 302, 303 ,

305 , 308;
“

proofs
”
of, 48, 108

Parallelogram of forces, 17 2

Parent , A . , 167
Paris academy of sciences, 168, 182 , 246

Parmenides
,
24

Parseval , M . A.
, 376

Partial differential eq uations, 196 , 242 , 251 ,
255. 263. 264. 270. a7s. 281. 392. 3 13.

355. 384
-

388. 42 2. 456

Partition of numbers, 239 , 344 , 367 , 444
Pascal , B ., 164

—166 ; 76 , 142 , 146 , 147 , 163 ,
162

,
167 , 180,

183 , 184, 187 , 190 , 206 , 207 ,

246 , 272 , 273 , 287 , 3 1 1 , 485 ; Pascal line,
290; On chance, 170 ; Theorem on hexa

gon ,
2 28, 166 , 3 18, 327 ; Calculating ma

chine, 165 , 485
Pascal , Ernesto, 3 18, 319, 340, 37 1 , 486;
Quoted, 37 1

Pasch. M . 309. 399. 400. 409

Pavanini , G ., 453

Pascal , Etienne, 164
Peacock , G . , 273 ; 1 2 2 , 1 25 , 272, 145 , 330,

33 2 ; Principle of permanence, 273 , 337
Peano, G 285. 289. 309. 3 25. 326. 348. 387.

400 , 401 , 407
-

409 ; Formulaire, 408
Pearson ,

K .
, 380, 381 , 383 , 465, 468

Peaucellier, A ., 301

Pedal curves, 228
Peirce. B ., 338 ; 278. 285. 286. 332. 383. 45 1.

457 ; Linear associative alg ebra , 338 , 339

Peirce. C . S .. 407 ; 3 1. 285. 309. 337. 338. 339
Peletier, J ., 137 , 156

Pell
,
A . J ., 396

Pell , J .,
169 ; 206

Pell ’s equation, 96, 169
Pemberton,

H ., 2 19; 192 , 199, 2 20

Pendulum ,
183 , 205 , 266 , 460 , 478

Pendulum clock s, 183
Pentagram,

19

Pepin,
Th. , 436

Perfect numbers , 56 , 104 , 1 14, 167
Periodicals (mathematical). S ee Journal s
Permutations , 22 1 . S eeProbabili ty
Pernter, J . M . , 463

Perrault, C .
,
182

Perron , O ., 348, 370
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Perseus, 42

Persons, W. M ., 380

Perspective , 166 , 227 . S ee Projective
geometry , Descriptive geometry

Perturbations of planets, 240 ,
252, 261 ;

S eeAstronomy
Pesloiian, C . L de, 412

Peters A. , 324

Peters, J 483

Petersburg problem, 223, 243

Peterson, J 436:323

PetrusHartslng ius, 81
Peurbach, G .

, 1 27 ; 13 1 , 132

Pezzo , Del , 307
Pfaff. J . F. 384 ; 434. 435
Phi lalethes Cantabrig iensis,
Jurin, J .

Phil ippus of Mende, 29
Philolaus, 19 ; 25 , 55
Philonides , 39
Phragmén. E. , 426. 427. 453

Piazzi, G 447

Picard. C . E. 433; 279. 281. 3 15
-

3 17. 35 1.

387. 388. 391. 413. 415. 416. 432 ; Quoted.
258. 264. 353. 429. 44 7. 454. 477 ; Inte

grals. 3 17
Picard, J ., 200

Picone, M ., 391

Picquet, H ., 341

Piddington, H ., 463

Pieri.M 3 27 ; 309. 328. 400. 409

Pierpont. J 406. 35 1 ; Quoted. 425. 430. 43 1
Pincherle, S 394, 405

Piola, G .
, 467

Pitcher, A . D ., 395

Pitigianis, F . de, 126

Pitiscus, B .
, 132 ; 137 , 148

P izzetti, P ., 382

Plana, G . A . A .
, 449 ; 465 , 473

Planetesimal hypothesis, 450
Planimeters, 486
P lanisphere, 48
Planudes , M . , 128

Plateau , J ., 37 1 ; 461

Plat0. 25
- 29; 7. 15. 19. 21. 23. 30. 59 ; In

scription at his academy, 2 , 26 ; Quoted,
9. I S

PlatoTiburtinus (Plato ofTivoli), 105 , 1 18 ,
1 23

Platonic figures , 33
Platonic number, 7
Platonic school , 25

—29
Playfair, J ., 145 , 192 , 2 18 , 302

Pii lcker, J 309
—
3 1 2 ; 278 , 288 , 297 , 306 ,

3 13. 3 14. 335 . 354; P . equat ions. 3 10 ; P
lines, 290

Plutarch, 15 , 16 , 34
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Pohlke, K . , 296

Poignard, 170

Poincare. H. 388
—
391 ; 3 27. 339. 341. 353.

355. 378. 386.

4 15. 429. 43 2. 433. 438. 450. 452. 453.

P oinsot. L ., 455 ; 293 . 379. 458

Point , 26

Point sets , 325 , 3 26 , 394 , 395 , 404 ; Denu
merable , 403 ; Non-measurable, 403 . S ee

Aggregates

Poisson. S . D 465
-

467 ; 164. 2 23. 293. 349.

369. 377. 379. 380. 383. 4 13. 438. 449.

455. 456. 458. 460. 46 1. 464. 468. 470.

47 2. 473

Polar coordinates , 22 1 , 224
Polars, theory of, 167
Pole, W., 383

Polenus , 485
Polya, G ., 362

Polyhedra, 240

Poncelet , J . V . ,
288 ; 166 , 190, 268, 275 ,

276. 286. 290. 297. 298. 30 1. 308. 3 1 1.

354. 395. 467 ; P . paradox. 3 10

Poor, V. C .
, 335

Porism, 33

Porphyrius, 7 , 45
Posidonius, 48

Position , principle of. S ee Local value
Postulates , 35 ; complete independence of,

395 ; Of Euclid , 3 1 ; Of geometry, 3 26

3 28. S ee Parallel postul ate
Potential. 256. 263. 264 ; 284. 3 14. 389. 393.

Potrem, M . , 360

Fouchet, 481

Powell , B . , 260

Power series, 185 , 387 , 420, 43 1 , 445 . See

Series

Poynting . J H. 474. 475

Prandl , L . , 334

Precession of equinoxes, 242
Prestet , J . , 248 ; 170

Preston, T., 476

Prihonski , F.
, 367

Prime numbers , 58, 167 , 239, 249 , 254, 344 ,

438, 439; Fermat , 169; Prime number

theorem, 439

Prime and ultimate ratios, 189 , 257

P rincipia of Newton . S ee Newton

Principle of dual ity . S ee Duali ty
Principle of position . S ee Local value
Pring sheim,

A ., 374 , 400 , 475 , 428

Probability, 165 , 1 70 , 17 1 , 183 ,
2 2 1—224 ,

2 29. 230 . 240. 243. 244. 258. 262 . 263 . 2 73 .

344. 367 . 37 7
—
383 . 478 ; Inverse pro

babi lity , 230 , 378 ; Local probability,
230 ,
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378 , 379; Moral expectation ,
2 23 , 378 ;

Problem of points , 170 , 2 24 , 263 ; Law of

large numbers , 2 2 2 , 380

Problems for quickening the mind, 1 14
Problem of Pappus, 1 76

Problem of three bodies. S ee Three bodies

Proclus , 5 1 ; 15 , 1 7 , 2 1 , 28 , 30 , 3 1 , 33 , 42 ,

Probleme des rencontres , 366
Progression. S ee Arithmetical ; Geometrical

Projection: Stereog raphic , 48 , 167 ; Ortho

g raphic , 48 ; G lobu lar, 1 67
Projective geometry,

2 76 , 285 , 292
- 294 ,

Prony, F . M . de , 300 , 301

Prony , G . Riche de , 482

Proportion, 6 , 10 ,
16 , 19 , 20 , 22 , 3 1 , 3 2 , 56 ,

58 , 73 , 75 ; Eucl id
’

s theory, 3 2 ; Arith

metical , 56 ; Geometrical , 56 ; Harmonic ,
56 ; Musical , 56

Prym, F. , 4 18

Pseudo-sphere , 305
Ptolemy. 46—48 ; 5 . 7. 45 . 87 . 96. 101 . 102.

105 , 109 , 1 2 7 , 1 29
—
13 1 , 1 60 , 184, 306 , 3 14 ;

Almagest. 5. 46. 49. 50. 54. 88. 100 . 10 1.

104 , 1 19 , 1 20 ; Ptolemaic system, 46 ;

Tables of chords, 47
Puchta, A . , 340

Puiseux, V . A .

, 420

Pulverizer
, 95

Purbach , G .

, 1 27 ; 13 1 , 13 2

Pyramids of Egypt , 9 , 10 , 14 , 16

Pythagoras, 1 7
—20 ; 2

,
1 5 , 55 , 57 , 68 , 80 ,

104

Pythagorean school , 1 7
—
19

Pythagorean theorem,
2
, 18 , 30 , 86

—88 , 97 ;
N icknames of, 1 29

Pythagoreans , 7 , 3 1 , 239
Quadrant , centesimal div ision of, 259 . S ee

Degree
Quadratic equations , 13 , 5 7 , 7 2 , 74, 94 ;

Hindu method of solving , 94

Quadratic reciprocity , 239 , 2 67

Quadratrix, 2 1 , 28 , 49
Quadratura curvatum (Newton

’

s)196 , 197 ,

198

Quadrature of curves , 18 1 , 184, 192 , 206 ,

207

Quadrature of the circle , 1 , 2 , 1 7 , 74 , 79, 133 ,
143 , 169 , 1 8 1 , 182 , 185 , 2 1 2 , 236 , 246 , 446 ;

Impossibil ity , 1
,
2 , 143 , 362 , 440 , 446

Quadrivium,
1 13

Quantity,
285 , 396 , 398

Quaternions 307. 3 23. 330. 33 2
-

335. 33 7 .

353 . QUfi terniOWASSh , 335

Quercu , a , 143

Querret , J . J .

, 273

Quetelet , A ., 380 ; 144 , 148, 378 ; Average

man, 380

Quetelet , L . A . J . , 289

Raabe. J L .. 3 74; 397

Radau , R .
, 452

Radians, 483 ; Orig in of word, 484
Radius of curvature, 196, 22 1

Radon, J ., 406

Raffy, L . , 3 25

Rahn, J . H .

, 140 ; 169

Rall ier des Ourmes, 170

Ramanujan , S .
, 367

Ramus , P . , 142

Rangacarya , 85

Rank ine , W . J . M . , 476 ; 468

Ranum , A .
, 3 2 2

Raphson , J . , 203 ; 2 2 7 , 247 , 2 7 1 , 364

Rational , origin of word, 68

Raw l inson , R .
,
234

Rayleigh. Lord. 464; 448. 46 1. 462 . 465. 474
Reciprocal polars , 288, 296

Reciprocal radii , 392

Recorde , R .
,
140 ; 146

Recurring series ,

Redfield,
W . C . , 462

Reductio ad absurdum,
25

Reech, F. , 457

Reg iomontanus , 13 1 ; 1 1 1
,
13 2 , 139 , 141 ,

143. 145. 146. 147

Regnault , H . V . , 473 , 476

Regula falsa , 1 2 , 13 , 9 1 , 93 , 103 , 137 , 366 ;

Double , 44 , 103 , 1 10 , 1 23

Regula sex q uantitatum , 46 , 47 , 109

Regu lar solids, 18 , 27 , 29, 33 , 43 , 106
, 159 ,

347

Reid, A .
,
155

Reid, W.
, 463

Relfi , R . , 238

Reiss, M .
, 341

Relativity, principle of, 335 , 479
-

481

Resal , H .

, 455

Residual analysis, 247
Resolvents, 253
Resultant, 249
Revue semestrielle, 278

Reye.T 294. 464

Reymer
,
1 78

Reynolds, 0 , 462

Rhaetius, 13 1 , 13 2 ; 483
Rhind collection, 9
R iccati

, J . F 2 24; 2 23 , 247 ; Riccati
’
s

difierential equation ,
2 23 , 2 25

Riccati , V . ,
247

R icci. 0 . 333 . 356

R icci, M . , 77

R ichard , J . A .
, 40 1 , 402 , 409

Richard of Wal l ingford , 1 28
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Schmidt. E. 341. 393. 394

Schmidt , F., 303

Schmidt, W., 44

Schene, H ., 44

Sch
'

o
'

nemann , P ., 348

Schonfii es, A ., 326 , 400 , 401

Schottenfels , I . M ., 359

Schottky, F., 425 , 43 1

Schreiber, G . 296 ; 2 76

Schreiber, H . S ee Grammateus

Schroder, E.
, 407 ; 285, 365 , 405 , 408

Schroter, H . , 466 ; 3 14 , 41 7

Schubert , F . T. V ., 348

Schubert, H ., 293

Schulze, J . K . , 247

Schumacher, H . C . , 4 1 1 , 437 , 449

Schur, F. , 3 27

Schuster, A . , 470

Schutte, F. , 1 76 , 17 7, 183 , 245 , 275

Schwarz. H A .. 43 1
—
432 ; 293. 3 19. 347.

359. 368. 3 70. 37 2 . 3 76. 390. 391. 428 ;

Schwarzian derivative, 43 2
Schweikart , F . K ., 305

Schweins, F 340

Schweitzer, A. R ., 395

Scott, R . F., 341

Scotus, Duns, 1 26
'

Sebokht, S ., 89

Section, golden , 28

Seeber , L ., 444

Seelhofi , P ., 167 , 445

Segner, J . A ., 248 ; 458

Segre. C .. 289. 307. 3 18. 3 22. 431

Séguier, J . A . de, 360

Seidel , P . L. v . , 3 77

Seitz, E. B ., 379

Seki Kowa, 80 ; 81

Selling , E ., 444

Sellmeyer, W.,

Serenus, 45
Series , 75 , 77 , 80 , 8 1 , 106 , 1 273172 , 18 1 , 187 ,

188, 192 , 196 , 206 , 2 1 24227 , 23 2 , 238 , 246 ,

Alternating , 3 73 ; Asymptotic , 375 ; Con

ditionally convergent , 3 74; Convergence

of. 227. 249. 270. 284. 367. 373
-

3 75. 417 ;

Divergent , 3 75 , 454 ; Hypergeometric,
185 , 387 , 43 2 ; Product of two series, 373 ,

374 ; Of reciprocal powers , 238 ; Power
serieS. 185. 387. 420. 43 1. 445 ; Trigo

nometric series, 419, 43 1 ; Uniform con

vergence, 84, 377 ; Recurrent , 1 2 7 . S ee

Arithmetical progression , Geometrical

progression

Serret.J . A

Serson, 458

Servant, M . G ., 325 , 375

Servois, F., 273 , 275 , 288

Sets of curves , 405
Sets of lines , 405
Sets of planes, 405
Sets of points. 325. 3 26. 394. 395. 404

Severi.F.. 293 . 3 17. 3 19

Sexagesimal numbers, 4 , 5 ; 43 , 47 , 88 , 100 ,

483 ; Fractions , 5 , 54, 483 ; Invention of,

5. 6

Sextant, 204
Sextus Empiricus , 48

Sextus Julius Africanus, 48

Shades and shadows, 297 . S ee Descriptive

geometry
Shakespeare, 190

Shanks, W. , 206

Sharp, A . , 206 ; 24

Sharpe , F . R ., 3 19

Shaw, H . S . Hele, 486

ShaW. J B .. 333 . 339. 410

Sheldon , E. W., 372

Shotoku Taishi , 78

S iemens, W. , 463

Silberstein, L . , 479

Simart , G . , 3 16

S imilar polygons, 19 , 22 , 3 2 , 184
Simil itude , mechanical , 45 7
Simony , O ., 3 23

S implicius, 5 1 ; 2 2 , 23 , 48 , 184
S impson.T.,

235 ; 227. 234. 382

S imson. R .. 277 ; 3 1. 33

Sindhind, 99

S ine function , 104, 11 0 ; Origin of name,

Singhales ian signs, 89

Singular solutions , 2 1 1 , 2 24 , 227 , 239, 245,

Sinigal lia, L ., 395

Sisam, .
C . H . , 322

S lide rule, 158 , 159
Slobin, H . L ., 446

Sluse, R . F . de, 180 ; 42 , 188, 208, 209

Sluze. S ee Sluse

Smith, A ., 457

Smith, D . E . , 7 , 68, 7 1 , 78, 86, 88 , 89, 1 16 ,

1 2 1 , 1 28, 17 7 , 184 , 291 , 332

Smith.H . J . S .. 441 ; 342. 416. 438. 442. 444

Smith, R ., 2 26

Smith, St .,
292

Snellius, W. , 143

Sniadecki , J . B ., 258

Snyder, V ., 3 20

Societies (mathematical), 2 79, 296
Socrates, 25
Sohncke , L . A . , 417

Solar system (stability of), 284
Solids, regular, 19, 33 , 106 , 159
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Sol idus, for writing fractions, 332

Sommer, J . , 445

Sommerfeld, A . , 458

Sommervil le, D . M . Y . , 305 , 306 , 329

8011106 , J . I . , 457

Sophists, 20
—25

Soroban, 78

Sosigenes, 66

Sound, 240, 25 1 , 460 , Velocity of,
264

Space of n dimensions. S ee geometry, n

dimensions

Sparre, Comte de, 459
Specific gravity , 37

Speidell , J . , 152 ; 158

Sperry. E . A ., 458

Sphere. 19. 27. 33. 36. 42. 45. 50. 79. 106.

Spherical harmonics , 23 2 , 263 , 469
Spherical trigonometry . S ee Trigonometry
Sphero-circle (imaginary), 293
Spheroid, 36 ; Attraction of, 200 , 267

Spirals of Archimedes, 36, 50 ; Fermatian,

224 ; Spherical , 50

Spitzer. S .. 369; 365

Spottiswoode, 341 ; 337 ; Quoted, 281
Square root . S ee Root

Squaring the circle. S ee Quadrature of the

circle

S
’

ridhara, 85 , 94
Stabili ty of solar system, 260 , 262

Stack el , P ., 184, 238, 426

Stade,
”
24

Stager, H .W., 353

Stahl , H ., 308

Star-polygons, 127

Statics, 1 7 1 , 1 72 , 181 , 255 , 282 , 289 ; Theory
of couples, 455 . S ee Graphic statics ,
Mechani cs

Statisti cs, 377—383 ; Arithmetic mean, 381 ,

382 ; Averages, theory of, 38 1 ; Normal

curve, 382 ; Median , 38 1 ; Frequency
curve , 383 ; Mode , 381 ; Mortal ity, 38 1 ;

Population, 38 1 ; In biology, 381 ; Stand
ard deviation , 382

Staudt, von, 294
—
308; 280, 287 , 297 , 309,

3 10

St. Augustine, 67
Steele.W . J 457. 459

Stefano , A. B . , 46 1

Steiger, O ., 485

Steiner. L. 290
—292 ; 287. 289. 297. 309.

346 , 362 , 370 , 41 1 , 42 1 , 423 , 424 ; Steiner

point , 290 ; Steiner surface, 3 19
Steklofi , W . A . , 393

Stephanos, C . , 289 ; 348

Stereographi c projection, 48

Stern, M . A ., 364 ; 365 , 42 1 , 436

Sterneck , R . V ., 439

Stevin. S .. 147 ; 1 2 7. 13 7. 148. 17 1. 178. 187
Stewart, M . , 277

Stieltjes, T. J .. 375 ; 406. 446. 470

Stifel.M ., 140 ; 139. 141. 144
—146. 149. 183.

187

Stirling. J 2 29; 204. 2 29. 377

St . Laurent , T. de, 273

Stokes, G . G . , 460 , 461 ; 281 , 284 , 33 2 , 377 ,

Stole.0 . 425 ; 35. 368. 399. 400

Stone , E . J . , 382

Story.W 308. 3 23. 348

Stouffer, E . B . , 3 22

Strassmaier, P . J . R ., 8

Stratton, S .W., 465

Strauch, G . W., 370

Stringham , W . I ., 308 ; 309

Stroh, E ., 348

Stromgren , F . E ., 453

Strutt , J . W . S ee Rayleigh, Lord
Struve, G .W. , 437

Stubbs, J . W.,
292

Stubner, F . W. , 248

Study. E ., 289. 293. 308. 335. 339. 348. 356

Stunn . C .. 363 ; 166. 269. 273 . 3 10. 344. 420.

456. 473 ; Sturms theorem. 363.

Sturin.R ., 3 17 ; 3 19

St . Venant , B . de, 297

St. Vincent, Gregory, 18 1 ; 182 , 188 , 190 ,

206

Suan-pan , 5 2 , 76 , 78

Substitutions , theory of, 281 , 4 17 ; Orthog

onal , 342 O

Sulvasfitras, 84
- 86

Sumerians, 4
Sundman , K . F. , 452 , 454

Sun-Tsu. 7 2 ; 73 . 75. 78

Surfaces 49. 235. 275. 295. 296. 3 14
—
3 18.

3 2 1 , 3 2 2 ; Anchor-ring , 3 23 ; Confocal ,
293 ; CubiC. 295. 3 13. 3 14. 3 1 7. 3 18. 329.

343 ; Deformation , 3 2 1 ; Isothermi c , 3 14
Kummer, 4 18, 3 28 ; M inimal , 3 15 , 3 25 ,

355 , 37 1 , 385 , 43 2 ; Of negative curvature ,

307 ; Plectoidal . 50 ; Polar, 307 ; Pseudo
spherical , 3 2 1 ; Quintic, 3 19 ; Quartic, 3 29 ;
Ruled, 295 , 3 19 , 320 ; Third order, 291 ,

3 18 ; Fourth order, 3 14, 3 18 , 3 19 ; Second

degree, 275 , 290 ; Second order, 235 , 295 ,

3 1 1 ; Universal , 296 ; Wave-surface, 3 1 1 ,

Surveying. 44. 66. 77
Surya siddhanta , 84
Sussmilch, J . P ., 380
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Suter, H . , 104, 109 , 18 1

Swan—pan . S ee Suan-
pan

Swedenborg , E .
,
260

Sylow. L 354; 4 14. 352. 357. 36 1 ; Sylow
’

s

theorem, 354

Sylvester. J J 343
—
349 ; 20 2. 249. 278. 282.

285. 297 . 3 1 2. 333. 334.

36 1. 363. 3 79.

438. 441. 444. 455. 47 2 ; Link-motion. 301 ;
Partitions, 344 ; Reciprocants, 344

Symbolic logic , 205 ,
246

Symmedian point , 299
Symmetric functions, 235 , 414
Synthesis, 27

Synthetic geometry , 166 , 167 , 286—309 .

S ee geometry , Projective geometry
Syrianus, 5 1

Syzygies. 348
Tabit ibn Korra , 104 ; 10 1 , 1 10

Tables, mathematical , 482
—
484

Taber, H . , 339 , 340

Tait. P . C .. 459 ; 27 2. 279. 3 2 2. 3 23 . 333 .

334. 335 . 337. 382. 457 . 466 . 470 .

Golf-ball , 459
Takebe, 80 ; 8 1

Talbot , H . F. , 413

Tanaka Kisshin , 79; 8 1

Tangents, method of. S ee Method of tan

gents

Tannery. J 385 ; 3 14. 40 1 . 35 1 . 387. 433

Tannery. P 40 1 ; 7 . 24. 3 2 . 43 . 45 . 46. 53.

60 , 96 , 1 77 , 400 ; Quoted, 1 75

Tartag lia , 133 , 134 ; 139, 14 1 , 142 , 146 , 158 ,

Taurinus, F . A .
, 305 ; 184

Tautochronous curve, 183 , 4 13

Taylor , B 2 18 , 22 9 , 242 , 245 , 25 1 ;

His theorem,
2 26 , 25 1 , 257 , 258, 394, 369,

Taylor, H . M ., 300 ; His circl e, 300

Tedenat , 273
Teixeira, G . , 3 20

Telescope , 183 ; Reflecting , 204
Tenzan method, 80

Terquem, O . , 2 28

Teubner, B . G . (firm of), 328
Thales, 15

—
18

Theaetetus , 28 ; 30 , 3 1 , 57

Theodorus of Cyrene . 57

Theodosius , 44 , 45 , 104, 1 18
—
120

Theon of Alexandria, 50 ; 3 1 , 42 , 43 , 54,

67

Theon of Smyrna , 59; 45 , 48 , 142

Theorem of Pythagoras . S ee Pythagorean
theorem

Theory of numbers . S eeNumbers, theory of

Theudius, 28, 30

Thiele , T . N ., 378

Thomae , H . , 400

Thomae , J, 416

Thoman, 155

Thomas, A . , 1 27 , 182

Thomas, Ch. X . , 485

Thomas Aquinas , 1 26
Thome, L

'

.W.
, 387 ; 390

Thompson , S . P ., 27 1 , 334, 473

Thomson. J 463 ; 47 2. 484. 486

Thomson
, J . J . , 46 1 , 474

Thomson,
W . S ee Kelvin, Lord

Three bodies , problem of, 240 , 243 , 252 , 452

455 Reduced problem of, 452

Thybaut , A . L . , 3 25

Thymaridas, 59, 1 1 1

Tichy,
A . , 481

Tides. 240 . 264. 378. 449

Timaeus of Locri , 25
Time a fourth dimension, 306 , 480

Timerding , H . E .
, 480

Tisserand, F . F. , 388 , 455

Todhunter, I . , 3 70 ; 1 70 , 17 1 , 223 , 230, 243

Tfihoku Mathematical Journal , 82
Tonell i, A . , 423

Tonstall , C .
,
146

Top , theory of, 458

Torricelli, E . , 1 62 , 163 ; 146 , 156, 190

Torsor, 335

Tortolini, B .
, 346

Tractrix, 182 , 3 28

Trajectories, orthogonal ,
“

2 17 , 222 , 3 22

Transcendental numbers, 2 , 143 , 362 , 440,

Transfinite numbers, 426

Transformation, birational , 295 , 3 14, 3 16 ,

3 17. 3 19; Linear. 295 ; 297
Transou ,

A .
, 3 2 1

Treviso arithmetic, 1 28

Triang le , 16 , 18, 19, 7 1 , 1 16, 297
—
300 ;

Arithmetical , 76 , 183 , 187 ; Right, 10 ,

49 , 56 , 66 , 7 1 , 86 , 104, 160 ,
1 65 , 166 ;

Similar, 16
, 73 ; Spherical , 46 , 48 , 50 ;

Isosceles, 86, 104 ; Heron
’

s formula for

area, 43 , 66 , 86 , 1 23

Triang ular numbers, 56 , 168 , 1 73
Triangulum characteristicum, 189, 207

Trigonometry,
108 , 109 , 1 27 , 13 1 , 138 , 149

157 , 169 , 2 22
,
2 26

,
2 29, 234

—236, 265,
483 , 484 ; Arabic , 104

- 106 ; First use of

word, Greek , 43 , 47 Hindu , 83 , 96 ,

97 ; Notation for trig . functions, 158 ;

Notation for inverse functions , 2 23 ;

Spherical , 47 , 76 , 97 , 105 , 109 , 1 10
,
13 2 ,

144, 267 , 437 , 48 1 ; Trigonometric func

tions , cosecant, 106 ; Cosine, 1 10 ,
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254, 3 20 , 36 1 , 364 ; Miscellanea analytica,
241 ; Waring

’

s theorem, 248 , 442 , 443
Warren, J 330

Watson, J . C . , 455

Watson, S . , 379

Watt , J ., 300 ; Watt
’

s curve , 300

Wave theory of l ight , 183
Weaver, J . H . , 50

Weber.H .. 36 1 ; 3 18. 353. 357. 399.

Weber.W.. 6. 42 1 . 434. 46 7. 474
Weddle, Th., 365 ; 155 , 3 19; Surface , 3 19
Weierstrass , K ., 423

—
426 ; 3 2 , 258 , 2 79 , 285 ;

326. 345 . 370 . 37 1. 37 2.

3 76. 385. 388. 397. 398. 399. 400. 4 15.

4 17. 418. 42 2. 428. 429. 430. 43 1. 43 2.

44 6 , 453 , 456 ; Weierstrass
’

Construction ,

37 2

Weigel , E. , 205

Weiler, A ., 384
Weingarten, J ., 3 14; 325
Weir, P ., 482

Weissenborn, H ., 1 15
Weldon, W . F . R., 381

Wendt, E., 357

Werner, J 141

Werner, H ., 347

Wertheim, G . , 60

Wertheim, W., 468

Wessel C ., 265 ; 420

Westergaard, H ., 380 , 381

Wetli , 486

Weyl. H. 39 1. 465. 469

Wheatstone, C . , 465

Whewell , W., 3 24 ; 3 7 , 160 , 240

Whipple, J .W. , 485
Whist, 383
Whiston, W. , 20 1

Whi te, H . S ., 278 , 300 ; Quoted 3 , 250 , 295
Whi tehead, A .N 407 , 409 ; Quoted, 294, 328
Whi tley, J . , 298

Whi tney, W . D ., 85

Whi ttaker, E . T., 386

Widmann. J ., 139; 1 25

\Vieferich, A., 443

Wieleitner, H . , 1 27 , 174, 182 , 235 , 250

Wiener , A . , 366

Wiener, C ., 297 ; 274, 276 , 3 17 , 326

Wiener, H. , 289, 3 29

Wiener, N 409

Wilczynski , E . J ., 3 22

W illiams, K . P . , 392

W il liams, T 265

W ilson, E . B . , 335 , 40 1 , 481 ; Quoted, 327

W ilson , J 248; 254 ; Wilson’

s theorem, 248,

254

W inckler, A ., 469
Wing , V ., 157

INDEX

Wingate, E., 481

Winlock , J ., 383
W inter M ., 410

Witt F . de. S ee DeWitt
W itting , A ., 3 18

Wittstein, A ., 291

Wittstein, T., 38 1

Woepcke, 68, 100

Wolf, C . , 158 , 175 , 226

Wolf. R .. 259. 379

Wolffing , E. , 324

Wolfram, 247

Wolfshekl , F . P ., 443

Wolstenholme ,
Woodhouse , R ., 27 2 ; 2 19, 370

Woodward, R . S . , 459

Woolhouse , W . S . B ., 365 , 379
Wren, C . , 166 ; 179 , 18 1 , 188 , 199, 275
Wright.E .. 153. 155. 189
Wright , J . E., 356

Wright, T., 45 1

Wronsk i, H ., 340 ; 258 ; Wronskians, 340

Y an Hui, 75
Yendammethod, 80

Y enri, 80 , 81

Yoshida Shichibei Kaye, 78 ; 79
Young , A ., 348

Young , G . C . , 3 25 , 3 26

Young , J . R .
, 27 1

Young , J . W. , 3 28

Young.Th . 470 ; 1 1. 183 . 464. 465
Young , W . H ., 325 , 326 , 406

Y ii , emperor, 76

Yule, G . V ., 381

Zach, 484
Zehfuss, G ., 341

Zeller, C . , 436

Zeno of E lea , 23 ; 24, 29 , 5 1 ; On motion,
48, 67 , 1 26 , 182 , 2 19, 400

Zenodarus, 42 ; 370

Zermelo, E., 3 7 2 , 40 1 , 402 , 403 ; Principle of,

401

Zero, invention and use of, rm, 1 7K
W —by Maya , 69; Symbols for, 5 ,

53. 69. 75. 78. 88. 89. 94. 100 ; division by.

Zero-denominator, 185
Zero, first use of term, 1 28

Zerr, G . B . M . , 3 79

Zeuner, G ., 381

Zeuthen , H . G ., 32 , 190, 293 , 3 14, 316 , 320

Zeuxippus, 34
Zizek , F 380

Ztillner, F. , 309

Zolotarev, G ., 442 , 444

Zorawsk i , K. , 356

Zyk lographic , 297
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