

Mycosphere 9(4): 803–837 (2018) www.mycosphere.org

Article Doi 10.5943/mycosphere/9/4/8 Copyright © Guizhou Academy of Agricultural Sciences

Taxonomic novelties of hysteriform Dothideomycetes

Jayasiri SC^{1, 2}, Hyde KD^{1,3}, Jones EBG⁴, Peršoh D⁵, Camporesi E⁶, Kang JC²

¹Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand

²Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China

³World Agro forestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, China

⁴Nantgaredig, 33B St. Edwards Road, Southsea, Hants. PO5 3DH, UK

⁵*Ruhr-University Bochum, AG Geobotany, building ND 03/170, Universitätsstraße 150, 44801 Bochum, Germany* ⁶*A.M.B. GruppoMicologicoForlivese "Antonio Cicognani", Via Roma 18, Forlì, Italy; A.M.B. CircoloMicologico* "Giovanni Carini", C.P. 314, Brescia, Italy; Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo (RA), Italy

Jayasiri SC, Hyde KD, Jones EBG, Peršoh D, Camporesi E, Kang JC 2018 – Taxonomic novelties of hysteriform Dothideomycetes. Mycosphere 9(4), 803–837, Doi10.5943/mycosphere/9/4/8

Abstract

Hysteriaceous ascomycetes are an interesting and important group of fungi belonging to a small number of families and orders in the class Dothideomycetes. They can be saprobes, endophytes and/or ectomycorrhizal. Hysteriaceous fungi mainly occur on twigs or bark of various woody and herbaceous plants in terrestrial and aquatic environments worldwide. They have evolved convergently at least five times, and further studies are needed to resolve the taxonomic placement of new and previously described taxa. In this study, we introduce a new order, Gloniales, to accommodate *Glonium*, a new family, Acrogenosporaceae, to accommodate *Acrogenospora*, five new species (*Hysterium doimaeensis*, *H. thailandica*, *Hysterobrevium hakeae*, *Hy. rosae* and *Mytilinidion didymospora*) and a new combination (*Purpurepithecium minus*). New records are provided with descriptions and illustrations are given for *Gloniopsis subrugosa*, *Hysterium angustatum* and *Hysterographium fraxi*. The findings are supported by morphological and phylogenetic analyses of LSU SSU, *RPB2* and *TEF1* sequence data. In addition, amino acid sequences of *RPB2* were phylogenetically analyzed.

Keywords – Acrogenosporaceae – Gloniales – hysteriaceous – *Hysterium – Hysterobrevium – Hysterographium*

Introduction

We are studying the diversity of fungi on various hosts in Thailand and have investigated the phylogenetic relationships among taxa of Dothideomycetes (Ariyawansa et al. 2015, Liu et al. 2015, Boonmee et al. 2016, Doilom et al. 2017). The hysteriform taxa in Dothideomycetes are the focus of the present study. In our previous studies of this group, we have introduced a new family, two new genera, seven new species, as well as three new records from different hosts and localities (Hyde et al. 2013, Liu et al. 2015, Hyde et al. 2016, Jayasiri et al. 2016, 2017, Li et al. 2016, Thambugala et al. 2016, Doilom et al. 2017). This manuscript provides a further contribution to the hysteriform Dothideomycetes with updated backbone trees.

In general different terminologies are used for this group of fungi based on their ascomatal morphology; there are called "hysteriaceous", "hysteriform" and "hysterothecioid" ascomycetes (Boehm et al. 2009a, b). Hysteriaceous ascomycetes incorporate those fungi having lirelliform ascomata, generally called hysterothecia (Clements & Shear 1931). They are found worldwide as saprobes and occur on twigs or bark of various woody and herbaceous plants in terrestrial and aquatic environments (Boehm et al. 2009a, b, Hyde et al.2013, Liu et al. 2015, Hyde et al. 2016, Li et al. 2016, Doilom et al. 2017). However, some taxa may also be endophytes (Xu et al. 2015), or ectomycorrhizae (Spatafora et al. 2012).

There have been numerous studies on hysteriform Dothideomycetes and a large number of epithets in this group have been introduced, mostly in the 20th century. During this time various researchers tried to identify these fungi by ascomatal macroscopic features, and host occurrence (Boehm et al. 2009a, b). Zogg (1962) emphasized the colour, number of septa and size of ascospores as the main criteria for separating species and genera. At the ordinal level, the Hysteriaceae have been classified in Pseudosphaeriales (Gäumann 1949), Dothiorales (Müller & von Arx 1950), Dothideales (von Arx & Müller 1975), Pleosporales (Barr 1987) or in its own order, Hysteriales (Luttrell 1955, Kirk et al. 2001, 2008). Hysteriaceous fungi producing conchate or dolabrate, thin-walled, laterally compressed ascomata with an evaginated slit, were segregated from Hysteriaceae and placed in Mytilinidiaceae, under Melanommatales (Barr 1990a), because of their trabeculate pseudoparaphyses. This character, which occurs in most hysteriform taxa, was later shown to have evolved in many groups of Dothideomycetes (Liew et al. 2001). The family Mytilinidiaceae has also been placed in Pleosporales (Kirk et al. 2008) or Mytilinidiales (Boehm et al. 2009b, Lumbsch & Huhndorf 2010). Boehm et al. (2009b) were the first to study the group at the molecular level and produce a phylogenetic outline. Phylogenetic studies based on molecular data have shown that hysteriaceous fungi do not form a monophyletic group (Boehm et al. 2009a, b, Mugambi & Huhndorf 2009).

Currently, hysteriform ascomycetes are known from four orders of ascomata, namely Hysteriales, Mytilinidiales, Pleosporales, and Stigmatodiscales (Boehm et al. 2009a, b, Voglmayr et al. 2017). Hysteriales and Mytilinidiales exclusively only contain hysterothecioid taxa. Anteagloniaceae is a family with hysterothecia found in the order Pleosporales. *Stigmatodiscus pruni* is a hysteriform species in the order Stigmatodiscales. Boehm et al. (2009b) placed Gloniaceae in Pleosporomycetidae families, *incertae sedis*, because of inadequate sequence evidence to raise the family to ordinal status. Jayasiri et al. (2017), however, introduced a new genus, thus increasing the numbers of taxa for this group supported by molecular data.

Currently two hysteriform Dothideomycetes genera are placed in Pleosporomycetidae genera *incertae sedis*: *Farlowiella* (asexual morph: *Acrogenospora*) and *Hysterographium* (Goh et al. 1998, Boehm et al. 2009a). *Acrogenospora* is protected over *Farlowiella*, based on the wider use and fewer name changes required, rather than following the principle of priority (Rossman et al. 2015). In this study we revisit this group with novelties based on morphology and phylogenetic data. We introduce a new order, a new family, five new species, a new combination and document three new records.

Material and Methods

Sample collection and specimen examination

Fresh materials were received and collected from Australia, Italy, Russia and Thailand in 2012, 2015 and 2016. Specimens were observed using a Motic SMZ 168 series microscope. Hand sections of fruiting structures were mounted in water for microscopic studies and photomicrography. The fungi were examined with a Nikon ECLIPSE 80i compound microscope and photographed with a Canon 450D digital camera connected to the microscope. Measurements were made with the Tarosoft (R) Image Frame Work program and images used for the figures were processed with Adobe Photoshop CS6 Extended version 10.0 software (Adobe Systems, USA).

Isolations were obtained from single ascospores, following a modified method of Chomnunti et al. (2014).

Voucher specimens are deposited in the herbarium of Mae Fah Luang University (Herb. MFLU) and New Zealand Fungal & Plant Disease Collection (PDD) or Herbarium of Cryptogams, Kunming Institute of Botany Academia Sinica (HKAS). Living cultures are deposited in the culture collection of Mae Fah Luang University (MFLUCC), Thailand with a duplicate set at the Culture Collection of Kunming Institute of Botany (KUMCC) or BIOTEC Culture Collection (BCC), Bangkok, Thailand. Faces of fungi and IF numbers were registered as in Jayasiri et al. (2015), Index Fungorum (2018).

DNA extraction, PCR amplification and sequencing

Genomic DNA was extracted from the mycelium after growing for 14 days on MEA at 18°C using the Biospin Fungus Genomic DNA Extraction Kit (BioFlux®) and following the manufacturer's protocol (Hangzhou, P.R. China). DNA was extracted directly from ascomata using a DNA extraction kit (E.Z.N.A. ® Forensic DNA kit, D3591- 01, Omega Bio-Tek) following the manufacturer's instructions. DNA was amplified by Polymerase Chain Reaction (PCR). The partial large subunit nuclear rDNA (LSU) was amplified with primer pairs LROR and LR5 (Vilgalys & Hester 1990). The small subunit nuclear rDNA (SSU) was amplified with primer pairs NS1 and NS4 (White et al. 1990). The RNA polymerase II second largest subunit (*RPB2*) gene was amplified with primers fRPB2 and fRPB2-7cR (Liu et al. 1999, Sung et al. 2007). The translation elongation factor 1-alpha gene (*TEF*1) was amplified by using primers EF1-983F and EF1-2218R (Rehner 2001).

The PCR was carried out in a 50 μ l reaction volume containing 2 μ l DNA, 25 μ l PCR mix, 19 μ l distilled water and 2 μ l of each primer. Amplifications of LSU, SSU, *RPB2* and *TEF1* were performed under standard conditions (White et al. 1990). Purification and sequencing of PCR products were carried at Shanghai Sangon Biological Engineering Technology and Services Co. (China).

Sequence alignment and phylogenetic analyses

Sequences generated from the LSU, SSU, *RPB2* and *TEF1* gene regions were carefully verified using blast result in GenBank, before further analyses. All introns and exons were aligned individually. Ambiguously aligned regions with many leading or trailing gaps were excluded from the alignments prior to phylogenetic reconstructions. Multiple sequence alignments were produced with MAFFT v. 6.864b (http://mafft.cbrc.jp/alignment/server/index.html) and further improved manually where necessary. The final phylogenetic tree used to infer the taxonomic placement of our new taxon was generated based on DNA sequence analyses of a concatenated dataset of LSU, SSU, *RPB2* and *TEF1* gene sequences. A maximum likelihood analysis was performed at CIPRES using RAxML v.7.2.8 as part of the "RAxMLHPC2 on TG" tool (Stamatakis et al. 2008). The general time reversible model (GTR) using proportion of invariable sites was applied with a discrete gamma distribution and four rate classes. The sequences of novel species and other newly generated sequences were deposited in GenBank (Appendix 1) and the final matrices used for phylogenetic analyses were saved in TreeBASE (ID 22543).

The most suitable model of evolution was estimated using MrModeltest 2.2 (Nylander 2004). Posterior probabilities (PP) (Rannala & Yang 1996, Zhaxybayeva & Gogarten 2002) were determined by Markov Chain Monte Carlo sampling (MCMC) in MrBayes v. 3.0b4 (Huelsenbeck & Ronquist 2001). Six simultaneous Markov chains were run for 10,000,000 generations and trees were sampled every 100th generation. The first 100,000 trees, representing the burn in phase of the analyses, were discarded, while the remaining trees (80000) were used for calculating posterior probabilities in the majority rule consensus tree. Bayesian Posterior Probabilities (BYPP) equal or greater than 0.90 are indicated on the resulting tree topology (Fig. 1). Phylogenetic trees were drawn using FigTree v. 1.4 (Rambaut & Drummond 2008).

Amino acid sequence analysis

The *RPB2* gene sequences were translated into protein sequences using ARB (Ludwig et al. 2004, Perera et al. 2018, Thambugala et al. 2018). The phylogenetic analysis was conducted with RAxML and the Blosum62 amino acid substitution model. Only amino acids 291 to 472 according to ACJ60608 (*Mytilinidion andinense*) were used for the analysis.

Results

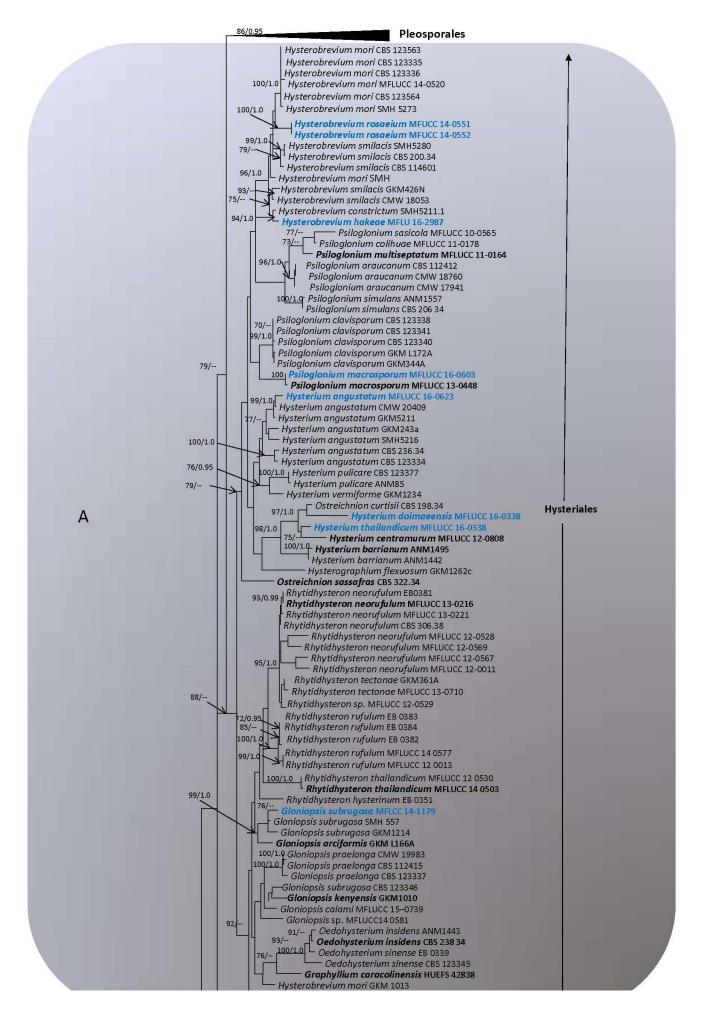
Phylogenetic analyses of DNA sequences

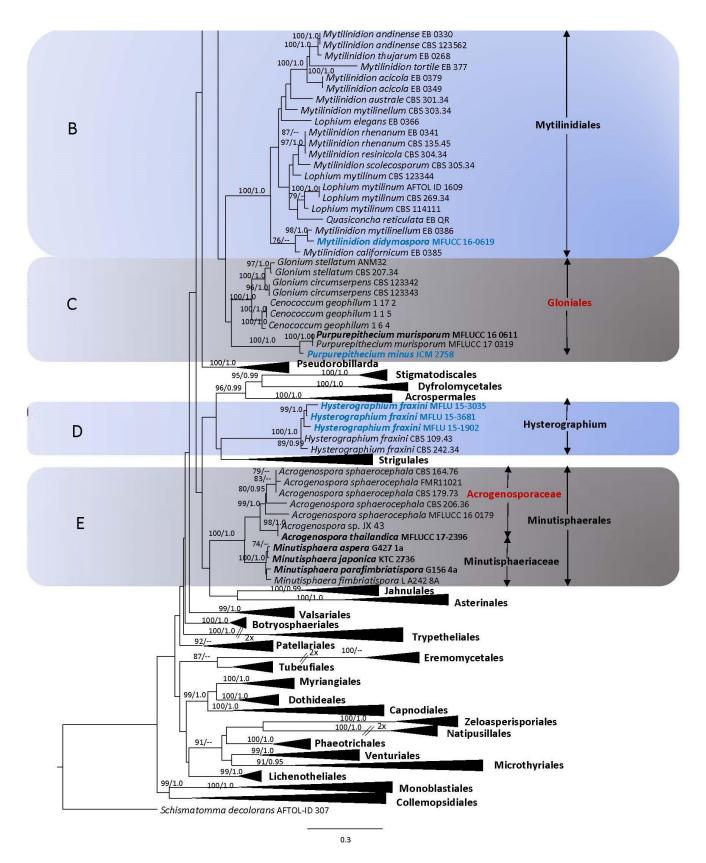
Three hundred and one strains were included in the combined LSU, SSU, *RPB*2 and *TEF*1 gene analyses with *Schismatomma decolorans* (AFTOL-ID 307) as the outgroup taxon. Tree topology of the Bayesian analysis was compatible with the ML tree and was not significantly different (data not shown). The best scoring RAxML tree with a final likelihood value of -117967.323834 is shown in Fig. 1. Five clades are represented in the figure: Clade A represents the main family of hysteriform Dothideomycetes (Hysteriaceae), Clade B is the new order Gloniales, Clade C Mytilinidiales, Clade D *Hysterographium* sp. and Clade E represents a new family Acrogenosporaceae. Our isolates and new findings are described in these groups based on morphology and phylogenetical data.

The nine strains included in the combined LSU, SSU, *RPB2* and *TEF1* gene analyses for the new family Acrogenosporaceae with *Hysterographium fraxini* (CBS 242.32 and CBS 109.43) as the outgroup taxon. The best scoring RAxML tree with a final likelihood value of -8652.600999 is shown in Fig. 2. Original names are used in here for the better interpretation of this group.

Phylogenetic analyses of amino acid sequences

Amino acid sequence analysis of *RPB*² was conducted for the same data set as used for multigene phylogenetic analyses. Except for hysteriform Dothideomycetes species others were collapsed to order level in the resulting tree (Fig. 3). Based on this tree (Fig. 3) we have identified the main orders of the class Dothideomycetes. Among the hysteriform group's new family Acrogenosporaceae (Part E), Mytilinidiales (Part C) and the order Stigmatodiscales (Part F) are monophyletic and have the same topology as phylogenetic analyses of DNA sequences. However, Gloniales (Part D), Hysteriales (Part A) and Pleosporales (part B) are paraphyletic in here and a few Pleosporales species are polyphyletic.


Phylogenetic analyses - ordinal level


Minutisphaerales Raja, Oberlies, Shearer & A.N. Mill., Mycologia 107: 854 (2015)

Notes – Based on phylogenetic analyses of combined SSU and LSU data, Raja et al. (2015) introduced new order Minutisphaerales within the Dothideomycetes. The *Minutisphaera* spp. clade is a monophyletic, strongly supported clade of freshwater Dothideomycetes (Raja et al. 2013, 2015). In the present study further confirmed placement of order Minutisphaerales with the Minutisphaeraceae and a new family Acrogenosporaceae.

Minutisphaeraceae is characterized by erumpent to superficial, pseudothecioid or apothecioid ascomata with ostioles, a thin-walled peridium and clavate, fusiform to ellipsoidal, multi-guttulate ascospores surrounded by a gelatinous sheath.

All currently described *Minutisphaera* spp. (*M. fimbriatispora*, *M. japonica*, *M. aspera* and *M. parafimbriatispora*) have been isolated from submerged wood in freshwater habitats (Ferrer et al. 2011, Raja et al. 2013, 2015). Therefore, this order comprises freshwater saprobic fungi. This ecological group plays an important role in nutrient cycling and organic matter decomposition in freshwater habitats (Simonis et al. 2008, Shearer et al. 2009, Hyde et al. 2016).

Figure 1 – Simplified phylogram showing the best RAxML maximum likelihood tree obtained from the combined multigene (LSU, SSU, *RPB2* and *TEF1*) matrix of 301 taxa including major orders in Dothideomycetes, *Schismatomma decolorans* (AFTOL-ID 307) is selected as the outgroup taxon. Except for Gloniales, Hysteriales, *Hysterographium* spp., Minutisphaerales and Mytilinidiales, other lineages were collapsed to ordinal level. ML bootstrap support equal or greater than 70 % and Bayesian posterior probabilities equal or greater than 0.95 are given near to each branch. Newly generated strains are in blue and type species are in bold.

Acrogenosporaceae Jayasiri & K.D. Hyde, fam. nov.

Index Fungorum number: IF554451; Facesoffungi number: FoF04575

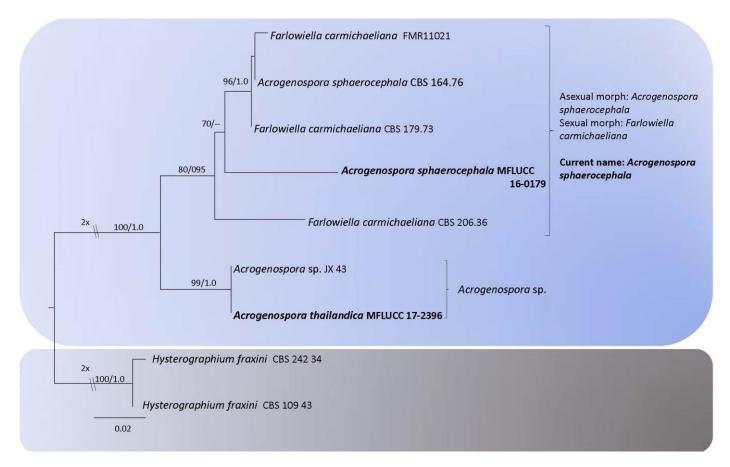
Saprobic on bark and wood. Sexual morph: *Hysterothecia* laterally compressed, thick-walled, with a prominent sunken slit, solitary to gregarious, erect and elevated, presenting an almost stipitate appearance. *Ascospores* 1-celled, pedicellate, slightly laterally compressed amerosporous, hyaline or moderately pigmented. Asexual morph: Described in the genus *Acrogenospora* (Goh et al. 1998).

Type – Acrogenospora sphaerocephala (Berk. & Broome) M.B Ellis, Dematiaceous Hyphomycetes: 114 (1971)

≡Monotospora sphaerocephala Berk. & Broome, Annals and Magazine of Natural History 3: 361, t. 9:5 (1859)

Notes - Using the concept of "one name one fungus" Rossman et al. (2015) suggested to keep Farlowiella as a synonym of Acrogenospora. Acrogenospora was favored as it would contribute to nomenclatural stability (Rossman et al. 2015). The generic name Acrogenospora, typified by A. sphaerocephala, includes two of the eleven species that have sexual morphs placed in Farlowiella typified by F. repanda (also considered to be F. carmichaeliana) (Rossman et al. 2015). Hyde et al. (2018) re-examined and introduced molecular data for the type species (Acrogenospora sphaerocephala) and another new Acrogenospora species. In our study, we used seven isolates related to this group, but many strains do not have any associated morphological descriptions (CBS 164.76, FMR 11021 and JX 43). A. sphaerocephala (MFLUCC 16-0179) clusters with Farlowiella carmichaeliana (CBS 206.36, CBS 179.73, JX FMR 11021) and A. sphaerocephala (CBS 164.76) with high statistical support in both DNA and protein trees. Therefore, this study supports Farlowiella as a synonym of Acrogenospora. Farlowiella (Acrogenospora) is placed in Pleosporomycetidae genera incertae sedis in Boehm et al. (2009b), Schoch et al. (2009), Hyde et al. (2013), Wijayawardene et al. (2018). However, in the present study, Acrogenospora (type: Acrogenospora sphaerocephala) groups in Minutisphaeraceae /Minutisphaerales clade. Raja et al. (2013, 2015) showed that Acrogenospora sphaerocephala (CBS 206.36) grouped in a clade close to Minutisphaerales (Ferrer et al. 2011, Raja et al. 2013). Minutisphaera is the type genus of Minutisphaeraceae and differs from Acrogenosporaceae in having erumpent to superficial, pseudothecioid or apothecioid ascomata with ostioles, a thin-walled peridium and clavate, fusiform to ellipsoidal, multiguttulate ascospores with a gelatinous sheath. However, Acrogenosporaceae has hysterothecial ascomata with thick-walls, a prominent sunken slit and 1-celled, pedicellate, hyaline or moderately pigmented ascospores. Therefore, based on morphological and phylogenetic differences we placed Acrogenospora sp. in new family Acrogenosporaceae in the order Minutisphaerales.

Gloniales Jayasiri & K.D. Hyde, ord. nov.


Index Fungorum number: IF553002; Facesoffungi number: FoF03250

Saprobic or *ectomycorrhizal* on bark, wood, pine cone or soil. Sexual morph: *Hysterothecia* dark, erumpent to superficial, progressively dichotomously branched or scattered to gregarious, *Peridium* wide, thick, carbonaceous and brittle when dry. *Pseudoparaphyses* cellular, septate, persistent, wide, hyaline, branched with darkened apices, in a gel matrix. *Asci* 8-spored, fissitunicate, clavate to cylindrical. *Ascospores*, overlapping biseriate, hyaline, lightly pigmented to dark brown, 2-celled to muriform. Asexual morph: psiloglonium stygium-like (Boehm et al. 2009a, Jayasiri et al. 2017).

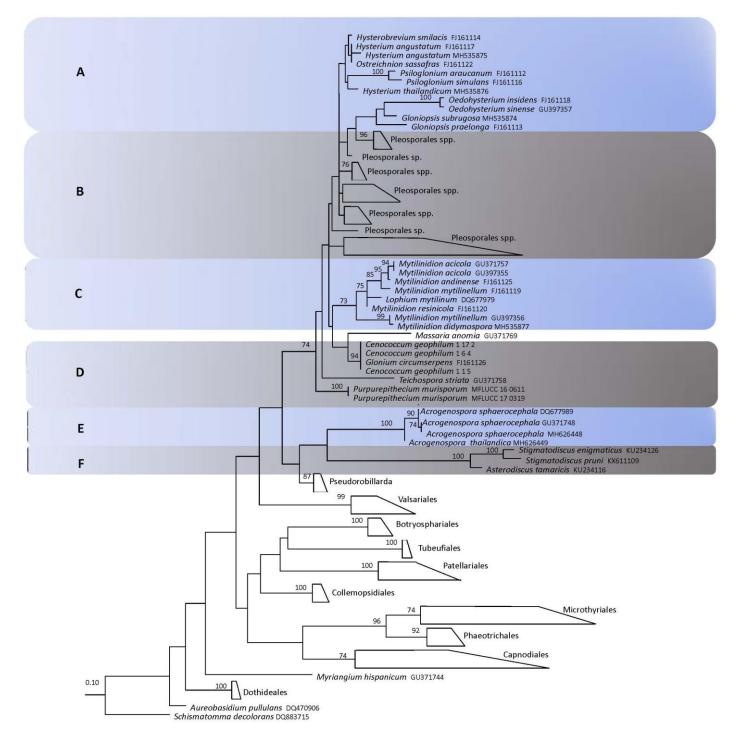
Type family – Gloniaceae (Corda) E.W.A. Boehm, C.L. Schoch & J.W. Spatafora, Mycol Res. 113(4): 468 (2009)

Notes – Boehm et al. (2009b) introduced the family Gloniaceae based on the genus *Glonium* and accommodated in Pleosporomycetidae family, *incertae sedis*. Boehm et al. (2009a) added the genus *Cenococcum* to this family. Recently, *Purpurepithecium* was added to the family by Jayasiri et al. (2017). In the present study, we place this family in a new order Gloniales, which forms a distinct sister clade to the Mytilinidiales clade (Fig. 1) and is also supported by several significant

morphological differences. However, this is not supported in the protein tree of *RPB2* where as *Purpurepithecium* forming a separate clade (Fig. 3). Mytilinidiales and Gloniales morphologically differ as follows: Mytilinidiales (type: *Mytilinidian*) is characterized by fragile persistent carbonaceous ascomata, which range from globoid to obovoid to strongly laterally compressed erect, bivalve shell-shaped structures, standing on edge, with lateral walls more or less connivant, and extended vertically; Gloniales (type: *Glonium*) has modified hysterothecia, progressively dichotomously branched or scattered to gregarious. Lumbsch & Huhndorf (2010) placed the closely related Gloniaceae in Mytilinidiales based to multigene data. However, Boehm et al. (2009a, b), Schoch et al. (2009) placed it in Pleosporomycetidae, family *incertae sedis*, because of the highly divergent morphology associated with the genus *Glonium*. Spatafora et al. (2012) provided strong multigene phylogenetic evidence that *Cenococcum* is a member of Gloniaceae (*incertae sedis*, Pleosporomycetidae, Dothideomycetes).

Figure 2 – Simplified phylogram showing the best RAxML maximum likelihood tree obtained from the combined multigene (LSU, SSU, *RPB2* and *TEF1*) matrix of nine taxa representing the family Acrogenosporaceae with their original name. *Hysterographium fraxini* (CBS 242.32 and CBS 109.43) is selected as the outgroup taxon.ML bootstrap support equal or grater than above 70 % and Bayesian posterior probabilities above 0.95 are given near to each branch.

Purpurepithecium minus (N. Amano) Jayasiri & K.D. Hyde, comb. nov.


Index Fungorum number: IF554452; Facesoffungi number: FoF04576

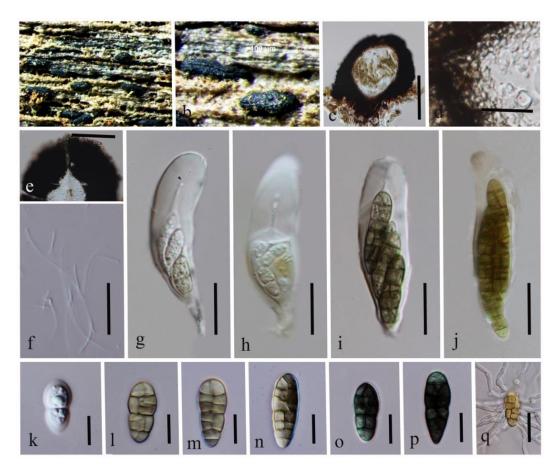
≡Hysterographium minus N. Amano, Trans. Mycol. Soc. Japan 24(3): 293 (1983)

Notes – *Hysterographium minus* (JCM 2758) clusters with *Purpurepithecium murisporum* and is distantly placed from the *Hysterographium* clade in our multigene phylogenetic analyses. *Hysterographium minus* is therefore placed in new combination as *Purpurepithecium minus*, based on morphological and phylogenetic similarities. *Hysterographium minus* is morphologically similar to *Purpurepithecium murisporum* in having pigmented dictyospores with a brick-red epithecium (Boehm et al. 2009a, Jayasiri et al. 2017).

Hysteriales Lindau, Natürl. Pflanzenfam.: 265 (1896)

Notes – The order Hysteriales was introduced by Lindau (1897) and has been placed among the pyrenomycetes and the discomycetes at different times (Rehm 1897). Molecular data places Hysteriales in Dothideomycetes (Boehm et al. 2009a, b, Shearer et al. 2009, Suetrong et al. 2009, in this study). Furthermore, Hysteriales is strongly supported with specific morphological features and multigene phylogenetic analysis of LSU, SSU, *RPB2* and *TEF1* gene sequence data.

Figure 3 – Simplified phylogram showing the best protein RAxML maximum likelihood tree obtained from the *RPB2* gene product translated to amino acid sequences. Major orders in Dothideomycetes are represented by the 95 taxa with available sequence data. Arthoniomycetes (*Schismatomma decolorans*, DQ883715) was selected as the outgroup. MLBS equal or above 70 % are given near to each branch. Other lineages were collapsed to ordinal level.


Hysteriaceae Chevall. 1826, Flore Générale des Environs de Paris 1: 432 (1826)

Notes - In recent morphological and phylogenetic studies (Boehm et al. 2009a, b, de Almeida et al. 2014), this family comprises nine genera: Gloniopsis, Graphyllium, Hysterium, Hysterobrevium, Hysterodifractum, Oedohysterium, Ostreichnion, Psiloglonium and Rhytidhysteron based on morphological and phylogenetic data. However only based on morphology Actidiographium, Gloniella, Hysterocarina and Hysteropycnis also belong to family Hysteriaceae (Boehm et al. 2009a, b, Wijayawardene et al. 2018). In this study, we propose Hysterium curtisii (Basionym) as the current name for Ostreichnion curtisii, because genus Ostreichnion type (O. sassafras) is distantly clades with O. curtisii. In addition to study of Tibpromma et al. 2017 also confirmed this placement introducing a new species Hysterium centramurum which is clade with Ostreichnion curtisii. Thambugala et al. (2016) have outlined the genus *Rhytidhysteron* and redefined the genus in Hyde et al. (2017).

Gloniopsis subrugosa (Cooke & Ellis) E. Boehm & C.L. Schoch, Studies in Mycology 64: 65 (2009) Figs 4, 5

Basionym: *Hysterium subrugosum* Cooke & Ellis, Grevillea 5: 54.1876.

=Hysterographium subrugosum (Cooke & Ellis) Sacc., Sylloge Fungorum 2: 780 (1883) Facesoffungi number: FoF04582

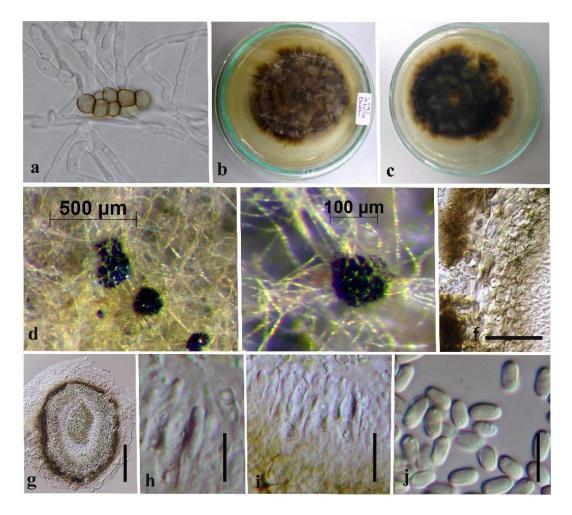


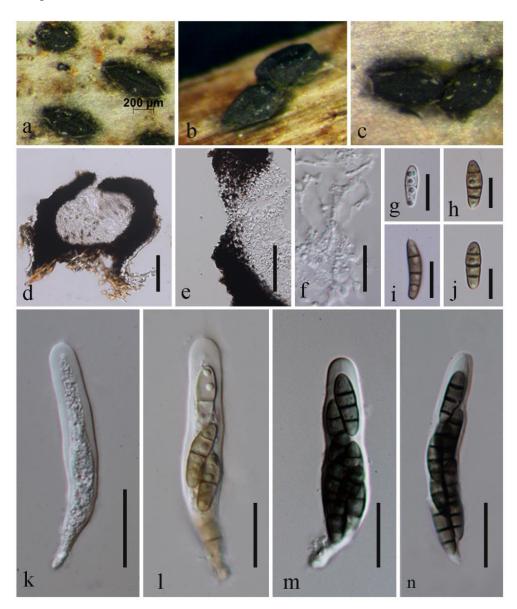
Figure 4 – *Gloniopsis subrugosa.* a–b Hysterothecia on host. c Vertical section through hysterothecium. d Peridium. e Section through the longitudinal slit. f Pseudoparaphyses. g–j Asci with 8-spores. k–p Ascospores. q Germinated spore. Scale bars: $c = 100 \mu m$, d, $e = 30 \mu m$, $f = 10 \mu m$, g, $h = 20 \mu m$, $k-q = 30 \mu m$.

Saprobic on dead wood. Sexual morph: Hysterothecia 347–371 µm high, 199–232 µm diam., 800-1000 µm long ($\bar{x} = 365 \times 220 \times 900$ µm, n = 10), navicular, straight to flexuous, with tapered ends, erumpent to superficial, scattered, with a prominent longitudinal slit. *Peridium* 24–33 µm

wide ($\bar{x} = 29 \ \mu$ m, n = 10), carbonaceous, brittle, heavily pigmented, of small, prosenchymatous cells. *Hamathecium* 1–1.5 μ m wide, persistent, septate, hyaline, not branched above the asci, borne in a gelatinous matrix. *Asci* 50–75 μ m high × 13–16 μ m diam. ($\bar{x} = 68 \times 14 \ \mu$ m, n = 25), 8-spored, bitunicate, cylindrical to clavate, short-pedicels, with a prominent apical ocular chamber. *1* 18–20 × 13–16 μ m, ($\bar{x} = 19 \times 15 \ \mu$ m, n = 30), crowded to biseriate, immature hyaline, mature brown to greenish brown pigmented dictyosporus, with 7–11 transverse and 1–2 vertical septa, hardly constricted at septa, slightly asymmetric in outline. Asexual morph: *Pycnidia* 230–260 μ m high × 110–190 μ m diam ($\bar{x} = 245 \times 180 \ \mu$ m, n = 5), globose to subglobose, on upper surface of the agar, olivaceous to brick coloured, then olivaceous black, solitary or aggregated, lacking setose-like outgrowths, with or without distinct ostiole, pycnidial wall consisting brown outer layers to hyaline inner cell layers. *Conidiogenous cells* 10–12 × 2–3 μ m ($\bar{x} = 11 \times 2.5 \ \mu$ m, n = 10), ampulliform to filiform. *Conidia* 4–6 × 2–3 μ m ($\bar{x} = 5 \times 2.5 \ \mu$ m, n = 30), ellipsoidal to allantoid, greenish brown, aseptate.

Culture characteristics – Colonies on MEA attaining 20–30 mm diam. after 7 days at 25 °C, with irregular edge, brown coloured, with dense aerial mycelium on the surface with black, gregarious conidiomata; reverse black.

Figure 5 – *Gloniopsis subrugosa* asexual morph. a Germinated spore. b–c Culture from above and reverse. d, e Fruiting body in culture. f Peridium. g Vertical section of conidioma. h, i Conidiogenous cells. j Conidia. Scale bars: $f = 30 \mu m$, $g = 100 \mu m$, h, $i = 20 \mu m$, $j = 10 \mu m$.


Material examined – THAILAND, Doi Mae Salong on dead wood, 5 October 2014, Subashini C.Jayasiri, C 041 (MFLU 16–2984; HKAS96308), living cultures MFUCC 14–1179.

Known distribution – Cuba (Boehm et al. 2009b), Kenya (Boehm et al. 2009b), South Africa (van der Linde 1992) and Thailand (this study).

Notes – The genus *Gloniopsis* was introduced by Boehm et al. (2009b). This genus is characterized by multi-septate, hyaline to yellow dictyospores, with one or more longitudinal septa. Currently, there are six species in this genus with morphological and molecular data (Boehm et al. 2009a, b, Hyde et al. 2016). Index Fungorum (2018) lists 66 species epithets under *Gloniopsis*. However, most of these epithets have been synonymized under a few taxon accounts and some of them do not have molecular data for DNA based comparisons. Three *Gloniopsis subrugosa* strains (GKM 1214, SMH 557 and CBS 123346) are comprised and there were no any morphological differences. However, in the multigene phylogenetic analysis *Gloniopsis subrugosa* (CBS 123346) distantly associated with other two strains with genetic heterogeneity within the taxon (Boehm et al. 2009b). Our isolate also do not have any distinct morphological features and clade with *Gloniopsis subrugosa* GKM 1214 and SMH 557. Therefore, in here we have documented a new record of *Gloniopsis subrugosa* from Thailand. In previous studies *Gloniopsis subrugosa* was recorded from Cuba (SMH 557), Kenya (GKM 1214) and South Africa (CBS 123346) (Boehm et al. 2009a).

Hysterium angustatum Alb. & Schwein., Consp. fung. (Leipzig): 55 (1805) Facesoffungi number: FoF04579

Figure 6 – *Hysterium angustatum.* a–c View of hysterothecia on host surface. d Section through hysterothecium. e Peridium. f Pseudoparaphyses. g–j Ascospores. k–m Asci. Scale bars: d = 100 μ m, e = 50 μ m, g-j = 10 μ m, k–m = 20 μ m.

Saprobic on Rubus sp. (Rosaceae). Sexual morph: Hysterothecia 208–232 µm high × 256–284 µm wide × 500–600 µm long ($\bar{x} = 218 \times 268 \times 560$ µm, n = 10), elongate and depressed conchate, scattered, superficial, base immersed in substrate, surface black, shiny, longitudinally striate, apex compressed, opening by a longitudinal slit. Peridium 40–60 µm ($\bar{x} = 51$, n = 15) carbonaceous, brittle, of heavily pigmented, small prosenchymatous cells. Hamathecium 0.5–1.5 µm wide, trabeculate, aseptate, branched, pseudoparaphyses, borne in a gel matrix. Asci 59–66× 7.6–9.2 µm ($\bar{x} = 63 \times 8.6$ µm, n = 15), 8-spored, bitunicate, oblong to clavate, with a short narrow pedicel, apically thickened, with a distinct ocular chamber. Ascospores 14–17 × 4–5.3 µm ($\bar{x} = 15.5 \times 4.6$ µm, n = 25), crowded to biseriate to triseriate, fusiform, hyaline when young and becoming brown at maturity, 3-septate, smooth-walled, ornamented, mucilaginous sheath absent. Asexual morph: Undetermined.

Culture characteristics – Ascospores germinating on MEA within 24 h. slow growing at 18°C reaching 2 cm in 14 days, yellow at first, becoming ash when mature and reverse yellow.

Material examined – ITALY, Province of Forlì-Cesena [FC]), near Fiumana di Predappio, on dead aerial branch of *Rubus* sp. (Rosaceae), 20 January 2016, E. Camporesi, IT 2794 (MFU 16–0468; HKAS96320), living culture MFLUCC 16–0623.

Distribution – Kenya, New Zealand, Tennessee, United States (Boehm et al. 2009a); Italy (in this study).

Notes – In here we re-describe and illustrated of *Hysterium angustatum* with new a strain. This is the first report of *Hysterium angustatum* from Italy. *Hysterium angustatum* strains have little variability in their spore morphology, may be because of indicate early stages of speciation within the taxon, with sequence variation preceding morphologic change (Boehm et al. 2009a).

Hysterium doimaeensis Jayasiri & K.D. Hyde, sp. nov.

Fig. 7

Index Fungorum number: IF554456; Facesoffungi number: FoF04581

Holotype: MFLU 16-0954

Etymology: In reference place where specimen was collected.

Saprobic on decaying wood. Sexual morph: Hysterothecia 480–550 µm high, 380–420 µm diam., 600–800 µm long ($\bar{x} = 510 \times 400 \times 700$ µm, n = 10), scattered, superficial, base immersed in substrate, elongate and depressed conchate, surface black, shiny, longitudinally striate, apex compressed, opening by longitudinal slit. *Periphyses* along the slit, aseptate, hyaline, swollen, with blunt ends. *Peridium* 50–80 µm wide ($\bar{x} = 65 \mu$ m, n = 10), comprising carbonaceous, brittle, heavily pigmented, small, prosenchymatous cells. *Hamathecium* 1–1.5 µm wide, persistent, trabeculate, hyaline, aseptate, branched, borne in a gel matrix, which is brownish granular above the asci, longer than asci. *Asci* 139–225 × 22–44 µm ($\bar{x} = 180 \times 36 \mu$ m, n = 20), 8-spored, bitunicate, arising from base, oblong to clavate, with a short pedicel, apex thickened, with refractive ring around cytoplasmic protrusion. *Ascospores* 60–73 × 12–13 µm ($\bar{x} = 66 \times 12.5 \mu$ m, n = 30), crowded to biseriate, fusiform when young, oblong at maturity, hyaline to light yellow, 1–3-septate, with prominent central septum, wall greatly thickened towards the apex, wall smooth. Sheath absent. Asexual morph: Undetermined.

Culture characteristics – Ascospores germinating on MEA within 24 hours. Colonies on MEA, white, circular, smooth margin, slow growing, attaining 1 cm diameter within 30 days at 18° C, tightly arranged, short, aerial mycelium. Orange brownish exudates was released to the media when mycelium growing. The mycelial mats were produced erumpent, globose, thick, less stromatic, light brownish viscous droplets and later become lighter in the colour of the superficial hyphae with copious dark brown.

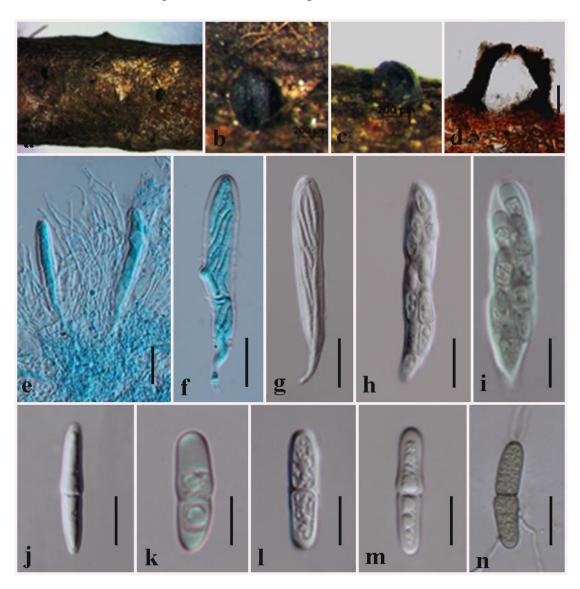

Material examined – THAILAND, Chiang Rai Province, Doi Mae Salong, on dead branch, 27 April 2015, Subashini C. Jayasiri, C 051 (MFLU 16–0954, holotype; HKAS96310, isotype); extype living culture, MFLUCC 16–0338, BCC

Notes – *Hysterium doimaeensis* resembles *Hy. Curtisii* and *Hy. centramurum* in having hysterothecia, appearing as black, scattered, superficial, carbonaceous ascomata and bitunicate asci, but *Hy. curtisii* differs from *Hy. doimaeensis* in having both vertical and transverse septate

ascospores (Boehm et al. 2009b). *Hysterium doimaeensis* differs from *Hy. centramurum* in having smaller ascospores. Phylogenetical data also confirm that they are distinct (97% MLBS/1.00 BPP). We have accounted base pair differences of LSU gene sequences between *Hysterium centramurum*, *Hy. curtisii*, *Hy. doimaeensis* and *H. thailandica. Hysterium doimaeensis* have 33, 30 and 35 base pair differences with *Hy. centramurum*, *Hy. curtisii* and *H. thailandica* respectively.

Key to four species of Hysterium

1.	Ascospore size mo	ore than 10	0 μm		 	Hysteriun	n centramurum
1.	Ascospore size les	ss than 100	μm		 		2
2.	Ascospore size eq						
2.	Ascospore size mo	ore than 60	μm	•	 	•	
3.							
					 	Hy	sterium curtisii
	1-3 sentate germi						


Figure 7 – *Hysterium doimaeensis* (holotype). a–c Hysterothecia on host surface. d Hand section of hysterothecium. e Hamathecium. f Ostiole through the longitudinal slit. g Peridium. h–m Ascospores. n, o Germinated spores. p Immature ascus. q–s Asci with ascospores. Scale bars: a = 1 cm, b, $c = 500 \mu\text{m}$, $d = 150 \mu\text{m}$, $e = 10 \mu\text{m}$, f, $g = 100 \mu\text{m}$, $h-o = 20 \mu\text{m}$, $p-s = 50 \mu\text{m}$.

Hysterium thailandica Jayasiri & K.D. Hyde, sp. nov.

Index Fungorum number: IF554455; Facesoffungi number: FoF04580 Holotype: MFLU 16–2986

Etymology: In reference where the specimen was collected.

Saprobic on dead branches of an unknown plant. Sexual morph: Hysterothecia 203–350 µm high, 190–310 µm diam., 500–600 µm long ($\bar{x} = 260 \times 240 \times 600$ µm, n = 10), elongate and depressed conchate, solitary, scattered, superficial, base immersed in substrate, black, shiny, longitudinally striate, apex compressed, opening by longitudinal slit. *Peridium* 22–60 µm wide ($\bar{x} = 45$ µm, n = 10), carbonaceous, brittle, thick-walled, heavily pigmented, of small, prosenchymatous cells. *Hamathecium* 1–1.5 µm wide, dense, filamentous, trabeculate, cellular pseudoparaphyses, aseptate, embedded in a hyaline gelatinous matrix. Asci 155–210 × 19–34 µm ($\bar{x} = 180 \times 27$ µm, n = 20), 8-spored, bitunicate, oblong to clavate, with a short pedicel, apically thickened, with a distinct ocular chamber. Ascospores 40–60 × 8–12 µm ($\bar{x} = 52 \times 10$ µm, n = 30), overlapping bi-seriate to parallel, ellipsoidal to fusiform with rounded ends, hyaline to light yellow, 1-septate when young, becoming multiseptate, deeply constricted at the central septum, nearly symmetrical, smooth-walled, guttulate. Asexual morph: Undetermined.

Figure 8 – *Hysterium thailandica* (holotype). a Hysterothecia on host surface. b, c View of hysterothecium on the host surface. d Section through the longitudinal slit. e Immature asci and pseudoparaphyses stain with Lactophenol cotton blue. f, g Immature asci. h, i Asci. j–m Ascospores. n Germinated ascospore. Scale bars: $d = 100 \mu m$, e-i = 50, $j-n = 20 \mu m$.

Culture characteristics – Ascospores germinating on malt extract agar (MEA) within 24 hours and germ tubes produced from ascospore (Fig. 7). Colonies growing slowly on MEA, reaching 4 mm in 1 weeks at 18°C, brown to dark brown. Mycelium superficial and partially immersed, branched, septate, hyaline to pale brown, smooth.

Material examined – THAILAND, Chiang Mai Province, dead stem of unknown plant, 22 July 2015, Subashini C. Jayasiri, C 073 (MFLU 16-2986, holotype; HKAS96311, isotype); ex-type living culture, MFLUCC 16–0338, BCC

Notes – *Hysterium thailandica* fits with the generic concept of the genus, *Hysterium* in having pigmented versicolorous or concolorous asymmetric phragmospores, three- or more transversely-septate, borne in hysterothecia (Boehm et al. 2009b). This species is phylogenetically and morphologically close to *Hy. centramurum*, *Hy. curtisii* and *Hy. doimaeensis*. A comparison of the morphological features of these four species is presented in the key. *Hysterium thailandica* groups in a sister clade to *Hy. centramurum* with 75 % MLBS statistical support. *Hy. centramurum* and *H. thailandica* are different from, *H. thailandica* in having short and narrow ascospores ($52 \times 10 \ \mu m \ vs. 125 \times 23 \ \mu m$) (Tibpromma et al. 2017). We have considered base pair differences of LSU gene sequences between *Hysterium centramurum*, *Hy. curtisii*, *Hy. doimaeensis* and *H. thailandica*. *Hysterium thailandica* have 8, 11 and 35 base pair differences with *Hy. centramurum*, *Hy. curtisii* and *Hy. doimaeensis* respectively.

Hysterobrevium hakeae Jayasiri, E.B.G. Jones & K.D. Hyde, sp. nov. Fig. 9

Index Fungorum number: IF554453; Facesoffungi number: FoF04577 Etymology: With reference to host genus "Hakea"

Holotype: MFLU 16-2987

Saprobic on exocarp of Hakea actites (Proteaceae) fruits. Sexual morph: Hysterothecia 234– 345 µm high × 285–392 µm diam. × 800–1000 µm long ($\bar{x} = 296 \times 337 \times 900$ µm, n = 10), elongate, superficial, gregarious, longitudinally striate, opening by a longitudinal slit. Periphyses along the slit, v-shaped, with brown cells. Peridium 27–67 µmwide ($\bar{x} = 49$ µm), carbonaceous, brittle, heavily pigmented. Hamathecium1–1.5 µm wide, trabeculate, hyaline, septate, branched, longer than asci. Asci (48–) 65–105 × 10–14 µm ($\bar{x} = 84.5 \times 12$ µm, n = 20), 8-spored, bitunicate, oblong to clavate, with a short pedicel, apically thickened. Ascospores 18–22 µm × (5.4–)8.5–11.5 µm ($\bar{x} = 20 \times 10$ µm, n = 20), uniseriate to biseriate, oblong, with prominent median septate, hyaline, thick-walled, wall smooth, sheath absent. Asexual morph: Undetermined.

Material examined – AUSTRALIA, Melbourne, Mornington Peninsula, on *Hakea actites* fruits (Proteaceae), 10 March 2015, E.B.G. Jones, GJ 106 (MFLU 16-2987, holotype); (isotype in PDD)

Notes – *Hysterobrevium* comprises three species with morphological and molecular data: *Hysterobrevium constrictum* (N. Amano) E.W.A. Boehm & C.L. Schoch, *H. mori* (Schwein.) E. Boehm & C.L. Schoch and *H. smilacis* (Schwein.) E. Boehm & C.L. Schoch. *Hysterobrevium hakeae* fits the generic concept of *Hysterobrevium* in having navicular hysterothecia with a prominent longitudinal slit, bitunicate, cylindrical to clavate asci, ovoid to obovoid hyaline dictyospores with either obtuse or acuminate ends and ascospores constricted at the median septum. In the multigene phylogenetic analyses *Hy. hakeae* groups with *H. constrictum* (SMH 5211.1) with high statistical support (94% MLBS/1.00 BPP). *Hysterobrevium hakeae* shares similar characters of the genus *Hysterobrevium*, but differs from *H. constrictum* in having ascospores with a sheath and longitudinal septa of *H. constrictum* (Boehm et al. 2009b).

Hysterobrevium rosae Jayasiri, Camporesi & K.D. Hyde, sp. nov. Figs 10, 11

Index Fungorum number: IF554454; Facesoffungi number: FoF04578

Holotype: MFLU 16–2989

Etymology: Referring to the host genus Rosa.

Saprobic on Rosa canina (Rosaceae). Sexual morph: Hysterothecia 180–240 µm high, 150–200 µm diam., 500–1500 µm long ($\overline{x} = 210 \times 175 \times 1200$ µm, n = 10), erumpent, ellipsoidal,

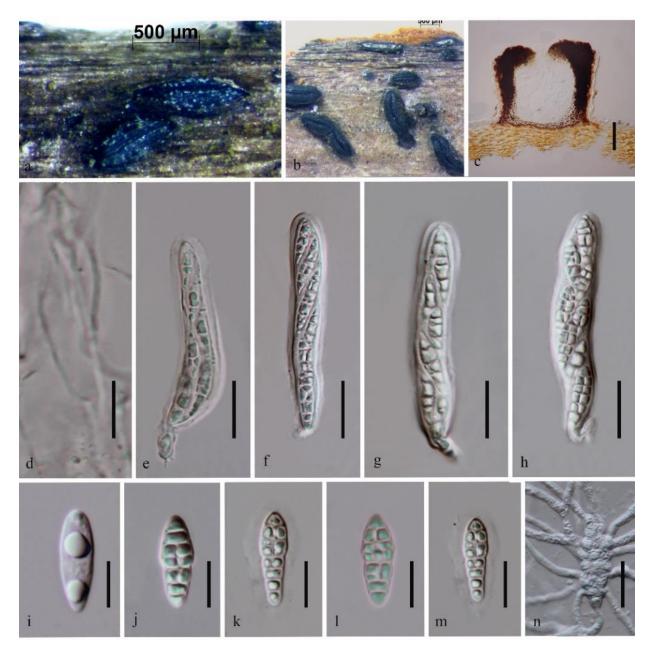

oblong, linear or cylindrical, base consisting of epidermis or periderm cells, longitudinally striate, navicular with tapering ends. *Peridium* 30–60 µm wide ($\bar{x} = 47\mu$ m), carbonaceous and brittle when dry, narrower at base within the substrate, widest at the mid-point. *Hamathecium* 0.5–1 µm wide, cellular, septate, persistent, hyaline, apically thickened, branched and forming an epithecium in a gelatinous matrix above the ascal layer. *Asci* 70–83 × 12–15 µm ($\bar{x} = 78 \times 13$ µm, n = 20), 8-spored, bitunicate, cylindrical to clavate, short-stipitate. *Ascospores* 18–22 × 5–8 µm ($\bar{x} = 20 \times 6$ µm, n = 20), uniseriate to biseriate, hyaline, dictyosporous, asymmetric, with acuminate ends, with 6–7 vertical and 2–4 longitudinal septa, constricted at central septum, gelatinous sheath appears when mature. Asexual morph: *Conidiomata* as irregular locules, brown to pale brown, solitary, *Conidiogenous cells* 5–8 × 1.5–2 µm, enteroblastic, phialidic, globose to flask–shaped, hyaline, thin-walled. *Conidia* 2.5–4 × 1–2 µm, fusiform with slightly curved apex and refractive base.

Figure 9 – *Hysterobrevium hakeae* (holotype). a Host fruits. b, c Hysterothecia on exocarp of seed. d Section through hysterothecia. e Section through the slit. f Hamathecium. f–h Immature and mature asci. i–l Ascospores. Scale bars: $d = 100 \mu m$, $e = 50 \mu m$, $f = 10 \mu m$, $g-i = 30\mu m$, $i-l = 10\mu m$.

Culture characteristics – Colonies on MEA attaining 20–30 mm diam. after 7 d at 25 $^{\circ}$ C, with irregular pale brown edge, with dense aerial mycelium on the surface with brown, reverse similar in colour.

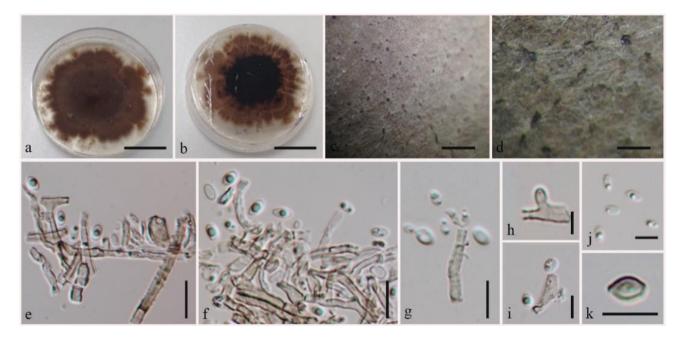
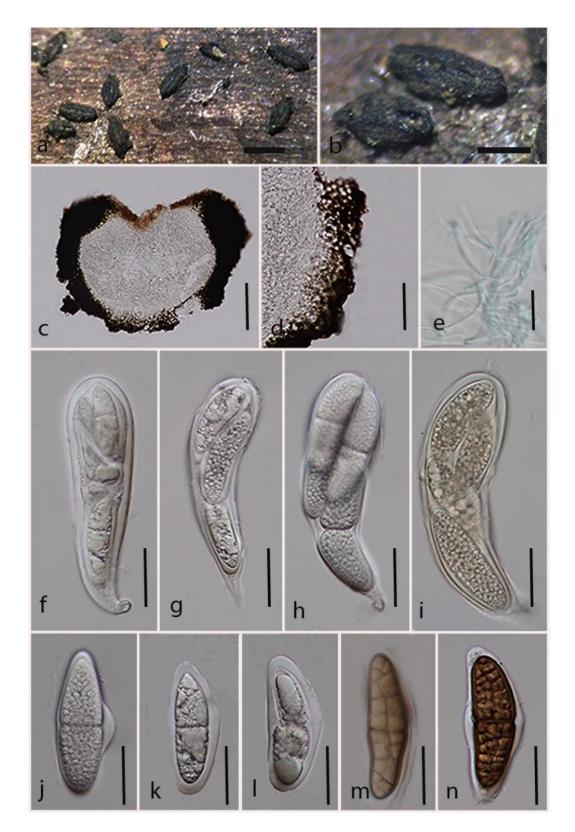

Material examined – ITALY, Forlì-Cesena Province [FC]), near Pieve Salutare – Castrocaro Terme, on a dead aerial branch of *Rosa canina* (Rosaceae), 15 June 2014, Erio Camporesi, IT 86-B (MFLU 16–2989, holotype; HKAS96318, isotype); ex-type living cultures MFUCC 14–0551(type), 14–0552, BCC.

Figure 10 – *Hysterobrevium rosae* (holotype). a–b Hysterothecia on host. c Vertical section through hysterothecium. d Pseudoparaphyses. e–h Asci with 8-spores. i–m Ascospores. n Germinated ascospore. Scale bars: c=50 μ m, d, f, g, i–n = 20 μ m, e = 10 μ m.

Notes – *Hysterobrevium rosae* fits the generic concept of *Hysterobrevium* in having navicular, erumpent and partially embedded hysterothecia, longitudinally striate on the surface of ascomata and a prominent longitudinal slit, cylindrical to clavate asci, ovoid to obovoid, pigmented or hyaline dictyospores surrounded by a gelatinous sheath, with either obtuse or acuminate ends, with 3-4(-6) transverse septa, and 1-2 longitudinal septa. *Hysterobrevium rosae* groups in a sister

clade to *Hy. mori*, although there are morphological differences with *Hy. rosae* having relatively smaller hysterothecia (0.5–1.5 mm, 150–200 μ m, 180–240 μ m vs. 1–2(–3.5) mm, 220–275(–440) μ m, 190–330 μ m), shorter asci (70–83 × 12–15 μ m vs. 80–110 × 10–18 μ m) and hyaline ascospores. Therefore, in this study we introduce *Hysterobrevium rosae* as a new species from a dead branch of *Rosa canina*. Wanasinghe et al. (2018) have introduced a high diversity of microfungi from the genus *Rosa* and this is another species found on this host genus.


Figure 11 – *Hysterobrevium rosae* asexual morph in culture. a, b Culture reverse and forward view c, d Asexual structures in culture. e–i Conidia with conidiophores. j, k Conidia. Scale bars: a, b = 2 cm, c = 500μ m, d = 200μ m, e–g = 10μ m, h–k = 5μ m.

Psiloglonium macrosporum Thambugala, Senan. & K.D. Hyde, in Fungal Diversity 78: 26 (2016) Fig. 12

Saprobic on decaying wood. Sexual morph: Hysterothecia 400–495 µm high, 450–480 µm wide, 570–1300 µm long (\bar{x} = 470 × 460 × 921 µm, n = 10), elongate, depressed conchate, scattered, superficial, base immersed in substrate, surface black, shiny, longitudinally striate, apex compressed, opening by a longitudinal slit. *Periphyses* along the slit, v-shaped, with brown cells. *Peridium* 50–80 µm (\bar{x} = 68, n = 15) carbonaceous, brittle, of heavily pigmented, small, prosenchymatous cells. *Hamathecium* comprising 0.5–1 µm wide, trabeculate, hyaline, aseptate, branched, pseudoparaphyses, borne in a gel matrix. *Asci* 110–145× 28–35 µm (\bar{x} = 130 × 32 µm, n = 15), 4-spored, bitunicate, oblong to clavate, with a very short pedicel or apedicellate, apically thickened, with a distinct ocular chamber. *Ascospores* 50–100 × 17–24 µm (\bar{x} = 78 × 22 µm, n = 25), crowded to biseriate, fusiform when young, oblong at maturity, hyaline when young and becoming brown at maturity, when young with 1 transverse septum, having 7 transverse and 6–7 longitudinal septa to multiseptate at maturity, deeply constricted at the central septum, smooth-walled, ornamented, surrounded by a mucilaginous sheath. Asexual morph: Undetermined.

Material examined – THAILAND, Chiang Mai Province, Mushroom Research Centre, on dead branch, July 2015, Subashini C. Jayasiri, C 083 (MFLU 16-0955; HKAS96312)

Notes – *Psiloglonium macrosporum* was introduced by Li et al. (2016) on a dead twig, from Thailand. Our collection from the same locality fits with the original description of *P. macrosporum* (Li et al. 2016), but we observed 4-spored asci in both the original collection and in this study. Therefore, the species description is emended to include 4-spored asci. The multigene phylogenetic analysis shows 100% similarity between the original isolate and our isolate.

Figure 12 – *Psiloglonium macrosporum*. a, b View of hysterothecia on host surface. c Section through the hysterothecium. d Peridium e Pseudoparaphyses. f–i Asci. j–n Ascospores. Scale bars: c, d, f–i = 50μ m, e = 10μ m, j-n = 30μ m.

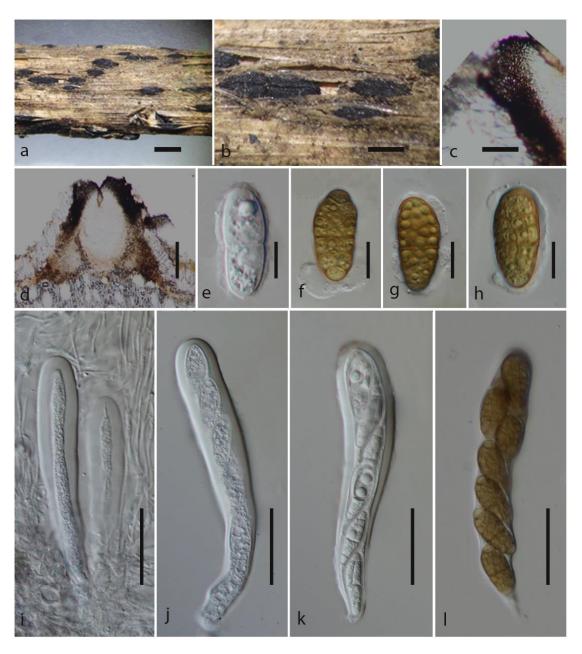

Hysterographium fraxi (Pers.) De Not. 1847

Fig. 13

Facesoffungi number: FoF04583

Saprobic on dead branch. Sexual morph: *Hysterothecia* 430–500 μ m high, 390–490 μ m diam., 700–1200 μ m long (\bar{x} = 480 × 450 × 900 μ m, n=10), navicular, flexuous, erumpent from

host tissue, scattered, with a prominent longitudinal slit. *Peridium* 80 –110 μ m wide ($\bar{x} = 90 \mu$ m), carbonaceous near the slit, narrower at base within the substrate, thickening not equal, base brown,

Figure 13 – *Hysterographium fraxi*. a, b Hysterothecia on host surface. c Peridium. d Hand section of hysterothecia. e–h Ascospores i Immature asci with pseudoparaphyses. j–l Asci with ascospores. Scale bars: a = 1 mm, b = 500 µm, c = 100 µm, d = 300 µm, e = 10 µm, f-h = 20 µm, i-j = 50 µm.

composed with cells of *textura angularis*. *Hamathecium* 1–1.5 µm wide, persistent, septate, massed, branched above the asci. *Asci* 120–130 × 18–22 µm, ($\bar{x} = 125 \times 20 \text{ µm}$, n = 30), 8-spored, bitunicate, cylindrical to clavate, with short, narrow pedicel. *Ascospores* 30–38 × 12–15 µm ($\bar{x} = 35 \times 14 \text{ µm}$, n = 30), uni-seriate to biseriate, asymmetric, hyaline to pale brown, muriform, septation highly variable, one prominent constricted longitudinal septa in the middle, guttulate, mucilaginous sheath present in both mature and immature spores. Asexual morph: Undetermined.

Material examined – RUSSIA, Rostov region, Rostov-on-Don City, Botanical Garden of Southern Federal University, secondary forest (47.2315173 N; 39.6600866 E), on dead branch of *Fraxinus excelsior* (Oleaceae), 15 April 2015, TS Bulgakov, T-198 (MFLU 15–1902; HKAS96321); Krasnodar region, Sochi City, Central city district, Sochi Dendrarium, collection of plants (43.5707N; 39.7438), 8 October 2014, dying leaves and twigs of *Catalpa bignonioides* (Bignoniaceae) TS Bulgakov, T-893 (MFLU 15–3035; HKAS96322); Rostov region, Krasnosulinsky District, Donskoye forestry, Kabanya Balka (Boar gully), ravine forest (47° 85′ 99[#] N; 40° 25′ 24″ E), 27 October 2015, dying and dead twigs of *Fraxinus excelsior* (Oleaceae), TS Bulgakov, T-1019 (MFLU 15–3681; HKAS96323)

Known distribution – Switzerland (Zogg, 1943) and from Canada (Lohman 1934).

Notes – *Hysterographium* is characterized by ovoid to ellipsoid-fusoid, relatively broad, pigmented dictyospores, with one to several longitudinal septa, usually constricted at the first-formed septum (Boehm et al. 2009a). Our isolate fits with the morphological description of *Hy. fraxi*. In multigene phylogenetic analyses our strains (MFLU 15-1902, MFLU 15-3035 and MFLU 15-3681) clade to *Hy. fraxi* (CBS 109.43 and CBS 242.34) with high statistical support (Fig. 1: 99% MLBS, 1.00 BPP). *Hysterographium* was belonged to Pleosporomycetidae genera *incertae sedis* (Goh et al. 1998, Boehm et al. 2009a), however in this study also we placed it as previous because this genus still have a species and less support in the multigene phylogeny.

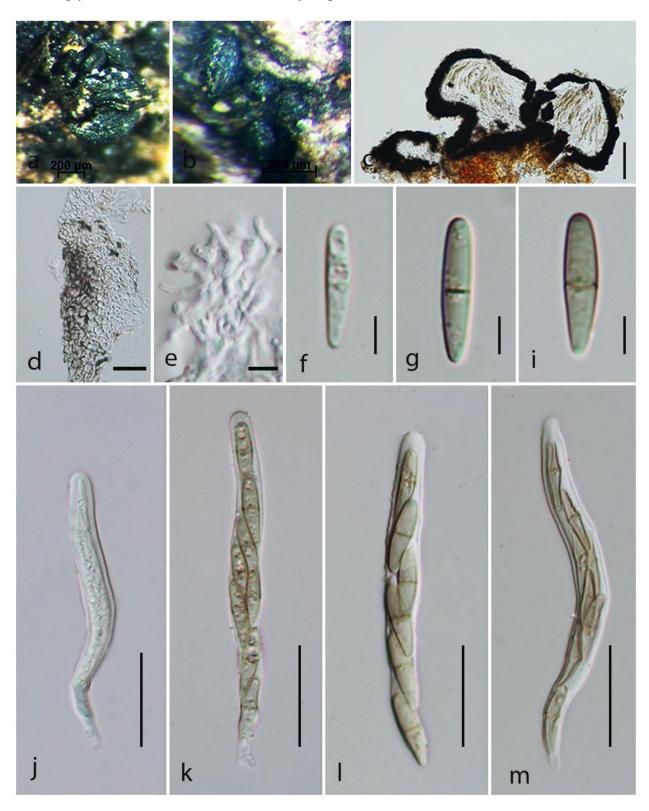
Mytilinidiales E.W.A. Boehm, C.L. Schoch & Spatafora, Mycol. Res. 113 (4): 468 (2009)

Notes – The genera *Mytilinidion, Lophium* and *Quasiconcha* formed a monophyletic clade, representing the order Mytilinidiales (Boehm et al. 2009b). The conchate nature of the *hysterothecia* and the thin-walled peridium are characteristic features of this group. (Boehm et al. 2009a, b, Hyde et al. 2013). Boonmee et al. (2012) introduced a new genus *Halokirschsteiniothelia* based on multigene phylogenetic analysis. Although characters of *Halokirschsteiniothelia* are unusual for this group and placement was tentative (Boonmee et al. 2012). In our multigene phylogenetic analysis also confirmed the placement of monotypic order Mytilinidiales within the class Dothideomycetes.

Mytilinidion didymospora Jayasiri, Camporesi & K.D. Hyde, sp. nov. Fig. 14

Index Fungorum number: IF554457; Facesoffungi number: FoF04584

Etymology: The epithet "*didymospora*" refers to the ascospores having two cells. Holotype: MFLU 15–3252


Saprobic on dead cones of Cupressus glabra (Cupressaceae). Sexual morph: Hysterothecia 500–800 µm long × 101–135 µm wide × 110–149 µm high ($\bar{x} = 700 \times 122 \times 129$ µm, n = 10), navicular, flexuous, superficial on host tissue, scattered or appear as a group, with a longitudinal slit, surface black and shiny. *Peridium*12–19 µmwide ($\bar{x} = 14$ µm), carbonaceous, narrow, thickening equally, composed of cells of *textura angularis*. *Hamathecium* 1–1.5 µm wide, persistent, septate, hyaline, branched, shorter than the asci. *Asci* 71–94 × 4–6 µm ($\bar{x} = 84 \times 5$ µm, n = 20), 8-spored, bitunicate, cylindrical to clavate, with short, narrow pedicel. *Ascospores* 14–18 × 2–4 µm ($\bar{x} = 15 \times 3$ µm, n = 20), uni-seriate to biseriate, asymmetric, cylindrical, one end tapering and another end rounded, hyaline to pale brown, 1-septate, not constricted at the septa, guttules present, mucilaginous sheath absent, smooth-walled. Asexual morph: Undetermined.

Culture characteristics – Colonies on MEA attaining 12–15 mm diam. after 7 days at 25 °C, with irregular pale brown edge, brown, with dense aerial mycelium on the surface with brown, reverse similar.

Material examined – ITALY, Forlì-Cesena [FC] Province, Montebello – Modigliana, on dead land cones of *Cupressus glabra* (Cupressaceae), 6 October 2015, Erio Camporesi, IT 2629 (MFLU 15–3252, holotype; HKAS96319, isotype), ex-type living cultures MFUCC16-0619, BCC.

Notes – *Mytilinidion didymospora* is similar to other *Mytilinidion* species in having fragile yet persistent carbonaceous, bivalve shell-shaped ascomata, thin-walled, scleroparenchymatous peridium enclosing a hamathecium of narrow trabeculate pseudoparaphyses, borne in a gel matrix and transversely septate phragmospores. *Mytilinidion didymospora* groups with *M. mytilinellum* (EB 386) with 98% MLBS/1.00 BPP statistical support. *Mytilinidion mytilinellum* has (2-)3(-5)-septate, yellow ascospores, while *My. didymospora* has 1-septate, pale brown ascospores. In addition, *My. mytilinellum* is characterized by a longitudinal cristate-like apex and base edge

attached with the substrate, whereas *My. didymospora* has aslightly connivant apical portion and base spread on the substrate. Therefore, *My. didymospora* is distinct from *M. mytilinellum* based on morphology and phylogeny. All recorded *Mytilinidion* species are from Pinaceae, Cupressaceae, and Taxodiaceae plant families (Lohman 1932, Zogg 1962, Speer 1986, Barr 1990a) and interestingly our isolate is also from the family Cupressaceae.

Figure 14 – *Mytilinidion didymospora* (holotype). a, b View of hysterothecia on host surface. c Section through hysterothecium. d Peridium. e Pseudoparaphyses. f–i Ascospores. j–m Asci. Scale bars: $c = 50 \mu m$, $d = 20 \mu m$, $e = 10 \mu m$, $f-i = 5 \mu m$, $j-m = 30 \mu m$.

Discussion

In this study on hysteriform Dothideomycetes, we introduce six new species based on morphological and phylogenetic data. Hysterobrevium hakeae, Hysterobrevium rosae, Hysterium doimaeensis, Hysterium thailandica, Mytilinidion didymospora and Purpurepithecium are illustrated and discussed. In addition, we propose Hysterium curtisii (Basionym) as the current name for Ostreichnion curtisii. The genus Ostreichnion comprised O. curtisii (CBS 198.34) and O. sassafras (CBS 322.34) introduced by Lohman (1934). Ostreichnion nova-caesariense is quite similar to O. sassafras, but no molecular data are available for comparison. However, the phylogenetic analysis shows that O. curtisii is distinct from the generic type, O. sassafras. These three species are morphologically similar, having mytilinidioid ascomata within Hysteriaceae, but differ with O. sassafras having ascospores with up to 27 septa, and four spored asci. Therefore, the family Hysteriaceae must also encompass some mytilinidioid forms (Boehm et al. 2009b) as observed in the genera Hysterium and Ostreichnion. In addition, new records of Hysterium angustatum, Gloniopsis subrugosa and Hysterographium fraxini are described and illustrated. Hysterium angustatum has been recorded from New Zealand, South Africa, North America (Boehm et al. 2009a) and Thailand (Hyde et al. 2016) but is reported here for the first time from Italy. Gloniopsis subrugosa has been reported from Argentina (Messuti & Lorenzo 2003), Europe (Zogg 1962), North America (Barr 1990b), South Africa (van der Linde 1992) and from Thailand in this study.

The new family Acrogenosporaceae is introduced and placed in the order Minutisphaerales based on phylogenetic analyses and based on morphological differences with Minutisphaeraceae. *Minutisphaera* is characterized by a slit-like opening in the immature ascomata, which become apothecioid when mature (Raja et al. 2013, 2015), providing morphological support for the close relationship within the order. Acrogenosporaceae is typified by the genus *Acrogenospora*, which is the asexual morph of *Farlowiella* (hysterothecial sexual morph). We used this name, because Rossman et al. (2015) proposed the protection of *Acrogenospora* (1971) over *Farlowiella* (1891). Furthermore, this study supports the synonymy of *Acrogenospora* with *Farlowiella*.

We conducted a phylogenetic analysis of protein data (i.e. amino acid sequences) for whole hysteriform Dothideomycetes. Interestingly, the *RPB2* amino acid sequences resolved the relationships for this group, but additional sequences would be desirable for a more complete understanding. Among the 301 strains included in the nucleic acid phylogeny, *RPB2* gene sequence data were only available for 95 strains. Representing functionally important proteins and being unambiguously alignable across phylogenetically distinct taxa, amino acid sequence data are promising for resolving phylogenetic relationships at higher taxonomic levels.

Acknowledgements

Kevin D. Hyde would like to thank the Thailand Research Funds entitled Biodiversity, phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans (grant no: RSA5980068), The future of specialist fungi in a changing climate: baseline data for generalist and specialist fungi associated with ants, Rhododendron species and Dracaena species (grant no: DBG6080013), Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion (grant no: RDG6130001) and Mae Fah Luang University for the grant "Biodiversity, phylogeny and role of fungal endophytes of Pandanaceae" (grant number: 592010200112), "Diseases of mangrove trees and maintenance of good forestry practice" (grant number: 60201000201) and Taxonomy diversity, Phylogeny and Evolution of fungi in Capnodiales (grant no: 666713) for supporting this study. This work was funded by the grants of the National Natural Science Foundation of China (NSFC Grants No. 31670027 & 31460011). Subashini C. Jayasiri thanks Guizhou University for the help with molecular work and particularly grateful to Mr. T.S. Bulgakov from Academy of Biology and Biotechnology, Southern Federal University, Russia for sending the specimens, Dr. M. Doilom and Danushka Sandaruwan from Mae Fah Luang University, Thailand for helping to obtain sequence data. Gareth Jones thanks Alun Jones and Jonathan Batten for assistance in collecting in Australia.

References

- Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B et al. 2015 Fungal diversity notes 111–252 taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75, 27–274.
- Barr ME. 1987 Prodromus to class Loculoascomycetes. Hamilton I. Newell, Inc., Amherst, Massachusetts: published by the author.
- Barr ME. 1990a Melanommatales (Loculoascomycetes). North American Flora, Series II, Part 13, 1–129.
- Barr ME. 1990b Some dictyosporous genera and species of Pleosporales in North America. Memoirs of the New York Botanical Garden 62, 1–92.
- Boehm EWA, Mugambi GK, Miller AN, Huhndorf SM et al. 2009a A molecular phylogenetic reappraisal of the Hysteriaceae, Mytilinidiaceae and Gloniaceae (Pleosporomycetidae, Dothideomycetes) with keys to world species. Studies in Mycology 64, 49–83.
- Boehm EWA, Schoch CL, Spatafora JW. 2009b On the evolution of the Hysteriaceae and Mytilinidiaceae (Pleosporomycetidae, Dothideomycetes, Ascomycota) using four nuclear genes. Mycological Research 113, 461–479.
- Boonmee S, Ko TWK, Chukeatirote E, Chen H et al. 2012 Two new *Kirschsteiniothelia* species with *Dendryphiopsis* anamorphs cluster in Kirschsteiniotheliaceae fam. nov. Mycologia, 104, 698–714Boonmee S, D'souza MJ, Luo Z, Pinruan U et al. 2016 – Dictyosporiaceae *fam. nov*. Fungal Diversity 80, 457–482
- Chomnunti P, Hongsanan S, Hudson BA, Tian Q et al. 2014 The sooty moulds. Fungal Diversity 66, 1–36.
- Clements FE, Shear CL. 1931 The Genera of Fungi. HW Wilson Co. Publ., Minneapolis, MN, U.S.A.
- de Almeida DAC, Gusmao LFP, Miller AN. 2014 A new genus and three new species of hysteriaceous ascomycetes from the semiarid region of Brazil. Phytotaxa 176 (1), 298–308.
- Doilom M, Dissanayake AJ, Wanasinghe DN, Boonmee S et al. 2017 Microfungi on *Tectona* grandis (teak) in northern Thailand. Fungal Diversity 82, 107–182.
- Ferrer A, Miller AN, Shearer CA. 2011 *Minutisphaera* and *Natipusilla*: two new genera of freshwater Dothideomycetes. Mycologia 103, 411–423.
- Gäumann EA. 1949 Die Pilze, Grundzüge ihrer Entwicklungsgeschichte und Morphologie. Birkhäuser. Basel.
- Goh TK, Hyde KD, Tsui KM. 1998 The hyphomycete genus *Acrogenospora*, with two new species and two new combinations. Mycological Research 102, 1309–1315.
- Huelsenbeck JP, Ronquist F. 2001 MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
- Hyde KD, Hongsanan, S, JeewonR, Bhat DJ et al. 2016 Fungal diversity notes 367–491: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80, 1–270.
- Hyde KD, Jones EBG, Liu JK, Ariyawansa HA et al. 2013 Families of Dothideomycetes. Fungal Diversity 63, 1–313.
- Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A et al. 2017 Fungal diversity notes 603– 708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity 87(1), 1–235.
- Hyde KD, Tennakoon DS, Norphanphoun C, Chaiwan N et al. 2018 Mycosphere notes 225–280. Mycosphere (In press).
- Index Fungorum. 2018 Available from: http://www.indexfungorum.org/Names/Names.asp. (Accessed January 2018)
- Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J et al. 2015 The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity. 74 (1), 3–18
- Jayasiri SC, Hyde KD, Jones EBG, Ariyawansa HA et al. 2017 A new hysteriform Dothideomycete (Gloniaceae, Pleosporomycetidae Incertae sedis), *Purpurepithecium murisporum* gen. et sp. nov. on pine cone scales. Cryptogamie Mycologie 38, 241–251.

- Jayasiri SC, Jones EBG, Kang JC, Promputha I et al. 2016 A new species of genus *Anteaglonium* (Anteagloniaceae, Pleosporales) with its asexual morph. Phytotaxa 263 (3), 233–244.
- Kirk PM, Cannon PF, David JC, Stalpers JA. 2001 Ainsworth & Bisby's dictionary of the fungi, 9th edn. CABI, Wallingford.
- Kirk PM, Cannon PF, Minter DW, Stalpers JA. 2008 Ainsworth & Bisby's dictionary of the fungi, 10th edn. CABI, Wallingford.
- Li GJ, Hyde KD, Zhao RL, Hongsanan S et al. 2016 Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal diversity 78(1), 1–237.
- Liew ECY, Aptroot A, Hyde KD. 2001 Phylogenetic significance of the pseudoparaphyses in Loculoascomycete taxonomy. Molecular Phylogeny and Evolution 16, 392–402.
- Lindau G. 1897 Hysteriineae. In: Engler & Prantl, Naturliche Pflanzenfamilien. I. Teil, I. Abteilung. 1, 265–278.
- Liu JK, Hyde KD, Jones EBG, Ariyawansa HA et al. 2015 Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72, 1–197.
- Liu YJ, Whelen S, Hall BD. 1999 Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution. 16, 1799–1808.
- Lohman ML. 1932 Three new species of *Mytilidion* in the proposed subgenus *Lophiopsis*. Mycologia 24, 477–484.
- Lohman ML. 1934 A cultural and taxonomic study of *Hysterium hyalinum*. Papers of the Michigan Academy of Science Arts & Letters 19, 133–140.
- Ludwig W, Strunk O, Westram R, Richter L et al. 2004 ARB: a software environment for sequence data. Nucleic Acids Research 32, 1363–1371.
- Lumbsch HT, Huhndorf SM. 2010 Myconet volume 14 Part One. Outline of Ascomycota-2009. Fieldiana Life Earth Science 1, 1–922.
- Luttrell ES. 1955 The ascostromatic Ascomycetes. Mycologia 47, 511–532.
- Messuti MI, Lorenzo LE. 2003 Notes on the genus *Hysterographium* (Ascomycota, Hysteriaceae) in southern South America. Nova Hedwigia 76, 451–458.
- Mugambi GK, Huhndorf SM. 2009 Molecular phylogenetics of Pleosporales: Melanommataceae and Lophiostomataceae recircumscribed (Pleosporomycetidae, Dothideomycetes, Ascomycota). Studies in Mycology 64, 103–121.
- Müller E, von Arx JA. 1950 Einige Aspekte zur Systematik pseudosphärialer Ascomyceten. Berichte der Schweizerischen Botanischen Gesellschaft 60, 329–397.
- Nylander JAA. 2004 MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
- Perera RH, Hyde KD, Peršoh D, Jones EBG et al. 2018 Additions to wild seed and fruit fungi 1: The sexual morph of *Diaporthe rosae* on *Magnolia champaca* and *Senna siamea* fruits in Thailand. Mycosphere 9(2), 256–270.
- Raja HA, El-Elimat T, Oberlies NH, Shearer CA et al. 2015 Minutisphaerales (Dothideomycetes, Ascomycota): a new order of freshwater ascomycetes including a new family, Minutisphaeraceae, and two new species from North Carolina, USA. Mycologia 107(4), 845– 62.
- Raja HA, Oberlies NH, Figueroa M, Tanaka K et al. 2013 Freshwater ascomycetes: *Minutisphaera* (Dothideomycetes) revisited, including one new species from Japan. Mycologia 105, 959–976.
- Rambaut A, Drummond A. 2008 FigTree: Tree figure drawing tool, version 1.2. 2. Institute of Evolutionary Biology, University of Edinburgh.
- Rannala B, Yang Z. 1996 Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43(3), 304–311.
- Rehner S. 2001 Primers for Elongation Factor 1- α (EF1- α)
- Rossman AY, Crous PW, Hyde KD, Hawksworth DL et al. 2015 Recommended names for pleomorphic genera in Dothideomycetes. IMA Fungus 6(2), 507–523.

- Schoch CL, Crous PW, Groenewald JZ, Boehm EW et al. 2009 A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64, 1–15.
- Shearer CA, Miller AN, Nelson P, Tanaka K et al. 2009 The molecular phylogeny of freshwater Dothideomycetes. Study in Mycology 145–153.
- Simonis JL, Raja HA, Shearer CA. 2008 Extracellular enzymes and soft rot decay: Are ascomycetes important degraders in freshwater? Fungal Diversity 31, 135–146.
- Spatafora JW, Owensby AC, Douhan GW, Boehm EWA et al. 2012 Phylogenetic placement of the ectomycorrhizal genus *Cenococcum* in Gloniaceae (Dothideomycetes). Mycologia 104(3), 758–765.
- Speer EO. 1986 A propos de champignons du Brésil III. *Mytilidion resinae* sp. nov. (Hysteriales) et sa forme conidienne, *Camaroglobulus resinae* gen. et spec. nov. (Sphaeropsidales). Bulletin Trimestriel de la Société de Mycologie de France 102, 97–100.
- Stamatakis A, Hoover P, Rougemont J. 2008 A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.
- Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer B et al. 2009 Molecular systematics of the marine Dothideomycetes. Study in Mycology 64, 155–173.
- Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW. 2007 A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44, 1204–1223.
- Thambugala KM, Hyde KD, Eungwanichayapant PD, Romero AI et al. 2016 Additions to the Genus *Rhytidhysteron* in Hysteriaceae. Cryptogamie, Mycologie 37, 99–116.
- Thambugala KH, Peršoh D, Perera, RH, Hyde KD. 2018 The genus *Pseudodidymosphaeria*. Asian Journal of Mycology (in prep).
- Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN et al. 2017 Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 83, 1–261.
- van der Linde EJ. 1992 Notes on the South African Hysteriaceae (Ascomyctes: Mycotina). South African Journal of Botany 58, 491–499.
- Vilgalys R, Hester M. 1990 Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172, 4238–4246.
- Voglmayr H, Fournier J, Jaklitsch WM. 2017 *Stigmatodiscus pruni*, a new dothideomycete with hysteriform ascomata. Sydowia 69, 29–35.
- von Arx JA, Müller E. 1975 A re-evaluation of the bitunicate Ascomycetes with keys to families and genera. Studies in Mycology Baarn 9, 1–159.
- Wanasinghe DN, Phukhamsakda C, Hyde KD, Jeewon R et al. 2018 Fungal diversity notes 709– 839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Diversity 89(1), 1–236.
- White TJ, Bruns T, Lee S, Taylor JW. 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: A guide to methods and applications. Academic, New York, 315–322.
- Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK et al. 2018 Outline of Ascomycota: 2017. Fungal Diversity 88(1), 167–263.
- Xu Y, Mafezoli J, Oliverira MCF, U'ren JM et al. 2015 Anteaglonialides A–F and Palmarumycins CE1–CE3 from Anteaglonium sp. FL0768, a fungal endophyte of the spike moss Selaginella arenicola. Journal of Natural Product 78, 2738–2747.
- Zhaxybayeva O, Gogarten JP. 2002 Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3, 4.
- Zogg H. 1962 Die Hysteriaceae s. str. und Lophiaceae, unter besonderer Berücksichtigung der mitteleuropäischen Formen. Beiträge zur Kryptogamenflora der Schweiz, Band 11, 1–190.

Appendix 1 GenBank accession numbers used in this study. GenBank accessions marked in bold represent new sequences generated in the current study.

Species name	Strain	LSU	SSU	TEF	RPB2
Acanthostigma					
perpusillum	UAMH 7237	AY856892	AY856937		
Acrocordia subglobosa	HTL940	JN887392	JN887373		
Acrogenospora					
sphaerocephala	CBS 164 76	GU301791	GU296129	GU349059	GU371748
Acrogenospora				DQ677931	DQ677989
sphaerocephala	CBS 206.36	AY541492	AY541482	DQUIII	DQUIIDO
Acrogenospora	CDG 170 72		GUI20 (1.40		
sphaerocephala	CBS 179 73		GU296148		
Acrogenospora	JX-43	VE926062 1	VE926061		
sphaerocephala Acrogenospora	JA-43	KF836062.1	KF836061		
sphaerocephala	FMR11021	HF677191.1			
Acrogenospora		111077171.1			
sphaerocephala	MFLUCC:16-0179	MH606222			MH626448
Acrogenospora					
thailandica	MFLUCC 17-2396	MH606223	MH606221		MH626449
Acrospermum adeanum	M133	EU940104	EU940256		EU940320
Acrospermum					
compressum	M151	EU940084	EU940012		EU940301
Acrospermum gramineum	M152	EU940085	EU940013		EU940302
Aglaospora profusa	CBS 123109	GU301792	GU296130	GU349062	
Aigialus grandis	2Q	GU301794	GU296132	GU349063	
Aliquandostipite					
khaoyaiensis	CBS 118232	GU301796	NG 016494		
Alternaria alternata	AFTOL ID 1610	DQ678082	DQ678031	DQ677927	DQ677980
Amniculicola parva	CBS 123092	FJ795497	GU296134	GU349065	
Anisomeridium ubianum	MPN94	GU327709	GU327682		
Anteaglonium					
abbreviatum	ANM925a/GKM129	GQ221877		GQ221915	
Anteaglonium globosum	SMH5283	GQ221911		GQ221919	
Anteaglonium parvulum	SMH5210	GQ221907		GQ221917	
Arthopyrenia cinchonae	Lu29583	JN872351			
Arthopyrenia cinchonae	MPN417	KM453759			
Arthopyrenia salicis	CBS 368 94	AY538339	AY538333	KF443404	KF443397
Arthrographis longispora	UTHSC 05 3220	HG004540			
Asterina phenacis	TH 589	GU586217	GU586211		
Asterina weinmanniae	TH 592	GU586217 GU586218	GU586212		
		00380218	00380212	VU224122	KU234116
Asterodiscus tamaricis Asterotexis	L114			KU234133	KU254110
cucurbitacearum	PMA M 0141224	HQ610510			
Asterotexis		112010310			
cucurbitacearum	VIC 42814	KP143734			
Astrosphaeriella					
bakeriana	CBS 115556	GU301801		GU349015	
Astrothelium variolosum	MPN43	KM453768			
Aureobasidium pullulans	CBS 584 75	DQ470956	DQ471004	DQ471075	DQ470906

Species name	Strain	LSU	SSU	TEF	RPB2
Bambusaria bambusae	MFLUCC 12-0851	KP687812		KP687982	KP687890
Bambusaria bambusae	CBS 139763	KP687813		KP687983	KP687891
Bathelium feei	MPN397	KM453773			
Beverwykella pulmonaria	CBS 283 53	GU301804	KY190005		GU371768
Bimuria novae zelandiae	AFTOL-ID 931	AY016356	AY016338	DQ471087	DQ470917
Boeremia exigua var.					
exigua	CBS 431 74	EU754183	NG 016533	KY484687	KT389569
Botryosphaeria dothidea	AFTOL ID 946	DQ678051		DQ767637	DQ677944
Capnobotryella renispora	CBS 214 90	GU214398	EF137360		
Capnodium coffeae	CBS 147 52	DQ247800	DQ247808	DQ471089	DQ247788
Catenulostroma abietis	CBS 459 93	DQ678092	DQ678040	DQ677933	
Cenococcum geophilum	HUNT A1		L76616		
Cenococcum geophilum	CGMONT		L76617		
Cenococcum geophilum	CG54		JX093574		
Cercospora beticola	CBS 116456	DQ678091	DQ678039		
Chaetothyriothecium					
elegans	CPC 21375	KF268420	GU371734		
Cladosporium	GDG 150 54		D.0.(7000.4		D.0 (770 50
cladosporioides	CBS 170 54	DQ678057	DQ678004	DQ677898	DQ677952
Clavatispora thailandica	MFLUCC100107	KF770458	KF770457	KF770459	
Coleroa robertiani	CBS 458 64	JQ036231			
<i>Collemopsidium</i> cf. <i>foveolatum</i>	RO27	KU556973	KU556967	KU556866	
Collemopsidium cf.	KO27	K0330973	KU350907	K0330800	
ostrearum	s1473	KU556976	KU556971		
Collemopsidium pelvetiae	RO25	KU556868	KU556965		KU556861
Collemopsidium sp.	RO28	KU556974	KU556968		KU556863
Corynespora cassiicola	CBS 100822	GU301808	NG 016518	GU349052	GU371742
Corynespora smithii	CABI 5649b	GU323201		GU349018	GU371783
Delitschia didyma	UME 31411	DQ384090	AF242264		
Delitschia winteri	AFTOL ID 1599	DQ678077	DQ678026	DQ677922	DQ677975
Didymella exigua	CBS 183 55	EU754155	GU296147	KR184187	GU371764
Dissoconium aciculare	CBS 204 89	GU214419	GU214523		
Dothidea hippophaeos	CBS 188.58	DQ678048	U42475	DQ677887	DQ677942
Dothidea insculpta	CBS 189 58	DQ247802	DQ247810	DQ471081	AF107800
Dothiorella sarmentorum	CBS 115038	DQ377860	KF766248	2001	111107000
<i>Dyfrolomyces</i>		20011000			
tiomanensis	NTOU3636	KC692156	KC692155	KC692157	
Elsinoe centrolobi	CBS 222 50	DQ678094	DQ678041	DQ677934	
Elsinoe phaseoli	CBS 165 31	DQ678095	DQ678042	DQ677935	
Elsinoe veneta	CBS 150.27	DQ767658	DQ767651	DQ767641	
Entodesmium rude	CBS 650 86	GU301812		GU349012	
Eremodothis angulata	CBS 610 74	DQ384105	DQ384067	GU371821	
Eremomyces bilateralis	CBS 781 70	HG004545			
<i>Extremus antarcticus</i>	CCFEE 5312	KF310020			KF310086
Falciformispora lignatilis	BCC 21118	GU371827	GU371835	GU371820	

Species name	Strain	LSU	SSU	TEF	RPB2
Flavobathelium					
epiphyllum	MPN67	GU327717	JN887382	JN887423	
Floricola striata	JK 5678I	GU301813	GU296149	GU479852	GU371758
Fusicladium africanum	CPC 12828	EU035423			
Gibbera conferta	CBS 191 53	GU301814	GU296150	GU349041	
Gloniopsis arciformis	GKM L166A	GU323211	GU323180		
Gloniopsis kenyensis	GKM1010	GQ221891			
Gloniopsis praelonga	CBS 112415	FJ161173	FJ161134	FJ161090	FJ161113
Gloniopsis praelonga	CMW 19983	FJ161193	FJ161152		
Gloniopsis praelonga	CBS 123337	FJ161195			
Gloniopsis praelonga	CMW 18053	FJ161191	FJ161150		
Gloniopsis praelonga	SMH5280	GQ221912		GQ221914	
Gloniopsis sp.	MFLUCC14 0581				
Gloniopsis subrugosa	CBS 123346	FJ161210			
Gloniopsis subrugosa	MFUCC 14 1179	MH535892	MH535884		MH535874
Gloniopsis subrugosa	SMH557	GQ221896			
Glonium circumserpens	CBS 123342/EB 0332	FJ161208	FJ161160		
^	CBS 123343/EB				
Glonium circumserpens	0331	FJ161200	FJ161168	FJ161108	FJ161126
Glonium stellatum	CBS 207 34	FJ161179			
Glonium stellatum	ANM32	GQ221887		GQ221926	
Gonatophragmium	CDG 120001	120004470			
triuniae Graphyllium	CBS 138901	KP004479			
caracolinensis	HUEFS 42838	KF914914			
Heleiosa barbatula	JK 5548I	GU479787	GU479753		
Helicomyces roseus	AFTOL ID 1613	DQ678083	DQ678032	DQ677928	DQ677981
Hysterium angustatum	GKM5211	GQ221906	22010022	2011720	22011701
Hysterium angustatum	CMW 20409	FJ161194	FJ161153		
Hysterium angustatum	SMH5216	GQ221908	19101123	GQ221933	
Hysterium angustatum	GKM243a	GQ221900		GQ221933	
Hysterium angustatum	CBS 123334	FJ161207		00221720	
Hysterium angustatum	CBS 236 34	FJ161180	GU397359	FJ161096	FJ161117
Hysterium angustatum	MFLUCC 16 0623	MH535893	MH535885	MH535878	MH535875
Hysterium barrianum	ANM1495	GQ221885		GQ221931	
Hysterium barrianum	ANM1442	GQ221884			
Hysterium doimaeensis	MFLUCC 16 0338	MH535894	MH535886		
Hysterium hyalinum	CBS 237 34	FJ161181	FJ161141		
Hysterium pulicare	ANM85	GQ221898		GQ221934	
Hysterium pulicare	ANM1455	GQ221090		GQ221934	
Hysterium thailandica	MFLUCC 16–0338	MH535895		~~~~	MH535876
Hysterium vermiforme	GKM1234	GQ221897		GQ221929	
<i>Hysterobrevium</i>					
constrictum	SMH5211 1	GQ221905		GQ221923	

Species name	Strain	LSU	SSU	TEF	RPB2
Hysterobrevium					
constrictum	GKM426N	GQ221901		GQ221913	
Hysterobrevium hakeae	MFLU 16 2987	MH535896			
Hysterobrevium mori	SMH 5273	GU301820			
Hysterobrevium mori	GKM1214	GQ221895			
Hysterobrevium mori	SMH 5286	GU397345			
Hysterobrevium mori	SMH5273	GQ221910		GQ221936	
Hysterobrevium mori	CBS 123564	FJ161198			
Hysterobrevium mori	CBS 123336	FJ161204	NG 016534		
Hysterobrevium mori	CBS 123563	FJ161196			
Hysterobrevium mori	CBS 123335	FJ161202			
Hysterobrevium mori	GKM 1013	GU397344		GU397338	
Hysterobrevium rosae	MFUCC 14-0551	MH535897		MH535879	
Hysterobrevium rosae	MFUCC 14-0552	MH535898	MH535887	MH535880	
Hysterobrevium smilacis	CBS 200 34	FJ161177	FJ161138		
<i>Hysterobrevium smilacis</i>	CBS 114601	FJ161174	FJ161135	FJ161091	FJ161114
<i>Hysterodifractum</i>	CD5 114001	19101174	1.3101133	15101091	13101114
partisporum	HUEFS 42865	KF914916			
Hysterographium					
flexuosum	GKM1262c	GQ221886		GQ221935	
Hysterographium fraxini	CBS 242 34	FJ161189			
Hysterographium fraxini	CBS 109 43	FJ161171	FJ161132	FJ161088	
Hysterographium fraxini	MFLU 15-1902	MH535899	MH535888	MH535881	
Hysterographium fraxini	MFLU 15-3035	MH535900	MH535889	MH535882	
Hysterographium fraxini	MFLU 15-3681	MH535901	MH535890	MH535883	
Hysteropatella clavispora	AFTOL-ID 1305	AY541493	DQ678006	DQ677901	DQ677955
Hysteropatella elliptica	CBS 935.97	DQ767657	EF495114	DQ767640	DQ767647
Jahnula aquatica	R68 1	EF175655	EF175633		
Jahnula bipileata	F49 1	EF175657	EF175635		
Julella avicenniae	BCC 18422	GU371823	GU371831	GU371816	GU371787
Julella avicenniae	BCC 20173	GU371822	GU371830	GU371815	GU371786
Keissleriella cladophila	CBS 104 55	JX681090	GU296155	GU349043	GU371735
Kirschsteiniothelia					000/1/00
elaterascus	HKUCC7769	AY787934			
Laurera megasperma	AFTOL ID 2094	FJ267702			
Lentithecium fluviatile	CBS 122367	GU301825	GU296158	GU349074	
Leptosphaeria biglobosa	CBS 303 51	GU301826		GU349010	
Leptosphaeria doliolum	CBS 505 75	GQ387576	GQ387515	GU349069	KY064035
Leptoxyphium fumago	CBS 123 26	GU301831	GU214535	GU349051	GU371741
Lichenothelia calcarea	L1324	KC015062	KC015082		
			KC015084		
Lichenothelia convexa	L1607	KC015009			
Lichenothelia convexa Lindgomyces	L1607	KC015069	IKC015004		
	L1607 KT 1215	AB521748	AB521733		
Lindgomyces					

Species name	Strain	LSU	SSU	TEF	RPB2
Lophiostoma fuckelii	GKM 1063	GU385192		GU327759	
Lophiotrema					
neoarundinaria	KT 856	AB524596	AB524455	AB539109	AB539096
Lophiotrema nucula	CBS 627 86	FJ795446	FJ795489	LC194410	LC194465
Lophium elegans	EB 0366	GU323210	GU323184		
Lophium mytilinum	CBS 114111		EF596818		
Lophium mytilinum	AFTOL ID 1609	DQ678081	DQ678030	DQ677926	DQ677979
Lophium mytilinum	CBS 123344	FJ161203			
Lophium mytilinum	CBS 269 34	DQ678081	DQ678030	DQ677926	DQ677979
Manglicola					
guatemalensis	BCC20079	FJ743449	FJ743443		
Manglicola	DCC20157	F1742440	E1742442		
guatemalensis	BCC20156	FJ743448	FJ743442		GU12717(0
Massaria anomia	CBS 591 78	GU301839	GU296169	G11240040	GU371769
Massarina eburnea	CBS 473 64	FJ201983	GU296170	GU349040	GU371732
Massarina igniaria	CBS 845 96	GU301841	GU29617		GU371793
Massariosphaeria grandispora	CBS 613 86	GU301842	GU296172	GU349036	GU371725
Massariosphaeria	CDS 013 80	00301842	00290172	00349030	00371723
phaeospora	CBS 611 86	GU301843	GU296173		GU371794
Megalotremis verrucosa	MPN104	GU327718	GU327694		
Melanomma rhododendri	ANM 73	GU385198			
Microthyrium					
microscopicum	CBS 115976	GU301846	GU296175		GU371734
Minutisphaera aspera	G427 1a	KP309993	KP309999		
Minutisphaera aspera	G427-1a	KP309993	KP309999		
Minutisphaera					
fimbriatispora	L A242 8A	HM196367	HM196374		
Minutisphaera japonica	JCM 18560	AB733440	AB733434		
Montagnula opulenta	AFTOL ID 1734	DQ678086			DQ677984
Morosphaeria	VII 220	A D 007554	A D 707264	A D 000520	
ramunculicola	KH 220	AB807554	AB797264	AB808530	
Munkovalsaria rubra Mycomicrothelia	IFRD 2017	FJ795507	GU456308		
miculiformis	101B	GU327720	GU327696		
Myriangium duriaei	CBS 260 36	DQ678059	AY016347	DQ677900	DQ677954
Myriangium hispanicum	CBS 247 33	GU301854	GU296180	GU349055	GU371744
Myrmaecium rubricosum	CBS 139067	KP687881	KP687977	KP688049	KP687955
Mytilinidion acicola	EB 0349	GU323209	GU323185		GU371757
<i>Myttilinidion acicola</i>	EB 0349	GU397346	GU325185 GU397362		GU397355
<i>Myttilinidion andinense</i>	CBS 123562	FJ161199	00397302		0037/333
•			EI161150	EI161107	EI161125
Mytilinidion andinense	EB 0330	FJ161199 FJ161183	FJ161159	FJ161107	FJ161125
Mytilinidion australe	CBS 301 34		GU222107		
Mytilinidion californicum	EB 0385	GU323208	GU323186		
Mytilinidion didymospora	MFUCC16-0619	MH535902	MH535891		MH535877
uuymospora	MIT UCC10-0019	WII1333902	1111333091		11113330//

Species name	Strain	LSU	SSU	TEF	RPB2
Mytilinidion mytilinellum	CBS 303 34	FJ161184	FJ161144	FJ161100	FJ161119
Mytilinidion mytilinellum	EB 0386	GU397347	GU397363		GU397356
Mytilinidion resinicola	CBS 304 34	FJ161185	NG 016511	FJ161101	FJ161120
<i>Mytilinidion rhenanum</i>	EB 0341	GU323207	GU323187	19101101	19101120
<i>Mytilinidion rhenanum</i>	CBS 135 45	FJ161175	00323107		
Mytilinidion menanum Mytilinidion	CDS 155 45	13101175			
scolecosporum	CBS 305 34	FJ161186	NG 016510	FJ161102	FJ161121
<i>Mytilinidion thujarum</i>	EB 0268	GU323206	GU323188	10101102	10101121
Mytilinidion tortile	CBS 306.34	FJ161187	FJ161147		
Natipusilla limonensis	L AF286	HM196370	HM196377		
•					
Natipusilla naponensis	L AF217	HM196372	HM196378		
Neodevriesia hilliana	CBS 123187	GU214414			
Neomicrothyrium	IFRDCC 2194	JQ036228	JQ036223		
siamense			JQ030223		
Oedohysterium insidens	ANM1443	GQ221882			
Oedohysterium insidens	CBS 238 34	FJ161182	NG 016512	FJ161097	FJ161118
Oedohysterium sinense	CBS 123345	FJ161209	NG016513		
o euonystertum striense	000 1200 10	10101207	110010313		
Oedohysterium sinense	EB 0339	GU397348	GU397364	GU397339	GU397357
Ostreichnion					
centramurum	isolate chuni 70	KM272256	KM272257	KM277819	
Ostreichnion curtisii	CBS 198 34	FJ161176	FJ161137	FJ161093	
Ostreichnion sassafras	CBS 322 34	FJ161188	FJ161148		FJ161122
Otthia spiraeae	CBS 114124	EF204498	EF204515		EF204485
Patellaria atrata	CBS 958 97	GU301855	GU296181	GU349038	GU371726
Petrophila incerta	CBS 118608	GU323961	GU323991		
Phaeosphaeria avenaria	AFTOL ID 280	AY544684	AY544725.	DQ677885	DQ677941
Phaeothecoidiella			111011120	22011000	22011711
illinoisensis	CBS125223	GU117901			
Phaeotrichum benjaminii	AFTOL ID 1184	AY004340	AY016348	DQ677892	DQ677946
Phyllobathelium					
anomalum	242	GU327722	JN887386		
Piedraia hortae	CBS 480 64	KF901943	AY016349		KF902289
Piedraia quintanilhae	CBS 327 63	GU214468			
	CBS 191				
Pleospora herbarum	86/AFTOL-ID 940	GU238232	DQ247812	DQ471090	DQ247794
Pleosporales sp.	CLS 2009a	GQ289828			GU371759
Pleurotrema					
thamplaensis	MFLUCC 15 0635	KX925435	KX925436		
Polyplosphaeria fusca	KT 1616	AB524604	AB524463	AB524820	
Preussia terricola	AFTOL ID 282	AY544686	AY544726	DQ471063	DQ470895
Pseudorobillarda		VE027457	VE027452		WE007404
eucalypti Pseudorobillarda	MFLUCC 12-0422	KF827457	KF827463		KF827496
phragmitis	CBS 398 61	EU754203	EU754104		
Pseudorobillarda		E0734203	E0734104		
FSPM(I())(())(())(())(())())					

Species name	Strain	LSU	SSU	TEF	RPB2
Pseudorobillarda sp.	MFLUCC12 0316	KF827453	KF827459	KF827480	KF827492
Pseudorobillarda sp.	MFLUCC12 0422	KF827457	KF827463	KF827484	KF827496
Pseudorobillarda texana	BCC12535	FJ825377	FJ825367		
Pseudovirgaria grisea	CPC 19134	JF957614			
Pseudovirgaria					
hyperparasitica	CPC 10753	EU041824			
Psiloglonium araucanum	CMW 18760	FJ161192	FJ161151		
Psiloglonium araucanum	CBS 112412	FJ161172	FJ161133	FJ161089	FJ161112
Psiloglonium araucanum	CMW 17941	J161190	FJ161149		
Psiloglonium					
clavisporum	CBS 123340	FJ161205			
Psiloglonium					
clavisporum	CBS 123341	FJ161206			
Psiloglonium clavisporum	CBS 123338	FJ161197k			
Psiloglonium		1'J10117/K			
clavisporum	GKM L172A	GU323204	GU323192		
Psiloglonium					
clavisporum	GKM344A	GQ221889			
Psiloglonium colihuae	MFLUCC 11 0178	KP744511			
Psiloglonium					
macrosporum	MFLUCC 13 0448	KU243049			
Psiloglonium					
macrosporum	MFLU 16-0955	MH535903			
Psiloglonium multiseptatum	MFLUCC 11 C0164	KP744512			
Psiloglonium sasicola	MFLUCC 10 0565	KP744512 KP744513			
Psiloglonium simulans	CBS 206 34	FJ161178	FJ161139	FJ161094	FJ161116
		GQ221873	FJ101139	FJ101094	FJIOIIIO
Psiloglonium simulans Quadricrura	ANM1557	GQ221873			
septentrionalis	HC 4983	AB524615	AB524474	AB524830	
Quasiconcha reticulata	EB QR	GU397349	110521171	11100210000	
Rhexothecium globosum	CBS 955 73	HG004544			
Rhytidhysteron	CDS 755 75	110004344			
hysterinum	EB 0351	GU397350		GU397340	
Rhytidhysteron					
neorufulum	MFLUCC 13 0221	KU377567	KU377572		
Rhytidhysteron					
neorufulum	MFLUCC 13 0216	KU377566	KU377571	KU510400	
Rhytidhysteron opuntiae	GKM1190	GQ221892			
Rhytidhysteron rufulum	361A	GU301867	GU296192		
Rhytidhysteron rufulum	GKM361A	GQ221893			
Rhytidhysteron rufulum	MFLUCC 12 0529	KJ526124	KJ546127		
Rhytidhysteron rufulum	HUEFS 192194	KF914915			
Rhytidhysteron rufulum	MFLUCC 12 0528	KJ418117	KJ418119		
Rhytidhysteron rufulum	AFTOL ID 2109	FJ469672			
Rhytidhysteron rufulum	MFLUCC 12 0011	KJ418109	KJ418110		
,				1	1

Species name	Strain	LSU	SSU	TEF	RPB2
Rhytidhysteron rufulum	EB 0381	GU397351	GU397366		
Rhytidhysteron rufulum	MFLUCC 14 0577	KU377565	KU377570	KU510399	
Rhytidhysteron rufulum	EB 0384	GU397354	GU397368		
Rhytidhysteron rufulum	EB 0382	GU397352			
Rhytidhysteron rufulum	EB 0383	GU397353	GU397367		
Rhytidhysteron rufulum	MFLUCC 12 0013	KJ418111	KJ418113		
Rhytidhysteron rufulum	MFLUCC 12 0530	KJ526125	KJ546128		
Rhytidhysteron					
thailandicum	MFLUCC 14 0503	KU377564	KU377569	KU497490	
Roussoella hysterioides	KT 1651	AB524621	AB524480	AB539114	AB539101
Saccardoella rhizophorae	JK 5456A	GU479799	GU479766	GU479860	
Schismatomma decolorans	AFTOL-ID 307	AY548815	AY548809	DQ883725	DQ883715
Schizothyrium pomi	CBS 406 61	EF134949	111540009	DQ003723	DQ003713
Setomelanomma holmii	CBS 110217	GQ387633	GQ387572	GU349028	GU371800
Stigmatodiscus		0001000	0001012	00317020	003/1000
enigmaticus	L83		KU234131		KU234126
Stigmatodiscus pruni	L167	KX611110	KX611110	KX611111	KX611109
Strigula jamesii	MPN548	JN887404	JN887388	JN887432	
Strigula nemathora	MPN72	JN887405	JN887389	JN887433	
Sympoventuria capensis	CPC 12840	KF937238			KF937272
Teratosphaeria					
jonkershoekensis	CBS 112224	KF901827	GU301874	KF903090	KF902183
Tetraplosphaeria sasicola	KT 563	AB524631	AB524490	AB524838	
Thyridaria rubronotata	CBS 419 85	GU301875.		GU349002	GU371728
Trematosphaeria pertusa Trichodelitschia	CBS 122371	GU301876	FJ201993	KF015702	GU371801
bisporula	CBS 262 69	GU348996	GU349000	GU349020	GU371802
Trichodelitschia munkii	Kruys 201	DQ384096	DQ384070	00319020	00371002
Tripospermum myrti	CBS 437 68	GU323216	GU566744		GU561854
Trypethelium tropicum	MPN130	KM453819	00500711		00501051
Tubeufia paludosa	CBS 120503	GU301877	GU296203	GU349024	GU371731
Tyrannosorus pinicola	CBS 124.88	DQ470974	DQ471025	DQ471098	DQ470928
1 yrannosorns princora			22111020	22111070	
Ulospora bilgramii	AFTOL ID 1598	DQ678076	DQ678025	DQ677921	DQ677974
Valsaria insitiva	CBS 127882	KP687886		KP688054	KP687959
Valsaria lopadostomoides	CBS 139062	KP687868	KP687972	KP688037	KP687943
Valsaria neotropica	CBS 139064	KP687874	KP687974	KP688042	KP687948
Venturia inaequalis	CBS 815 69	GU301878	GU296204	GU349023	
Verruculina enalia	AFTOL ID 1601	DQ678079	DQ678028	DQ677924	DQ677977
Zeloasperisporium cliviae	CPC 25145	KR476781			
Zeloasperisporium ficusicola	MFLUCC 15 0222	KT387735	KT387736		
Zeloasperisporium		111337733	111307730		
wrightiae	MFLUCC 15 0210	KT387739	KT387743		