Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The nematode-trapping fungus Arthrobotrys oligospora detects prey pheromones via G protein-coupled receptors

Abstract

The ability to sense prey-derived cues is essential for predatory lifestyles. Under low-nutrient conditions, Arthrobotrys oligospora and other nematode-trapping fungi develop dedicated structures for nematode capture when exposed to nematode-derived cues, including a conserved family of pheromones, the ascarosides. A.oligospora senses ascarosides via conserved MAPK and cAMP–PKA pathways; however, the upstream receptors remain unknown. Here, using genomic, transcriptomic and functional analyses, we identified two families of G protein-coupled receptors (GPCRs) involved in sensing distinct nematode-derived cues. GPCRs homologous to yeast glucose receptors are required for ascaroside sensing, whereas Pth11-like GPCRs contribute to ascaroside-independent nematode sensing. Both GPCR classes activate conserved cAMP–PKA signalling to trigger trap development. This work demonstrates that predatory fungi use multiple GPCRs to sense several distinct nematode-derived cues for prey recognition and to enable a switch to a predatory lifestyle. Identification of these receptors reveals the molecular mechanisms of cross-kingdom communication via conserved pheromones also sensed by plants and animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genomic and transcriptomic analyses of GPCRs in A.oligospora during nematode predation.
Fig. 2: The endocytosis of Gpr2 and Gpr3 is triggered by ascr#3 and ascr#7.
Fig. 3: Overexpression of Gpr2 or Gpr3 enhanced trap development in response to ascarosides.
Fig. 4: Gpr2 and Gpr3 physically interact with Gpa2 in vivo.
Fig. 5: Gin1, Gin3 and Gin4 sense nematode-derived cues and regulate trap development.

Similar content being viewed by others

Data availability

The A.oligospora TWF154 genome database used in this study is from National Center for Biotechnology Information GenBank under the accession number SOZJ00000000. RNA sequencing data used in this study are from the National Center for Biotechnology Information Gene Expression Omnibus database under the accession number GSE233568. References to these accession numbers can also be found throughout this paper. Source data are provided with this paper.

References

  1. Brown, N. A., Schrevens, S., Van Dijck, P. & Goldman, G. H. Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nat. Microbiol. 3, 402–414 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. van Dijck, P. et al. Nutrient sensing at the plasma membrane of fungal cells. Microbiol. Spectr. 5, 2 (2017).

  3. Martín, J., Van Den Berg, M., van Themaat, E. V. L. & Liras, P. Sensing and transduction of nutritional and chemical signals in filamentous fungi: impact on cell development and secondary metabolites biosynthesis. Biotechnol. Adv. 37, 1–15 (2019).

    Article  Google Scholar 

  4. Jiang, C. et al. An expanded subfamily of G-protein-coupled receptor genes in Fusarium graminearum required for wheat infection. Nat. Microbiol. 4, 1582–1591 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Johns, L. E., Goldman, G. H., Ries, L. N. & Brown, N. A. Nutrient sensing and acquisition in fungi: mechanisms promoting pathogenesis in plant and human hosts. Fungal Biol. Rev. 36, 1–14 (2021).

    Article  CAS  Google Scholar 

  6. Lorenz, M. C. et al. The G protein-coupled receptor Gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154, 609–622 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maidan, M. M. et al. The G protein-coupled receptor Gpr1 and the Gα protein Gpa2 act through the cAMP–protein kinase A pathway to induce morphogenesis in Candida albicans. Mol. Biol. Cell 16, 1971–1986 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ballou, E. R. et al. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat. Microbiol. 2, 1–9 (2016).

    Article  Google Scholar 

  9. DeZwaan, T. M., Carroll, A. M., Valent, B. & Sweigard, J. A. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11, 2013–2030 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shang, J., Shang, Y., Tang, G. & Wang, C. Identification of a key G-protein coupled receptor in mediating appressorium formation and fungal virulence against insects. Sci. China Life Sci. 64, 466–477 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Nordbring-Hertz, B., Jansson, H. B. & Tunlid, A. Nematophagous fungi. eLS https://doi.org/10.1038/npg.els.0000374 (2001).

  12. Yang, Y., Yang, E., An, Z. & Liu, X. Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc. Natl Acad. Sci. USA 104, 8379–8384 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, E. et al. Origin and evolution of carnivorism in the Ascomycota (fungi). Proc. Natl Acad. Sci. USA 109, 10960–10965 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Youssar, L. et al. Intercellular communication is required for trap formation in the nematode-trapping fungus Duddingtonia flagrans. PLoS Genet. 15, e1008029 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choe, A. et al. Ascaroside signaling is widely conserved among nematodes. Curr. Biol. 22, 772–780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsueh, Y.-P., Mahanti, P., Schroeder, F. C. & Sternberg, P. W. Nematode-trapping fungi eavesdrop on nematode pheromones. Curr. Biol. 23, 83–86 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Srinivasan, J. et al. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol. 10, e1001237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Srinivasan, J. et al. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454, 1115–1118 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pungaliya, C. et al. A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 106, 7708–7713 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamada, K. et al. Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans. Science 329, 1647–1650 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Butcher, R. A., Fujita, M., Schroeder, F. C. & Clardy, J. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3, 420–422 (2007).

    Article  PubMed  Google Scholar 

  22. Kim, K. et al. Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans. Science 326, 994–998 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McGrath, P. T. et al. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature 477, 321–325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park, D. et al. Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 109, 9917–9922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Manosalva, P. et al. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat. Commun. 6, 7795 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Shinoda, K. et al. Nematode ascarosides attenuate mammalian type 2 inflammatory responses. Proc. Natl Acad. Sci. USA 119, e2108686119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, C.-T. et al. Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode-trapping fungi. Proc. Natl Acad. Sci. USA 117, 6762–6770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, S.-A., Lin, H.-C. & Hsueh, Y.-P. The cAMP–PKA pathway regulates prey sensing and trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. G3 12, jkac217 (2022).

  29. Chen, S.-A., Lin, H.-C., Schroeder, F. C. & Hsueh, Y.-P. Prey sensing and response in a nematode-trapping fungus is governed by the MAPK pheromone response pathway. Genetics 217, iyaa008 (2021).

    Article  PubMed  Google Scholar 

  30. Artyukhin, A. B. et al. Metabolomic ‘dark matter’ dependent on peroxisomal β-oxidation in Caenorhabditis elegans. J. Am. Chem. Soc. 140, 2841–2852 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fox, B. W. et al. C. elegans as a model for inter-individual variation in metabolism. Nature 607, 571–577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Butcher, R. A. et al. Biosynthesis of the Caenorhabditis elegans dauer pheromone. Proc. Natl Acad. Sci. USA 106, 1875–1879 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krogh, A., Larsson, B., Von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Käll, L., Krogh, A. & Sonnhammer, E. L. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res. 35, W429–W432 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dilks, T., Halsey, K., De Vos, R. P., Hammond-Kosack, K. E. & Brown, N. A. Non-canonical fungal G-protein coupled receptors promote Fusarium head blight on wheat. PLoS Pathog. 15, e1007666 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dean, R. A. et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Lin, H.-C. et al. Key processes required for the different stages of fungal carnivory by a nematode-trapping fungus. PLoS Biol. 21, e3002400 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hanyaloglu, A. C. & Zastrow, M. V. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302–2309 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grosdidier, A., Zoete, V. & Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 39, W270–W277 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bai, M. Dimerization of G-protein-coupled receptors: roles in signal transduction. Cell Signal. 16, 175–186 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Bulenger, S., Marullo, S. & Bouvier, M. Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol. Sci. 26, 131–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Kuo, C.-Y., Chen, S.-A. & Hsueh, Y.-P. The high osmolarity glycerol (HOG) pathway functions in osmosensing, trap morphogenesis and conidiation of the nematode-trapping fungus Arthrobotrys oligospora. J. Fungi 6, 1–11 (2020).

    Article  Google Scholar 

  45. Zhen, Z. et al. MAP kinase Slt2 orthologs play similar roles in conidiation, trap formation and pathogenicity in two nematode-trapping fungi. Fungal Genet. Biol. 116, 42–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Thompson, J. N. The evolution of species interactions. Science 284, 2116–2118 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Nürnberger, T., Brunner, F., Kemmerling, B. & Piater, L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198, 249–266 (2004).

    Article  PubMed  Google Scholar 

  48. Abisado, R. G., Benomar, S., Klaus, J. R., Dandekar, A. A. & Chandler, J. R. Bacterial quorum sensing and microbial community interactions. MBio 9, e02331–17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, L. et al. Ascarosides coordinate the dispersal of a plant-parasitic nematode with the metamorphosis of its vector beetle. Nat. Commun. 7, 12341 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang, L. et al. NILR1 perceives a nematode ascaroside triggering immune signaling and resistance. Curr. Biol. 33, 3992–3997.e3993 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, X., Li, G., Li, L., Su, Z. & Chen, C. Genome-wide comparative analysis of putative Pth11-related G protein-coupled receptors in fungi belonging to Pezizomycotina. BMC Microbiol. 17, 1–11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Priest, S. J., Yadav, V. & Heitman, J. Advances in understanding the evolution of fungal genome architecture. F1000Res. 9, F1000 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Taly, J.-F. et al. Using the T-Coffee package to build multiple sequence alignments of protein, RNA, DNA sequences and 3D structures. Nat. Protoc. 6, 1669–1682 (2011).

    Article  PubMed  Google Scholar 

  56. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. de Ulzurrun, G. V.-D., Huang, T.-Y., Chang, C.-W., Lin, H.-C. & Hsueh, Y.-P. Fungal Feature Tracker (FFT): a tool for quantitatively characterizing the morphology and growth of filamentous fungi. PLoS Comput. Biol. 15, e1007428 (2019).

    Article  Google Scholar 

  59. Zhang, Y. K., Sanchez-Ayala, M. A., Sternberg, P. W., Srinivasan, J. & Schroeder, F. C. Improved synthesis for modular ascarosides uncovers biological activity. Org. Lett. 19, 2837–2840 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hsueh, Y.-P., Xue, C. & Heitman, J. G protein signaling governing cell fate decisions involves opposing Gα subunits in Cryptococcus neoformans. Mol. Biol. Cell. 18, 3237–3249 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schumann, U., Smith, N. A. & Wang, M.-B. A fast and efficient method for preparation of high-quality RNA from fungal mycelia. BMC Res. Notes 6, 1–5 (2013).

    Article  Google Scholar 

  62. Hsu, P.-C. et al. Plastic rewiring of Sef1 transcriptional networks and the potential of nonfunctional transcription factor binding in facilitating adaptive evolution. Mol. Biol. Evol. 38, 4732–4747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kang, Y.-S., Kane, J., Kurjan, J., Stadel, J. M. & Tipper, D. J. Effects of expression of mammalian G alpha and hybrid mammalian-yeast G alpha proteins on the yeast pheromone response signal transduction pathway. Mol. Cell. Biol. 10, 2582–2590 (1990).

  64. Xue, C., Wang, Y. & Hsueh, Y.-P. Assessment of constitutive activity of a G protein-coupled receptor, CPR2, in Cryptococcus neoformans by heterologous and homologous methods. Methods Enzymol. 484, 397–412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S.-C. Cheng for providing the anti-HA antibody and J.-Y. Leu for assistance with yeast transformation. We thank C.-Y. Lin and T.-H. Chang at the Metabolomics Core Facility, Agricultural Biotechnology Research Center at Academia Sinica for assisting with UPLC–tandem mass spectrometry parameter optimization and data analysis. We thank S.-P. Lee at the Imaging Core at the Institute of Molecular Biology, Academia Sinica for technical assistance with imaging. We are grateful to L.-M. Hsu and A.-M. Yang for their technical assistance in the laboratory. Funding for this work was provided by the Academia Sinica Investigator Award (to Y.-P.H., AS-IA-111-L02); the Ministry of Science and Technology MOST grant (to Y.-P.H., 110-2311-B-001-047-MY3); the Academia Sinica Postdoctoral Scholar Program (to R.J.T., AS-PD 11301-L06); National Science and Technology Council NSTC grant (to Y.-C.C., 108-2113-M-038-002-MY3); and the National Institutes of Health (to F.C.S., R35GM131877). We also thank support from the EMBO YIP and GIN programs.

Author information

Authors and Affiliations

Authors

Contributions

C.-Y.K. and Y.-P.H. conceived and designed the research. C.-Y.K., H.-C.L. and S.-C.J. performed the experiments. C.-Y.K., H.-C.L., S.-C.J., G.V.-D.U., Y.-C.C. and Y.-P.H. analysed the data. Y.-C.C., J.H. and F.C.S contributed reagents, materials and analysis tools. C.-Y.K., R.J.T., F.C.S. and Y.-P.H. wrote the paper.

Corresponding author

Correspondence to Yen-Ping Hsueh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Gustavo Goldman, Xingzhong Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Phylogenetic tree of GPCRs from carbon receptor family.

A maximum-likelihood phylogenetic tree of GPCR protein sequences belonging to carbon receptor family from A. oligospora and orthologs from model fungi. Ani: Aspergillus nidulans. Ao: A. oligospora. Cal: Candida albicans. Cne: Cryptococcus neoformans. Fgr: F. graminearum. Mor: M. oryzae. Ncr: Neurospora crassa. Sce: S. cerevisiae. Uma: Ustilago maydis.

Extended Data Fig. 2 Expression of GINs and GPRs is up-regulated after exposure to C. elegans.

a, Transcripts per kilobase million (TPM) values of the differentially expressed Pth11-like GPCRs, with arrows indicating the five highly upregulated Pth11-like GPCRs. (The values represent the average of three independent biological replicates.). b, TPM values of the differentially expressed GPR2 and GPR3. (The values represent the average of three independent biological replicates.). c, d, Protein sequence alignment of Gins (c) and Gprs (d). Three levels of shading and three different symbols are used to indicate degrees of sequence similarity: black background with asterisk (*) indicates identical amino acids, intermediate grey background with colon (:) indicates conserved amino acids, and light grey with single dots (.) indicates semi-conserved amino acids.

Source data

Extended Data Fig. 3 Expression of GPR3 and GINs is regulated by Ste12.

a, b, The expression level of GPR (a) and GIN (b) genes in the WT and ste12 mutant was evaluated using qPCR under with or without exposure to C. elegans. GPD1 was used as normalization control. (Data represent mean ± SEM; n shown along the x axis; two-tailed unpaired Student’s t-test; P values are unadjusted.).

Source data

Extended Data Fig. 4 The Gins and Gprs are not required for fungal growth.

a, Colonies of the WT, gin, and gpr mutants grown on PDA plates (5.5-cm diameter) for 3 days (Scale bar, 1 cm; the images are representative of three independent biological repeats.). b, Quantification of colony diameter for the A. oligospora WT and gpcr mutants. (Data represent mean ± SEM; n shown along the x axis; two-tailed unpaired Student’s t-test; P values are noted.).

Source data

Extended Data Fig. 5 Protein structural alignment of Gpr2, Gpr3, and SRBC-66.

a, b, TM-align was utilized to compare the protein structure of Gpr3 (depicted in green) with Gpr2 (depicted in blue) (a) and SRBC-66 (depicted in red) (b). (0.5 < TM-score < 1.00, in about the same fold). An overall map of the protein structural alignment between Gpr2 (blue), Gpr3 (green), and SRBC-66 (red) was based on the structural predictions from AlphaFold.

Extended Data Fig. 6 The prediction of ascaroside binding pocket in Gpr3.

Using SwissDock to predict the ascaroside binding pocket in Gpr3. An overall map of the docking interactions between Gpr3 (green) and and ascr#3 (a) and ascr#7 (b), based on the structural predictions from AlphaFold. The structural display of the amino acid region from 212 to 264 has been omitted due to its prediction as a random coil. Additionally, an enlarged schematic diagram highlights the potential ascaroside docking region in Gpr3.

Extended Data Fig. 7 Western blot analysis with S. cerevisiae transformants expressing each GPCR-3×HA and Gpa-Myc.

Total proteins were extracted from S. cerevisiae expressing each GPCR-3×HA or each Gpa-Myc construct. The expected 48-kD GPCR-3×HA and 42-kD Gpa-Myc bands were detected in each transformants. Detection with the anti-tubulin antibody was used as the loading control. The blots are representative of two independent biological repeats.

Source data

Extended Data Fig. 8 The Gins are not required for ascaroside sensing.

a, Quantification of the trap numbers induced by ascarosides for the A. oligospora WT and gin mutants. (Data represent mean ± SEM; n shown along the x axis; two-tailed unpaired Student’s t-test; P values are noted.). b, Representative brightfield images of the traps induced by C. elegans in the A. oligospora WT and gin mutants. (Scale bar, 200 μm. Black arrow indicates trap; the images are representative of three independent biological repeats.). c, Quantification of the trap numbers induced by C. elegans for the A. oligospora WT and gin mutants. (Data represent ± SEM; n shown along the x axis; two-tailed unpaired Student’s t-test; P values are noted.). d, Images of traps formed by the A. oligospora WT and gin mutants after 24 hours of continuous induction with 400 C. elegans. Vegetative hyphae and traps of A. oligospora were stained with SR2200, which specifically bound to fungal cell walls. (Scale bar, 20 μm; the images are representative of three independent biological repeats.). e, The localization of Gin1-GFP was displayed at 0, 2, and 10 hours after C. elegans induction. Merged image shows the GFP channel, FM4-64, and CMAC. (Scale bar, 10 μm; the images are representative of three independent biological repeats.) f, The expression level of GIN genes in the WT and gin3 mutant was evaluated using qPCR under with or without exposure to C. elegans. GPD1 was used as normalization control. (Data represent ± SEM; n shown along the x axis; two-tailed unpaired Student’s t-test; P values are noted.).

Source data

Extended Data Fig. 9 Distribution of GPCRs across the nine A. oligospora chromosomes.

GPCR-encoding genes from Pth11-like family (pink), carbon receptor (blue), and other classes (green) distribute across the nine A. oligospora chromosomes.

Extended Data Fig. 10 Hypothetical model of GPCRs-governed prey sensing and trap development in A. oligospora.

When Gpr2 and Gpr3 recognize ascr#3 and ascr#7, Gpa2 dissociates from the GPCRs and subsequently activates the downstream cAMP-PKA pathway. Additionally, Gin3 is activated by other unknown nematode-derived signals and also operates upstream of the cAMP-PKA pathway. PKA then phosphorylates the downstream substrates required for trap morphogenesis. Additionally, Gpr2, Gpr3, and Gin3 may be involved in the modulation of phosphorylation of Hog1. Gin3 may also partially activate the pheromone response MAPK pathway to induce the expression of GINs and GPR3, which may indicate their potential role as nematode-responsive genes and as receptors for unidentified nematode signals in A. oligospora.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1–4.

Reporting Summary

Peer Review File

41564_2024_1679_MOESM4_ESM.xlsx

Supplementary Table 1 Manual annotation of 83 putative GPCR genes. Supplementary Table 2 Wilcoxon test result of Pth11-like GPCR expression. Supplementary Table 3 The primers used in this study. Supplementary Table 4 The strains and plasmids used in this study.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Uncropped western blots and statistical source data.

Source Data Fig. 4

Uncropped western blots and statistical source data.

Source Data Fig. 5

Uncropped western blots and statistical source data.

Source Data Fig. 5

Uncropped western blots and statistical source data.

Source Data Extended Data Fig. 2/Table 2

Graph source data.

Source Data Extended Data Fig. 3/Table 3

Statistical source data.

Source Data Extended Data Fig. 4/Table 4

Statistical source data.

Source Data Extended Data Fig. 7/Table 7

Uncropped western blots and/or gels.

Source Data Extended Data Fig. 8/Table 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, CY., Tay, R.J., Lin, HC. et al. The nematode-trapping fungus Arthrobotrys oligospora detects prey pheromones via G protein-coupled receptors. Nat Microbiol (2024). https://doi.org/10.1038/s41564-024-01679-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41564-024-01679-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing