A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of *Geomyces destructans*, the causal agent of bat white-nose syndrome

Jeffrey M. Lorch¹

Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, Medical Sciences Center, 1300 University Avenue, Madison, Wisconsin 53706

Daniel L. Lindner¹

US Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, Wisconsin 53726

Andrea Gargas

Symbiology LLC, Middleton, Wisconsin 53562

Laura K. Muller

US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, Wisconsin 53711

Andrew M. Minnis

US Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, Wisconsin 53726

David S. Blehert²

US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, Wisconsin 53711

Abstract: The recent emergence of white-nose syndrome (WNS), a fungal disease causing unprecedented mortality among hibernating bats of eastern North America, has revealed a knowledge gap regarding fungal communities associated with bats and their hibernacula. We used culture-based techniques to investigate the diversity of fungi in soil samples collected from 24 bat hibernacula in the eastern United States. Ribosomal RNA regions (internal transcribed spacer and partial intergenic spacer) were sequenced to preliminarily characterize isolates. Geomyces species were one of the most abundant and diverse groups cultured, representing approximately 33% of all isolates. Geomyces destructans was isolated from soil samples from three hibernacula in states where WNS is known to occur, and many of the other cultured Geomyces isolates likely represent undescribed taxa. Further characterization of the diversity of fungi that occur in hibernacula both will facilitate an improved understanding of the ecology

of *G. destructans* within this complex fungal community and provide an opportunity to identify characteristics that differentiate *G. destructans* from non-pathogenic relatives.

Key words: bat, Geomyces, skin infection, whitenose syndrome, wildlife disease

INTRODUCTION

Since first photo documented in New York in February 2006, bat white-nose syndrome (WNS) has spread to 19 U.S. states and four Canadian provinces (see http:// www.whitenosesyndrome.org/resources/map). The disease has been linked to the deaths of over 5 000 000 bats (see http://www.whitenosesyndrome.org/news/northamerican-bat-death-toll-exceeds-55-million-white-nosesyndrome), and the high mortality caused by WNS has prompted concern over the future of North American bat populations (Blehert et al. 2009, Frick et al. 2010). White-nose syndrome is named for characteristic white growth caused by the recently described psychrophilic fungus, Geomyces destructans (Ascomycota, Helotiales) (Gargas et al. 2009, Chaturvedi et al. 2010), as it colonizes and invades exposed muzzle, ear and/or wing skin of infected bats (Meteyer et al. 2009). While laboratory studies have confirmed that G. destructans causes WNS in healthy bats (Lorch et al. 2011, Warnecke et al. 2012), little is known about the ecology or life cycle of this fungal pathogen.

Because active infection by G. destructans only occurs while bats hibernate and the fungus cannot grow at temperatures in excess of approximately 20 C (Gargas et al. 2009), it is possible that the cool caves and mines inhabited by bats during hibernation serve as environmental reservoirs for the fungus. Members of the genus Geomyces frequently are isolated from soil (States and Christensen 2001, Domsch et al. 2007, Izzo and Mazzola 2009, Arenz and Blanchette 2011), and many pathogenic fungi are known for their ability to persist in the environment even in the absence of hosts (Fisher et al. 2012). Thus, the environment might play an important role in the lifecycle of G. destructans and consequent manifestation of WNS in bats. A better understanding of the ecology of G. destructans is necessary to develop effective management strategies to control this disease.

Current efforts to study *G. destructans* in bat hibernacula are complicated by a limited knowledge

Submitted 6 May 2012; accepted for publication 5 Sep 2012.

¹J.M.L and D.L.L. contributed equally to this work.

²Corresponding author. E-mail: dblehert@usgs.gov

of fungal communities in these sites. Although previous researchers have investigated the fungal communities of particular cave systems (see Orpurt 1964, Koilraj et al. 1999, Nováková 2009, Shapiro and Pringle 2010, Vaughan et al. 2011), no broad-scale geographic sampling of cave mycota has been conducted in eastern North America. In addition, DNA-based identification of fungal isolates has become common only in the past decade, so relatively little work using modern species concepts has been conducted on the fungal communities that inhabit bat hibernacula where WNS has become prevalent.

A recent PCR-based study revealed that soil from bat hibernacula in the eastern United States contained a diversity of undescribed Geomyces species genetically similar to G. destructans (Lindner et al. 2011); DNA from these Geomyces species cross-reacted with primers previously designed to amplify DNA from G. destructans (Lorch et al. 2010), complicating identification of G. destructans in environmental samples. DNA from G. destructans was confirmed in soil samples collected from three hibernacula that housed infected bats, although G. destructans DNA appeared to be at low abundance relative to DNA from other fungi (Lindner et al. 2011). To expand upon this work, we conducted a culture-based survey to characterize psychrophilic and psychrotolerant fungi in soil samples collected from 24 bat hibernacula in the eastern United States. Greater knowledge of these fungal communities, particularly with respect to species of Geomyces, will be important to understand the ecology, evolution and pathogenicity of G. destructans.

MATERIALS AND METHODS

The same 24 soil samples used for molecular analyses by Lindner et al. (2011) were used for the culture analyses described in this study. Soil samples were collected from bat hibernacula both within and outside the known range of WNS during the winter of 2008-2009 as described by Lindner et al. (2011). Following collection, soil samples were shipped to the USGS, National Wildlife Health Center (Madison, Wisconsin) on wet ice and stored at -80 C. The 24 samples analyzed for this study were collected from 19 hibernacula in states within the known range of WNS (Connecticut, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Virginia, Vermont, West Virginia) and five hibernacula in states where WNS had not been observed at the time the samples were collected (Indiana, Kentucky, Minnesota, Mississippi, Wisconsin) (TABLE I). The names and coordinates of the collection sites have been withheld due to the sensitive nature of bat hibernacula.

Approximately 200 mg of each frozen soil sample was suspended in 0.5 mL sterile, deionized water, and serially diluted to 10^{-4} . An aliquot (150 µL) of each of the 10^{-1} , 10^{-2} , 10^{-3} , and 10^{-4} dilutions was transferred onto duplicate

Sabouraud dextrose agar plates containing chloramphenicol and gentamycin (BD Diagnostic Systems, Sparks, Maryland) and distributed with a sterile glass spreader until the liquid was absorbed by the medium. Plates were sealed with laboratory film (Bemis Flexible Packaging, Neenah, Wisconsin), incubated in the dark at 7 C for 90 d and examined for fungal growth once weekly. During each inspection, colonies of filamentous fungi appearing to be morphologically distinct from others within the same soil sample were isolated by transferring to fresh medium. Fungal tape impressions (St-Germain and Summerbell 2011) were examined for each isolate by light microscopy with a $100 \times$ objective.

DNA was extracted from fungal isolates with the protocol of Lindner and Banik (2009) with reagent volumes modified for use with 0.2 mL PCR strip tubes. Mycelium was scraped from cultures with a flattened transfer needle and placed in 200 µL cell lysis solution in PCR strip tubes. Tubes were then frozen at -80 C for a minimum of 30 min and subsequently placed in a 65 C water bath for 2 h. The samples were centrifuged at 10 000 rcf for 5 min, after which 100 µL supernatant was removed and transferred to a new strip tube. Next, 150 µL 0 C 2-propanol was added to each supernatant, tubes were inverted to mix, incubated at -80 C for 15 min and centrifuged at 10000 rcf for 20 min at 0 C. Supernatants were discarded, 175 µL 75% ethanol (v/v) was added, and tubes were centrifuged at 16 000 rcf for 5 min at room temperature. Supernatants were removed and pellets were air-dried at room temperature for 10 min and resuspended in 45 µL molecular biology-grade water. DNA in aqueous solution was cleaned with the GeneClean III kit (MP Biomedicals, Solon, Ohio) following the manufacturer's protocol with the following modifications. First, 45 µL aqueous DNA solution was combined with 135 µL NaI solution and 5 µL glassmilk. Tubes then were agitated continuously for 5 min followed by centrifugation at 16000 rcf for 8 s. The supernatant was discarded, and the pellet was washed once with 175 µL New Wash solution provided with the kit. After removal of solution, pellets were air-dried 15 min and template DNA was eluted in 50 µL moleculargrade water.

PCR was performed with $5 \times$ Green GoTag reaction buffer and GoTaq DNA polymerase (Promega, Madison, Wisconsin). GoTaq reaction buffer was diluted to a $1 \times$ working concentration, and 0.25 units GoTaq DNA polymerase were used per reaction. Primers ITS1-F and ITS4 (Gardes and Bruns 1993) were used to amplify the ITS region. The intergenic spacer region (IGS) was amplified with primers CNL12 and CNS1 (White et al. 1990, Anderson and Stasovski 1992, Mbofung et al. 2007). All primer pairs were used at a final concentration of 0.4 µM and each dNTP (Promega, Madison, Wisconsin) had a final concentration of 200 µM. Thermo-cycler conditions for amplification of ITS were: initial denaturation at 94 C for 2 min followed by 30 cycles of denaturing at 94 C for 30 s, annealing at 55 C for 45 s, and extension at 72 C for 1 min and a final extension of 72 C for 10 min. Thermo-cycler conditions for IGS followed Mbofung et al. (2007).

Before sequencing, PCR products were analyzed with 1% agarose gels stained with ethidium bromide to confirm

Funcel		GenBank accession nos.				
Fungal isolate	Phylum	Class	Order	Genus	ITS	IGS
22MS03	Ascomycota	Dothideomycetes	Capnodiales	Incertae sedis	JX270582	JX270306
)9CT02	Ascomycota	Dothideomycetes	Capnodiales	Pseudocercosporella	JX270425	_
)7MA20	Ascomycota	Dothideomycetes	Incertae sedis	Arthrographis	JX270420	JX270227
2MS01	Ascomycota	Dothideomycetes	Incertae sedis	Epicoccum	JX270580	JX270305
9VA07	Ascomycota	Dothideomycetes	Pleosporales	Dictyosporium	JX270548	
3PA04	Ascomycota	Dothideomycetes	Pleosporales ^c	Incertae sedis	JX270465	_
5PA17A	Ascomycota	Eurotiomycetes	Eurotiales	Aspergillus	JX270492	JX270264
5PA17B	Ascomycota	Eurotiomycetes	Eurotiales	Aspergillus	JX270493	JX27026
7WV10	Ascomycota	Eurotiomycetes	Eurotiales	Aspergillus	JX270516	JX27027
7WV11	Ascomycota	Eurotiomycetes	Eurotiales	Aspergillus	JX270517	JX270274
7WV13	Ascomycota	Eurotiomycetes	Eurotiales	Aspergillus	JX270519	JX27027
7WV14	Ascomycota	Eurotiomycetes	Eurotiales	Aspergillus	JX270520	JX27027
2NH09	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270354	J7727027
2NH16	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270354 JX270361	
	/	/		Penicillium	JA270301	
3VT06	Ascomycota	Eurotiomycetes	Eurotiales			
3VT09	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270368	
04NY07	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium		
4NY08	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium		
6VT04	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270392	
6VT06	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270394	JX27020
6VT09	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270396	_
7MA05	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270405	JX27021
7MA17	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270417	JX27022
8CT04	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270422	JX27022
8CT05	Ascomycota	Eurotiomycetes	Eurotiales	$Penicillium^{c}$	_	
1MA10	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270445	JX27023
1MA11	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270446	JX27023
2NJ04	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270450	
2NJ06	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270452	
4PA08	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270471	
6WV01	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270496	
6WV04	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270500	_
		Eurotiomycetes	Eurotiales	Penicillium	JA270500	
8VA01	Ascomycota			Penicillium Penicillium		
9VA03	Ascomycota	Eurotiomycetes	Eurotiales		JX270544	—
0KY03	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270557	
0KY09	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium		
1IN04	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270571	JX270299
1IN09	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270576	
2MS02	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270581	_
2MS04	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium		
2MS05	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270583	JX27030
2MS06	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270584	JX27030
2MS10	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270588	JX27030
2MS11	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270589	JX27031
4MN01	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270609	
4MN05	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270613	
4MN15	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270623	
4MN16	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	JX270624	_
4MN22	Ascomycota	Eurotiomycetes	Eurotiales	Penicillium	J ²³ 470041	
			Onygenales	Arthroderma	JX270415	
07MA15	Ascomycota	Eurotiomycetes			0	
0KY13	Ascomycota	Eurotiomycetes	Onygenales	Arthroderma	JX270566	JX27029
07MA16	Ascomycota	Eurotiomycetes	Onygenales	Auxarthron	JX270416	JX27022
4PA12	Ascomycota	Eurotiomycetes	Onygenales	Chrysosporium	JX270474	—

TABLE I. Three hundred thirty-two fungal isolates cultured from 24 soil samples collected in bat hibernacula in eastern North America and tentative taxonomic placement based on morphology and/or BLAST queries of GenBank

TABLE I. Continued

Fungal		Tentative ta	GenBank accession nos.			
isolate	Phylum	Class	Order	Genus	ITS	IGS
18VA20	Ascomycota	Eurotiomycetes	Onygenales	Chrysosporium	JX270540	JX270282
21IN11	Ascomycota	Eurotiomycetes	Onygenales	Chrysosporium	JX270578	—
21IN12	Ascomycota	Eurotiomycetes	Onygenales	Chrysosporium	JX270579	JX270304
24MN30	Ascomycota	Eurotiomycetes	Onygenales	Gymnascella	JX270629	JX270334
14PA14	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascoideus	JX270475	_
24MN34	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascoideus	JX270631	_
02NH07	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascus	JX270352	_
12NJ07	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascus	JX270453	JX270242
12NJ14	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascus	JX270460	JX270247
15PA08	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascus	JX270483	_
5PA15	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascus	JX270490	JX270262
8VA04	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascus	JX270524	
20KY15	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascus	JX270567	JX270298
22MS07	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascus	JX270585	
22MS08	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascus	JX270586	
22MS09	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascus	JX270587	
23WI02	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascus	JX270593	
23WI13	Ascomycota	Eurotiomycetes	Onygenales	Gymnoascus	JX270603	JX270317
)2NH15	Ascomycota	Eurotiomycetes	Onygenales	Incertae sedis	JX270360	
4PA11	Ascomycota	Eurotiomycetes	Onygenales	Neogymnomyces	JX270473	
19VA05	Ascomycota	Eurotiomycetes	Onygenales	Trichophyton	JX270546	
19VA06	Ascomycota	Eurotiomycetes	Onygenales	Trichophyton	JX270547	JX270287
19VA00 19VA08	Ascomycota	Eurotiomycetes	Onygenales	Trichophyton	JX270549	JA270207
19VA08 19VA09	,	Eurotiomycetes	Onygenales	Trichophyton	JX270549	JX270288
19VA09 19VA10	Ascomycota	Eurotiomycetes	Onygenales	Trichophyton	JX270551	JX270289
19VA10 19VA12	Ascomycota	Eurotiomycetes				0
	Ascomycota		Onygenales	<i>Trichophyton</i>	JX270553	JX270291
19VA13	Ascomycota	Eurotiomycetes	Onygenales	<i>Trichophyton</i>	JX270554	_
20KY07	Ascomycota	Eurotiomycetes	Onygenales	Trichophyton	JX270561	
23WI03	Ascomycota	Incertae sedis	Incertae sedis	Incertae sedis		JX270314
01NH06	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270341	
01NH07	Ascomycota	Leotiomycetes	Helotiales	Geomyces ^a	JX270342	JX270192
01NH08	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270343	
01NH10	Ascomycota	Leotiomycetes	Helotiales	Geomyces ^a	JX270344	JX270193
01NH12	Ascomycota	Leotiomycetes	Helotiales	Geomyces ^a	JX270346	JX270195
02NH05	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270350	
02NH08	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270353	JX270196
02NH11	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270356	_
02NH14	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270359	JX270198
)3VT05	Ascomycota	Leotiomycetes	Helotiales	Geomyces ^c		_
04NY09	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270373	
04NY10	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270374	—
)4NY11	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270375	—
)4NY14	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270376	—
)4NY16	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270377	_
)4NY17A	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270378	JX270201
)4NY17B	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270379	JX270202
5NY04	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270383	
)5NY05	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270384	_
)5NY06	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270385	_
)5NY07	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270386	JX270203
05NY08	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270387	
)5NY09	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270388	JX270204
	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270393	JX270206
06VT05						

TABLE	I.	Continued
LIDLL	. .	Continued

Fungal		Tentative t	axonomic placement	t	GenBank a	ccession nos.
isolate	Phylum	Class	Order	Genus	ITS	IGS
07MA02	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270402	JX270212
07MA04	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270404	JX270213
07MA07	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270407	JX270215
07MA08	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270408	JX270216
07MA09	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270409	JX270217
07MA10	Ascomycota	Leotiomycetes	Helotiales	Geomyces ^a	JX270410	JX270218
07MA14	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270414	JX270222
08CT06	Ascomycota	Leotiomycetes	Helotiales	Geomyces ^a	JX270423	JX270230
10NY04	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270428	JX270231
10NY06	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270430	
10NY07	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270431	
10NY08	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270432	JX270232
10NY09	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270433	
10NY10	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270434	
11MA03	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270438	JX270233
11MA05	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270440	
11MA07	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270442	JX270236
11MA08	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270443	JX270237
12NJ08	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270454	JX270243
12NJ10	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270456	
12NJ13	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270459	JX270246
12NJ15	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270461	JX270248
13PA01	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270462	
14PA05	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270468	
14PA06	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270469	JX270249
14PA09	Ascomycota	Leotiomycetes	Helotiales	Geomyces	J7270105	J74270215
14PA13	Ascomycota	Leotiomycetes	Helotiales	Geomyces	_	JX270251
15PA02	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270477	JX270251 JX270252
151 A02 15PA05	,	,	Helotiales		JX270480	JA270252
15PA05 15PA10A	Ascomycota	Leotiomycetes Leotiomycetes	Helotiales	Geomyces	JX270480 JX270485	JX270256
15PA10A 15PA10B	Ascomycota		Helotiales	Geomyces	JA270405	
	Ascomycota	Leotiomycetes		Geomyces	12970496	JX270257
15PA11	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270486	JX270258
16WV05	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270501	JX270267
17WV02	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270509	
17WV03	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270510	JX270269
17WV04	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270511	JX270270
17WV05	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270512	JX270271
17WV06	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270513	JX270272
17WV09	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270515	
17WV15	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270521	_
18VA07	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270527	_
18VA08	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270528	—
18VA09	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270529	—
18VA10	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270530	
18VA12	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270532	
18VA13	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270533	JX270279
18VA15	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270535	
18VA16	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270536	JX270281
18VA17	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270537	_
20KY01	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270555	
20KY02	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270556	
20KY04	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270558	
20KY08	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270562	JX270293
20KY10	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270563	JX270294

TABLE I. Continued

Fungal		Tentative t	axonomic placement	t	GenBank a	ccession nos.
isolate	Phylum	Class	Order	Genus	ITS	IGS
20KY12	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270565	JX270296
21IN01	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270568	_
21IN05	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270572	JX270300
21IN06	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270573	JX270301
21IN08	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270575	JX270302
21IN10	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270577	JX270303
23WI04	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270594	_
23WI05	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270595	—
23WI06	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270596	JX270315
23WI08	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270598	JX270316
23WI14	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270604	JX270318
24MN03	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270611	—
24MN04	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270612	JX270322
24MN06	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270614	JX270323
24MN09	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270617	JX270325
24MN10	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270618	JX270326
24MN11	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270619	JX270327
24MN13	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270621	JX270328
24MN14	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270622	JX270329
24MN17	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270625	JX270330
24MN18	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270626	JX270331
24MN21	Ascomycota	Leotiomycetes	Helotiales	Geomyces		
24MN24	Ascomycota	Leotiomycetes	Helotiales	Geomyces	_	
24MN25	Ascomycota	Leotiomycetes	Helotiales	Geomyces ^c	_	
24MN26	Ascomycota	Leotiomycetes	Helotiales	Geomyces ^c	_	
24MN27	Ascomycota	Leotiomycetes	Helotiales	Geomyces ^c	_	
24MN28	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270628	JX270333
24MN29	Ascomycota	Leotiomycetes	Helotiales	Geomyces ^c		
24MN31	Ascomycota	Leotiomycetes	Helotiales	Geomyces ^c	_	_
24MN32	Ascomycota	Leotiomycetes	Helotiales	Geomyces	_	
24MN33	Ascomycota	Leotiomycetes	Helotiales	Geomyces	JX270630	JX270335
11MA09	Ascomycota	Leotiomycetes	Helotiales	Mycoarthris	JX270444	
06VT08	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270395	_
07MA11	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270411	JX270219
07MA13	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270413	JX270221
07MA18	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270418	JX270225
12NJ11	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270457	JX270244
15PA07	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270482	JX270254
15PA13	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270488	JX270260
15PA14	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270489	JX270261
15PA16	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270491	JX270263
15PA18	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270491 JX270494	JA270203
16WV10	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270494 JX270506	
16WV10	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron ^b	JX270507	_
18VA14	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270507 JX270534	JX270280
18VA14 18VA18		Leotiomycetes	Helotiales	Oidiodendron	JX270534 JX270538	JA270200
	Ascomycota	,			JX270538 JX270539	
18VA19 18VA91	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron Oidiodendron		
18VA21	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270541	JX270283
22MS12	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270590	JX270311
23WI01A	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270591	JX270312
23WI01B	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270592	JX270313
23WI07	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270597	—
23WI09	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270599	—
23WI10	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270600	—

TABLE I. Continued

Fungal		Tentative ta	xonomic placement		GenBank accession nos.	
isolate	Phylum	Class	Order	Genus	ITS	IGS
23WI11	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270601	—
23WI12	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270602	—
23WI15	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270605	—
23WI16	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270606	JX270319
23WI17	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270607	JX270320
23WI18	Ascomycota	Leotiomycetes	Helotiales	Oidiodendron	JX270608	JX270321
01NH01	Ascomycota	Leotiomycetes	Helotiales	Pseudeurotium	JX270336	_
01NH04	Ascomycota	Leotiomycetes	Helotiales	Pseudeurotium	JX270339	
01NH05	Ascomycota	Leotiomycetes	Helotiales	Pseudeurotium	JX270340	
02NH04	Ascomycota	Leotiomycetes	Helotiales	Pseudeurotium	JX270349	_
10NY02	Ascomycota	Leotiomycetes	Helotiales	Pseudeurotium	JX270426	_
10NY05	Ascomycota	Leotiomycetes	Helotiales	Pseudeurotium	JX270429	
15PA01	Ascomycota	Leotiomycetes	Helotiales	Pseudeurotium	JX270476	
15PA04	Ascomycota	Leotiomycetes	Helotiales	Pseudeurotium	JX270479	
24MN02	Ascomycota	Leotiomycetes	Helotiales	Pseudeurotium	JX270610	
24MN07	Ascomycota	Leotiomycetes	Helotiales	Pseudeurotium	JX270615	
24MN12	Ascomycota	Leotiomycetes	Helotiales	Pseudeurotium	JX270620	
12NJ03	Ascomycota	Saccharomycetes	Saccharomycetales	Candida	JX270449	
16WV03B	Ascomycota	Saccharomycetes	Saccharomycetales	Candida	JX270499	
10NY11	Ascomycota	Saccharomycetes	Saccharomycetales	Debaryomyces	JX270435	
21IN03	Ascomycota	Saccharomycetes	Saccharomycetales	Debaryomyces	JX270570	
15PA19	Ascomycota	Sordariomycetes	Hypocreales	Hypomyces	JX270495	JX270266
07MA12	Ascomycota	Sordariomycetes	Hypocreales	Isaria	JX270412	JX270220
07MA19	Ascomycota	Sordariomycetes	Hypocreales	Isaria	JX270419	JX270226
13PA02	Ascomycota	Sordariomycetes	Hypocreales	Isaria	JX270463	
13PA03	Ascomycota	Sordariomycetes	Hypocreales	Isaria	JX270464	
)6VT10	Ascomycota	Sordariomycetes	Hypocreales	Nectria	JX270397	
06VT11A	Ascomycota	Sordariomycetes	Hypocreales	Nectria	JX270398	JX270208
06VT11B	Ascomycota	Sordariomycetes	Hypocreales	Nectria	JX270399	JX270200
11MA06	Ascomycota	Sordariomycetes	Hypocreales	Neonectria	JX270333	JX270205
01NH11	Ascomycota	Sordariomycetes	Hypocreales	Tolypocladium	JX270441 JX270345	JX270233
03VT07	Ascomycota	Sordariomycetes	Hypocreales	Verticillium	JX270345 JX270366	JX270194 JX270199
03VT08	Ascomycota	Sordariomycetes	Hypocreales	Verticillium	JX270367	JX270199
14PA10			Hypocreales	Verticillium	JX270307 JX270472	JX270200 JX270250
14FA10 17WV12	Ascomycota	Sordariomycetes		Verticillium	JX270472 JX270518	JA270250
24MN19	Ascomycota	Sordariomycetes	Hypocreales			
	Ascomycota	Sordariomycetes	Hypocreales Microascales	Verticillium	JX270627	JX270332
02NH06	Ascomycota	Sordariomycetes		Doratomyces	JX270351	
02NH10	Ascomycota	Sordariomycetes	Microascales	Doratomyces	JX270355	JX270197
02NH13	Ascomycota	Sordariomycetes	Microascales	Doratomyces	JX270358	
07MA03	Ascomycota	Sordariomycetes	Microascales	Doratomyces	JX270403	
15PA12	Ascomycota	Sordariomycetes	Microascales	Doratomyces	JX270487	JX270259
18VA03	Ascomycota	Sordariomycetes	Microascales	Doratomyces	JX270523	
18VA05	Ascomycota	Sordariomycetes	Microascales	Doratomyces	JX270525	
18VA06	Ascomycota	Sordariomycetes	Microascales	Doratomyces	JX270526	JX270277
18VA11	Ascomycota	Sordariomycetes	Microascales	Doratomyces	JX270531	JX270278
)2NH12	Ascomycota	Sordariomycetes	Microascales	Kernia ^b	JX270357	_
)4NY18	Ascomycota	Sordariomycetes	Microascales	Kernia	JX270380	
12NJ12	Ascomycota	Sordariomycetes	Microascales	Kernia	JX270458	JX270245
14PA07	Ascomycota	Sordariomycetes	Microascales	Kernia	JX270470	
15PA06	Ascomycota	Sordariomycetes	Microascales	Kernia	JX270481	JX270253
15PA09	Ascomycota	Sordariomycetes	Microascales	Kernia	JX270484	JX270255
16WV08	Ascomycota	Sordariomycetes	Microascales	Kernia	JX270504	
16WV09	Ascomycota	Sordariomycetes	Microascales	Kernia	JX270505	_
21IN07	Ascomycota	Sordariomycetes	Microascales	Kernia	JX270574	

TABLE I. Continued

Fungal		Tentative ta	xonomic placement		GenBank a	accession nos.
isolate	Phylum	Class	Order	Genus	ITS	IGS
12NJ05	Ascomycota	Sordariomycetes	Sordariales	Trichocladium	JX270451	JX270241
19VA01	Ascomycota	Sordariomycetes	Sordariales	Trichocladium	JX270542	JX270284
19VA02	Ascomycota	Sordariomycetes	Sordariales	Trichocladium	JX270543	JX270285
19VA04	Ascomycota	Sordariomycetes	Sordariales	Trichocladium	JX270545	JX270286
19VA11	Ascomycota	Sordariomycetes	Sordariales	Trichocladium	JX270552	JX270290
20KY11	Basidiomycota	Agaricomycetes	Agaricales	Coprinellus	JX270564	JX270295
16WV07	Basidiomycota	Agaricomycetes	Agaricales	Incertae sedis	JX270503	_
20KY06	Basidiomycota	Agaricomycetes	Cantharellales	Burgoa/Sistotrema	JX270560	_
01NH03	Basidiomycota	Tremellomycetes	Tremellales	Trichosporon	JX270338	JX270191
02NH01	Basidiomycota	Tremellomycetes	Tremellales	Trichosporon	JX270347	_
03VT02	Basidiomycota	Tremellomycetes	Tremellales	Trichosporon	JX270363	_
04NY03	Basidiomycota	Tremellomycetes	Tremellales	Trichosporon	JX270371	_
05NY01	Basidiomycota	Tremellomycetes	Tremellales	Trichosporon	JX270381	_
06VT03	Basidiomycota	Tremellomycetes	Tremellales	Trichosporon	JX270391	JX270205
16WV06	Basidiomycota	Tremellomycetes	Tremellales	Trichosporon	JX270502	JX270268
20KY05	Basidiomycota	Tremellomycetes	Tremellales	Trichosporon	JX270559	JX270292
24MN08	Basidiomycota	Tremellomycetes	Tremellales	Trichosporon ^b	JX270616	JX270324
02NH03	Incertae sedis	Incertae sedis	Incertae sedis	Incertae sedis		
04NY12	Incertae sedis	Incertae sedis	Incertae sedis	Incertae sedis		_
04NY13	Incertae sedis	Incertae sedis	Incertae sedis	Incertae sedis		_
04NY15	Incertae sedis	Incertae sedis	Incertae sedis	Incertae sedis		_
06VT07	Incertae sedis	Incertae sedis	Incertae sedis	Incertae sedis		
17WV08	Incertae sedis	Incertae sedis	Incertae sedis	Incertae sedis		
24MN20	Incertae sedis	Incertae sedis	Incertae sedis	Incertae sedis		
24MN23	Incertae sedis	Incertae sedis	Incertae sedis	Incertae sedis		
03VT04	Zygomycota	Incertae sedis	Mortierellales	Incertae sedis	JX270365	
01NH02	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270337	_
02NH02	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX2703348	_
02WI102 03VT01	Zygomycota	Incertae sedis	Mortierellales	Mortierella ^b	JX270348	
03VT03	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270364	
04NY01	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270369	_
04NY02	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270309 JX270370	
04NY05	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270372	
04N105 05NY02		Incertae sedis	Mortierellales	Mortierella		_
051N 102 06VT02	Zygomycota Zygomycota		Mortierellales	Mortierella	JX270382	
		Incertae sedis			JX270390	
07MA01	Zygomycota	Incertae sedis	Mortierellales	Mortierella Mortierella	JX270401	JX270211
07MA06	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270406	
08CT03	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270421	JX270228
09CT01	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270424	_
10NY03	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270427	_
11MA01	Zygomycota	Incertae sedis	Mortierellales	Mortierella ^b	JX270436	
11MA04	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270439	JX270234
12NJ01	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270447	JX270240
12NJ02	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270448	_
14PA01	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270466	—
15PA03	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270478	—
16WV02	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270497	—
16WV03A	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270498	—
17WV01	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270508	—
17WV07	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270514	—
18VA02	Zygomycota	Incertae sedis	Mortierellales	Mortierella	JX270522	_
06VT01	Zygomycota	Incertae sedis	Mucorales	$Helicostylum^{\rm b}$	JX270389	—
12NJ09	Zygomycota	Incertae sedis	Mucorales	<i>Helicostylum</i> ^b	JX270455	—
14PA04	Zygomycota	Incertae sedis	Mucorales	Helicostylum ^b	JX270467	

Fungal		GenBank accession nos.				
isolate	Phylum	Class	Order	Genus	ITS	IGS
04NY04	Zygomycota	Incertae sedis	Mucorales	Mucor	_	
04NY06	Zygomycota	Incertae sedis	Mucorales	Mucor	_	_
08CT01A	Zygomycota	Incertae sedis	Mucorales	Mucor	_	
10NY01	Zygomycota	Incertae sedis	Mucorales	Mucor	_	
11MA02	Zygomycota	Incertae sedis	Mucorales	$Mucor^{\rm b}$	JX270437	
14PA02	Zygomycota	Incertae sedis	Mucorales	Mucor	_	
21IN02	Zygomycota	Incertae sedis	Mucorales	$Mucor^{\rm b}$	JX270569	
01NH09	Zygomycota ^c	Incertae sedis	Incertae sedis	Incertae sedis	_	
05NY03	Zygomycota ^c	Incertae sedis	Incertae sedis	Incertae sedis	—	—

TABLE I. Continued

^a Isolate with a 100% ITS match to Geomyces destructans.

^b ITS sequence excluded from the alignment used to construct the tree in FIG. 1.

^c Likely taxonomic placement, but taxonomy is not certain.

presence of a single amplicon. ITS PCR products were sequenced in both directions with the BigDye Sequencing Kit 3.1 and an ABI 3730xl capillary sequencer (Applied Biosystems, Foster City, California) at the University of Wisconsin at Madison Biotechnology Center using 1:10 diluted PCR product and the same primers from the initial amplification. IGS PCR products were sequenced as described above but in only one direction using the CNL12 primer. Sequencing products were cleaned with CleanSeq (Agencourt, Fullerton, California) magnetic beads following the manufacturer's protocol.

Sequence chromatograms were visually inspected with Sequencher 4.2 (GeneCodes Corp., Ann Arbor, Michigan), and all alignments were conducted with MAFFT 6.864 with the Q-INS-i algorithm (Katoh 2008). The 296 ITS sequences generated for this study were combined with eight reference sequences from GenBank (Candida albicans JN882321, Davidiella tassiana EF679363, Geomyces destructans EU884921, Geomyces pannorum var. asperulatus DQ117444, Oidiodendron tenuissimum AF062807, Penicillium expansum DQ339562, Trichophyton rubrum AF170472, Trichosporon chiarellii HQ999971), and a global alignment of all ITS sequences was completed. All unknown sequences were compared to the NCBI GenBank database with BLAST (Altschul et al. 1997). A small number of poor quality sequences and sequences with BLAST matches to Zygomycota s.l. (Mucorales) were excluded from the final global alignment (such sequences are marked with a superscript b in TABLE I) because they could not be confidently aligned with other sequences.

Based on an initial analysis of all sequences, a subset of sequences composed of *Geomyces* species and closely related taxa were selected and a second alignment was created with representative sequences of *Geomyces*, *Pseudeurotium* and other helotialean outgroup taxa obtained from GenBank; selection of sequences from GenBank was based on the work of Sogonov et al. (2005), Rice and Currah (2006), Wang et al. (2006a, b) and Gargas et al. (2009). ITS sequences from three *Geomyces* isolates cultured from bats also were incorporated into this second alignment to determine their relationship to *Geomyces* spp. occurring in the soil of bat hibernacula. These bat isolates included two described by Muller et al. (2012) (230141-I2 and 233421-I1; GenBank accession numbers JX415263 and JX415264 respectively) and an additional isolate cultured from a silver-haired bat (*Lasionycteris noctivagans*) from Tennessee (230141-I6; GenBank accession number JX512256).

Phylogenetic analyses were conducted with MEGA5 (Tamura et al. 2011) and all alignments and trees are archived in TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S13306). The global alignment of all ITS sequences was analyzed with the neighbor joining (NJ) method. The NJ tree (FIG. 1) was drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree; the absolute value was used for any branch with negative length. The evolutionary distances were computed using the number of differences method and are in the units of the number of base differences per sequence. All positions containing gaps and missing data were eliminated.

The alignment of Geomyces and related species was analyzed with the maximum likelihood (ML) method based on the Jukes-Cantor model and 1000 bootstrap replicates. The tree (FIG. 2) with the highest log likelihood was selected as the final tree, while initial trees for the heuristic search were obtained automatically as follows. When the number of common sites was < 100 or less than one-fourth the total number of sites, the maximum parsimony method was used; otherwise BIONJ method with MCL distance matrix was used. A discrete gamma distribution was used to model evolutionary rate differences among sites (five categories). Trees were drawn to scale with branch lengths measured in the number of substitutions per site. All positions containing gaps and missing data were eliminated. Trees were viewed with FigTree 1.3.1, and graphics were exported for final illustrations.

RESULTS

Following incubation of soil samples at 7 C, a total of 332 fungal isolates were cultured from the 24 hibernacula. Complete ITS and partial IGS region sequences were successfully generated for 296 and

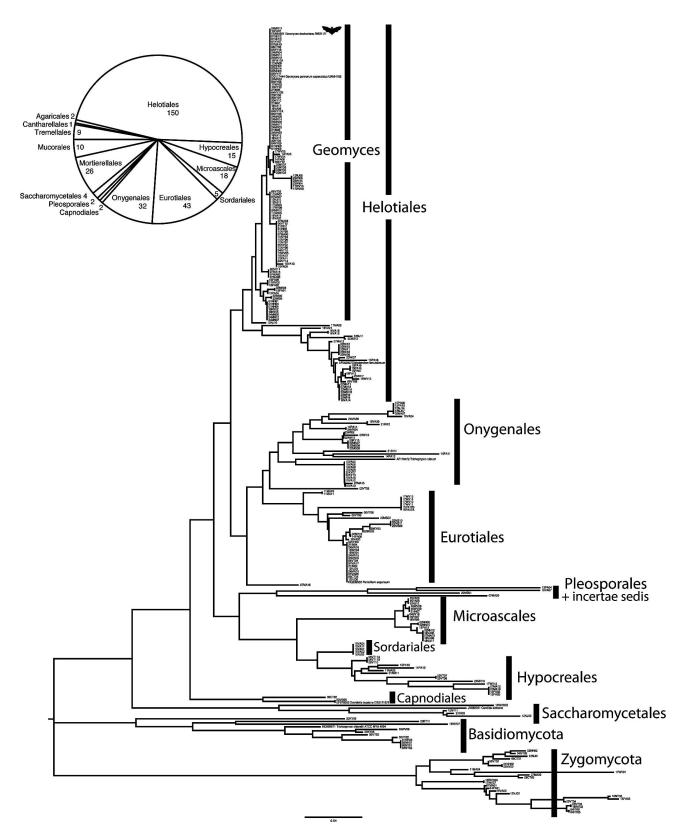


FIG. 1. Taxonomic diversity and ITS neighbor joining phylogeny of fungi recovered from soil samples collected in 24 bat hibernacula in eastern North America. The Geomyces clade includes 11 isolates identified as *Pseudeurotium* (FIG. 2, TABLE I).

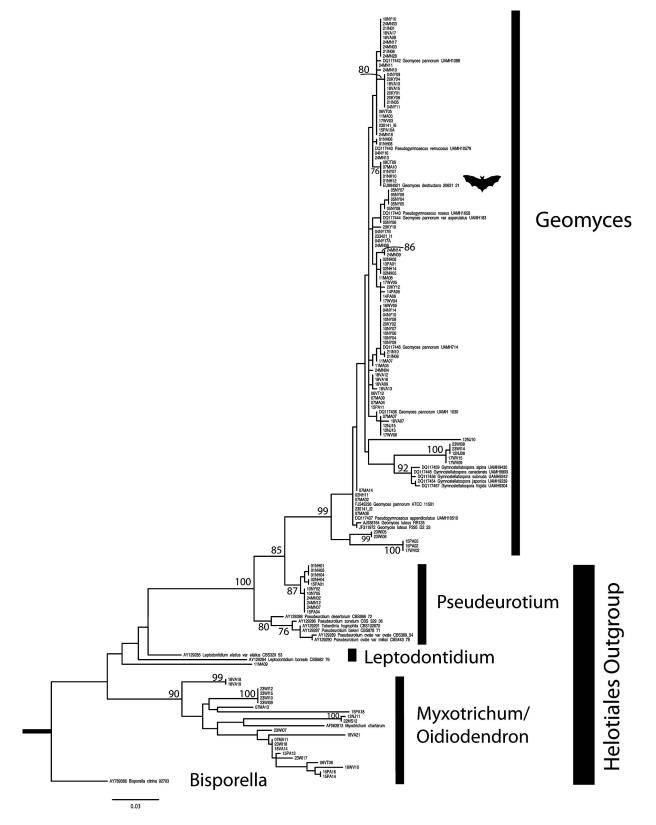


FIG. 2. ITS maximum likelihood phylogeny of *Geomyces* and related species isolated from soil samples collected in 24 bat hibernacula in eastern North America. All isolates in the Geomyces clade produced anamorphs typical of *Geomyces*. Bootstrap values $\geq 75\%$ are presented.

172 of the 332 isolates respectively (TABLE I). Cultured fungal isolates were diverse, including many within the phylum Ascomycota and a smaller number of Zygomycota and Basidiomycota (FIG. 1, TABLE I). A total of 274 isolates (83%) were Ascomycota, 38 isolates (11%) were Zygomycota, 12 isolates (4%) were Basidiomycota, and eight isolates (2%) could not be confidently placed in a phylum. Ascomycota isolates were recovered from all 24 sites (100%), while Zygomycota were recovered from 18 of 24 sites (75%) and Basidiomycota from nine of 24 sites (38%).

Among the Ascomycota, the most represented orders were Helotiales, Eurotiales and Onygenales (225 of the 332 isolates; 68%). Helotiales was the single most dominant order, representing approximately 45% of cultured isolates (150 of 332); isolates belonging to this order were found in 22 of the 24 sites (92%; FIG. 1; TABLE I). In particular, Geomyces spp. comprised a large and diverse group of the cultured isolates (110 of 332; 33%; FIG. 2; TABLE I) and were recovered from 21 of the 24 sites (88%). Three Geomyces isolates from bats included in the analysis did not cluster together based on ITS sequences but were interspersed with the Geomyces isolates from soil (FIG. 2). Although ITS sequence provided poor species-rank resolution within Geomyces, the genus was well supported by ITS sequence characters (99% bootstrap support, FIG. 2). All basal taxa within Geomyces were confirmed by light microscopy to produce anamorphs typical of genus Geomyces, while isolates in the next most closely related clade (genus Pseudeurotium) produced Teberdinia-like anamorphs typical of species with or without known Pseudeurotium teleomorphs (Sogonov et al. 2005). However, Pseudeurotium consists of two clades as recognized herein (FIG. 2) and might represent two distinct genera. We prefer to identify both clades as Pseudeurotium due to morphological and ITS sequence similarity until further taxonomic work is performed.

High representation among the Eurotiales (43 of 332 isolates; 13%) stemmed from the numerous isolates within the genus *Penicillium* (37 of 332 isolates; 11%), which were found at 16 of 24 sites (67%). *Aspergillus* was poorly represented (six of 332 isolates; 2%) and was isolated only from two sites (8%), perhaps due to the cool incubation temperatures used in this study (Domsch et al. 2007). Other orders within Ascomycota (Capnodiales, Hypocreales, Microascales, Pleosporales, Sordariales, Saccharomycetales) were represented to a lesser degree, along with two orders of Zygomycota (Mortierellales, Mucorales) and three orders of Basidiomycota (Agaricales, Cantharellales, Tremellales) (TABLE I).

Geomyces destructans was isolated from soil samples from three sites (TABLE I). These three sites

corresponded to the sites where DNA from *G. destructans* was detected (Lindner et al. 2011). The ITS sequences of cultured isolates of *G. destructans* were identical to that of the type of *G. destructans* (GenBank accession number EU884921), and morphology of the isolates was consistent with the description of *G. destructans* (Gargas et al. 2009). With the exception of the isolates with a 100% ITS match to *G. destructans*, none of the isolates in *Geomyces* produced conidia that were morphologically similar to those of *G. destructans*.

DISCUSSION

This study highlights the range of cold-tolerant fungal species that can be cultured from bat hibernacula. Based upon the culture conditions used for this study, Ascomycota was the dominant phylum in cave and mine soils and this was due in part to the large number of isolates within the order Helotiales, most of which belonged to the genus Geomyces. Geomyces species are commonly found in soil and are noted for their adaptation to cool environments (Domsch et al. 2007), which may explain their abundance in hibernacula. Eurotiales, which includes the ubiquitous genus Penicillium, was the second most common order of fungi isolated, and Penicillium species also are known for their cold tolerance (Domsch et al. 2007). Onygenales, which includes a saprotrophic, geophilic group of dermatophytes (Domsch et al. 2007), accounted for the third largest order of fungi isolated. Compared to Ascomycota, the phylum Zygomycota was represented by fewer isolates and Basidiomycota were cultured only rarely.

The mycota isolated from caves and mines in this study may reflect the types of energy sources available in the soil of hibernacula. For example, the ability of Onygenales to degrade keratin (Domsch et al. 2007), a substance that tends to accumulate in mammalian dwellings (Battelli et al. 1978) and that may be common in the soil of caves occupied (or previously occupied) by large numbers of hibernating bats, could explain the abundance of these fungi. The recovery of Kernia and Doratomyces (Microascales) isolates is also noteworthy because both genera are found on animal dung (Malloch and Cain 1971, Domsch et al. 2007) and also may exist in association with bat guano. In addition, numerous members of the order Hypocreales (15 isolates from 10 sites) and the genus Mortierella (Mortierellales; 25 isolates from 17 sites) were isolated, and many of these are known metabolizers of chitin (Domsch et al. 2007), a component of waste produced by insectivorous bats (Emerson and Roark 2007). Together these findings suggest that cave and mine soils contain a diversity of fungi supported by diverse sources of nutrients, including keratin and chitin. Further work with defined media will be needed to characterize the substrates upon which *G. destructans* can grow, thus providing a more complete understanding of the ability of the fungus to persist and/or proliferate using the resources available in soil from bat hibernacula.

As the single-most commonly cultured fungal genus in this study (110 of 332 isolates), this work emphasizes the abundance and diversity of Geomyces species in soil from bat hibernacula. Through this effort we recovered in culture the majority of the Geomyces clades (nine of 12 clades; matches to clades 3, 11 and 12 were not recovered in culture) described previously based upon partial sequence analysis of the ITS region (Lindner et al. 2011), providing the opportunity to determine full-length ITS sequences for these clades. However, even full-length ITS sequences provided poor taxonomic resolution among the clades (FIG. 2). To overcome the lack of taxonomic resolution provided by ITS sequences, we successfully obtained partial sequences of the IGS region for 172 of the 332 isolates. Partial IGS sequences offered utility for differentiating species of Geomyces and served as the basis for development of a sensitive and specific real-time PCR test for detecting G. destructans (Muller et al. 2012). However, IGS sequences were of limited phylogenetic value due to our inability to produce alignments spanning the genus and a lack of reference data in GenBank. Multilocus sequencing, including single-copy protein coding genes, will be necessary to phylogenetically characterize the numerous Geomyces species isolated for this study and to determine whether there are phylogeographic trends in the occurrence of these isolates across eastern North America. In particular, species-rank characterization will make it possible to determine whether there is evidence of endemism among fungal species within particular hibernacula or regions and to determine whether certain bat species are associated with individual Geomyces species. Because only 24 sites were surveyed for this work, it is likely the diversity observed in this study represents only a fraction of the fungal species present in these environments.

Based on our assessment of key taxonomic literature on *Geomyces* that includes teleomorphic names classified in *Gymnostellatospora* and *Pseudogymnoascus* (Carmichael 1962, van Oorschot 1980, Sigler et al. 2000, Rice and Currah 2006) as well as lists of species in Index Fungorum (http://indexfungorum.org/) and Myco-Bank (http://www.mycobank.org/), approximately 17 discrete species would be accepted in this group under a one name system of classification (Norvell 2011). However, numerous heterotypic synonyms listed by van Oorschot (1980) and Domsch et al. (2007) are widely recognized to represent distinct species (Domsch et al. 2007). Although a critical reassessment of named Geomyces species, especially under a one name system of classification, is not available at this time, the diversity of Geomyces taxa observed in this sampling effort indicates the actual number of Geomyces taxa is far greater than previously recognized based on traditional taxonomic methods. Specifically, currently named taxa classified among Geomyces, Gymnostellatospora and Pseudogymnoascus are differentiated by as few as 4-7 SNPs across the ITS region. By that measure, we may have isolated as many as 35 species of Geomyces. Similarly low genetic variation in the ITS region, as was observed in the examined isolates of Geomyces, also has been observed among species in many other genera of Ascomycota including Aspergillus, Beauveria, Colletotrichum, Fusarium, Penicillium and Trichoderma; this apparent lack of genetic variation often obscures a remarkable diversity of distinct species (Aoki et al. 2003, Chaverri et al. 2003, Rehner and Buckley 2005, Balajee et al. 2007, Houbraken et al. 2010, Rojas et al. 2010). This work on Geomyces cultured from hibernacula suggests that much diversity within the genus remains to be discovered.

Our culture-based studies favored growth of fungi that grew readily on artificial medium in darkness at the relatively low temperature of 7 C. Under these conditions designed to approximate those found in bat hibernacula, Geomyces species were a dominant and diverse part of the culturable fungal community. Although others have identified Geomyces species in caves (e.g. Domsch et al. 2007, Nováková 2009), the diversity of this group has been underestimated. If Geomyces species are similarly diverse in hibernacula of temperate regions in Eurasia where G. destructans is hypothesized to have originated (Puechmaille et al. 2011, Warnecke et al. 2012), genetic interactions among this assemblage of closely related fungi may have provided the capacity for an evolutionary transition from soil dweller to bat pathogen. With an array of Geomyces spp. isolated from caves and mines now in culture, in-depth genetic, morphological and physiological analyses can be conducted to determine which unique traits G. destructans possesses that mediate its pathogenicity to hibernating bats.

The ability to culture viable *G. destructans* from soil (this study) and other abiotic surfaces in bat hibernacula (Puechmaille et al. 2011) demonstrates the existence of environmental reservoirs of this pathogenic fungus in locations occupied by hibernating bats, thus presenting distinct challenges for managing WNS. However, researchers were unable to cultivate *G. destructans* from 26 soil and debris

samples collected from bat hibernacula in New York (Chaturvedi et al. 2010); and through application of dilution technique, we succeeded only in culturing the fungus from soil samples from three of 19 sites within the range of WNS at the time the samples were collected. Consequently, the role of the environment, both as a long-term reservoir for G. destructans and as a potential source for fungal spread, remains a topic of active investigation. Nonetheless, the ability of G. destructans to persist, proliferate and perhaps sexually recombine in soils of hibernacula has the potential to fundamentally change our understanding of the transmission dynamics of WNS. Thus, the ability to effectively manage WNS will be dependent on gaining a solid understanding of the lifecycle of G. destructans as it colonizes and spreads among bats and their environments.

Bat hibernacula are cool, humid, dark environments that, as exemplified by this study, are conducive to the growth of a diverse assemblage of fungi. However, we are unaware of any reports of epizootic fungal disease among hibernating bats in North America before the emergence of WNS. This suggests that, compared to other fungi that occur in bat hibernacula, *G. destructans* possesses unique characteristics that let it proliferate on the skin of hibernating bats and cause severe disease. Further genetic and physiological characterization of the presumably non-pathogenic fungi that we have cultivated from soil from bat hibernacula, including other species of *Geomyces*, may provide important clues regarding the unique ecology and pathogenicity of *G. destructans*.

ACKNOWLEDGMENTS

The authors thank Peter Youngbaer (NSS), Mike Warner (Speleobooks Inc.), and Alan Hicks (NY DEC) for their assistance in coordinating collection of samples and the many individuals who volunteered to collect samples for this project. Financial support was provided to DSB by the US Fish and Wildlife Service, the US Geological Survey and the National Speleological Society and to DLL by the US Forest Service and the US Fish and Wildlife Service. Use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the US government.

LITERATURE CITED

- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402, doi:10.1093/ nar/25.17.3389
- Anderson JB, Stasovski E. 1992. Molecular phylogeny of northern hemisphere species of *Armillaria*. Mycologia 84:505–516, doi:10.2307/3760315

- Aoki T, O'Donnell K, Homma Y, Lattanzi AR. 2003. Suddendeath syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the *Fusarium solani* species complex—*F. virguliforme* in North America and *F. tucumaniae* in South America. Mycologia 95:660–684, doi:10.2307/3761942
- Arenz BE, Blanchette RA. 2011. Distribution and abundance of soil fungi in Antarctica at sites on the peninsula, Ross Sea region and McMurdo dry valleys. Soil Biol Biochem 43:308–315, doi:10.1016/j.soilbio.2010.10.016
- Balajee SA, Houbraken J, Verweij PE, Hong SB, Yaghuchi T, Varga J, Samson RA. 2007. Aspergillus species identification in the clinical setting. Stud Mycol 59:39–46, doi:10.3114/sim.2007.59.05
- Battelli G, Bianchedi M, Frigo W, Amorati P, Mantovani A, Pagliani A. 1978. Survey of keratinophilic fungi in alpine marmot (*Marmota marmota*) burrow soil and in adjoining soils. Sabouraudia 16:83–86, doi:10.1080/ 00362177885380121
- Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JTH, Darling SR, Gargas A, Niver R, Okoniewski JC, Rudd RJ, Stone WB. 2009. Bat white-nose syndrome: An emerging fungal pathogen? Science 323:227, doi:10.1126/science.1163874
- Carmichael JW. 1962. *Chrysosporium* and some other aleuriosporic hyphomycetes. Can J Bot 40:1137–1173, doi:10.1139/b62-104
- Chaturvedi V, Springer DJ, Behr MJ, Ramani R, Li X, Peck MK, Ren P, Bopp DJ, Wood B, Samsonoff WA, Butchkoski CM, Hicks AC, Stone WB, Rudd RJ, Chaturvedi S. 2010. Morphological and molecular characterizations of psychrophilic fungus *Geomyces destructans* from New York bats with white-nose syndrome (WNS). PLOSone 5:e10783.
- Chaverri P, Castlebury LA, Samuels GJ, Geiser DM. 2003. Multilocus phylogenetic structure within the *Trichoder-ma harzianum/ Hypocrea lixii* complex. Mol Phylogenet Evol 27:302–313, doi:10.1016/S1055-7903(02)00400-1
- Domsch KH, Gams W, Anderson T-H. 2007. Compendium of Soil Fungi. 2nd ed. Eching, Germany: IHW-Verlag. 672 p.
- Emerson JK, Roark AM. 2007. Composition of guano produced by frugivorous, sanguivorous and insectivorous bats. Acta Chiropt 9:261–267, doi:10.3161/1733-5329(2007)9[261:COGPBF]2.0.CO;2
- Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186– 194, doi:10.1038/nature10947
- Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, Butchkoski CM, Kunz TH. 2010. An emerging disease causes regional population collapse of a common North American bat species. Science 329: 679–682, doi:10.1126/science.1188594
- Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118, doi:10.1111/j.1365-294X.1993.tb00005.x
- Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS. 2009. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108:147–154, doi:10.5248/108.147

- Houbraken JAMP, Frisvad JC, Samson RA. 2010. Taxonomy of *Penicillium citrinum* and related species. Fungal Divers 44:117–133, doi:10.1007/s13225-010-0047-z
- Izzo AD, Mazzola M. 2009. Hybridization of an ITS-based macro-array with ITS community probes for characterization of complex communities of fungi and fungallike protists. Mycol Res 113:802–812, doi:10.1016/ j.mycres.2008.11.020
- Katoh T. 2008. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298, doi:10.1093/bib/bbn013
- Koilraj AJ, Marimuthu G, Natarajan K, Saravanan S, Maran P, Hsu MJ. 1999. Fungal diversity inside caves of southern India. Curr Sci 77:1081–1084.
- Lindner DL, Banik MT. 2009. Effects of cloning and root-tip size on observations of fungal ITS sequences from *Picea* glauca roots. Mycologia 101:157–165, doi:10.3852/08-034
- —, Gargas A, Lorch JM, Banik MT, Glaeser J, Kunz TH, Blehert DS. 2011. DNA-based detection of the fungal pathogen *Geomyces destructans* in soil from bat hibernacula. Mycologia 103:241–246, doi:10.3852/10-262
- Lorch JM, Gargas A, Meteyer CU, Berlowski-Zier BM, Green DE, Shearn-Bochsler V, Thomas NJ, Blehert DS. 2010. Rapid polymerase chain reaction diagnosis of whitenose syndrome in bats. J Vet Diagn Invest 22:224–230, doi:10.1177/104063871002200208
 - —, Meteyer CU, Behr MJ, Boyles JG, Cryan PM, Hicks AC, Ballmann AE, Coleman JTH, Redell DN, Reeder DM, Blehert DS. 2011. Experimental infection of bats with *Geomyces destructans* causes white-nose syndrome. Nature 480:376–378, doi:10.1038/nature10590
- Malloch D, Cain RF. 1971. The genus *Kernia*. Can J Bot 49: 855–867, doi:10.1139/b71-126
- Mbofung GY, Hong GY, Pryor BM. 2007. Phyogeny of *Fusarium oxysporum* f. sp. *lactucae* inferred from mitochondrial small subunit, elongation factor 1-α, and nuclear ribosomal intergenic spacer sequence data. Phytopathology 97:87–98, doi:10.1094/PHYTO-97-0087
- Meteyer CU, Buckles EL, Blehert DS, Hicks AC, Green DE, Shearn-Bochsler V, Thomas NJ, Gargas A, Behr MJ. 2009. Pathology criteria for confirming white-nose syndrome in bats. J Vet Diagn Invest 21:411–414, doi:10.1177/104063870902100401
- Muller LK, Lorch JM, Lindner DL, O'Connor M, Gargas A, Blehert DS. 2012. Bat white-nose syndrome: a real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of *Geomyces destructans*. Mycologia: In press.
- Norvell L. 2011. Fungal nomenclature. Melbourne approves a new Code. Mycotaxon 116:481–490, doi:10.5248/116. 481
- Nováková A. 2009. Microscopic fungi isolated from the Domica Cave system (Slovak Karst National Park, Slovakia). A review. Int J Speleol 38:71–82, doi:10.5038/1827-806X.38.1.8
- Orpurt PA. 1964. The microfungal flora of bat cave soils from Eleuthera Island, the Bahamas. Can J Bot 42: 1629–1633, doi:10.1139/b64-162

- Puechmaille SJ, Wibbelt G, Korn V, Fuller H, Forget F, Mühldorfer K, Kurth A, Bogdanowicz W, Borel C, Bosch T, Cherezy T, Drebet M, Görföl T, Haarsma AJ, Herhaus F, Hallart G, Hammer M, Jungmann C, Le Bris Y, Lutsar L, Masing M, Mulkens B, Passior K, Starrach M, Wojtaszewski A, Zöphel U, Teeling EC. 2011. Pan-European distribution of white-nose syndrome fungus (*Geomyces destructans*) not associated with mass mortality. PLOSone 6:e19167.
- Rehner SA, Buckley E. 2005. A *Beauveria* phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to *Cordyceps* teleomorphs. Mycologia 97:84–98, doi:10.3852/ mycologia.97.1.84
- Rice AV, Currah RS. 2006. Two new species of *Pseudogym-noascus* with *Geomyces* anamorphs and their phylogenetic relationship with *Gymnostellatospora*. Mycologia 98:307–318, doi:10.3852/mycologia.98.2.307
- Rojas EI, Rehner SA, Samuels GJ, van Bael SA, Herre EA, Cannon P, Chen R, Pang J, Wang R, Zhang Y, Peng Y, Sha T. 2010. *Colletotrichum gloeosporioides* s.l. associated with *Theobroma cacao* and other plants in Panama: Multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia 102:1318–1338, doi:10.3852/09-244
- Shapiro J, Pringle A. 2010. Anthropogenic influences on the diversity of fungi isolated from caves in Kentucky and Tennessee. Am Midl Nat 163:76–86, doi:10.1674/0003-0031-163.1.76
- Sigler L, Lumley TC, Currah RS. 2000. New species and records of saprophytic ascomycetes (Myxotrichaceae) from decaying logs in the boreal forest. Mycoscience 41:495–502, doi:10.1007/BF02461670
- Sogonov MV, Schroers H-J, Gams W, Dijksterhuis J, Summerbell RC. 2005. The hyphomycete *Teberdinia* hygrophila gen. nov., sp. nov. and related anamorphs of *Pseudeurotium* species. Mycologia 97:695–709, doi:10.3852/mycologia.97.3.695
- States JS, Christensen M. 2001. Fungi associated with biological soil crusts in desert grasslands of Utah and Wyoming. Mycologia 93:432–439, doi:10.2307/3761728
- St-Germain G, Summerbell R. 2011. Methods. In: Identifying fungi: a clinical laboratory handbook. 2nd ed. Belmont, California: Star Publishing Inc. p 287–313.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739, doi:10.1093/molbev/msr121
- van Oorschot CAN. 1980. A revision of *Chrysosporium* and allied genera. Stud Mycol 20:1–89.
- Vaughan MJ, Maier RM, Pryor BM. 2011. Fungal communities on speleothem surfaces in Kartchner Caverns, Arizona, USA. Int J Speleol 40:65–77, doi:10.5038/ 1827-806X.40.1.8
- Wang Z, Binder M, Scoch CL, Johnston PR, Spatafora JW, Hibbett DS. 2006a. Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): a nuclear rDNA phylogeny. Mol Phylogenet Evol 41:295–312, doi:10.1016/ j.ympev.2006.05.031

- —, Johnston PR, Takamatsu S, Spatafora JW, Hibbett DS. 2006b. Toward a phylogenetic classification of the Leotiomycetes based on rDNA data. Mycologia 98: 1065–1075, doi:10.3852/mycologia.98.6.1065
- Warnecke L, Turner JM, Bollinger TK, Lorch JM, Misra V, Cryan PM, Wibblet G, Blehert DS, Willis CKR. 2012.
 Inoculation of bats with European *Geomyces destructans* supports the novel pathogen hypothesis for the origin

of white-nose syndrome. Proc Natl Acad Sci USA. 109: 6999–7003, doi:10.1073/pnas.1200374109

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and amplifications. San Diego: Academic Press. p 315– 322.