29.03.2013 Views

Reclassification of the Sporobolomyces roseus - International ...

Reclassification of the Sporobolomyces roseus - International ...

Reclassification of the Sporobolomyces roseus - International ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>International</strong> Journal <strong>of</strong> Systematic and Evolutionary Microbiology (2002), 52, 2309–2314 DOI: 10.1099/ijs.0.02297-0<br />

1 Systematic Mycology and<br />

Lichenology Laboratory,<br />

Institute <strong>of</strong> Microbiology,<br />

Chinese Academy <strong>of</strong><br />

Sciences, Beijing 100080,<br />

China<br />

2 Japan Collection <strong>of</strong><br />

Microorganisms, RIKEN<br />

(The Institute <strong>of</strong> Physical<br />

and Chemical Research),<br />

Wako, Saitama, 351-0198,<br />

Japan<br />

3 Yeast Division,<br />

Centraalbureau voor<br />

Schimmelcultures,<br />

Uppsalalaan 8, 3594 CT<br />

Utrecht, The Ne<strong>the</strong>rlands<br />

4 Yothi Research Unit,<br />

National Center for<br />

Genetic Engineering and<br />

Biotechnology (BIOTEC),<br />

National Science and<br />

Technology Development<br />

Agency (NSTDA),<br />

73/1 Rama VI Road,<br />

Bangkok 10400, Thailand<br />

INTRODUCTION<br />

<strong>Sporobolomyces</strong> <strong>roseus</strong> Kluyver & van Niel is a<br />

common ballistoconidium-forming yeast species and<br />

occurs in many different habitats, but most frequently<br />

in <strong>the</strong> phyllosphere (Derx, 1930; Tubaki, 1953; Last,<br />

1955; Nakase, 2000). According to <strong>the</strong> recent taxo-<br />

.................................................................................................................................................<br />

Published online ahead <strong>of</strong> print on 27 May 2002 as DOI 10.1099/<br />

ijs.0.02297-0.<br />

Abbreviation: ITS, internal transcribed spacer.<br />

The GenBank accession numbers for <strong>the</strong> sequences determined in this study<br />

are AY069991–AY070006 (ITS region) and AY070007–AY070018 (26S rDNA<br />

D1/D2 domain) as indicated in Fig. 1.<br />

<strong>Reclassification</strong> <strong>of</strong> <strong>the</strong> <strong>Sporobolomyces</strong> <strong>roseus</strong><br />

and Sporidiobolus para<strong>roseus</strong> complexes, with<br />

<strong>the</strong> description <strong>of</strong> <strong>Sporobolomyces</strong> phaffii<br />

sp. nov.<br />

Feng-Yan Bai, 1 Jian-Hua Zhao, 1 Masako Takashima, 2 Jian-Hua Jia, 1<br />

Teun Boekhout 3 and Takashi Nakase 2,4<br />

Author for correspondence: Feng-Yan Bai. Tel: 86 10 6255 5692. Fax: 86 10 6256 0912.<br />

e-mail: baifysun.im.ac.cn<br />

More than 50 ballistoconidium-forming yeast strains, isolated from plant<br />

leaves collected in Yunnan, China, were identified as <strong>Sporobolomyces</strong> <strong>roseus</strong><br />

Kluyver & van Niel by conventional methods. However, comparison <strong>of</strong> <strong>the</strong><br />

internal transcribed spacer (ITS) region and 26S rDNA D1/D2 domain sequences<br />

indicated that <strong>the</strong>se strains represented more than one species. Type or<br />

au<strong>the</strong>ntic strains <strong>of</strong> <strong>the</strong> synonyms <strong>of</strong> <strong>Sporobolomyces</strong> <strong>roseus</strong> and <strong>the</strong> closely<br />

related species Sporidiobolus para<strong>roseus</strong> Fell & Tallman were employed in <strong>the</strong><br />

rDNA sequence comparison. <strong>Sporobolomyces</strong> boleticola Ramırez,<br />

<strong>Sporobolomyces</strong> pollaccii Verona & Ciferri, <strong>Sporobolomyces</strong> <strong>roseus</strong> var.<br />

madurae Janke and Torulopsis somala Verona were confirmed to be conspecific<br />

with <strong>Sporobolomyces</strong> <strong>roseus</strong>. Ano<strong>the</strong>r synonym <strong>of</strong> this species,<br />

<strong>Sporobolomyces</strong> salmoneus Derx, was located toge<strong>the</strong>r with <strong>Sporobolomyces</strong><br />

marcillae Santa Maria in a separate clade. Two synonyms <strong>of</strong> Sporidiobolus<br />

para<strong>roseus</strong>, <strong>Sporobolomyces</strong> carnicolor Yamasaki & Fujii (nom. inval.) and<br />

<strong>Sporobolomyces</strong> japonicus Iizuka & Goto, were revealed to represent two<br />

distinct species. The name <strong>Sporobolomyces</strong> carnicolor is validated, with strain<br />

CBS 4215 T as <strong>the</strong> type strain. A novel species represented by five <strong>of</strong> <strong>the</strong><br />

selected Yunnan strains was confirmed, for which <strong>the</strong> name <strong>Sporobolomyces</strong><br />

phaffii sp. nov. is proposed (type strain CH 2.052 T AS 2.2137 T JCM 11491 T <br />

CBS 9129 T ). This study also indicates that yeast species with similar ITS<br />

sequences may have quite different D1/D2 sequences.<br />

Keywords: <strong>Sporobolomyces</strong> phaffii sp. nov., <strong>Sporobolomyces</strong> <strong>roseus</strong>, Sporidiobolus<br />

para<strong>roseus</strong>, <strong>Sporobolomyces</strong> carnicolor, <strong>Sporobolomyces</strong> japonicus<br />

nomic system <strong>of</strong> basidiomycetous yeasts (Boekhout &<br />

Nakase, 1998), more than 50 ballistoconidiumforming<br />

yeast strains isolated from various wilting<br />

leaves collected in Yunnan, China, in 1996 were<br />

identified as <strong>Sporobolomyces</strong> <strong>roseus</strong> by conventional<br />

methods. However, <strong>the</strong>se strains varied to different<br />

degrees in carbon and nitrogen compound assimilation<br />

patterns. Comparison <strong>of</strong> <strong>the</strong> internal transcribed<br />

spacer (ITS) region and 26S rDNA D1D2 domain<br />

sequences <strong>of</strong> representatives <strong>of</strong> <strong>the</strong>se strains showed<br />

that more than one species existed among <strong>the</strong>m.<br />

Therefore, <strong>the</strong> species circumscription <strong>of</strong> <strong>Sporobolomyces</strong><br />

<strong>roseus</strong> should be redefined.<br />

The au<strong>the</strong>ntic strains <strong>of</strong> two synonyms <strong>of</strong> Sporobolo-<br />

02297 2002 IUMS Printed in Great Britain 2309


F.-Y. Bai and o<strong>the</strong>rs<br />

myces <strong>roseus</strong>, <strong>Sporobolomyces</strong> ruberrimus Yamasaki &<br />

Fujii var. ruberrimus (CBS 7500) and <strong>Sporobolomyces</strong><br />

ruberrimus var. albus Yamasaki & Fujii (CBS 7253,<br />

CBS 7501), have been shown to represent a distinct<br />

species by D1D2 domain sequence analysis (Fell et<br />

al., 2000). The type or au<strong>the</strong>ntic strains <strong>of</strong> <strong>the</strong><br />

remaining synonyms <strong>of</strong> <strong>Sporobolomyces</strong> <strong>roseus</strong> were<br />

employed in <strong>the</strong> present study, when available from<br />

culture collections. Since <strong>Sporobolomyces</strong> <strong>roseus</strong> is<br />

phenotypically similar and phylogenetically closely<br />

related to <strong>Sporobolomyces</strong> shibatanus (Okunuki)<br />

Verona & Ciferri, <strong>the</strong> anamorph <strong>of</strong> Sporidiobolus<br />

para<strong>roseus</strong> Fell & Tallman (Boekhout, 1991; Boekhout<br />

& Nakase, 1998; Hamamoto & Nakase, 2000), <strong>the</strong><br />

type strains <strong>of</strong> <strong>the</strong> synonyms <strong>of</strong> <strong>the</strong> latter species were<br />

also included. The taxonomic status <strong>of</strong> <strong>the</strong>se taxa was<br />

clarified by ITS region and D1D2 domain sequence<br />

analysis. The taxonomic positions <strong>of</strong> representative<br />

Yunnan strains were determined and a hi<strong>the</strong>rto undescribed<br />

yeast species was found among <strong>the</strong>m. We<br />

describe <strong>the</strong> latter as <strong>Sporobolomyces</strong> phaffii sp. nov.,<br />

in honour <strong>of</strong> <strong>the</strong> late Herman J. Phaff.<br />

METHODS<br />

Yeast strains and characterization. The yeast strains<br />

examined are listed in Table 1. The strains from Yunnan<br />

Table 1. Yeast strains employed<br />

Strain Source/notes<br />

Sporidiobolus para<strong>roseus</strong><br />

CBS 491T Soil<br />

CBS 484 Type <strong>of</strong> <strong>Sporobolomyces</strong> para<strong>roseus</strong><br />

<strong>Sporobolomyces</strong> blumeae JCM 10212T Blumea sp.<br />

<strong>Sporobolomyces</strong> carnicolor CBS 4215T Unknown<br />

<strong>Sporobolomyces</strong> japonicus CBS 5744T Oil brine<br />

<strong>Sporobolomyces</strong> marcillae CBS 4217T Air<br />

<strong>Sporobolomyces</strong> phaffii sp. nov.<br />

CH 2.049 Wilting leaf <strong>of</strong> Ehretia corylifolia<br />

CH 2.052T Wilting leaf <strong>of</strong> Nerium indicum<br />

CH 2.083 Wilting leaf <strong>of</strong> Oxytenan<strong>the</strong>ra sp.<br />

CH 2.091 Wilting leaf <strong>of</strong> Eriobotrya japonica<br />

CH 2.304 Wilting leaf <strong>of</strong> Oryza sativa<br />

<strong>Sporobolomyces</strong> <strong>roseus</strong><br />

CBS 485 Type <strong>of</strong> <strong>Sporobolomyces</strong> pollaccii<br />

CBS 486T Type <strong>of</strong> <strong>Sporobolomyces</strong> <strong>roseus</strong><br />

CBS 993 Type <strong>of</strong> Torulopsis somala<br />

CBS 2646 Type <strong>of</strong> <strong>Sporobolomyces</strong> <strong>roseus</strong> var. madurae<br />

CBS 2840 Au<strong>the</strong>ntic strain <strong>of</strong> <strong>Sporobolomyces</strong> boleticola<br />

CBS 2841 Au<strong>the</strong>ntic strain <strong>of</strong> <strong>Sporobolomyces</strong> boleticola<br />

CH 2.053 Wilting leaf <strong>of</strong> Nerium indicum<br />

CH 2.116 Wilting leaf <strong>of</strong> Sapindus delavayi<br />

CH 2.332 Wilting leaf <strong>of</strong> Nicotiana tabacum<br />

<strong>Sporobolomyces</strong> ruberrimus CBS 7500T Air<br />

<strong>Sporobolomyces</strong> salmoneus CBS 488T Etiolated grass<br />

<strong>Sporobolomyces</strong> sp. CH 2.500 Wilting leaf <strong>of</strong> Par<strong>the</strong>nocissus sp.<br />

were isolated by <strong>the</strong> improved ballistoconidium-fall method<br />

(Nakase & Takashima, 1993). Type and au<strong>the</strong>ntic strains<br />

were obtained from <strong>the</strong> Centraalbureau voor Schimmelcultures<br />

(CBS), The Ne<strong>the</strong>rlands, and <strong>the</strong> Japan Collection<br />

<strong>of</strong> Microorganisms (JCM), Japan.<br />

Most <strong>of</strong> <strong>the</strong> morphological, physiological and biochemical<br />

characteristics were examined according to standard<br />

methods commonly employed in yeast taxonomy (Yarrow,<br />

1998). Assimilation <strong>of</strong> nitrogen compounds was investigated<br />

on solid media with starved inocula as described by Nakase<br />

& Suzuki (1986). Vitamin requirement tests were performed<br />

according to Komagata & Nakase (1967).<br />

Extraction, purification and identification <strong>of</strong> ubiquinones<br />

were carried out according to Nakase & Suzuki (1986).<br />

Xylose in <strong>the</strong> cell hydrolysate was analysed by HPLC as<br />

described by Suzuki & Nakase (1988).<br />

ITS region and 26S rDNA D1/D2 domain sequencing. Nuclear<br />

DNA was extracted using <strong>the</strong> method <strong>of</strong> Makimura et al.<br />

(1994). The DNA fragment covering <strong>the</strong> ITS region and 26S<br />

rDNA D1D2 domain was amplified with <strong>the</strong> primers ITS1<br />

(5-GTCGTAACAAGGTTTCCGTAGGTG-3) and NL4<br />

(5-GGTCCGTGTTTCAAGACGG-3). PCR was performed<br />

for 36 cycles <strong>of</strong> denaturation at 94 C for 1 min,<br />

annealing at 52 C for 1 min and extension at 72 C for<br />

15 min. Cycle sequencing was performed with <strong>the</strong> forward<br />

primers ITS1 and NL1 (5-GCATATCAATAAGCGGA-<br />

GGAAAAG-3) and <strong>the</strong> reverse primers ITS4 (5-TCCTC-<br />

CGCTTATTGATATGC-3) and NL4 using <strong>the</strong> ABI<br />

2310 <strong>International</strong> Journal <strong>of</strong> Systematic and Evolutionary Microbiology 52


BigDye cycle sequencing kit. Electrophoresis was done on<br />

an ABI PRISM 377 DNA sequencer.<br />

Molecular phylogenetic analysis. The sequences <strong>of</strong> <strong>the</strong> ITS<br />

regions or 26S rDNA D1D2 domains <strong>of</strong> <strong>the</strong> strains<br />

determined in this study and <strong>the</strong> reference sequences were<br />

aligned with <strong>the</strong> program clustal x (Thompson et al., 1997)<br />

and adjusted manually. Reference sequences were obtained<br />

from DDBJEMBLGenBank, where <strong>the</strong>y had been deposited<br />

by o<strong>the</strong>r authors (Fell et al., 2000; Takashima &<br />

Nakase, 2000). Phylogenetic trees were constructed from <strong>the</strong><br />

evolutionary distance data calculated from Kimura’s twoparameter<br />

model (Kimura, 1980) using <strong>the</strong> neighbourjoining<br />

method (Saitou & Nei, 1987). Bootstrap analyses<br />

(Felsenstein, 1985) were performed on 1000 random<br />

resamplings.<br />

RESULTS AND DISCUSSION<br />

Taxonomic status <strong>of</strong> <strong>the</strong> synonyms <strong>of</strong><br />

<strong>Sporobolomyces</strong> <strong>roseus</strong> and Sporidiobolus<br />

para<strong>roseus</strong><br />

Boekhout (1991) and Boekhout & Nakase (1998) listed<br />

15 taxonomic synonyms under <strong>Sporobolomyces</strong> <strong>roseus</strong>.<br />

The type or au<strong>the</strong>ntic strains are available from culture<br />

collections for only eight <strong>of</strong> <strong>the</strong>m. The sequences <strong>of</strong> <strong>the</strong><br />

ITS regions and D1D2 domains <strong>of</strong> <strong>the</strong>se strains were<br />

determined in <strong>the</strong> present study, except for <strong>the</strong> D1D2<br />

sequence <strong>of</strong> <strong>the</strong> type strain <strong>of</strong> <strong>Sporobolomyces</strong><br />

ruberrimus, which had been determined by Fell et al.<br />

(2000).<br />

Among <strong>the</strong> taxonomic synonyms <strong>of</strong> Sporidiobolus<br />

para<strong>roseus</strong> listed by Boekhout (1991) and Boekhout &<br />

Nakase (1998), <strong>Sporobolomyces</strong> para<strong>roseus</strong> Olson &<br />

Hammer (CBS 484T, mt A1) and <strong>Sporobolomyces</strong><br />

ruber Yamasaki & Fujii (nom. inval., CBS 4216, mt<br />

A2) have been confirmed to be conspecific with <strong>the</strong><br />

former by mating compatibility and D1D2<br />

sequencing (Boekhout, 1991; Statzell-Tallman & Fell,<br />

1998; Fell et al., 2000). <strong>Sporobolomyces</strong> marcillae<br />

Santa Maria was shown to be a distinct species by<br />

D1D2 sequencing (Fell et al., 2000). The type or<br />

au<strong>the</strong>ntic strains <strong>of</strong> <strong>the</strong> remaining two synonyms <strong>of</strong><br />

Sporidiobolus para<strong>roseus</strong>, <strong>Sporobolomyces</strong> carnicolor<br />

Yamasaki & Fujii (nom. inval.) and <strong>Sporobolomyces</strong><br />

japonicus Iizuka & Goto, were used in this study for<br />

ITS and D1D2 sequencing. In addition, <strong>the</strong> ITS<br />

sequence <strong>of</strong> <strong>the</strong> type strain <strong>of</strong> <strong>Sporobolomyces</strong><br />

marcillae was determined.<br />

The relationships among <strong>the</strong> taxa studied are depicted<br />

by <strong>the</strong> phylogenetic trees drawn from <strong>the</strong> sequences <strong>of</strong><br />

<strong>the</strong> ITS region (Fig. 1a) and <strong>the</strong> D1D2 domain (Fig.<br />

1b). Sporidiobolus johnsonii and Sporidiobolus salmonicolor<br />

were used as outgroups. The recently described<br />

species <strong>Sporobolomyces</strong> blumeae Takashima & Nakase<br />

(2000) formed a basal branch in both trees. The o<strong>the</strong>r<br />

taxa clustered around <strong>Sporobolomyces</strong> <strong>roseus</strong> and<br />

Sporidiobolus para<strong>roseus</strong>. In <strong>the</strong> ITS tree (Fig. 1a),<br />

both clades were supported strongly (99–100%) by<br />

bootstrap analysis. In <strong>the</strong> D1D2 tree (Fig. 1b), <strong>the</strong><br />

<strong>Sporobolomyces</strong> <strong>roseus</strong> clade was strongly supported<br />

<strong>Sporobolomyces</strong> phaffii sp. nov.<br />

(bootstrap value 100%), but <strong>the</strong> Sporidiobolus<br />

para<strong>roseus</strong> clade was not (bootstrap value 50%).<br />

Among <strong>the</strong> synonyms <strong>of</strong> <strong>Sporobolomyces</strong> <strong>roseus</strong>,<br />

<strong>Sporobolomyces</strong> boleticola Ramırez, <strong>Sporobolomyces</strong><br />

pollaccii Verona & Ciferri, <strong>Sporobolomyces</strong> <strong>roseus</strong> var.<br />

madurae Janke and Torulopsis somala Verona were<br />

confirmed to be conspecific with <strong>Sporobolomyces</strong><br />

<strong>roseus</strong>, because <strong>the</strong>y have ITS and D1D2 sequences<br />

that are identical or very similar (only one nucleotide<br />

substitution) to those <strong>of</strong> <strong>the</strong> type strain <strong>of</strong> <strong>Sporobolomyces</strong><br />

<strong>roseus</strong>.<br />

<strong>Sporobolomyces</strong> salmoneus Derx, a synonym <strong>of</strong> <strong>Sporobolomyces</strong><br />

<strong>roseus</strong>, was clearly separated from <strong>the</strong><br />

<strong>Sporobolomyces</strong> <strong>roseus</strong> clade in both trees, and<br />

clustered toge<strong>the</strong>r with <strong>Sporobolomyces</strong> marcillae in<br />

<strong>the</strong> Sporidiobolus para<strong>roseus</strong> clade. The type strains <strong>of</strong><br />

<strong>Sporobolomyces</strong> salmoneus and <strong>Sporobolomyces</strong><br />

marcillae have identical D1D2 sequences and differ<br />

by only 1 nt in <strong>the</strong>ir ITS regions.<br />

Two synonyms <strong>of</strong> Sporidiobolus para<strong>roseus</strong>, <strong>Sporobolomyces</strong><br />

carnicolor and <strong>Sporobolomyces</strong> japonicus,<br />

respectively differed from <strong>the</strong> type strain by 19–24 and<br />

7–8 nt in <strong>the</strong> ITS region and D1D2 domain. They also<br />

differed from one ano<strong>the</strong>r remarkably (Fig. 1). <strong>Sporobolomyces</strong><br />

carnicolor and <strong>Sporobolomyces</strong> japonicus<br />

should <strong>the</strong>refore be reinstalled as two distinct species.<br />

<strong>Sporobolomyces</strong> carnicolor was proposed by Yamasaki<br />

& Fujii (1950) without a Latin description or type<br />

designation, and <strong>the</strong>refore needs to be validated.<br />

Taxonomic status <strong>of</strong> <strong>the</strong> <strong>Sporobolomyces</strong> <strong>roseus</strong><br />

strains from Yunnan<br />

A total <strong>of</strong> 670 yeast strains were isolated from 43<br />

wilting leaf samples collected in Yunnan, China, in<br />

1996 using <strong>the</strong> improved ballistoconidium-fall method<br />

(Nakase & Takashima, 1993). Approximately 100<br />

ballistoconidium-forming yeast strains were initially<br />

selected for phenotypic characterization. Of <strong>the</strong>m, a<br />

total <strong>of</strong> 55 strains were identified as <strong>Sporobolomyces</strong><br />

<strong>roseus</strong> according to Boekhout (1991) and Boekhout &<br />

Nakase (1998). Of nine representative strains (Table 1)<br />

selected for ITS sequencing, strains CH 2.053, CH<br />

2.116 and CH 2.332 were confirmed to belong to<br />

<strong>Sporobolomyces</strong> <strong>roseus</strong> (Fig. 1a). The sequence <strong>of</strong><br />

strain CH 2.500 differed from that <strong>of</strong> <strong>the</strong> type by 5 nt<br />

(14%).<br />

The o<strong>the</strong>r five strains, CH 2.049, CH 2.052, CH 2.083,<br />

CH 2.091 and CH 2.304, had identical ITS sequences<br />

and <strong>the</strong> sequence differed from that <strong>of</strong> <strong>the</strong> type strain<br />

<strong>of</strong> <strong>Sporobolomyces</strong> ruberrimus by 3 nt (10%). Previous<br />

studies on basidiomycetous yeasts have indicated that<br />

conspecific strains usually have less than 1%<br />

nucleotide divergence in <strong>the</strong> ITS1 and ITS2 regions<br />

overall (Sugita et al., 1999a, b; Takashima & Nakase,<br />

2000). However, Bai et al. (2001a, b) found that<br />

conspecific strains might have up to 5–7 nt differences<br />

(approx. 2%) in <strong>the</strong> ITS regions. Therefore, <strong>the</strong><br />

taxonomic relationships <strong>of</strong> <strong>the</strong>se five strains with<br />

http://ijs.sgmjournals.org 2311


F.-Y. Bai and o<strong>the</strong>rs<br />

(a)<br />

(b)<br />

<strong>Sporobolomyces</strong> ruberrimus and that <strong>of</strong> strain CH<br />

2.500 with <strong>Sporobolomyces</strong> <strong>roseus</strong> were examined<br />

fur<strong>the</strong>r by D1D2 sequencing.<br />

Strains CH 2.052, CH 2.083, CH 2.091 and CH 2.304<br />

had identical D1D2 sequences and differed from CH<br />

2049 by only 1 nt. They differed from <strong>Sporobolomyces</strong><br />

ruberrimus in as many as 18–19 nt (30%) in <strong>the</strong><br />

D1D2 domain (Fig. 1b). These results indicate that<br />

<strong>the</strong>se strains represent a distinct species, for which <strong>the</strong><br />

name <strong>Sporobolomyces</strong> phaffii sp. nov. is proposed.<br />

Strain CH 2.500 differed from <strong>the</strong> type strain <strong>of</strong><br />

<strong>Sporobolomyces</strong> <strong>roseus</strong> by 3 nt in <strong>the</strong> D1D2 domain,<br />

suggesting that this strain probably represents a<br />

distinct species. A definite taxonomic decision for<br />

strain CH 2.500 should be supported by additional<br />

data, for example, DNA–DNA reassociation, and<br />

perhaps by <strong>the</strong> identification <strong>of</strong> additional strains.<br />

.....................................................................................................<br />

Fig. 1. Phylogenetic trees drawn from<br />

neighbour-joining analysis based on<br />

sequences <strong>of</strong> (a) <strong>the</strong> ITS region (including<br />

58S rDNA) and (b) <strong>the</strong> D1/D2 domain,<br />

depicting <strong>the</strong> relationships <strong>of</strong> taxa in <strong>the</strong><br />

<strong>Sporobolomyces</strong> <strong>roseus</strong> and Sporidiobolus<br />

para<strong>roseus</strong> complexes, as well as <strong>the</strong> novel<br />

isolates from Yunnan, China. Bootstrap<br />

percentages over 50% from 1000 bootstrap<br />

replicates are shown.<br />

The significance <strong>of</strong> phenotypic and phylogenetic<br />

comparison<br />

The novel species <strong>Sporobolomyces</strong> phaffii is indistinguishable<br />

from <strong>Sporobolomyces</strong> <strong>roseus</strong> by conventional<br />

characterization. The three species <strong>Sporobolomyces</strong><br />

carnicolor, <strong>Sporobolomyces</strong> japonicus and<br />

Sporidiobolus para<strong>roseus</strong> also have almost identical<br />

phenotypes. <strong>Sporobolomyces</strong> <strong>roseus</strong> and <strong>Sporobolomyces</strong><br />

phaffii can be differentiated from <strong>the</strong> latter<br />

three species in <strong>the</strong>ir ability to assimilate nitrate and<br />

nitrite. Though <strong>the</strong> type strains <strong>of</strong> <strong>Sporobolomyces</strong><br />

salmoneus and <strong>Sporobolomyces</strong> marcillae have identical<br />

D1D2 sequences and very similar ITS sequences,<br />

<strong>the</strong>ir nitrogen assimilation patterns are completely<br />

different. <strong>Sporobolomyces</strong> salmoneus can utilize nitrate,<br />

nitrite and ethylamine hydrochloride as sole sources <strong>of</strong><br />

nitrogen, whereas <strong>Sporobolomyces</strong> marcillae can not.<br />

This explains why <strong>the</strong> former was previously regarded<br />

2312 <strong>International</strong> Journal <strong>of</strong> Systematic and Evolutionary Microbiology 52


as a synonym <strong>of</strong> <strong>Sporobolomyces</strong> <strong>roseus</strong> and <strong>the</strong> latter<br />

a synonym <strong>of</strong> Sporidiobolus para<strong>roseus</strong> (Boekhout,<br />

1991). The taxonomic relationship between <strong>Sporobolomyces</strong><br />

salmoneus and <strong>Sporobolomyces</strong> marcillae<br />

should be studied fur<strong>the</strong>r.<br />

The relationships among <strong>the</strong> taxa in <strong>the</strong> Sporidiobolus<br />

para<strong>roseus</strong> complex revealed by <strong>the</strong> ITS sequences are<br />

discordant with those revealed by <strong>the</strong> D1D2 sequence<br />

data, especially for <strong>the</strong> relationship between <strong>Sporobolomyces</strong><br />

phaffii sp. nov. and <strong>Sporobolomyces</strong><br />

ruberrimus (Fig. 1). Analysis <strong>of</strong> 18S rDNA sequences<br />

may be helpful to confirm <strong>the</strong> phylogenetic relationships<br />

among <strong>the</strong>se species. Fell et al. (2000) found<br />

that some basidiomycetous yeast species with identical<br />

or similar D1D2 sequences could be separated<br />

by ITS sequence data. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> present<br />

study indicates that species with similar ITS sequences<br />

may have quite different D1D2 sequence data.<br />

Latin diagnosis <strong>of</strong> <strong>Sporobolomyces</strong> carnicolor<br />

Yamasaki & Fujii ex Bai & Boekhout<br />

In YM liquido post dies 3 ad 25 C, cellulae vegetativae<br />

ovoideae, ellipsoideae vel elongatae, 25–6235–<br />

17 µm, singulae, binae vel aggregatae. Post unum<br />

mensem ad 20 C, annulus, pelliculum et sedimentum<br />

formantur. In agaro YM post unum mensem ad 20 C,<br />

cultura rubro-aurantiaca, rugosa, margine erosa. Mycelium<br />

et pseudomycelium non formantur. Ballistosporae<br />

ovoideae vel ellipsoideae, 25–3762–102 µm.<br />

Fermentatio nulla. Glucosum, galactosum (lente), lsorbosum<br />

(lente), saccharosum, maltosum, cellobiosum,<br />

trehalosum, raffinosum, melezitosum, inulinum (lente),<br />

amylum solubile (lente), d-xylosum (lente), d-arabinosum,<br />

d-ribosum, ethanolum, glycerolum, ribitolum<br />

(lente), d-mannitolum, glucitolum, methyl α-d-glucosidum<br />

(lente), salicinum, glucono-δ-lactonum, acidum<br />

succinicum et acidum citricum assimilantur at non lactosum,<br />

melibiosum, l-arabinosum, l-rhamnosum, erithritolum,<br />

galactitolum, acidum 2-ketogluconicum, acidum<br />

5-ketogluconicum, acidum dl-lacticum, inositolum,<br />

acidum d-glucuronicum nec acidum d-galacturonicum.<br />

Ammonium sulfatum, l-lysinum et cadaverinum assimilantur<br />

at non kalium nitricum, natrum nitrosum nec<br />

ethylaminum. Ad crescentiam vitaminum non necessarium<br />

est. Materia amyloidea iodophila non formantur.<br />

Urea finditur. Diazonium caeruleum B positivum. Ubiquinonum<br />

majus: Q-10. Typus: CBS 4215T, depositus in<br />

collectione Centraalbureau voor Schimmelcultures,<br />

Utrecht, The Ne<strong>the</strong>rlands.<br />

Latin diagnosis <strong>of</strong> <strong>Sporobolomyces</strong> phaffii Bai,<br />

Takashima & Nakase sp. nov.<br />

In YM (Difco) liquido post dies 3 ad 25 C, cellulae<br />

vegetativae ovoideae vel ellipsoideae, 20–4040–<br />

48 µm, singulae aut binae. Post unum mensem ad 20 C,<br />

annulus, pelliculum et sedimentum formantur. In agaro<br />

YM post unum mensem ad 20 C, cultura rubroaurantiaca,<br />

glabra, nitida, et margine glabra. Mycelium<br />

et pseudomycelium non formantur. Ballistosporae ovoi-<br />

<strong>Sporobolomyces</strong> phaffii sp. nov.<br />

deae vel ellipsoideae,20–2280–90 µm. Fermentatio<br />

nulla. Glucosum, saccharosum, maltosum, cellobiosum,<br />

trehalosum, melibiosum, raffinosum, melezitosum, amylum<br />

solubile, ethanolum (lente), d-mannitolum (lente),<br />

methyl α-d-glucosidum, salicinum, glucono-δ-lactonum<br />

et acidum succinicum assimilantur at non galactosum<br />

(vel exigue et lente), l-sorbosum, lactosum, inulinum, dxylosum,<br />

l-arabinosum, d-arabinosum, d-ribosum, lrhamnosum,<br />

glycerolum, erithritolum, ribitolum, galactitolum,<br />

glucitolum (vel exigue et lente), acidum 2ketogluconicum,<br />

acidum 5-ketogluconicum, acidum dllacticum,<br />

acidum citricum, inositolum, acidum d-glucuronicum<br />

nec acidum d-galacturonicum. Ammonium<br />

sulfatum, kalium nitricum, natrum nitrosum assmilantur,<br />

ethylaminum (variabile) et l-lysinum (fortasse<br />

exigue) assimilantur at non cadaverinum (vel exigue).<br />

Ad crescentiam vitaminum non necessarium est.<br />

Maxima temperatura crescentiae: 32–33 C. Materia<br />

amyloidea iodophila non formantur. Urea finditur.<br />

Diazonium caeruleum B positivum. Ubiquinonum<br />

majus: Q-10. Xylosum in cellulis absens.<br />

Typus: Isolatus ex folio Nerii indici Mill., AS 2.2137T<br />

(originaliter ut CH 2.052T) depositus in collectione<br />

China General Microbiological Culture Collection<br />

Center, Academia Sinica, Beijing.<br />

Description <strong>of</strong> <strong>Sporobolomyces</strong> phaffii Bai,<br />

Takashima & Nakase sp. nov.<br />

<strong>Sporobolomyces</strong> phaffii (phaffi.i. N.L. gen. n. phaffii in<br />

honour <strong>of</strong> <strong>the</strong> late Herman J. Phaff, USA).<br />

In YM broth, after 3 days at 25 C, <strong>the</strong> cells are ovoid<br />

to ellipsoidal, 20–4040–80 µm (Fig. 2a). A ring,<br />

pellicle and sediment are formed. After 1 month at<br />

17 C, a ring, pellicle and sediment are present. On YM<br />

agar, after 3 days at 25 C, <strong>the</strong> streak culture is<br />

butyrous, smooth, glistening with orange to orangered<br />

colour. After 1 month at 20 C, <strong>the</strong> culture is<br />

butyrous and becomes mucoid or reticulate in some<br />

areas, orange-red, with <strong>the</strong> margin entire to eroded.<br />

Mycelia and pseudomycelia are not formed on Dalmau<br />

plate culture on corn meal agar. On corn meal agar,<br />

ballistoconidia are formed on short sterigmata, ellipsoidal<br />

or ovoid, 20–2280–90 µm (Fig. 2b).<br />

Glucose is not fermented. The following carbon<br />

compounds are assimilated: glucose, sucrose, maltose,<br />

cellobiose, trehalose, melibiose, raffinose, melezitose,<br />

soluble starch, ethanol (delayed), d-mannitol<br />

(delayed), methyl α-d-glucoside, salicin, glucono-δlactone,<br />

succinic acid and citric acid. The following are<br />

not assimilated: galactose (or weak and delayed), lsorbose,<br />

lactose, inulin, d-xylose, l-arabinose, darabinose,<br />

d-ribose, l-rhamnose, glycerol, erythritol,<br />

ribitol, galactitol, glucitol (or weak and delayed), 2ketogluconic<br />

acid, 5-ketogluconic acid, dl-lactic acid,<br />

citric acid, inositol, d-glucuronic acid and dgalacturonic<br />

acid. KNO , NaNO , ethylamine (variable)<br />

and l-lysine (or weak)<br />

<br />

are utilized<br />

<br />

as sole sources<br />

<strong>of</strong> nitrogen; cadaverine is not utilized or is utilized<br />

weakly. Growth in vitamin-free medium is positive.<br />

http://ijs.sgmjournals.org 2313


F.-Y. Bai and o<strong>the</strong>rs<br />

(a)<br />

(b)<br />

.................................................................................................................................................<br />

Fig. 2. <strong>Sporobolomyces</strong> phaffii sp. nov. CH 2.052 T . (a)<br />

Vegetative cells grown in YM broth for 5 days at 17 C. (b)<br />

Ballistoconidia produced on corn meal agar after 5 days at<br />

17 C. Bars, 10 µm.<br />

Maximum growth temperature is 32–33 C. Starchlike<br />

compounds are not produced. Urease activity is<br />

positive. Diazonium blue B reaction is positive. The<br />

major ubiquinone is Q-10. Xylose is absent in <strong>the</strong><br />

whole-cell hydrolysate.<br />

The type strain, strain CH 2.052T ( JCM 11491T <br />

CBS 9129T), was isolated in 1996 from a wilting leaf <strong>of</strong><br />

Nerium indicum Mill. collected in Yunnan, China. This<br />

strain has also been deposited in <strong>the</strong> China General<br />

Microbiological Culture Collection Center<br />

(CGMCC), Institute <strong>of</strong> Microbiology, Chinese Academy<br />

<strong>of</strong> Sciences, Beijing, China, as strain AS 2.2137T.<br />

ACKNOWLEDGEMENTS<br />

This study was supported by grants no. 30170002 from <strong>the</strong><br />

National Natural Science Foundation <strong>of</strong> China (NSFC) and<br />

no. KSCX2-SW-101C from <strong>the</strong> Chinese Academy <strong>of</strong><br />

Sciences.<br />

REFERENCES<br />

Bai, F.-Y., Takashima, M. & Nakase, T. (2001a). Description <strong>of</strong><br />

Bullera kunmingensis sp. nov., and clarification <strong>of</strong> <strong>the</strong> taxonomic status<br />

<strong>of</strong> Bullera sinensis and its synonyms based on molecular phylogenetic<br />

analysis. FEMS Yeast Res 1, 103–109.<br />

Bai, F.-Y., Takashima, M. & Nakase, T. (2001b). Phylogenetic analysis<br />

<strong>of</strong> strains originally assigned to Bullera variabilis: descriptions <strong>of</strong><br />

Bullera pseudohuiaensis sp. nov., Bullera komagatae sp. nov. and Bullera<br />

pseudoschimicola sp. nov. Int J Syst Evol Microbiol 51, 2177–2187.<br />

Boekhout, T. (1991). A revision <strong>of</strong> ballistoconidia-forming yeasts and<br />

fungi. Stud Mycol 33, 1–194.<br />

Boekhout, T. & Nakase, T. (1998). <strong>Sporobolomyces</strong> Kluyver & van<br />

Niel. In The Yeasts, a Taxonomic Study, 4th edn, pp. 828–843. Edited by<br />

C. P. Kurtzman & J. W. Fell. Amsterdam: Elsevier.<br />

Derx, H. G. (1930). E tude sur les Sporobolomyce tes. Ann Mycol 28,<br />

1–23.<br />

Fell, J. W., Boekhout, T., Fonseca, A., Scorzetti, G. & Statzell-<br />

Tallman, A. (2000). Biodiversity and systematics <strong>of</strong> basidiomycetous<br />

yeasts as determined by large-subunit rDNA D1D2 domain sequence<br />

analysis. Int J Syst Evol Microbiol 50, 1351–1371.<br />

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach<br />

using <strong>the</strong> bootstrap. Evolution 39, 783–791.<br />

Hamamoto, M. & Nakase, T. (2000). Phylogenetic analysis <strong>of</strong> <strong>the</strong><br />

ballistoconidium-forming yeast genus <strong>Sporobolomyces</strong> based on 18S<br />

rDNA sequences. Int J Syst Evol Microbiol 50, 1373–1380.<br />

Kimura, M. (1980). A simple method for estimating evolutionary rates<br />

<strong>of</strong> base substitutions through comparative studies <strong>of</strong> nucleotide<br />

sequences. J Mol Evol 16, 111–120.<br />

Komagata, K. & Nakase, T. (1967). Microbiological studies on frozen<br />

foods. V. General properties <strong>of</strong> yeasts isolated from frozen food.<br />

Shokuhin Eiseigaku Zasshi 8, 53–57 (in Japanese).<br />

Last, F. T. (1955). Seasonal incidence <strong>of</strong> <strong>Sporobolomyces</strong> on cereal<br />

leaves. Trans Br Mycol Soc 38, 221–239.<br />

Makimura, K., Murayama, S. Y. & Yamaguchi, H. (1994). Detection<br />

<strong>of</strong> a wide range <strong>of</strong> medically important fungi by <strong>the</strong> polymerase chain<br />

reaction. J Med Microbiol 40, 358–364.<br />

Nakase, T. (2000). Expanding world <strong>of</strong> ballistosporous yeasts:<br />

distribution in <strong>the</strong> phyllosphere, systematics and phylogeny. J Gen Appl<br />

Microbiol 46, 189–216.<br />

Nakase, T. & Suzuki, M. (1986). Bullera megalospora, a new species <strong>of</strong><br />

yeast forming large ballistospores isolated from dead leaves <strong>of</strong> Oryza<br />

sativa, Miscanthus sinensis, and Sasa sp. in Japan. J Gen Appl Microbiol<br />

32, 225–240.<br />

Nakase, T. & Takashima, M. (1993). A simple procedure for <strong>the</strong> high<br />

frequency isolation <strong>of</strong> new taxa <strong>of</strong> ballistosporous yeasts living on <strong>the</strong><br />

surfaces <strong>of</strong> plants. RIKEN Review 3, 33–34.<br />

Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new<br />

method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.<br />

Statzell-Tallman, A. & Fell, J. W. (1998). Sporidiobolus Nyland. In<br />

The Yeasts, a Taxonomic Study, 4th edn, pp. 693–699. Edited by C. P.<br />

Kurtzman & J. W. Fell. Amsterdam: Elsevier.<br />

Sugita, T., Can ete-Gibas, C. F., Takashima, M. & Nakase, T. (1999a).<br />

Three new species <strong>of</strong> Bullera isolated from leaves in <strong>the</strong> Ogasawara<br />

Islands. Mycoscience 40, 491–501.<br />

Sugita, T., Nishikawa, A., Ikeda, R. & Shinoda, T. (1999b).<br />

Identification <strong>of</strong> medically relevant Trichosporon species based on<br />

sequences <strong>of</strong> internal transcribed spacer regions and construction <strong>of</strong> a<br />

database for Trichosporon identification. J Clin Microbiol 37,<br />

1985–1993.<br />

Suzuki, M. & Nakase, T. (1988). The distribution <strong>of</strong> xylose in cells <strong>of</strong><br />

ballistosporous yeasts – application <strong>of</strong> high performance liquid<br />

chromatography without derivatization to <strong>the</strong> analysis <strong>of</strong> xylose in<br />

whole cell hydrolysates. J Gen Appl Microbiol 34, 95–103.<br />

Takashima, M. & Nakase, T. (2000). Four new species <strong>of</strong> <strong>the</strong> genus<br />

<strong>Sporobolomyces</strong> isolated from leaves in Thailand. Mycoscience 41,<br />

357–369.<br />

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. &<br />

Higgins, D. G. (1997). The clustalx windows interface: flexible<br />

strategies for multiple sequence alignment aided by quality analysis<br />

tools. Nucleic Acids Res 25, 4876–4882.<br />

Tubaki, K. (1953). Studies on <strong>the</strong> Sporobolomycetaceae in Japan.<br />

III. On <strong>Sporobolomyces</strong> and Bullera. Nagaoa 3, 12–21.<br />

Yamasaki, I. & Fujii, H. (1950). Studies on <strong>Sporobolomyces</strong> red yeasts.<br />

Part 7. Classification <strong>of</strong> <strong>the</strong> genera <strong>Sporobolomyces</strong> and Bullera. Bull<br />

Agric Chem Soc Japan 24, 11–15 (in Japanese).<br />

Yarrow, D. (1998). Method for <strong>the</strong> isolation, maintenance and<br />

identification <strong>of</strong> yeasts. In The Yeasts, a Taxonomic Study, 4th edn, pp.<br />

77–100. Edited by C. P. Kurtzman & J. W. Fell. Amsterdam: Elsevier.<br />

2314 <strong>International</strong> Journal <strong>of</strong> Systematic and Evolutionary Microbiology 52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!