26.12.2013 Views

Curvibasidium cygneicollum gen. nov., sp. nov. and Curvibasidium ...

Curvibasidium cygneicollum gen. nov., sp. nov. and Curvibasidium ...

Curvibasidium cygneicollum gen. nov., sp. nov. and Curvibasidium ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

International Journal of Systematic <strong>and</strong> Evolutionary Microbiology (2004), 54, 1401–1407<br />

DOI 10.1099/ijs.0.03037-0<br />

<strong>Curvibasidium</strong> <strong>cygneicollum</strong> <strong>gen</strong>. <strong>nov</strong>., <strong>sp</strong>. <strong>nov</strong>.<br />

<strong>and</strong> <strong>Curvibasidium</strong> pallidicorallinum <strong>sp</strong>. <strong>nov</strong>.,<br />

<strong>nov</strong>el taxa in the Microbotryomycetidae<br />

(Urediniomycetes), <strong>and</strong> their relationship with<br />

Rhodotorula fujisanensis <strong>and</strong> Rhodotorula<br />

nothofagi<br />

José Paulo Sampaio, 1 Wladyslav I. Golubev, 2 Jack W. Fell, 3<br />

Mário Gadanho 1 <strong>and</strong> Nikita W. Golubev 4<br />

Corre<strong>sp</strong>ondence<br />

José Paulo Sampaio<br />

jss@fct.unl.pt<br />

1<br />

Centro de Recursos Microbiológicos, Secção Autónoma de Biotecnologia, Faculdade de<br />

Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal<br />

2<br />

Russia Collection of Microorganisms, Institute for Biochemistry <strong>and</strong> Physiology of<br />

Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia<br />

3<br />

Rosenstiel School of Marine <strong>and</strong> Atmo<strong>sp</strong>heric Science, University of Miami,<br />

4600 Rickenbacker Causeway, Key Biscayne, FL 33419, USA<br />

4<br />

Mendeleev Chemical–Technological University, Moscow 125820, Russia<br />

Strains of Rhodotorula fujisanensis (Basidiomycota, Urediniomycetes, Microbotryomycetidae),<br />

including the type strain, are sexually compatible <strong>and</strong> produce clamped mycelium with telio<strong>sp</strong>ores.<br />

However, as telio<strong>sp</strong>ore germination had not been documented, the complete sexual cycle was not<br />

known. During the course of this work, the basidial stage of R. fujisanensis was characterized.<br />

In addition, mating studies employing isolates that were identified preliminarily as Rhodotorula<br />

nothofagi, a <strong>sp</strong>ecies that is related closely to R. fujisanensis, yielded mycelium with telio<strong>sp</strong>ores,<br />

which formed basidia <strong>and</strong> basidio<strong>sp</strong>ores. The new data were evaluated by using several criteria,<br />

including the available molecular phylo<strong>gen</strong>etic framework for the Microbotryomycetidae.<br />

<strong>Curvibasidium</strong> <strong>gen</strong>. <strong>nov</strong>. is described here, to accommodate two teleomorphs: <strong>Curvibasidium</strong><br />

<strong>cygneicollum</strong> <strong>sp</strong>. <strong>nov</strong>. (CBS 4551 T ), which is described as the sexual stage of R. fujisanensis, <strong>and</strong><br />

<strong>Curvibasidium</strong> pallidicorallinum <strong>sp</strong>. <strong>nov</strong>. (CBS 9091 T ), which is related closely to R. nothofagi, but<br />

does not represent its sexual stage.<br />

The dimorphic basidiomycetes are distributed among<br />

several lineages of the Basidiomycota (Swann & Taylor,<br />

1995; Sampaio & Fonseca, 2002; Scorzetti et al., 2002;<br />

Sampaio & Bauer, 2003). They constitute a remarkably<br />

diverse group of fungi, based on DNA sequence diver<strong>gen</strong>ce<br />

studies, ultrastructural markers, ecological adaptations <strong>and</strong><br />

Published online ahead of print on 5 March 2004 as DOI 10.1099/<br />

ijs.0.03037-0.<br />

Abbreviation: ITS, internal transcribed <strong>sp</strong>acer.<br />

The GenBank/EMBL/DDBJ accession numbers for the sequences<br />

described in this work are as follows: AY383746, AY383747 <strong>and</strong><br />

AY383748 (complete ITS region sequences of <strong>Curvibasidium</strong> pallidicorallinum<br />

CBS 6231, VKM Y-2861 <strong>and</strong> VKM Y-1135, re<strong>sp</strong>ectively);<br />

AY383749 (complete ITS region sequence of Rhodotorula nothofagi<br />

A45); <strong>and</strong> AY383750 <strong>and</strong> AY383751 (partial 26S rRNA <strong>gen</strong>e<br />

sequences of Rhodotorula in<strong>gen</strong>iosa CBS 6728 <strong>and</strong> Rhodotorula <strong>sp</strong>.<br />

CBS 4858, re<strong>sp</strong>ectively).<br />

metabolic properties. The yeast stage allows the colonization<br />

of a wide range of ecological niches <strong>and</strong> is also important for<br />

di<strong>sp</strong>ersion. The filamentous stage tends to be more resilient,<br />

particularly when <strong>sp</strong>ecialized resting structures, such as<br />

telio<strong>sp</strong>ores, are formed. Hyphae are also important in the<br />

development of the sexual stage <strong>and</strong> in the establishment of<br />

mycoparasitism or phytoparasitism.<br />

Many <strong>sp</strong>ecies of basidiomycetous yeasts are known only in<br />

their asexual phase <strong>and</strong> are classified in <strong>gen</strong>era such as<br />

Rhodotorula Harrison or Cryptococcus Vuillemin. However,<br />

mating studies have allowed the disclosure of the sexual<br />

stage of <strong>sp</strong>ecies that were previously classified in these<br />

<strong>gen</strong>era. Typically, the teleomorphic stage is initiated with<br />

conjugation between two compatible yeast cells, followed by<br />

production of mycelium. When environmental conditions<br />

are adequate, basidia <strong>and</strong> basidio<strong>sp</strong>ores are produced.<br />

The investigation of new sexual states allows a better<br />

03037 G 2004 IUMS Printed in Great Britain 1401


J. P. Sampaio <strong>and</strong> others<br />

underst<strong>and</strong>ing of the evolutionary processes that underlie<br />

the present diversity of dimorphic basidiomycetes, including<br />

the phylo<strong>gen</strong>etic relationships between <strong>and</strong> within<br />

anamorphic <strong>gen</strong>era.<br />

Sexual compatibility is known for certain strains of<br />

Rhodotorula fujisanensis (Soneda) Johnson & Phaff, <strong>and</strong><br />

clamped mycelium with telio<strong>sp</strong>ores has been documented<br />

(Fell et al., 1984; Barnett et al., 1990; Boekhout & Fell, 1995).<br />

However, until now, telio<strong>sp</strong>ore germination had not been<br />

reported <strong>and</strong>, therefore, the complete sexual cycle was<br />

not known. In the present report, the basidial stage of<br />

R. fujisanensis is characterized. In addition, the study of<br />

another sexual stage, obtained by using isolates that were<br />

identified preliminarily as R. nothofagi Ramírez & González,<br />

a <strong>sp</strong>ecies related closely to R. fujisanensis, is also presented.<br />

The data were evaluated by using several criteria, including<br />

the molecular phylo<strong>gen</strong>etic framework that is available<br />

for the Microbotryomycetidae. A new <strong>gen</strong>us, <strong>Curvibasidium</strong><br />

<strong>gen</strong>. <strong>nov</strong>., is described, to accommodate the two<br />

teleomorphs. The relationship of <strong>Curvibasidium</strong> with R.<br />

fujisanensis <strong>and</strong> R. nothofagi is discussed.<br />

For microscopy, cultures were grown on MYP agar (malt<br />

extract, 0?7 % w/v; yeast extract, 0?05 % w/v; soytone<br />

peptone, 0?25 % w/v; agar, 1?5 % w/v) at room temperature<br />

(20–23 uC) <strong>and</strong> studied with an Olympus BX50 microscope,<br />

using phase-contrast optics. For determination of sexual<br />

compatibility, pairs of 2–4-day-old cultures were crossed on<br />

MYP agar, potato dextrose agar (PDA) <strong>and</strong> corn-meal agar<br />

(CMA), incubated at room temperature <strong>and</strong> examined<br />

regularly for the production of mycelium <strong>and</strong> telio<strong>sp</strong>ores.<br />

Telio<strong>sp</strong>ore germination required a prolonged resting stage<br />

(9–12 months). After this period, agar blocks containing the<br />

telio<strong>sp</strong>ores were transferred to 2 % water agar <strong>and</strong> observed<br />

regularly under the microscope.<br />

Physiological <strong>and</strong> biochemical characterization was carried<br />

out according to techniques described by Yarrow (1998).<br />

Additional assimilation tests were performed by using<br />

aldaric acids <strong>and</strong> aromatic compounds as described by<br />

Fonseca (1992) <strong>and</strong> Sampaio (1999), re<strong>sp</strong>ectively.<br />

For determination of the extent of DNA homology, total<br />

<strong>gen</strong>omic DNA was extracted <strong>and</strong> purified by using<br />

procedures described previously (Sampaio et al., 2001).<br />

For DNA–DNA reassociation experiments, a Gilford<br />

Re<strong>sp</strong>onse UV-VIS <strong>sp</strong>ectrophotometer <strong>and</strong> its thermal<br />

programming software were used <strong>and</strong> the methods of<br />

Kurtzman et al. (1980) were followed.<br />

For rRNA <strong>gen</strong>e sequence analysis, total DNA was extracted<br />

by using the protocol of Sampaio et al. (2001) <strong>and</strong> amplified<br />

by using primers ITS5 (59-GGAAGTAAAAGTCGTAAC-<br />

AAGG-39) <strong>and</strong> LR6 (59-CGCCAGTTCTGCTTACC-39).<br />

Cycle sequencing of the 600–650 bp region at the 59 end<br />

of the 26S rRNA <strong>gen</strong>e D1/D2 domains employed forward<br />

primer NL1 (59-GCATATCAATAAGCGGAGGAAAAG-39) <strong>and</strong><br />

reverse primer NL4 (59-GGTCCGTGTTTCAAGACGG-39).<br />

The internal transcribed <strong>sp</strong>acer (ITS) region was sequenced<br />

by using the forward primer ITS1 (59-TCCGTAGGTGAA-<br />

CCTGCGG-39) <strong>and</strong> the reverse primer ITS4 (59-TCCTCC-<br />

GCTTATTGATATGC-39). Sequences were obtained with<br />

an Amersham Pharmacia ALF Express II automated<br />

sequencer by using st<strong>and</strong>ard protocols. Alignments were<br />

made with MegAlign (DNAStar) <strong>and</strong> corrected visually.<br />

Heuristic maximum-parsimony analysis was employed (100<br />

rounds of heuristic search with tree bisection–reconnection<br />

branch-swapping, starting from trees that were obtained by<br />

r<strong>and</strong>om addition of sequences, multrees option on, deepest<br />

descent option off) <strong>and</strong> was validated by using 1000 rounds<br />

of bootstrap analysis (Felsenstein, 1985). Maximumparsimony<br />

<strong>and</strong> bootstrap calculations used PAUP* software<br />

(Swofford, 2001).<br />

Latin diagnosis of <strong>Curvibasidium</strong> Sampaio et<br />

W. Golubev <strong>gen</strong>. <strong>nov</strong>.<br />

Fungi dimorphi Microbotryomycetidarum. Mycelium poris<br />

simplicibus fibulatis. Colacosomata nulla. Telio<strong>sp</strong>orae globosae,<br />

holobasidiis germinant. Basidio<strong>sp</strong>orae ovoideae ad<br />

bacilliformes, sessiles, gemmis germinant. Ballistoconidia<br />

nulla. Fermentatio nulla. D-Glucuronatum nitratumque non<br />

assimilantur. Productio compositorum amylo similium nulla.<br />

Systema CoQ 9 dominans. Polysaccharida extracellularia<br />

fucosum rhamnosumque continent.<br />

Description of <strong>Curvibasidium</strong> Sampaio &<br />

W. Golubev <strong>gen</strong>. <strong>nov</strong>.<br />

<strong>Curvibasidium</strong> (Cur.vi.ba.si9di.um. N.L. neut. n. <strong>Curvibasidium</strong><br />

referring to the curved shape of the basidium).<br />

Dimorphic. Belongs to the subclass Microbotryomycetidae.<br />

Mycelium with clamp connections. Simple septal pore.<br />

Colacosomes are not produced. Spherical telio<strong>sp</strong>ores<br />

germinate, producing a holobasidium. Sessile, ovoid-tobacilliform<br />

basidio<strong>sp</strong>ores are released passively <strong>and</strong> germinate<br />

by budding. Ballistoconidia are not formed. Fermentative<br />

ability is absent. No assimilation of D-glucuronate or<br />

nitrate occurs. Starch-like compounds are not formed.<br />

Dominant CoQ system is 9. Extracellular polysaccharides<br />

contain fucose <strong>and</strong> rhamnose. Phylo<strong>gen</strong>etic placement, as<br />

deduced by analysis of the D1/D2 domains of 26S rRNA<br />

<strong>gen</strong>e, is shown in Fig. 1. The type <strong>sp</strong>ecies is <strong>Curvibasidium</strong><br />

<strong>cygneicollum</strong> Sampaio.<br />

Latin diagnosis of <strong>Curvibasidium</strong> <strong>cygneicollum</strong><br />

Sampaio <strong>sp</strong>. <strong>nov</strong>.<br />

Fungus dimorphus. Hyphae 1?5–2?5 mm diametro, conjugatione<br />

culturarum compatibilium procreantur. Septa fibulata,<br />

colacosomata nulla. Telio<strong>sp</strong>orae plerumque globosae, 12–18<br />

(22) mm diametro, terminales vel intercalares. Basidia<br />

stipitata, curvata, matura retroflexa, 6–8 (10)615–22<br />

(26) mm, aseptata, basidio<strong>sp</strong>oras sessiles, ovoideas ad bacilliformes<br />

in appendicibus basidialibus brevibus procreant.<br />

Basidio<strong>sp</strong>orae gemmis germinant. Cellulae zymosae longe<br />

ovoideae ad cylindraceae, (1?5) 2–36(5) 7–12 (15) mm.<br />

1402 International Journal of Systematic <strong>and</strong> Evolutionary Microbiology 54


<strong>Curvibasidium</strong> <strong>gen</strong>. <strong>nov</strong>.<br />

Fig. 1. Phylo<strong>gen</strong>etic tree of <strong>Curvibasidium</strong> <strong>and</strong> related taxa of the Microbotryomycetidae. Maximum-parsimony analysis of an<br />

alignment of the D1/D2 region of the 26S rRNA <strong>gen</strong>e. The topology was rooted with Naohidea sebacea, Occultifur externus,<br />

Rhodotorula minuta <strong>and</strong> Sakaguchia dacryoidea. Numbers on branches are bootstrap values (1000 replicates; values below<br />

50 % are not shown). GenBank accession numbers of the sequences are indicated after strain numbers.<br />

Cultura in striis cremea ad aurantiaca. Characteres biochemici<br />

physiologicique Curvibasidii cygneicolli in http://www.crem.<br />

fct.unl.pt/dimorphic_basidiomycetes/Databases/databases.htm<br />

describuntur.<br />

Description of <strong>Curvibasidium</strong> <strong>cygneicollum</strong><br />

Sampaio <strong>sp</strong>. <strong>nov</strong>.<br />

<strong>Curvibasidium</strong> <strong>cygneicollum</strong> (cyg.nei.col9lum. L. n. cygnus<br />

swan; L. n. collum neck; N.L. n. <strong>cygneicollum</strong> swan-neck,<br />

referring to the typical shape of the stalked basidium, which<br />

resembles the neck of a swan).<br />

Dimorphic. Hyphae (1?5–2?5 mm in diameter) are formed<br />

after mating of sexually compatible strains. Two mating<br />

types are known (see Table 1). Clamp connections are<br />

present, but colacosomes are lacking. Telio<strong>sp</strong>ores are usually<br />

<strong>sp</strong>herical [12–18 (22) mm in diameter], terminal or intercalary<br />

(Fig. 2a). Basidia are produced after a prolonged<br />

resting stage of the telio<strong>sp</strong>ores. Basidia are stalked, curved<br />

<strong>and</strong> bent over the stalk when matured (Fig. 2b). Stalks<br />

http://ijs.sgmjournals.org 1403


J. P. Sampaio <strong>and</strong> others<br />

Table 1. Strain numbers, isolation source <strong>and</strong> sexuality of the two <strong>nov</strong>el <strong>sp</strong>ecies of <strong>Curvibasidium</strong> described in this study <strong>and</strong><br />

of R. nothofagi<br />

Species/strain* Isolation source SexualityD<br />

C. <strong>cygneicollum</strong><br />

CBS 4551 T d Hare faeces, Mount Fuji, Japan MT A1<br />

CBS 7950 Wood of Quercus suber, Arrábida, Portugal MT A1<br />

CBS 8056 Berry of Vitis coignetiae (wild grape), Japan MT A1<br />

PYCC 4187 Flower of Acacia <strong>sp</strong>., Portugal MT A1<br />

CBS 6371 Leaf, France MT A2<br />

PYCC 4694 Rotten wood, Arrábida, Portugal MT A2<br />

CBS 8163§ Rotten trunk of Laurelia sempervirens, Futrono, Chile ANA<br />

CBS 7949 Dry leaf, Arrábida, Portugal SF||<br />

CBS 7951 Tree root, Gerês, Portugal ANA<br />

CBS 8264 Leaf of Acacia <strong>sp</strong>., New Zeal<strong>and</strong> ANA<br />

PYCC 4705 Caterpillar nest, Sintra, Portugal ANA<br />

PYCC 4445 Woodl<strong>and</strong> soil, Lisbon, Portugal ND<br />

PYCC 4968 Tree trunk, Arrábida, Portugal ANA<br />

PYCC 4947 Rotten tree trunk, Lisbon, Portugal ANA<br />

VKM Y-2859 Herbaceous plants, Prioksko-terrasny Bio<strong>sp</strong>here Reserve, Moscow region, Russia MT A2<br />

JI 06 Fruiting body of Exidiopsis <strong>sp</strong>., Caramulo, Portugal ND<br />

JI 21 Fruiting body of Exidiopsis <strong>sp</strong>., Caramulo, Portugal ND<br />

C. pallidicorallinum<br />

VKM Y-2284 T (=CBS 9091 T ) Gramineous plant, Moscow region, Russia MT A1<br />

CBS 6231 Frass of Ruguloscolytus rugulosus MT A1<br />

VKM Y-2861 Herbaceous plants, Prioksko-terrasny Bio<strong>sp</strong>here Reserve, Moscow region, Russia MT A2<br />

VKM Y-1135 Air, Kishinev, Moldavia MT A2<br />

VKM Y-2860 Herbaceous plants, Prioksko-terrasny Bio<strong>sp</strong>here Reserve, Moscow region, Russia MT A1<br />

PTZ 185 Herbaceous plants, Prioksko-terrasny Bio<strong>sp</strong>here Reserve, Moscow region, Russia MT A1<br />

R. nothofagi<br />

CBS 8166 T Rotten trunk of Nothofagus obliqua, Futrono, Chile ANA<br />

A45 Sea water off Faro, south of Portugal ANA<br />

*CBS, Centraalbureau voor Schimmelcultures, Yeast Division, Utrecht, The Netherl<strong>and</strong>s; PYCC, Portuguese Yeast Culture Collection, FCT-UNL,<br />

Portugal; VKM, All-Russian Collection of Microorganisms, Pushchino, Russia; JI, PTZ personal collections of J. Inácio <strong>and</strong> W. I. Golubev,<br />

re<strong>sp</strong>ectively; A, collection of yeasts isolated from aquatic environments by M. Gadanho <strong>and</strong> J. P. Sampaio.<br />

DANA, Anamorphic; MT, mating type; ND, not determined.<br />

dType strain of R. fujisanensis (Soneda) Johnson & Phaff.<br />

§Type strain of Rhodotorula futronensis (Ramírez & González) Roeijmans et al.<br />

||Originally this strain was self-fertile, but currently it lacks the ability to produce mycelium with telio<strong>sp</strong>ores.<br />

measure 1?5–2?5615–35 (50) mm. Basidia [6–8 (10)615–<br />

22 (26) mm] are devoid of septa <strong>and</strong> produce sessile, ovoidto-bacilliform<br />

basidio<strong>sp</strong>ores [1?5–266–12 (20) mm] on<br />

short basidial appendages (Fig. 2b). Each basidium has two<br />

to four sites of basidio<strong>sp</strong>ore formation <strong>and</strong> multiple<br />

basidio<strong>sp</strong>ores are formed at each site. Basidio<strong>sp</strong>ores<br />

germinate by budding. Yeast cells are long <strong>and</strong> ovoid to<br />

cylindrical [(1?5) 2–36(5) 7–12 (15) mm] (Fig. 2a). Streak<br />

cultures are cream-coloured or pale orange, butyrous<br />

<strong>and</strong> semi-dull. Colony margins are entire, <strong>and</strong> fringed<br />

with pseudomycelium in some cases. Physiological<br />

<strong>and</strong> biochemical features of C. <strong>cygneicollum</strong> are available<br />

at http://www.crem.fct.unl.pt/dimorphic_basidiomycetes/<br />

Databases/databases.htm <strong>and</strong> tests that allow its differentiation<br />

from <strong>Curvibasidium</strong> pallidicorallinum are depicted in<br />

Table 2. The phylo<strong>gen</strong>etic placement of C. <strong>cygneicollum</strong> is<br />

shown in Fig. 1. C. <strong>cygneicollum</strong> is sensitive to the mycocins<br />

produced by Rhodotorula glutinis <strong>and</strong> Rhodotorula mucilaginosa,<br />

but insensitive to mycocins secreted by Rhodotorula<br />

pallida <strong>and</strong> by <strong>sp</strong>ecies of the <strong>gen</strong>era Cryptococcus,<br />

Cystofilobasidium, Filobasidium <strong>and</strong> Sporidiobolus.<br />

Microscopic slides from the crossing of CBS 4551 T <strong>and</strong> CBS<br />

6371, showing mycelium, telio<strong>sp</strong>ores, basidia <strong>and</strong> basidio<strong>sp</strong>ores,<br />

were deposited in the Portuguese Yeast Culture<br />

Collection under number ZP-01-03 (holotype). As the<br />

physiological <strong>and</strong> molecular characterization of a mixed<br />

culture presents obvious difficulties, we propose that<br />

strain CBS 4551 T , isolated from hare droppings collected<br />

at Mount Fuji, Japan, should be designated as the type<br />

strain of C. <strong>cygneicollum</strong>. This strain is deposited in the<br />

Centraalbureau voor Schimmelcultures, Yeast Division,<br />

1404 International Journal of Systematic <strong>and</strong> Evolutionary Microbiology 54


<strong>Curvibasidium</strong> <strong>gen</strong>. <strong>nov</strong>.<br />

Fig. 2. Line drawings of different developmental<br />

stages of <strong>Curvibasidium</strong> <strong>cygneicollum</strong><br />

(a, b), <strong>Curvibasidium</strong> pallidicorallinum<br />

(c, d) <strong>and</strong> Leuco<strong>sp</strong>oridium fasciculatum<br />

(e, f). Yeast cells (after 4–6 days on MYP<br />

agar), mycelium <strong>and</strong> telio<strong>sp</strong>ores (after<br />

1–2 weeks on PDA) (a, c, e) are shown; for<br />

<strong>Curvibasidium</strong> pallidicorallinum, the detail of<br />

the clamp connections is presented.<br />

Germinated telio<strong>sp</strong>ores, basidia <strong>and</strong> sessile<br />

basidio<strong>sp</strong>ores (b, d, f) are shown. Note the<br />

holobasidia of <strong>Curvibasidium</strong> <strong>cygneicollum</strong><br />

<strong>and</strong> <strong>Curvibasidium</strong> pallidicorallinum <strong>and</strong> the<br />

phragmobasidia of L. fasciculatum. Bar,<br />

10 mm.<br />

Utrecht, The Netherl<strong>and</strong>s, <strong>and</strong> in the Portuguese Yeast<br />

Culture Collection, FCT-UNL, Portugal, as PYCC 3116 T .<br />

Table 2. Physiological characteristics that allow differentiation<br />

between C. <strong>cygneicollum</strong>, C. pallidicorallinum, R.<br />

nothofagi <strong>and</strong> L. fasciculatum<br />

Species: 1, C. <strong>cygneicollum</strong>; 2,C. pallidicorallinum; 3,R. nothofagi;<br />

4, L. fasciculatum. D, Delayed results. The complete dataset of physiological<br />

<strong>and</strong> biochemical features is available at http://www.crem.<br />

fct.unl.pt/dimorphic_basidiomycetes/Databases/databases.htm.<br />

Characteristic 1 2 3 4<br />

Sucrose 2 2 2 +<br />

Maltose 2 2 2 +<br />

a,a-Trehalose 2 2 2 +<br />

m-Hydroxybenzoic acid 2 2 2 +<br />

Gallic acid + + + 2<br />

Catechol 2 2 2 +<br />

DL-Lactic acid 2 D + 2<br />

Cadaverine + 2 2 +<br />

Growth at 30 uC 2 2 + 2<br />

Latin diagnosis of <strong>Curvibasidium</strong><br />

pallidicorallinum W. Golubev, Fell et<br />

N. Golubev <strong>sp</strong>. <strong>nov</strong>.<br />

Fungus dimorphum. Hyphae 1?5–2?5 mm diametro, conjugatione<br />

culturarum compatibilium procreantur, fibulatae.<br />

Colacosomata nulla. Telio<strong>sp</strong>orae plerumque globosae (10–<br />

19 mm diametro) interdum ovoideae, pyriformes (9–16610–<br />

21 mm), terminales vel intercalares. Basidia unicellulata,<br />

3?5–5 (6?5)630–50 (70) mm, curvata. Basidio<strong>sp</strong>orae<br />

sessiles, bacilliformes, 2?5–3?566–15 (19) mm, in appendicibus<br />

brevibus lateris convexi basidii procreantur, gemmis<br />

germinantes. Cellulae zymosae longe ovoideae ad cylindraceae,<br />

2–565–11 mm. Cultura in striis pallide corallina ad roseocremea.<br />

Characteres biochemici physiologicique Curvibasidii<br />

palleocorallini in http://www.crem.fct.unl.pt/dimorphic_<br />

basidiomycetes/Databases/databases.htm describuntur.<br />

Description of <strong>Curvibasidium</strong> pallidicorallinum<br />

W. Golubev, Fell & N. Golubev <strong>sp</strong>. <strong>nov</strong>.<br />

<strong>Curvibasidium</strong> pallidicorallinum (pal.lid.i.cor.al9li.num. L.<br />

adj. pallidus pale; L. n. corallium coral; L. adj. pallidicorallinum<br />

pale coral, referring to the pinkish-cream colour of<br />

cultures of this <strong>sp</strong>ecies).<br />

http://ijs.sgmjournals.org 1405


J. P. Sampaio <strong>and</strong> others<br />

Dimorphic. Hyphae (1?5–2?5 mm in diameter) are formed<br />

after mating of sexually compatible strains. Two mating<br />

types are known (see Table 1). Clamp connections are<br />

present <strong>and</strong> medallion-shaped (Fig. 2c). Colacosomes are<br />

absent. Telio<strong>sp</strong>ores are usually <strong>sp</strong>herical (10–19 mm in<br />

diameter), sometimes ovoid or pear-shaped (9–166<br />

10–21 mm), terminal or intercalary (Fig. 2d). Basidia are<br />

one-celled [3?5–5 (6?5)630–50 (70) mm], curved <strong>and</strong><br />

produced after a prolonged resting stage of the telio<strong>sp</strong>ores<br />

(Fig. 2d). Sessile, bacilliform basidio<strong>sp</strong>ores [2?5–3?566–15<br />

(19) mm] are produced on short basidial appendages that<br />

originate on the convex side of the basidium (Fig. 2d). Each<br />

basidium has one to four sites of basidio<strong>sp</strong>ore formation<br />

<strong>and</strong> multiple basidio<strong>sp</strong>ores are formed at each site.<br />

Basidio<strong>sp</strong>ores germinate by budding. Yeast cells are long<br />

<strong>and</strong> ovoid to cylindrical (2–565–11 mm) (Fig. 2c). Streak<br />

cultures are pale orange to pinkish-cream, flat, smooth,<br />

butyrous, semi-dull or glistening. Colony margins are entire.<br />

Physiological <strong>and</strong> biochemical features of C. pallidicorallinum<br />

are available at http://www.crem.fct.unl.pt/dimorphic_<br />

basidiomycetes/Databases/databases.htm <strong>and</strong> tests that allow<br />

its differentiation from C. <strong>cygneicollum</strong> <strong>and</strong> R. nothofagi<br />

are depicted in Table 2. The phylo<strong>gen</strong>etic placement of<br />

C. pallidicorallinum is shown in Fig. 1. C. pallidicorallinum<br />

is sensitive to the mycocins produced by R. glutinis <strong>and</strong><br />

R. mucilaginosa, but insensitive to mycocins secreted by<br />

R. pallida <strong>and</strong> by <strong>sp</strong>ecies of the <strong>gen</strong>era Cryptococcus,<br />

Cystofilobasidium, Filobasidium <strong>and</strong> Sporidiobolus.<br />

Microscopic slides from the crossing of VKM Y-2284 T <strong>and</strong><br />

VKM Y-2861, including mycelium, telio<strong>sp</strong>ores, basidia <strong>and</strong><br />

basidio<strong>sp</strong>ores, were deposited in the Portuguese Yeast<br />

Culture Collection under number ZP-02-03 (holotype). As<br />

the physiological <strong>and</strong> molecular characterization of a mixed<br />

culture presents obvious difficulties, we propose that strain<br />

VKM Y-2284 T , isolated from a gramineous plant collected<br />

in the Moscow region, Russia, should be designated the<br />

type strain of C. pallidicorallinum. This strain is deposited<br />

in the Russia Collection of Microorganisms (VKM),<br />

Institute for Biochemistry <strong>and</strong> Physiology of Microorganisms,<br />

Russian Academy of Sciences, Pushchino, Russia. Two<br />

strains have also been deposited in the Centraalbureau voor<br />

Schimmelcultures (CBS), Yeast Division, Utrecht, The<br />

Netherl<strong>and</strong>s: CBS 9091 T (=VKM Y-2284 T ) <strong>and</strong> CBS 9642<br />

(=VKM Y-2861).<br />

The life cycles of C. <strong>cygneicollum</strong> <strong>and</strong> C. pallidicorallinum<br />

were investigated on MYP agar, CMA <strong>and</strong> PDA.<br />

Conjugation of opposite mating types resulted in the<br />

formation of true mycelium with clamp connections. In<br />

C. pallidicorallinum, clamp connections have a peculiar<br />

medallion shape (Fig. 2c). For both <strong>sp</strong>ecies, telio<strong>sp</strong>ores are<br />

abundant 1 week after inoculation, but their germination<br />

requires a prolonged resting stage. For C. <strong>cygneicollum</strong>,<br />

crossings made on PDA plates <strong>and</strong> incubated for 2 weeks at<br />

room temperature were sealed <strong>and</strong> maintained at 15 uC<br />

for 9 months. After that period, small agar blocks containing<br />

telio<strong>sp</strong>ores were transferred to 2 % water agar <strong>and</strong><br />

incubated at room temperature. Telio<strong>sp</strong>ores germinated<br />

approximately 1 week after transfer to water agar. Although<br />

the same procedures were also successful for C. pallidicorallinum,<br />

the original observation of the complete life cycle of<br />

this <strong>sp</strong>ecies employed CMA. Agar pieces containing 1-<br />

month-old telio<strong>sp</strong>ores were soaked in distilled water <strong>and</strong><br />

maintained at 5 uC for 1 year. Telio<strong>sp</strong>ore germination<br />

occurred on transfer of the agar blocks to 2 % water agar <strong>and</strong><br />

incubation for 1 week at room temperature. The type strain<br />

of C. pallidicorallinum has mycocino<strong>gen</strong>ic activity (Golubev,<br />

1992). Its killing patterns are unique, as they include not<br />

only urediniomycetous yeasts (Rhodo<strong>sp</strong>oridium, Rhodotorula<br />

<strong>and</strong> Sporidiobolus), but also hymenomycetous yeasts<br />

(Cryptococcus, Cystofilobasidium, Filobasidium <strong>and</strong> Itersonilia).<br />

This is the first report of mycocins that are active against<br />

yeasts of two different classes.<br />

Phylo<strong>gen</strong>etic placement<br />

The phylo<strong>gen</strong>etic position of <strong>Curvibasidium</strong> was inferred<br />

by comparing the D1/D2 domains of the 26S rRNA <strong>gen</strong>e<br />

sequences of the two <strong>sp</strong>ecies with representative members<br />

of the Microbotryomycetidae (Fig. 1). C. <strong>cygneicollum</strong><br />

differed from C. pallidicorallinum by three substitutions.<br />

The sequences of the two <strong>sp</strong>ecies showed no intra<strong>sp</strong>ecific<br />

variability. The closest relative of <strong>Curvibasidium</strong> was<br />

Leuco<strong>sp</strong>oridium fasciculatum Bab’eva & Lisichkina, with<br />

19 mismatches with re<strong>sp</strong>ect to C. <strong>cygneicollum</strong> <strong>and</strong> 22<br />

mismatches with re<strong>sp</strong>ect to C. pallidicorallinum. The<br />

association of L. fasciculatum with <strong>Curvibasidium</strong> received<br />

strong statistical support (Fig. 1). As L. fasciculatum is not<br />

related to Leuco<strong>sp</strong>oridium scottii Fell, Statzell, Hunter &<br />

Phaff, this <strong>sp</strong>ecies was excluded from the circumscription of<br />

the order Leuco<strong>sp</strong>oridiales (Sampaio et al., 2003). We reexamined<br />

the micromorphological features of L. fasciculatum<br />

(Fig. 2e, f) <strong>and</strong> confirmed the observations made by<br />

Bab’eva & Lisichkina (2000). The mycelium of L. fasciculatum,<br />

in contrast to that of <strong>Curvibasidium</strong>, lacks clamp<br />

connections (Fig. 2e) <strong>and</strong> the basidia are septate (phragmobasidia)<br />

(Fig. 2f). As the holobasidium of <strong>Curvibasidium</strong><br />

is a unique trait in the Microbotryomycetidae, this feature<br />

is an important diagnostic property for the new <strong>gen</strong>us<br />

<strong>and</strong> is probably a derived characteristic. The absence of<br />

this characteristic in L. fasciculatum prevented us from<br />

transferring this <strong>sp</strong>ecies to <strong>Curvibasidium</strong>. Moreover,<br />

<strong>Curvibasidium</strong> has CoQ 9 (Goto & Oguri, 1983), which is<br />

an uncommon feature in the Microbotryomycetidae.<br />

However, this chemotaxonomic marker has not yet been<br />

determined for L. fasciculatum. From nutritional <strong>and</strong><br />

physiological per<strong>sp</strong>ectives, L. fasciculatum is also wellseparated<br />

from <strong>Curvibasidium</strong> (Table 2). We consider<br />

that a study of additional teleomorphic <strong>sp</strong>ecies related to<br />

<strong>Curvibasidium</strong> <strong>and</strong> L. fasciculatum is needed before a change<br />

in the scope of <strong>Curvibasidium</strong>, or the creation of a new <strong>gen</strong>us<br />

for L. fasciculatum, is made.<br />

Another important feature of <strong>Curvibasidium</strong> is the absence<br />

of colacosomes (also referred to as lenticular bodies).<br />

Among members of the Microbotryomycetidae that are<br />

1406 International Journal of Systematic <strong>and</strong> Evolutionary Microbiology 54


<strong>Curvibasidium</strong> <strong>gen</strong>. <strong>nov</strong>.<br />

depicted in Fig. 1, the plant parasites of the Microbotryales<br />

<strong>and</strong> Kriegeria eriophori Bresadola lack colacosomes, as do the<br />

non-plant parasites Camptobasidium hydrophilum Marva<strong>nov</strong>á<br />

& Suberkropp, Leuco<strong>sp</strong>oridium antarcticum Fell, Statzell,<br />

Hunter & Phaff <strong>and</strong> L. fasciculatum. The presence of colacosomes<br />

has been related to a mycoparasitic life strategy<br />

(Bauer & Oberwinkler, 1991). These subcellular structures<br />

have only been reported for certain dimorphic basidiomycetes<br />

classified in the Microbotryomycetidae, such as<br />

Colacogloea Oberwinkler & B<strong>and</strong>oni, the Sporidiobolales<br />

(Rhodo<strong>sp</strong>oridium Banno <strong>and</strong> Sporidiobolus Nyl<strong>and</strong>), the<br />

Leuco<strong>sp</strong>oridiales (L. scottii, Leuco<strong>sp</strong>oridium fellii Giménez-<br />

Jurado & van Uden <strong>and</strong> Mastigobasidium Golubev) <strong>and</strong><br />

Heterogastridium Oberwinkler & Bauer, which lacks a yeast<br />

stage (Kreger-van Rij & Veenhuis, 1971; Sampaio et al., 2003).<br />

Anamorph–teleomorph connections<br />

As the type strain of R. fujisanensis is a mating strain of<br />

C. <strong>cygneicollum</strong>, it is evident that C. <strong>cygneicollum</strong> is the<br />

sexual stage of R. fujisanensis. A similar connection was<br />

suggested for C. pallidicorallinum <strong>and</strong> R. nothofagi on the<br />

basis of phylo<strong>gen</strong>etic analysis of the D1/D2 domains<br />

(Fig. 1). However, several attempts to mate the type strain<br />

of R. nothofagi with the available sexually compatible strains<br />

of C. pallidicorallinum invariably gave negative results. The<br />

relationships of R. nothofagi, C. pallidicorallinum <strong>and</strong><br />

C. <strong>cygneicollum</strong> were investigated further by analysing the<br />

complete ITS region (ITS1+5?8S rRNA <strong>gen</strong>e+ITS2). No<br />

variability was detected for C. <strong>cygneicollum</strong> in the ITS<br />

region, whereas for C. pallidicorallinum–R. nothofagi, four<br />

sites were variable (a phylo<strong>gen</strong>etic tree is available at http://<br />

www.crem.fct.unl.pt/dimorphic_basidiomycetes/Databases/<br />

databases.htm). In the analysis of the ITS data, the four<br />

sexually compatible strains of C. pallidicorallinum were<br />

separated from the two asexual strains (the type strain of<br />

R. nothofagi <strong>and</strong> strain A45). Nuclear DNA–DNA reassociation<br />

experiments also supported this separation, as<br />

homology between the type strains of C. pallidicorallinum<br />

<strong>and</strong> R. nothofagi was not high <strong>and</strong> ranged from 40 to 46 % in<br />

three independent essays. Therefore, on the the basis of<br />

the lack of sexual compatibility <strong>and</strong> the ITS <strong>and</strong> DNA<br />

reassociation data, we consider that R. nothofagi is not the<br />

asexual state of C. pallidicorallinum. R. nothofagi can be<br />

distinguished from C. pallidicorallinum on the basis of the<br />

ITS sequences, the absence of mating <strong>and</strong> the ability to grow<br />

at 30 uC. In both C. <strong>cygneicollum</strong> <strong>and</strong> C. pallidicorallinum,<br />

sexual compatibility seems to be biallelic, as crossing<br />

experiments suggested the presence of only two mating<br />

types. Six strains of C. <strong>cygneicollum</strong> (Table 1) are regarded as<br />

anamorphic, as they did not react sexually with the two<br />

mating types of this <strong>sp</strong>ecies.<br />

Acknowledgements<br />

We thank M. Weiß (University of Tübin<strong>gen</strong>, Germany) for preparing<br />

the Latin diagnoses. M. G. was supported by grant SFRH/BD/1170/<br />

2000. J. W. F. was supported by the USA National Science Foundation,<br />

Division of Environmental Biology (DEB 0206521).<br />

References<br />

Bab’eva, I. P. & Lisichkina, G. A. (2000). A new <strong>sp</strong>ecies of<br />

psychrophilic basidiomycetous yeast Leuco<strong>sp</strong>oridium fasciculatum <strong>sp</strong>.<br />

<strong>nov</strong>. Mikrobiologiya 69, 801–804 (in Russian).<br />

Barnett, J. A., Payne, R. W. & Yarrow, D. (1990). Yeasts: Characteristics <strong>and</strong><br />

Identification. 2nd edn. Cambridge: Cambridge University Press.<br />

Bauer, R. & Oberwinkler, F. (1991). The colacosomes: new structures<br />

at the host–parasite interface of a mycoparasitic basidiomycete. Bot<br />

Acta 104, 53–57.<br />

Boekhout, T. & Fell, J. W. (1995). Heterobasidiomycetes: systematics<br />

<strong>and</strong> applications. Stud Mycol 38, 5–11.<br />

Fell, J. W., Statzell-Tallman, A. & Ahearn, D. G. (1984). Rhodotorula<br />

Harrison. In The Yeasts, a Taxonomic Study, 3rd edn, pp. 893–905.<br />

Edited by N. J. W. Kreger-van Rij. Amsterdam: Elsevier.<br />

Felsenstein, J. (1985). Confidence limits on phylo<strong>gen</strong>ies: an<br />

approach using the bootstrap. Evolution 39, 783–791.<br />

Fonseca, A. (1992). Utilization of tartaric acid <strong>and</strong> related compounds<br />

by yeasts: taxonomic implications. Can J Microbiol 38, 1242–1251.<br />

Golubev, W. I. (1992). Antibiotic activity <strong>and</strong> taxonomic position of<br />

Rhodotorula fujisanensis (Soneda) Johnson et Phaff. Mikrobiol Zh<br />

(Kiev) 54, 21–26.<br />

Goto, S. & Oguri, H. (1983). Two new <strong>sp</strong>ecies of the <strong>gen</strong>us C<strong>and</strong>ida<br />

from wild grapes. J Gen Appl Microbiol 29, 85–90.<br />

Kreger van Rij, N. J. W. & Veenhuis, M. (1971). A comparative study<br />

of the cell wall structure of basidiomycetous <strong>and</strong> related yeasts. J Gen<br />

Microbiol 68, 87–95.<br />

Kurtzman, C. P., Smiley, M. J., Johnson, C. J., Wickerham, L. J. &<br />

Fuson, G. B. (1980). Two new <strong>and</strong> closely related heterothallic<br />

<strong>sp</strong>ecies, Pichia amylophila <strong>and</strong> Pichia mississippiensis: characterization<br />

by hybridization <strong>and</strong> deoxyribonucleic acid reassociation. Int J Syst<br />

Bacteriol 30, 208–216.<br />

Sampaio, J. P. (1999). Utilization of low molecular weight aromatic<br />

compounds by heterobasidiomycetous yeasts: taxonomic implications.<br />

Can J Microbiol 45, 491–512.<br />

Sampaio, J. P. & Fonseca, A. (2002). Dimorphic basidiomycetes, an<br />

overview. In Dimorphic Basidiomycetes WWW Project (http://<br />

www.crem.fct.unl.pt/dimorphic_basidiomycetes).<br />

Sampaio, J. P. & Bauer, R. (2003). The classification of dimorphic<br />

basidiomycetes. In Dimorphic Basidiomycetes WWW Project (http://<br />

www.crem.fct.unl.pt/dimorphic_basidiomycetes).<br />

Sampaio, J. P., Gadanho, M., Santos, S., Duarte, F. L., Pais, C.,<br />

Fonseca, Á. & Fell, J. W. (2001). Polyphasic taxonomy of the <strong>gen</strong>us<br />

Rhodo<strong>sp</strong>oridium: Rhodo<strong>sp</strong>oridium kratochvilovae <strong>and</strong> related anamorphic<br />

<strong>sp</strong>ecies. Int J Syst Evol Microbiol 51, 687–697.<br />

Sampaio, J. P., Gadanho, M., Bauer, R. & Weiß, M. (2003).<br />

Taxonomic studies in the Microbotryomycetidae: Leuco<strong>sp</strong>oridium<br />

golubevii <strong>sp</strong>. <strong>nov</strong>., Leuco<strong>sp</strong>oridiella <strong>gen</strong>. <strong>nov</strong>. <strong>and</strong> the new orders<br />

Leuco<strong>sp</strong>oridiales <strong>and</strong> Sporidiobolales. Mycol Prog 2, 53–68.<br />

Scorzetti, G., Fell, J. W., Fonseca, A. & Statzell-Tallman, A. (2002).<br />

Systematics of basidiomycetous yeasts: a comparison of large subunit<br />

D1/D2 <strong>and</strong> internal transcribed <strong>sp</strong>acer rDNA regions. FEMS Yeast<br />

Res 2, 495–517.<br />

Swann, E. C. & Taylor, J. W. (1995). Phylo<strong>gen</strong>etic diversity of yeastproducing<br />

basidiomycetes. Mycol Res 99, 1205–1210.<br />

Swofford, D. L. (2001). PAUP*: Phylo<strong>gen</strong>etic analysis using parsimony<br />

(*<strong>and</strong> other methods). Sunderl<strong>and</strong>, MA: Sinauer Associates.<br />

Yarrow, D. (1998). Methods for the isolation, maintenance <strong>and</strong><br />

identification of yeasts. In The Yeasts, a Taxonomic Study, 4th edn,<br />

pp. 77–100. Edited by C. P. Kurtzman & J. W. Fell. Amsterdam:<br />

Elsevier.<br />

http://ijs.sgmjournals.org 1407

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!