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a b s t r a c t 

Real-time fMRI (RT-fMRI) neurofeedback has been shown to be effective in treating neuropsychiatric disorders 

and holds tremendous promise for future breakthroughs, both with regard to basic science and clinical applica- 

tions. However, the prevalence of its use has been hampered by computing hardware requirements, the complex- 

ity of setting up and running an experiment, and a lack of standards that would foster collaboration. To address 

these issues, we have developed RT-Cloud (https://github.com/brainiak/rt-cloud), a flexible, cloud-based, open- 

source Python software package for the execution of RT-fMRI experiments. RT-Cloud uses standardized data 

formats and adaptable processing streams to support and expand open science in RT-fMRI research and appli- 

cations. Cloud computing is a key enabling technology for advancing RT-fMRI because it eliminates the need 

for on-premise technical expertise and high-performance computing; this allows installation, configuration, and 

maintenance to be automated and done remotely. Furthermore, the scalability of cloud computing makes it easier 

to deploy computationally-demanding multivariate analyses in real time. In this paper, we describe how RT-Cloud 

has been integrated with open standards, including the Brain Imaging Data Structure (BIDS) standard and the 

OpenNeuro database, how it has been applied thus far, and our plans for further development and deployment 

of RT-Cloud in the coming years. 

I

 

e  

i  

fl  

a  

s  

s  

w  

i  

b  

b  

o  

R  

t  

t  

f  

Y  

v  

t  

b  

i  

m

 

c  

r  

a  

V  

s  

h

R

A

1

ntroduction 

Real-time functional magnetic resonance imaging (RT-fMRI) is an

merging technology that holds tremendous promise for breakthroughs

n basic science and clinical applications. In contrast to traditional, of-

ine fMRI analysis, RT-fMRI involves analyzing data while participants

re still in the scanner, giving experimenters the ability to modify the

timuli or tasks that they present as a function of the participant’s mea-

ured neural state. RT-fMRI can be used in neurofeedback designs, in

hich participants are given feedback on how well they are instantiat-

ng a target brain state, and they use this information to learn how to

etter instantiate that state (for a historical review of fMRI neurofeed-

ack, see Linden et al., 2021 ; this review is part of a recent textbook

n fMRI neurofeedback edited by Hampson, 2021 ). In another use of

T-fMRI, stimuli are modified as a function of brain activation, but par-
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icipants are not explicitly given the goal of maximizing the goodness of

heir brain state; for example, in a triggering design, the results of the

MRI analysis are used to determine when stimuli are presented (e.g.,

oo et al., 2012 ). RT-fMRI reverses the typical logic of fMRI – instead of

iewing the fMRI measurements as a dependent variable (i.e., looking at

he effects of a task manipulation on fMRI), the fMRI measurements can

e viewed as the independent variable (i.e., you can look at the effect of

nstantiating a particular neural pattern on other behavioral and neural

easurements; Turk-Browne, 2021 ). 

Previous RT-fMRI studies have led to a wide range of interesting dis-

overies in healthy participants. For instance, participants given neu-

ofeedback from the ventral tegmental area (VTA) while they thought

bout personalized motivational states were able to learn to upregulate

TA activity; this increase in the ability to upregulate VTA activity per-

isted after the end of neurofeedback training ( MacInnes et al., 2016 ).
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n a different study, participants given neurofeedback were able to im-

rove their ability to sustain attention ( deBettencourt et al., 2015 ). Re-

earchers have even been able to induce perceptual learning of a partic-

lar stimulus orientation without visual presentation of that orientation

nd without participants becoming aware of what was being trained

 Shibata et al., 2011 ). 

Clinical studies have also used fMRI neurofeedback to treat neu-

opsychiatric and neurodevelopmental disorders; for a comprehensive

isting of these studies as of mid-2020, see Table 1 from Linden (2021) ,

nd for a recent review see Taschereau-Dumouchel et al. (2022) . To give

ne example, depressed patients who underwent fMRI neurofeedback

raining to increase amygdala activity while recalling positive autobio-

raphical memories showed a decrease in depressive symptoms; these

ffects were specific to when neurofeedback was based on amygdala ac-

ivation vs. activation of a control region in parietal cortex ( Young et al.,

017 ; for further discussion see Young et al., 2021 , 2018 ). Notably, sev-

ral clinical studies have obtained promising results using the Decoded

eurofeedback (DecNef) approach, in which participants are given feed-

ack to boost activation of a particular neural pattern without being

old what the neural pattern is (for recent reviews, see Shibata et al.,

019 ; Taschereau-Dumouchel et al., 2021 ; Watanabe et al., 2017 ). For

xample, one DecNef study showed that training individuals with snake

r spider phobias to activate a pattern corresponding to snakes or spi-

ers (respectively), in the absence of viewing the phobia-triggering stim-

li, and without knowledge that the target neural patterns related to

nakes or spiders, led to decreased skin conductance fear responses

o these stimuli ( Taschereau-Dumouchel et al., 2018 ; for an example

f a similar approach to treating post-traumatic stress disorder, see

hiba et al., 2019 ). Other clinical studies have obtained promising re-

ults by providing feedback based on functional connectivity. For ex-

mple, Ramot et al. (2017) used RT-fMRI neurofeedback in individuals

ith Autism Spectrum Disorder (ASD) to reinforce functional connectiv-

ty (i.e., correlation in fMRI timeseries) between brain regions that are

nderconnected in ASD relative to controls; the training led to increases

n functional connectivity that lasted up to a year and were correlated

ith improvements in behavioral symptoms. 

hallenges with RT-fMRI 

Importantly, despite the strong potential of RT-fMRI, its uptake has

een limited by several factors. First and foremost, setting up real-time

nalysis pipelines is technically challenging: A real-time communica-

ion bridge needs to be built to connect scripts across multiple processes

o that an incoming DICOM image can be transferred and analyzed,

nd then participant feedback can be presented based on the analy-

is results in a timely fashion. Clinical sites in particular may lack the

oftware engineering and IT expertise needed to assemble this pipeline.

 second factor is that the computational complexity of fMRI analysis

as escalated substantially over the past two decades. Whereas, previ-

usly, the field relied almost exclusively on univariate measures (e.g.,

verage activation in a region of interest), researchers have increas-

ngly come to rely on more computationally-demanding and sensitive

ultivariate analyses (e.g., pattern classifiers and functional alignment

lgorithms; Cohen et al., 2017 ). This increase in the use of multivari-

te methods has occurred both for offline analysis and also real-time

nalysis (e.g., deBettencourt et al., 2015 , 2019 ; Iordan et al., 2020 ;

aConte et al., 2007 ; Shibata et al., 2011 ; Wang et al., 2016 ). A third

actor relates to the lack of open standards for RT-fMRI research. Of-

ine fMRI analysis has been the focus of significant efforts at standard-

zation: for example, development of the Brain Imaging Data Structure

BIDS; Gorgolewski et al., 2016 ) and fMRIPrep ( Esteban et al., 2019 ).

owever, these new standards generally have not been applied in the

T-fMRI domain. This lack of standards has led RT-fMRI researchers to

se a wide variety of different (and incompatible) pipelines in their re-

earch, which in turn has made it more difficult to share work, reproduce

esults, and reuse components. 
2 
ddressing the challenges of RT-fMRI using cloud computing 

As described above, many of the challenges of RT-fMRI revolve

round building and deploying a set of coordinating software compo-

ents and harnessing enough computing power to complete analysis in

ime. This general set of challenges is not unique to RT-fMRI and in fact

s common among many computer applications including e-commerce,

ata analytics, AI, and web-based communication. A common theme

n the past decade has been to harness the power of cloud computing

o simplify, standardize and reduce the cost of creating and deploying

pplications. 

A classic example of an application that has primarily moved to the

loud is email. Without the cloud, a company would need to install an

mail server in their server room, and then install email clients on all

mployee computers. Whenever there would be an application update,

he IT group would need to push out the new email client to all employee

aptops. Some percentage of users would encounter a problem because

f an outdated OS, insufficient storage space, the wrong libraries, and

o on. With email running in the cloud, the server runs in the cloud

nd the employees access their email through a web browser. There is

o installation on each computer and employees can access their email

rom anywhere. If the email server becomes too slow, it can be scaled

p instantly and more storage can be added as needed. This on-demand

odel is known as Software-as-a-Service, or SaaS. 

Here, we describe RT-Cloud, a newly-developed, open-source

oftware framework written in Python 3 that leverages cloud

omputing and SaaS to address the challenges of RT-fMRI

https://github.com/brainiak/rt-cloud). With RT-Cloud, the real-

ime fMRI analysis software is installed on cloud computers and

s accessible from any web browser; only one lightweight software

omponent is installed locally (to forward images up to the cloud). This

etup makes it possible to run highly complex fMRI analyses in real

ime, even in situations where the scanning facility does not itself have

xtensive computing resources or IT expertise. To facilitate the sharing

f pipelines and data, RT-Cloud also takes advantage of the BIDS data

tandard for fMRI, as described in the Integration with BIDS section

elow. In this section, we provide an overview of the key advantages

hat cloud computing and SaaS provide for RT-fMRI: ease of setup

nd maintenance, lowering of costs, ease of scaling, and accessibility

rom anywhere; in the section after this one, we describe the RT-Cloud

ramework in more detail. 

• Ease of setup and maintenance. With cloud-based computing, all in-

stallation and maintenance are on a single cloud virtual machine

(VM) image and that image is used to instantiate each VM at startup,

thus ensuring that all instantiations are identical. This means that

quality control can be addressed centrally, ensuring that the project

meets strict and consistent standards for system functionality, library

compatibility and security. In addition, the installation and mainte-

nance can all be done remotely by a centralized team — and often

just a single person — rather than separately at each facility, thus

reducing IT costs and time. This is especially important when deploy-

ing in clinical settings where the availability of specialized hardware

and technical staff to do software installations and maintenance may

be limited. 

• Lowering of costs. Cloud is a “pay for what you use ” model. So, for

example, two hours of cloud computer time to run a session will

cost about $1-$2. Cloud savings occur because of the ability to spin

up and spin down hardware on demand. Within our framework,

cloud VMs are only running during the scanning session and then

are stopped when the session is done. This on-demand nature elim-

inates the primary cost of owning hardware, which is equipment

idle-time. 

• Ease of scaling. Cloud computing also enables system scaling, both

out and up. Scaling out is the addition of more of the same type of

resource (i.e. more VMs) to accomodate more simultaneous studies.



G. Wallace, S. Polcyn, P.P. Brooks et al. NeuroImage 257 (2022) 119295 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

O

 

t  

e  

p  

r  

s  

K  

c  

e  

s  

h  

a

 

P  

t  

b  

b  

t  

r  

w

 

a  

n  

F  

r  

c  

c  

d  

t

 

p  

p  

u  

c  

c  

t  

s

 

S  

f  

t  

T

t  

c  

R  

i  

t  

h  

b

I

 

p  

2  

s  

N  

2  

c  

a  

a  

d  

t  

(

 

m  

(  

r  

a

 

R  

a  

s  

s  

a  

I  

t  

f

 

p  

i  

p  

e  

p  

m  

s  

t  

i  

1  

B  

f  

t  

a  

s  

t  

“  

o  

a  

(

This is important to enable large-scale deployment with simultane-

ous usage at multiple sites. Scaling up is the allocation of larger VM

instances (faster, more cores, more memory) to accommodate higher

processing demands of an individual experiment. This is very help-

ful as experimental designs and computational demands change. The

result is that, rather than committing to a $10,000 piece of hardware

today, only to find it is insufficient tomorrow (or conversely is over-

powered and thus mostly idle), you can simply rent the right VM

size today and change it up or down at any time. 

• Accessibility from anywhere. The Software-as-a-Service (SaaS) model

is transforming many industries by simplifying application deploy-

ment; as noted in the email example above, this model involves in-

stalling an application on the cloud and having users access the ap-

plication through a web browser, without installing libraries or soft-

ware on their local computer or laptop. This has major advantages in

the context of fMRI. Since MRI scanners are typically heavily booked

and tightly scheduled, experimenters do not want to waste time in

the control room logging in to software and entering session config-

urations. SaaS makes it possible for researchers to do these prelimi-

naries outside of the control room on any web-accessible computer,

so they will be ready to immediately begin the experiment when

they get into the control room. It also makes it possible to install,

maintain and test the experiment from a laptop outside of the con-

trol room, and then use the same interface to run the experiment,

thus ensuring smooth operation. As improvements are made to the

service, users can have access to those immediately, never having to

wonder or check if their computer has enough memory, the right OS

version, the right libraries, and so on. 

he RT-Cloud framework 

verview of framework 

The RT-Cloud software framework provides the basic infrastruc-

ure needed to run an RT-fMRI experiment. The framework wraps

xperiment-specific code that the researcher provides, thus providing a

luggable model that reduces the complexity and time of setting up and

unning an experiment. RT-Cloud was co-developed with the BrainIAK

uite of Python tools for advanced fMRI analysis (https://brainiak.org;

umar et al., 2021 ). Users can deploy BrainIAK analysis modules in their

ustom analysis code, or they can use other tools if they wish. During

xecution, the RT-Cloud framework handles details such as starting and

topping the analysis pipeline, getting fMRI images in real-time, and

andling data communication between components such as for images,

nalysis results, and participants’ responses. 

The framework has two major components, the FileWatcher and the

rojectServer. The FileWatcher watches for and forwards DICOMs as

hey arrive from the MRI scanner, while the ProjectServer coordinates

etween the FileWatcher, the researcher’s analysis script, and the feed-

ack presentation shown to participants. In addition, the framework has

wo web interfaces: the Experiment Control web page, which allows the

esearcher to control the experiment session, and the Subject Feedback

eb page, which can be used to present stimuli to participants. 

To elaborate, the FileWatcher runs on a computer in the control room

nd requires minimal processing power. Once parameters on the scan-

er computer are set so that DICOM images are made accessible, the

ileWatcher registers for file-system notifications to watch for the ar-

ival of new DICOM images from the scanner. Each new DICOM is read,

onverted to a BIDS format using the BIDS-Incremental system that we

reated for this purpose (see the Integration with BIDS section for more

etails), and forwarded to the ProjectServer using standard network pro-

ocols. 

The ProjectServer is deployed on a system with enough processing

ower to quickly analyze the incoming brain-volume data in time for the

articipant to receive neurofeedback, in about 1 to 2 s. This component

sually runs on the cloud but it can also run on a local computer or
3 
luster. As noted in the previous section, running this component in the

loud makes it possible to scale computing resources as a function of

he complexity of the analysis, by either scaling up the VM instance or

plitting the processing into parallel components across multiple VMs. 

The experiment can be controlled by interacting with the Project-

erver via the Experiment Control web page, which is typically accessed

rom a laptop. This web page allows the researcher to change configura-

ion settings, start and stop runs, and view analysis results in real time.

he Subject Feedback web page is made visible to the participants –

his web page can be flexibly used to present stimuli to participants, in-

luding (but not limited to) neurofeedback based on the results of the

T-fMRI analysis. Moreover, this web interface can also collect behav-

oral responses (e.g., button presses) from participants (see the Integra-

ion with Experiment Scripting Packages section below). Fig. 1 illustrates

ow the framework components fit together to complete the neurofeed-

ack loop. 

ntegration with BIDS 

To facilitate the re-use of existing pipelines and data, RT-Cloud sup-

orts BIDS, the leading standard for fMRI data ( Gorgolewski et al.,

016 ). BIDS is supported by a wide variety of formatting and analy-

is tools and data repositories. For example, BIDS is used by the Open-

euro database ( Gorgolewski, Esteban, et al., 2017 ; Markiewicz et al.,

021 ), a large and growing repository of neuroscience datasets (in-

orporating fMRI and also other data types). BIDS has an automated

nd comprehensive validation tool that analyzes datasets for compli-

nce and identifies issues ( Gorgolewski et al., 2016 ). It also is the

ata format used by “BIDS Apps ”, which are container-based applica-

ions with a standardized interface that work on BIDS-formated datasets

 Gorgolewski, Alfaro-Almagro, et al., 2017 ). 

BIDS archives include brain volumes stored in NIfTI format, and have

eta-data stored in separate “sidecar ” files, typically with JSON or TSV

tab separated value) formating. BIDS archives also have a standard di-

ectory structure and file naming convention. Included in the file names

re “BIDS entities ” such as the subject name, session, task, and run. 

BIDS is designed as an archival standard (i.e. for data-at-rest), but

T-fMRI requires streams of data in order to process brain-volumes

s they arrive from the scanner. An adaptation is required to support

treaming data in a BIDS-compliant manner. Here, we introduce a data

tructure called the “BIDS-Incremental ”, which is an in-memory BIDS

rchive with only one brain volume and associated meta-data in it. BIDS-

ncrementals allow us to package and stream DICOM images one at a

ime as they arrive off the scanner and send them to the ProjectServer

or analysis. 

BIDS-Incrementals must hold the proper data structures to be com-

atible with a BIDS archive. These data structures include: the NIfTI

mage; a metadata dictionary describing the image; and several sup-

orting data structures that map to files in a BIDS archive (namely, the

vents file that includes information about the stimuli presented to the

articipant, a README file with general information about the experi-

ent, and a JSON file that describes the dataset). In addition, the data

tructure must be fast enough to support all operations well within the

ypical 1–2 second repetition time (TR) window in which a brain volume

s acquired. There are three main operations that the software supports:

) creating a BIDS-Incremental from a DICOM image; 2) appending a

IDS-Incremental to a BIDS archive; and 3) reading a BIDS-Incremental

rom a BIDS archive; these operations are illustrated in Fig. 2 . The first

wo operations support streaming live data as it arrives from a scanner

nd accumulating it into a BIDS archive during processing. The third

upports “replaying ” or re-processing, through a real-time pipeline, data

hat have been previously collected and stored in a BIDS archive. This

replay ” workflow is very useful for testing an analysis pipeline. Instead

f collecting new data in real time, users can just take an existing dataset

nd run it through the pipeline to see how well everything is working

see section below on Integration with OpenNeuro ). 
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Fig. 1. Schematic of our RT-Cloud framework: (1a) The FileWatcher watches for new DICOM images arriving from the scanner, (1b) sends them to the BIDS- 

Incremental system for conversion to a BIDS-formated NIfTI image, and (1c) then sends this image to the ProjectServer, running on the cloud. (2) The ProjectServer, 

which wraps the researcher’s code, processes the NIfTI image and runs the analysis code to obtain a measure of the participant’s brain state (e.g., whether they are 

attending to a face or a scene). The researcher accesses the cloud application from a browser page that can run on a laptop. Among many things, the researcher can 

initiate/finalize the session, change settings, and even observe the graph output of the analysis results from this browser page. (3) The analysis results are provided 

to the participant as neurofeedback presented on a display screen in the MRI room. Note that RT-Cloud can also be installed on a local computer or cluster node in 

lieu of using the cloud. Figure adapted with permission from Kumar et al. (2021) . 

Fig. 2. BIDS Support: We have adapted the typical data-at-rest BIDS standard to real-time streaming by developing a BIDS-Incremental system. As data arrive from 

the scanner, we create single-volume BIDS archives that are streamed to the real-time analysis engine on the cloud. These single-volume archives can be appended 

in the cloud to create a BIDS archive that encompasses the entire run, and they can also be replayed one volume at a time to simulate a real-time experiment. 
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To satisfy real-time requirements, these BIDS-Incremental operations

ust be completed quickly, ideally within a couple tens of milliseconds

o avoid impacting overall real-time deadlines. Initial implementations

f the BIDS-Incremental relied on disk-backed operations, such as ap-

ending to or reading from an on-disk BIDS archive. However, as an

xperiment continues and accumulates data, the on-disk archive grows

n size and eventually operations exceed a completion time threshold.

o counter this issue, we leverage the fact that real-time fMRI users

ypically work one scanning run at a time; by caching a run’s worth

f BIDS data in-memory, we can optimize operations that are in the

ime-critical portion of an experiment. Other operations, like writing or

eading a run’s worth of data to or from disk, can be done before or

fter the time-sensitive section of a real-time fMRI workflow. We de-

eloped this mechanism into a data structure called a “BIDS Run ”, an

n-memory cache of BIDS-Incrementals corresponding to one run in the

xperiment. 
4 
The above data structures that provide BIDS support within the

ramework leverage their implementation on PyBIDS, a software pack-

ge produced by the BIDS Standard maintainers that provides a set of

tilities for interacting with and manipulating BIDS data ( Halchenko

t al., 2020 ). In addition, NiBabel ( Brett et al., 2020 ) and dcm2niix

 Li et al., 2016 ) are used for NIfTI image handling. 

Supporting BIDS within RT-Cloud has many benefits. Data that are

ollected and stored in BIDS format can be readily understood and used

y other researchers and can be replayed through the RT-Cloud frame-

ork. In addition, if an RT-Cloud experiment is encapsulated as a BIDS

pp (see Current and future directions section below), then the full soft-

are environment needed to run the experiment is made available to

sers, including not only the analysis scripts, but also any libraries and

onfigurations required. If a user shares both their BIDS App and their

IDS data with a second user, the second user will have everything

eeded to replay, validate, and modify the study. 
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Fig. 3. OpenNeuro Integration: RT-Cloud, through 

its support for BIDS data, can download and stream 

datasets from OpenNeuro in order to test and validate 

experiment pipelines. In addition, the BIDS formated 

data resulting from an experiment can be uploaded by 

the researcher to OpenNeuro to share with the neuro- 

science community. 
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ntegration with openneuro 

To support the “data replay ” functionality described in the previ-

us section for simulating RT-fMRI studies, we also added a feature that

onnects RT-Cloud with the OpenNeuro database ( Gorgolewski, Este-

an, et al., 2017 ; Markiewicz et al., 2021 ). With this connectivity, it is

ossible to stream any dataset stored on OpenNeuro through an RT-

loud analysis pipeline. Data are processed using a consistent BIDS-

ncremental format whether new or replayed ( Fig. 3 ). 

Specifically, we provide an OpenNeuroService component that will

ownload datasets (or parts of datasets such as particular subjects or

uns) from OpenNeuro and make them available for streaming; this

penNeuroService component can be run on any computer (for ex-

mple, a cloud VM). When testing or validating their experiment, re-

earchers can connect to the OpenNeuroService component and specify

he dataset accession number, subject name, session, and run number

n order to stream that previously-collected data through their analysis

ipeline. 

This can be thought of, in an initial way, as a kind of “Netflix for

euroscience data ”. The data are housed in the cloud and can be ac-

essed, streamed, and processed on-demand. This has benefits not only

or validating previous experiments but also for building and testing

ew experiments. Before an analysis pipeline is deployed in a “live ” ex-

eriment, users can stream previously-collected data through it to test

or processing errors and/or develop and benchmark new analysis ap-

roaches. 

ntegration with experiment scripting packages 

All RT-fMRI studies need some way of controlling how the experi-

ent unfolds (i.e., which stimuli to present to participants) as a function

f the results of the real-time fMRI analysis. To accomplish this goal, RT-

loud has been designed to integrate with behavioral feedback script-

ng frameworks like JsPsych ( De Leeuw, 2015 ), PsychoPy ( Peirce et al.,

019 ), and PsychToolbox ( Kleiner et al., 2007 ). The ProjectServer of RT-

loud has a websocket based communication layer that allows remote

cripts to make a connection to the ProjectServer and receive analysis

esults. These results can then be used to adjust the stimuli or task dis-

layed to the participant in the MRI scanner. 

The ProjectServer can control how stimuli are displayed in several

ifferent ways depending on the requirements of the experiment. The

ost straightforward approach is to use the SubjectFeedback web page

erved up by RT-Cloud for stimulus presentation and behavioral data

ollection. Researchers taking this approach can use browser-based pre-

entation toolboxes such as JsPsych ( De Leeuw, 2015 ) to script their
5 
xperiment. In this use case, the JsPsych framework is served-up by RT-

loud’s web server and runs directly in a web browser that is viewable

y the participant in the MRI scanner. For this reason, it requires no

nstallation for use, just opening and pointing a web browser to the Pro-

ectServer URL. This is particularly convenient for deploying real-time

xperiments in clinical settings where computer hardware availability

s uncertain. RT-Cloud provides a JsPsych module for receiving fMRI

nalysis results; by default, this module renders a DecNef style feedback

isplay, in which the displayed circle radius indicates the correspon-

ence to the desired neural state. This can easily be extended to other

eedback types by extending the draw function within the example. 

Another approach to displaying stimuli, which could work with al-

ost any presentation system, is to set up the presentation software on

 separate computer, and to configure the ProjectServer to write each

nalysis result back to the presentation computer as a small text file,

ith a filename corresponding to the trial and containing only one float-

ng point value, i.e. the analysis result. The presentation script can watch

or the creation of such files and read them to adjust the presentation

eedback. As described in the Real-world validation of the framework sec-

ion below, we have used this approach in multiple studies to interface

T-Cloud with the PsychToolbox stimulus presentation software. A re-

ated, more streamlined, approach is for the stimulus presentation soft-

are (running on a separate computer) to receive the analysis results

irectly over a websocket connected to the ProjectServer; any script-

ng method that has support for websockets can use this approach. For

xample, this approach can be used to send analysis results from the Pro-

ectServer to experiment scripts that were built using the Python-based

sychoPy stimulus presentation system ( Peirce et al., 2019 ). 

eal-world validation of the framework 

In this section, we discuss our experiences with real-world validation

f the RT-Cloud framework. Thus far, two studies have been completed

sing previous versions of the RT-Cloud framework. The first study, re-

erred to here as RT-Attention, was a clinical study conducted at Penn

edicine; the focus of this study was to train participants with major de-

ressive disorder (MDD) to disengage their attention from negatively-

alenced stimuli ( Mennen et al., 2021 ). The second study, referred to

ere as GreenEyes, was conducted on healthy participants at Princeton

niversity; this study aimed to bias participants toward a particular in-

erpretation of an ambiguous story ( Mennen et al., 2022 ). 

In the RT-Attention study ( Mennen et al., 2021 ), MDD participants

 N = 15) and healthy controls ( N = 12) were shown a superimposition

f two images, a neutral scene and a negatively valenced face. They

ere asked to focus on the scene and ignore the face. A multivariate
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lassifier was trained to track how strongly participants were attending

o the scene vs. the face. Feedback was provided by varying the rela-

ive visibility of the scene vs. the face: The more that participants got

istracted and attended to the face (as measured by the classifier), the

ore visible the face became, and the less visible the scene became.

his had the effect of externalizing and amplifying internal attentional

apses, making the task of judging the scene more difficult. The key de-

endent measure was how well participants were able to recover from

hese lapses and resume attending to the scene. We found that, at the

utset of training, MDD patients were less able than healthy controls to

ecover from attentional lapses (i.e., their negative attention to the face

as more “sticky ”), but – by the end of training – MDD patients had

ignificantly improved on this measure relative to controls. 

This study was conducted at Penn Medicine with 27 participants

ach completing three neurofeedback training sessions across different

ays. The challenge was to deploy a RT-fMRI study in a clinical setting,

here we had to ensure that our implementation of RT-fMRI did not

isrupt any of the other clinical studies underway at the facility. After

eveloping the study at Princeton, we used the RT-Cloud framework

unning in the cloud, in coordination with a local Linux computer, to

eploy the study at the Penn Medicine imaging facility. Our RT-fMRI

oftware was the first cloud-based application deployed by the Penn

edicine IT group, thus breaking ground on the administrative as well

s technical requirements for a study of this type. This effort won a

ierce Innovation Award . 

The cloud framework was installed within Penn Medicine’s account

n the HIPAA compliant Microsoft Azure Cloud and integrated with on-

remise resources via a Virtual Private Network (VPN). The Penn IT

eam set up the virtual machine (VM) and did security scanning to en-

ure compliance. During sessions of the study, a version of the RT-Cloud

erver was running in the cloud and data were sent to it in the form of

asked 2D-arrays of DICOM volume data (this study used an earlier ver-

ion of the framework that pre-dated our use of BIDS-Incrementals). The

nalysis script in the cloud did smoothing, high-pass filtering, z-scoring

nd classification of the brain image data. The runs were divided into

nterleaved blocks of trials used for classification training (where partic-

pants attended to faces or scenes and neurofeedback was not provided)

nd neurofeedback trials. The cloud framework supported both classi-

er training and the use of the trained classifier during neurofeedback,

s specified by a session configuration file. The classification scores were

ent back to the presentation computer in the control room, saved as a

ext file, and then read by a PsychToolbox script to provide participants

ith feedback by altering the relative visibility of the face and the scene.

In the GreenEyes study ( Mennen et al., 2022 ), participants listened

o an ambiguous story and were given neurofeedback in order to steer

heir interpretation to one of two interpretations (randomly assigned

or each participant); the story stimulus used here was the same as the

timulus used in Yeshurun et al. (2017) . The study involved two one-

our scanning sessions per participant ( N = 20). Here, the ProjectServer

as run on a VM in the Microsoft Azure cloud. During scanning sessions,

s DICOM images arrived, they were anonymized and sent to the cloud

erver for processing. On the cloud, the BOLD data were registered to

NI space, preprocessed, and then processed using a Shared Response

odel ( Chen et al., 2015 ) and then a support vector machine classifier

o produce the neurofeedback values. These values were returned to

he presentation computer in the control room and written to a text

le which was read and used by a PsychToolbox script to update the

eedback display. Control of the ProjectServer was accomplished via a

eb page that was accessed by the researcher’s laptop. 

The following sub-sections describe key take-away points from these

eal-world validation studies. 

iming and responsiveness 

In these real-time experiments, a new brain scan was performed ev-

ry 1.5 or 2 s (i.e. the TR). Thus, we had to read and process the scan im-
6 
ge and provide the classification feedback within that time window. On

he Siemens scanning system used in these studies, it took about 700 ms

rom the completion of the scan until the reconstructed DICOM image

as available on the scanner computer’s disk. Our FileWatcher then read

he DICOM and transferred it to the cloud, taking about 100 ms. The

lassification was performed in 200 ms. The classification result was

eturned from the cloud in 20 ms. Thus the total processing time was

lightly more than 1 second. Using a TR of 2 s (a typical TR time in RT-

MRI experiments) gives plenty of leeway. Reliability of network transfer

o the cloud has not been an issue for us in the more than 100 scanning

essions that we have run as part of the aforementioned two studies.

e do note that a network outage would of course prevent running a

ession; however, it is possible that such an outage would prevent even

n on-premise real-time study depending on where the outage occurs.

n our validation studies, there were very rare occasions where process-

ng did not complete in time for a particular TR or trial. To handle this,

e simply configured the experiment presentation script so that – if the

eedback value was missing – the script delivered the same feedback

alue as on the previous TR or trial. Note that this error-handling is up

o the user; if a user wanted to handle missing feedback in a different

ay, they could set up the script differently. 

etwork bandwidth requirements 

An RT-fMRI session requires about 2 Mbps (Megabits per second) av-

rage bandwidth and 20–40 Mbps of peak upload bandwidth. A typical

ession sends a 0.5 megabyte (MB) image every 2 s and we want the

mage transfer to complete in 100–200 ms. Having a 20–40 Mbps peak

pload bandwidth allows the image transfer time constraint to be met.

he average bandwidth is much lower than the peak because of idle

ime between images. The reply from the cloud-based ProjectServer is

sually only a few bytes (such as a floating point number) and requires

inimal bandwidth. 

All of the facilities where we have deployed the framework have

ad adequate bandwidth and low enough latency to the cloud to sup-

ort these workloads, and we expect that these bandwidth requirements

ill be well covered at typical scanning facilities. In general, network in-

rastructure bandwidths have been increasing to meet on-demand video

treaming and as of 2020, Speedtest.net estimates the average U.S. fixed

nternet speed is 135 Mbps download / 52 Mbps upload. HealthIT.gov

ecommends that hospitals have a minimum of 100 Mbps service, and

hat academic / large medical centers have 1000 Mbps. 

ata privacy and security 

Working with medical data presents concerns and challenges in

aintaining data security and privacy. Additional concerns are often

aised when using cloud infrastructure. One of the first steps is to en-

ure that the computational and storage infrastructure are certified to be

IPAA compliant. Both Microsoft Azure and Amazon AWS have HIPAA

ertification. For the Penn Medicine-based RT-Attention study, we chose

icrosoft Azure, used anonymized image data with only the ROI voxels

eing sent for processing, used a private VPN network for data com-

unication, used encrypted storage in the cloud, and deleted data from

he cloud after each session. This provided a strong security model and

et IRB approval. For the GreenEyes study, we used similar measures

ut sent anonymized DICOM images (for which all identifying header

nformation was removed). 

Over time, cloud-based infrastructure will likely become more

rusted than on-premise infrastructure. Typically, on-premise facilities

ave a limited IT staff responsible for securing and patching all com-

uters. Cloud vendors have a much larger IT staff and automated tools

nd will be more on top of security patches and issues. The number

f high-profile security breaches at large companies with on-premise

ata illustrates this point. The aim is, of course, to use the best secu-

https://www.pennmedicine.org/news/news-releases/2018/december/cloud-based-brain-activity-mapping-system-receives-fierce-innovation-award
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ity practices available and cloud providers are incentivized to provide

tate-of-the-art solutions that can be employed. 

loud costs 

Costs associated with cloud computing can include VM rental, data

torage, data transfer, and other services like persistent IP addresses,

ogging etc. Cloud data transfers typically have asymmetric costs (free

o transfer data in, charge to read data out). Azure is free to transfer in

nd provides 5GB/month free outbound transfer and charges $0.08/GB

hereafter. In studies using RT-Cloud, image data are transferred in (free

nbound), and analysis results (which are typically very small files) are

ransferred out; at the end of an experiment, data archive files can be

ransferred out to a more permanent storage site (possibly cloud storage,

ossibly on-premise or in a data repository like OpenNeuro). The final

rchive transfer out may be a couple of GBs in size, costing about $0.20.

s a cost example, our Penn Medicine based RT-Attention study used

zure D16s VMs which cost about $0.80/hour, and our monthly bill

as typically much less than $100, with a few dollars of it being spent

n network transfer. 

dapting the framework to different computing environments 

The purpose of RT-Cloud is to make RT-fMRI easily accessible to

esearchers. This includes handling core functionality like watching for

ew DICOM images, handling real-time scheduling, providing pathways

or feedback, and making configuration and user interaction easier. Us-

ng cloud computing can be a simpler and cheaper option, but some fa-

ilities already have computer clusters or other resources in place, and

ur framework is adaptable to fit into many different compute config-

rations. Some configurations in which our software framework have

een deployed include: 

• At Penn Medicine, for the RT-Attention study, we split the Project-

Server into two parts: The classification model ran in the cloud,

and the other parts of the ProjectServer ran on a control-room com-

puter. Participant feedback was provided using MATLAB PsychTool-

box (running with the ProjectServer on the control-room computer),

with classification results being passed in via small text files. 

• At Princeton University, for the GreenEyes study, we ran the Pro-

jectServer in the cloud. 

Participant feedback was provided using PsychToolbox, running on

 separate computer. 

• In other studies that are currently underway at Yale University, the

ProjectServer is run on a local compute cluster, and analysis results

are sent via websockets to a PsychoPy script running on a separate

computer that provides participant feedback. 

• For testing and development, we often run everything on a local

computer. 

urrent and future directions 

We are planning to add several features to RT-Cloud in the coming

ears. One important component will be the ability to wrap an RT-Cloud

xperiment as a BIDS App. BIDS Apps are containerized (and thus self-

ontained) applications that operate on BIDS data and have a common

et of invocation parameters. An experiment packaged as a BIDS App

ould contain all the libraries and configurations needed to run the

xperiment on any computer that can run a Docker or Singularity con-

ainer. This will complement the BIDS data standardization added to the

ramework, allowing researchers to share both data and full execution

nvironments in order to reproduce, validate and extend each other’s

ork. 

Using the BIDS App framework, we will pre-package a set of real-

ime experiments. These will be modeled on paradigms that have
7 
ielded good results in the past, and will be representative of a range of

echniques. This will give new researchers a reference and quick start-

ng point for building new experiments, and will also make it easy to

eploy proven techniques to clinical settings. 

We also plan to add support for running multiple analysis models in

arallel within the ProjectServer. For example, researchers could deploy

 fast analysis model to guarantee a real-time result alongside a slower

ut more accurate model. Another potential use case could be to run

R-based eyetracking ( Frey et al., 2021 ) alongside an analysis model

e.g., to get an online measure of whether participants are fixating on

timuli). 

onclusion 

In summary, the RT-Cloud framework makes it possible to scale RT-

MRI to more computationally-intensive analyses, while also simplifying

he deployment of these analyses, by making it possible to run them in

ituations where local computing hardware or computing expertise are

acking. There are several other packages for running RT-fMRI studies

e.g., Basilio et al., 2015 ; Cox, 1996 ; Goebel et al., 2006 ; Heunis et al.,

018 ; Hinds et al., 2011 ; Koush et al., 2017 ; Shibata, 2012 ; for a more

omplete list see Sulzer, 2021 ). However, ours is unique in its use of

he cloud and SaaS. As described above, our cloud approach has several

mportant benefits, relating to ease of installation and maintenance, re-

uced cost, ease of scaling, and accessibility from anywhere. Our use

f open-source Python code makes the framework extensible by experts

nd allows for community-based development, and our integration with

he BIDS standard facilitates pipeline sharing and data sharing. Taken

ogether, we hope that these developments will expand the use of RT-

MRI to a much wider community. 
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